WO2020166147A1 - Leakage oil detection apparatus and leakage oil detection method - Google Patents
Leakage oil detection apparatus and leakage oil detection method Download PDFInfo
- Publication number
- WO2020166147A1 WO2020166147A1 PCT/JP2019/043721 JP2019043721W WO2020166147A1 WO 2020166147 A1 WO2020166147 A1 WO 2020166147A1 JP 2019043721 W JP2019043721 W JP 2019043721W WO 2020166147 A1 WO2020166147 A1 WO 2020166147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- image
- light source
- ultraviolet light
- intensity value
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 79
- 238000012545 processing Methods 0.000 claims abstract description 93
- 238000000034 method Methods 0.000 claims abstract description 36
- 238000003384 imaging method Methods 0.000 claims abstract description 12
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims 2
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 239000003921 oil Substances 0.000 description 121
- 238000007689 inspection Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/38—Investigating fluid-tightness of structures by using light
Definitions
- the present invention relates to an oil leakage detection device and an oil leakage detection method suitable for being applied to oil-filled equipment such as oil storage tanks and transformers.
- oil leakage oil leakage
- oil leakage oil leakage
- oil leakage may occur due to deterioration or accidents in oil-filled equipment such as oil storage tanks and transformers. Since oil leakage may lead to environmental pollution and disasters, a technique for easily and highly accurately detecting oil leakage at the initial stage has been required.
- Patent Document 1 There is a technique described in Patent Document 1 as a technique for solving this problem.
- This document includes a trigger signal for determining the shutter time width and timing of the visible light camera, and the irradiation timing visible light camera synchronized with the trigger signal captures an image at 30 frames/sec. Then, an image of the excitation light source irradiation in which the control unit generates the light emission operation signal with the gate width of 1.7 ms to 24 ms in synchronization with the trigger signal of either the even-numbered frame or the odd-numbered frame and the image obtained when the irradiation is not performed. There is described a technique for discriminating oil leakage based on a difference in luminance between both images.
- UV light LED light As an experimental method, a commercially available ultraviolet LED light is used to irradiate the surface of the object on which the oil is attached. UV light LED light, fix the camera and the object.
- An object of the present invention is to provide an oil leakage detection device and an oil leakage detection method that detect oil leakage with high sensitivity even when background noise due to sunlight in the daytime is large.
- an oil leak detection device for detecting an oil leak of an oil-filled device, which emits ultraviolet light to the oil-filled device, an imaging device for photographing the oil-filled device, and an ultraviolet light source.
- a control device that controls the operation of the light source and the image pickup device, a storage device that saves an image captured by the image pickup device, an image processing device that processes the image stored in the storage device, and a processing result of the image processing device
- an image processing device configured to display a first image obtained when an oil-filled device is photographed by irradiating an ultraviolet light source, and a photographing condition different from the photographing condition of the first image.
- An image representing the intensity value difference is acquired by acquiring the intensity value difference between the second image obtained by photographing the oil-filled device and the intensity value of the blue component, and the contrast is adjusted with respect to the image representing the intensity value difference.
- An oil leakage detection device characterized by recognizing a portion larger than the threshold value as an oil leakage adhesion portion as compared with a predetermined threshold value.
- a method for detecting an oil leak in an oil-filled device which is a first image obtained when an oil-filled device is photographed by irradiating ultraviolet light, and the first image
- An image representing the intensity value difference is acquired by acquiring the intensity value difference between the second image obtained by capturing the oil-filled device under the image capturing condition different from the image capturing condition described above by the intensity value of the blue component, and the intensity value
- the contrast of the image representing the difference is adjusted, and a method for detecting an oil leak in which a portion larger than the threshold value is recognized as an oil leak adhesion portion by comparing with a predetermined threshold value.
- an oil leak detection device and an oil leak detection method capable of detecting oil leak with high sensitivity even when background noise due to sunlight in the daytime is large.
- FIG. 11 is a diagram showing an example of a tone curve adjustment method used in image processing of the second embodiment.
- FIG. 11 is a diagram showing an example of a tone curve adjustment method used in image processing of the second embodiment.
- FIG. 11 is a diagram showing an example of a tone curve adjustment method used in image processing of the second embodiment.
- 9 is a diagram showing an image of an experimental result obtained by adjusting the tone curve of Example 2; 9 is a flowchart illustrating an oil leak detection process according to the third embodiment.
- FIG. 2 is a diagram showing a schematic configuration example of the oil leakage detection device 100 according to the first embodiment of the present invention.
- the inspection object 1 is an oil-filled device such as a transformer, a capacitor, a hydraulic operating device of GIS (gas insulated switchgear), a rectifier, an inverter, a converter, or the like.
- GIS gas insulated switchgear
- the oil-filled transformer arranged in the substation will be described as the inspection object 1.
- the oil leak detection device 100 includes an ultraviolet light source 2, an image pickup device 3, a control device 4 that controls the operations of the devices 2 and 3, a storage device 5 that stores a captured image, and an image processing device 6 that processes the stored image. , A display device 7 for displaying the processing result.
- the oil leak detection device 100 captures an image of the oil leak 8 adhering to the surface of the inspection object 1 and displays the inspection result on the display device 7.
- the constituent parts of the oil leak detection device 100 excluding the ultraviolet light source 2, the image pickup device 3, or the display device 7 are often configured by a computer.
- the UV light source 2 can be a black light, an LED UV light source, or a lamp that contains UV light components, such as a visible light cut filter.
- the image pickup device 3 can be a general-purpose product such as a digital camera or a surveillance camera that shoots visible light. Note that it is desirable to have a color imaging function.
- FIG. 3 is a diagram showing a series of processing steps of the oil leakage detection method according to the first embodiment of the present invention. These procedures show a series of procedures performed from the irradiation of the inspection object 1 to the determination of the presence/absence of oil leakage, which is performed using the arithmetic unit of the computer.
- the inspection object 1 in the first processing step S11, the inspection object 1 is kept in a state in which the ultraviolet light source 2 is not irradiated with ultraviolet light, and in this state, an image is taken by the image pickup device 3 in the processing step S21, and the obtained image 1 is obtained. Is stored in the storage device 5.
- the image 1 at this time is taken by, for example, sunlight in the daytime.
- the inspection object 1 is irradiated with the ultraviolet light source 2, and in this irradiation state, an image is taken by the image pickup device 3 in the processing step S41, and the obtained image 2 is stored in the storage device 5.
- Image 2 at this time was taken with ultraviolet light.
- both Image 1 and Image 2 are images of the same inspection object 1 taken under the same conditions such as the same angle and distance, and that each part on the image shows a corresponding part. Further, the two images are stored in the storage device 5 as digital information for each small area obtained by vertically and horizontally dividing the image area into m ⁇ n.
- the information of each small area includes information on the brightness (intensity) of this area, and the brightness information is represented as, for example, 256 gradation information.
- a difference in luminance (intensity) value is obtained for each of the corresponding small areas of the two images 1 and 2.
- the difference is the difference for the blue component of the information about the luminance (intensity) in each small area.
- Fig. 4 shows a pouch diagram of the spectrum obtained when a transformer mineral oil was irradiated with an ultraviolet light source having a peak value of 365 nm. The strongest peak was observed around 405 nm. Blue is the main component at this wavelength. Therefore, in the color image pickup device, the color information of the actual object can be measured by the three color filters of red (R), green (G), and blue (B) mounted inside. For example, with blue light, the intensity value of blue (B) is the highest on the resulting image. Compared with the parts other than the blue component, the difference in the intensity value of blue (B) is the largest. As described above, the difference between the image 1 and the image 2 can be maximized by using the intensity value of the blue component.
- the intensity value of each pixel is adjusted for the image 3 using the equation (1).
- I is the intensity value of each pixel of the image 3 before adjustment
- I′ is the intensity value of the pixel after adjustment.
- ⁇ is a coefficient less than 1.
- I′ 255 (I/255) ⁇ ⁇ ⁇ 1.........(1)
- the adjusted image is saved as image 4.
- the post-difference image 3 is dark as a whole, so that the image becomes bright as a whole by using the expression (1).
- constant value 255 there is no particular problem even if it is changed to an invariable numerical value smaller than 255, for example, the maximum value Imax of the intensity value of each pixel on the image, but if 255 is used, it does not adhere to the oil adhesion site. There may be a large difference between the parts.
- the intensity value I′ of each pixel in the adjusted image 4 is compared with a threshold value Ith for determining oil leakage, and pixels having an intensity value I′ larger than Ith are oil leaked. Recognize as a part.
- this method can be applied by selecting an appropriate light source and blue, red, or green of the camera.
- the oil leak detection device of this embodiment enables highly accurate oil leak detection even when background noise due to sunlight in the daytime is large.
- the configuration of the oil leakage detection device 100 is the same as that of the first embodiment, and only the method of the cooperative processing is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
- FIG. 6 is a diagram showing a series of processing steps of the oil leakage detection method according to the second embodiment of the present invention.
- processing steps S12 to S52 and processing step S72 perform the same processing as processing steps S11 to S51 and processing step S71 of the first embodiment. Therefore, only the processing step S62, which is a difference from the first embodiment, will be described.
- processing step S62 the image 3 is emphasized by utilizing the tone curve adjustment.
- tone curve adjustment will be described with reference to two types of examples shown in FIGS. 7A and 7B.
- the intensity value I of each small region of the image 3 before adjustment is shown as the input luminance value on the horizontal axis, and the frequency of occurrence in each gradation of each small region is shown.
- Is shown on the vertical axis as the output luminance value.
- This characteristic is that when the intensity value I of each small region is represented by 256 gradations, the frequency of occurrence of each intensity gradation is represented by a histogram.
- the occurrence frequency concentrates on the luminance of low gradation, and the occurrence frequency decreases extremely in the gradation of the middle area to the high area. This means that the width of the detected gradation is extremely small and it is difficult to discriminate by the difference between the gradations. It can be said that the characteristics on the left side of FIGS. 7A and 7B are those in which the correlation between input and output is represented by a linear curve L.
