WO2020179240A1 - Image verification system - Google Patents
Image verification system Download PDFInfo
- Publication number
- WO2020179240A1 WO2020179240A1 PCT/JP2020/001298 JP2020001298W WO2020179240A1 WO 2020179240 A1 WO2020179240 A1 WO 2020179240A1 JP 2020001298 W JP2020001298 W JP 2020001298W WO 2020179240 A1 WO2020179240 A1 WO 2020179240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- quality
- registered
- face
- face image
- Prior art date
Links
- 238000012795 verification Methods 0.000 title abstract 5
- 238000003384 imaging method Methods 0.000 claims abstract description 22
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 238000013459 approach Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 abstract description 14
- 238000013441 quality evaluation Methods 0.000 abstract description 13
- 238000004458 analytical method Methods 0.000 abstract description 11
- 238000012545 processing Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 238000012544 monitoring process Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
Definitions
- the present invention relates to an image matching system that collates an image taken by an imaging device with an image registered in a database.
- video surveillance systems have been installed for security purposes such as crime deterrence and accident prevention in facilities visited by an unspecified number of people such as airports, train stations, and shopping malls.
- Examples of such a video monitoring system include an abandoned object detection system that monitors an image and detects an abandoned object, and a person search system that searches a video for a designated person.
- a video analysis system may be constructed for marketing purposes.
- a face image analysis system that identifies a person in a facility and identifies attributes such as age and sex.
- Patent Document 1 discloses a face matching system that extracts a feature amount from photographed image data and performs matching by comparing the feature amount with a feature amount registered in a database.
- the quality of the pre-registered face image is recorded, and the process of bringing the quality of the camera image close to the quality of the pre-registered face image is performed by adjusting the setting of the camera that shoots in real time. It was done.
- General cameras are equipped with correction functions such as auto white balance, auto gain, and wide dynamic range (WDR) to reduce the effects of environmental conditions such as lighting and maintain a certain level of image quality. It is designed to have a certain level of image quality.
- WDR wide dynamic range
- the present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide an image matching system capable of obtaining stable matching accuracy without changing the settings on the imaging device side.
- the image matching system is configured as follows. That is, in an image collation system that collates a captured image captured by an imaging device with a registered image registered in advance, a storage unit that stores the registered image and its quality, and a specifying unit that identifies the quality of the captured image. Adjusting means for adjusting the quality of the registered image so as to approach the quality of the taken image based on the quality of the taken image and the quality of the registered image, and the registered image after adjustment by the adjusting means. It is characterized by comprising a collating means for collating the photographed images.
- the registered image is temporarily adjusted so as to approach the quality of the photographed image, and is used for collation of the photographed image.
- the captured image can be collated in a state where the quality of the captured image and the quality of the registered image are adjusted to a level suitable for image collation (for example, a similar level). Therefore, since the quality of the captured image does not need to be adjusted, stable matching accuracy can be obtained without changing the setting on the imaging device side. Furthermore, since it is not necessary to change the setting on the imaging device side, it is possible to use the captured image not only for collation purposes but also for monitoring purposes.
- the adjustment means when the difference between the quality of the captured image and the quality of the registered image is a predetermined value or more, when the quality of the captured image deviates from a predetermined condition, or when a timing scheduled in advance has arrived.
- the image matching system it is possible to use various qualities that may affect matching accuracy as the quality, such as contrast, white balance, compression level, and brightness level. 1 or more can be used.
- the image matching system can be used in various systems. For example, when a person's face image is used as the registered image and a person's face image is detected from the captured image, the person's face image is used.
- a face collation system that collates the detected face image by using the registered image whose quality is adjusted so as to be closer to the detected face image can be provided.
- FIG. 1 shows a schematic configuration of a face matching system according to an embodiment of the present invention.
- the face matching system of this example includes an imaging device 10, an image processing device 20, a recording device 30, and an operation terminal 40.
- the imaging device 10 is basically a setting suitable for the purpose of monitoring, and the setting is not changed one by one for the purpose of matching. Further, the image pickup apparatus 10 has a function of automatically adjusting the quality of the photographed image in response to a change in environmental conditions at the time of photography (lighting / extinguishing, change in weather, etc.).
- the imaging device 10 three network cameras 10-1, an analog camera 10-2, and a network camera 10-3 are illustrated, but the number of these devices is arbitrary.
- the network cameras 10-1 and 10-3 have a built-in encoder that encodes the captured image for communication, and are directly connected to the network.
- the analog camera 10-2 is connected to the network via a separate encoder 12 that encodes the captured image for communication.
- the image captured by the image pickup device 10 is transmitted to the image processing device 20 via the network.
- the recording device 30 stores a face image of a person registered in advance and data of the quality thereof on a hard disk or the like. It should be noted that the recording device 30 may also store data such as attributes such as a person's name and sex, and face feature amounts obtained by analyzing a face image.
- attributes such as a person's name and sex
- face feature amounts obtained by analyzing a face image.
- As the face image of the person to be pre-registered for example, an image taken in an environment in which indoor lighting conditions are prepared is used. Contrast, white balance, compression level, brightness level and the like are used as the quality of the face image, but various other qualities that may affect the accuracy of face matching may be used.
- the image processing apparatus 20 detects a face image of a person from the image captured by the image capturing apparatus 10 and performs face matching to match the detected face image with a face image registered in advance in the recording device 30.
- the former is referred to as a “detected face image” and the latter is referred to as a “registered face image”. Details of the image processing device 20 will be described later.
- the operation terminal 40 is a terminal used by the user of the face matching system, and displays the result of face matching by the image processing device 20 and the captured image by the imaging device 10.
- FIG. 2 shows a configuration example of the image processing device 20 in the face matching system of this example.
- the image processing apparatus 20 includes a captured image reception unit 21, an image quality analysis unit 22, a face detection unit 23, a registration data acquisition unit 24, a quality evaluation unit 25, an image quality adjustment unit 26, and a collation unit 27. Equipped with.
- the captured image receiving unit 21 communicates with the image capturing apparatus 10 and receives in real time the captured image obtained by capturing with the image capturing apparatus 10.
- the image quality analysis unit 22 analyzes the captured image received by the captured image reception unit 21, and specifies a plurality of types of quality such as contrast, white balance, compression level, and brightness level of the captured image. For example, for white balance, the RGB levels (R (Red), G (Green), and B (Blue) color levels) of each pixel included in the captured image are analyzed. The registered face image is corrected so as to approach the RGB level. As for the brightness level, a part (for example, nose) from the position of the face detected from the captured image is analyzed. The registered face image is corrected so as to approach the brightness level.
- the imaging device 10 transmits the quality data to the captured image in association with each other, the quality of the captured image can be obtained without analyzing the captured image.
- the quality of the captured image specified by the image quality analysis unit 22 is temporarily stored in the memory together with the captured image for subsequent processing.
- the face detection unit 23 performs a face detection process on the captured image received by the captured image reception unit 21 to detect a face image included in the captured image. As the face detection processing, various known methods can be used.
- the registration data acquisition unit 24 communicates with the recording device 30 to acquire the registered face image and its quality data recorded in the recording device 30.
- the quality evaluation unit 25 determines the quality of the captured image specified by the image quality analysis unit 22 and the registered face image acquired by the registration data acquisition unit 23.
- the quality of the registered face image is evaluated by comparing the quality of the registered face image with the quality of the registered face image.
- the difference between the quality value of the captured image and the quality value of the registered face image is calculated for each quality type such as contrast, white balance, compression level, and brightness level, and the threshold value set in advance for each quality type is calculated. In comparison, if the difference is found to be greater than or equal to the threshold, it is determined that the quality of the registered face image needs to be adjusted.
- the difference between the quality value of the captured image and the quality value of the registered face image is calculated for each quality type, multiplied by a preset weighting coefficient for each quality type, and totaled, and this total value is calculated in advance. Compared with the set threshold value, if the total value is equal to or greater than the threshold value, it is determined that the quality of the registered face image needs to be adjusted. It should be noted that these are merely examples, and the quality of the photographed image and the quality of the registered face image may be compared by other methods.
- the quality evaluation unit 25 is any one.
