WO2020170980A1 - Method for producing halogenated butene - Google Patents
Method for producing halogenated butene Download PDFInfo
- Publication number
- WO2020170980A1 WO2020170980A1 PCT/JP2020/005856 JP2020005856W WO2020170980A1 WO 2020170980 A1 WO2020170980 A1 WO 2020170980A1 JP 2020005856 W JP2020005856 W JP 2020005856W WO 2020170980 A1 WO2020170980 A1 WO 2020170980A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- halogenated
- mol
- general formula
- compound represented
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/07—Preparation of halogenated hydrocarbons by addition of hydrogen halides
- C07C17/087—Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
Definitions
- the present disclosure relates to a method for producing a halogenated butene compound.
- Butene compounds having 7 halogen atoms are expected as dry etching gas for semiconductors, cleaning gas, building blocks for organic synthesis, etc.
- the present disclosure includes the following configurations.
- a method for producing a halogenated butene compound represented by In the presence of a catalyst General formula (2): CX 1 X 2 X 3 C ⁇ CCX 7 X 8 X 9 (2) [Wherein X 1 , X 2 , X 3 , X 7 , X 8 and X 9 are the same as defined above.
- a method for producing comprising a step of reacting a halogenated butyne compound represented by with a hydrogen halide.
- the halogenated butyne compound represented by the general formula (2) is CF 3 C ⁇ CCF 3 .
- the manufacturing method according to Item 1. Item 3.
- Item 3. The production method according to Item 1 or 2, wherein the catalyst contains at least one selected from the group consisting of a fluorinated or non-fluorinated activated carbon catalyst and a fluorinated or non-fluorinated Lewis acid catalyst.
- the catalyst contains at least one selected from the group consisting of a fluorinated or non-fluorinated activated carbon catalyst and a fluorinated or non-fluorinated Lewis acid catalyst.
- the catalyst is a fluorinated or non-fluorinated Lewis acid catalyst, and the Lewis acid catalyst is at least one selected from the group consisting of a chromium oxide catalyst, an alumina catalyst, a silica-alumina catalyst, and a zeolite catalyst.
- the catalyst is a fluorinated or non-fluorinated Lewis acid catalyst
- the Lewis acid catalyst is at least one selected from the group consisting of a chromium oxide catalyst, an alumina catalyst, a silica-alumina catalyst, and a zeolite catalyst.
- One of X 5 and X 6 represents a hydrogen atom, and the other represents a halogen atom.
- Item 7. The composition according to Item 6, which is used as a cleaning gas, an etching gas, or a building block for organic synthesis.
- a butene compound having 7 halogen atoms can be synthesized by a method having a high conversion rate and a high selectivity.
- inclusion is a concept that includes all of “comprise”, “consistently essentially of”, and “consistent of”. Further, in the present specification, when the numerical range is shown by “A to B”, it means A or more and B or less.
- “selectivity” means the ratio (mol %) of the total molar amount of the target compound contained in the effluent gas to the total molar amount of compounds other than the raw material compounds in the effluent gas from the reactor outlet. To do.
- the "conversion rate” means the ratio (mol%) of the total molar amount of the compounds other than the raw material compounds contained in the outflow gas from the reactor outlet to the molar amount of the raw material compounds supplied to the reactor. means.
- a butene compound having 7 halogen atoms can be synthesized by a method having a higher conversion rate and a higher selectivity than ever before.
- the trihalogenated methyl group reduces the electron density of the electrons of the adjacent double bond or triple bond, so that the addition reaction to the unsaturated bond is less likely to occur. Since a halogenated butyne compound has a triple bond, it easily undergoes an addition reaction of hydrogen halide due to its high reactivity.However, a halogenated butene compound reacts with hydrogen halide due to the effect of a trihalogenated methyl group. Without being a halogenated butane compound, a halogenated butene compound can be selectively obtained.
- the halogenated butyne compound as a substrate that can be used in the production method of the present disclosure has the general formula (2): CX 1 X 2 X 3 C ⁇ CCX 7 X 8 X 9 (2) [In the formula, X 1 , X 2 , X 3 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ] It is a halogenated butyne compound represented by.
- examples of the halogen atom represented by X 1 , X 2 , X 3 , X 7 , X 8 and X 9 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
- halogenated butyne compound that is the substrate a halogenated butene compound is particularly preferable in terms of high conversion, yield and selectivity, and X 1 , X 2 , X 3 , X 7 , X 8 and X 9 is preferably a fluorine atom.
- X 1 , X 2 , X 3 , X 7 , X 8 and X 9 may be the same or different.
- halogenated butyne compound as a substrate satisfying the above conditions include CF 3 C ⁇ CCF 3 , CCl 3 C ⁇ CCCl 3 , and CBr 3 C ⁇ CCBr 3 .
- CF 3 C ⁇ CCF 3 CF 3 C ⁇ CCF 3
- CCl 3 C ⁇ CCCl 3 CF 3 C ⁇ CCF 3
- CBr 3 C ⁇ CCBr 3 halogenated butyne compounds
- These halogenated butyne compounds can be used alone or in combination of two or more.
- a known or commercially available product can be adopted. It is also possible to synthesize them according to a conventional method such as JP-A 2012-001448.
- Hydrogen fluoride is preferable from the viewpoints of the conversion rate, yield and selectivity of the reaction.
- These hydrogen halides can be used alone or in combination of two or more.
- the amount of hydrogen halide to be reacted with the halogenated butyne compound (substrate) is preferably 30 to 250 mol, more preferably 35 to 240 mol, and more preferably 40 to 230 mol, relative to 1 mol of the halogenated butyne compound (substrate). Is more preferable. By setting this range, it is possible to further reduce the generation of impurities by further suppressing the excessive addition reaction due to hydrogen halide while advancing the addition reaction due to hydrogen halide better.
- the halogenated butene compound (1) has a high selectivity and can be recovered in a high yield.
- the step of reacting a halogenated butyne compound and hydrogen halide in the present disclosure is an addition reaction with hydrogen halide and is performed in the presence of a catalyst.
- the step (addition reaction) of reacting the halogenated butyne compound with hydrogen halide in the production method of the present disclosure is preferably performed in a gas phase, particularly in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation and the like can be simplified, and it is economically advantageous.
- X 1 , X 2 , X 3 , X 7 More preferably, X 8 and X 9 are fluorine atoms.
- a fluorinated or non-fluorinated activated carbon catalyst a fluorinated or non-fluorinated Lewis acid catalyst and the like are preferable.
- the activated carbon catalyst is not particularly limited, and examples thereof include powdered activated carbon such as crushed coal, shaped coal, granular coal, and spherical coal.
- powdered activated carbon such as crushed coal, shaped coal, granular coal, and spherical coal.
- the powdered activated carbon it is preferable to use powdered activated carbon having a particle size of 4 mesh (4.75 mm) to 100 mesh (0.150 mm) in the JIS test (JIS Z8801).
- JIS Z8801 JIS Z8801
- activated carbon shows stronger activity when fluorinated, it is possible to use fluorinated activated carbon obtained by previously fluorinating activated carbon before use in the reaction. That is, as the activated carbon catalyst, both non-fluorinated activated carbon and fluorinated activated carbon can be used.
- fluorinating agent for fluorinating activated carbon examples include inorganic fluorinating agents such as HF, hydrofluorocarbons (HFC) such as hexafluoropropene, chlorofluorocarbons (CFC) such as chlorofluoromethane, and hydrochlorofluorocarbons.
- organic fluorinating agents such as (HCFC) can also be used.
- a method of fluorinating activated carbon for example, a method of circulating the above-mentioned fluorinating agent under atmospheric pressure under a temperature condition of room temperature (25° C.) to 400° C. can be mentioned.
- the Lewis acid catalyst is not particularly limited, and examples thereof include a chromium oxide catalyst, an alumina catalyst, a silica-alumina catalyst, and a zeolite catalyst.
- a chromium oxide catalyst As these Lewis acid catalysts, both non-fluorinated Lewis acid catalysts and fluorinated Lewis acid catalysts can be adopted.
- the chromium oxide catalyst is not particularly limited, but when chromium oxide is expressed by CrOm, 1.5 ⁇ m ⁇ 3 is preferable, 2 ⁇ m ⁇ 2.75 is more preferable, and 2 ⁇ m ⁇ 2.3 is further preferable.
- chromium oxide is represented by CrO m ⁇ nH 2 O, it may be hydrated so that the value of n is 3 or less, particularly 1 to 1.5.
- the fluorinated chromium oxide catalyst can be prepared by fluorinating the above chromium oxide catalyst. This fluorination can be performed using, for example, HF, fluorocarbon or the like. Such a fluorinated chromium oxide catalyst can be synthesized, for example, according to the method described in JP-A No. 05-146680.
- the following is an example of a method for synthesizing a chromium oxide catalyst and a fluorinated chromium oxide catalyst.
- a precipitate of chromium hydroxide can be obtained by mixing an aqueous solution of chromium salt (chromium nitrate, chromium chloride, chromium alum, chromium sulfate, etc.) with aqueous ammonia.
- chromium salt chromium nitrate, chromium chloride, chromium alum, chromium sulfate, etc.
- the physical properties of chromium hydroxide can be controlled by the reaction rate of the precipitation reaction at this time.
- the reaction rate is preferably high. The reaction rate depends on the temperature of the reaction solution, the method of mixing ammonia water (mixing rate), the stirring state, and the like.
- the specific surface area of the powder (specific surface area by BET method) is preferably 100 m 2 /g or more, and more preferably 120 m 2 /g or more under degassing conditions of 200° C. and 80 minutes.
- the upper limit of the specific surface area is, for example, about 220 m 2 /g.
- graphite can be mixed in an amount of 3% by weight or less with this chromium hydroxide powder, and pellets can be formed with a tableting machine. The size and strength of the pellet can be adjusted appropriately.
- Amorphous chromium oxide can be obtained by firing the molded catalyst in an inert atmosphere, for example, in a nitrogen stream.
- the firing temperature is preferably 360° C. or higher, and from the viewpoint of suppressing crystallization, it is preferably 380 to 460° C.
- the firing time may be, for example, 1 to 5 hours.
- the specific surface area of the calcined catalyst is, for example, preferably 170 m 2 /g or more, more preferably 180 m 2 /g or more, still more preferably 200 m 2 /g or more, from the viewpoint of the activity of the catalyst.
- the upper limit of the specific surface area is generally preferably about 240 m 2 / g, about 220 m 2 / g is more preferable.
- fluorinated chromium oxide can be obtained by fluorinating the chromium oxide.
- the fluorination temperature may be set in a temperature range in which generated water does not condense, and the upper limit may be a temperature at which the catalyst is not crystallized by the heat of reaction.
- the fluorination temperature may be, for example, 100 to 460°C.
- Examples of the alumina catalyst include ⁇ -alumina and activated alumina.
- Examples of activated alumina include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, pseudo ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina.
- a silica-alumina catalyst can also be used as the composite oxide.
- the silica-alumina catalyst is a composite oxide catalyst containing silica (SiO 2 ) and alumina (Al 2 O 3 ), and the total amount of silica and alumina is 100% by mass, for example, the content of silica is 20 to 90% by mass. In particular, 50 to 80% by weight of catalyst can be used.
- Alumina catalysts and silica-alumina catalysts exhibit stronger activity when fluorinated, so it is possible to fluorinate the alumina catalyst in advance before use in the reaction and use it as a fluorinated alumina catalyst.
- an inorganic fluorinating agent such as F 2 or HF
- a fluorocarbon-based organic fluorinating agent such as hexafluoropropene, or the like
- a method for fluorinating the alumina catalyst and the silica-alumina catalyst for example, a method of circulating the above-mentioned fluorinating agent under atmospheric pressure under a temperature condition of room temperature (25°C) to 400°C to fluorinate is mentioned. You can
- zeolite catalyst well-known types of zeolite can be widely adopted.
- a crystalline hydrous aluminosilicate of an alkali metal or an alkaline earth metal is preferable.
- the crystal form of zeolite is not particularly limited, and examples thereof include A type, X type, LSX type and the like.
- the alkali metal or alkaline earth metal in the zeolite is not particularly limited, and examples thereof include potassium, sodium, calcium and lithium.
- the zeolite catalyst becomes stronger by fluorinating, it can be used as a fluorinated zeolite catalyst by fluorinating the zeolite catalyst before use in the reaction.
- an inorganic fluorinating agent such as F 2 or HF
- a fluorocarbon-based organic fluorinating agent such as hexafluoropropene, or the like
- the above catalysts can be used alone or in combination of two or more.
- fluorinated or non-fluorinated activated carbon catalyst, fluorinated or non-fluorinated chromium oxide catalyst, fluorinated or non-fluorinated alumina catalyst and the like are preferable, and fluorinated
- a non-fluorinated activated carbon catalyst, a fluorinated or non-fluorinated chromium oxide catalyst and the like are more preferable.
- the above-mentioned fluorinated or non-fluorinated Lewis acid catalyst is used as the catalyst, it can be supported on a carrier.
- a carrier include carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and the like.
- carbon activated carbon, amorphous carbon, graphite, diamond or the like can be used.
- the catalyst in the production method of the present disclosure, in reacting a halogenated butyne compound with hydrogen halide in the presence of a catalyst, for example, it is preferable to contact the catalyst in a solid state (solid phase) with the halogenated butyne compound.
