[go: up one dir, main page]

WO2020179339A1 - Hydrogen addition device, and method for assessing degree consumption of hydrogen permeable film - Google Patents

Hydrogen addition device, and method for assessing degree consumption of hydrogen permeable film Download PDF

Info

Publication number
WO2020179339A1
WO2020179339A1 PCT/JP2020/004380 JP2020004380W WO2020179339A1 WO 2020179339 A1 WO2020179339 A1 WO 2020179339A1 JP 2020004380 W JP2020004380 W JP 2020004380W WO 2020179339 A1 WO2020179339 A1 WO 2020179339A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
chamber
permeable membrane
water
pressure
Prior art date
Application number
PCT/JP2020/004380
Other languages
French (fr)
Japanese (ja)
Inventor
孝士 橘
Original Assignee
株式会社日本トリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本トリム filed Critical 株式会社日本トリム
Priority to CN202080012870.4A priority Critical patent/CN113396009B/en
Publication of WO2020179339A1 publication Critical patent/WO2020179339A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water

Definitions

  • the present invention relates to an apparatus for generating hydrogenated water in which hydrogen is added to water and a method for determining the degree of consumption of a hydrogen permeable membrane.
  • a technique for dissolving hydrogen in the raw material water supplied to the raw material water distribution unit is known (see, for example, Patent Document 1).
  • the above module deteriorates due to exhaustion of the hydrogen permeable membrane, so periodical replacement is recommended.
  • the degree of consumption of the hydrogen permeable membrane can be easily estimated by, for example, the usage time of the module.
  • the present invention has been devised in view of the above circumstances, and provides a hydrogen addition device and a method for determining the degree of consumption of a hydrogen permeable membrane, which can accurately determine the degree of consumption of a hydrogen permeable membrane with a simple and inexpensive configuration.
  • the main purpose is that.
  • a first aspect of the present invention is a hydrogen adding apparatus for adding hydrogen to water, comprising a first chamber to which hydrogen gas is supplied, a second chamber to which raw water is supplied, and a hydrogen in the second chamber.
  • a hydrogen permeable membrane that moves the hydrogen gas from the first chamber to the second chamber to generate additional water; a pressure detection unit that detects the pressure of the first chamber; and at least based on the pressure.
  • a determination unit that determines the degree of consumption of the hydrogen permeable membrane.
  • the hydrogenation apparatus further includes a hydrogen concentration detection unit that detects the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber.
  • the hydrogen addition apparatus further include a hydrogen gas generation unit that generates the hydrogen gas to be supplied to the first chamber.
  • the hydrogen gas generation unit has an anode power feeder and a cathode power feeder, generates the hydrogen gas by electrolyzing water, and supplies the hydrogen gas to the first chamber.
  • An electrolytic cell further comprising a control unit for controlling the voltage applied to the anode power supply and the cathode power supply, the control unit, so that the dissolved hydrogen concentration is constant, controls the voltage, Is desirable.
  • the determination unit further determines the degree of consumption of the hydrogen permeation membrane based on the dissolved hydrogen concentration.
  • the determination unit determines the degree of wear of the hydrogen permeation membrane based on the relationship between the pressure and the dissolved hydrogen concentration.
  • the hydrogen adding apparatus further comprising a flow rate detection unit that detects a supply amount of the raw water to the second chamber per unit time, the determination unit further based on the supply amount, It is desirable to determine the degree of consumption of the hydrogen permeable membrane.
  • the second invention of the present invention includes a first chamber to which hydrogen gas is supplied, a second chamber to which raw water is supplied, and a hydrogen permeable film for moving the hydrogen gas from the first chamber to the second chamber.
  • a method for determining the degree of wear of the hydrogen permeable film which comprises the step of detecting the pressure in the first chamber, and at least the hydrogen permeable film based on the pressure. Determining the degree of wear of the.
  • the hydrogen gas permeates the hydrogen permeable membrane and moves from the first chamber to the second chamber, so that the hydrogenated water is generated in the second chamber.
  • the determination unit determines the consumption level of the hydrogen permeable membrane based on at least the pressure of the first chamber, so that the hydrogen permeable membrane has a simple and inexpensive structure. It is possible to accurately determine the degree of wear of the module.
  • the method for determining the degree of wear of the hydrogen permeable membrane of the second invention determines the degree of wear of the hydrogen permeable membrane based on the step of detecting the pressure in the first chamber and at least the pressure. Since the above steps are included, it is possible to accurately determine the consumption level of the hydrogen permeable membrane module with a simple and inexpensive structure.
  • FIG. 1 shows a schematic configuration of an embodiment of the hydrogenation apparatus of the present invention.
  • the hydrogenation device 1 is a device for adding hydrogen to water, and the hydrogenated water to which hydrogen is added is used, for example, as dialysate preparation water for preparing a dialysate (hereinafter, the hydrogenated water is dialyzed). Sometimes referred to as water for liquid preparation). In recent years, hemodialysis using hydrogenated water for the preparation of dialysate has received attention as being effective in reducing oxidative stress in patients.
  • the hydrogen addition device 1 is arranged, for example, on the downstream side of the reverse osmosis membrane treatment device 200.
  • the hydrogenation device 1 and the reverse osmosis membrane treatment device 200 may be integrated and configured as one device.
  • a dialysis agent diluting device (not shown) for diluting a liquid dialysis agent with water for preparing a dialysate is connected.
  • the reverse osmosis membrane treatment device 200 purifies water supplied from the outside by using the reverse osmosis membrane.
  • the reverse osmosis membrane treatment device 200 and the hydrogenation device 1 are connected by a treated water supply path 10.
  • the water purified by the reverse osmosis membrane treatment device 200 passes through the treated water supply path 10 and is supplied to the hydrogenation device 1 to generate hydrogenated water for dialysate preparation. Used as raw water (hereinafter referred to as raw water).
  • the hydrogenation apparatus 1 used for producing dialysate preparation water adds hydrogen to the raw water supplied from the reverse osmosis membrane treatment apparatus 200 to generate hydrogenated water for dialysate preparation.
  • the hydrogenation device 1 and the dialysis base agent dilution device are connected by a hydrogenation water supply passage 20.
  • the hydrogenated water generated by the hydrogenation device 1 passes through the hydrogenation water supply passage 20 and is supplied to the dialysis base agent diluting device to be used for preparing a dialysate.
  • FIG. 2 shows the main configuration of the hydrogen addition device 1.
  • the hydrogenation device 1 includes a hydrogen gas generation unit 2 and a hydrogen permeable membrane module 3.
  • the hydrogen gas generation unit 2 generates hydrogen gas and supplies the hydrogen gas to the hydrogen permeable membrane module 3.
  • the electrolytic cell 4 is applied as the hydrogen gas generation unit 2.
  • the electrolytic bath 4 generates hydrogen gas by electrolyzing water.
  • the electrolytic cell 4 is configured such that a first polar chamber 40a in which the first power feeding body 41 is arranged and a second polar chamber 40b in which the second power feeding body 42 is arranged are separated by a diaphragm 43.
  • the first power feeding body 41 and the second power feeding body 42 have different polarities. That is, one of the first feeding body 41 and the second feeding body 42 is applied as an anode feeding body, and the other is applied as a cathode feeding body. In the present embodiment, the first feeding body 41 is applied as an anode feeding body, and the second feeding body 42 is applied as a cathode feeding body. Water is supplied to both the first electrode chamber 40a and the second electrode chamber 40b of the electrolysis chamber 40, and a DC voltage is applied to the first power feeding body 41 and the second power feeding body 42, so that water is generated in the electrolysis chamber 40. Electrolysis occurs.
  • FIG. 3 is a block diagram showing the electrical configuration of the hydrogenation device 1.
  • the polarities of the first feeder 41 and the second feeder 42 and the voltages applied to the first feeder 41 and the second feeder 42 are controlled by the control unit 9.
  • the control unit 9 includes, for example, a CPU (Central Processing Unit) that executes various types of arithmetic processing and information processing, a program that controls the operation of the CPU, and a memory that stores various types of information.
  • the control unit 9 controls the respective units of the device in addition to the first power feeding body 41 and the second power feeding body 42.
  • a current detector 44 is provided in the current supply line between the first power feeding body 41 and the control unit 9.
  • the current detector 44 may be provided in the current supply line between the second power feeder 42 and the control unit 9.
  • the current detector 44 detects the electrolytic current supplied to the first feeding body 41 and the second feeding body 42, and outputs an electric signal corresponding to the value to the control unit 9.
  • the control unit 9 controls the DC voltage applied to the first feeding body 41 and the second feeding body 42, for example, based on the electric signal output from the current detector 44. More specifically, the control unit 9 applies a DC voltage to the first feeding body 41 and the second feeding body 42 so that the electrolytic current detected by the current detector 44 becomes a preset desired value. Feedback control. For example, when the electrolytic current is excessive, the control unit 9 reduces the voltage, and when the electrolytic current is too small, the control unit 9 increases the voltage. Accordingly, the electrolytic current supplied to the first power feeding body 41 and the second power feeding body 42 is appropriately controlled.
  • hydrogen gas and oxygen gas are generated by electrolyzing water in the electrolysis chamber 40.
  • hydrogen gas is generated in the second electrode chamber 40b on the cathode side, and the hydrogen gas is supplied to the hydrogen permeable membrane module 3.
  • oxygen gas is generated in the first electrode chamber 40a on the anode side.
  • the diaphragm 43 for example, a solid polymer film made of a fluororesin having a sulfonic acid group is appropriately used.
  • the oxonium ion generated in the first electrode chamber 40a on the anode side is moved to the second electrode chamber 40b on the cathode side by electrolysis, and is used as a raw material for producing hydrogen gas. Therefore, the pH of the electrolyzed water in the first polar chamber 40a and the second polar chamber 40b does not change without generating hydroxide ions during electrolysis.
  • the hydrogen permeable membrane module 3 includes a first chamber 31, a second chamber 32, and a hydrogen permeable membrane 33.
  • the first chamber 31 and the second chamber 32 are separated by a hydrogen permeable film 33.
  • the first chamber 31 and the second electrode chamber 40b of the electrolytic cell 4 are connected by the hydrogen supply path 5.
  • the hydrogen gas generated in the second electrode chamber 40b of the electrolytic cell 4 passes through the hydrogen supply path 5 and is supplied to the first chamber 31.
  • the second chamber 32 is connected to the treated water supply passage 10.
  • Raw water is supplied to the second chamber 32 from the reverse osmosis membrane treatment device 200.
  • the hydrogen permeable membrane 33 is composed of, for example, a hollow fiber membrane which is a porous membrane permeable to hydrogen gas. Since the hydrogen gas generated in the electrolytic cell 4 is successively supplied to the first chamber 31, the pressure inside the first chamber 31 is increased. The hollow fiber membrane moves hydrogen gas from the first chamber 31 having a high pressure to the second chamber 32 having a low pressure.
  • the hydrogen permeable membrane 33 is not limited to a hollow fiber membrane as long as it has a function of permeating hydrogen gas from the high pressure fluid side to the low pressure fluid side.
  • the hydrogen permeable membrane 33 moves the hydrogen gas sequentially supplied from the electrolytic cell 4 from the first chamber 31 to the second chamber 32 in order to generate hydrogenated water in the second chamber 32. .. This makes it possible to generate hydrogen-added water with a simple and inexpensive structure without requiring a structure such as a pump for pressurizing hydrogen gas.
  • the hydrogen permeable membrane 33 is consumed with use.