- the registered face image may be selected as a representative and compared with the quality of the captured image.
- the quality evaluation unit 25 selects a representative registered face image for each group and compares it with the quality of the captured image. May be good.
- the quality evaluation unit 25 compares each of the plurality of registered face images recorded in the recording device 30 with the quality of the captured image. There is a need to do.
- the image quality adjustment unit 26 adjusts the quality of the registered face image acquired from the recording device 30 when the quality evaluation unit 24 determines that the quality of the registered face image needs to be adjusted.
- the quality of the registered face image is adjusted so that the quality of the registered face image approaches the quality of the captured image. It is determined that the quality of the registered face image needs to be adjusted when the quality of the captured image is deteriorated due to the deterioration of the shooting environment. Therefore, it is necessary to adjust the quality of the registered face image. Will be applied.
- the quality of the registered face image may be adjusted for all types of quality, but the quality of the type in which the difference from the quality value of the captured image is greater than or equal to the threshold value (or some It is possible to reduce the processing load by limiting the processing load to (quality of type).
- the collation unit 27 When the face detection unit 23 detects a person's face image from the captured image, the collation unit 27 performs face collation to collate the detected face image with the registered face image.
- the collation unit 27 normally collates with the registered face image itself acquired from the recording device 30, but the registered face image determined to require quality adjustment is the one after adjustment by the image quality adjustment unit 26. Match with.
- the collation result by the collation unit 27 is transmitted to the operation terminal 40 and displayed on the screen by the operation terminal 40.
- FIG. 3 is a diagram showing an example of a flowchart of face matching by the face matching system of this example.
- the face image to be registered registered face image
- its quality data are recorded in the recording device 30 (steps S11 and S12), and it is determined whether registration is completed (step S13).
- the unprocessed registered face image remains, it is determined that the registration is not completed, and the processes of steps S11 and S12 are repeated until there are no unprocessed registered face images.
- the preprocessing is ended.
- the captured image receiving unit 21 acquires a captured image from the image capturing device 10 (step S14).
- the image quality analysis unit 22 analyzes the photographed image acquired by the photographed image receiving unit 21 and specifies its quality (step S15).
- the face detection unit 23 performs face detection processing on the captured image acquired by the captured image reception unit 21 (step S16).
- it is determined whether or not a face image is detected from the captured image step S17. When the face image is not detected from the captured image, the process returns to step S14, and the next captured image is acquired from the imaging device 10.
- the quality evaluation unit 25 evaluates the necessity of adjusting the quality of the registered face image (step S18).
- the registration data acquisition unit 24 sequentially reads the quality of the registered face image from the recording device 30 and compares the quality with the quality of the captured image, and adjusts the quality of the registered face image having a difference in quality of a predetermined value or more. Determined to be necessary.
- the image quality adjustment unit 26 causes the quality of the registered face image to approach the quality of the captured image (that is, the quality of the detected face image). Is adjusted (step S19).
- the collation unit 27 collates the detected face image with the registered face image acquired from the recording device 30 or the registered face image adjusted by the image quality adjustment unit 26 (step S20).
- the image processing apparatus 20 of the present example analyzes a captured image obtained in real time from the imaging apparatus 10 and records qualities such as contrast, white balance, compression level, and brightness level. Then, when there is a scene in which a face image is obtained from the captured image, the quality data of the registered face image recorded in the recording device 30 is matched with the quality data specified by analyzing the captured image. , By comparing the image quality, the difference in quality between the registered face image and the captured image is clarified. Based on the result of this comparison, a registered face image whose quality difference is equal to or greater than a predetermined value is searched, and the registered face image is corrected for brightness level and contrast so as to be closer to a real-time captured image. Give.
- qualities such as contrast, white balance, compression level, and brightness level.
- the compression level differs depending on the image pickup apparatus 10, and particularly the compression level tends to be strongly applied to a real-time captured image
- the compression level is analyzed to adjust the compression level of the registered face image to compress the captured image. Bring it closer to the level.
- face matching is performed, the registered face images that have been pre-registered are temporarily corrected, and the detected face images detected from the captured images are compared, so that the image quality of both images is at the same level. Perform face matching processing with.
- the recording device 30 stores the registered face image registered in advance and its quality data. Then, in the image processing device 20, the image quality analysis unit 22 identifies the quality of the captured image captured by the imaging device 10, the face detection unit 23 detects the face image from the captured image, and the quality evaluation unit 25 When the face detection unit 23 detects a face image from the captured image, the necessity of adjusting the quality of the registered face image is evaluated, and the image quality adjustment unit 26 causes the quality evaluation unit 25 to determine the quality of the registered face image. When it is determined that adjustment is necessary, the registered face image is adjusted in quality so as to approach the quality of the captured image based on the quality of the captured image and the quality of the registered face image, and the matching unit 27 determines the image quality. The detected face image is collated using the registered face image whose quality has been adjusted by the adjustment unit 26.
- the registered face image is temporarily adjusted so as to approach the quality of the captured image (that is, the quality of the detected face image), and is used for matching the detected face image. I have it.
- the detected face image can be collated in a state where the quality of the detected face image and the quality of the registered face image are adjusted to a level (for example, about the same level) suitable for image collation. Therefore, since the quality of the captured image does not need to be adjusted, stable matching accuracy can be obtained without changing the setting on the imaging device side. Furthermore, since it is not necessary to change the setting on the imaging device side, it is possible to use the captured image not only for collation purposes but also for monitoring purposes.
- the storage means according to the present invention is configured by the recording device 30, the specific means according to the present invention is configured by the image quality analysis unit 22, and the adjusting means according to the present invention is image quality.
- the adjusting unit 26 and the matching unit according to the present invention are configured by the matching unit 27, but it goes without saying that the matching unit may be realized by another structure.
- the quality evaluation unit 25 evaluates the necessity of adjusting the quality of the registered face image by comparing the quality of the photographed image with the quality of the registered face image, but other methods Therefore, the necessity of adjusting the quality of the registered face image may be evaluated.
- the necessity of adjusting the quality of the registered face image may be evaluated by comparing the quality of the captured image with a predetermined condition (condition that does not depend on the quality of the registered face image). That is, as an example, a reference range is set in advance for each type of quality, and if the quality value of the captured image deviates from the reference range, it may be determined that the quality of the registered face image needs to be adjusted. Good.
- the timing scheduled in advance arrives, it may be determined that the quality of the registered face image needs to be adjusted.
- the timing of turning on/off the lighting device around the imaging device 10 is scheduled in advance, whether or not to adjust the quality of the registered face image may be switched according to the timing. This method is effective when the timing of the environmental change that affects the quality of the captured image is known in advance.
- the present invention is not limited to such a face matching system, and a vehicle, its number, an abandoned object, a grounded object, etc. It goes without saying that it can be widely applied to various image matching systems that match other images with registered images.
- the present invention also provides, for example, a method and method for executing the process according to the present invention, a program for realizing such method and method by using hardware resources such as a memory and a processor, and a storage for storing the program. It is also possible to provide it as a medium or the like.
- the present invention can be used in various image collation systems that collate a captured image captured by an imaging device with a registered image registered in advance.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Collating Specific Patterns (AREA)
- Studio Devices (AREA)
- Image Input (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Provided is an image verification system with which it is possible to obtain stable verification accuracy without having to change settings on the side of an imaging device. An image quality analysis unit 22 identifies the quality of a shot image captured by an imaging device 10; a face detection unit 23 detects a face image from the shot image; when the face image has been detected from a shot image by the face detection unit 23, a quality evaluation unit 25 evaluates whether or not there is a need to make adjustments to the quality of a registered face image; when the quality evaluation unit 25 has determined that the quality of the registered face image needs adjustments, an image quality adjustment unit 26 makes adjustments to the quality of the registered face image so as to be closer to the quality of the shot image, on the basis of the quality of the registered face image and the quality of the shot image; and a verification unit 27 performs verification on the detected face image using the registered face image that has undergone quality adjustment made by the image quality adjustment unit 26.
Description
本発明は、撮像装置により撮影された画像をデータベースに登録された画像と照合する画像照合システムに関する。
The present invention relates to an image matching system that collates an image taken by an imaging device with an image registered in a database.