- the catalyst may be in the form of powder, but pellets are preferred when they are used in a gas phase continuous flow reaction.
- BET specific surface area Is preferably normally 10 ⁇ 3,000m 2 / g, more preferably 10 ⁇ 2500m 2 / g, 20 ⁇ 2000m 2 /g is more preferable, and 30 to 1500 m 2 /g is particularly preferable.
- BET specific surface area of the catalyst is in such a range, the density of the catalyst particles does not become too small, so that the halogenated butene compound can be obtained with higher selectivity. Further, it is possible to further improve the conversion rate of the halogenated butyne compound.
- the upper limit of the reaction temperature for reacting the halogenated butyne compound and hydrogen halide in the present disclosure is such that the addition reaction with hydrogen halide proceeds more efficiently and the conversion rate is further improved, and the halogenated butene compound as the target compound is improved. From the viewpoint of being able to obtain the compound with higher selectivity, and from the viewpoint of further suppressing the decrease in selectivity due to decomposition or polymerization of the reaction product, usually 500° C. or lower is preferable, 450° C. or lower is more preferable, and 400 C. or lower is more preferable.
- the reaction time for reacting the halogenated butyne compound and hydrogen halide in the present disclosure is, for example, when a gas phase flow system is adopted, the contact time (W/F) of the raw material compound with the catalyst [W: weight of the metal catalyst (G), F: flow rate of raw material compound (cc/sec)] is 1.5 to 30 g from the viewpoint that the conversion rate of the reaction is particularly high and the halogenated butene compound can be obtained in a higher yield and a higher selectivity.
- -Sec./cc is preferable, 1.8-20 g-sec./cc is more preferable, and 2.0-10 g-sec./cc is further preferable.
- the above W/F specifies the reaction time particularly when the gas phase flow reaction is adopted, but the contact time can be appropriately set also when the batch reaction is adopted.
- the said contact time means the time when a substrate and a catalyst contact.
- the reaction between a halogenated butyne compound and hydrogen halide in the present disclosure is a flow system or a batch system in which a substrate is continuously charged into a reactor and a target compound is continuously withdrawn from the reactor. It can be implemented by either method. If the target compound stays in the reactor, the elimination reaction may proceed further, so that it is preferable to carry out the flow-through method.
- the step of reacting the halogenated butyne compound and hydrogen halide in the present disclosure is preferably carried out in a gas phase, particularly preferably in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation and the like can be simplified, and it is economically advantageous.
- X 1, X 2, X 3 in the general formula (1), X 7, X 8 and X 9 is, X 1 in the general formula (2), X 2, X 3, X 7, X 8 and X 9 It corresponds to.
- purification treatment can be carried out according to a conventional method to obtain the target compound, halogenated butene compound.
- addition of 2 moles of hydrogen halide to 1 mole of halogenated butyne compound is suppressed, and 1 mole of 1 mole of halogenated butyne compound is suppressed.
- a halogenated butene compound to which hydrogen halide is added can be selectively obtained.
- the halogenated butene compound obtained in this way can be effectively used for various purposes such as etching gas for forming the latest fine structure such as semiconductors and liquid crystals.
- halogenated butene composition As described above, a halogenated butene compound can be obtained, but a halogenated butene compound in which 1 mol of hydrogen halide is added to 1 mol of a halogenated butyne compound and a halogenated butyne compound It may be obtained in the form of a halogenated butene composition containing a halogenated butane compound to which 2 mol of hydrogen halide is added per 1 mol.
- the halogenated butene compound is the halogenated butene compound represented by the general formula (1)
- the halogenated butane compound is the halogenated butene compound represented by the general formula (3). It is a butane compound.
- the halogen atom represented by X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 and X 9 is a fluorine atom or a chlorine atom.
- a bromine atom and an iodine atom, and a fluorine atom is preferable.
- the reaction conversion rate Since it is high and can be obtained with high yield and high selectivity, it is possible to reduce the components other than the halogenated butene compound represented by the general formula (1) in the halogenated butene composition.
- the labor of purification for obtaining the halogenated butene compound represented by the general formula (1) can be reduced.
- Examples 1 to 4 Activated carbon catalyst (manufactured by Osaka Gas Chemical Co., Ltd.; specific surface area: 1200 m 2 ) was used as a catalyst in a SUS pipe (outer diameter: 1/2 inch) which is a reaction tube for hydrogen fluoride addition reaction using activated carbon catalyst. /g) was added. After drying at 200°C for 2 hours in a nitrogen atmosphere, the pressure was normal pressure, and the contact time (W/F) between CF 3 C ⁇ CCF 3 (substrate) and hydrogen fluoride and the activated carbon catalyst was 2 gsec/cc. As a result, CF 3 C ⁇ CCF 3 (substrate) and hydrogen fluoride gas were passed through the reaction tube.
- the reaction proceeded in a gas phase continuous flow system.
- the reaction tube was heated at 200°C, 250°C, 300°C or 400°C to start the hydrogen fluoride addition reaction.
- CF 3 C ⁇ CCF 3 (substrate) hydrogen fluoride gas is contacted with a molar ratio of the (HF / CF 3 C ⁇ CCF 3 ratio) was set to 150, the contact time (W / F) so as to become 2 g ⁇ sec / cc
- the flow rates of the substrate and hydrogen fluoride gas were adjusted to 1 hour, and one hour after the start of the reaction, the distillate passed through the abatement tower was collected.
- mass spectrometry was performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-2014”), and NMR (manufactured by JEOL, trade name) "400YH”) was used for structural analysis by NMR spectrum.
- GC/MS gas chromatography/mass spectrometry
- the conversion from CF 3 C ⁇ CCF 3 (substrate) was 99.75 mol %
- CF 3 CF 2 CH 2 CF 3 The selectivity was 0.11 mol% and the selectivity of CF 3 CFHCFHCF 3 was 0.01 mol %.
- the conversion from CF 3 C ⁇ CCF 3 (substrate) was 97.59 mol%
- the CF 3 CF 2 CH 2 CF 3 The selectivity was 0.01 mol %
- the selectivity of CF 3 CFHCFHCF 3 was 0.00 mol %.
- Comparative Examples 1-2 Hydrogen Fluoride Addition Reaction without Catalyst
- the reaction temperature is 200° C. or 350° C.
- the contact time between CF 3 C ⁇ CCF 3 (substrate) and the catalyst of hydrogen fluoride gas. (W/F) was set to 20 gsec/cc and the molar ratio of hydrogen fluoride gas (HF/CF 3 C ⁇ CCF 3 ratio) to be brought into contact with CF 3 C ⁇ CCF 3 (substrate) was set to 200.
- the reaction was allowed to proceed in the same manner as in Examples 1 to 4.
- the W/F of 20 g ⁇ sec/cc means that the flow rate is the same as the case of W/F of 20 g ⁇ sec/cc in Examples 1 to 6 using a catalyst. It means that CF 3 C ⁇ CCF 3 (substrate) was flown.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Drying Of Semiconductors (AREA)
Abstract
A method for producing a halogenated butene compound represented by CX1X2X3CX4=CHCX7X8X9 [In the formula, X1, X2, X3, X4, X7, X8 and X9 are identical or different and represent halogen atoms.], the method being equipped with a step for reacting a hydrogen halide with a halogenated butyne compound represented by CX1X2X3C≡CCX7X8X9 [In the formula, X1, X2, X3, X7, X8 and X9 are the same as indicated above.] in the presence of a catalyst. This production method makes it possible to selectively obtain a butene compound which has seven halogen atoms at a high conversion ratio.
Description
本開示は、ハロゲン化ブテン化合物の製造方法に関する。
The present disclosure relates to a method for producing a halogenated butene compound.
ヘプタフルオロブテンに代表される7個のハロゲン原子を有するブテン化合物は、半導体用ドライエッチングガスの他、クリーニングガス、有機合成用ビルディングブロック等として期待される化合物である。
Butene compounds having 7 halogen atoms, typified by heptafluorobutene, are expected as dry etching gas for semiconductors, cleaning gas, building blocks for organic synthesis, etc.
この7個のハロゲン原子を有するブテン化合物の製造方法として、例えば、非特許文献1では、CF3C≡CCF3とAgFとを反応させてCF3CF=C(CF3)Agを得た後に、アセトニトリル中でHClと反応させてCF3CF=CHCF3を得ている。
As a method for producing this butene compound having 7 halogen atoms, for example, in Non-Patent Document 1, after CF 3 C≡CCF 3 and AgF are reacted to obtain CF 3 CF=C(CF 3 )Ag, , CF 3 CF=CHCF 3 was obtained by reacting with HCl in acetonitrile.
本開示は、転化率が高く、7個のハロゲン原子を有するブテン化合物を高選択率で得ることができる方法を提供することを目的とする。
The present disclosure has an object to provide a method capable of obtaining a butene compound having a high conversion rate and having 7 halogen atoms with a high selectivity.
本開示は、以下の構成を包含する。
項1.一般式(1):
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物の製造方法であって、
触媒の存在下に、
一般式(2):
CX1X2X3C≡CCX7X8X9 (2)
[式中、X1、X2、X3、X7、X8及びX9は前記に同じである。]
で表されるハロゲン化ブチン化合物と、ハロゲン化水素とを反応させる工程
を備える、製造方法。
項2.前記一般式(1)で表されるハロゲン化ブテン化合物がCF3CF=CHCF3であり、且つ、前記一般式(2)で表されるハロゲン化ブチン化合物がCF3C≡CCF3である、項1に記載の製造方法。
項3.前記触媒が、フッ素化若しくは非フッ素化活性炭触媒、並びにフッ素化若しくは非フッ素化ルイス酸触媒よりなる群から選ばれる少なくとも1種を含む、項1又は2に記載の製造方法。
項4.前記触媒がフッ素化若しくは非フッ素化ルイス酸触媒であり、前記ルイス酸触媒が、酸化クロム触媒、アルミナ触媒、シリカアルミナ触媒、及びゼオライト触媒よりなる群から選ばれる少なくとも1種である、項1~3のいずれか1項に記載の製造方法。
項5.前記一般式(2)で表されるハロゲン化ブチン化合物1モルに対して、30~250モルのハロゲン化水素を反応させる、項1~4のいずれか1項に記載の製造方法。
項6.一般式(1):
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物と、
一般式(3):
CX1X2X3CX4X5CHX6CX7X8X9 (3)
[式中、X1、X2、X3、X4、X7、X8及びX9は前記に同じである。X5及びX6は片方が水素原子を示し、他方がハロゲン原子を示す。]
で表されるハロゲン化ブタン化合物とを含有する組成物であって、
組成物全量を100モル%として、前記一般式(1)で表されるハロゲン化ブテン化合物の含有量が91.00~99.99モル%である、組成物。
項7.クリーニングガス、エッチングガス又は有機合成用ビルディングブロックとして用いられる、項6に記載の組成物。 The present disclosure includes the following configurations.
Item 1. General formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
A method for producing a halogenated butene compound represented by
In the presence of a catalyst,
General formula (2):
CX 1 X 2 X 3 C ≡ CCX 7 X 8 X 9 (2)
[Wherein X 1 , X 2 , X 3 , X 7 , X 8 and X 9 are the same as defined above. ]
A method for producing, comprising a step of reacting a halogenated butyne compound represented by with a hydrogen halide.
Item 2. The halogenated butene compound represented by the general formula (1) is CF 3 CF=CHCF 3 , and the halogenated butyne compound represented by the general formula (2) is CF 3 C≡CCF 3 . Item 2. The manufacturing method according to Item 1.
Item 3. Item 3. The production method according to Item 1 or 2, wherein the catalyst contains at least one selected from the group consisting of a fluorinated or non-fluorinated activated carbon catalyst and a fluorinated or non-fluorinated Lewis acid catalyst.
Item 4. Item 1 to, wherein the catalyst is a fluorinated or non-fluorinated Lewis acid catalyst, and the Lewis acid catalyst is at least one selected from the group consisting of a chromium oxide catalyst, an alumina catalyst, a silica-alumina catalyst, and a zeolite catalyst. The manufacturing method according to any one of 3 above.
Item 5. Item 5. The method according to any one of Items 1 to 4, wherein 30 to 250 mol of hydrogen halide is reacted with 1 mol of the halogenated butyne compound represented by the general formula (2).
Item 6. General formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
A halogenated butene compound represented by
General formula (3):
CX 1 X 2 X 3 CX 4 X 5 CHX 6 CX 7 X 8 X 9 (3)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same as defined above. One of X 5 and X 6 represents a hydrogen atom, and the other represents a halogen atom. ]
A composition containing a halogenated butane compound represented by
A composition in which the content of the halogenated butene compound represented by the general formula (1) is 91.00 to 99.99 mol% based on 100 mol% of the total amount of the composition.
Item 7. Item 7. The composition according to Item 6, which is used as a cleaning gas, an etching gas, or a building block for organic synthesis.
