[go: up one dir, main page]

WO2020162365A1 - Surface-coated cutting tool having hard coating layer exhibiting superior deposition resistance, plastic-deformation resistance, and abnormal damage resistance - Google Patents

Surface-coated cutting tool having hard coating layer exhibiting superior deposition resistance, plastic-deformation resistance, and abnormal damage resistance Download PDF

Info

Publication number
WO2020162365A1
WO2020162365A1 PCT/JP2020/003749 JP2020003749W WO2020162365A1 WO 2020162365 A1 WO2020162365 A1 WO 2020162365A1 JP 2020003749 W JP2020003749 W JP 2020003749W WO 2020162365 A1 WO2020162365 A1 WO 2020162365A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
zrhf
highest
point
content ratio
Prior art date
Application number
PCT/JP2020/003749
Other languages
French (fr)
Japanese (ja)
Inventor
晃浩 村上
正樹 奥出
尚志 本間
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020004689A external-priority patent/JP2020128001A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2020162365A1 publication Critical patent/WO2020162365A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Definitions

  • the present invention has an impact high load acting on a cutting edge, for example, in high feed interrupted cutting of precipitation hardening stainless steel, a hard coating layer has excellent welding resistance, plastic deformation resistance and abnormal resistance.
  • the present invention relates to a surface-coated tool which has excellent cutting performance due to its damaging property over a long-term use.
  • the present application claims priority based on Japanese Patent Application No. 2019-020911 filed in Japan on February 7, 2019 and Japanese Patent Application No. 2020-004689 filed in Japan on January 15, 2020, and the contents thereof Is used here.
  • a Ti compound layer such as a Ti carbonitride (TiCN) layer formed by chemical vapor deposition is formed as a lower layer on the surface of a cemented carbide substrate such as a tungsten carbide base
  • Coated tools have been used which have a hard coating layer with a chemical vapor deposited aluminum oxide layer as the top layer.
  • high feed is required, in the conventional coated tool, welding Since chipping is likely to occur and normal wear does not occur when welding chipping does not occur, normal wear progresses quickly, so that it is not sufficient to cope with high feed rate.
  • Patent Document 1 in a coated cutting tool having a TiZr carbonitride coating on the surface of the substrate, the coating contains 0.3% by mass or more and 50% by mass or less of Zr and 2% by mass or less of chlorine.
  • a coated cutting tool having a tensile residual stress has been proposed, which has high film hardness and excellent wear resistance during cutting of machine structural steel and the like, and has excellent cutting durability characteristics.
  • Patent Document 2 in a coated cutting tool having a TiZr carbonitride coating, by further orienting the crystal orientation of the coating to the (422) plane or the (311) plane, the grain boundary strength is increased, As a coating layer for a base material made of hard metal or cermet, the hardness of the film is high at high temperature, and even if the film thickness increases, the width of the crystal grains near the film surface does not become coarse and good wear resistance. A coated cutting tool having excellent toughness and excellent cutting durability has been proposed.
  • the inventors of the present invention in the above-mentioned coated tool, have excellent welding resistance and excellent resistance to welding over a long period of time even when used for high-feed interrupted cutting of precipitation hardening stainless steel.
  • the following findings were obtained as a result of diligent research on a coated tool that has both plastic deformability and abnormal damage resistance and improves the tool life. That is, the inventors have increased the ratio of the amount of N to the amount of C of the TiZr composite carbonitride or the TiZrHf composite carbonitride in the hard coating layer having the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer.
  • the present inventors have found that in the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer, the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr, and Hf (hereinafter referred to as “ZrHf And a composition variation structure in which the content of C in the total amount of N and C (hereinafter also referred to as “C content”) periodically changes.
  • Ti content corresponds to the composition variation of the content ratio of the total content of ZrHf and the content ratio of the C content, and the content ratio of Ti content in the total content of Ti, Zr, and Hf (hereinafter, “Ti And a content ratio of N in the total amount of N and C (hereinafter, also referred to as “N content ratio”) similarly change periodically.