近年、空港、駅構内、ショッピングモール等のような不特定多数の人物が訪れる施設には、犯罪抑止や事故防止等のセキュリティ目的で、映像監視システムが配備されている。このような映像監視システムとしては、映像を監視して放置物を検知する放置物検知システムや、指定された人物を映像内から検索する人物検索システムなどがある。また、セキュリティ目的のための映像監視システムに限らず、マーケティング目的で映像解析システムを構築する場合がある。このような映像解析システムとしては、例えば、施設内の人物の特定や、年齢・性別等の属性識別を行う顔画像分析システムなどがある。
In recent years, video surveillance systems have been installed for security purposes such as crime deterrence and accident prevention in facilities visited by an unspecified number of people such as airports, train stations, and shopping malls. Examples of such a video monitoring system include an abandoned object detection system that monitors an image and detects an abandoned object, and a person search system that searches a video for a designated person. In addition to the video monitoring system for security purposes, a video analysis system may be constructed for marketing purposes. As such a video analysis system, for example, there is a face image analysis system that identifies a person in a facility and identifies attributes such as age and sex.
顔画像を扱い、人物の特定や属性の識別を目的とした映像監視システムの場合、事前に特定したい人物の顔画像データを登録しておく必要がある。例えば、特許文献1には、撮影した画像データから特徴量を抽出し、データベースに登録された特徴量との比較によって照合を行う顔照合システムが開示されている。
In the case of a video surveillance system that handles face images and aims to identify people and identify attributes, it is necessary to register the face image data of the person you want to identify in advance. For example, Patent Document 1 discloses a face matching system that extracts a feature amount from photographed image data and performs matching by comparing the feature amount with a feature amount registered in a database.
従来の顔画像分析システム、特に、顔照合などの照合を目的としたシステムでは、カメラ等の撮像装置の設置条件や日照条件などの環境変化によらず、安定した照合精度を達成することは困難であった。例えば、室内の照明条件の整った環境で撮影された顔画像を事前登録した映像監視システムでは、リアルタイムに撮影を行うカメラの環境が刻々と変化し、特に夜間や照明の方向等で顔画像に影ができた場合には、事前登録された顔画像とは全く異なる様子の映像になってしまうため、照合精度は低下する傾向にあった。
It is difficult to achieve stable matching accuracy in conventional face image analysis systems, especially in systems for matching such as face matching, regardless of environmental changes such as installation conditions of image pickup devices such as cameras and sunshine conditions. Met. For example, in a video surveillance system that pre-registers face images shot in an environment with well-defined indoor lighting conditions, the environment of the camera that shoots in real time changes moment by moment, and the face images are especially changed at night or in the direction of lighting. If a shadow is formed, the image looks completely different from the face image registered in advance, so the matching accuracy tends to decrease.
これらを改善するためには、リアルタイムで撮影されたカメラ映像と、事前登録された顔画像とで映像品質をできる限り同じレベルにすることが重要になる。そこで、従来は、事前登録された顔画像の品質を記録しておき、リアルタイムに撮影するカメラの設定を逐一調整することで、カメラ映像の品質を事前登録された顔画像の品質に近づける処理が行われていた。
In order to improve these, it is important to make the video quality of the camera image shot in real time and the pre-registered face image at the same level as much as possible. Therefore, conventionally, the quality of the pre-registered face image is recorded, and the process of bringing the quality of the camera image close to the quality of the pre-registered face image is performed by adjusting the setting of the camera that shoots in real time. It was done.
一般的なカメラは、照明等の環境条件による影響を軽減し、ある一定の映像品質を保つために、オートホワイトバランスやオートゲイン、ワイドダイナミックレンジ(WDR)等の補正機能を搭載し、自動的に一定水準の映像品質になるように設計されている。しかしながら、カメラ設定を事前登録された顔画像の品質に近づけた場合には、顔照合の精度向上のみを目的としたカメラ映像しか撮影できない。したがって、場合によっては監視目的としては不十分な映像品質になることが考えられる。つまり、映像監視システムの場合に、監視目的と照合目的の両方を満足することは難しくなる。
General cameras are equipped with correction functions such as auto white balance, auto gain, and wide dynamic range (WDR) to reduce the effects of environmental conditions such as lighting and maintain a certain level of image quality. It is designed to have a certain level of image quality. However, when the camera setting is made close to the quality of the face image registered in advance, only the camera image only for improving the accuracy of face matching can be captured. Therefore, in some cases, the video quality may be insufficient for monitoring purposes. That is, in the case of the video surveillance system, it is difficult to satisfy both the surveillance purpose and the matching purpose.
本発明は、上記のような従来の事情に鑑みて為されたものであり、撮像装置側の設定を変更することなく安定した照合精度が得られる画像照合システムを提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide an image matching system capable of obtaining stable matching accuracy without changing the settings on the imaging device side.
上記目的を達成するために、本発明では、画像照合システムを以下のように構成した。
すなわち、撮像装置により撮影された撮影画像を事前に登録された登録画像と照合する画像照合システムにおいて、前記登録画像及びその品質を記憶する記憶手段と、前記撮影画像の品質を特定する特定手段と、前記撮影画像の品質と前記登録画像の品質とに基づいて、前記撮影画像の品質に近づくように前記登録画像に品質の調整を施す調整手段と、前記調整手段による調整後の前記登録画像を用いて、前記撮影画像の照合を行う照合手段とを備えたことを特徴とする。 In order to achieve the above object, in the present invention, the image matching system is configured as follows.
That is, in an image collation system that collates a captured image captured by an imaging device with a registered image registered in advance, a storage unit that stores the registered image and its quality, and a specifying unit that identifies the quality of the captured image. Adjusting means for adjusting the quality of the registered image so as to approach the quality of the taken image based on the quality of the taken image and the quality of the registered image, and the registered image after adjustment by the adjusting means. It is characterized by comprising a collating means for collating the photographed images.
すなわち、撮像装置により撮影された撮影画像を事前に登録された登録画像と照合する画像照合システムにおいて、前記登録画像及びその品質を記憶する記憶手段と、前記撮影画像の品質を特定する特定手段と、前記撮影画像の品質と前記登録画像の品質とに基づいて、前記撮影画像の品質に近づくように前記登録画像に品質の調整を施す調整手段と、前記調整手段による調整後の前記登録画像を用いて、前記撮影画像の照合を行う照合手段とを備えたことを特徴とする。 In order to achieve the above object, in the present invention, the image matching system is configured as follows.
That is, in an image collation system that collates a captured image captured by an imaging device with a registered image registered in advance, a storage unit that stores the registered image and its quality, and a specifying unit that identifies the quality of the captured image. Adjusting means for adjusting the quality of the registered image so as to approach the quality of the taken image based on the quality of the taken image and the quality of the registered image, and the registered image after adjustment by the adjusting means. It is characterized by comprising a collating means for collating the photographed images.
このように、本発明に係る画像照合システムでは、撮影画像の品質に近づくように登録画像を一時的に調整して、撮影画像の照合に用いるように構成してある。これにより、撮影画像の品質と登録画像の品質を画像照合に適したレベル(例えば、同程度のレベル)に調整した状態で、撮影画像の照合を行うことができる。したがって、撮影画像の品質は調整不要なため、撮像装置側の設定を変更することなく安定した照合精度を得ることができる。更には、撮像装置側の設定の変更が不要なので、撮影画像を照合目的だけでなく監視目的にも使用することが可能となる。
As described above, in the image collation system according to the present invention, the registered image is temporarily adjusted so as to approach the quality of the photographed image, and is used for collation of the photographed image. Thereby, the captured image can be collated in a state where the quality of the captured image and the quality of the registered image are adjusted to a level suitable for image collation (for example, a similar level). Therefore, since the quality of the captured image does not need to be adjusted, stable matching accuracy can be obtained without changing the setting on the imaging device side. Furthermore, since it is not necessary to change the setting on the imaging device side, it is possible to use the captured image not only for collation purposes but also for monitoring purposes.