  • the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 depends on the degree of consumption of the hydrogen permeable membrane 33. More specifically, when the hydrogen permeable membrane 33 is new, the dissolved hydrogen concentration of the hydrogenated water generated in the second chamber 32 is high, and the dissolved hydrogen concentration decreases as the hydrogen permeable membrane 33 is consumed. Therefore, in the present hydrogenation apparatus 1, the control unit 9 functions as a determination unit for determining the degree of wear of the hydrogen permeable membrane 33, and monitors the degree of wear of the hydrogen permeable membrane 33. The determination of the degree of consumption of the hydrogen permeable membrane 33 by the control unit 9 is performed as needed or periodically.
  • the hydrogen supply path 5 is provided with a pressure sensor (pressure detection unit) 51.
  • the pressure sensor 51 detects the pressure in the hydrogen supply passage 5. Since the hydrogen supply passage 5 communicates with the first chamber 31, the pressure inside the hydrogen supply passage 5 and the pressure inside the first chamber 31 are substantially equal. Therefore, the pressure sensor 51 detects the pressure in the first chamber 31.
  • the pressure sensor 51 may be provided in the first chamber 31.
  • the pressure sensor 51 outputs an electric signal corresponding to the detected pressure in the first chamber 31 to the control unit 9.
  • the control unit 9 determines the degree of wear of the hydrogen permeable membrane 33 based on the electric signal input from the pressure sensor 51, that is, the pressure in the first chamber 31. This makes it possible to accurately determine the degree of consumption of the hydrogen permeable membrane module 3 with a simple and inexpensive structure.
  • the hydrogen addition device 1 is provided with an output unit 91 that outputs the consumption level of the hydrogen permeable membrane 33 determined by the control unit 9.
  • the output unit 91 outputs the consumption level by voice or image.
  • Such an output unit 91 can be realized by a speaker device, an LED (light emitting diode), a liquid crystal display (Liquid Crystal Display), or the like. Further, the output unit 91 may be configured to output a wireless or wired signal corresponding to the degree of wear of the hydrogen permeable membrane 33 to the computer device that manages the hydrogenation device 1. With such an output unit 91, the manager of the hydrogen adding apparatus 1 can easily know the degree of consumption of the hydrogen permeable membrane 33.
  • the treated water that has been subjected to the reverse osmosis membrane treatment by the reverse osmosis membrane treatment apparatus 200 is applied to the water that is electrolyzed in the electrolytic cell 4.
  • the treated water is supplied to the electrolytic cell 4 via the treated water supply path 10 and the treated water supply path 11 branching from the treated water supply path 10. That is, the electrolytic cell 4 of the hydrogen gas generation unit 2 and the second chamber 32 of the hydrogen permeation membrane module 3 receive the treated water from the reverse osmosis membrane treatment device 200, which is the same water source.
  • the hydrogen adding apparatus 1 and the piping around the hydrogen adding apparatus 1 are simplified.
  • a hydrogen concentration sensor (hydrogen concentration detector) 21 be provided in the hydrogen-added water supply passage 20.
  • the hydrogen concentration sensor 21 detects the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32, and outputs a corresponding electric signal to the control unit 9.
  • the control unit 9 may be configured to determine the exhaustion degree of the hydrogen permeable membrane 33 based on the electric signal input from the hydrogen concentration sensor 21, that is, the dissolved hydrogen concentration of the hydrogenated water. ..
  • control unit 9 may be configured to determine the exhaustion degree of the hydrogen permeable membrane 33 based only on the dissolved hydrogen concentration of the hydrogen-added water, and the pressure of the first chamber 31 and the dissolution of the hydrogen-added water.
  • the consumption level may be determined based on the hydrogen concentration. Further, in the latter case, the consumption level is comprehensively calculated by the AND function or the OR function of the consumption level determined based on the pressure of the first chamber 31 and the consumption level determined based on the dissolved hydrogen concentration of the hydrogen-added water. It may be configured to make a positive determination. Furthermore, after determining the degree of consumption of the hydrogen permeable film 33 based on the pressure of the first chamber 31, the degree of consumption may be corrected based on the dissolved hydrogen concentration of the hydrogenated water.
  • the degree of consumption may be corrected based on the pressure of the first chamber 31. This makes it possible to accurately determine the degree of consumption of the hydrogen permeable membrane module 3 with a simple and inexpensive structure.
  • the control unit 9 applies a DC voltage to the first feeding body 41 and the second feeding body 42 based on the electric signal input from the hydrogen concentration sensor 21, that is, the dissolved hydrogen concentration of the hydrogenated water.
  • the first chamber 31 is increased by increasing the DC voltage applied to the first feeding body 41 and the second feeding body 42.
  • the pressure in the first chamber 31 is reduced by lowering the DC voltage applied to the first feeding body 41 and the second feeding body 42. To reduce the dissolved hydrogen concentration of hydrogenated water.
  • control unit 9 controls the DC voltage applied to the first feeding body 41 and the second feeding body 42 so that the dissolved hydrogen concentration becomes constant, so that the hydrogenated water having a desired dissolved hydrogen concentration can be obtained. It is generated in the hydrogenation device 1 and is supplied to the dialysis drug substance diluting device.
  • the control unit 9 has the first feeder 41 and the second feeding body 41 to compensate for this.
  • the DC voltage applied to the power supply body 42 is increased to increase the pressure in the first chamber 31.
  • control unit 9 of the present hydrogenation apparatus 1 determines the degree of wear of the hydrogen permeable membrane 33 based on the electric signal input from the pressure sensor 51, that is, the pressure of the first chamber 31. This makes it possible to accurately determine the degree of consumption of the hydrogen permeable membrane module 3 with a simple and inexpensive structure.
  • the control unit 9 may be configured to determine the degree of consumption of the hydrogen permeable membrane 33 based on the relationship between the pressure in the first chamber 31 and the dissolved hydrogen concentration of the hydrogenated water. For example, a relational expression showing the correlation between the pressure of the first chamber 31 and the dissolved hydrogen concentration of the hydrogen-added water and the degree of consumption of the hydrogen permeable membrane 33 is predetermined by experiments and the like, and the pressure and the dissolved hydrogen concentration are substituted into the relational expression. By doing so, the degree of consumption of the hydrogen permeable film 33 may be obtained.
  • the treated water supply path 10 is provided with a water inlet valve 12 and a flow meter (flow rate detector) 13.
  • the water inlet valve 12 is driven by, for example, an electromagnetic force controlled by the controller 9, and limits the treated water flowing in the treated water supply passage 10.
  • the flow meter 13 detects the flow rate per unit time of the treated water flowing in the treated water supply path 10, that is, the raw water supplied to the second chamber 32 (hereinafter, simply referred to as the flow rate or the supply amount), and is a control unit. Output to 9.
  • the control unit 9 controls the water inlet valve 12 according to the flow rate input from the flow meter 13. As a result, the flow rate of the treated water supplied as raw water to the second chamber 32 is optimized.
  • a water supply valve 14 is provided in the treated water supply passage 11.
  • the water supply valve 14 is driven by, for example, an electromagnetic force controlled by the control unit 9, and limits the treated water flowing in the treated water supply passage 11. More specifically, when filling or replenishing the electrolytic cell 4 with water for electrolysis, the water supply valve 14 is opened, and thereafter, when the raw water is supplied to the second chamber 32 of the hydrogen permeable membrane module 3. At this time, the water supply valve 14 is closed.
  • the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 also depends on the amount of raw water supplied to the second chamber 32. For example, when the amount of raw water supplied to the second chamber 32 increases, the dissolved hydrogen concentration of the hydrogenated water tends to decrease.
  • control unit 9 determines the exhaustion degree of the hydrogen permeable membrane 33 based on the supply amount of the raw water detected by the flow meter 13 in addition to the pressure of the first chamber 31 detected by the pressure sensor 51 and the like. Is preferably configured to. This allows the control unit 9 to more accurately determine the degree of consumption of the hydrogen permeable membrane 33.
  • a gas vent valve 16 is provided in the exhaust passage 15 (see FIG. 2) extending upward from the first pole chamber 40a of the electrolytic chamber 40.
  • the oxygen gas generated in the first pole chamber 40a by electrolysis is discharged from the exhaust passage 15 and the gas vent valve 16.
  • FIG. 4 shows a processing procedure of a method for determining the degree of consumption of the hydrogen permeable membrane 33 in the hydrogen permeable membrane module 3.
  • the method for determining the degree of consumption of the hydrogen permeable membrane 33 includes step S1 for detecting the pressure in the first chamber 31, step S2 for detecting the dissolved hydrogen concentration, step S3 for detecting the supply amount of raw water, and the hydrogen permeable membrane 33. It includes step S4 of determining the degree of wear and step S5 of outputting the determination result.
  • step S1 the pressure in the first chamber 31 is detected by the pressure sensor 51.
  • step S2 the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 is detected by the hydrogen concentration sensor 21.
  • step S3 the flow rate of the raw water supplied to the second chamber 32 is detected by the flow meter 13.
  • step S4 the control unit 9 makes hydrogen based on the pressure of the first chamber 31 detected in step S1, the dissolved hydrogen concentration of the hydrogenated water detected in step S2, and the supply amount of raw water detected in step S3. The degree of wear of the permeable membrane 33 is determined. Then, in step S4, the output unit 91 outputs the determination result of step S3.
  • the present consumption level determination method it is possible to accurately determine the consumption level of the hydrogen permeable membrane 33 with a simple and inexpensive configuration.
  • the hydrogen addition device 1 generates hydrogen gas at least in order to generate hydrogen addition water in the first chamber 31 to which the hydrogen gas is supplied, the second chamber 32 to which the raw water is supplied, and the second chamber 32.
  • the hydrogen permeable film 33 that moves from the first chamber 31 to the second chamber 32, the pressure sensor 51 that detects the pressure of the first chamber 31, and at least the hydrogen permeable film 33 based on the pressure of the first chamber 31. It suffices to include a control unit 9 that determines the degree of wear.
  • the hydrogen gas generation unit 2 that generates hydrogen gas for supplying to the first chamber 31 is not limited to the electrolytic cell 4 that electrolyzes water.
  • it may be a device that generates hydrogen gas by a chemical reaction between water and magnesium, or a cylinder filled with hydrogen gas.
  • control unit 9 estimates the pressure in the first chamber 31 based on, for example, the integrated value of the electrolytic current, instead of the pressure sensor 51. It may be configured.
  • the hydrogen addition device 1 can be applied to various purposes in addition to generation of hydrogen addition water for preparing dialysate. For example, it can be widely applied to the production of hydrogenated water for drinking, cooking or agriculture.
  • the consumption level determination method includes at least step S1 of detecting the pressure in the first chamber 31 and step S4 of determining the consumption level of the hydrogen permeable film 33.
  • step S1 of detecting the pressure in the first chamber 31 and step S4 of determining the consumption level of the hydrogen permeable film 33.
  • step S2 of detecting the dissolved hydrogen concentration or step S3 of detecting the supply amount of raw water may be omitted.
  • step S4 the control unit 9 determines the degree of consumption of the hydrogen permeable membrane 33 based on the dissolved hydrogen concentration of the dialysate preparation water detected in step S1.
  • Hydrogen addition device 2 Hydrogen gas generation unit 3: Hydrogen permeable membrane module 4: Electrolyzer 9: Control unit (determination unit) 13: Flow meter (flow rate detector) 21: Hydrogen concentration sensor (hydrogen concentration detector) 31: First chamber 32: Second chamber 33: Hydrogen permeable membrane 41: First feeding body (anode feeding body) 42: Second power supply (cathode power supply)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This hydrogen addition device 1 comprises a first chamber 31 to which hydrogen gas is supplied, a second chamber 32 to which raw water is supplied, a hydrogen permeable film 33 that causes the hydrogen gas to move from the first chamber 31 into the second chamber 32 in order to generate hydrogen-added water in the second chamber 32, a pressure sensor 51 that detects the pressure in the first chamber 31, and a control unit that assesses the degree of consumption of the hydrogen permeable film 33 on the basis of at least the pressure in the first chamber 31.