  • Ti And a content ratio of N in the total amount of N and C (hereinafter, also referred to as “N content ratio”) similarly change periodically.
  • a variable structure in particular, the cycle and position of the ZrHf highest content point showing the highest content rate and the ZrHf lowest content point showing the lowest content rate with respect to the ZrHf content rate, and the C highest content point showing the highest content rate with respect to the C content rate.
  • the composite carbonitride layer is made to have a vertically long crystal structure, that is, a structure in which a crystal having an aspect ratio of 2.0 or more is contained in an area ratio of 50% or more, and the normal line of the surface of the tool base is set.
  • the surface of the tool base is The maximum peak exists in the tilt angle section within the range of 0 to 10 degrees and the total of the frequencies existing in the tilt angle section within the range of 0 to 10 degrees is the tilt angle number distribution graph.
  • TiZrNC and TiZrNC respectively. It may be expressed as TiZrHfNC.
  • a surface-coated cutting tool having a hard coating layer on the surface of a tool base includes at least one of a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer having an average layer thickness of 0.5 ⁇ m or more and 20.0 ⁇ m or less, (B) said composite carbonitride layer contains TiZr complex carbonitride or TiZrHf complex carbonitride, said composite carbonitride, the composition formula (Ti (1-x) Zr xy Hf x (1-y ) )(N (1-z) C z ), The average content ratio x of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, the average content ratio y of the Zr amount to the total amount of Zr and Hf, and N and C.
  • the average content ratio z (where x, y and z are all atomic ratios) of the C content with respect to the total amount thereof is 0.10 ⁇ x ⁇ 0.90 and 0 ⁇ y ⁇ 1.0, respectively.
  • an average composition satisfying 0.05 ⁇ z ⁇ 0.75 (C)
  • the ZrHf minimum content point indicating the ratio x min is repeated, and the average interval between the repeated ZrHf highest content points and the ZrHf lowest content point is 5 to 100 nm, and the ZrHf highest content point is The average value of the absolute values of the differences ⁇ x between the highest content rate x max and the lowest content rate x min of the ZrHf lowest content point is 0.02 or more, (C-3) Regarding the content ratio of the C content with respect to the total amount of N and C in the composition varying structure, the C highest content point showing the highest content ratio z max and the C lowest content showing the lowest content ratio z min.
  • the content point is repeated, and the average interval, which is the average value of the intervals between the adjacent C highest content point and C lowest content point, is 5 to 100 nm, and the highest content ratio z max of the C highest content point and the above
  • the average absolute value of the difference ⁇ z from the C minimum content ratio z min is 0.02 or more, (C-4)
  • the maximum content point and the minimum content of ZrHf showing the maximum content ratio x max.
  • the average value of the distance from the content point is 1/5 or less of the average distance between the ZrHf highest content point and its adjacent ZrHf lowest content point
  • the composite carbonitride layer has a vertically long crystal structure
  • E Using a field emission scanning electron microscope and an electron beam backscattering diffractometer, an electron is applied to each crystal grain having a rock salt type cubic crystal lattice present within the measurement range of the cross-section polished surface of the composite carbonitride layer. Line, and an inclination angle formed by the normal line of the (111) plane, which is the crystal plane of the crystal grain, with respect to the normal line of the surface of the tool base is measured within a range of 0 to 45 degrees.
  • the surface-coated cutting tool is characterized by having at least one layer in which the total of the frequencies present in 3) accounts for 35% or more of the total frequencies in the inclination angle frequency distribution graph.
  • a surface-coated cutting tool according to an aspect of the present invention (hereinafter, referred to as “surface-coated cutting tool of the present invention”, “coated tool of the present invention” or “present invention coated tool”) is formed on the surface of a tool base.