項1.一般式(1):
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物の製造方法であって、
触媒の存在下に、
一般式(2):
CX1X2X3C≡CCX7X8X9 (2)
[式中、X1、X2、X3、X7、X8及びX9は前記に同じである。]
で表されるハロゲン化ブチン化合物と、ハロゲン化水素とを反応させる工程
を備える、製造方法。
項2.前記一般式(1)で表されるハロゲン化ブテン化合物がCF3CF=CHCF3であり、且つ、前記一般式(2)で表されるハロゲン化ブチン化合物がCF3C≡CCF3である、項1に記載の製造方法。
項3.前記触媒が、フッ素化若しくは非フッ素化活性炭触媒、並びにフッ素化若しくは非フッ素化ルイス酸触媒よりなる群から選ばれる少なくとも1種を含む、項1又は2に記載の製造方法。
項4.前記触媒がフッ素化若しくは非フッ素化ルイス酸触媒であり、前記ルイス酸触媒が、酸化クロム触媒、アルミナ触媒、シリカアルミナ触媒、及びゼオライト触媒よりなる群から選ばれる少なくとも1種である、項1~3のいずれか1項に記載の製造方法。
項5.前記一般式(2)で表されるハロゲン化ブチン化合物1モルに対して、30~250モルのハロゲン化水素を反応させる、項1~4のいずれか1項に記載の製造方法。
項6.一般式(1):
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物と、
一般式(3):
CX1X2X3CX4X5CHX6CX7X8X9 (3)
[式中、X1、X2、X3、X4、X7、X8及びX9は前記に同じである。X5及びX6は片方が水素原子を示し、他方がハロゲン原子を示す。]
で表されるハロゲン化ブタン化合物とを含有する組成物であって、
組成物全量を100モル%として、前記一般式(1)で表されるハロゲン化ブテン化合物の含有量が91.00~99.99モル%である、組成物。
項7.クリーニングガス、エッチングガス又は有機合成用ビルディングブロックとして用いられる、項6に記載の組成物。 The present disclosure includes the following configurations.
Item 1. General formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
A method for producing a halogenated butene compound represented by
In the presence of a catalyst,
General formula (2):
CX 1 X 2 X 3 C ≡ CCX 7 X 8 X 9 (2)
[Wherein X 1 , X 2 , X 3 , X 7 , X 8 and X 9 are the same as defined above. ]
A method for producing, comprising a step of reacting a halogenated butyne compound represented by with a hydrogen halide.
Item 2. The halogenated butene compound represented by the general formula (1) is CF 3 CF=CHCF 3 , and the halogenated butyne compound represented by the general formula (2) is CF 3 C≡CCF 3 . Item 2. The manufacturing method according to Item 1.
Item 3. Item 3. The production method according to Item 1 or 2, wherein the catalyst contains at least one selected from the group consisting of a fluorinated or non-fluorinated activated carbon catalyst and a fluorinated or non-fluorinated Lewis acid catalyst.
Item 4. Item 1 to, wherein the catalyst is a fluorinated or non-fluorinated Lewis acid catalyst, and the Lewis acid catalyst is at least one selected from the group consisting of a chromium oxide catalyst, an alumina catalyst, a silica-alumina catalyst, and a zeolite catalyst. The manufacturing method according to any one of 3 above.
Item 5. Item 5. The method according to any one of Items 1 to 4, wherein 30 to 250 mol of hydrogen halide is reacted with 1 mol of the halogenated butyne compound represented by the general formula (2).
Item 6. General formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
A halogenated butene compound represented by
General formula (3):
CX 1 X 2 X 3 CX 4 X 5 CHX 6 CX 7 X 8 X 9 (3)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same as defined above. One of X 5 and X 6 represents a hydrogen atom, and the other represents a halogen atom. ]
A composition containing a halogenated butane compound represented by
A composition in which the content of the halogenated butene compound represented by the general formula (1) is 91.00 to 99.99 mol% based on 100 mol% of the total amount of the composition.
Item 7. Item 7. The composition according to Item 6, which is used as a cleaning gas, an etching gas, or a building block for organic synthesis.
本開示によれば、転化率が高く、高選択率で得られる方法で、7個のハロゲン原子を有するブテン化合物を合成することができる。
According to the present disclosure, a butene compound having 7 halogen atoms can be synthesized by a method having a high conversion rate and a high selectivity.
本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。
In the present specification, “inclusion” is a concept that includes all of “comprise”, “consistently essentially of”, and “consistent of”. Further, in the present specification, when the numerical range is shown by “A to B”, it means A or more and B or less.
本開示において、「選択率」とは、反応器出口からの流出ガスにおける原料化合物以外の化合物の合計モル量に対する、当該流出ガスに含まれる目的化合物の合計モル量の割合(モル%)を意味する。
In the present disclosure, “selectivity” means the ratio (mol %) of the total molar amount of the target compound contained in the effluent gas to the total molar amount of compounds other than the raw material compounds in the effluent gas from the reactor outlet. To do.
本開示において、「転化率」とは、反応器に供給される原料化合物のモル量に対する、反応器出口からの流出ガスに含まれる原料化合物以外の化合物の合計モル量の割合(モル%)を意味する。
In the present disclosure, the "conversion rate" means the ratio (mol%) of the total molar amount of the compounds other than the raw material compounds contained in the outflow gas from the reactor outlet to the molar amount of the raw material compounds supplied to the reactor. means.
従来は、非特許文献1の方法によれば、CF3C≡CCF3とAgFとを反応させてCF3CF=C(CF3)Agを得た後に、アセトニトリル中でHClと反応させてCF3CF=CHCF3を得ているが、2段階の反応が必要になるうえに、合計収率は57%に過ぎなかった。
Conventionally, according to the method of Non-Patent Document 1, CF 3 C≡CCF 3 is reacted with AgF to obtain CF 3 CF=C(CF 3 )Ag, and then CF 3 C═C(CF 3 )Ag is reacted with HCl in acetonitrile to obtain CF 3. Although 3 CF=CHCF 3 was obtained, the two-step reaction was required and the total yield was only 57%.
以上から、従来の方法によれば、収率は57%に過ぎず、また、工程数も多い反応であった。本開示の製造方法によれば、従来と比較しても、転化率が高く、高選択率で得られる方法で、7個のハロゲン原子を有するブテン化合物を合成することができる。
From the above, according to the conventional method, the yield was only 57% and the number of steps was large. According to the production method of the present disclosure, a butene compound having 7 halogen atoms can be synthesized by a method having a higher conversion rate and a higher selectivity than ever before.
1.ハロゲン化ブテン化合物の製造方法
本開示のハロゲン化ブテン化合物の製造方法は、
一般式(1):
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物の製造方法であって、
触媒の存在下に、
一般式(2):
CX1X2X3C≡CCX7X8X9 (2)
[式中、X1、X2、X3、X7、X8及びX9は前記に同じである。]
で表されるハロゲン化ブチン化合物と、ハロゲン化水素とを反応させる工程
を備える。 1. Method for producing halogenated butene compound The method for producing a halogenated butene compound of the present disclosure,
General formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
A method for producing a halogenated butene compound represented by
In the presence of a catalyst,
General formula (2):
CX 1 X 2 X 3 C ≡ CCX 7 X 8 X 9 (2)
[Wherein X 1 , X 2 , X 3 , X 7 , X 8 and X 9 are the same as defined above. ]
And a step of reacting a halogenated butyne compound represented by
本開示のハロゲン化ブテン化合物の製造方法は、
一般式(1):
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物の製造方法であって、
触媒の存在下に、
一般式(2):
CX1X2X3C≡CCX7X8X9 (2)
[式中、X1、X2、X3、X7、X8及びX9は前記に同じである。]
で表されるハロゲン化ブチン化合物と、ハロゲン化水素とを反応させる工程
を備える。 1. Method for producing halogenated butene compound The method for producing a halogenated butene compound of the present disclosure,
General formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
A method for producing a halogenated butene compound represented by
In the presence of a catalyst,
General formula (2):
CX 1 X 2 X 3 C ≡ CCX 7 X 8 X 9 (2)
[Wherein X 1 , X 2 , X 3 , X 7 , X 8 and X 9 are the same as defined above. ]
And a step of reacting a halogenated butyne compound represented by
本開示の製造方法において、一般式(2)で表されるハロゲン化ブチン化合物と、ハロゲン化水素との反応は、無触媒で行うと、一般式(2)で表されるハロゲン化ブチン化合物1モルに対して2モルのハロゲン化水素が付加した一般式(3):
CX1X2X3CX4X5CHX6CX7X8X9 (3)
[式中、X1、X2、X3、X4、X7、X8及びX9は前記に同じである。X5及びX6は片方が水素原子を示し、他方がハロゲン原子を示す。]
で表されるハロゲン化ブタン化合物が副生成物として相当程度(例えば9.00モル%より多量)生成される。 In the production method of the present disclosure, when the reaction between the halogenated butyne compound represented by the general formula (2) and hydrogen halide is carried out without a catalyst, the halogenated butyne compound represented by the general formula (2) 1 General formula (3) in which 2 mol of hydrogen halide is added to mol:
CX 1 X 2 X 3 CX 4 X 5 CHX 6 CX 7 X 8 X 9 (3)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same as defined above. One of X 5 and X 6 represents a hydrogen atom, and the other represents a halogen atom. ]
A considerable amount of the halogenated butane compound represented by is produced as a by-product (eg, more than 9.00 mol %).
CX1X2X3CX4X5CHX6CX7X8X9 (3)
[式中、X1、X2、X3、X4、X7、X8及びX9は前記に同じである。X5及びX6は片方が水素原子を示し、他方がハロゲン原子を示す。]
で表されるハロゲン化ブタン化合物が副生成物として相当程度(例えば9.00モル%より多量)生成される。 In the production method of the present disclosure, when the reaction between the halogenated butyne compound represented by the general formula (2) and hydrogen halide is carried out without a catalyst, the halogenated butyne compound represented by the general formula (2) 1 General formula (3) in which 2 mol of hydrogen halide is added to mol:
CX 1 X 2 X 3 CX 4 X 5 CHX 6 CX 7 X 8 X 9 (3)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same as defined above. One of X 5 and X 6 represents a hydrogen atom, and the other represents a halogen atom. ]
A considerable amount of the halogenated butane compound represented by is produced as a by-product (eg, more than 9.00 mol %).
一方、上記した一般式(2)で表されるハロゲン化ブチン化合物と、ハロゲン化水素との反応を触媒の存在下で行うことで、一般式(2)で表されるハロゲン化ブチン化合物1モルに対して2モルのハロゲン化水素が付加することは抑制され、一般式(2)で表されるハロゲン化ブチン化合物1モルに対して1モルのハロゲン化水素が付加した一般式(1)で表されるハロゲン化ブテン化合物を選択的に得ることができる。これは、トリハロゲン化メチル基(CX1X2X3及びCX7X8X9)は強力な電子吸引基の効果によるものである。その強力な電子吸引効果により、トリハロゲン化メチル基は隣接する二重結合や三重結合の電子の電子密度を下げるため、その不飽和結合への付加反応が起こりにくくなる。ハロゲン化ブチン化合物は、三重結合をもつためその反応性の高さから容易にハロゲン化水素の付加反応がおこるが、ハロゲン化ブテン化合物はトリハロゲン化メチル基の効果により、ハロゲン化水素と反応せずハロゲン化ブタン化合物にはならず、ハロゲン化ブテン化合物を選択的に得ることができる。
On the other hand, by reacting the halogenated butyne compound represented by the general formula (2) with hydrogen halide in the presence of a catalyst, 1 mol of the halogenated butyne compound represented by the general formula (2) can be obtained. The addition of 2 moles of hydrogen halide is suppressed, and 1 mole of hydrogen halide is added to 1 mole of the halogenated butyne compound represented by the general formula (2). The halogenated butene compound represented can be obtained selectively. This is because the trihalogenated methyl groups (CX 1 X 2 X 3 and CX 7 X 8 X 9 ) are the effects of strong electron withdrawing groups. Due to the strong electron-withdrawing effect, the trihalogenated methyl group reduces the electron density of the electrons of the adjacent double bond or triple bond, so that the addition reaction to the unsaturated bond is less likely to occur. Since a halogenated butyne compound has a triple bond, it easily undergoes an addition reaction of hydrogen halide due to its high reactivity.However, a halogenated butene compound reacts with hydrogen halide due to the effect of a trihalogenated methyl group. Without being a halogenated butane compound, a halogenated butene compound can be selectively obtained.
本開示の製造方法において使用できる基質としてのハロゲン化ブチン化合物は、上記のとおり、一般式(2):
CX1X2X3C≡CCX7X8X9 (2)
[式中、X1、X2、X3、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブチン化合物である。 The halogenated butyne compound as a substrate that can be used in the production method of the present disclosure has the general formula (2):
CX 1 X 2 X 3 C ≡ CCX 7 X 8 X 9 (2)
[In the formula, X 1 , X 2 , X 3 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
It is a halogenated butyne compound represented by.
CX1X2X3C≡CCX7X8X9 (2)
[式中、X1、X2、X3、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブチン化合物である。 The halogenated butyne compound as a substrate that can be used in the production method of the present disclosure has the general formula (2):
CX 1 X 2 X 3 C ≡ CCX 7 X 8 X 9 (2)
[In the formula, X 1 , X 2 , X 3 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
It is a halogenated butyne compound represented by.