なお、前記調整手段は、前記撮影画像の品質と前記登録画像の品質との差異が所定値以上の場合、前記撮像画像の品質が所定条件から外れた場合、または予めスケジューリングされたタイミングが到来した場合に、前記登録画像に品質の調整を施すように構成することが好ましい。これにより、登録画像の品質の調整が不要な場合にも調整が行われてしまうことを回避できるようになり、処理負担を軽減することができる。
In addition, the adjustment means, when the difference between the quality of the captured image and the quality of the registered image is a predetermined value or more, when the quality of the captured image deviates from a predetermined condition, or when a timing scheduled in advance has arrived. In some cases, it is preferable to configure the registered image so as to adjust the quality. As a result, it is possible to avoid making adjustments even when adjustment of the quality of the registered image is unnecessary, and it is possible to reduce the processing load.
ここで、本発明に係る画像照合システムでは、前記品質として、照合精度に影響を及ぼす可能性がある種々の品質を用いることが可能であり、例えば、コントラスト、ホワイトバランス、圧縮レベル、輝度レベルの1以上を用いることができる。
Here, in the image matching system according to the present invention, it is possible to use various qualities that may affect matching accuracy as the quality, such as contrast, white balance, compression level, and brightness level. 1 or more can be used.
また、本発明に係る画像照合システムは、種々のシステムに利用することが可能であり、例えば、人物の顔画像を前記登録画像とし、前記撮影画像から人物の顔画像が検出された場合に、検出された顔画像に品質が近づくように品質を調整した前記登録画像を用いて、検出された顔画像の照合を行う顔照合システムとすることができる。
Further, the image matching system according to the present invention can be used in various systems. For example, when a person's face image is used as the registered image and a person's face image is detected from the captured image, the person's face image is used. A face collation system that collates the detected face image by using the registered image whose quality is adjusted so as to be closer to the detected face image can be provided.
本発明によれば、撮像装置側の設定を変更することなく安定した照合精度が得られる画像照合システムを提供することができる。
According to the present invention, it is possible to provide an image matching system that can obtain stable matching accuracy without changing the setting on the imaging device side.
本発明の一実施形態について、図面を参照して説明する。以下では、画像照合システムの一例である顔照合システムを例にして説明する。
図1には、本発明の一実施形態に係る顔照合システムの概略構成を示してある。本例の顔照合システムは、撮像装置10と、画像処理装置20と、記録装置30と、操作端末40とを備える。 An embodiment of the present invention will be described with reference to the drawings. In the following, a face matching system, which is an example of the image matching system, will be described as an example.
FIG. 1 shows a schematic configuration of a face matching system according to an embodiment of the present invention. The face matching system of this example includes an imaging device 10, animage processing device 20, a recording device 30, and an operation terminal 40.
図1には、本発明の一実施形態に係る顔照合システムの概略構成を示してある。本例の顔照合システムは、撮像装置10と、画像処理装置20と、記録装置30と、操作端末40とを備える。 An embodiment of the present invention will be described with reference to the drawings. In the following, a face matching system, which is an example of the image matching system, will be described as an example.
FIG. 1 shows a schematic configuration of a face matching system according to an embodiment of the present invention. The face matching system of this example includes an imaging device 10, an
撮像装置10は、基本的に監視目的の用途に適した設定であり、照合目的のために設定を逐一変更することはない。また、撮像装置10は、撮影時の環境条件の変化(照明の点灯/消灯や天候の変化など)に応じて、撮影画像の品質を自動的に調整する機能を持つ。図1では、撮像装置10として、ネットワークカメラ10-1、アナログカメラ10-2、ネットワークカメラ10-3の3台を例示しているが、これらの台数は任意である。ネットワークカメラ10-1,10-3は、撮影画像を通信用に符号化するエンコーダを内蔵しており、ネットワークに直接接続されている。アナログカメラ10-2は、撮影画像を通信用に符号化する別体のエンコーダ12を介して、ネットワークに接続されている。撮像装置10による撮影画像は、ネットワークを通じて画像処理装置20へ送信される。
The imaging device 10 is basically a setting suitable for the purpose of monitoring, and the setting is not changed one by one for the purpose of matching. Further, the image pickup apparatus 10 has a function of automatically adjusting the quality of the photographed image in response to a change in environmental conditions at the time of photography (lighting / extinguishing, change in weather, etc.). In FIG. 1, as the imaging device 10, three network cameras 10-1, an analog camera 10-2, and a network camera 10-3 are illustrated, but the number of these devices is arbitrary. The network cameras 10-1 and 10-3 have a built-in encoder that encodes the captured image for communication, and are directly connected to the network. The analog camera 10-2 is connected to the network via a separate encoder 12 that encodes the captured image for communication. The image captured by the image pickup device 10 is transmitted to the image processing device 20 via the network.
記録装置30は、事前に登録された人物の顔画像及びその品質のデータをハードディスク等に記憶させる。なお、記録装置30には、人物の名前や性別等の属性や、顔画像を解析して得られる顔特徴量などのデータも記憶させてもよい。事前登録する人物の顔画像としては、例えば、室内の照明条件の整った環境で撮影されたものが使用される。顔画像の品質としては、コントラスト、ホワイトバランス、圧縮レベル、輝度レベルなどが使用されるが、顔照合の精度に影響を及ぼす可能性がある他の種々の品質を使用してもよい。
The recording device 30 stores a face image of a person registered in advance and data of the quality thereof on a hard disk or the like. It should be noted that the recording device 30 may also store data such as attributes such as a person's name and sex, and face feature amounts obtained by analyzing a face image. As the face image of the person to be pre-registered, for example, an image taken in an environment in which indoor lighting conditions are prepared is used. Contrast, white balance, compression level, brightness level and the like are used as the quality of the face image, but various other qualities that may affect the accuracy of face matching may be used.
画像処理装置20は、撮像装置10による撮影画像から人物の顔画像を検出し、検出した顔画像を記録装置30に事前登録されている顔画像と照合する顔照合を行う。以下では、撮影画像から検出した顔画像と事前登録されている顔画像とを区別して説明する場合、前者を「検出顔画像」と称し、後者を「登録顔画像」と称する。画像処理装置20の詳細については後述する。
操作端末40は、顔照合システムのユーザが使用する端末であり、画像処理装置20による顔照合の結果や撮像装置10による撮影画像などが表示される。 Theimage processing apparatus 20 detects a face image of a person from the image captured by the image capturing apparatus 10 and performs face matching to match the detected face image with a face image registered in advance in the recording device 30. In the following, when distinguishing a face image detected from a captured image and a face image registered in advance, the former is referred to as a “detected face image” and the latter is referred to as a “registered face image”. Details of the image processing device 20 will be described later.
Theoperation terminal 40 is a terminal used by the user of the face matching system, and displays the result of face matching by the image processing device 20 and the captured image by the imaging device 10.
操作端末40は、顔照合システムのユーザが使用する端末であり、画像処理装置20による顔照合の結果や撮像装置10による撮影画像などが表示される。 The
The
図2には、本例の顔照合システムにおける画像処理装置20の構成例を示してある。
画像処理装置20は、撮影画像受信部21と、画像品質分析部22と、顔検出部23と、登録データ取得部24と、品質評価部25と、画像品質調整部26と、照合部27とを備える。 FIG. 2 shows a configuration example of theimage processing device 20 in the face matching system of this example.
Theimage processing apparatus 20 includes a captured image reception unit 21, an image quality analysis unit 22, a face detection unit 23, a registration data acquisition unit 24, a quality evaluation unit 25, an image quality adjustment unit 26, and a collation unit 27. Equipped with.