  • the hard coating layer has a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer, and by increasing the ratio of the N content to the C content, the welding resistance is increased and the precipitation hardening stainless steel This is a solution to the problem of welding chipping, which was a problem in high-feed intermittent cutting.
  • the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer has a composition variation structure in which the ZrHf content ratio and the C content ratio change periodically, and in particular, the ZrHf highest content point and the ZrHf lowest
  • the coated cutting tool having such a composite carbonitride layer as a hard coating layer has excellent welding resistance, plastic deformation resistance and abnormal damage resistance, so that high feed interrupted cutting of precipitation hardening stainless steel is performed. It is intended to improve the tool life over long-term use for machining.
  • the ZrHf highest content ratio, the ZrHf lowest content ratio, and the ZrHf average content ratio will be described below.
  • any base can be used as long as it is a base conventionally known as a tool base of this type, as long as it does not impair the achievement of the object of the present invention.
  • cemented carbide including WC-based cemented carbide, WC, Co, or those containing carbonitrides such as Ti, Ta, and Nb
  • cermet TiC, TiN, TiCN, etc.
  • it is one of the main components
  • ceramics titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.
  • the hard coating layer included in the surface-coated cutting tool of the present invention has at least a composite carbonitride layer, and the composite carbonitride layer includes a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer. It consists of In addition, as the hard coating layer, as another layer, a lower layer may be provided between the tool base and the composite carbonitride layer, or an upper layer may be provided on the composite carbonitride layer, if necessary. You can Here, if the average layer thickness of the hard coating layer is less than 0.5 ⁇ m, long-term wear resistance cannot be exhibited, while if it exceeds 30.0 ⁇ m, the hard coating layer as a whole will suffer defects and chipping.
  • the average layer thickness of the hard coating layer can be measured using, for example, a SEM (scanning electron microscope) or a TEM (transmission electron microscope) in a cross section in the direction perpendicular to the tool substrate.
  • the composite carbonitride layer provided in the surface-coated cutting tool of the present invention comprises a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer, and the composite carbonitride is the same.
  • the TiZr composite carbonitride or the TiZrHf composite carbonitride constituting the layer is represented by a composition formula (Ti (1-x) Zr xy Hf x (1-y) )(N (1-z) C z ). In this case, 0.10 ⁇ x ⁇ 0.90, 0 ⁇ y ⁇ 1.0, and 0.05 ⁇ z ⁇ 0.75 are satisfied.
  • x represents the average content ratio of the total amount of Zr and Hf with respect to the total amount of Ti, Zr, and Hf
  • y represents the average content of the Zr amount with respect to the total amount of Zr and Hf. Indicates the content rate.
  • z represents the average content ratio of the amount of C with respect to the total amount of N and C.
  • x, y, and z are all atomic ratios.
  • the average content ratio z of C is N for the welding resistance improving element N and the hardness improving element C.
  • the composite carbonitride layer contains oxygen (O) and chlorine (Cl) as impurities in addition to the components of Ti, Zr, Hf, N, and C, and contains 3.0 atoms of oxygen (O). % Or less, and chlorine (Cl) may be contained at 0.20 atomic% or less.
  • the thickness of the composite carbonitride layer is less than 0.5 ⁇ m, long-term wear resistance cannot be exhibited, while if it exceeds 20.0 ⁇ m, chipping or chipping tends to occur. Therefore, the thickness is 0.5 to 20.0 ⁇ m, which is excellent in terms of hardness and wear resistance.
  • the average layer thickness of the composite carbonitride layer was measured by using a scanning electron microscope (magnification: 5000 times) to measure the layer thickness at five points in the observation field of view of the cross section in the direction perpendicular to the tool base. The average layer thickness can be determined on average.
  • Crystal grains having a composition varying structure In the composite carbonitride (TiZrNC or TiZrHfNC) layer included in the surface-coated cutting tool of the present invention, ZrHf content ratio, Ti content ratio, C content ratio and N content ratio are periodic. It includes crystal grains having a composition variation structure that changes to.