一般式(2)において、X1、X2、X3、X7、X8及びX9で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
In the general formula (2), examples of the halogen atom represented by X 1 , X 2 , X 3 , X 7 , X 8 and X 9 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
基質であるハロゲン化ブチン化合物としては、ハロゲン化ブテン化合物を特に、高い転化率、収率及び選択率で製造することができる観点において、X1、X2、X3、X7、X8及びX9はいずれも、フッ素原子が好ましい。
As the halogenated butyne compound that is the substrate, a halogenated butene compound is particularly preferable in terms of high conversion, yield and selectivity, and X 1 , X 2 , X 3 , X 7 , X 8 and X 9 is preferably a fluorine atom.
上記したX1、X2、X3、X7、X8及びX9は、それぞれ同一でもよいし、異なっていてもよい。
The above X 1 , X 2 , X 3 , X 7 , X 8 and X 9 may be the same or different.
上記のような条件を満たす基質としてのハロゲン化ブチン化合物としては、具体的には、CF3C≡CCF3、CCl3C≡CCCl3、CBr3C≡CCBr3等が挙げられる。これらのハロゲン化ブチン化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。このようなハロゲン化ブチン化合物は、公知又は市販品を採用することができる。また、特開2012-001448号公報等の常法にしたがって合成することも可能である。
Specific examples of the halogenated butyne compound as a substrate satisfying the above conditions include CF 3 C≡CCF 3 , CCl 3 C≡CCCl 3 , and CBr 3 C≡CCBr 3 . These halogenated butyne compounds can be used alone or in combination of two or more. As such a halogenated butyne compound, a known or commercially available product can be adopted. It is also possible to synthesize them according to a conventional method such as JP-A 2012-001448.
ハロゲン化ブチン化合物と反応させるハロゲン化水素としては、フッ化水素、塩化水素、臭化水素等が挙げられる。なお、反応の転化率、収率及び選択率の観点からは、フッ化水素が好ましい。これらのハロゲン化水素は、単独で使用することもでき、2種以上を組合せて用いることもできる。
Examples of hydrogen halides that react with halogenated butyne compounds include hydrogen fluoride, hydrogen chloride, and hydrogen bromide. Hydrogen fluoride is preferable from the viewpoints of the conversion rate, yield and selectivity of the reaction. These hydrogen halides can be used alone or in combination of two or more.
ハロゲン化水素は、通常、ハロゲン化ブチン化合物(基質)とともに、気相状態で反応器に供給することが好ましい。ハロゲン化ブチン化合物(基質)と反応させるハロゲン化水素の供給量は、ハロゲン化ブチン化合物(基質)1モルに対して、30~250モルが好ましく、35~240モルがより好ましく、40~230モルがさらに好ましい。この範囲とすることにより、ハロゲン化水素による付加反応をより良好に進行させつつも、ハロゲン化水素による過度な付加反応をより抑制することで、不純物の生成をより低減することができ、生成物のハロゲン化ブテン化合物の選択率が高く、高収率で回収することができる。
It is usually preferable to supply the hydrogen halide together with the halogenated butyne compound (substrate) to the reactor in the gas phase. The amount of hydrogen halide to be reacted with the halogenated butyne compound (substrate) is preferably 30 to 250 mol, more preferably 35 to 240 mol, and more preferably 40 to 230 mol, relative to 1 mol of the halogenated butyne compound (substrate). Is more preferable. By setting this range, it is possible to further reduce the generation of impurities by further suppressing the excessive addition reaction due to hydrogen halide while advancing the addition reaction due to hydrogen halide better. The halogenated butene compound (1) has a high selectivity and can be recovered in a high yield.
本開示におけるハロゲン化ブチン化合物とハロゲン化水素とを反応させる工程は、ハロゲン化水素による付加反応であり、触媒の存在下に行う。本開示の製造方法におけるハロゲン化ブチン化合物とハロゲン化水素とを反応させる工程(付加反応)では、気相、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
The step of reacting a halogenated butyne compound and hydrogen halide in the present disclosure is an addition reaction with hydrogen halide and is performed in the presence of a catalyst. The step (addition reaction) of reacting the halogenated butyne compound with hydrogen halide in the production method of the present disclosure is preferably performed in a gas phase, particularly in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation and the like can be simplified, and it is economically advantageous.
本開示におけるハロゲン化ブチン化合物とハロゲン化水素とを反応させる工程では、例えば、基質として、一般式(2)で表されるハロゲン化ブチン化合物では、X1、X2、X3、X7、X8及びX9は、フッ素原子であることがより好ましい。
In the step of reacting a halogenated butyne compound and hydrogen halide in the present disclosure, for example, as a substrate, in the halogenated butyne compound represented by the general formula (2), X 1 , X 2 , X 3 , X 7 , More preferably, X 8 and X 9 are fluorine atoms.
つまり、以下の反応式:
CF3C≡CCF3 + HF → CF3CF=CHCF3
に従い、フッ化水素による付加反応であることが好ましい。 That is, the following reaction formula:
CF 3 C ≡ CCF 3 + HF → CF 3 CF=CHCF 3
Accordingly, the addition reaction with hydrogen fluoride is preferable.
CF3C≡CCF3 + HF → CF3CF=CHCF3
に従い、フッ化水素による付加反応であることが好ましい。 That is, the following reaction formula:
CF 3 C ≡ CCF 3 + HF → CF 3 CF=CHCF 3
Accordingly, the addition reaction with hydrogen fluoride is preferable.
本開示の製造方法において使用される触媒としては、フッ素化若しくは非フッ素化活性炭触媒、フッ素化若しくは非フッ素化ルイス酸触媒等が好ましい。
As the catalyst used in the production method of the present disclosure, a fluorinated or non-fluorinated activated carbon catalyst, a fluorinated or non-fluorinated Lewis acid catalyst and the like are preferable.
活性炭触媒としては、特に制限はなく、破砕炭、成形炭、顆粒炭、球状炭等の粉末活性炭が挙げられる。粉末活性炭は、JIS試験(JIS Z8801)で、4メッシュ(4.75mm)~100メッシュ(0.150mm)の粒度を示す粉末活性炭を用いることが好ましい。これらの活性炭は、公知又は市販品を採用することができる。
The activated carbon catalyst is not particularly limited, and examples thereof include powdered activated carbon such as crushed coal, shaped coal, granular coal, and spherical coal. As the powdered activated carbon, it is preferable to use powdered activated carbon having a particle size of 4 mesh (4.75 mm) to 100 mesh (0.150 mm) in the JIS test (JIS Z8801). Known or commercially available products can be adopted as these activated carbons.
活性炭は、フッ素化することにより、より強い活性を示すようになるため、反応に用いる前に、予め活性炭をフッ素化したフッ素化活性炭を用いることもできる。つまり、活性炭触媒としては、フッ素化されていない活性炭及びフッ素化活性炭のいずれも使用することができる。
Since activated carbon shows stronger activity when fluorinated, it is possible to use fluorinated activated carbon obtained by previously fluorinating activated carbon before use in the reaction. That is, as the activated carbon catalyst, both non-fluorinated activated carbon and fluorinated activated carbon can be used.
活性炭をフッ素化するためのフッ素化剤としては、例えば、HF等の無機フッ素化剤の他、ヘキサフルオロプロペン等のハイドロフルオロカーボン(HFC)、クロロフルオロメタン等のクロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)等の有機フッ素化剤も用いることができる。
Examples of the fluorinating agent for fluorinating activated carbon include inorganic fluorinating agents such as HF, hydrofluorocarbons (HFC) such as hexafluoropropene, chlorofluorocarbons (CFC) such as chlorofluoromethane, and hydrochlorofluorocarbons. Organic fluorinating agents such as (HCFC) can also be used.
活性炭をフッ素化する方法としては、例えば、室温(25℃)~400℃程度の温度条件下に大気圧下で上記したフッ素化剤を流通させてフッ素化する方法を挙げることができる。
As a method of fluorinating activated carbon, for example, a method of circulating the above-mentioned fluorinating agent under atmospheric pressure under a temperature condition of room temperature (25° C.) to 400° C. can be mentioned.
ルイス酸触媒としては、特に制限はなく、酸化クロム触媒、アルミナ触媒、シリカアルミナ触媒、ゼオライト触媒等が挙げられる。これらのルイス酸触媒は、フッ素化されていないルイス酸触媒及びフッ素化されたルイス酸触媒のいずれも採用することができる。
The Lewis acid catalyst is not particularly limited, and examples thereof include a chromium oxide catalyst, an alumina catalyst, a silica-alumina catalyst, and a zeolite catalyst. As these Lewis acid catalysts, both non-fluorinated Lewis acid catalysts and fluorinated Lewis acid catalysts can be adopted.
酸化クロム触媒については、特に制限されないが、酸化クロムをCrOmで表記した場合に、1.5<m<3が好ましく、2<m<2.75がより好ましく、2<m<2.3がさらに好ましい。また、酸化クロムをCrOm・nH2Oで表記した場合に、nの値が3以下、特に1~1.5となるように水和していてもよい。
The chromium oxide catalyst is not particularly limited, but when chromium oxide is expressed by CrOm, 1.5<m<3 is preferable, 2<m<2.75 is more preferable, and 2<m<2.3 is further preferable. When chromium oxide is represented by CrO m ·nH 2 O, it may be hydrated so that the value of n is 3 or less, particularly 1 to 1.5.
フッ素化された酸化クロム触媒は、上記した酸化クロム触媒のフッ素化により調製することができる。このフッ素化は、例えば、HF、フルオロカーボン等を用いて行うことができる。このようなフッ素化された酸化クロム触媒は、例えば、特開平05-146680号公報に記載されている方法にしたがって合成することができる。
The fluorinated chromium oxide catalyst can be prepared by fluorinating the above chromium oxide catalyst. This fluorination can be performed using, for example, HF, fluorocarbon or the like. Such a fluorinated chromium oxide catalyst can be synthesized, for example, according to the method described in JP-A No. 05-146680.
以下、酸化クロム触媒及びフッ素化された酸化クロム触媒の合成方法の一例を示す。
The following is an example of a method for synthesizing a chromium oxide catalyst and a fluorinated chromium oxide catalyst.
まず、クロム塩の水溶液(硝酸クロム、塩化クロム、クロムみょうばん、硫酸クロム等)とアンモニア水とを混合することよって水酸化クロムの沈殿を得ることができる。この時の沈澱反応の反応速度により水酸化クロムの物性を制御することができる。反応速度は、速いことが好ましい。反応速度は反応溶液温度、アンモニア水混合方法(混合速度)、撹拌状態等により左右される。
First, a precipitate of chromium hydroxide can be obtained by mixing an aqueous solution of chromium salt (chromium nitrate, chromium chloride, chromium alum, chromium sulfate, etc.) with aqueous ammonia. The physical properties of chromium hydroxide can be controlled by the reaction rate of the precipitation reaction at this time. The reaction rate is preferably high. The reaction rate depends on the temperature of the reaction solution, the method of mixing ammonia water (mixing rate), the stirring state, and the like.
この沈澱を濾過洗浄後、乾燥することができる。乾燥は、例えば、空気中、70~200℃で、1~100時間行うことができる。この段階の触媒を水酸化クロムの状態と呼ぶことがある。次いで、この触媒を解砕することができる。ペレットの強度、触媒の活性等の観点から、解砕された粉末(例えば、粒径は1000μm以下、特に46~1000μmの粒径品が95%)の粉体密度が0.6~1.1g/ml、好ましくは0.6~1.0g/mlになるように沈澱反応速度を調整することが好ましい。粉体の比表面積(BET法による比表面積)は例えば200℃、80分の脱気条件で、100m2/g以上が好ましく、120m2/g以上がより好ましい。なお、比表面積の上限は、例えば、220m2/g程度である。
The precipitate can be filtered, washed and dried. Drying can be performed, for example, in air at 70 to 200° C. for 1 to 100 hours. The catalyst at this stage is sometimes called a state of chromium hydroxide. The catalyst can then be disintegrated. From the viewpoint of pellet strength, catalyst activity, etc., the powder density of crushed powder (for example, particle size 1000 μm or less, especially 95% for particle size 46-1000 μm) is 0.6-1.1 g/ml, It is preferable to adjust the precipitation reaction rate so that it is preferably 0.6 to 1.0 g/ml. The specific surface area of the powder (specific surface area by BET method) is preferably 100 m 2 /g or more, and more preferably 120 m 2 /g or more under degassing conditions of 200° C. and 80 minutes. The upper limit of the specific surface area is, for example, about 220 m 2 /g.
この水酸化クロムの粉体に、要すればグラファイトを3重量%以下混合し、打錠機によりペレットを形成することができる。ペレットのサイズ及び強度は適宜調整することができる。
-If necessary, graphite can be mixed in an amount of 3% by weight or less with this chromium hydroxide powder, and pellets can be formed with a tableting machine. The size and strength of the pellet can be adjusted appropriately.
成形された触媒を不活性雰囲気中、例えば窒素気流中焼成し、非晶質の酸化クロムとすることができる。この焼成温度は360℃以上が好ましく、結晶化抑制の観点からは、380~460℃が好ましい。また、焼成時間は、例えば1~5時間とすることができる。
Amorphous chromium oxide can be obtained by firing the molded catalyst in an inert atmosphere, for example, in a nitrogen stream. The firing temperature is preferably 360° C. or higher, and from the viewpoint of suppressing crystallization, it is preferably 380 to 460° C. The firing time may be, for example, 1 to 5 hours.