- the gain correction is performed by adjusting the tone curve so that the gain becomes high especially in the low region.
- FIG. 7A gives a gain of saturation characteristic as shown on the right side thereof
- FIG. 7B shows a high gain in the low region as shown on the right side thereof, and a gain in the intermediate region and the high region.
- the intensity values of the respective pixels of the image 3 that have been subtracted before the image processing are gathered near 0, and the points located on the curve L.
- the input luminance value and the output luminance value of are the same.
- the input luminance value is adjusted to a large output luminance value in a region where the input value is small with respect to the main image, that is, a region where the input luminance value is close to 0, and the saturation characteristic is adjusted.
- the shape is adjusted to the shape of the curve L', the oil leakage site is clearly observed.
- both the input brightness value and the output brightness value are m, but if the M point is adjusted to the N point by increasing the gain, the output brightness value at the input brightness value m point is n. Becomes As a result, the concentrated histogram is flattened, and the contrast between the oil-leakage-attached portion and the non-oil-attached portion is increased.
- the input luminance value may be adjusted to a small output luminance value in a region having a large input value, such as a region where the input luminance value is close to 255.
- both the input brightness value and the output brightness value are m′, and if the M′ point is adjusted to the N′ point, the output brightness value at the input brightness value m′ point becomes n′. ..
- Fig. 8 is an example of an image adjusted using this method.
- the blue (B) component of each image could not be observed in the black and white difference image 3 in which the difference of the intensity value can be obtained for each pixel.
- the oil part is clearly observed. Further, the above adjustment values are stored, and automatic adjustment can be expected.
- the oil leak detection method of the present embodiment it is possible to detect the oil leak with high accuracy even when the background noise due to sunlight in the daytime is large as in the case of the first embodiment.
- the tone curve adjustment is installed in commercially available image processing software, so if you use these software, you can expect to obtain the confirmation of the oil leakage area with simple adjustment without making special software. it can.
- the oil leak detection method according to the third embodiment of the present invention will be described with reference to FIG.
- the configuration of the oil leak detection device 100 is the same as that of the first embodiment, and only the oil leak detection method is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
- the inspection object 1 is irradiated with ultraviolet light from the ultraviolet light source 2.
- process step S23 an image is captured by the image capturing device 3 with the 405 nm filter being worn in front of the image capturing device 2, and the obtained image 6 is stored in the storage device 5.
- process step S33 an image is captured by the image capturing device 3 with the 670 nm filter being worn in front of the image capturing device 2, and the obtained image 7 is stored in the storage device 5.
- the central wavelength of fluorescence is 405 nm, so fluorescence is not completely observed at the wavelength of 670 nm.
- the wavelength need not be limited to 670 nm. If fluorescence is not observed, the value is not specified.
- processing step S43 the difference between the intensity values of the blue components of the images 6 and 7 is calculated for each pixel. As a result, a black and white post-difference image 8 is obtained.
- processing step S53 the intensity value of each pixel is adjusted using the equation (1) for the image 8.
- the adjusted image is saved as image 9.
- the adjusted image 9 is used to recognize a pixel larger than Ith as an oil leakage site as compared with a threshold value Ith for determining oil leakage.
- the oil leak detection according to the present embodiment can detect the oil leak with high accuracy even when the background noise due to the sunlight in the daytime is large as in the case of the first embodiment. Moreover, the on/off control of the ultraviolet light source can be eliminated.
- the oil leak detection method according to the fourth embodiment of the present invention will be described with reference to FIG.
- the configuration of the oil leak detection device 100 is the same as that of the first embodiment, and only the oil leak detection method is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
- FIG. 10 is a diagram showing a series of processing steps of the oil leakage detection method according to the fourth embodiment of the present invention.
- processing steps S14 to S44 and processing step S64 perform the same processing as processing steps S13 to S43 and processing step S63 of the third embodiment of FIG. Therefore, only the processing step S54, which is the difference from the third embodiment, will be described.
- the processing step S54 instead of adjusting the intensity value of each pixel using the expression (1) for the image 8, the image 3 is emphasized by using the tone curve adjustment.
- the oil leak detection method of the present embodiment can obtain the same effects as those of the third embodiment, and since tone curve adjustment is incorporated in commercially available image processing software, it is possible to use these software exclusively. It is expected that you can obtain the confirmation of the oil leakage site with a simple adjustment without making the software.
- the oil leak detection method according to the fifth embodiment of the present invention will be described with reference to FIG.
- the configuration of the oil leak detection device 100 is the same as that of the first embodiment, and only the oil leak detection method is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
- FIG. 11 is a diagram showing a series of processing steps of the oil leakage detection method according to the fifth embodiment of the present invention.
- processing step S65 and processing step S75 carry out the same processing as processing step S61 and processing step S71 in the first embodiment of FIG.
- the processing contents from processing step S15 to processing step S55 are different from those of the first embodiment.
- the ultraviolet light source is irradiated with the intensity P1
- an image is taken by the image pickup device 2 and stored as the image 11.
- an ultraviolet light source is irradiated with an intensity P2
- an image is photographed by the image pickup device 2 and stored as an image 12.
- the ultraviolet light source in process step S15 and process step S35 can be electrically controlled to change the intensity. Further, the distance between the ultraviolet light source and the measurement object can be changed. At this time, different light sources may be used.
- processing step S55 the difference between the intensity values of the blue components of the images 11 and 12 is obtained for each pixel. Then, the black-and-white post-subtraction image 13 is obtained.
- the same effect as that of the first embodiment can be obtained, and the control of the ultraviolet light source does not need to be turned on/off. Therefore, the apparatus can be simplified. be able to.
- the flowchart of the oil leak detection method according to the sixth embodiment shown in FIG. 12 differs from the flowchart of the oil leak detection method according to the fifth embodiment shown in FIG. 11 only in processing step S65.
- the image 13 is processed using the tone curve adjustment.
- the oil leak detection apparatus of the present embodiment can obtain the same effects as those of the fifth embodiment, and the tone curve adjustment is installed in commercially available image processing software. It is expected that you can obtain the confirmation of the oil leakage site with a simple adjustment without making the software.
- a flowchart of the oil leakage detection method according to the sixth embodiment will be described with reference to FIG.
- the configuration of the oil leak detection device 100 is the same as that of the first embodiment, and only the oil leak detection method is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
- the image 14 when the oil leak 8 does not adhere to the surface of the object 1 when the ultraviolet light source 2 is irradiated is stored in the storage unit.
- the ultraviolet light source 2 is irradiated in processing step S27, an image is taken by the image pickup device 2 in processing step S37, and the image 15 is stored.
- processing step S47 for image 14 and image 15, the intensity value of the blue component of each image is calculated for each pixel.
- a black and white post-subtraction image 16 is obtained.
- the equation (1) is applied.
- the oil leak detection apparatus of the present embodiment can obtain the same effect as that of the first embodiment, and in particular, when the image of the same portion can be taken every time by the installation type apparatus, only one image is taken. This simplifies the detection process.
- Example 8 shown in FIG. 14 the cooperative processing by the equation (1) of the processing step S57 of FIG. 13 adopts the cooperative processing by the tone curve adjustment of the processing step S58.
- the oil leak detection apparatus of the present embodiment can obtain the same effects as those of the seventh embodiment, and further, since tone curve adjustment is incorporated in commercially available image processing software, if these softwares are used, exclusive use is possible. It is expected that you can obtain the confirmation of the oil leakage site with a simple adjustment without making the software.
- the oil leak detection device is, in short, "an oil leak detection device for detecting oil leak in oil-filled equipment, An ultraviolet light source that irradiates the oil-filled device with ultraviolet light, an imager that captures the oil-filled device, a control device that controls the operation of the ultraviolet light source and the imager, and an image captured by the imager.
- An ultraviolet light source that irradiates the oil-filled device with ultraviolet light
- an imager that captures the oil-filled device
- a control device that controls the operation of the ultraviolet light source and the imager
- an image captured by the imager A storage device, an image processing device that processes an image stored in the storage device, and a display device that displays a processing result of the image processing device,
- the image processing apparatus controls the oil-filled device under a shooting condition different from a first image obtained when the oil-filled device is shot by irradiating the ultraviolet light source.
- An image representing the intensity value difference is acquired by acquiring the intensity value difference between the captured second image and the intensity value of the blue component, and the contrast of the image representing the intensity value difference is adjusted to a predetermined value.
- An oil leak detection device that recognizes a portion that is larger than the threshold value as an oil leak adhesion portion as compared with the threshold value.
- the second image of the oil-filled device is the image 1 in processing step S21 in the first embodiment of FIG. 3, the image 1 in processing step S22 in the second embodiment of FIG. 6, and the third embodiment of FIG.
- image 11 in step S25 or image 12 in processing step S45, either image 11 in processing step S26 or image 12 in processing step S46 in the sixth embodiment of FIG. 12, or processing step S17 in the seventh embodiment of FIG. 14 means the image 14 in the processing step S18 in the eighth embodiment of FIG.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
The purpose of the present invention is to provide a leakage oil detection apparatus and a leakage oil detection method for detecting leakage oil with high sensitivity, even in cases when there is a significant amount of background noise from afternoon sunlight. The present invention is a leakage oil detection apparatus for detecting leakage oil from oil-filled equipment, said leakage oil detection apparatus being characterized by comprising a UV light source that irradiates the oil-filled equipment with UV light, an imaging device that captures images of the oil-filled equipment, a control device that controls the operation of the UV light source and the imaging device, a storage device that stores the images captured by the imaging device, an image processing device that processes the images stored in the storage device, and a display device that displays the processing results from the image processing device, wherein the image processing device: acquires the intensity value differentials for the intensity values of the blue components between a first image obtained by capturing an image of the oil-filled equipment during irradiation by the UV light source and a second image captured of the oil-filled equipment under imaging conditions different from the imaging conditions for the first image to thereby acquire an image expressing the intensity value differentials; adjusts the contrast of the image expressing the intensity value differentials; compares the values against a pre-set threshold value, and identifies sites having a value greater than the threshold value as leakage oil adhesion sites.