画像処理装置20は、撮影画像受信部21と、画像品質分析部22と、顔検出部23と、登録データ取得部24と、品質評価部25と、画像品質調整部26と、照合部27とを備える。 FIG. 2 shows a configuration example of the
The
撮影画像受信部21は、撮像装置10と通信して、撮像装置10による撮影で得られた撮影画像をリアルタイムに受信する。
画像品質分析部22は、撮影画像受信部21により受信された撮影画像を分析し、撮影画像のコントラスト、ホワイトバランス、圧縮レベル、輝度レベルなどの複数の種類の品質を特定する。例えば、ホワイトバランスについては、撮影画像に含まれる各画素のRGBレベル(R(Red)、G(Green)、B(Blue)の各色のレベル)を分析する。登録顔画像に対しては、このRGBレベルに近づけるような補正が施されることになる。また、輝度レベルについては、撮影画像から検出された顔の位置からある部分(例えば鼻など)を分析する。登録顔画像に対しては、この輝度レベルに近づけるような補正が施されることになる。なお、撮像装置10が撮影画像にその品質のデータを関連付けて送信する場合には、撮影画像の分析なしで撮影画像の品質を得ることもできる。画像品質分析部22により特定された撮影画像の品質は、後続の処理のために、撮影画像と共にメモリに一時的に記憶される。 The capturedimage receiving unit 21 communicates with the image capturing apparatus 10 and receives in real time the captured image obtained by capturing with the image capturing apparatus 10.
The imagequality analysis unit 22 analyzes the captured image received by the captured image reception unit 21, and specifies a plurality of types of quality such as contrast, white balance, compression level, and brightness level of the captured image. For example, for white balance, the RGB levels (R (Red), G (Green), and B (Blue) color levels) of each pixel included in the captured image are analyzed. The registered face image is corrected so as to approach the RGB level. As for the brightness level, a part (for example, nose) from the position of the face detected from the captured image is analyzed. The registered face image is corrected so as to approach the brightness level. In addition, when the imaging device 10 transmits the quality data to the captured image in association with each other, the quality of the captured image can be obtained without analyzing the captured image. The quality of the captured image specified by the image quality analysis unit 22 is temporarily stored in the memory together with the captured image for subsequent processing.
画像品質分析部22は、撮影画像受信部21により受信された撮影画像を分析し、撮影画像のコントラスト、ホワイトバランス、圧縮レベル、輝度レベルなどの複数の種類の品質を特定する。例えば、ホワイトバランスについては、撮影画像に含まれる各画素のRGBレベル(R(Red)、G(Green)、B(Blue)の各色のレベル)を分析する。登録顔画像に対しては、このRGBレベルに近づけるような補正が施されることになる。また、輝度レベルについては、撮影画像から検出された顔の位置からある部分(例えば鼻など)を分析する。登録顔画像に対しては、この輝度レベルに近づけるような補正が施されることになる。なお、撮像装置10が撮影画像にその品質のデータを関連付けて送信する場合には、撮影画像の分析なしで撮影画像の品質を得ることもできる。画像品質分析部22により特定された撮影画像の品質は、後続の処理のために、撮影画像と共にメモリに一時的に記憶される。 The captured
The image
顔検出部23は、撮影画像受信部21により受信された撮影画像に対し、撮影画像に含まれる顔画像を検出する顔検出処理を行う。顔検出処理としては、公知の種々の手法を使用することができる。
登録データ取得部24は、記録装置30と通信して、記録装置30に記録されている登録顔画像及びその品質のデータを取得する。 Theface detection unit 23 performs a face detection process on the captured image received by the captured image reception unit 21 to detect a face image included in the captured image. As the face detection processing, various known methods can be used.
The registrationdata acquisition unit 24 communicates with the recording device 30 to acquire the registered face image and its quality data recorded in the recording device 30.
登録データ取得部24は、記録装置30と通信して、記録装置30に記録されている登録顔画像及びその品質のデータを取得する。 The
The registration
品質評価部25は、顔検出部23により撮影画像から顔画像が検出された場合に、画像品質分析部22により特定された撮影画像の品質と、登録データ取得部23により取得された登録顔画像の品質とを比較し、これらの差異が所定値以上であるかを調べ、登録顔画像の品質の調整の必要性について評価する。一例として、コントラスト、ホワイトバランス、圧縮レベル、輝度レベルなどの品質の種類毎に撮影画像の品質値と登録顔画像の品質値との差分を算出し、品質の種類別に予め設定された閾値とそれぞれ比較して、差分が閾値以上のものが見つかった場合に、登録顔画像の品質の調整が必要であると判定する。別の例として、品質の種類毎に撮影画像の品質値と登録顔画像の品質値との差分を算出し、品質の種類別に予め設定された重み係数を乗じて合計し、この合計値を予め設定された閾値と比較し、合計値が閾値以上の場合に、登録顔画像の品質の調整が必要であると判定する。なお、これらは例示にすぎず、他の手法により撮影画像の品質と登録顔画像の品質の比較を行っても構わない。
When the face image is detected from the captured image by the face detection unit 23, the quality evaluation unit 25 determines the quality of the captured image specified by the image quality analysis unit 22 and the registered face image acquired by the registration data acquisition unit 23. The quality of the registered face image is evaluated by comparing the quality of the registered face image with the quality of the registered face image. As an example, the difference between the quality value of the captured image and the quality value of the registered face image is calculated for each quality type such as contrast, white balance, compression level, and brightness level, and the threshold value set in advance for each quality type is calculated. In comparison, if the difference is found to be greater than or equal to the threshold, it is determined that the quality of the registered face image needs to be adjusted. As another example, the difference between the quality value of the captured image and the quality value of the registered face image is calculated for each quality type, multiplied by a preset weighting coefficient for each quality type, and totaled, and this total value is calculated in advance. Compared with the set threshold value, if the total value is equal to or greater than the threshold value, it is determined that the quality of the registered face image needs to be adjusted. It should be noted that these are merely examples, and the quality of the photographed image and the quality of the registered face image may be compared by other methods.
ここで、記録装置30に記録されている登録顔画像の品質が一律の場合(例えば、全ての登録顔画像が同一の撮影条件で撮影された場合)には、品質評価部25は、いずれかの登録顔画像を代表として選定し、撮影画像の品質と比較するだけでも構わない。また、複数の登録顔画像を品質が同程度のもの同士でグループ化できる場合には、品質評価部25は、グループ毎の代表の登録顔画像を選定し、撮影画像の品質と比較する構成としてもよい。一方、登録顔画像の品質が一律でない場合やグループ化できない場合は、品質評価部25は、記録装置30に記録されている複数の登録顔画像のそれぞれに対し、撮影画像の品質との比較を行う必要がある。
Here, when the quality of the registered face image recorded in the recording device 30 is uniform (for example, when all the registered face images are taken under the same shooting conditions), the quality evaluation unit 25 is any one. The registered face image may be selected as a representative and compared with the quality of the captured image. In addition, when a plurality of registered face images can be grouped with similar quality, the quality evaluation unit 25 selects a representative registered face image for each group and compares it with the quality of the captured image. May be good. On the other hand, if the quality of the registered face images is not uniform or cannot be grouped, the quality evaluation unit 25 compares each of the plurality of registered face images recorded in the recording device 30 with the quality of the captured image. There is a need to do.
画像品質調整部26は、品質評価部24により登録顔画像の品質の調整が必要であると判定された場合に、記録装置30から取得した登録顔画像に品質の調整を施す。登録顔画像の品質の調整は、撮影画像の品質に登録顔画像の品質が近づくように施される。登録顔画像の品質の調整が必要であると判定されるのは、概ね撮影環境の悪化に起因して撮影画像の品質が劣化した場合であるので、登録顔画像の品質を劣化させる方向の調整が施されることになる。登録顔画像の品質の調整は、全ての種類の品質について施してもよいが、撮影画像の品質値との差分が閾値以上となった種類の品質(又は、これと関連性がある一部の種類の品質)に限定して施すことで、処理負担の軽減を図ることができる。
The image quality adjustment unit 26 adjusts the quality of the registered face image acquired from the recording device 30 when the quality evaluation unit 24 determines that the quality of the registered face image needs to be adjusted. The quality of the registered face image is adjusted so that the quality of the registered face image approaches the quality of the captured image. It is determined that the quality of the registered face image needs to be adjusted when the quality of the captured image is deteriorated due to the deterioration of the shooting environment. Therefore, it is necessary to adjust the quality of the registered face image. Will be applied. The quality of the registered face image may be adjusted for all types of quality, but the quality of the type in which the difference from the quality value of the captured image is greater than or equal to the threshold value (or some It is possible to reduce the processing load by limiting the processing load to (quality of type).