焼成された触媒の比表面積は、触媒の活性の観点から、例えば170m2/g以上が好ましく、180m2/g以上がより好ましく、200m2/g以上がさらに好ましい。なお、比表面積の上限は、通常、240m2/g程度が好ましく、220m2/g程度がより好ましい。
The specific surface area of the calcined catalyst is, for example, preferably 170 m 2 /g or more, more preferably 180 m 2 /g or more, still more preferably 200 m 2 /g or more, from the viewpoint of the activity of the catalyst. The upper limit of the specific surface area is generally preferably about 240 m 2 / g, about 220 m 2 / g is more preferable.
次いで、酸化クロムをフッ素化することによってフッ素化された酸化クロムを得ることができる。フッ素化の温度は、生成する水が凝縮しない温度範囲とすればよく、反応熱により触媒が結晶化しない温度を上限とすればよい。フッ素化の温度は、例えば100~460℃とすることができる。フッ素化時の圧力に制限はないが、触媒反応に供される時の圧力で行うことが好ましい。
Next, fluorinated chromium oxide can be obtained by fluorinating the chromium oxide. The fluorination temperature may be set in a temperature range in which generated water does not condense, and the upper limit may be a temperature at which the catalyst is not crystallized by the heat of reaction. The fluorination temperature may be, for example, 100 to 460°C. There is no limitation on the pressure during fluorination, but it is preferable to carry out the pressure at the time of being subjected to the catalytic reaction.
アルミナ触媒としては、例えば、α-アルミナ、活性アルミナ等が挙げられる。活性アルミナとしては、ρ-アルミナ、χ-アルミナ、κ-アルミナ、η-アルミナ、擬γ-アルミナ、γ-アルミナ、σ-アルミナ、θ-アルミナ等が挙げられる。
Examples of the alumina catalyst include α-alumina and activated alumina. Examples of activated alumina include ρ-alumina, χ-alumina, κ-alumina, η-alumina, pseudo γ-alumina, γ-alumina, σ-alumina, and θ-alumina.
また、複合酸化物としてシリカアルミナ触媒も用いることができる。シリカアルミナ触媒は、シリカ(SiO2)及びアルミナ(Al2O3)を含む複合酸化物触媒であり、シリカ及びアルミナの総量を100質量%として、例えば、シリカの含有量が20~90質量%、特に50~80質量%の触媒を使用することができる。
A silica-alumina catalyst can also be used as the composite oxide. The silica-alumina catalyst is a composite oxide catalyst containing silica (SiO 2 ) and alumina (Al 2 O 3 ), and the total amount of silica and alumina is 100% by mass, for example, the content of silica is 20 to 90% by mass. In particular, 50 to 80% by weight of catalyst can be used.
アルミナ触媒及びシリカアルミナ触媒は、フッ素化することにより、より強い活性を示すようになるため、反応に用いる前に、予めアルミナ触媒をフッ素化してフッ素化アルミナ触媒として用いることもでき、シリカアルミナ触媒をフッ素化してフッ素化シリカアルミナ触媒として用いることもできる。
Alumina catalysts and silica-alumina catalysts exhibit stronger activity when fluorinated, so it is possible to fluorinate the alumina catalyst in advance before use in the reaction and use it as a fluorinated alumina catalyst. Can also be fluorinated and used as a fluorinated silica-alumina catalyst.
アルミナ触媒及びシリカアルミナ触媒をフッ素化するためのフッ素化剤としては、例えば、F2、HF等の無機フッ素化剤、ヘキサフルオロプロペン等のフルオロカーボン系の有機フッ素化剤等を用いることができる。
As the fluorinating agent for fluorinating the alumina catalyst and the silica-alumina catalyst, for example, an inorganic fluorinating agent such as F 2 or HF, a fluorocarbon-based organic fluorinating agent such as hexafluoropropene, or the like can be used.
アルミナ触媒及びシリカアルミナ触媒をフッ素化する方法としては、例えば、室温(25℃)~400℃程度の温度条件下に大気圧下で上記したフッ素化剤を流通させてフッ素化する方法を挙げることができる。
As a method for fluorinating the alumina catalyst and the silica-alumina catalyst, for example, a method of circulating the above-mentioned fluorinating agent under atmospheric pressure under a temperature condition of room temperature (25°C) to 400°C to fluorinate is mentioned. You can
ゼオライト触媒としては、公知の種類のゼオライトを広く採用することができる。例えば、アルカリ金属又はアルカリ土類金属の結晶性含水アルミノ珪酸塩が好ましい。ゼオライトの結晶形は、特に限定されず、A型、X型、LSX型等が挙げられる。ゼオライト中のアルカリ金属又はアルカリ土類金属は、特に限定されず、カリウム、ナトリウム、カルシウム、リチウム等が挙げられる。
As the zeolite catalyst, well-known types of zeolite can be widely adopted. For example, a crystalline hydrous aluminosilicate of an alkali metal or an alkaline earth metal is preferable. The crystal form of zeolite is not particularly limited, and examples thereof include A type, X type, LSX type and the like. The alkali metal or alkaline earth metal in the zeolite is not particularly limited, and examples thereof include potassium, sodium, calcium and lithium.
ゼオライト触媒は、フッ素化することにより、より強い活性を示すようになるため、反応に用いる前に、予めゼオライト触媒をフッ素化してフッ素化ゼオライト触媒として用いることができる。
∙ Since the zeolite catalyst becomes stronger by fluorinating, it can be used as a fluorinated zeolite catalyst by fluorinating the zeolite catalyst before use in the reaction.
ゼオライト触媒をフッ素化するためのフッ素化剤としては、例えば、F2、HF等の無機フッ素化剤、ヘキサフルオロプロペン等のフルオロカーボン系の有機フッ素化剤等を用いることができる。
As the fluorinating agent for fluorinating the zeolite catalyst, for example, an inorganic fluorinating agent such as F 2 or HF, a fluorocarbon-based organic fluorinating agent such as hexafluoropropene, or the like can be used.
ゼオライト触媒をフッ素化する方法としては、例えば、室温(25℃)~400℃程度の温度条件下に大気圧下で上記したフッ素化剤を流通させてフッ素化する方法を挙げることができる。
As a method of fluorinating the zeolite catalyst, for example, a method of circulating the above fluorinating agent under atmospheric pressure under a temperature condition of room temperature (25° C.) to 400° C. and fluorinating it can be mentioned.
上記した触媒は、単独で用いることもでき、2種以上を組合せて用いることもできる。これらのなかでも、転化率、選択率及び収率の観点から、フッ素化若しくは非フッ素化活性炭触媒、フッ素化若しくは非フッ素化酸化クロム触媒、フッ素化若しくは非フッ素化アルミナ触媒等が好ましく、フッ素化若しくは非フッ素化活性炭触媒、フッ素化若しくは非フッ素化酸化クロム触媒等がより好ましい。
The above catalysts can be used alone or in combination of two or more. Among these, from the viewpoint of conversion rate, selectivity and yield, fluorinated or non-fluorinated activated carbon catalyst, fluorinated or non-fluorinated chromium oxide catalyst, fluorinated or non-fluorinated alumina catalyst and the like are preferable, and fluorinated Alternatively, a non-fluorinated activated carbon catalyst, a fluorinated or non-fluorinated chromium oxide catalyst and the like are more preferable.
また、触媒として上記したフッ素化若しくは非フッ素化ルイス酸触媒を使用する場合は、担体に担持させることも可能である。このような担体としては、例えば、炭素、アルミナ(Al2O3)、ジルコニア(ZrO2)、シリカ(SiO2)、チタニア(TiO2)等が挙げられる。炭素としては、活性炭、不定形炭素、グラファイト、ダイヤモンド等を用いることができる。
When the above-mentioned fluorinated or non-fluorinated Lewis acid catalyst is used as the catalyst, it can be supported on a carrier. Examples of such a carrier include carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and the like. As carbon, activated carbon, amorphous carbon, graphite, diamond or the like can be used.
本開示の製造方法において、触媒の存在下にハロゲン化ブチン化合物とハロゲン化水素とを反応させるに当たっては、例えば、触媒を固体の状態(固相)でハロゲン化ブチン化合物と接触させることが好ましい。この場合、触媒の形状は粉末状とすることもできるが、ペレット状のほうが気相連続流通式の反応に採用する場合には好ましい。
In the production method of the present disclosure, in reacting a halogenated butyne compound with hydrogen halide in the presence of a catalyst, for example, it is preferable to contact the catalyst in a solid state (solid phase) with the halogenated butyne compound. In this case, the catalyst may be in the form of powder, but pellets are preferred when they are used in a gas phase continuous flow reaction.
触媒のBET法により測定した比表面積(以下、「BET比表面積」と言うこともある。)は、通常10~3,000m2/gが好ましく、10~2500m2/gがより好ましく、20~2000m2/gがさらに好ましく、30~1500m2/gが特に好ましい。触媒のBET比表面積がこのような範囲にある場合、触媒の粒子の密度が小さ過ぎることがないため、より高い選択率でハロゲン化ブテン化合物を得ることができる。また、ハロゲン化ブチン化合物の転化率をより向上させることも可能である。
Measured specific surface area by the BET method of the catalyst (hereinafter, sometimes referred to as "BET specific surface area".) Is preferably normally 10 ~ 3,000m 2 / g, more preferably 10 ~ 2500m 2 / g, 20 ~ 2000m 2 /g is more preferable, and 30 to 1500 m 2 /g is particularly preferable. When the BET specific surface area of the catalyst is in such a range, the density of the catalyst particles does not become too small, so that the halogenated butene compound can be obtained with higher selectivity. Further, it is possible to further improve the conversion rate of the halogenated butyne compound.
本開示におけるハロゲン化ブチン化合物とハロゲン化水素とを反応させる工程では、反応温度の下限値は、より効率的にハロゲン化水素による付加反応を進行させて転化率をより向上させ、目的化合物であるハロゲン化ブテン化合物をより高い選択率で得ることができる観点から、通常180℃以上が好ましく、200℃以上がより好ましい。なお、触媒としてルイス酸触媒を使用する場合は、反応温度の下限値は、同様の理由により、280℃以上が好ましく、320℃以上がより好ましい。
In the step of reacting a halogenated butyne compound and hydrogen halide in the present disclosure, the lower limit of the reaction temperature is a target compound, which allows the addition reaction with hydrogen halide to proceed more efficiently to further improve the conversion rate. From the viewpoint that a halogenated butene compound can be obtained with higher selectivity, it is usually preferably 180° C. or higher, more preferably 200° C. or higher. When a Lewis acid catalyst is used as the catalyst, the lower limit of the reaction temperature is preferably 280°C or higher and more preferably 320°C or higher for the same reason.
本開示におけるハロゲン化ブチン化合物とハロゲン化水素とを反応させる反応温度の上限値は、より効率的にハロゲン化水素による付加反応を進行させて転化率をより向上させ、目的化合物であるハロゲン化ブテン化合物をより高い選択率で得ることができる観点、且つ反応生成物が分解又は重合することによる選択率の低下をより抑制する観点から、通常500℃以下が好ましく、450℃以下がより好ましく、400℃以下がさらに好ましい。
The upper limit of the reaction temperature for reacting the halogenated butyne compound and hydrogen halide in the present disclosure is such that the addition reaction with hydrogen halide proceeds more efficiently and the conversion rate is further improved, and the halogenated butene compound as the target compound is improved. From the viewpoint of being able to obtain the compound with higher selectivity, and from the viewpoint of further suppressing the decrease in selectivity due to decomposition or polymerization of the reaction product, usually 500° C. or lower is preferable, 450° C. or lower is more preferable, and 400 C. or lower is more preferable.
本開示におけるハロゲン化ブチン化合物とハロゲン化水素とを反応させる反応時間は、例えば気相流通式を採用する場合には、原料化合物の触媒に対する接触時間(W/F)[W:金属触媒の重量(g)、F:原料化合物の流量(cc/sec)]は、反応の転化率が特に高く、ハロゲン化ブテン化合物をより高収率及び高選択率に得ることができる観点から、1.5~30g・sec./ccが好ましく、1.8~20g・sec./ccがより好ましく、2.0~10g・sec./ccがさらに好ましい。上記のW/Fは特に気相流通式反応を採用した場合の反応時間を特定したものであるが、バッチ式反応を採用する場合も、接触時間を適宜設定することができる。なお、上記接触時間とは、基質及び触媒が接触する時間を意味する。
The reaction time for reacting the halogenated butyne compound and hydrogen halide in the present disclosure is, for example, when a gas phase flow system is adopted, the contact time (W/F) of the raw material compound with the catalyst [W: weight of the metal catalyst (G), F: flow rate of raw material compound (cc/sec)] is 1.5 to 30 g from the viewpoint that the conversion rate of the reaction is particularly high and the halogenated butene compound can be obtained in a higher yield and a higher selectivity. -Sec./cc is preferable, 1.8-20 g-sec./cc is more preferable, and 2.0-10 g-sec./cc is further preferable. The above W/F specifies the reaction time particularly when the gas phase flow reaction is adopted, but the contact time can be appropriately set also when the batch reaction is adopted. In addition, the said contact time means the time when a substrate and a catalyst contact.