Description
本発明は、貯油タンクや変圧器等の油入機器に適用されるのに好適な漏油検出装置及び漏油検出方法に関する。
The present invention relates to an oil leakage detection device and an oil leakage detection method suitable for being applied to oil-filled equipment such as oil storage tanks and transformers.
従来から貯油タンクや変圧器等の油入機器では、劣化或いは事故等により、油漏れ(漏油)が発生する懸念があった。漏油は、環境汚染や災害につながる可能性があるため、初期段階の漏油を簡易、かつ、高精度に検出する技術が求められてきた。一般的に紫外光を油に照射して放出される蛍光を検出することで漏油を検出する技術があるが、昼間の太陽光によるバックグランドノイズが大きい場合には漏油の検出精度が低下する。
▽ Conventionally, there was a concern that oil leakage (oil leakage) may occur due to deterioration or accidents in oil-filled equipment such as oil storage tanks and transformers. Since oil leakage may lead to environmental pollution and disasters, a technique for easily and highly accurately detecting oil leakage at the initial stage has been required. In general, there is a technology to detect oil leaks by detecting the fluorescence emitted by irradiating oil with ultraviolet light, but the accuracy of oil leaks decreases when background noise from sunlight during the day is large. To do.
この問題を解決する技術として特許文献1に記載されたものがある。この文献には、可視光カメラのシャッター時間幅及びタイミングを決定するトリガー信号を備え、トリガー信号と同期した照射タイミング可視光カメラが30コマ/秒で画像を取り込む。そして制御部が連続する偶数コマと奇数コマのいずれかのトリガー信号と同期して1.7ms~24msのゲート幅で発光動作信号を発生させる励起光源照射における画像と、照射しない場合に得られる画像との両画像の輝度の差分で漏油を判別する技術が記載されている。
There is a technique described in Patent Document 1 as a technique for solving this problem. This document includes a trigger signal for determining the shutter time width and timing of the visible light camera, and the irradiation timing visible light camera synchronized with the trigger signal captures an image at 30 frames/sec. Then, an image of the excitation light source irradiation in which the control unit generates the light emission operation signal with the gate width of 1.7 ms to 24 ms in synchronization with the trigger signal of either the even-numbered frame or the odd-numbered frame and the image obtained when the irradiation is not performed. There is described a technique for discriminating oil leakage based on a difference in luminance between both images.
しかし、特許文献1に記載の技術は、太陽光照射する環境で高強度な励起光源を利用しないと、対象物表面に付着した薄い油膜の検出が困難である。これは発明者の実験結果により得た図1に示すことから分かる。本実験の条件は、屋外:環境照度3850ルクス、紫外光強度1920μW/cm2、油の膜厚は約1mmである。
However, with the technique described in Patent Document 1, it is difficult to detect a thin oil film attached to the surface of an object unless a high-intensity excitation light source is used in an environment where sunlight is irradiated. This can be seen from what is shown in FIG. 1 obtained from the experimental results of the inventor. The conditions of this experiment are outdoor: ambient illuminance of 3850 lux, ultraviolet light intensity of 1920 μW/cm 2, and oil film thickness of about 1 mm.
実験手法としては、市販の紫外光LEDライトを用いて油が付着した対象物の表面に照射する。紫外光LEDライト、カメラと対象物を固定する。
As an experimental method, a commercially available ultraviolet LED light is used to irradiate the surface of the object on which the oil is attached. UV light LED light, fix the camera and the object.
まず、LEDライトを照射しない場合について、カメラで撮影すると、図1上方の左側の画像が得られた。次に、LEDライトを照射して、同じようにカメラで撮影すると、図1上方の右側の画像が得られた。この二枚画像に対して、画素ごとで輝度を算出し差分した後得られた画像は図1下方に示すように漏油を判別することが困難であった。
First, when shooting with a camera when the LED light was not illuminated, the image on the left side of the upper part of Fig. 1 was obtained. Next, when the LED light was irradiated and the image was similarly taken by the camera, the image on the right side in the upper part of FIG. 1 was obtained. It was difficult to discriminate oil leakage in the image obtained after calculating and subtracting the luminance for each pixel from these two images, as shown in the lower part of FIG.
本発明の目的は、昼間の太陽光によるバックグランドノイズが大きい場合でも、漏油を高感度で検出する漏油検出装置及び漏油検出方法を提供することにある。
An object of the present invention is to provide an oil leakage detection device and an oil leakage detection method that detect oil leakage with high sensitivity even when background noise due to sunlight in the daytime is large.
以上のことから本発明においては「油入機器の漏油を検出する漏油検出装置であって、油入機器に紫外光を照射する紫外光源と、油入機器を撮影する撮像機と、紫外光源及び撮像機の動作を制御する制御装置と、撮像機で撮像した画像を保存する記憶装置と、記憶装置で保存された画像を処理する画像処理装置と、画像処理装置での処理結果を表示する表示装置と、で構成され、画像処理装置は、紫外光源を照射して油入機器を撮影する場合に得られる第1の画像と、第1の画像の撮影条件とは相違する撮影条件で油入機器を撮影した第2の画像との強度値差分を青成分の強度値で取得することで強度値差分を表す画像を取得し、強度値差分を表す画像に対してコントラストを調整し、予め定めた閾値と比較して閾値より大きい部位を漏油付着部位と認識することを特徴とする漏油検出装置」としたものである。
From the above, in the present invention, "an oil leak detection device for detecting an oil leak of an oil-filled device, which emits ultraviolet light to the oil-filled device, an imaging device for photographing the oil-filled device, and an ultraviolet light source. A control device that controls the operation of the light source and the image pickup device, a storage device that saves an image captured by the image pickup device, an image processing device that processes the image stored in the storage device, and a processing result of the image processing device And an image processing device configured to display a first image obtained when an oil-filled device is photographed by irradiating an ultraviolet light source, and a photographing condition different from the photographing condition of the first image. An image representing the intensity value difference is acquired by acquiring the intensity value difference between the second image obtained by photographing the oil-filled device and the intensity value of the blue component, and the contrast is adjusted with respect to the image representing the intensity value difference. An oil leakage detection device characterized by recognizing a portion larger than the threshold value as an oil leakage adhesion portion as compared with a predetermined threshold value".
また本発明においては「油入機器の漏油を検出する漏油検出方法であって、紫外光を照射して油入機器を撮影する場合に得られる第1の画像と、前記第1の画像の撮影条件とは相違する撮影条件で前記油入機器を撮影した第2の画像との強度値差分を青成分の強度値で取得することで強度値差分を表す画像を取得し、前記強度値差分を表す画像に対してコントラストを調整し、予め定めた閾値と比較して閾値より大きい部位を漏油付着部位と認識する漏油検出方法」としたものである。
Further, in the present invention, "a method for detecting an oil leak in an oil-filled device, which is a first image obtained when an oil-filled device is photographed by irradiating ultraviolet light, and the first image An image representing the intensity value difference is acquired by acquiring the intensity value difference between the second image obtained by capturing the oil-filled device under the image capturing condition different from the image capturing condition described above by the intensity value of the blue component, and the intensity value The contrast of the image representing the difference is adjusted, and a method for detecting an oil leak in which a portion larger than the threshold value is recognized as an oil leak adhesion portion by comparing with a predetermined threshold value".
本発明によれば、昼間の太陽光によるバックグランドノイズが大きい場合でも、漏油を高感度で検出することのできる漏油検出装置及び漏油検出方法を実現することが可能となる。
According to the present invention, it is possible to realize an oil leak detection device and an oil leak detection method capable of detecting oil leak with high sensitivity even when background noise due to sunlight in the daytime is large.
以下、図面を用いて本発明の実施例に係る漏油検出装置及び漏油検出方法について説明する。なお、各実施例において同一構成部品には同符号を使用する。
Hereinafter, an oil leak detection device and an oil leak detection method according to an embodiment of the present invention will be described with reference to the drawings. The same reference numerals are used for the same components in each embodiment.
本実施例では変電所内の油入変圧器を例として油入機器の表面に付着した薄い油膜を検査することについて、図2から図5を用いて説明する。
In this embodiment, taking an oil-filled transformer in a substation as an example to inspect a thin oil film attached to the surface of an oil-filled device will be described with reference to FIGS. 2 to 5.
図2は、本発明の実施例1に係る漏油検出装置100の概略構成例を示す図である。この場合、検査対象物1は、変圧器、コンデンサ、GIS(ガス絶縁開閉装置)の油圧操作器、整流器、インバータ、コンバータ等の油入機器である。本実施例では、変電所の中に配置されている油入変圧器を検査対象物1として説明する。
FIG. 2 is a diagram showing a schematic configuration example of the oil leakage detection device 100 according to the first embodiment of the present invention. In this case, the inspection object 1 is an oil-filled device such as a transformer, a capacitor, a hydraulic operating device of GIS (gas insulated switchgear), a rectifier, an inverter, a converter, or the like. In this embodiment, the oil-filled transformer arranged in the substation will be described as the inspection object 1.
漏油検出装置100は、紫外光源2、撮像機3、各装置2、3の動作を制御する制御装置4、撮像した画像を保存する記憶装置5、保存された画像を処理する画像処理装置6、処理結果を表示する表示装置7で構成される。本発明では、係る漏油検出装置100により検査対象物1の表面に付着した漏油8を撮影するとともに、検査結果を表示装置7に表示する。なお紫外光源2、撮像機3、あるいは表示装置7を除いた漏油検出装置100の構成部位は、多くの場合に計算機により構成される。
The oil leak detection device 100 includes an ultraviolet light source 2, an image pickup device 3, a control device 4 that controls the operations of the devices 2 and 3, a storage device 5 that stores a captured image, and an image processing device 6 that processes the stored image. , A display device 7 for displaying the processing result. In the present invention, the oil leak detection device 100 captures an image of the oil leak 8 adhering to the surface of the inspection object 1 and displays the inspection result on the display device 7. The constituent parts of the oil leak detection device 100 excluding the ultraviolet light source 2, the image pickup device 3, or the display device 7 are often configured by a computer.