照合部27は、顔検出部23により撮影画像から人物の顔画像が検出された場合に、この検出顔画像を登録顔画像と照合する顔照合を行う。照合部27は、通常は、記録装置30から取得した登録顔画像そのものと照合するが、品質の調整が必要であると判定された登録顔画像については、画像品質調整部26による調整後のものと照合する。照合部27による照合結果は、操作端末40へ送信され、操作端末40により画面表示される。
When the face detection unit 23 detects a person's face image from the captured image, the collation unit 27 performs face collation to collate the detected face image with the registered face image. The collation unit 27 normally collates with the registered face image itself acquired from the recording device 30, but the registered face image determined to require quality adjustment is the one after adjustment by the image quality adjustment unit 26. Match with. The collation result by the collation unit 27 is transmitted to the operation terminal 40 and displayed on the screen by the operation terminal 40.
図3には、本例の顔照合システムによる顔照合のフローチャートの例を示す図である。
事前処理として、登録する顔画像(登録顔画像)及びその品質のデータを記録装置30に記録し(ステップS11,S12)、登録終了か否かを判定する(ステップS13)。未処理の登録顔画像が残っている場合は、登録終了でないと判定され、未処理の登録顔画像が無くなるまで、ステップS11,S12の処理が繰り返される。未処理の登録顔画像が無くなった場合は、登録終了と判定され、事前処理を終了する。 FIG. 3 is a diagram showing an example of a flowchart of face matching by the face matching system of this example.
As pre-processing, the face image to be registered (registered face image) and its quality data are recorded in the recording device 30 (steps S11 and S12), and it is determined whether registration is completed (step S13). When the unprocessed registered face image remains, it is determined that the registration is not completed, and the processes of steps S11 and S12 are repeated until there are no unprocessed registered face images. When there is no unprocessed registered face image, it is determined that the registration has ended, and the preprocessing is ended.
事前処理として、登録する顔画像(登録顔画像)及びその品質のデータを記録装置30に記録し(ステップS11,S12)、登録終了か否かを判定する(ステップS13)。未処理の登録顔画像が残っている場合は、登録終了でないと判定され、未処理の登録顔画像が無くなるまで、ステップS11,S12の処理が繰り返される。未処理の登録顔画像が無くなった場合は、登録終了と判定され、事前処理を終了する。 FIG. 3 is a diagram showing an example of a flowchart of face matching by the face matching system of this example.
As pre-processing, the face image to be registered (registered face image) and its quality data are recorded in the recording device 30 (steps S11 and S12), and it is determined whether registration is completed (step S13). When the unprocessed registered face image remains, it is determined that the registration is not completed, and the processes of steps S11 and S12 are repeated until there are no unprocessed registered face images. When there is no unprocessed registered face image, it is determined that the registration has ended, and the preprocessing is ended.
事前処理を終えた後、撮影画像受信部21が、撮像装置10から撮影画像を取得する(ステップS14)。次に、画像品質分析部22が、撮影画像受信部21により取得された撮影画像を分析してその品質を特定する(ステップS15)。次に、顔検出部23が、撮影画像受信部21により取得された撮影画像に対して顔検出処理を行う(ステップS16)。次に、撮影画像から顔画像が検出されたか否かを判定する(ステップS17)。撮影画像から顔画像が検出されなかった場合は、ステップS14に戻り、撮像装置10から次の撮影画像を取得する。撮影画像から顔画像が検出された場合は、品質評価部25が、登録顔画像の品質の調整の必要性について評価する(ステップS18)。本例では、登録データ取得部24により記録装置30から登録顔画像の品質を順次読み出して撮影画像の品質と比較し、品質の差異が所定値以上の登録顔画像に対して品質の調整を施す必要があると判定する。登録顔画像の品質の調整が必要と判定された場合は、画像品質調整部26が、その登録顔画像の品質を撮影画像の品質(すなわち、検出顔画像の品質)に近づける方向に登録顔画像を調整する(ステップS19)。次に、照合部27が、記録装置30から取得した登録顔画像または画像品質調整部26による調整後の登録顔画像に対して、検出顔画像の照合を実行する(ステップS20)。
After completing the pre-processing, the captured image receiving unit 21 acquires a captured image from the image capturing device 10 (step S14). Next, the image quality analysis unit 22 analyzes the photographed image acquired by the photographed image receiving unit 21 and specifies its quality (step S15). Next, the face detection unit 23 performs face detection processing on the captured image acquired by the captured image reception unit 21 (step S16). Next, it is determined whether or not a face image is detected from the captured image (step S17). When the face image is not detected from the captured image, the process returns to step S14, and the next captured image is acquired from the imaging device 10. When the face image is detected from the captured image, the quality evaluation unit 25 evaluates the necessity of adjusting the quality of the registered face image (step S18). In this example, the registration data acquisition unit 24 sequentially reads the quality of the registered face image from the recording device 30 and compares the quality with the quality of the captured image, and adjusts the quality of the registered face image having a difference in quality of a predetermined value or more. Determined to be necessary. When it is determined that the quality of the registered face image needs to be adjusted, the image quality adjustment unit 26 causes the quality of the registered face image to approach the quality of the captured image (that is, the quality of the detected face image). Is adjusted (step S19). Next, the collation unit 27 collates the detected face image with the registered face image acquired from the recording device 30 or the registered face image adjusted by the image quality adjustment unit 26 (step S20).
具体例を挙げて説明すると、本例の画像処理装置20は、撮像装置10からリアルタイムに得られる撮影画像を分析し、コントラスト、ホワイトバランス、圧縮レベル、輝度レベルなどの品質を記録する。そして、撮影画像から顔画像が得られるシーンがあった場合、撮影画像を分析して特定された品質のデータをもとに、記録装置30に記録されている登録顔画像の品質のデータと突き合わせ、画像品質を比較することで、登録顔画像と撮影画像の品質の差異を明確にする。この比較の結果に基づいて、品質の差異が所定値以上の登録顔画像を検索し、その登録顔画像に対して、リアルタイムの撮影画像に近づけるように、輝度レベルの補正やコントラストの補正等を施す。また、撮像装置10によっては圧縮レベルが異なり、特にリアルタイムの撮影画像については圧縮レベルを強くかける傾向があるので、その圧縮レベルを分析して登録顔画像の圧縮レベルを調整し、撮影画像の圧縮レベルに近づける。このように、顔照合を行う際に、事前登録された登録顔画像を一時的に補正し、撮影画像から検出された検出顔画像を比較することで、双方の画像品質を同レベルにした状態で顔照合処理を行う。
Describing with a specific example, the image processing apparatus 20 of the present example analyzes a captured image obtained in real time from the imaging apparatus 10 and records qualities such as contrast, white balance, compression level, and brightness level. Then, when there is a scene in which a face image is obtained from the captured image, the quality data of the registered face image recorded in the recording device 30 is matched with the quality data specified by analyzing the captured image. , By comparing the image quality, the difference in quality between the registered face image and the captured image is clarified. Based on the result of this comparison, a registered face image whose quality difference is equal to or greater than a predetermined value is searched, and the registered face image is corrected for brightness level and contrast so as to be closer to a real-time captured image. Give. Further, since the compression level differs depending on the image pickup apparatus 10, and particularly the compression level tends to be strongly applied to a real-time captured image, the compression level is analyzed to adjust the compression level of the registered face image to compress the captured image. Bring it closer to the level. In this way, when face matching is performed, the registered face images that have been pre-registered are temporarily corrected, and the detected face images detected from the captured images are compared, so that the image quality of both images is at the same level. Perform face matching processing with.