本開示におけるハロゲン化ブチン化合物とハロゲン化水素とを反応させる反応圧力は、より効率的にハロゲン化水素による付加反応を進行させる点から、-0.05MPa~2MPaが好ましく、-0.01MPa~1MPaがより好ましく、常圧~0.5MPaがさらに好ましい。なお、本開示において、圧力については特に表記が無い場合はゲージ圧とする。
The reaction pressure for reacting the halogenated butyne compound and hydrogen halide in the present disclosure is preferably −0.05 MPa to 2 MPa, more preferably −0.01 MPa to 1 MPa from the viewpoint of more efficiently advancing the addition reaction with hydrogen halide. The atmospheric pressure to 0.5 MPa is more preferable. In the present disclosure, the pressure is a gauge pressure unless otherwise specified.
本開示におけるハロゲン化ブチン化合物とハロゲン化水素との反応において、ハロゲン化ブチン化合物と触媒とを投入して反応させる反応器としては、上記温度及び圧力に耐え得るものであれば、形状及び構造は特に限定されない。反応器としては、例えば、縦型反応器、横型反応器、多管型反応器等が挙げられる。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。
In the reaction of the halogenated butyne compound and hydrogen halide in the present disclosure, as a reactor in which the halogenated butyne compound and the catalyst are charged and reacted, as long as it can withstand the above temperature and pressure, the shape and structure are It is not particularly limited. Examples of the reactor include a vertical reactor, a horizontal reactor, a multitubular reactor and the like. Examples of the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.
本開示におけるハロゲン化ブチン化合物とハロゲン化水素との反応(ハロゲン化水素による付加反応)は、反応器に基質を連続的に仕込み、当該反応器から目的化合物を連続的に抜き出す流通式及びバッチ式のいずれの方式によっても実施することができる。目的化合物が反応器に留まると、さらに脱離反応が進行し得ることから、流通式で実施することが好ましい。本開示におけるハロゲン化ブチン化合物とハロゲン化水素とを反応させる工程では、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
The reaction between a halogenated butyne compound and hydrogen halide in the present disclosure (addition reaction with hydrogen halide) is a flow system or a batch system in which a substrate is continuously charged into a reactor and a target compound is continuously withdrawn from the reactor. It can be implemented by either method. If the target compound stays in the reactor, the elimination reaction may proceed further, so that it is preferable to carry out the flow-through method. The step of reacting the halogenated butyne compound and hydrogen halide in the present disclosure is preferably carried out in a gas phase, particularly preferably in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation and the like can be simplified, and it is economically advantageous.
本開示におけるハロゲン化ブチン化合物とハロゲン化水素との反応を行う際の雰囲気については、触媒の劣化を抑制する点から、不活性ガス雰囲気下、フッ化水素ガス雰囲気下等が好ましい。当該不活性ガスは、窒素、ヘリウム、アルゴン等が挙げられる。これらの不活性ガスのなかでも、コストを抑える観点から、窒素が好ましい。当該不活性ガスの濃度は、反応器に導入される気体成分の0~50モル%とすることが好ましい。
The atmosphere for the reaction between the halogenated butyne compound and hydrogen halide in the present disclosure is preferably an inert gas atmosphere, a hydrogen fluoride gas atmosphere or the like from the viewpoint of suppressing the deterioration of the catalyst. Examples of the inert gas include nitrogen, helium, and argon. Among these inert gases, nitrogen is preferable from the viewpoint of cost reduction. The concentration of the inert gas is preferably 0 to 50 mol% of the gas component introduced into the reactor.
このようにして得られる本開示の目的化合物は、一般式(1):
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物である。 The object compound of the present disclosure thus obtained has the general formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
It is a halogenated butene compound represented by.
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物である。 The object compound of the present disclosure thus obtained has the general formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
It is a halogenated butene compound represented by.
一般式(1)におけるX1、X2、X3、X7、X8及びX9は、上記した一般式(2)におけるX1、X2、X3、X7、X8及びX9と対応している。また、一般式(1)において、X4で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。このため、製造しようとする一般式(1)で表されるハロゲン化ブテン化合物は、例えば、具体的には、CF3CF=CHCF3、CCl3CCl=CHCCl3、CBr3CBr=CHCBr3等が挙げられる。
X 1, X 2, X 3 in the general formula (1), X 7, X 8 and X 9 is, X 1 in the general formula (2), X 2, X 3, X 7, X 8 and X 9 It corresponds to. Further, in the general formula (1), examples of the halogen atom represented by X 4 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Therefore, the halogenated butene compound represented by the general formula (1) to be produced is, for example, specifically CF 3 CF=CHCF 3 , CCl 3 CCl=CHCCl 3 , CBr 3 CBr=CHCBr 3, etc. Is mentioned.
ハロゲン化ブチン化合物とハロゲン化水素との反応(ハロゲン化水素による付加反応)終了後は、必要に応じ、常法にしたがって精製処理を行い、目的化合物であるハロゲン化ブテン化合物を得ることができる。なお、本開示の製造方法によれば、上記のとおり、ハロゲン化ブチン化合物1モルに対して2モルのハロゲン化水素が付加することは抑制され、ハロゲン化ブチン化合物1モルに対して1モルのハロゲン化水素が付加したハロゲン化ブテン化合物を選択的に得ることができる。
After completion of the reaction between the halogenated butyne compound and hydrogen halide (addition reaction with hydrogen halide), if necessary, purification treatment can be carried out according to a conventional method to obtain the target compound, halogenated butene compound. According to the production method of the present disclosure, as described above, addition of 2 moles of hydrogen halide to 1 mole of halogenated butyne compound is suppressed, and 1 mole of 1 mole of halogenated butyne compound is suppressed. A halogenated butene compound to which hydrogen halide is added can be selectively obtained.
このようにして得られたハロゲン化ブテン化合物は、半導体、液晶等の最先端の微細構造を形成するためのエッチングガス等の各種用途に有効利用できる。
The halogenated butene compound obtained in this way can be effectively used for various purposes such as etching gas for forming the latest fine structure such as semiconductors and liquid crystals.
2.ハロゲン化ブテン組成物
以上のようにして、ハロゲン化ブテン化合物を得ることができるが、ハロゲン化ブチン化合物1モルに対して1モルのハロゲン化水素が付加したハロゲン化ブテン化合物と、ハロゲン化ブチン化合物1モルに対して2モルのハロゲン化水素が付加したハロゲン化ブタン化合物とを含有する、ハロゲン化ブテン組成物の形で得られることもある。 2. Halogenated butene composition As described above, a halogenated butene compound can be obtained, but a halogenated butene compound in which 1 mol of hydrogen halide is added to 1 mol of a halogenated butyne compound and a halogenated butyne compound It may be obtained in the form of a halogenated butene composition containing a halogenated butane compound to which 2 mol of hydrogen halide is added per 1 mol.
以上のようにして、ハロゲン化ブテン化合物を得ることができるが、ハロゲン化ブチン化合物1モルに対して1モルのハロゲン化水素が付加したハロゲン化ブテン化合物と、ハロゲン化ブチン化合物1モルに対して2モルのハロゲン化水素が付加したハロゲン化ブタン化合物とを含有する、ハロゲン化ブテン組成物の形で得られることもある。 2. Halogenated butene composition As described above, a halogenated butene compound can be obtained, but a halogenated butene compound in which 1 mol of hydrogen halide is added to 1 mol of a halogenated butyne compound and a halogenated butyne compound It may be obtained in the form of a halogenated butene composition containing a halogenated butane compound to which 2 mol of hydrogen halide is added per 1 mol.
この本開示のハロゲン化ブテン組成物において、ハロゲン化ブテン化合物は上記した一般式(1)で表されるハロゲン化ブテン化合物、ハロゲン化ブタン化合物は上記した一般式(3)で表されるハロゲン化ブタン化合物である。
In the halogenated butene composition of the present disclosure, the halogenated butene compound is the halogenated butene compound represented by the general formula (1), and the halogenated butane compound is the halogenated butene compound represented by the general formula (3). It is a butane compound.
一般式(1)及び(3)において、X1、X2、X3、X4、X5、X6、X7、X8及びX9で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子が好ましい。
In the general formulas (1) and (3), the halogen atom represented by X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 and X 9 is a fluorine atom or a chlorine atom. , A bromine atom and an iodine atom, and a fluorine atom is preferable.
この本開示のハロゲン化ブテン組成物の総量を100モル%として、一般式(1)で表されるハロゲン化ブテン化合物の含有量は91.00~99.99モル%が好ましく、92.00~99.98モル%がより好ましい。また、一般式(3)で表されるハロゲン化ブタン化合物の含有量は0.01~9.00モル%が好ましく、0.02~8.00モル%がより好ましい。
Assuming that the total amount of the halogenated butene composition of the present disclosure is 100 mol %, the content of the halogenated butene compound represented by the general formula (1) is preferably 91.00 to 99.99 mol %, more preferably 92.00 to 99.98 mol %. .. The content of the halogenated butane compound represented by the general formula (3) is preferably 0.01 to 9.00 mol%, more preferably 0.02 to 8.00 mol%.
なお、本開示の製造方法によれば、ハロゲン化ブテン組成物として得られた場合であっても、上記のように一般式(1)で表されるハロゲン化ブテン化合物を、反応の転化率を高く、また、高収率且つ高選択率で得ることができるため、ハロゲン化ブテン組成物中の一般式(1)で表されるハロゲン化ブテン化合物以外の成分を少なくすることが可能であるため、一般式(1)で表されるハロゲン化ブテン化合物を得るための精製の労力を削減することができる。
In addition, according to the production method of the present disclosure, even when obtained as a halogenated butene composition, the halogenated butene compound represented by the general formula (1) as described above, the reaction conversion rate Since it is high and can be obtained with high yield and high selectivity, it is possible to reduce the components other than the halogenated butene compound represented by the general formula (1) in the halogenated butene composition. The labor of purification for obtaining the halogenated butene compound represented by the general formula (1) can be reduced.
このような本開示のハロゲン化ブテン組成物は、半導体、液晶等の最先端の微細構造を形成するためのエッチングガスの他、有機合成用ビルディングブロック等の各種用途に有効利用できる。なお、有機合成用ビルディングブロックとは、反応性が高い骨格を有する化合物の前駆体となり得る物質を意味する。例えば、本開示のハロゲン化ブテン組成物とCF3Si(CH3)3等の含フッ素有機ケイ素化合物とを反応させると、CF3基等のフルオロアルキル基を導入して洗浄剤や含フッ素医薬中間体となり得る物質に変換することが可能である。
The halogenated butene composition of the present disclosure as described above can be effectively used for various applications such as an etching gas for forming the latest fine structure such as a semiconductor and a liquid crystal, and a building block for organic synthesis. The building block for organic synthesis means a substance that can be a precursor of a compound having a highly reactive skeleton. For example, when the halogenated butene composition of the present disclosure is reacted with a fluorine-containing organosilicon compound such as CF 3 Si(CH 3 ) 3, a fluoroalkyl group such as CF 3 group is introduced to introduce a detergent or a fluorine-containing drug. It is possible to convert into a substance that can be an intermediate.
以上、本開示の実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。
Although the embodiments of the present disclosure have been described above, various changes in form and details can be made without departing from the spirit and scope of the claims.
以下に実施例を示し、本開示の特徴を明確にする。本開示はこれら実施例に限定されるものではない。
The following examples are provided to clarify the features of this disclosure. The present disclosure is not limited to these examples.
実施例1~6及び比較例1~2のハロゲン化ブテン化合物の製造方法では、原料化合物は、一般式(2)で表されるハロゲン化ブチン化合物において、X1、X2、X3、X7、X8及びX9はフッ素原子とし、ハロゲン化水素はフッ化水素とし、以下の反応式:
CF3C≡CCF3 + HF → CF3CF=CHCF3
に従って、フッ化水素付加反応により、ハロゲン化ブテン化合物を得た。 In the method for producing a halogenated butene compound of Examples 1 to 6 and Comparative Examples 1 and 2, the starting compound is a halogenated butyne compound represented by the general formula (2), which is represented by X 1 , X 2 , X 3 , X 3 . 7 , X 8 and X 9 are fluorine atoms, hydrogen halide is hydrogen fluoride, and the following reaction formula:
CF 3 C ≡ CCF 3 + HF → CF 3 CF=CHCF 3
According to the above, a halogenated butene compound was obtained by a hydrogen fluoride addition reaction.
CF3C≡CCF3 + HF → CF3CF=CHCF3
に従って、フッ化水素付加反応により、ハロゲン化ブテン化合物を得た。 In the method for producing a halogenated butene compound of Examples 1 to 6 and Comparative Examples 1 and 2, the starting compound is a halogenated butyne compound represented by the general formula (2), which is represented by X 1 , X 2 , X 3 , X 3 . 7 , X 8 and X 9 are fluorine atoms, hydrogen halide is hydrogen fluoride, and the following reaction formula:
CF 3 C ≡ CCF 3 + HF → CF 3 CF=CHCF 3
According to the above, a halogenated butene compound was obtained by a hydrogen fluoride addition reaction.