  • the ZrHf content ratio is determined by, for example, a ZrHf maximum content ratio-ZrHf minimum content ratio-ZrHf maximum content ratio-in the direction in which the period width of the periodic composition change of the ZrHf content ratio becomes the minimum.
  • the ZrHf minimum content ratio is maintained at a predetermined interval such that a periodic change in the content ratio is shown.
  • the ZrHf maximum content ratio (x max ) means that the ZrHf content ratio at each measurement point is the composition formula ( ZrHf average of the total amount of Zr and Hf with respect to the total amount of Ti, Zr and Hf in Ti (1-x) Zr xy Hf x(1-y) )(N (1-z) C z ). It means the maximum value of the ZrHf content ratio in a continuous region that is equal to or greater than the content ratio (x av ).
  • the maximum value of the ZrHf content ratio in each region is defined as the ZrHf maximum content ratio, and the ZrHf content ratio in each region is The position where the maximum value is obtained is defined as the ZrHf highest content point in each region.
  • the maximum ZrHf content may be referred to as x max .
  • the ZrHf minimum content ratio (x min ) means that the ZrHf content ratio at each measurement point is the composition formula (Ti (1-x) Zr xy Hf x(1-y) )(N (1- the minimum value of ZrHf content in continuous area becomes a value less than the mean content of total amount occupied of Zr and Hf (x av) against the total amount of Ti and Zr and Hf in z) C z) Say.
  • the minimum value of the ZrHf content ratio in each region is defined as the ZrHf minimum content ratio (x min ), and the ZrHf content ratio in each region is the minimum value. Is defined as the ZrHf minimum content point in each region.
  • the minimum content ratio of ZrHf may be referred to as x min .
  • ZrHf content ratio is as follows from the top: ZrHf average content point (P1)-ZrHf maximum content point 1 (Pmax1)-ZrHf average content point (P2)-ZrHf minimum content point 1 (Pmin1 )-ZrHf average content point (P3)-ZrHf maximum content point 2 (Pmax2)-ZrHf average content point (P4)-ZrHf minimum content point 1 (Pmin2)-ZrHf average content point (P5), ZrHf content ratio Is the ZrHf average content ratio (x av )-ZrHf maximum content ratio 1 (x max1 )-ZrHf average content ratio (x av )-ZrHf minimum content ratio 1 (x min1 )-ZrHf average content ratio (x av )-ZrHf The highest content ratio 2 (x max2 )-ZrHf average content ratio (x av )-ZrHf lowest content ratio 1 (x
  • the position having the maximum value in each region is referred to as the highest content point in each region
  • the position at which the minimum value is obtained in a continuous region that is less than or equal to the average content ratio value is called the minimum content point in each region.
  • the content ratio of the Ti amount to the total amount of Ti, Zr, and Hf (hereinafter also referred to as Ti content ratio) is such that the periodic width of the periodic composition change of the ZrHf content ratio is the minimum.
  • the Ti content ratio is the minimum Ti content ratio-the maximum Ti content ratio-the minimum Ti content ratio-Ti in the same cycle along the direction in which the periodic width of the periodic composition change of the ZrHf content ratio becomes the minimum.
  • the change of the content ratio of the highest content ratio is shown.
  • the definitions of the highest Ti content point, the highest Ti content rate, the lowest Ti content point, and the lowest Ti content rate are the same as those in which ZrHf is replaced with Ti.
  • C content ratio is as follows: C highest content ratio-C lowest content ratio-C highest content ratio-C lowest along the direction in which the periodic width of the periodic composition change of Ti and ZrHf becomes the minimum. Content ratio shows a periodic change in content ratio with a predetermined interval. The maximum C content and the minimum C content here will be described.