以上のように、本例の顔照合システムは、記録装置30が、事前に登録された登録顔画像及びその品質のデータを記憶している。そして、画像処理装置20において、画像品質分析部22が、撮像装置10により撮影された撮影画像の品質を特定し、顔検出部23が、撮影画像から顔画像を検出し、品質評価部25が、顔検出部23で撮影画像から顔画像が検出された場合に、登録顔画像の品質の調整の必要性について評価し、画像品質調整部26が、品質評価部25で登録顔画像の品質の調整の必要と判定された場合に、撮影画像の品質と登録顔画像の品質とに基づいて、撮影画像の品質に近づくように登録顔画像に品質の調整を施し、照合部27が、画像品質調整部26による品質の調整後の登録顔画像を用いて、検出顔画像の照合を行う。
As described above, in the face matching system of this example, the recording device 30 stores the registered face image registered in advance and its quality data. Then, in the image processing device 20, the image quality analysis unit 22 identifies the quality of the captured image captured by the imaging device 10, the face detection unit 23 detects the face image from the captured image, and the quality evaluation unit 25 When the face detection unit 23 detects a face image from the captured image, the necessity of adjusting the quality of the registered face image is evaluated, and the image quality adjustment unit 26 causes the quality evaluation unit 25 to determine the quality of the registered face image. When it is determined that adjustment is necessary, the registered face image is adjusted in quality so as to approach the quality of the captured image based on the quality of the captured image and the quality of the registered face image, and the matching unit 27 determines the image quality. The detected face image is collated using the registered face image whose quality has been adjusted by the adjustment unit 26.
このように、本例の顔照合システムでは、撮影画像の品質(つまり、検出顔画像の品質)に近づくように登録顔画像を一時的に調整して、検出顔画像の照合に用いるように構成してある。これにより、検出顔画像の品質と登録顔画像の品質を画像照合に適したレベル(例えば、同程度のレベル)に調整した状態で、検出顔画像の照合を行うことができる。したがって、撮影画像の品質は調整不要なため、撮像装置側の設定を変更することなく安定した照合精度を得ることができる。更には、撮像装置側の設定の変更が不要なので、撮影画像を照合目的だけでなく監視目的にも使用することが可能となる。
As described above, in the face matching system of this example, the registered face image is temporarily adjusted so as to approach the quality of the captured image (that is, the quality of the detected face image), and is used for matching the detected face image. I have it. As a result, the detected face image can be collated in a state where the quality of the detected face image and the quality of the registered face image are adjusted to a level (for example, about the same level) suitable for image collation. Therefore, since the quality of the captured image does not need to be adjusted, stable matching accuracy can be obtained without changing the setting on the imaging device side. Furthermore, since it is not necessary to change the setting on the imaging device side, it is possible to use the captured image not only for collation purposes but also for monitoring purposes.
ここで、本例の顔照合システムでは、本発明に係る記憶手段を記録装置30により構成し、本発明に係る特定手段を画像品質分析部22により構成し、本発明に係る調整手段を画像品質調整部26により構成し、本発明に係る照合手段を照合部27により構成しているが、他の構成により実現して構わないことは言うまでもない。
Here, in the face matching system of this example, the storage means according to the present invention is configured by the recording device 30, the specific means according to the present invention is configured by the image quality analysis unit 22, and the adjusting means according to the present invention is image quality. The adjusting unit 26 and the matching unit according to the present invention are configured by the matching unit 27, but it goes without saying that the matching unit may be realized by another structure.
なお、上記の説明では、品質評価部25が、撮影画像の品質と登録顔画像の品質とを比較することで、登録顔画像の品質の調整の必要性を評価しているが、他の手法により、登録顔画像の品質の調整の必要性を評価してもよい。例えば、撮像画像の品質を所定条件(登録顔画像の品質に依存しない条件)と比較して、登録顔画像の品質の調整の必要性を評価してもよい。すなわち、一例として、品質の種類毎に基準範囲を予め設定しておき、撮影画像の品質の値が基準範囲から外れた場合に、登録顔画像の品質の調整が必要であると判定してもよい。
In the above description, the quality evaluation unit 25 evaluates the necessity of adjusting the quality of the registered face image by comparing the quality of the photographed image with the quality of the registered face image, but other methods Therefore, the necessity of adjusting the quality of the registered face image may be evaluated. For example, the necessity of adjusting the quality of the registered face image may be evaluated by comparing the quality of the captured image with a predetermined condition (condition that does not depend on the quality of the registered face image). That is, as an example, a reference range is set in advance for each type of quality, and if the quality value of the captured image deviates from the reference range, it may be determined that the quality of the registered face image needs to be adjusted. Good.
また、例えば、予めスケジューリングされたタイミングが到来した場合に、登録顔画像の品質の調整が必要であると判定してもよい。一例として、撮像装置10の周辺にある照明機器の点灯・消灯のタイミングが予めスケジューリングされている場合に、そのタイミングに合わせて、登録顔画像の品質を調整するか否かを切り替えてもよい。この手法は、撮影画像の品質に影響を及ぼす環境変化のタイミングが予め判明している場合に有効である。
Also, for example, when the timing scheduled in advance arrives, it may be determined that the quality of the registered face image needs to be adjusted. As an example, when the timing of turning on/off the lighting device around the imaging device 10 is scheduled in advance, whether or not to adjust the quality of the registered face image may be switched according to the timing. This method is effective when the timing of the environmental change that affects the quality of the captured image is known in advance.
以上、本発明に係る画像照合システムを顔照合システムに適用した場合を例に説明したが、本発明はこのような顔照合システムに限定されず、車やそのナンバー、放置物、接地物などの他の画像を登録画像と照合する種々の画像照合システムに広く適用できることは言うまでもない。
また、本発明は、例えば、本発明に係る処理を実行する方法や方式、そのような方法や方式をメモリやプロセッサ等のハードウェア資源を用いて実現するためのプログラム、そのプログラムを記憶する記憶媒体などとして提供することも可能である。 The case where the image matching system according to the present invention is applied to the face matching system has been described above as an example. However, the present invention is not limited to such a face matching system, and a vehicle, its number, an abandoned object, a grounded object, etc. It goes without saying that it can be widely applied to various image matching systems that match other images with registered images.
The present invention also provides, for example, a method and method for executing the process according to the present invention, a program for realizing such method and method by using hardware resources such as a memory and a processor, and a storage for storing the program. It is also possible to provide it as a medium or the like.
また、本発明は、例えば、本発明に係る処理を実行する方法や方式、そのような方法や方式をメモリやプロセッサ等のハードウェア資源を用いて実現するためのプログラム、そのプログラムを記憶する記憶媒体などとして提供することも可能である。 The case where the image matching system according to the present invention is applied to the face matching system has been described above as an example. However, the present invention is not limited to such a face matching system, and a vehicle, its number, an abandoned object, a grounded object, etc. It goes without saying that it can be widely applied to various image matching systems that match other images with registered images.
The present invention also provides, for example, a method and method for executing the process according to the present invention, a program for realizing such method and method by using hardware resources such as a memory and a processor, and a storage for storing the program. It is also possible to provide it as a medium or the like.
本発明は、撮像装置により撮影された撮影画像を事前に登録された登録画像と照合する種々の画像照合システムに利用することができる。
The present invention can be used in various image collation systems that collate a captured image captured by an imaging device with a registered image registered in advance.