このうち紫外光源2は、ブラックライトやLED紫外光源及び紫外光成分が含まれるランプに可視光カットフィルタ装着などを利用することができる。撮像機3は、可視光を撮影するデジタルカメラや監視カメラ等の汎用品を利用することができる。なお、カラー撮像機能を有するのが望ましい。
Of these, the UV light source 2 can be a black light, an LED UV light source, or a lamp that contains UV light components, such as a visible light cut filter. The image pickup device 3 can be a general-purpose product such as a digital camera or a surveillance camera that shoots visible light. Note that it is desirable to have a color imaging function.
図3は、本発明の実施例1に係る漏油検出方法の一連の処理手順を示す図である。これらの手順は、検査対象物1への照射から漏油の有無判定に至る、計算機の演算部を用いて実施される一連の手順を示している。
FIG. 3 is a diagram showing a series of processing steps of the oil leakage detection method according to the first embodiment of the present invention. These procedures show a series of procedures performed from the irradiation of the inspection object 1 to the determination of the presence/absence of oil leakage, which is performed using the arithmetic unit of the computer.
図3のフローチャートにおいて、最初の処理ステップS11では検査対象物1へ紫外光源2から紫外光を照射しない状態を保ち、この状態で処理ステップS21において撮像機3で画像撮影し、得られた画像1を記憶装置5に保存する。この時の画像1は、例えば昼間の太陽光で撮影したものである。
In the flowchart of FIG. 3, in the first processing step S11, the inspection object 1 is kept in a state in which the ultraviolet light source 2 is not irradiated with ultraviolet light, and in this state, an image is taken by the image pickup device 3 in the processing step S21, and the obtained image 1 is obtained. Is stored in the storage device 5. The image 1 at this time is taken by, for example, sunlight in the daytime.
次の処理ステップS31では検査対象物1へ紫外光源2を照射し、この照射状態で処理ステップS41において撮像機3で画像撮影し、得られた画像2を記憶装置5に保存する。この時の画像2は、紫外光で撮影したものである。
In the next processing step S31, the inspection object 1 is irradiated with the ultraviolet light source 2, and in this irradiation state, an image is taken by the image pickup device 3 in the processing step S41, and the obtained image 2 is stored in the storage device 5. Image 2 at this time was taken with ultraviolet light.
なお画像1と画像2は、いずれも同じ検査対象物1を同じ角度、距離などの同一条件の下で撮像したものであり、画像上の各部位は対応部位を示していることは言うまでもない。また2つの画像は画像領域を縦横にm×n分割した小領域ごとにデジタル情報化されて記憶装置5に保存されている。各小領域の情報はこの領域の輝度(強度)に関する情報を含み、輝度の情報は例えば256諧調の情報として表されている。
It is needless to say that both Image 1 and Image 2 are images of the same inspection object 1 taken under the same conditions such as the same angle and distance, and that each part on the image shows a corresponding part. Further, the two images are stored in the storage device 5 as digital information for each small area obtained by vertically and horizontally dividing the image area into m×n. The information of each small area includes information on the brightness (intensity) of this area, and the brightness information is represented as, for example, 256 gradation information.
次に処理ステップS51では、2つの画像1、2の対応する小領域ごとに輝度(強度)値の差分を求める。ただし、ここでの差分は各小領域における輝度(強度)に関する情報のうち青色成分についての差分とされる。そうすることで差分から得られる白黒の差分画像3が作成、保存される。
Next, in processing step S51, a difference in luminance (intensity) value is obtained for each of the corresponding small areas of the two images 1 and 2. However, the difference here is the difference for the blue component of the information about the luminance (intensity) in each small area. By doing so, a black-and-white difference image 3 obtained from the difference is created and saved.
図4に、365nmのピーク値をもつ紫外光源を変圧器用鉱油に照射した際に得られたスペクトルのポーチ図を示す。405nm付近に最も強いピークが観察された。この波長では青色が主成分である。そのため、カラー撮像機では、内部に装着した赤(R)、緑(G)、青(B)の三色カラーフィルタで実物の色情報を測定できる。例えば、青い光では、得られた画像上に、青(B)の強度値は最も大きい。青い成分以外の部位と比較すると、青(B)の強度値の差分が最も大きい。このように、青い成分の強度値を利用することで画像1と画像2の差の最大化を図ることができる。
Fig. 4 shows a pouch diagram of the spectrum obtained when a transformer mineral oil was irradiated with an ultraviolet light source having a peak value of 365 nm. The strongest peak was observed around 405 nm. Blue is the main component at this wavelength. Therefore, in the color image pickup device, the color information of the actual object can be measured by the three color filters of red (R), green (G), and blue (B) mounted inside. For example, with blue light, the intensity value of blue (B) is the highest on the resulting image. Compared with the parts other than the blue component, the difference in the intensity value of blue (B) is the largest. As described above, the difference between the image 1 and the image 2 can be maximized by using the intensity value of the blue component.
但し、図1にも示した通り薄い油膜の場合には差分後の画像3では油の部位を確認できない。そのため、この差分後の画像に対してさらに画像処理を行う。
However, as shown in Fig. 1, in the case of a thin oil film, the oil part cannot be confirmed in image 3 after the difference. Therefore, image processing is further performed on the image after the difference.
図2に戻り、処理ステップS61では、画像3に対して、(1)式を利用して、各画素の強度値を調整する。なお(1)式において、Iは調整する前の画像3の各画素の強度値であり、I´は調整後の画素の強度値である。γは、1未満の係数である。
[数1]
I´=255(I/255)γ
γ<1・・・・・・・・・・・・・・(1)
調整後の画像は、画像4として保存される。このとき、差分後画像3は、全体的に暗いので、(1)式を利用すると画像全体的に明るくなる。 Returning to FIG. 2, in the processing step S61, the intensity value of each pixel is adjusted for theimage 3 using the equation (1). In the equation (1), I is the intensity value of each pixel of the image 3 before adjustment, and I′ is the intensity value of the pixel after adjustment. γ is a coefficient less than 1.
[Equation 1]
I′=255 (I/255) γ
γ <1.........(1)
The adjusted image is saved asimage 4. At this time, the post-difference image 3 is dark as a whole, so that the image becomes bright as a whole by using the expression (1).
[数1]
I´=255(I/255)γ
γ<1・・・・・・・・・・・・・・(1)
調整後の画像は、画像4として保存される。このとき、差分後画像3は、全体的に暗いので、(1)式を利用すると画像全体的に明るくなる。 Returning to FIG. 2, in the processing step S61, the intensity value of each pixel is adjusted for the
[Equation 1]
I′=255 (I/255) γ
γ <1.........(1)
The adjusted image is saved as
なお定数値255について、これを255より小さい不変な数値、例えば、画像上各画素の強度値の最大値Imaxに変更しても特に問題がないが、255を利用すると、油付着部位と付着しない部位の差が大きくなる場合もある。
Regarding the constant value 255, there is no particular problem even if it is changed to an invariable numerical value smaller than 255, for example, the maximum value Imax of the intensity value of each pixel on the image, but if 255 is used, it does not adhere to the oil adhesion site. There may be a large difference between the parts.
図5に示すように、(1)式を用いて油付着部位Aと付着しない部位Bとの強度値の差を大きくすることができる。例えば、調整する前に、油付着部位画素Aの強度値は3、付着しない部位画素Bの強度値は1のとき、上記(1)式に代入してγの値は0.2とした場合、計算結果は油付着部位Aにおける画素の強度値は164、付着しない部位Bにおける画素の強度値は84になる。これに伴い差分が大きくなって、油付着部位Aと付着しない部位Bを判定しやすくなる。無論、画像により最も判定しやすいγの値が存在するため、それに合わせて最適なγを設定すればよい。本手法によって画像のコントラストを調整することで、漏油付着部位Aの検出感度を向上することができる。なお、(1)式のみではなくて他の類似の式も存在し、適宜利用可能である。
As shown in FIG. 5, it is possible to increase the difference in strength value between the oil-attached portion A and the non-attached portion B by using the equation (1). For example, when the intensity value of the oil-attached portion pixel A is 3 and the intensity value of the non-attached portion pixel B is 1 before the adjustment, the value of γ is set to 0.2 by substituting in the above formula (1) The calculation result shows that the intensity value of the pixel in the oil-attached portion A is 164, and the intensity value of the pixel in the non-attached portion B is 84. Along with this, the difference becomes large, and it becomes easier to determine the oil-attached portion A and the portion B that does not adhere. Of course, there is a value of γ that is most easy to determine depending on the image, so the optimum γ may be set accordingly. By adjusting the contrast of the image by this method, the detection sensitivity of the oil-leakage-attached portion A can be improved. Note that not only the equation (1) but also other similar equations exist and can be used as appropriate.
例えば、コントラストを調整する他の式として、(2)式と(3)式がある。
[数2]
I´=I+K×(I-(Imax+Imin)/2) (2)
但し、I>(Imax+Imin)/2
[数3]
I´=I-K×((Imax+Imin)/2-I) (3)
但し、I<(Imax+Imin)/2
基本的に、画像の画素ごとの強度値を利用して、数学的な計算を行うことで、油付着部位Aと付着しない部位Bの強度値の差を大きくして、いわゆるコントラストを調整すればよい。 For example, as other formulas for adjusting the contrast, there are formula (2) and formula (3).
[Equation 2]
I′=I+K×(I−(Imax+Imin)/2) (2)
However, I>(Imax+Imin)/2
[Equation 3]
I′=I−K×((Imax+Imin)/2−I) (3)
However, I<(Imax+Imin)/2
Basically, by performing a mathematical calculation using the intensity value of each pixel of the image, the difference between the intensity values of the oil adhered portion A and the non-adhered portion B can be increased to adjust the so-called contrast. Good.