Description

水素付加装置及び水素透過膜の消耗度判定方法Hydrogen addition device and method for determining degree of consumption of hydrogen permeable membrane
 本発明は、水に水素が付加された水素付加水を生成する装置及び水素透過膜の消耗度判定方法に関する。 The present invention relates to an apparatus for generating hydrogenated water in which hydrogen is added to water and a method for determining the degree of consumption of a hydrogen permeable membrane.
 水に水素を付加する方法として、水素透過膜(ガス透過膜)によって水素ガス流通部と原料水流通部とが区画されたモジュールを用い、水素ガス流通部に加圧した水素ガスを供給して、原料水流通部に供給した原料水に水素を溶解させる技術が知られている(例えば、特許文献1参照)。 As a method of adding hydrogen to water, a module in which a hydrogen gas flow section (raw gas flow section) is divided by a hydrogen permeable membrane (gas permeable membrane) is used, and pressurized hydrogen gas is supplied to the hydrogen gas flow section. A technique for dissolving hydrogen in the raw material water supplied to the raw material water distribution unit is known (see, for example, Patent Document 1).
特開2009-125654号公報JP-A-2009-125654
 上記モジュールは、水素透過膜の消耗によって劣化するため、定期的な交換が推奨される。水素透過膜の消耗度は、例えば、上記モジュールの使用時間等によって簡易的に推定可能である。 -The above module deteriorates due to exhaustion of the hydrogen permeable membrane, so periodical replacement is recommended. The degree of consumption of the hydrogen permeable membrane can be easily estimated by, for example, the usage time of the module.
 しかしながら、水素透過膜は高価であることから、低廉なランニングコストで水素付加水を生成するためには、水素透過膜の消耗度をより正確に判定する技術の確立が求められている。 However, since hydrogen permeable membranes are expensive, in order to generate hydrogen-added water at low running costs, it is necessary to establish a technique for more accurately determining the degree of consumption of hydrogen permeable membranes.
 本発明は、以上のような実状に鑑み案出されたもので、簡素かつ安価な構成で水素透過膜の消耗度を正確に判定できる水素付加装置及び水素透過膜の消耗度判定方法を提供することを主たる目的としている。 The present invention has been devised in view of the above circumstances, and provides a hydrogen addition device and a method for determining the degree of consumption of a hydrogen permeable membrane, which can accurately determine the degree of consumption of a hydrogen permeable membrane with a simple and inexpensive configuration. The main purpose is that.
 本発明の第1発明は、水に水素を付加するための水素付加装置であって、水素ガスが供給される第1室と、原水が供給される第2室と、前記第2室で水素付加水を生成するために、前記水素ガスを前記第1室から前記第2室へと移動させる水素透過膜と、前記第1室の圧力を検出する圧力検出部と、少なくとも、前記圧力に基づいて、前記水素透過膜の消耗度を判定する判定部とを備える。 A first aspect of the present invention is a hydrogen adding apparatus for adding hydrogen to water, comprising a first chamber to which hydrogen gas is supplied, a second chamber to which raw water is supplied, and a hydrogen in the second chamber. A hydrogen permeable membrane that moves the hydrogen gas from the first chamber to the second chamber to generate additional water; a pressure detection unit that detects the pressure of the first chamber; and at least based on the pressure. And a determination unit that determines the degree of consumption of the hydrogen permeable membrane.
 本発明に係る前記水素付加装置において、前記第2室から取り出された前記水素付加水の溶存水素濃度を検出する水素濃度検出部をさらに備える、ことが望ましい。 It is desirable that the hydrogenation apparatus according to the present invention further includes a hydrogen concentration detection unit that detects the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber.
 本発明に係る前記水素付加装置において、前記第1室に供給する前記水素ガスを生成する水素ガス生成部をさらに備える、ことが望ましい。 It is desirable that the hydrogen addition apparatus according to the present invention further include a hydrogen gas generation unit that generates the hydrogen gas to be supplied to the first chamber.
 本発明に係る前記水素付加装置において、前記水素ガス生成部は、陽極給電体と陰極給電体とを有し、水を電気分解することにより前記水素ガスを生成し、前記第1室に供給する電解槽を有し、前記陽極給電体及び前記陰極給電体に印加する電圧を制御する制御部をさらに備え、前記制御部は、前記溶存水素濃度が一定となるように、前記電圧を制御する、ことが望ましい。 In the hydrogen adding apparatus according to the present invention, the hydrogen gas generation unit has an anode power feeder and a cathode power feeder, generates the hydrogen gas by electrolyzing water, and supplies the hydrogen gas to the first chamber. An electrolytic cell, further comprising a control unit for controlling the voltage applied to the anode power supply and the cathode power supply, the control unit, so that the dissolved hydrogen concentration is constant, controls the voltage, Is desirable.
 本発明に係る前記水素付加装置において、前記判定部は、さらに、前記溶存水素濃度に基づいて、前記水素透過膜の消耗度を判定する、ことが望ましい。 In the hydrogenation apparatus according to the present invention, it is desirable that the determination unit further determines the degree of consumption of the hydrogen permeation membrane based on the dissolved hydrogen concentration.
 本発明に係る前記水素付加装置において、前記判定部は、前記圧力及び前記溶存水素濃度の関係に基づいて、前記水素透過膜の消耗度を判定する、ことが望ましい。 In the hydrogenation apparatus according to the present invention, it is desirable that the determination unit determines the degree of wear of the hydrogen permeation membrane based on the relationship between the pressure and the dissolved hydrogen concentration.
 本発明に係る前記水素付加装置において、前記第2室への前記原水の単位時間あたりの供給量を検出する流量検出部をさらに備え、前記判定部は、さらに、前記供給量に基づいて、前記水素透過膜の消耗度を判定する、ことが望ましい。 In the hydrogen adding apparatus according to the present invention, further comprising a flow rate detection unit that detects a supply amount of the raw water to the second chamber per unit time, the determination unit further based on the supply amount, It is desirable to determine the degree of consumption of the hydrogen permeable membrane.
 本発明の第2発明は、水素ガスが供給される第1室と、原水が供給される第2室と、前記水素ガスを前記第1室から前記第2室へと移動させる水素透過膜とを備えた水素透過モジュールにおいて、前記水素透過膜の消耗度を判定する消耗度判定方法であって、前記第1室の圧力を検出するステップと、少なくとも、前記圧力に基づいて、前記水素透過膜の消耗度を判定するステップとを含む。 The second invention of the present invention includes a first chamber to which hydrogen gas is supplied, a second chamber to which raw water is supplied, and a hydrogen permeable film for moving the hydrogen gas from the first chamber to the second chamber. A method for determining the degree of wear of the hydrogen permeable film, which comprises the step of detecting the pressure in the first chamber, and at least the hydrogen permeable film based on the pressure. Determining the degree of wear of the.
 本第1発明の前記水素付加装置では、前記水素ガスが前記水素透過膜を透過して前記第1室から前記第2室へと移動することにより、前記第2室で前記水素付加水が生成される。例えば、前記水素透過膜が消耗すると、前記第1室の前記圧力は予め想定されていた範囲を超えることがある。そこで、本第1発明では、前記判定部が、少なくとも、前記第1室の前記圧力に基づいて、前記水素透過膜の前記消耗度を判定することにより、簡素かつ安価な構成で前記水素透過膜モジュールの前記消耗度を正確に判定することが可能となる。 In the hydrogenation apparatus of the first invention, the hydrogen gas permeates the hydrogen permeable membrane and moves from the first chamber to the second chamber, so that the hydrogenated water is generated in the second chamber. To be done. For example, when the hydrogen permeable membrane is exhausted, the pressure in the first chamber may exceed a range that is assumed in advance. Therefore, in the first aspect of the present invention, the determination unit determines the consumption level of the hydrogen permeable membrane based on at least the pressure of the first chamber, so that the hydrogen permeable membrane has a simple and inexpensive structure. It is possible to accurately determine the degree of wear of the module.
 本第2発明の前記水素透過膜の前記消耗度判定方法は、前記第1室の前記圧力を検出する前記ステップと、少なくとも、前記圧力に基づいて、前記水素透過膜の前記消耗度を判定する前記ステップを含むので、簡素かつ安価な構成で前記水素透過膜モジュールの前記消耗度を正確に判定することが可能となる。 The method for determining the degree of wear of the hydrogen permeable membrane of the second invention determines the degree of wear of the hydrogen permeable membrane based on the step of detecting the pressure in the first chamber and at least the pressure. Since the above steps are included, it is possible to accurately determine the consumption level of the hydrogen permeable membrane module with a simple and inexpensive structure.
本発明の実施の一形態である水素付加装置の概略構成を示す図である。It is a figure which shows schematic structure of the hydrogen addition apparatus which is one Embodiment of this invention. 水素付加装置の主要な構成を示す図である。It is a figure which shows the main structures of a hydrogenation apparatus. 水素付加装置の電気的な構成を示すブロック図である。It is a block diagram which shows the electric constitution of a hydrogenation apparatus. 本発明の実施の一形態の消耗度判定方法の処理手順を示すフローチャートである。It is a flow chart which shows a processing procedure of a consumption degree judging method of an embodiment of the invention.
 以下、本発明の実施の一形態が図面に基づき説明される。
 図1は、本発明の水素付加装置の一実施形態の概略構成を示している。水素付加装置1は、水に水素を付加するための装置であり、水素が付加された水素付加水は、例えば、透析液調製用水として透析液の調製に用いられる(以下、水素付加水を透析液調製用水と記すこともある)。近年、透析液の調製に水素付加水を用いた血液透析は、患者の酸化ストレス低減に有効であるとして、注目されている。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a schematic configuration of an embodiment of the hydrogenation apparatus of the present invention. The hydrogenation device 1 is a device for adding hydrogen to water, and the hydrogenated water to which hydrogen is added is used, for example, as dialysate preparation water for preparing a dialysate (hereinafter, the hydrogenated water is dialyzed). Sometimes referred to as water for liquid preparation). In recent years, hemodialysis using hydrogenated water for the preparation of dialysate has received attention as being effective in reducing oxidative stress in patients.
 水素付加装置1は、例えば、逆浸透膜処理装置200の下流側に配置される。水素付加装置1と逆浸透膜処理装置200とは、統合されて一つの装置として構成されていてもよい。水素付加装置1の下流側には、例えば、透析液調製用水を用いて液状の透析原剤を希釈する透析原剤希釈装置(図示せず)に接続されている。 The hydrogen addition device 1 is arranged, for example, on the downstream side of the reverse osmosis membrane treatment device 200. The hydrogenation device 1 and the reverse osmosis membrane treatment device 200 may be integrated and configured as one device. On the downstream side of the hydrogenation apparatus 1, for example, a dialysis agent diluting device (not shown) for diluting a liquid dialysis agent with water for preparing a dialysate is connected.
 逆浸透膜処理装置200は、逆浸透膜を用いて外部から供給された水を浄化する。逆浸透膜処理装置200と、水素付加装置1とは、処理水供給路10によって接続されている。逆浸透膜処理装置200によって浄化処理された水(以下、処理水とする)は、処理水供給路10を通過して水素付加装置1に供給され、透析液調製用の水素付加水を生成するための原水(以下、原水と記す)として用いられる。 The reverse osmosis membrane treatment device 200 purifies water supplied from the outside by using the reverse osmosis membrane. The reverse osmosis membrane treatment device 200 and the hydrogenation device 1 are connected by a treated water supply path 10. The water purified by the reverse osmosis membrane treatment device 200 (hereinafter referred to as treated water) passes through the treated water supply path 10 and is supplied to the hydrogenation device 1 to generate hydrogenated water for dialysate preparation. Used as raw water (hereinafter referred to as raw water).