  • the maximum C content means that the C content at each measurement point is the composition formula (Ti (1-x) Zr xy Hf x(1 -Y) ) (N (1-z) C z )
  • the maximum value of the C content ratio in a continuous region that is equal to or greater than the average content ratio (z av ) of the C content relative to the total amount of N and C Say.
  • the maximum value of the C content ratio in each region is defined as the C maximum content ratio
  • the position where the C content ratio in each region has the maximum value is defined. It is defined as the highest C content point in each region.
  • the highest C content may be referred to as z max .
  • the C minimum content point, C content at each measurement point, the overall composition formula layer (Ti (1-x) Zr xy Hf x (1-y)) (N (1-z) C z ) Is the minimum value of the C content ratio in a continuous region where the amount of C occupies the total amount of N and C in () and is equal to or less than the value of the average content ratio (z av ).
  • the minimum value of the C content ratio in each region is defined as the C minimum content ratio
  • the position where the C content ratio in each region has the minimum value is defined. It is defined as the C lowest content point in each region.
  • the lowest C content may be referred to as z min .
  • z min when there is a periodic change in the vicinity of the value of the C average content ratio (z av ), the highest content point and the lowest content point appear alternately.
  • the C content ratio is also specifically shown in FIG. 1, like the ZrHf content ratio.
  • the C content ratio is as follows: C average content point (R1)-C highest content point 1 (Rmax1)-C average content point (R2)-C lowest content point 1 (Rmin1 )-C average content point (R3)-C highest content point 2 (Rmax2)-C average content point (R4)-C lowest content point 1 (Rmin2)-C average content point (R5) Ratio (z av )-C maximum content ratio 1 (z max1 )-C average content ratio (z av )-C minimum content ratio 1 (z min1 )-ZrHf average content ratio (z av )-C maximum content ratio 2 ( z max2 )-C average content ratio (z av )-C minimum content ratio 1 (z min2 ).
  • the content ratio of the N content relative to the total content of N and C (hereinafter also referred to as N content ratio) is such that the cycle width of the periodic composition change of the C content ratio is minimized.
  • is an atomic ratio.
  • the N content ratio is the N minimum content ratio-N highest content ratio-N lowest content ratio-N in the same cycle along the direction in which the cycle width of the periodic composition change of the C content ratio becomes the minimum.
  • the change of the content ratio of the highest content ratio is shown.
  • the definitions of the N highest content point, the N highest content ratio, the N lowest content point, and the N lowest content ratio are the same as those in which C is replaced with N.
  • the positions of the ZrHf highest content point and the C highest content point, and the cycles of the highest content point and the lowest content point can be synchronized in the film forming method described later.
  • the average absolute value of the difference ⁇ x between the ZrHf maximum content ratio x max and the ZrHf minimum content ratio x min is 0.02 or more, and the absolute value of the difference ⁇ z between the C maximum content ratio z max and the C minimum content ratio z min.
  • the hardness is improved by setting the composition varying structure in which the average value of the values is 0.02 or more.
  • the following two points are considered as factors that improve hardness.
  • the hardness is increased by preventing dislocation movement between the region where Zr and Hf and C are increased (enriched region) and the region where Zr and Hf and C are decreased (poor region). Can be improved.
  • C Since C is increased in the region where Zr and Hf are increased, “the influence of the bond of Zr and N” and “the influence of the bond of Hf and N” are smaller than that of the uniform TiZrHfNC layer.
  • the difference between the ZrHf maximum content ratio x max and the ZrHf minimum content ratio x min is more preferably 0.02 or more and 0.90 or less, and the difference between the C maximum content ratio z max and the C minimum content ratio z min is 0. It is more preferably 0.02 or more and 0.75 or less. If these differences are too large, abnormal damage such as minute chipping is likely to occur. The cause of this is not clear, but it is presumed that the change in the lattice constant within the compositionally varying structure becomes too large, and the toughness as crystal grains deteriorates.