実施例1~4:活性炭触媒を用いたフッ化水素付加反応
反応管であるSUS配管(外径:1/2インチ)に、触媒として活性炭触媒(大阪ガスケミカル(株)製;比表面積1200m2/g)を10g加えた。窒素雰囲気下、200℃で2時間乾燥した後、圧力を常圧、CF3C≡CCF3(基質)及びフッ化水素と活性炭触媒との接触時間(W/F)が2g・sec/ccとなるように、反応管にCF3C≡CCF3(基質)及びフッ化水素ガスを流通させた。 Examples 1 to 4: Activated carbon catalyst (manufactured by Osaka Gas Chemical Co., Ltd.; specific surface area: 1200 m 2 ) was used as a catalyst in a SUS pipe (outer diameter: 1/2 inch) which is a reaction tube for hydrogen fluoride addition reaction using activated carbon catalyst. /g) was added. After drying at 200°C for 2 hours in a nitrogen atmosphere, the pressure was normal pressure, and the contact time (W/F) between CF 3 C≡CCF 3 (substrate) and hydrogen fluoride and the activated carbon catalyst was 2 gsec/cc. As a result, CF 3 C≡CCF 3 (substrate) and hydrogen fluoride gas were passed through the reaction tube.
反応管であるSUS配管(外径:1/2インチ)に、触媒として活性炭触媒(大阪ガスケミカル(株)製;比表面積1200m2/g)を10g加えた。窒素雰囲気下、200℃で2時間乾燥した後、圧力を常圧、CF3C≡CCF3(基質)及びフッ化水素と活性炭触媒との接触時間(W/F)が2g・sec/ccとなるように、反応管にCF3C≡CCF3(基質)及びフッ化水素ガスを流通させた。 Examples 1 to 4: Activated carbon catalyst (manufactured by Osaka Gas Chemical Co., Ltd.; specific surface area: 1200 m 2 ) was used as a catalyst in a SUS pipe (outer diameter: 1/2 inch) which is a reaction tube for hydrogen fluoride addition reaction using activated carbon catalyst. /g) was added. After drying at 200°C for 2 hours in a nitrogen atmosphere, the pressure was normal pressure, and the contact time (W/F) between CF 3 C≡CCF 3 (substrate) and hydrogen fluoride and the activated carbon catalyst was 2 gsec/cc. As a result, CF 3 C≡CCF 3 (substrate) and hydrogen fluoride gas were passed through the reaction tube.
反応は、気相連続流通式で進行させた。
The reaction proceeded in a gas phase continuous flow system.
反応管を200℃、250℃、300℃又は400℃で加熱してフッ化水素付加反応を開始した。
-The reaction tube was heated at 200°C, 250°C, 300°C or 400°C to start the hydrogen fluoride addition reaction.
CF3C≡CCF3(基質)と接触させるフッ化水素ガスのモル比(HF/CF3C≡CCF3比)を150とし、接触時間(W/F)が2g・sec/ccとなるように基質とフッ化水素ガスの流量を調整し、反応開始1時間後に除害塔を通った留出分を集めた。
CF 3 C≡CCF 3 (substrate) hydrogen fluoride gas is contacted with a molar ratio of the (HF / CF 3 C≡CCF 3 ratio) was set to 150, the contact time (W / F) so as to become 2 g · sec / cc The flow rates of the substrate and hydrogen fluoride gas were adjusted to 1 hour, and one hour after the start of the reaction, the distillate passed through the abatement tower was collected.
その後、ガスクロマトグラフィー((株)島津製作所製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。
After that, mass spectrometry was performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-2014”), and NMR (manufactured by JEOL, trade name) "400YH") was used for structural analysis by NMR spectrum.
質量分析及び構造解析の結果から、目的化合物としてCF3CF=CHCF3が生成したことが確認された。実施例1では、CF3C≡CCF3(基質)からの転化率は99.75モル%、CF3CF=CHCF3(目的化合物)の選択率は99.85モル%、CF3CF2CH2CF3の選択率は0.11モル%、CF3CFHCFHCF3の選択率は0.01モル%であった。実施例2では、CF3C≡CCF3(基質)からの転化率は100.00モル%、CF3CF=CHCF3(目的化合物)の選択率は99.36モル%、CF3CF2CH2CF3の選択率は0.34モル%、CF3CFHCFHCF3の選択率は0.26モル%であった。実施例3では、CF3C≡CCF3(基質)からの転化率は100.00モル%、CF3CF=CHCF3(目的化合物)の選択率は98.45モル%、CF3CF2CH2CF3の選択率は0.98モル%、CF3CFHCFHCF3の選択率は0.10モル%であった。実施例4では、CF3C≡CCF3(基質)からの転化率は100.00モル%、CF3CF=CHCF3(目的化合物)の選択率は99.15モル%、CF3CF2CH2CF3の選択率は0.80モル%、CF3CFHCFHCF3の選択率は0.02モル%であった。
From the results of mass spectrometry and structural analysis, it was confirmed that CF 3 CF=CHCF 3 was produced as the target compound. In Example 1, the conversion from CF 3 C≡CCF 3 (substrate) was 99.75 mol %, the selectivity of CF 3 CF=CHCF 3 (target compound) was 99.85 mol %, CF 3 CF 2 CH 2 CF 3 The selectivity was 0.11 mol% and the selectivity of CF 3 CFHCFHCF 3 was 0.01 mol %. In Example 2, the conversion from CF 3 C≡CCF 3 (substrate) was 100.00 mol %, the selectivity of CF 3 CF=CHCF 3 (target compound) was 99.36 mol %, and the CF 3 CF 2 CH 2 CF 3 The selectivity was 0.34 mol% and the selectivity of CF 3 CFHCFHCF 3 was 0.26 mol %. In Example 3, the conversion from CF 3 C≡CCF 3 (substrate) is 100.00 mol %, the selectivity of CF 3 CF=CHCF 3 (target compound) is 98.45 mol %, and the selectivity of CF 3 CF 2 CH 2 CF 3 is The selectivity was 0.98 mol% and the selectivity of CF 3 CFHCFHCF 3 was 0.10 mol %. In Example 4, the conversion from CF 3 C≡CCF 3 (substrate) was 100.00 mol %, the selectivity of CF 3 CF=CHCF 3 (target compound) was 99.15 mol %, and the CF 3 CF 2 CH 2 CF 3 The selectivity was 0.80 mol% and the selectivity of CF 3 CFHCFHCF 3 was 0.02 mol %.
実施例5~6:酸化クロム触媒を用いたフッ化水素付加反応
触媒として酸化クロム触媒(Cr2O3)を用い、反応温度を350℃、CF3C≡CCF3(基質)とフッ化水素ガスの酸化クロム触媒との接触時間(W/F)が4g・sec/cc又は5g・sec/ccとなるように、CF3C≡CCF3(基質)とフッ化水素ガスの合計流量を調整しCF3C≡CCF3(基質)と接触させるフッ化水素ガスのモル比(HF/CF3C≡CCF3比)が50又は200としたこと以外は実施例1~4と同様に反応を進行させた。 Examples 5 to 6: Hydrogen fluoride addition reaction using chromium oxide catalyst Chromium oxide catalyst (Cr 2 O 3 ) was used as a catalyst, reaction temperature was 350° C., CF 3 C≡CCF 3 (substrate) and hydrogen fluoride Adjust the total flow rate of CF 3 C ≡ CCF 3 (substrate) and hydrogen fluoride gas so that the contact time (W/F) of the gas with the chromium oxide catalyst is 4 gsec/cc or 5 gsec/cc The reaction was performed in the same manner as in Examples 1 to 4 except that the molar ratio of the hydrogen fluoride gas (HF/CF 3 C≡CCF 3 ratio) to be brought into contact with CF 3 C≡CCF 3 (substrate) was 50 or 200. Advanced.
触媒として酸化クロム触媒(Cr2O3)を用い、反応温度を350℃、CF3C≡CCF3(基質)とフッ化水素ガスの酸化クロム触媒との接触時間(W/F)が4g・sec/cc又は5g・sec/ccとなるように、CF3C≡CCF3(基質)とフッ化水素ガスの合計流量を調整しCF3C≡CCF3(基質)と接触させるフッ化水素ガスのモル比(HF/CF3C≡CCF3比)が50又は200としたこと以外は実施例1~4と同様に反応を進行させた。 Examples 5 to 6: Hydrogen fluoride addition reaction using chromium oxide catalyst Chromium oxide catalyst (Cr 2 O 3 ) was used as a catalyst, reaction temperature was 350° C., CF 3 C≡CCF 3 (substrate) and hydrogen fluoride Adjust the total flow rate of CF 3 C ≡ CCF 3 (substrate) and hydrogen fluoride gas so that the contact time (W/F) of the gas with the chromium oxide catalyst is 4 gsec/cc or 5 gsec/cc The reaction was performed in the same manner as in Examples 1 to 4 except that the molar ratio of the hydrogen fluoride gas (HF/CF 3 C≡CCF 3 ratio) to be brought into contact with CF 3 C≡CCF 3 (substrate) was 50 or 200. Advanced.
質量分析及び構造解析の結果から、目的化合物としてCF3CF=CHCF3が生成したことが確認された。実施例5では、CF3C≡CCF3(基質)からの転化率は97.59モル%、CF3CF=CHCF3(目的化合物)の選択率は99.98モル%、CF3CF2CH2CF3の選択率は0.01モル%、CF3CFHCFHCF3の選択率は0.00モル%であった。実施例6では、CF3C≡CCF3(基質)からの転化率は80.90モル%、CF3CF=CHCF3(目的化合物)の選択率は99.96モル%、CF3CF2CH2CF3の選択率は0.03モル%、CF3CFHCFHCF3の選択率は0.00モル%であった。
From the results of mass spectrometry and structural analysis, it was confirmed that CF 3 CF=CHCF 3 was produced as the target compound. In Example 5, the conversion from CF 3 C≡CCF 3 (substrate) was 97.59 mol%, the selectivity of CF 3 CF=CHCF 3 (target compound) was 99.98 mol%, and the CF 3 CF 2 CH 2 CF 3 The selectivity was 0.01 mol %, and the selectivity of CF 3 CFHCFHCF 3 was 0.00 mol %. In Example 6, the conversion from CF 3 C≡CCF 3 (substrate) was 80.90 mol %, the selectivity of CF 3 CF=CHCF 3 (target compound) was 99.96 mol %, CF 3 CF 2 CH 2 CF 3 The selectivity was 0.03 mol %, and the selectivity of CF 3 CFHCFHCF 3 was 0.00 mol %.
比較例1~2:触媒を用いないフッ化水素付加反応
触媒を使用せず、反応温度を200℃又は350℃、CF3C≡CCF3(基質)とフッ化水素ガスの触媒との接触時間(W/F)を20g・sec/ccとし、CF3C≡CCF3(基質)と接触させるフッ化水素ガスのモル比(HF/CF3C≡CCF3比)を200としたこと以外は実施例1~4と同様に反応を進行させた。なお、比較例1~2において、W/Fが20g・sec/ccとしたこととは、触媒を使用する実施例1~6においてW/Fが20g・sec/ccとする場合と同じ流量でCF3C≡CCF3(基質)を流したことを意味する。 Comparative Examples 1-2: Hydrogen Fluoride Addition Reaction without Catalyst The reaction temperature is 200° C. or 350° C., the contact time between CF 3 C≡CCF 3 (substrate) and the catalyst of hydrogen fluoride gas. (W/F) was set to 20 gsec/cc and the molar ratio of hydrogen fluoride gas (HF/CF 3 C≡CCF 3 ratio) to be brought into contact with CF 3 C≡CCF 3 (substrate) was set to 200. The reaction was allowed to proceed in the same manner as in Examples 1 to 4. In Comparative Examples 1 and 2, the W/F of 20 g·sec/cc means that the flow rate is the same as the case of W/F of 20 g·sec/cc in Examples 1 to 6 using a catalyst. It means that CF 3 C ≡ CCF 3 (substrate) was flown.
触媒を使用せず、反応温度を200℃又は350℃、CF3C≡CCF3(基質)とフッ化水素ガスの触媒との接触時間(W/F)を20g・sec/ccとし、CF3C≡CCF3(基質)と接触させるフッ化水素ガスのモル比(HF/CF3C≡CCF3比)を200としたこと以外は実施例1~4と同様に反応を進行させた。なお、比較例1~2において、W/Fが20g・sec/ccとしたこととは、触媒を使用する実施例1~6においてW/Fが20g・sec/ccとする場合と同じ流量でCF3C≡CCF3(基質)を流したことを意味する。 Comparative Examples 1-2: Hydrogen Fluoride Addition Reaction without Catalyst The reaction temperature is 200° C. or 350° C., the contact time between CF 3 C≡CCF 3 (substrate) and the catalyst of hydrogen fluoride gas. (W/F) was set to 20 gsec/cc and the molar ratio of hydrogen fluoride gas (HF/CF 3 C≡CCF 3 ratio) to be brought into contact with CF 3 C≡CCF 3 (substrate) was set to 200. The reaction was allowed to proceed in the same manner as in Examples 1 to 4. In Comparative Examples 1 and 2, the W/F of 20 g·sec/cc means that the flow rate is the same as the case of W/F of 20 g·sec/cc in Examples 1 to 6 using a catalyst. It means that CF 3 C ≡ CCF 3 (substrate) was flown.