 透析液調製用水の生成に用いられる水素付加装置1は、逆浸透膜処理装置200から供給された原水に水素を付加して透析液調製用の水素付加水を生成する。水素付加装置1と、上記透析原剤希釈装置とは、水素付加水供給路20によって接続されている。水素付加装置1によって生成された水素付加水は、水素付加水供給路20を通過して、上記透析原剤希釈装置に供給され、透析液の調製に用いられる。 The hydrogenation apparatus 1 used for producing dialysate preparation water adds hydrogen to the raw water supplied from the reverse osmosis membrane treatment apparatus 200 to generate hydrogenated water for dialysate preparation. The hydrogenation device 1 and the dialysis base agent dilution device are connected by a hydrogenation water supply passage 20. The hydrogenated water generated by the hydrogenation device 1 passes through the hydrogenation water supply passage 20 and is supplied to the dialysis base agent diluting device to be used for preparing a dialysate.
 図2は、水素付加装置1の主要な構成を示している。水素付加装置1は、水素ガス生成部2と、水素透過膜モジュール3とを含んでいる。 FIG. 2 shows the main configuration of the hydrogen addition device 1. The hydrogenation device 1 includes a hydrogen gas generation unit 2 and a hydrogen permeable membrane module 3.
 水素ガス生成部2は、水素ガスを生成し、当該水素ガスを水素透過膜モジュール3に供給する。本実施形態では、水素ガス生成部2として電解槽4が適用されている。電解槽4は、水を電気分解することにより、水素ガスを発生させる。 The hydrogen gas generation unit 2 generates hydrogen gas and supplies the hydrogen gas to the hydrogen permeable membrane module 3. In this embodiment, the electrolytic cell 4 is applied as the hydrogen gas generation unit 2. The electrolytic bath 4 generates hydrogen gas by electrolyzing water.
 電解槽4は、第1給電体41が配された第1極室40aと第2給電体42が配された第2極室40bとが隔膜43によって区分されてなる。 The electrolytic cell 4 is configured such that a first polar chamber 40a in which the first power feeding body 41 is arranged and a second polar chamber 40b in which the second power feeding body 42 is arranged are separated by a diaphragm 43.
 第1給電体41と第2給電体42とは、極性が異なる。すなわち、第1給電体41及び第2給電体42の一方は陽極給電体として適用され、他方は陰極給電体として適用される。本実施形態では、第1給電体41が陽極給電体として適用され、第2給電体42が陰極給電体として適用されている。電解室40の第1極室40a及び第2極室40bの両方に水が供給され、第1給電体41及び第2給電体42に直流電圧が印加されることにより、電解室40内で水の電気分解が生ずる。 The first power feeding body 41 and the second power feeding body 42 have different polarities. That is, one of the first feeding body 41 and the second feeding body 42 is applied as an anode feeding body, and the other is applied as a cathode feeding body. In the present embodiment, the first feeding body 41 is applied as an anode feeding body, and the second feeding body 42 is applied as a cathode feeding body. Water is supplied to both the first electrode chamber 40a and the second electrode chamber 40b of the electrolysis chamber 40, and a DC voltage is applied to the first power feeding body 41 and the second power feeding body 42, so that water is generated in the electrolysis chamber 40. Electrolysis occurs.
 図3は、水素付加装置1の電気的な構成を示すブロック図である。第1給電体41及び第2給電体42の極性及び第1給電体41及び第2給電体42に印加される電圧は、制御部9によって制御される。制御部9は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。制御部9は、第1給電体41及び第2給電体42の他、装置各部の制御を司る。 FIG. 3 is a block diagram showing the electrical configuration of the hydrogenation device 1. The polarities of the first feeder 41 and the second feeder 42 and the voltages applied to the first feeder 41 and the second feeder 42 are controlled by the control unit 9. The control unit 9 includes, for example, a CPU (Central Processing Unit) that executes various types of arithmetic processing and information processing, a program that controls the operation of the CPU, and a memory that stores various types of information. The control unit 9 controls the respective units of the device in addition to the first power feeding body 41 and the second power feeding body 42.
 第1給電体41と制御部9との間の電流供給ラインには、電流検出器44が設けられている。電流検出器44は、第2給電体42と制御部9との間の電流供給ラインに設けられていてもよい。電流検出器44は、第1給電体41、第2給電体42に供給する電解電流を検出し、その値に相当する電気信号を制御部9に出力する。 A current detector 44 is provided in the current supply line between the first power feeding body 41 and the control unit 9. The current detector 44 may be provided in the current supply line between the second power feeder 42 and the control unit 9. The current detector 44 detects the electrolytic current supplied to the first feeding body 41 and the second feeding body 42, and outputs an electric signal corresponding to the value to the control unit 9.
 制御部9は、例えば、電流検出器44から出力された電気信号に基づいて、第1給電体41及び第2給電体42に印加する直流電圧を制御する。より具体的には、制御部9は、電流検出器44によって検出される電解電流が予め設定された所望の値となるように、第1給電体41及び第2給電体42に印加する直流電圧をフィードバック制御する。例えば、電解電流が過大である場合、制御部9は、上記電圧を減少させ、電解電流が過小である場合、制御部9は、上記電圧を増加させる。これにより、第1給電体41及び第2給電体42に供給する電解電流が適切に制御される。 The control unit 9 controls the DC voltage applied to the first feeding body 41 and the second feeding body 42, for example, based on the electric signal output from the current detector 44. More specifically, the control unit 9 applies a DC voltage to the first feeding body 41 and the second feeding body 42 so that the electrolytic current detected by the current detector 44 becomes a preset desired value. Feedback control. For example, when the electrolytic current is excessive, the control unit 9 reduces the voltage, and when the electrolytic current is too small, the control unit 9 increases the voltage. Accordingly, the electrolytic current supplied to the first power feeding body 41 and the second power feeding body 42 is appropriately controlled.
  図1、2において、電解室40内で水が電気分解されることにより、水素ガス及び酸素ガスが発生する。例えば、陰極側の第2極室40bでは、水素ガスが発生し、当該水素ガスは水素透過膜モジュール3に供給される。一方、陽極側の第1極室40aでは、酸素ガスが発生する。 1 and 2, hydrogen gas and oxygen gas are generated by electrolyzing water in the electrolysis chamber 40. For example, hydrogen gas is generated in the second electrode chamber 40b on the cathode side, and the hydrogen gas is supplied to the hydrogen permeable membrane module 3. On the other hand, oxygen gas is generated in the first electrode chamber 40a on the anode side.
  隔膜43には、例えば、スルホン酸基を有するフッ素系樹脂からなる固体高分子膜が適宜用いられている。固体高分子膜は、電気分解により、陽極側の第1極室40aで発生したオキソニウムイオンを陰極側の第2極室40bへと移動させて、水素ガスの生成原料とする。従って、電気分解の際に水酸化物イオンが発生することなく、第1極室40a及び第2極室40b内の電解水のpHが変化しない。 As the diaphragm 43, for example, a solid polymer film made of a fluororesin having a sulfonic acid group is appropriately used. In the solid polymer membrane, the oxonium ion generated in the first electrode chamber 40a on the anode side is moved to the second electrode chamber 40b on the cathode side by electrolysis, and is used as a raw material for producing hydrogen gas. Therefore, the pH of the electrolyzed water in the first polar chamber 40a and the second polar chamber 40b does not change without generating hydroxide ions during electrolysis.
 水素透過膜モジュール3は、第1室31と、第2室32と、水素透過膜33とを備える。第1室31と第2室32とは、水素透過膜33によって隔てられている。 The hydrogen permeable membrane module 3 includes a first chamber 31, a second chamber 32, and a hydrogen permeable membrane 33. The first chamber 31 and the second chamber 32 are separated by a hydrogen permeable film 33.
 第1室31と電解槽4の第2極室40bとは、水素供給路5によって接続されている。電解槽4の第2極室40bにて生成された水素ガスは、水素供給路5を通過して、第1室31に供給される。 The first chamber 31 and the second electrode chamber 40b of the electrolytic cell 4 are connected by the hydrogen supply path 5. The hydrogen gas generated in the second electrode chamber 40b of the electrolytic cell 4 passes through the hydrogen supply path 5 and is supplied to the first chamber 31.
 一方、第2室32は、処理水供給路10と接続されている。第2室32には、逆浸透膜処理装置200から原水が供給される。 On the other hand, the second chamber 32 is connected to the treated water supply passage 10. Raw water is supplied to the second chamber 32 from the reverse osmosis membrane treatment device 200.
 水素透過膜33は、例えば、水素ガスを透過する多孔質膜である中空糸膜によって構成されている。第1室31には、電解槽4にて生成された水素ガスが次々と供給されるので、第1室31内の圧力は高められる。中空糸膜は、水素ガスを圧力が大きい第1室31から圧力が小さい第2室32へと移動させる。水素透過膜33は、水素ガスを、高圧の流体側から低圧の流体の側に透過させる機能を有する膜であればよく、中空糸膜に限られない。 The hydrogen permeable membrane 33 is composed of, for example, a hollow fiber membrane which is a porous membrane permeable to hydrogen gas. Since the hydrogen gas generated in the electrolytic cell 4 is successively supplied to the first chamber 31, the pressure inside the first chamber 31 is increased. The hollow fiber membrane moves hydrogen gas from the first chamber 31 having a high pressure to the second chamber 32 having a low pressure. The hydrogen permeable membrane 33 is not limited to a hollow fiber membrane as long as it has a function of permeating hydrogen gas from the high pressure fluid side to the low pressure fluid side.
 本実施形態では、水素透過膜33は、第2室32で水素付加水を生成するために、電解槽4から次々と供給された水素ガスを第1室31から第2室32へと移動させる。これにより、水素ガスを加圧するためのポンプ等の構成を必要とすることなく、簡素かつ安価な構成で水素付加水を生成することが可能となる。 In the present embodiment, the hydrogen permeable membrane 33 moves the hydrogen gas sequentially supplied from the electrolytic cell 4 from the first chamber 31 to the second chamber 32 in order to generate hydrogenated water in the second chamber 32. .. This makes it possible to generate hydrogen-added water with a simple and inexpensive structure without requiring a structure such as a pump for pressurizing hydrogen gas.
 ところで、水素透過膜33は、使用に伴い消耗する。そして第2室32から取り出された水素付加水の溶存水素濃度は、水素透過膜33の消耗度に依存する。より具体的には、水素透過膜33が新しいとき、第2室32にて生成される水素付加水の溶存水素濃度は高く、水素透過膜33が消耗するに従い、上記溶存水素濃度は低下する。そこで、本水素付加装置1では、制御部9が、水素透過膜33の消耗度を判定する判定部として機能し、水素透過膜33の消耗度を監視する。なお、制御部9による水素透過膜33の消耗度の判定は、随時又は定期的に実行される。 By the way, the hydrogen permeable membrane 33 is consumed with use. The dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 depends on the degree of consumption of the hydrogen permeable membrane 33. More specifically, when the hydrogen permeable membrane 33 is new, the dissolved hydrogen concentration of the hydrogenated water generated in the second chamber 32 is high, and the dissolved hydrogen concentration decreases as the hydrogen permeable membrane 33 is consumed. Therefore, in the present hydrogenation apparatus 1, the control unit 9 functions as a determination unit for determining the degree of wear of the hydrogen permeable membrane 33, and monitors the degree of wear of the hydrogen permeable membrane 33. The determination of the degree of consumption of the hydrogen permeable membrane 33 by the control unit 9 is performed as needed or periodically.