  • the interval (Pmin1-Pmax1) between the ZrHf highest content point 1 (Pmax1) and the ZrHf lowest content point 1 (Pmin1), and the ZrHf highest content point 2 (Pmax2) and the ZrHf lowest content point 2 (Pmin2). Can be obtained as an average value with the interval (Pmin2-Pmax2).
  • the "average value of the intervals between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point" is preferably small, but it is disclosed in the present invention.
  • the average value of the distances between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point is the average distance between the ZrHf highest content point and its adjacent ZrHf lowest content point. It has been confirmed that the effect is exhibited even at 15/100.
  • the lower limit value of this average interval is more than 0.
  • the ZrHf highest content point 1 (Pmax1) and the ZrHf highest content point are shown.
  • the interval (Rmax1-Pmax1) from the C highest content point 1 (Rmax1) closest to the point 1 (Pmax1), the ZrHf highest content point 2 (Pmax2), and the ZrHf highest content point 2 (Pmax2) It can be obtained as an average value with the interval (Rmax2-Pmax2) between the C highest content point 2 (Rmax2) at a close position.
  • This value is set to the interval (average value) between the adjacent ZrHf highest content point and ZrHf lowest content point, that is, the interval (Pmin1-Pmax1) between the ZrHf highest content point 1 (Pmax1) and the ZrHf lowest content point 1 (Pmin1),
  • the presence or absence of the effect can be judged by comparing with 1/5 of the average value of the interval (Pmin2-Pmax2) between the ZrHf highest content point 2 (Pmax2) and the ZrHf lowest content point 2 (Pmin2).
  • the composition variation structure has a large area ratio in the structure of the composite carbonitride layer, and in the longitudinal cross-section observation of the composite carbonitride layer, the composition variation structure is It is necessary that the area ratio of the nitride layer to the structure is 10% or more. As described above, it is considered that it is preferable that the “area ratio of the composition varying structure to the structure of the composite carbonitride layer” is large, but according to the method disclosed in the present invention, the composition varying structure has the composite carbonitride layer. It has been confirmed that the effect is exhibited even if the area ratio of the above structure is 15%. Although not particularly limited, the upper limit of this area ratio is less than 98.
  • the composition varying structure is preferably a laminated structure.
  • laminated structure refers to “of the composition-varying structure, only one ZrHf maximum content point or one ZrHf minimum content point exists between adjacent ZrHf average content points, In between, it refers to a tissue in which only one C-maximum content point or one C-minimum content point exists.
  • the film thickness is in the lamination direction (direction in which the cycle of periodic composition change is the minimum in the longitudinal cross-sectional observation of the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer). It does not have to match the direction.
  • a composite carbonitride layer containing crystal grains having a laminated structure is obtained, but the laminated direction of the laminated structure does not always coincide with the film thickness direction.
  • the vicinity of the grain boundary does not have a laminated structure, or where any of the elements Ti, Zr, Hf, C, N, O, and Cl is concentrated near the grain boundary. If the area ratio of the structure (in this case, composition change structure of the laminated structure) to the structure of the composite carbonitride layer is 10% or more, the hardness improving effect is exhibited.
  • the longitudinal crystal structure referred to here means the height of the crystal grain in the layer thickness direction of each crystal grain when the longitudinal cross section of the composite carbonitride layer (cross section perpendicular to the surface of the tool base) is observed. In the length (long side), the largest value is the maximum grain length (L), and in the width (short side) of the crystal grain in the direction perpendicular to the layer thickness direction, the largest value is the largest grain width (W).
  • the aspect ratio and the area ratio of the elongated crystal grains are measured, for example, by using a scanning electron microscope (SEM), and a longitudinal cross-sectional image obtained by observing the cross section at a magnification of 5000 times is subjected to electron backscatter diffraction (EBSD).