[数2]
I´=I+K×(I-(Imax+Imin)/2) (2)
但し、I>(Imax+Imin)/2
[数3]
I´=I-K×((Imax+Imin)/2-I) (3)
但し、I<(Imax+Imin)/2
基本的に、画像の画素ごとの強度値を利用して、数学的な計算を行うことで、油付着部位Aと付着しない部位Bの強度値の差を大きくして、いわゆるコントラストを調整すればよい。 For example, as other formulas for adjusting the contrast, there are formula (2) and formula (3).
[Equation 2]
I′=I+K×(I−(Imax+Imin)/2) (2)
However, I>(Imax+Imin)/2
[Equation 3]
I′=I−K×((Imax+Imin)/2−I) (3)
However, I<(Imax+Imin)/2
Basically, by performing a mathematical calculation using the intensity value of each pixel of the image, the difference between the intensity values of the oil adhered portion A and the non-adhered portion B can be increased to adjust the so-called contrast. Good.
図3のフローチャートに戻り、処理ステップS71では調整後の画像4における各画素の強度値I´を、漏油と判定する閾値Ithと比較して、Ithより大きい強度値I´の画素を漏油部位と認識する。
Returning to the flowchart of FIG. 3, in processing step S71, the intensity value I′ of each pixel in the adjusted image 4 is compared with a threshold value Ith for determining oil leakage, and pixels having an intensity value I′ larger than Ith are oil leaked. Recognize as a part.
なお本発明を実施するにあたり、図3のすべての手順を実施する必要はなくて、また実施する場所の状況に応じて、一部の手順のみを実施するものであってもよい。また油の種類によって、照射光源の波長と蛍光の色が違う場合、適切な光源とカメラの青、赤、緑を選択すると、本手法を適用することができる。
In implementing the present invention, it is not necessary to perform all the steps in FIG. 3, and only some of the steps may be performed depending on the situation of the place where the operation is performed. Moreover, when the wavelength of the irradiation light source and the color of fluorescence differ depending on the type of oil, this method can be applied by selecting an appropriate light source and blue, red, or green of the camera.
本実施例の漏油検出装置により、昼間の太陽光によるバックグランドノイズが大きい場合でも高精度に漏油の検出ができる。
The oil leak detection device of this embodiment enables highly accurate oil leak detection even when background noise due to sunlight in the daytime is large.
次に、本発明の実施例2に係る漏油検出方法について、図6、図7(a)、図7(b)、図8を用いて説明する。実施例2では、漏油検出装置100の構成は実施例1と同じであり、協調処理の手法のみが実施例1とは相違している。このため、実施例1との共通点は重複説明を省略する。
Next, an oil leakage detection method according to the second embodiment of the present invention will be described with reference to FIGS. 6, 7(a), 7(b) and 8. In the second embodiment, the configuration of the oil leakage detection device 100 is the same as that of the first embodiment, and only the method of the cooperative processing is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
図6は、本発明の実施例2に係る漏油検出方法の一連の処理手順を示す図である。この一連のフローでは、処理ステップS12から処理ステップS52まで、及び処理ステップS72は、実施例1の処理ステップS11から処理ステップS51まで、及び処理ステップS71と同じ処理を実施する。よって実施例1との相違部分である処理ステップS62のみ説明する。処理ステップS62では、トーンカーブ調整を利用して画像3を強調処理する。
FIG. 6 is a diagram showing a series of processing steps of the oil leakage detection method according to the second embodiment of the present invention. In this series of flows, processing steps S12 to S52 and processing step S72 perform the same processing as processing steps S11 to S51 and processing step S71 of the first embodiment. Therefore, only the processing step S62, which is a difference from the first embodiment, will be described. In processing step S62, the image 3 is emphasized by utilizing the tone curve adjustment.
トーンカーブ調整の考え方について、図7(a)と図7(b)の2種類の例で説明する。
図7(a)と図7(b)の左側には、調整する前の画像3の各小領域の強度値Iを入力輝度値として横軸に表記し、各小領域の各諧調における発生頻度を出力輝度値として縦軸に表記している。この特性は、各小領域の強度値Iを例えば256諧調で表記した時に、強度の各諧調における発生頻度をヒストグラムにより表記したものである。このヒストグラム表記によれば、低い諧調の輝度に発生頻度が集中しており、中間領域から高領域の諧調では発生頻度が極端に低下する。このことは、検出された諧調の幅が極端に小さく、諧調間の差分での判別が困難であることを表している。なお、図7(a)と図7(b)の左側の特性は、入出力間の相関が線形のカーブLで表されたものということができる。 The concept of tone curve adjustment will be described with reference to two types of examples shown in FIGS. 7A and 7B.
On the left side of FIGS. 7A and 7B, the intensity value I of each small region of theimage 3 before adjustment is shown as the input luminance value on the horizontal axis, and the frequency of occurrence in each gradation of each small region is shown. Is shown on the vertical axis as the output luminance value. This characteristic is that when the intensity value I of each small region is represented by 256 gradations, the frequency of occurrence of each intensity gradation is represented by a histogram. According to this histogram notation, the occurrence frequency concentrates on the luminance of low gradation, and the occurrence frequency decreases extremely in the gradation of the middle area to the high area. This means that the width of the detected gradation is extremely small and it is difficult to discriminate by the difference between the gradations. It can be said that the characteristics on the left side of FIGS. 7A and 7B are those in which the correlation between input and output is represented by a linear curve L.
図7(a)と図7(b)の左側には、調整する前の画像3の各小領域の強度値Iを入力輝度値として横軸に表記し、各小領域の各諧調における発生頻度を出力輝度値として縦軸に表記している。この特性は、各小領域の強度値Iを例えば256諧調で表記した時に、強度の各諧調における発生頻度をヒストグラムにより表記したものである。このヒストグラム表記によれば、低い諧調の輝度に発生頻度が集中しており、中間領域から高領域の諧調では発生頻度が極端に低下する。このことは、検出された諧調の幅が極端に小さく、諧調間の差分での判別が困難であることを表している。なお、図7(a)と図7(b)の左側の特性は、入出力間の相関が線形のカーブLで表されたものということができる。 The concept of tone curve adjustment will be described with reference to two types of examples shown in FIGS. 7A and 7B.
On the left side of FIGS. 7A and 7B, the intensity value I of each small region of the
このことから実施例2では、トーンカーブ調整により、特に低領域でのゲインが高くなるようなゲイン補正を行うものである。このうち図7(a)はその右側に示すように飽和特性のゲインを持たせ、図7(b)はその右側に示すように低領域でのゲインが高く、中間領域と高領域でのゲインが低くなるような、S字状の特性を持たせることにより、低領域での僅かな諧調の差を、拡大して出力可能としたものである。
Therefore, in the second embodiment, the gain correction is performed by adjusting the tone curve so that the gain becomes high especially in the low region. Of these, FIG. 7A gives a gain of saturation characteristic as shown on the right side thereof, and FIG. 7B shows a high gain in the low region as shown on the right side thereof, and a gain in the intermediate region and the high region. By providing an S-shaped characteristic that lowers the output, a slight difference in gradation in the low region can be enlarged and output.
上記したように、図7(a)の左側に示すヒストグラムを見ると、画像処理する前に差分した画像3の各画素の強度値は0の付近に集まっており、カーブL上に位置する点の入力輝度値と出力輝度値は同じである。これに対し図7(a)の右側に示すように、本画像に対して入力値の小さい領域、すなわち入力輝度値が0に近い領域で入力輝度値を大きい出力輝度値へ調整し、飽和特性を示すカーブL´の形のように調整すると漏油部位が鮮明に観察される。例えば、M点について、調整する前、入力輝度値と出力輝度値は両方ともmであるが、ゲインを高めることでM点をN点まで調整すると、入力輝度値m点の出力輝度値はnとなる。この結果、集中していたヒストグラムが平坦化されることになり、漏油付着部位と付着しない部位のコントラストが強くなる。
As described above, looking at the histogram shown on the left side of FIG. 7A, the intensity values of the respective pixels of the image 3 that have been subtracted before the image processing are gathered near 0, and the points located on the curve L. The input luminance value and the output luminance value of are the same. On the other hand, as shown on the right side of FIG. 7A, the input luminance value is adjusted to a large output luminance value in a region where the input value is small with respect to the main image, that is, a region where the input luminance value is close to 0, and the saturation characteristic is adjusted. When the shape is adjusted to the shape of the curve L', the oil leakage site is clearly observed. For example, before adjusting the M point, both the input brightness value and the output brightness value are m, but if the M point is adjusted to the N point by increasing the gain, the output brightness value at the input brightness value m point is n. Becomes As a result, the concentrated histogram is flattened, and the contrast between the oil-leakage-attached portion and the non-oil-attached portion is increased.
なお、図7(b)の右側に示すように、入力輝度値が255に近い領域のような入力値の大きい領域に、入力輝度値を小さい出力輝度値へ調整してもよい。例えば、M´点について、調整する前、入力輝度値と出力輝度値は両方ともm´、M´点をN´点まで調整すると、入力輝度値m´点の出力輝度値はn´となる。無論、最適な調整値に調整することが望まれる。
Note that, as shown on the right side of FIG. 7B, the input luminance value may be adjusted to a small output luminance value in a region having a large input value, such as a region where the input luminance value is close to 255. For example, before adjusting the M′ point, both the input brightness value and the output brightness value are m′, and if the M′ point is adjusted to the N′ point, the output brightness value at the input brightness value m′ point becomes n′. .. Of course, it is desirable to adjust to the optimum adjustment value.
なお出力輝度値は入力値の5倍以上の値に設定し、いわゆるトーンカーブの傾きは5以上に設定するのが効果的である。ただし、紫外光の強度、環境光の強度により、最適な値が存在するため、それに合わせて最適値を設定するのがよい。
Note that it is effective to set the output brightness value to a value that is 5 times the input value or more, and set the so-called tone curve slope to 5 or more. However, since there is an optimum value depending on the intensity of ultraviolet light and the intensity of ambient light, it is preferable to set the optimum value accordingly.