 水素供給路5には、圧力センサー(圧力検出部)51が設けられている。圧力センサー51は、水素供給路5内の圧力を検出する。水素供給路5は第1室31に連通しているので、水素供給路5内の圧力と第1室31の圧力とは実質的に等しい。従って、圧力センサー51によって第1室31内の圧力が検出される。圧力センサー51は、第1室31に設けられていてもよい。圧力センサー51は、検出した第1室31の圧力に対応する電気信号を制御部9に出力する。 The hydrogen supply path 5 is provided with a pressure sensor (pressure detection unit) 51. The pressure sensor 51 detects the pressure in the hydrogen supply passage 5. Since the hydrogen supply passage 5 communicates with the first chamber 31, the pressure inside the hydrogen supply passage 5 and the pressure inside the first chamber 31 are substantially equal. Therefore, the pressure sensor 51 detects the pressure in the first chamber 31. The pressure sensor 51 may be provided in the first chamber 31. The pressure sensor 51 outputs an electric signal corresponding to the detected pressure in the first chamber 31 to the control unit 9.
 例えば、前記水素透過膜が消耗すると、前記第1室の前記圧力は予め想定されていた範囲を超えることがある。従って、第1室31の圧力が予め定められた閾値を超える場合、水素透過膜33の消耗が進行していると判定できる。上記閾値は複数定められていてもよい。そこで、制御部9は、圧力センサー51から入力された電気信号、すなわち、第1室31の圧力に基づいて、水素透過膜33の消耗度を判定する。これにより、簡素かつ安価な構成で水素透過膜モジュール3の消耗度を正確に判定することが可能となる。 For example, when the hydrogen permeable membrane is exhausted, the pressure in the first chamber may exceed a range that is assumed in advance. Therefore, when the pressure in the first chamber 31 exceeds a predetermined threshold value, it can be determined that the hydrogen permeable membrane 33 is being consumed. Plural threshold values may be set. Therefore, the control unit 9 determines the degree of wear of the hydrogen permeable membrane 33 based on the electric signal input from the pressure sensor 51, that is, the pressure in the first chamber 31. This makes it possible to accurately determine the degree of consumption of the hydrogen permeable membrane module 3 with a simple and inexpensive structure.
 本水素付加装置1では、制御部9によって判定された水素透過膜33の消耗度を出力する出力部91が設けられている。出力部91は、上記消耗度を音声又は画像等によって出力する。このような出力部91は、スピーカー装置、LED(発光ダイオード)、液晶ディスプレイ(Liquid Crystal Display)等によって実現可能である。また、出力部91は、水素付加装置1を管理するコンピューター装置に、水素透過膜33の消耗度に対応する無線又は有線による信号を出力するように構成されていてもよい。このような出力部91により、水素付加装置1の管理者は、水素透過膜33の消耗度を容易に知得できる。 The hydrogen addition device 1 is provided with an output unit 91 that outputs the consumption level of the hydrogen permeable membrane 33 determined by the control unit 9. The output unit 91 outputs the consumption level by voice or image. Such an output unit 91 can be realized by a speaker device, an LED (light emitting diode), a liquid crystal display (Liquid Crystal Display), or the like. Further, the output unit 91 may be configured to output a wireless or wired signal corresponding to the degree of wear of the hydrogen permeable membrane 33 to the computer device that manages the hydrogenation device 1. With such an output unit 91, the manager of the hydrogen adding apparatus 1 can easily know the degree of consumption of the hydrogen permeable membrane 33.
 図1に示されるように、本実施形態では、電解槽4で電気分解される水は、逆浸透膜処理装置200にて逆浸透膜処理された処理水が適用される。処理水は、処理水供給路10及び処理水供給路10から分岐する処理水供給路11等を経て、電解槽4に供給される。すなわち、水素ガス生成部2の電解槽4と水素透過膜モジュール3の第2室32とは、同一の水源である逆浸透膜処理装置200から処理水の供給を受ける。このような構成により、水素付加装置1及びその周辺の配管が簡素化される。 As shown in FIG. 1, in the present embodiment, the treated water that has been subjected to the reverse osmosis membrane treatment by the reverse osmosis membrane treatment apparatus 200 is applied to the water that is electrolyzed in the electrolytic cell 4. The treated water is supplied to the electrolytic cell 4 via the treated water supply path 10 and the treated water supply path 11 branching from the treated water supply path 10. That is, the electrolytic cell 4 of the hydrogen gas generation unit 2 and the second chamber 32 of the hydrogen permeation membrane module 3 receive the treated water from the reverse osmosis membrane treatment device 200, which is the same water source. With such a configuration, the hydrogen adding apparatus 1 and the piping around the hydrogen adding apparatus 1 are simplified.
 水素付加水供給路20には、水素濃度センサー(水素濃度検出部)21が設けられている、のが望ましい。水素濃度センサー21は、第2室32から取り出された水素付加水の溶存水素濃度を検出し、対応する電気信号を制御部9に出力する。 It is desirable that a hydrogen concentration sensor (hydrogen concentration detector) 21 be provided in the hydrogen-added water supply passage 20. The hydrogen concentration sensor 21 detects the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32, and outputs a corresponding electric signal to the control unit 9.
 例えば、水素透過膜33の消耗は、水素付加水の溶存水素濃度に影響を及ぼすことがある。従って、水素付加水の溶存水素濃度が予め定められた閾値未満である場合、水素透過膜33の消耗が進行していると判定できる。そこで、制御部9は、水素濃度センサー21から入力された電気信号、すなわち、水素付加水の溶存水素濃度に基づいて、水素透過膜33の消耗度を判定する、ように構成されていてもよい。 For example, consumption of the hydrogen permeable membrane 33 may affect the dissolved hydrogen concentration of the hydrogenated water. Therefore, when the dissolved hydrogen concentration of the hydrogenated water is less than the predetermined threshold value, it can be determined that the hydrogen permeable membrane 33 is being consumed. Therefore, the control unit 9 may be configured to determine the exhaustion degree of the hydrogen permeable membrane 33 based on the electric signal input from the hydrogen concentration sensor 21, that is, the dissolved hydrogen concentration of the hydrogenated water. ..
 例えば、制御部9が、水素付加水の溶存水素濃度のみに基づいて、水素透過膜33の消耗度を判定するように構成されていてもよく、第1室31の圧力及び水素付加水の溶存水素濃度に基づいて、上記消耗度を判定するように構成されていてもよい。さらに、後者の場合は、第1室31の圧力に基づいて判定された消耗度及び水素付加水の溶存水素濃度に基づいて判定された消耗度のアンド関数又はオア関数によって、上記消耗度を総合的に判定するように構成されていてもよい。さらにまた、第1室31の圧力に基づいて、水素透過膜33の消耗度を判定した後、水素付加水の溶存水素濃度に基づいて、上記消耗度を補正するように構成されていてもよく、水素付加水の溶存水素濃度に基づいて、水素透過膜33の消耗度を判定した後、第1室31の圧力に基づいて、上記消耗度を補正するように構成されていてもよい。これにより、簡素かつ安価な構成で水素透過膜モジュール3の消耗度を正確に判定することが可能となる。 For example, the control unit 9 may be configured to determine the exhaustion degree of the hydrogen permeable membrane 33 based only on the dissolved hydrogen concentration of the hydrogen-added water, and the pressure of the first chamber 31 and the dissolution of the hydrogen-added water. The consumption level may be determined based on the hydrogen concentration. Further, in the latter case, the consumption level is comprehensively calculated by the AND function or the OR function of the consumption level determined based on the pressure of the first chamber 31 and the consumption level determined based on the dissolved hydrogen concentration of the hydrogen-added water. It may be configured to make a positive determination. Furthermore, after determining the degree of consumption of the hydrogen permeable film 33 based on the pressure of the first chamber 31, the degree of consumption may be corrected based on the dissolved hydrogen concentration of the hydrogenated water. After determining the degree of consumption of the hydrogen permeable film 33 based on the dissolved hydrogen concentration of the hydrogenated water, the degree of consumption may be corrected based on the pressure of the first chamber 31. This makes it possible to accurately determine the degree of consumption of the hydrogen permeable membrane module 3 with a simple and inexpensive structure.
 本実施形態では、制御部9は、水素濃度センサー21から入力された電気信号、すなわち、水素付加水の溶存水素濃度に基づいて、第1給電体41及び第2給電体42に印加する直流電圧を制御する。例えば、水素濃度センサー21によって検出された溶存水素濃度が、目標値よりも不足している場合、第1給電体41及び第2給電体42に印加する直流電圧を高めることにより、第1室31の圧力を高め、水素付加水の溶存水素濃度を高める。一方、水素濃度センサー21によって検出された溶存水素濃度が、目標値を超えている場合、第1給電体41及び第2給電体42に印加する直流電圧を低めることにより、第1室31の圧力を抑制し、水素付加水の溶存水素濃度を低減する。このように、制御部9が溶存水素濃度が一定となるように第1給電体41及び第2給電体42に印加する直流電圧を制御することにより、所望の溶存水素濃度の水素付加水が、水素付加装置1にて生成され、透析原剤希釈装置に供給される。 In the present embodiment, the control unit 9 applies a DC voltage to the first feeding body 41 and the second feeding body 42 based on the electric signal input from the hydrogen concentration sensor 21, that is, the dissolved hydrogen concentration of the hydrogenated water. To control. For example, when the dissolved hydrogen concentration detected by the hydrogen concentration sensor 21 is less than the target value, the first chamber 31 is increased by increasing the DC voltage applied to the first feeding body 41 and the second feeding body 42. To increase the dissolved hydrogen concentration of hydrogenated water. On the other hand, when the dissolved hydrogen concentration detected by the hydrogen concentration sensor 21 exceeds the target value, the pressure in the first chamber 31 is reduced by lowering the DC voltage applied to the first feeding body 41 and the second feeding body 42. To reduce the dissolved hydrogen concentration of hydrogenated water. In this way, the control unit 9 controls the DC voltage applied to the first feeding body 41 and the second feeding body 42 so that the dissolved hydrogen concentration becomes constant, so that the hydrogenated water having a desired dissolved hydrogen concentration can be obtained. It is generated in the hydrogenation device 1 and is supplied to the dialysis drug substance diluting device.
 既に述べたように、水素透過膜33の消耗が進行すると、水素付加水の溶存水素濃度が低下する傾向にあるため、制御部9は、それを補うために、第1給電体41及び第2給電体42に印加する直流電圧を高めて、第1室31の圧力を高める。 As described above, as the depletion of the hydrogen permeable membrane 33 progresses, the concentration of dissolved hydrogen in the hydrogenated water tends to decrease, and the control unit 9 has the first feeder 41 and the second feeding body 41 to compensate for this. The DC voltage applied to the power supply body 42 is increased to increase the pressure in the first chamber 31.
 そこで、本水素付加装置1の制御部9は、圧力センサー51から入力された電気信号、すなわち、第1室31の圧力に基づいて、水素透過膜33の消耗度を判定する。これにより、簡素かつ安価な構成で水素透過膜モジュール3の消耗度を正確に判定することが可能となる。 Therefore, the control unit 9 of the present hydrogenation apparatus 1 determines the degree of wear of the hydrogen permeable membrane 33 based on the electric signal input from the pressure sensor 51, that is, the pressure of the first chamber 31. This makes it possible to accurately determine the degree of consumption of the hydrogen permeable membrane module 3 with a simple and inexpensive structure.