質量分析及び構造解析の結果から、目的化合物としてCF3CF=CHCF3が生成したことが確認された。比較例1では、CF3C≡CCF3(基質)の流量を実施例1~6と比較して著しく多くしているにも関わらず、CF3C≡CCF3(基質)からの転化率は1.92モル%、CF3CF=CHCF3(目的化合物)の選択率は90.83モル%、CF3CF2CH2CF3の選択率は8.27モル%、CF3CFHCFHCF3の選択率は0.82モル%であった。比較例2では、CF3C≡CCF3(基質)の流量を実施例1~6と比較して著しく多くしているにも関わらず、CF3C≡CCF3(基質)からの転化率は2.17モル%、CF3CF=CHCF3(目的化合物)の選択率は85.52モル%、CF3CF2CH2CF3の選択率は7.83モル%、CF3CFHCFHCF3の選択率は0.62モル%であった。このため、CF3C≡CCF3(基質)からの転化率が著しく低く、また、不純物であるCF3CF2CH2CF3が相当程度生成されており、目的化合物であるCF3CF=CHCF3の選択率も低かった。
From the results of mass spectrometry and structural analysis, it was confirmed that CF 3 CF=CHCF 3 was produced as the target compound. In Comparative Example 1, although the flow rate of CF 3 C≡CCF 3 (substrate) was remarkably increased as compared with Examples 1 to 6, the conversion rate from CF 3 C≡CCF 3 (substrate) was 1.92 mol%, CF 3 CF=CHCF 3 (target compound) selectivity is 90.83 mol %, CF 3 CF 2 CH 2 CF 3 selectivity is 8.27 mol %, CF 3 CFHCFHCF 3 selectivity is 0.82 mol %. there were. In Comparative Example 2, although the flow rate of CF 3 C≡CCF 3 (substrate) was remarkably increased as compared with Examples 1 to 6, the conversion rate from CF 3 C≡CCF 3 (substrate) was 2.17 mol%, CF 3 CF=CHCF 3 (target compound) selectivity is 85.52 mol %, CF 3 CF 2 CH 2 CF 3 selectivity is 7.83 mol %, CF 3 CFHCFHCF 3 selectivity is 0.62 mol %. there were. Therefore, the conversion from CF 3 C ≡ CCF 3 (substrate) is extremely low, and CF 3 CF 2 CH 2 CF 3 which is an impurity is produced in a considerable amount, so the target compound CF 3 CF=CHCF 3 The selectivity of 3 was also low.
結果を表1に示す。
The results are shown in Table 1.
Claims (7)
- 一般式(1):
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物の製造方法であって、
触媒の存在下に、
一般式(2):
CX1X2X3C≡CCX7X8X9 (2)
[式中、X1、X2、X3、X7、X8及びX9は前記に同じである。]
で表されるハロゲン化ブチン化合物と、ハロゲン化水素とを反応させる工程
を備える、製造方法。 General formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
A method for producing a halogenated butene compound represented by
In the presence of a catalyst,
General formula (2):
CX 1 X 2 X 3 C ≡ CCX 7 X 8 X 9 (2)
[Wherein X 1 , X 2 , X 3 , X 7 , X 8 and X 9 are the same as defined above. ]
A method for producing, comprising a step of reacting a halogenated butyne compound represented by with a hydrogen halide. - 前記一般式(1)で表されるハロゲン化ブテン化合物がCF3CF=CHCF3であり、且つ、前記一般式(2)で表されるハロゲン化ブチン化合物がCF3C≡CCF3である、請求項1に記載の製造方法。 The halogenated butene compound represented by the general formula (1) is CF 3 CF=CHCF 3 , and the halogenated butyne compound represented by the general formula (2) is CF 3 C≡CCF 3 . The manufacturing method according to claim 1.
- 前記触媒が、フッ素化若しくは非フッ素化活性炭触媒、並びにフッ素化若しくは非フッ素化ルイス酸触媒よりなる群から選ばれる少なくとも1種を含む、請求項1又は2に記載の製造方法。 3. The production method according to claim 1, wherein the catalyst contains at least one selected from the group consisting of a fluorinated or non-fluorinated activated carbon catalyst and a fluorinated or non-fluorinated Lewis acid catalyst.
- 前記触媒がフッ素化若しくは非フッ素化ルイス酸触媒であり、前記ルイス酸触媒が、酸化クロム触媒、アルミナ触媒、シリカアルミナ触媒、及びゼオライト触媒よりなる群から選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の製造方法。 The catalyst is a fluorinated or non-fluorinated Lewis acid catalyst, and the Lewis acid catalyst is at least one selected from the group consisting of a chromium oxide catalyst, an alumina catalyst, a silica-alumina catalyst, and a zeolite catalyst. 4. The manufacturing method according to any one of 3 to 3.
- 前記一般式(2)で表されるハロゲン化ブチン化合物1モルに対して、30~250モルのハロゲン化水素を反応させる、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein 30 to 250 mol of hydrogen halide is reacted with 1 mol of the halogenated butyne compound represented by the general formula (2).
- 一般式(1):
CX1X2X3CX4=CHCX7X8X9 (1)
[式中、X1、X2、X3、X4、X7、X8及びX9は同一又は異なって、ハロゲン原子を示す。]
で表されるハロゲン化ブテン化合物と、
一般式(3):
CX1X2X3CX4X5CHX6CX7X8X9 (3)
[式中、X1、X2、X3、X4、X7、X8及びX9は前記に同じである。X5及びX6は片方が水素原子を示し、他方がハロゲン原子を示す。]
で表されるハロゲン化ブタン化合物とを含有する組成物であって、
組成物全量を100モル%として、前記一般式(1)で表されるハロゲン化ブテン化合物の含有量が91.00~99.99モル%である、組成物。 General formula (1):
CX 1 X 2 X 3 CX 4 = CHCX 7 X 8 X 9 (1)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same or different and each represents a halogen atom. ]
A halogenated butene compound represented by
General formula (3):
CX 1 X 2 X 3 CX 4 X 5 CHX 6 CX 7 X 8 X 9 (3)
[In the formula, X 1 , X 2 , X 3 , X 4 , X 7 , X 8 and X 9 are the same as defined above. One of X 5 and X 6 represents a hydrogen atom, and the other represents a halogen atom. ]
A composition containing a halogenated butane compound represented by
A composition in which the content of the halogenated butene compound represented by the general formula (1) is 91.00 to 99.99 mol% based on 100 mol% of the total amount of the composition. - クリーニングガス、エッチングガス又は有機合成用ビルディングブロックとして用いられる、請求項6に記載の組成物。 The composition according to claim 6, which is used as a cleaning gas, an etching gas or a building block for organic synthesis.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217029187A KR102683558B1 (en) | 2019-02-21 | 2020-02-14 | Method for producing halogenated butene compounds |
CN202080015744.4A CN113474319A (en) | 2019-02-21 | 2020-02-14 | Process for producing halogenated butene compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-029424 | 2019-02-21 | ||
JP2019029424A JP6827246B2 (en) | 2019-02-21 | 2019-02-21 | Method for producing halogenated butene compound |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020170980A1 true WO2020170980A1 (en) | 2020-08-27 |
Family
ID=72144889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005856 WO2020170980A1 (en) | 2019-02-21 | 2020-02-14 | Method for producing halogenated butene |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6827246B2 (en) |
KR (1) | KR102683558B1 (en) |
CN (1) | CN113474319A (en) |
TW (1) | TWI829871B (en) |
WO (1) | WO2020170980A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114436759A (en) * | 2020-11-04 | 2022-05-06 | 浙江省化工研究院有限公司 | Gas phase preparation method of 1,1,1,2,4,4, 4-heptafluoro-2-butene |
WO2023286752A1 (en) * | 2021-07-15 | 2023-01-19 | ダイキン工業株式会社 | Alkene production method |
TWI798873B (en) * | 2020-10-15 | 2023-04-11 | 日商昭和電工股份有限公司 | Storage method of fluoro-2-butene |
WO2024034583A1 (en) * | 2022-08-08 | 2024-02-15 | ダイキン工業株式会社 | Method for producing halogenated alkene compound |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4230609A4 (en) * | 2020-10-15 | 2024-11-20 | Resonac Corporation | Method for storing fluoro-2-butene |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2111207T3 (en) * | 1993-06-18 | 1998-03-01 | Showa Denko Kk | FLUORATION CATALYST AND FLUORATION PROCEDURE. |
TWI298716B (en) * | 2001-08-06 | 2008-07-11 | Showa Denko Kk | |
CN1911512B (en) * | 2005-07-07 | 2011-12-07 | 独立行政法人产业技术综合研究所 | Fluorination catalysts, method for their preparation, and method for producing fluorinated compounds using the catalysts |
JP4896965B2 (en) * | 2006-04-28 | 2012-03-14 | 昭和電工株式会社 | Process for producing 1,2,3,4-tetrachlorohexafluorobutane |
JP5304887B2 (en) * | 2008-08-06 | 2013-10-02 | ダイキン工業株式会社 | Process for producing 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene |
MX363241B (en) * | 2011-10-31 | 2019-03-15 | Daikin Ind Ltd | Process for producing 2-chloro-3,3,3-trifluoropropene. |
CN106966856B (en) * | 2017-03-08 | 2021-10-22 | 浙江衢化氟化学有限公司 | Preparation method of 1,1,1,4,4, 4-hexafluoro-2-butene |
-
2019
- 2019-02-21 JP JP2019029424A patent/JP6827246B2/en active Active
-
2020
- 2020-02-14 WO PCT/JP2020/005856 patent/WO2020170980A1/en active Application Filing
- 2020-02-14 KR KR1020217029187A patent/KR102683558B1/en active Active
- 2020-02-14 CN CN202080015744.4A patent/CN113474319A/en active Pending
- 2020-02-20 TW TW109105400A patent/TWI829871B/en active
Non-Patent Citations (2)
Title |
---|
HASZELDINE, R. N.: "REACTIONS OF FLUOROCARBON RADICALS. PART VII. ADDITION TO TRIFLUOROMETHYL-SUBSTITUTED ACETYLENES", JOURNAL OF THE CHEMICAL SOCIETY, 1952, pages 3490 - 3498, XP000650176, DOI: 10.1039/jr9520003490 * |
MILLER, WILLIAM T. AND RICHARD H. SNIDER ROBERT J. HUMMEL: "Perfluoro-1-methylpropenylsilver", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 91, no. 23, 1969, pages 6532 - 6534, XP055733279 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI798873B (en) * | 2020-10-15 | 2023-04-11 | 日商昭和電工股份有限公司 | Storage method of fluoro-2-butene |
CN114436759A (en) * | 2020-11-04 | 2022-05-06 | 浙江省化工研究院有限公司 | Gas phase preparation method of 1,1,1,2,4,4, 4-heptafluoro-2-butene |
CN114436759B (en) * | 2020-11-04 | 2023-10-27 | 浙江省化工研究院有限公司 | Gas phase preparation method of 1,2, 4-heptafluoro-2-butene |
WO2023286752A1 (en) * | 2021-07-15 | 2023-01-19 | ダイキン工業株式会社 | Alkene production method |
JP2023013217A (en) * | 2021-07-15 | 2023-01-26 | ダイキン工業株式会社 | Alkene production method |
JP7348535B2 (en) | 2021-07-15 | 2023-09-21 | ダイキン工業株式会社 | Alkene production method |
WO2024034583A1 (en) * | 2022-08-08 | 2024-02-15 | ダイキン工業株式会社 | Method for producing halogenated alkene compound |
JP7541263B2 (en) | 2022-08-08 | 2024-08-28 | ダイキン工業株式会社 | Method for producing halogenated alkene compounds |
Also Published As
Publication number | Publication date |
---|---|
TW202043182A (en) | 2020-12-01 |
KR20210129107A (en) | 2021-10-27 |
TWI829871B (en) | 2024-01-21 |
JP6827246B2 (en) | 2021-02-10 |
KR102683558B1 (en) | 2024-07-10 |
CN113474319A (en) | 2021-10-01 |
JP2020132585A (en) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6827246B2 (en) | Method for producing halogenated butene compound | |
EP2318339B1 (en) | Process for preparing 2,3,3,3-tetrafluoropropene | |
US8198491B2 (en) | Process for preparing 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene | |
JP2019196347A (en) | Manufacturing method of fluoroolefin | |
KR101643487B1 (en) | Process for Producing Fluorine-Containing Olefin | |
JP7568937B2 (en) | Method for producing perfluoroalkyne compound | |
JP5413451B2 (en) | Process for producing 2,3,3,3-tetrafluoropropene | |
KR102698639B1 (en) | Method for producing halogenated alkene compounds and fluorinated alkyne compounds | |
JP2024052857A (en) | Method for producing halogenated alkene compounds and fluorinated alkyne compounds | |
JP5246327B2 (en) | Method for producing fluorine-containing propene by gas phase fluorination | |
CN113272268B (en) | Method for producing cyclobutane | |
JP7553758B2 (en) | Method for producing vinyl compounds | |
US6437200B1 (en) | Process for obtaining pentafluoroethane by chlorotetrafluoroethane dismutation | |
JP7656182B2 (en) | Method for producing halogenated alkene compounds and fluorinated alkyne compounds | |
KR20100053815A (en) | Process for the preparation of decafluorocyclohexene | |
JPH06298682A (en) | Production of 1,1,1,2-tetrafluoroethane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20759095 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217029187 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20759095 Country of ref document: EP Kind code of ref document: A1 |