図8は本手法を利用して調整した画像の一例である。画像1と画像2に対して、各画像の青い(B)成分を画素ごとに強度値の差分を取り得られる白黒の差分画像3で観察できなかったものが、トーンカーブ調整を利用することで漏油部位が鮮明に観察される。また、上記の調整値を記憶し、自動調整も期待できる。
Fig. 8 is an example of an image adjusted using this method. For the image 1 and the image 2, the blue (B) component of each image could not be observed in the black and white difference image 3 in which the difference of the intensity value can be obtained for each pixel. The oil part is clearly observed. Further, the above adjustment values are stored, and automatic adjustment can be expected.
上記の通り、本実施例の漏油検出方法では実施例1と同様に昼間の太陽光によるバックグランドノイズが大きい場合でも高精度に漏油の検出が可能となる。なお、トーンカーブ調整については市販の画像処理ソフトに搭載されているため、それらのソフトを利用すると、専用のソフトを作製しなくても、簡単な調整で漏油部位の確認を得ることが期待できる。
As described above, according to the oil leak detection method of the present embodiment, it is possible to detect the oil leak with high accuracy even when the background noise due to sunlight in the daytime is large as in the case of the first embodiment. Note that the tone curve adjustment is installed in commercially available image processing software, so if you use these software, you can expect to obtain the confirmation of the oil leakage area with simple adjustment without making special software. it can.
本発明の実施例3に係る漏油検出方法について、図9を用いて説明する。実施例3では、漏油検出装置100の構成は実施例1と同じであり、漏油検出手法のみが実施例1とは相違している。このため、実施例1との共通点は重複説明を省略する。
The oil leak detection method according to the third embodiment of the present invention will be described with reference to FIG. In the third embodiment, the configuration of the oil leak detection device 100 is the same as that of the first embodiment, and only the oil leak detection method is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
図9のフローチャートにおいて、最初の処理ステップS13では検査対象物1へ紫外光源2から紫外光を照射する。このとき処理ステップS23では、撮像機2の前に405nmのフィルタを着用した状態で、撮像機3で画像撮影し、得られた画像6を記憶装置5に保存する。また処理ステップS33では、撮像機2の前に670nmのフィルタを着用した状態で、撮像機3で画像撮影し、得られた画像7を記憶装置5に保存する。
In the flowchart of FIG. 9, in the first processing step S13, the inspection object 1 is irradiated with ultraviolet light from the ultraviolet light source 2. At this time, in process step S23, an image is captured by the image capturing device 3 with the 405 nm filter being worn in front of the image capturing device 2, and the obtained image 6 is stored in the storage device 5. In process step S33, an image is captured by the image capturing device 3 with the 670 nm filter being worn in front of the image capturing device 2, and the obtained image 7 is stored in the storage device 5.
上記波長での撮影によれば、実施例1での説明の通り、蛍光の中心波長は405nmであるため670nmの波長では蛍光が完全に観察されない。これにより紫外光源照射の有無と同じ効果が得られる。なお処理ステップS32では、670nmの波長に限定しなくても良い。蛍光が観察されない波長ならその値は特定されない。
According to the imaging at the above wavelength, as described in Example 1, the central wavelength of fluorescence is 405 nm, so fluorescence is not completely observed at the wavelength of 670 nm. As a result, the same effect as the presence or absence of irradiation with an ultraviolet light source can be obtained. In the processing step S32, the wavelength need not be limited to 670 nm. If fluorescence is not observed, the value is not specified.
処理ステップS43では、画像6と画像7に対して、各画像の青成分の強度値を画素ごとに差分を取る。これにより白黒の差分後画像8が得られる。
In processing step S43, the difference between the intensity values of the blue components of the images 6 and 7 is calculated for each pixel. As a result, a black and white post-difference image 8 is obtained.
処理ステップS53では、画像8に対して(1)式を利用して、各画素の強度値を調整する。調整後の画像を画像9として保存する。
In processing step S53, the intensity value of each pixel is adjusted using the equation (1) for the image 8. The adjusted image is saved as image 9.
処理ステップS63では、調整後の画像9を用いて、漏油と判定する閾値Ithと比べ、Ithより大きい画素を漏油部位と認識する。
In processing step S63, the adjusted image 9 is used to recognize a pixel larger than Ith as an oil leakage site as compared with a threshold value Ith for determining oil leakage.
上記の処理を行うことで本実施例の漏油検出では、実施1と同じように昼間の太陽光によるバックグランドノイズが大きい場合でも高精度に漏油の検出ができる。且、紫外光源のオン・オフ制御は不要とすることができる。
By performing the above processing, the oil leak detection according to the present embodiment can detect the oil leak with high accuracy even when the background noise due to the sunlight in the daytime is large as in the case of the first embodiment. Moreover, the on/off control of the ultraviolet light source can be eliminated.
本発明の実施例4に係る漏油検出方法について、図10を用いて説明する。実施例4では、漏油検出装置100の構成は実施例1と同じであり、漏油検出手法のみが実施例1とは相違している。このため、実施例1との共通点は重複説明を省略する。
The oil leak detection method according to the fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment, the configuration of the oil leak detection device 100 is the same as that of the first embodiment, and only the oil leak detection method is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
図10は、本発明の実施例4に係る漏油検出方法の一連の処理手順を示す図である。この一連のフローでは、処理ステップS14から処理ステップS44まで、及び処理ステップS64は、図9の実施例3の処理ステップS13から処理ステップS43まで、及び処理ステップS63と同じ処理を実施する。よって実施例3との相違部分である処理ステップS54のみ説明する。処理ステップS54では、画像8に対して(1)式を利用して各画素の強度値を調整することに替わり、トーンカーブ調整を利用して画像3を強調処理する。
FIG. 10 is a diagram showing a series of processing steps of the oil leakage detection method according to the fourth embodiment of the present invention. In this series of flows, processing steps S14 to S44 and processing step S64 perform the same processing as processing steps S13 to S43 and processing step S63 of the third embodiment of FIG. Therefore, only the processing step S54, which is the difference from the third embodiment, will be described. In the processing step S54, instead of adjusting the intensity value of each pixel using the expression (1) for the image 8, the image 3 is emphasized by using the tone curve adjustment.
本実施例の漏油検出方法では、実施例3と同様な効果が得られることは勿論、さらにトーンカーブ調整については市販の画像処理ソフトに搭載されているため、それらのソフトを利用すると、専用のソフトを作製しなくても、簡単な調整で漏油部位の確認を得ることが期待できる。
The oil leak detection method of the present embodiment can obtain the same effects as those of the third embodiment, and since tone curve adjustment is incorporated in commercially available image processing software, it is possible to use these software exclusively. It is expected that you can obtain the confirmation of the oil leakage site with a simple adjustment without making the software.
本発明の実施例5に係る漏油検出方法について、図11を用いて説明する。実施例5では、漏油検出装置100の構成は実施例1と同じであり、漏油検出手法のみが実施例1とは相違している。このため、実施例1との共通点は重複説明を省略する。
The oil leak detection method according to the fifth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment, the configuration of the oil leak detection device 100 is the same as that of the first embodiment, and only the oil leak detection method is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
図11は、本発明の実施例5に係る漏油検出方法の一連の処理手順を示す図である。この一連のフローでは、処理ステップS65、処理ステップS75は、図3の実施例1の処理ステップS61、処理ステップS71と同じ処理を実施する。実施例1とは、処理ステップS15から処理ステップS55までの処理内容が相違する。
FIG. 11 is a diagram showing a series of processing steps of the oil leakage detection method according to the fifth embodiment of the present invention. In this series of flows, processing step S65 and processing step S75 carry out the same processing as processing step S61 and processing step S71 in the first embodiment of FIG. The processing contents from processing step S15 to processing step S55 are different from those of the first embodiment.
このフローでは、最初の処理ステップS15において、紫外光源を強度P1で照射し、処理ステップS25において、撮像機2で画像撮影して画像11として保存する。また次に処理ステップS35において、紫外光源を強度P2で照射し、処理ステップS45において、撮像機2で画像撮影して画像12として保存する。
In this flow, in the first processing step S15, the ultraviolet light source is irradiated with the intensity P1, and in the processing step S25, an image is taken by the image pickup device 2 and stored as the image 11. Further, next, in a processing step S35, an ultraviolet light source is irradiated with an intensity P2, and in a processing step S45, an image is photographed by the image pickup device 2 and stored as an image 12.
処理ステップS15と処理ステップS35の紫外光源は、電気的に制御し強度を変化させることができる。また紫外光源と測定物との距離を変化させることもできる。このとき異なる光源を利用してもよい。
The ultraviolet light source in process step S15 and process step S35 can be electrically controlled to change the intensity. Further, the distance between the ultraviolet light source and the measurement object can be changed. At this time, different light sources may be used.
処理ステップS55では、画像11と画像12に対して、各画像の青成分の強度値の差分を画素ごとに取る。そして白黒の差分後画像13が得られる。
In processing step S55, the difference between the intensity values of the blue components of the images 11 and 12 is obtained for each pixel. Then, the black-and-white post-subtraction image 13 is obtained.
上記の通り、本実施例の漏油検出装置では、実施例1と同様な効果が得られることは勿論、且、紫外光源のオン・オフ制御はいらなくてもよいため、装置の簡略化を図ることができる。
As described above, in the oil leak detection apparatus of the present embodiment, the same effect as that of the first embodiment can be obtained, and the control of the ultraviolet light source does not need to be turned on/off. Therefore, the apparatus can be simplified. be able to.
図12に示す実施例6に係る漏油検出方法のフローチャートは、図11に示す実施例5に係る漏油検出方法のフローチャートと、処理ステップS65のみが相違する。
The flowchart of the oil leak detection method according to the sixth embodiment shown in FIG. 12 differs from the flowchart of the oil leak detection method according to the fifth embodiment shown in FIG. 11 only in processing step S65.
図12の処理ステップS65では、トーンカーブ調整を利用して画像13を処理する。
In the processing step S65 of FIG. 12, the image 13 is processed using the tone curve adjustment.