 また、水素透過膜33の消耗が進行すると、第1室31の圧力を高めても、水素付加水の溶存水素濃度が十分に上昇しづらい傾向となる。従って、制御部9は、第1室31の圧力及び水素付加水の溶存水素濃度の関係に基づいて、水素透過膜33の消耗度を判定する、ように構成されていてもよい。例えば、第1室31の圧力及び水素付加水の溶存水素濃度と水素透過膜33の消耗度との相関を示す関係式を実験等により予め定め、上記関係式に上記圧力及び溶存水素濃度を代入することにより、水素透過膜33の消耗度を求めるように構成されていてもよい。 Further, as the consumption of the hydrogen permeable membrane 33 progresses, even if the pressure in the first chamber 31 is increased, the dissolved hydrogen concentration of the hydrogenated water tends to be difficult to sufficiently increase. Therefore, the control unit 9 may be configured to determine the degree of consumption of the hydrogen permeable membrane 33 based on the relationship between the pressure in the first chamber 31 and the dissolved hydrogen concentration of the hydrogenated water. For example, a relational expression showing the correlation between the pressure of the first chamber 31 and the dissolved hydrogen concentration of the hydrogen-added water and the degree of consumption of the hydrogen permeable membrane 33 is predetermined by experiments and the like, and the pressure and the dissolved hydrogen concentration are substituted into the relational expression. By doing so, the degree of consumption of the hydrogen permeable film 33 may be obtained.
 処理水供給路10には、入水弁12及び流量計(流量検出部)13が設けられている。入水弁12は、例えば、制御部9によって制御された電磁力によって駆動され、処理水供給路10内を流れる処理水を制限する。流量計13は、処理水供給路10内を流れる処理水、すなわち、第2室32に供給される原水の単位時間あたりの流量(以下、単に流量又は供給量と記す)を検出し、制御部9に出力する。制御部9は、流量計13から入力された流量に応じて入水弁12を制御する。これにより、原水として第2室32に供給される処理水の流量が適正化される。 The treated water supply path 10 is provided with a water inlet valve 12 and a flow meter (flow rate detector) 13. The water inlet valve 12 is driven by, for example, an electromagnetic force controlled by the controller 9, and limits the treated water flowing in the treated water supply passage 10. The flow meter 13 detects the flow rate per unit time of the treated water flowing in the treated water supply path 10, that is, the raw water supplied to the second chamber 32 (hereinafter, simply referred to as the flow rate or the supply amount), and is a control unit. Output to 9. The control unit 9 controls the water inlet valve 12 according to the flow rate input from the flow meter 13. As a result, the flow rate of the treated water supplied as raw water to the second chamber 32 is optimized.
 処理水供給路11には、給水弁14が設けられている。給水弁14は、例えば、制御部9によって制御された電磁力によって駆動され、処理水供給路11内を流れる処理水を制限する。より具体的には、電解槽4に電気分解のための水を充填又は補充する際には、給水弁14が開かれ、その後、水素透過膜モジュール3の第2室32に原水を供給する際には、給水弁14が閉じられる。 A water supply valve 14 is provided in the treated water supply passage 11. The water supply valve 14 is driven by, for example, an electromagnetic force controlled by the control unit 9, and limits the treated water flowing in the treated water supply passage 11. More specifically, when filling or replenishing the electrolytic cell 4 with water for electrolysis, the water supply valve 14 is opened, and thereafter, when the raw water is supplied to the second chamber 32 of the hydrogen permeable membrane module 3. At this time, the water supply valve 14 is closed.
 第2室32から取り出される水素付加水の溶存水素濃度は、第2室32への原水の供給量にも依存する。例えば、第2室32への原水の供給量が増加すると、水素付加水の溶存水素濃度は低下する傾向となる。 The dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 also depends on the amount of raw water supplied to the second chamber 32. For example, when the amount of raw water supplied to the second chamber 32 increases, the dissolved hydrogen concentration of the hydrogenated water tends to decrease.
 そこで、制御部9は、上記圧力センサー51によって検出された第1室31の圧力等に加えて、流量計13によって検出された原水の供給量に基づいて、水素透過膜33の消耗度を判定するように構成されている、のが望ましい。これにより、制御部9が、水素透過膜33の消耗度をより一層正確に判定することが可能となる。 Therefore, the control unit 9 determines the exhaustion degree of the hydrogen permeable membrane 33 based on the supply amount of the raw water detected by the flow meter 13 in addition to the pressure of the first chamber 31 detected by the pressure sensor 51 and the like. Is preferably configured to. This allows the control unit 9 to more accurately determine the degree of consumption of the hydrogen permeable membrane 33.
 電解室40の第1極室40aから上方に延びる排気路15(図2参照)には、ガス抜き弁16が設けられている。電気分解によって第1極室40aで生成された酸素ガスは、排気路15及びガス抜き弁16から排出される。 A gas vent valve 16 is provided in the exhaust passage 15 (see FIG. 2) extending upward from the first pole chamber 40a of the electrolytic chamber 40. The oxygen gas generated in the first pole chamber 40a by electrolysis is discharged from the exhaust passage 15 and the gas vent valve 16.
 図4は、水素透過膜モジュール3において、水素透過膜33の消耗度を判定する方法の処理手順を示している。水素透過膜33の消耗度判定方法は、第1室31の圧力を検出するステップS1と、溶存水素濃度を検出するステップS2と、原水の供給量を検出するステップS3と、水素透過膜33の消耗度を判定するステップS4と、判定結果を出力するステップS5とを含んでいる。 FIG. 4 shows a processing procedure of a method for determining the degree of consumption of the hydrogen permeable membrane 33 in the hydrogen permeable membrane module 3. The method for determining the degree of consumption of the hydrogen permeable membrane 33 includes step S1 for detecting the pressure in the first chamber 31, step S2 for detecting the dissolved hydrogen concentration, step S3 for detecting the supply amount of raw water, and the hydrogen permeable membrane 33. It includes step S4 of determining the degree of wear and step S5 of outputting the determination result.
 ステップS1では、第1室31の圧力が、圧力センサー51によって検出される。ステップS2では、第2室32から取り出された水素付加水の溶存水素濃度が、水素濃度センサー21によって検出される。ステップS3では、第2室32への原水の供給量が流量計13によって検出される。ステップS1乃至ステップS3の順序は、問われない。すなわち、例えば、先にステップS3が実行され、その後ステップS1、S2が実行されてもよい。 In step S1, the pressure in the first chamber 31 is detected by the pressure sensor 51. In step S2, the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 is detected by the hydrogen concentration sensor 21. In step S3, the flow rate of the raw water supplied to the second chamber 32 is detected by the flow meter 13. The order of steps S1 to S3 does not matter. That is, for example, step S3 may be executed first, and then steps S1 and S2 may be executed.
 ステップS4では、ステップS1で検出された第1室31の圧力、ステップS2で検出された水素付加水の溶存水素濃度及びステップS3で検出された原水の供給量に基づいて、制御部9が水素透過膜33の消耗度を判定する。そして、ステップS4では、ステップS3の判定結果が、出力部91によって出力される。 In step S4, the control unit 9 makes hydrogen based on the pressure of the first chamber 31 detected in step S1, the dissolved hydrogen concentration of the hydrogenated water detected in step S2, and the supply amount of raw water detected in step S3. The degree of wear of the permeable membrane 33 is determined. Then, in step S4, the output unit 91 outputs the determination result of step S3.
 本消耗度判定方法によれば、簡素かつ安価な構成で水素透過膜33の消耗度を正確に判定することが可能となる。 According to the present consumption level determination method, it is possible to accurately determine the consumption level of the hydrogen permeable membrane 33 with a simple and inexpensive configuration.
 以上、本発明の水素付加装置1等が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、水素付加装置1は、少なくとも、水素ガスが供給される第1室31と、原水が供給される第2室32と、第2室32で水素付加水を生成するために、水素ガスを第1室31から第2室32へと移動させる水素透過膜33と、第1室31の圧力を検出する圧力センサー51と、少なくとも、第1室31の圧力に基づいて、水素透過膜33の消耗度を判定する制御部9とを備えていればよい。 Although the hydrogenation apparatus 1 and the like of the present invention have been described in detail above, the present invention is not limited to the above-mentioned specific embodiment, but is modified to various embodiments. That is, the hydrogen addition device 1 generates hydrogen gas at least in order to generate hydrogen addition water in the first chamber 31 to which the hydrogen gas is supplied, the second chamber 32 to which the raw water is supplied, and the second chamber 32. The hydrogen permeable film 33 that moves from the first chamber 31 to the second chamber 32, the pressure sensor 51 that detects the pressure of the first chamber 31, and at least the hydrogen permeable film 33 based on the pressure of the first chamber 31. It suffices to include a control unit 9 that determines the degree of wear.
 また、図1に示される水素付加装置1において、第1室31に供給するための水素ガスを生成する水素ガス生成部2は、水を電気分解する電解槽4に限られない。例えば、水とマグネシウムとの化学反応等により水素ガスを発生させる装置、又は、水素ガスが充填されたボンベであってもよい。 Further, in the hydrogenation apparatus 1 shown in FIG. 1, the hydrogen gas generation unit 2 that generates hydrogen gas for supplying to the first chamber 31 is not limited to the electrolytic cell 4 that electrolyzes water. For example, it may be a device that generates hydrogen gas by a chemical reaction between water and magnesium, or a cylinder filled with hydrogen gas.
 また、第1室31の圧力を検出する圧力検出部として、圧力センサー51に替えて、制御部9が、例えば、電解電流の積算値に基づいて、第1室31の圧力を推定するように構成されていてもよい。 Further, as the pressure detection unit that detects the pressure in the first chamber 31, the control unit 9 estimates the pressure in the first chamber 31 based on, for example, the integrated value of the electrolytic current, instead of the pressure sensor 51. It may be configured.
 水素付加装置1は、透析液調製用の水素付加水の生成の他、種々の用途に適用可能である。例えば、飲用、料理用又は農業用の水素付加水の生成等にも広く適用可能である。 The hydrogen addition device 1 can be applied to various purposes in addition to generation of hydrogen addition water for preparing dialysate. For example, it can be widely applied to the production of hydrogenated water for drinking, cooking or agriculture.
 また、消耗度判定方法は、少なくとも、水素透過膜33の消耗度判定方法は、第1室31の圧力を検出するステップS1と、水素透過膜33の消耗度を判定するステップS4とを含んでいればよい。例えば、溶存水素濃度を検出するステップS2又は原水の供給量を検出するステップS3が省略されてもよい。この場合、ステップS4では、ステップS1で検出された透析液調製用水の溶存水素濃度に基づいて、制御部9が水素透過膜33の消耗度を判定する。 Further, the consumption level determination method includes at least step S1 of detecting the pressure in the first chamber 31 and step S4 of determining the consumption level of the hydrogen permeable film 33. Just go. For example, step S2 of detecting the dissolved hydrogen concentration or step S3 of detecting the supply amount of raw water may be omitted. In this case, in step S4, the control unit 9 determines the degree of consumption of the hydrogen permeable membrane 33 based on the dissolved hydrogen concentration of the dialysate preparation water detected in step S1.
1   :水素付加装置
2   :水素ガス生成部
3   :水素透過膜モジュール
4   :電解槽
9   :制御部(判定部)
13  :流量計(流量検出部)
21  :水素濃度センサー(水素濃度検出部)
31  :第1室
32  :第2室
33  :水素透過膜
41  :第1給電体(陽極給電体)
42  :第2給電体(陰極給電体)
1: Hydrogen addition device 2: Hydrogen gas generation unit 3: Hydrogen permeable membrane module 4: Electrolyzer 9: Control unit (determination unit)
13: Flow meter (flow rate detector)
21: Hydrogen concentration sensor (hydrogen concentration detector)
31: First chamber 32: Second chamber 33: Hydrogen permeable membrane 41: First feeding body (anode feeding body)
42: Second power supply (cathode power supply)