10:撮像装置、 20:画像処理装置、 30:記録装置、 40:操作端末、
21:撮影画像受信部、 22:画像品質分析部、 23:顔検出部、 24:登録データ取得部、 25:品質評価部、 26:画像品質調整部、 27:照合部 10: imaging device, 20: image processing device, 30: recording device, 40: operating terminal,
21: photographed image reception unit, 22: image quality analysis unit, 23: face detection unit, 24: registered data acquisition unit, 25: quality evaluation unit, 26: image quality adjustment unit, 27: collation unit
21:撮影画像受信部、 22:画像品質分析部、 23:顔検出部、 24:登録データ取得部、 25:品質評価部、 26:画像品質調整部、 27:照合部 10: imaging device, 20: image processing device, 30: recording device, 40: operating terminal,
21: photographed image reception unit, 22: image quality analysis unit, 23: face detection unit, 24: registered data acquisition unit, 25: quality evaluation unit, 26: image quality adjustment unit, 27: collation unit
Claims (8)
- 撮像装置により撮影された撮影画像を事前に登録された登録画像と照合する画像照合システムにおいて、
前記登録画像及びその品質を記憶する記憶手段と、
前記撮影画像の品質を特定する特定手段と、
前記撮影画像の品質と前記登録画像の品質とに基づいて、前記撮影画像の品質に近づくように前記登録画像に品質の調整を施す調整手段と、
前記調整手段による調整後の前記登録画像を用いて、前記撮影画像の照合を行う照合手段とを備えたことを特徴とする画像照合システム。 In an image collation system that collates a photographed image photographed by an imaging device with a registered image registered in advance,
Storage means for storing the registered image and its quality,
Specifying means for specifying the quality of the captured image,
Adjusting means for adjusting the quality of the registered image so as to approach the quality of the captured image based on the quality of the captured image and the quality of the registered image;
An image collation system comprising: collation means for collating the photographed image using the registered image adjusted by the adjusting means. - 請求項1に記載の画像照合システムにおいて、
前記調整手段は、前記撮影画像の品質と前記登録画像の品質との差異が所定値以上の場合、前記撮像画像の品質が所定条件から外れた場合、または予めスケジューリングされたタイミングが到来した場合に、前記登録画像に品質の調整を施すことを特徴とする画像照合システム。 The image matching system according to claim 1,
When the difference between the quality of the captured image and the quality of the registered image is a predetermined value or more, when the quality of the captured image deviates from a predetermined condition, or when a timing scheduled in advance arrives. An image collation system, characterized in that the registered image is adjusted in quality. - 請求項1に記載の画像照合システムにおいて、
前記品質は、コントラスト、ホワイトバランス、圧縮レベル、輝度レベルの1以上であることを特徴とする画像照合システム。 The image matching system according to claim 1,
The image matching system is characterized in that the quality is one or more of contrast, white balance, compression level, and brightness level. - 請求項2に記載の画像照合システムにおいて、
前記品質は、コントラスト、ホワイトバランス、圧縮レベル、輝度レベルの1以上であることを特徴とする画像照合システム。 The image matching system according to claim 2,
The image matching system is characterized in that the quality is one or more of contrast, white balance, compression level, and brightness level. - 請求項1に記載の画像照合システムにおいて、
前記登録画像は人物の顔画像であり、
前記撮影画像から人物の顔画像が検出された場合に、検出された顔画像に品質が近づくように品質を調整した前記登録画像を用いて、検出された顔画像の照合を行うことを特徴とする画像照合システム。 The image matching system according to claim 1,
The registered image is a face image of a person,
When a face image of a person is detected from the photographed image, the detected face image is collated using the registered image whose quality is adjusted so that the quality is close to the detected face image. Image matching system. - 請求項2に記載の画像照合システムにおいて、
前記登録画像は人物の顔画像であり、
前記撮影画像から人物の顔画像が検出された場合に、検出された顔画像に品質が近づくように品質を調整した前記登録画像を用いて、検出された顔画像の照合を行うことを特徴とする画像照合システム。 The image matching system according to claim 2,
The registered image is a face image of a person,
When a face image of a person is detected from the photographed image, the detected face image is collated using the registered image whose quality is adjusted so that the quality is close to the detected face image. Image matching system. - 請求項3に記載の画像照合システムにおいて、
前記登録画像は人物の顔画像であり、
前記撮影画像から人物の顔画像が検出された場合に、検出された顔画像に品質が近づくように品質を調整した前記登録画像を用いて、検出された顔画像の照合を行うことを特徴とする画像照合システム。 The image matching system according to claim 3,
The registered image is a face image of a person,
When a face image of a person is detected from the photographed image, the detected face image is collated using the registered image whose quality is adjusted so that the quality is close to the detected face image. Image matching system. - 請求項4に記載の画像照合システムにおいて、
前記登録画像は人物の顔画像であり、
前記撮影画像から人物の顔画像が検出された場合に、検出された顔画像に品質が近づくように品質を調整した前記登録画像を用いて、検出された顔画像の照合を行うことを特徴とする画像照合システム。 The image matching system according to claim 4,
The registered image is a face image of a person,
When a face image of a person is detected from the photographed image, the detected face image is collated using the registered image whose quality is adjusted so that the quality is close to the detected face image. Image matching system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021503446A JP7214830B2 (en) | 2019-03-01 | 2020-01-16 | Image matching system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019037125 | 2019-03-01 | ||
JP2019-037125 | 2019-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020179240A1 true WO2020179240A1 (en) | 2020-09-10 |
Family
ID=72336962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/001298 WO2020179240A1 (en) | 2019-03-01 | 2020-01-16 | Image verification system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7214830B2 (en) |
WO (1) | WO2020179240A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7534913B2 (en) | 2020-10-06 | 2024-08-15 | キヤノン株式会社 | Information processing device, system, control method for information processing device, and program |
WO2025115057A1 (en) * | 2023-11-27 | 2025-06-05 | 日本電気株式会社 | Information processing system, information processing device, information processing method, and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000306095A (en) * | 1999-04-16 | 2000-11-02 | Fujitsu Ltd | Image collation / search system |
JP2004152127A (en) * | 2002-10-31 | 2004-05-27 | Toshiba Corp | Face collating device and face collating method |
JP2005149527A (en) * | 2004-12-27 | 2005-06-09 | Toshiba Corp | System and method of facial authentication |
JP2007026213A (en) * | 2005-07-19 | 2007-02-01 | Nikon Corp | Imaging device |
JP2007226327A (en) * | 2006-02-21 | 2007-09-06 | Oki Electric Ind Co Ltd | Personal identification device and personal identification method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180588A1 (en) * | 2017-03-27 | 2018-10-04 | 株式会社日立国際電気 | Facial image matching system and facial image search system |
-
2020
- 2020-01-16 WO PCT/JP2020/001298 patent/WO2020179240A1/en active Application Filing
- 2020-01-16 JP JP2021503446A patent/JP7214830B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000306095A (en) * | 1999-04-16 | 2000-11-02 | Fujitsu Ltd | Image collation / search system |
JP2004152127A (en) * | 2002-10-31 | 2004-05-27 | Toshiba Corp | Face collating device and face collating method |
JP2005149527A (en) * | 2004-12-27 | 2005-06-09 | Toshiba Corp | System and method of facial authentication |
JP2007026213A (en) * | 2005-07-19 | 2007-02-01 | Nikon Corp | Imaging device |
JP2007226327A (en) * | 2006-02-21 | 2007-09-06 | Oki Electric Ind Co Ltd | Personal identification device and personal identification method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7534913B2 (en) | 2020-10-06 | 2024-08-15 | キヤノン株式会社 | Information processing device, system, control method for information processing device, and program |
WO2025115057A1 (en) * | 2023-11-27 | 2025-06-05 | 日本電気株式会社 | Information processing system, information processing device, information processing method, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP7214830B2 (en) | 2023-01-30 |
JPWO2020179240A1 (en) | 2021-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12354401B2 (en) | Imaging apparatus and imaging system | |
US7038715B1 (en) | Digital still camera with high-quality portrait mode | |
US7800687B2 (en) | Secure access camera and method for camera control | |
CN111163259A (en) | Image capturing method, monitoring camera and monitoring system | |
US9460521B2 (en) | Digital image analysis | |
CN101930535A (en) | Human face detection and tracking device | |
WO2007080834A1 (en) | Color correction device, color correction method, dynamic camera color correction device, and video search device using the same | |
CN102117484B (en) | Processing system, processing method and image classification method using image color information | |
JP7539951B2 (en) | Imaging device | |
WO2020179240A1 (en) | Image verification system | |
JP5747105B2 (en) | Image processing device | |
EP2795904B1 (en) | Method and system for color adjustment | |
JP2004219277A (en) | Human body detection method and system, program, recording medium | |
JP5544223B2 (en) | Imaging device | |
JP2008236353A (en) | Camera abnormality detection device | |
JP2020113844A (en) | Collation system, collation method and camera device | |
TWI421795B (en) | System and method of image processing based on color information, and method for image categorization using the same | |
KR102194511B1 (en) | Representative video frame determination system and method using same | |
KR101546917B1 (en) | System and method for controlling night image correction | |
CN114598852B (en) | Optimization method for white balance of face area of camera | |
CN119421060A (en) | A method, device and storage medium for restoring video color distortion of a digital camera | |
JP2007133470A (en) | Monitoring terminal device | |
CN111241898A (en) | Data display method based on image processing | |
JPS62147890A (en) | Picture monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20767095 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021503446 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20767095 Country of ref document: EP Kind code of ref document: A1 |