本実施例の漏油検出装置では、実施例5と同様な効果が得られることは勿論、さらにトーンカーブ調整については市販の画像処理ソフトに搭載されているため、それらのソフトを利用すると、専用のソフトを作製しなくても、簡単な調整で漏油部位の確認を得ることが期待できる。
The oil leak detection apparatus of the present embodiment can obtain the same effects as those of the fifth embodiment, and the tone curve adjustment is installed in commercially available image processing software. It is expected that you can obtain the confirmation of the oil leakage site with a simple adjustment without making the software.
図13を用いて、実施例6に係る漏油検出方法のフローチャートについて説明する。実施例6では、漏油検出装置100の構成は実施例1と同じであり、漏油検出手法のみが実施例1とは相違している。このため、実施例1との共通点は重複説明を省略する。
A flowchart of the oil leakage detection method according to the sixth embodiment will be described with reference to FIG. In the sixth embodiment, the configuration of the oil leak detection device 100 is the same as that of the first embodiment, and only the oil leak detection method is different from the first embodiment. Therefore, the common points with the first embodiment will not be described repeatedly.
図13のフローでは、最初の処理ステップS17において、紫外光源2を照射する際に、対象物1表面に漏油8が付着しない場合の画像14を記憶部に保存する。
In the flow of FIG. 13, in the first processing step S17, the image 14 when the oil leak 8 does not adhere to the surface of the object 1 when the ultraviolet light source 2 is irradiated is stored in the storage unit.
そのうえで、処理ステップS27において紫外光源2を照射し、処理ステップS37において撮像機2で画像撮影し、画像15として保存する。
After that, the ultraviolet light source 2 is irradiated in processing step S27, an image is taken by the image pickup device 2 in processing step S37, and the image 15 is stored.
処理ステップS47では、画像14と画像15に対して、各画像の青成分の強度値を画素ごとに差分を取る。白黒の差分後画像16が得られる。なお以降の協調処理では、(1)式を適用している。
In processing step S47, for image 14 and image 15, the intensity value of the blue component of each image is calculated for each pixel. A black and white post-subtraction image 16 is obtained. In the following cooperative processing, the equation (1) is applied.
本実施例の漏油検出装置により、実施例1と同様な効果が得られることは勿論、特に、据え付けタイプの装置で、毎回同じ部位の画像を撮影ができる場合に、一枚画像のみ撮影することで、検出プロセスの簡略化を図る。
The oil leak detection apparatus of the present embodiment can obtain the same effect as that of the first embodiment, and in particular, when the image of the same portion can be taken every time by the installation type apparatus, only one image is taken. This simplifies the detection process.
図14に示す実施例8では、図13の処理ステップS57の(1)式による協調処理が、処理ステップS58のトーンカーブ調整による協調処理を採用したものである。
In Example 8 shown in FIG. 14, the cooperative processing by the equation (1) of the processing step S57 of FIG. 13 adopts the cooperative processing by the tone curve adjustment of the processing step S58.
本実施例の漏油検出装置では、実施例7と同様な効果が得られることは勿論、さらにトーンカーブ調整については市販の画像処理ソフトに搭載されているため、それらのソフトを利用すると、専用のソフトを作製しなくても、簡単な調整で漏油部位の確認を得ることが期待できる。
The oil leak detection apparatus of the present embodiment can obtain the same effects as those of the seventh embodiment, and further, since tone curve adjustment is incorporated in commercially available image processing software, if these softwares are used, exclusive use is possible. It is expected that you can obtain the confirmation of the oil leakage site with a simple adjustment without making the software.
以上の実施例1から実施例8による漏油検出装置は、要するに「油入機器の漏油を検出する漏油検出装置であって、
前記油入機器に紫外光を照射する紫外光源と、前記油入機器を撮影する撮像機と、前記紫外光源及び前記撮像機の動作を制御する制御装置と、前記撮像機で撮像した画像を保存する記憶装置と、前記記憶装置で保存された画像を処理する画像処理装置と、前記画像処理装置での処理結果を表示する表示装置と、で構成され、
前記画像処理装置は、前記紫外光源を照射して前記油入機器を撮影する場合に得られる第1の画像と、前記第1の画像の撮影条件とは相違する撮影条件で前記油入機器を撮影した第2の画像との強度値差分を青成分の強度値で取得することで強度値差分を表す画像を取得し、前記強度値差分を表す画像に対してコントラストを調整し、予め定めた閾値と比較して閾値より大きい部位を漏油付着部位と認識する漏油検出装置」のように構成されたものである。 The oil leak detection device according to the first to eighth embodiments described above is, in short, "an oil leak detection device for detecting oil leak in oil-filled equipment,
An ultraviolet light source that irradiates the oil-filled device with ultraviolet light, an imager that captures the oil-filled device, a control device that controls the operation of the ultraviolet light source and the imager, and an image captured by the imager. A storage device, an image processing device that processes an image stored in the storage device, and a display device that displays a processing result of the image processing device,
The image processing apparatus controls the oil-filled device under a shooting condition different from a first image obtained when the oil-filled device is shot by irradiating the ultraviolet light source. An image representing the intensity value difference is acquired by acquiring the intensity value difference between the captured second image and the intensity value of the blue component, and the contrast of the image representing the intensity value difference is adjusted to a predetermined value. An oil leak detection device that recognizes a portion that is larger than the threshold value as an oil leak adhesion portion as compared with the threshold value".
前記油入機器に紫外光を照射する紫外光源と、前記油入機器を撮影する撮像機と、前記紫外光源及び前記撮像機の動作を制御する制御装置と、前記撮像機で撮像した画像を保存する記憶装置と、前記記憶装置で保存された画像を処理する画像処理装置と、前記画像処理装置での処理結果を表示する表示装置と、で構成され、
前記画像処理装置は、前記紫外光源を照射して前記油入機器を撮影する場合に得られる第1の画像と、前記第1の画像の撮影条件とは相違する撮影条件で前記油入機器を撮影した第2の画像との強度値差分を青成分の強度値で取得することで強度値差分を表す画像を取得し、前記強度値差分を表す画像に対してコントラストを調整し、予め定めた閾値と比較して閾値より大きい部位を漏油付着部位と認識する漏油検出装置」のように構成されたものである。 The oil leak detection device according to the first to eighth embodiments described above is, in short, "an oil leak detection device for detecting oil leak in oil-filled equipment,
An ultraviolet light source that irradiates the oil-filled device with ultraviolet light, an imager that captures the oil-filled device, a control device that controls the operation of the ultraviolet light source and the imager, and an image captured by the imager. A storage device, an image processing device that processes an image stored in the storage device, and a display device that displays a processing result of the image processing device,
The image processing apparatus controls the oil-filled device under a shooting condition different from a first image obtained when the oil-filled device is shot by irradiating the ultraviolet light source. An image representing the intensity value difference is acquired by acquiring the intensity value difference between the captured second image and the intensity value of the blue component, and the contrast of the image representing the intensity value difference is adjusted to a predetermined value. An oil leak detection device that recognizes a portion that is larger than the threshold value as an oil leak adhesion portion as compared with the threshold value".
ここで、油入機器を撮影した第2の画像とは、図3の実施例1では処理ステップS21における画像1、図6の実施例2では処理ステップS22における画像1、図9の実施例3では処理ステップS23における画像6あるいは処理ステップS33における画像7のいずれか、図10の実施例4では処理ステップS24における画像6あるいは処理ステップS34における画像7のいずれか、図11の実施例5では処理ステップS25における画像11あるいは処理ステップS45における画像12のいずれか、図12の実施例6では処理ステップS26における画像11あるいは処理ステップS46における画像12のいずれか、図13の実施例7では処理ステップS17における画像14、図14の実施例8では処理ステップS18における画像14を意味している。
Here, the second image of the oil-filled device is the image 1 in processing step S21 in the first embodiment of FIG. 3, the image 1 in processing step S22 in the second embodiment of FIG. 6, and the third embodiment of FIG. Then, either the image 6 in the processing step S23 or the image 7 in the processing step S33, the image 6 in the processing step S24 or the image 7 in the processing step S34 in the fourth embodiment of FIG. 10, and the processing in the fifth embodiment of FIG. Either image 11 in step S25 or image 12 in processing step S45, either image 11 in processing step S26 or image 12 in processing step S46 in the sixth embodiment of FIG. 12, or processing step S17 in the seventh embodiment of FIG. 14 means the image 14 in the processing step S18 in the eighth embodiment of FIG.
1:検査対象物、2:紫外光源、3:撮像機、4:制御装置、5:記憶装置、6:画像処理装置、7:表示装置、8:漏油、100:漏油検出装置
1: Inspection object, 2: Ultraviolet light source, 3: Imaging device, 4: Control device, 5: Storage device, 6: Image processing device, 7: Display device, 8: Oil leak, 100: Oil leak detection device
Claims (9)
- 油入機器の漏油を検出する漏油検出装置であって、
前記油入機器に紫外光を照射する紫外光源と、前記油入機器を撮影する撮像機と、前記紫外光源及び前記撮像機の動作を制御する制御装置と、前記撮像機で撮像した画像を保存する記憶装置と、前記記憶装置で保存された画像を処理する画像処理装置と、前記画像処理装置での処理結果を表示する表示装置と、で構成され、
前記画像処理装置は、前記紫外光源を照射して前記油入機器を撮影する場合に得られる第1の画像と、前記第1の画像の撮影条件とは相違する撮影条件で前記油入機器を撮影した第2の画像との強度値差分を青成分の強度値で取得することで強度値差分を表す画像を取得し、前記強度値差分を表す画像に対してコントラストを調整し、予め定めた閾値と比較して閾値より大きい部位を漏油付着部位と認識することを特徴とする漏油検出装置。 An oil leakage detection device for detecting oil leakage of oil-filled equipment,
An ultraviolet light source that irradiates the oil-filled device with ultraviolet light, an imager that captures the oil-filled device, a control device that controls the operation of the ultraviolet light source and the imager, and an image captured by the imager. A storage device, an image processing device that processes an image stored in the storage device, and a display device that displays a processing result of the image processing device.