Claims (8)

  1.  水に水素を付加するための装置であって、
     水素ガスが供給される第1室と、
     原水が供給される第2室と、
     前記第2室で水素付加水を生成するために、前記水素ガスを前記第1室から前記第2室へと移動させる水素透過膜と、
     前記第1室の圧力を検出する圧力検出部と、
     少なくとも、前記圧力に基づいて、前記水素透過膜の消耗度を判定する判定部とを備える、
     水素付加装置。
    A device for adding hydrogen to water,
    A first chamber to which hydrogen gas is supplied,
    The second chamber, which is supplied with raw water,
    A hydrogen permeable membrane that moves the hydrogen gas from the first chamber to the second chamber to generate hydrogenated water in the second chamber;
    A pressure detection unit that detects the pressure in the first chamber and
    At least, a determination unit for determining the degree of wear of the hydrogen permeable membrane based on the pressure is provided.
    Hydrogen addition device.
  2.  前記第2室から取り出された前記水素付加水の溶存水素濃度を検出する水素濃度検出部をさらに備える、請求項1記載の水素付加装置。 The hydrogenation device according to claim 1, further comprising a hydrogen concentration detection unit that detects a dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber.
  3.  前記第1室に供給する前記水素ガスを生成する水素ガス生成部をさらに備える、請求項2記載の水素付加装置。 The hydrogenation device according to claim 2, further comprising a hydrogen gas generation unit that generates the hydrogen gas supplied to the first chamber.
  4.  前記水素ガス生成部は、陽極給電体と陰極給電体とを有し、水を電気分解することにより前記水素ガスを生成し、前記第1室に供給する電解槽を有し、
     前記陽極給電体及び前記陰極給電体に印加する電圧を制御する制御部をさらに備え、
     前記制御部は、前記溶存水素濃度が一定となるように、前記電圧を制御する、請求項3記載の水素付加装置。
    The hydrogen gas generation unit has an anode power feeder and a cathode power feeder, and has an electrolytic cell that generates the hydrogen gas by electrolyzing water and supplies the hydrogen gas to the first chamber,
    Further, a control unit for controlling the voltage applied to the anode feeding body and the cathode feeding body is provided.
    The hydrogen addition device according to claim 3, wherein the control unit controls the voltage so that the dissolved hydrogen concentration is constant.
  5.  前記判定部は、さらに、前記溶存水素濃度に基づいて、前記水素透過膜の消耗度を判定する、請求項2乃至4のいずれかに記載の水素付加装置。 The hydrogenation apparatus according to any one of claims 2 to 4, wherein the determination unit further determines the degree of consumption of the hydrogen permeable membrane based on the dissolved hydrogen concentration.
  6.  前記判定部は、前記圧力及び前記溶存水素濃度の関係に基づいて、前記水素透過膜の消耗度を判定する、請求項5記載の水素付加装置。 The hydrogenation apparatus according to claim 5, wherein the determination unit determines the degree of wear of the hydrogen permeation membrane based on the relationship between the pressure and the dissolved hydrogen concentration.
  7.  前記第2室への前記原水の単位時間あたりの供給量を検出する流量検出部をさらに備え、
     前記判定部は、さらに、前記供給量に基づいて、前記水素透過膜の消耗度を判定する、請求項1乃至6のいずれかに記載の水素付加装置。
    Further comprising a flow rate detection unit that detects an amount of the raw water supplied to the second chamber per unit time,
    The hydrogenation device according to claim 1, wherein the determination unit further determines the consumption level of the hydrogen permeable membrane based on the supply amount.
  8.  水素ガスが供給される第1室と、原水が供給される第2室と、前記水素ガスを前記第1室から前記第2室へと移動させる水素透過膜とを備えた水素透過モジュールにおいて、前記水素透過膜の消耗度を判定する方法であって、
     前記第1室の圧力を検出するステップと、
     少なくとも、前記圧力に基づいて、前記水素透過膜の消耗度を判定するステップとを含む、
     水素透過膜の消耗度判定方法。
    In a hydrogen permeable module comprising a first chamber to which hydrogen gas is supplied, a second chamber to which raw water is supplied, and a hydrogen permeable membrane that moves the hydrogen gas from the first chamber to the second chamber, A method for determining the degree of consumption of the hydrogen permeable membrane, comprising:
    Detecting the pressure in the first chamber,
    At least, it includes a step of determining the degree of wear of the hydrogen permeable membrane based on the pressure.
    A method for determining the degree of consumption of a hydrogen permeable membrane.
PCT/JP2020/004380 2019-03-07 2020-02-05 Hydrogen addition device, and method for assessing degree consumption of hydrogen permeable film WO2020179339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080012870.4A CN113396009B (en) 2019-03-07 2020-02-05 Hydrogenation apparatus and method for determining consumption of hydrogen permeable membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-041496 2019-03-07
JP2019041496A JP7022089B2 (en) 2019-03-07 2019-03-07 Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane

Publications (1)

Publication Number Publication Date
WO2020179339A1 true WO2020179339A1 (en) 2020-09-10

Family

ID=72337370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004380 WO2020179339A1 (en) 2019-03-07 2020-02-05 Hydrogen addition device, and method for assessing degree consumption of hydrogen permeable film

Country Status (4)

Country Link
JP (1) JP7022089B2 (en)
CN (1) CN113396009B (en)
TW (1) TW202100231A (en)
WO (1) WO2020179339A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892223A (en) * 2021-01-19 2021-06-04 同济大学 Reverse osmosis membrane damage detects disinfection system that disinfects in step

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122040A (en) * 2002-10-04 2004-04-22 National Institute Of Advanced Industrial & Technology Equipment using gas permeable membrane
JP2009125654A (en) * 2007-11-22 2009-06-11 Bio Research Inc Method of producing hydrogen-containing drinking water
JP2016093767A (en) * 2014-11-12 2016-05-26 三菱重工業株式会社 Apparatus for separating co2 in gas and membrane separation method therefor, and membrane separation management method of apparatus for separating co2 in gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007026073B4 (en) * 2007-05-25 2009-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for determining the rate of permeation of at least one permeant through a diffusion barrier forming element
JP5545496B2 (en) * 2011-06-24 2014-07-09 東京瓦斯株式会社 Method for estimating hydrogen permeation rate, hydrogen production apparatus and operation method thereof
CN102580547B (en) * 2011-12-29 2014-05-14 新奥科技发展有限公司 Membrane module testing method
US10006393B2 (en) * 2016-01-22 2018-06-26 GM Global Technology Operations LLC Methods and systems for determining and reporting a remaining useful life of an air filter
JP6259934B1 (en) * 2016-03-29 2018-01-10 株式会社日立製作所 Gas permeability measurement method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122040A (en) * 2002-10-04 2004-04-22 National Institute Of Advanced Industrial & Technology Equipment using gas permeable membrane
JP2009125654A (en) * 2007-11-22 2009-06-11 Bio Research Inc Method of producing hydrogen-containing drinking water
JP2016093767A (en) * 2014-11-12 2016-05-26 三菱重工業株式会社 Apparatus for separating co2 in gas and membrane separation method therefor, and membrane separation management method of apparatus for separating co2 in gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892223A (en) * 2021-01-19 2021-06-04 同济大学 Reverse osmosis membrane damage detects disinfection system that disinfects in step
CN112892223B (en) * 2021-01-19 2021-11-30 同济大学 Reverse osmosis membrane damage detects disinfection system that disinfects in step

Also Published As

Publication number Publication date
JP7022089B2 (en) 2022-02-17
TW202100231A (en) 2021-01-01
CN113396009A (en) 2021-09-14
CN113396009B (en) 2024-05-03
JP2020142207A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2020179340A1 (en) Hydrogen adding device and method for determining degree of wear in hydrogen-permeable membrane
JP6412447B2 (en) Electrolyzed water generator
JP6836914B2 (en) Water treatment equipment, dialysate preparation water production equipment and hydrogen water server
JP2015003313A (en) Dialysate preparation water production equipment
CN112203751A (en) Hydrogen dissolving device
CN108474123B (en) Hydrogen peroxide generator
WO2020179339A1 (en) Hydrogen addition device, and method for assessing degree consumption of hydrogen permeable film
JP7649351B2 (en) Electrolyzed water generating device and water treatment device
EP3578519B1 (en) Electrolyzed water generating device
WO2014007340A1 (en) Device for generating electrolytically treated water, and method for generating electrolytically treated water
JP7011618B2 (en) Dissolved hydrogen water generator and dissolved hydrogen water generation method
JP6810112B2 (en) Electrolyzed water generator and electrolyzed water generation method
JP7348988B1 (en) Electrolyzed water generation equipment and water treatment equipment
CN108473344A (en) Electrolytic water generating device and the manufacturing device and electrolyzed water producing method for using its dialyzate preparation water
US20180194650A1 (en) Brine Feed System
JP6885776B2 (en) Electrolyzed water generator
JPH0985248A (en) Elecrolytic water preparation device
JP2023008638A (en) Method for measuring dissolved gas concentration, apparatus for measuring dissolved hydrogen concentration, and apparatus for producing water for preparation of dialysate
JP2005279519A (en) Apparatus for producing electrolytic water
JP2018183738A (en) Electrolytic water generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767109

Country of ref document: EP

Kind code of ref document: A1