The image processing apparatus controls the oil-filled device under a shooting condition different from a first image obtained when the oil-filled device is shot by irradiating the ultraviolet light source. An image representing the intensity value difference is acquired by acquiring the intensity value difference from the captured second image with the intensity value of the blue component, and the contrast is adjusted with respect to the image representing the intensity value difference, and it is determined in advance. An oil-leakage detecting apparatus, which recognizes a portion larger than a threshold as an oil-leakage-attached portion in comparison with a threshold. - 請求項1に記載の漏油検出装置であって、
前記第2の画像は、前記紫外光源を照射しない撮影条件で前記油入機器を撮影したものであることを特徴とする漏油検出装置。 The oil leakage detection device according to claim 1,
The oil leak detection device, wherein the second image is an image of the oil-filled device taken under imaging conditions in which the ultraviolet light source is not illuminated. - 請求項1に記載の漏油検出装置であって、
前記第2の画像は、前記撮像機の前に取り付けるフィルタの透過周波数が前記第1の画像におけるフィルタの透過周波数と相違する撮影条件で前記油入機器を撮影したものであることを特徴とする漏油検出装置。 The oil leakage detection device according to claim 1,
The second image is obtained by photographing the oil-filled device under a photographing condition in which a transmission frequency of a filter attached in front of the image pickup device is different from a transmission frequency of the filter in the first image. Oil leak detector. - 請求項1に記載の漏油検出装置であって、
前記第2の画像は、前記紫外光源の強度が前記第1の画像における前記紫外光源の強度と相違する撮影条件で前記油入機器を撮影したものであることを特徴とする漏油検出装置。 The oil leakage detection device according to claim 1,
The oil leak detection device, wherein the second image is an image of the oil-filled device taken under imaging conditions in which the intensity of the ultraviolet light source is different from the intensity of the ultraviolet light source in the first image. - 請求項1に記載の漏油検出装置であって、
前記第2の画像は、前記油入機器に漏油が生じていない状態で撮影したものであることを特徴とする漏油検出装置。 The oil leakage detection device according to claim 1,
The oil leakage detection device is characterized in that the second image is taken in a state where oil leakage does not occur in the oil-filled device. - 請求項1から請求項5のいずれか1項に記載の漏油検出装置であって、
前記コントラストの調整方法がトーンカーブ調整方法であることを特徴とする漏油検出装置。 The oil leakage detection device according to any one of claims 1 to 5,
An oil leak detection device, wherein the contrast adjustment method is a tone curve adjustment method. - 請求項1から請求項6のいずれか1項に記載の漏油検出装置であって、
前記コントラストの調整を行った後に、前記強度値差分を表す画像における入力輝度値が0近傍の領域で入力輝度値を大きい輝度値に調整しトーンカーブの傾きは5以上に設定することを特徴とする漏油検出装置。 The oil leakage detection device according to any one of claims 1 to 6,
After adjusting the contrast, the input brightness value is adjusted to a large brightness value in a region where the input brightness value in the image representing the intensity value difference is near 0, and the slope of the tone curve is set to 5 or more. Oil leakage detection device. - 請求項3に記載の漏油検出装置であって、
前記紫外光源を照射する際に、蛍光のみ透過するファイルタと蛍光を完全に透過しないファイルタを前記撮像機の前に装着することを特徴とする漏油検出装置。 The oil leakage detection device according to claim 3,
When irradiating the ultraviolet light source, a filer that transmits only fluorescence and a filer that does not completely transmit fluorescence are mounted in front of the imaging device. - 油入機器の漏油を検出する漏油検出方法であって、
紫外光を照射して前記油入機器を撮影する場合に得られる第1の画像と、前記第1の画像の撮影条件とは相違する撮影条件で前記油入機器を撮影した第2の画像との強度値差分を青成分の強度値で取得することで強度値差分を表す画像を取得し、前記強度値差分を表す画像に対してコントラストを調整し、予め定めた閾値と比較して閾値より大きい部位を漏油付着部位と認識する漏油検出方法。 An oil leakage detection method for detecting oil leakage in oil-filled equipment,
A first image obtained when the oil-filled device is photographed by irradiating with ultraviolet light; and a second image obtained by photographing the oil-filled device under photographing conditions different from the photographing conditions of the first image. An image representing the intensity value difference is acquired by acquiring the intensity value difference of the blue component intensity value, the contrast is adjusted with respect to the image representing the intensity value difference, and the threshold value is compared with a predetermined threshold value. An oil leak detection method that recognizes a large area as an oil leak adhesion area.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019024384A JP2020134189A (en) | 2019-02-14 | 2019-02-14 | Leakage oil detector and leakage oil detection method |
JP2019-024384 | 2019-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020166147A1 true WO2020166147A1 (en) | 2020-08-20 |
Family
ID=72045501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/043721 WO2020166147A1 (en) | 2019-02-14 | 2019-11-07 | Leakage oil detection apparatus and leakage oil detection method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020134189A (en) |
WO (1) | WO2020166147A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114062224A (en) * | 2021-11-19 | 2022-02-18 | 广东电网有限责任公司广州供电局 | Oil leakage oil detection system and method for oil-immersed power equipment |
CN116109566A (en) * | 2022-12-02 | 2023-05-12 | 浙江大华技术股份有限公司 | Oil pipeline oil leakage detection method and related device, imaging device and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010130399A (en) * | 2008-11-28 | 2010-06-10 | Sony Corp | Image processing apparatus, image processing method and image processing program |
JP2010190696A (en) * | 2009-02-18 | 2010-09-02 | Orient Burein Kk | Leakage detection device |
JP2013030158A (en) * | 2011-06-24 | 2013-02-07 | Tokyo Electron Ltd | Image processing method, image display method, image processing device, program, and computer recording medium |
JP5351081B2 (en) * | 2010-03-09 | 2013-11-27 | 株式会社四国総合研究所 | Oil leakage remote monitoring device and method |
JP2016066990A (en) * | 2014-09-22 | 2016-04-28 | 大日本印刷株式会社 | Evaluation method of tone correction, and arithmetic device |
JP2016090560A (en) * | 2014-10-29 | 2016-05-23 | 株式会社日立製作所 | Oil leakage detection device and oil leakage detection method |
JP2017116259A (en) * | 2015-12-21 | 2017-06-29 | 三菱電機株式会社 | Liquid leak detection device and power generation system |
WO2017217220A1 (en) * | 2016-06-16 | 2017-12-21 | パナソニックIpマネジメント株式会社 | Water leakage amount measurement apparatus and water leakage amount measurement method |
-
2019
- 2019-02-14 JP JP2019024384A patent/JP2020134189A/en active Pending
- 2019-11-07 WO PCT/JP2019/043721 patent/WO2020166147A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010130399A (en) * | 2008-11-28 | 2010-06-10 | Sony Corp | Image processing apparatus, image processing method and image processing program |
JP2010190696A (en) * | 2009-02-18 | 2010-09-02 | Orient Burein Kk | Leakage detection device |
JP5351081B2 (en) * | 2010-03-09 | 2013-11-27 | 株式会社四国総合研究所 | Oil leakage remote monitoring device and method |
JP2013030158A (en) * | 2011-06-24 | 2013-02-07 | Tokyo Electron Ltd | Image processing method, image display method, image processing device, program, and computer recording medium |
JP2016066990A (en) * | 2014-09-22 | 2016-04-28 | 大日本印刷株式会社 | Evaluation method of tone correction, and arithmetic device |
JP2016090560A (en) * | 2014-10-29 | 2016-05-23 | 株式会社日立製作所 | Oil leakage detection device and oil leakage detection method |
JP2017116259A (en) * | 2015-12-21 | 2017-06-29 | 三菱電機株式会社 | Liquid leak detection device and power generation system |
WO2017217220A1 (en) * | 2016-06-16 | 2017-12-21 | パナソニックIpマネジメント株式会社 | Water leakage amount measurement apparatus and water leakage amount measurement method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114062224A (en) * | 2021-11-19 | 2022-02-18 | 广东电网有限责任公司广州供电局 | Oil leakage oil detection system and method for oil-immersed power equipment |
CN116109566A (en) * | 2022-12-02 | 2023-05-12 | 浙江大华技术股份有限公司 | Oil pipeline oil leakage detection method and related device, imaging device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP2020134189A (en) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI617797B (en) | Oil spill detection system | |
US8451371B2 (en) | Exposure control for an imaging system | |
Hillers et al. | Real time arc-welding video observation system | |
US9530074B2 (en) | Flame detection system and method | |
CN105473049A (en) | Fluorescence observation apparatus | |
US9105105B2 (en) | Imaging device, imaging system, and imaging method utilizing white balance correction | |
US9025820B2 (en) | Image processing apparatus and image processing method | |
WO2020166147A1 (en) | Leakage oil detection apparatus and leakage oil detection method | |
JP5381565B2 (en) | Image processing apparatus, image processing program, and image processing method | |
JP2010079552A (en) | Image processor and image processing method | |
US6865287B1 (en) | Method for adjusting color in an image | |
JP2020086409A (en) | Unevenness correction data generation method and unevenness correction data generation system | |
CN101142610B (en) | Method and/or apparatus to improve the visual perception of an image displayed on a screen | |
EP3435055A1 (en) | Irregularity evaluating method and irregularity evaluating device | |
JP6993940B2 (en) | Oil spill detection system and oil spill detection method | |
KR20200081541A (en) | Imaging apparatus and driving method of the same | |
JP6504892B2 (en) | Imaging device | |
JP7096780B2 (en) | Oil spill detection device and oil spill detection method | |
RU2389151C1 (en) | Television camera for viewing in conditions of low illumination and/or low brightness of objects | |
CN116413006A (en) | Information acquisition method, evaluation/correction system and display screen control equipment | |
JP6788849B2 (en) | Imaging system and method for identifying ultraviolet light emitting points using it | |
CN117714662B (en) | Strobe Test Device | |
JP2018040877A (en) | Brightness adjusting device and brightness adjusting method | |
KR100263453B1 (en) | CRT focus inspection device and inspection method | |
US20250239198A1 (en) | Display control device, display control method, image processing system, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19915500 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19915500 Country of ref document: EP Kind code of ref document: A1 |