  • SEM scanning electron microscope
  • EBSD electron backscatter diffraction
  • the ratio of the total area of the crystal grains having an aspect ratio of 2.0 or more with respect to the area in the vertical section was determined as the area ratio. That is, by defining the area ratio of those having an aspect ratio of 2.0 or more to be 50% or more, the effect of improving toughness and wear resistance can be exhibited.
  • the inclination angle number distribution in the composite carbonitride crystal grains of the composite carbonitride layer is measured on the surface of the tool base using a field emission scanning electron microscope and an electron beam backscattering diffractometer.
  • the measurement can be performed by irradiating each crystal grain having a rock salt type cubic crystal lattice existing within the measurement range of the polished surface of the vertical section with an electron beam. That is, specifically, with respect to the normal line of the surface of the tool base, the inclination angle formed by the normal line of the ⁇ 111 ⁇ plane that is the crystal plane of the composite carbonitride crystal grains in the composite carbonitride layer is 0.
  • the highest peak exists in the tilt angle section in which the tilt angle with respect to the normal to the surface of the tool base is in the range of 0 to 10 degrees, and the total of the frequencies existing in the tilt angle section in the range of 0 to 10 degrees is
  • the inclination angle number distribution graph occupies 35% or more of all the frequencies, and the ⁇ 111 ⁇ planes of the crystal grains of the carbonitride layer have a high orientation tendency and have a structure in which plastic deformation hardly occurs. ..
  • the composition of components is regulated, the composition has a specific composition variation structure, the composition has a specific longitudinal crystal structure, and The TiZrNC layer or the TiZrHfNC layer in which the crystal grains are oriented in the (111) direction is formed by, for example, forming a film on a tool base using a chemical vapor deposition method under the following conditions. can do.
  • the film forming conditions of the TiZrNC layer or the TiZrHfNC layer are as follows: TiCl 4 gas, ZrCl 4 gas or a mixed gas of ZrCl 4 gas and HfCl 4 gas, CH 4 gas, N 2 gas, H 2 gas,
  • the film forming temperature is 1000° C. or more and less than 1080° C.
  • the pressure condition is 16 kPa or more and less than 40 kPa
  • a CVD apparatus capable of periodic gas supply can be used.
  • the gas group A and the gas group B were periodically introduced into the furnace a required number of times, so that TiNC and TiZrNC were scattered.
  • Initial nuclei are formed, and in the second step (crystal growth step), crystal growth of the initial nuclei produces a vertically elongated crystal structure, and TiZrNC is (111) oriented on the initial nuclei, so that the grain boundary strength is A structure that is high and is less likely to undergo plastic deformation is obtained.
  • the supply time of each gas group is 5 seconds or more for both the gas groups A and B, and the gas supply time per cycle is 10 seconds or more. If the gas supply time per cycle is less than 10 seconds, it will be difficult to clearly distinguish and form the initial nuclei. On the other hand, if the gas supply time per cycle is too long, it is difficult to obtain the initial nuclei in which TiNC and TiZrNC are scattered, so the gas supply time per cycle is preferably 180 seconds or less. Therefore, the gas supply time per cycle is preferably 10 seconds or more and 180 seconds or less.
  • Reaction atmosphere temperature 1000° C. or higher and lower than 1080° C. As for the reaction atmosphere temperature lower than 1000° C., it tends to be difficult to obtain a sufficient film formation rate.
  • reaction atmosphere temperature is preferably 1000° C. or higher and lower than 1080° C.
  • Reaction atmosphere pressure 16 kPa or more and less than 40 kPa If it is less than 16 kPa, a sufficient film formation rate cannot be obtained, and if it is 40 kPa or more, pores are likely to be contained in the film. Therefore, the reaction atmosphere pressure is preferably 16 kPa or more and less than 40 kPa.
  • Second step (crystal growth step) a) Reaction gas composition (% by volume): Gas group C; TiCl 4 : 0.4 to 0.7%, ZrCl 4 : 0.1 to 1.8%, HfCl 4 : 0.0 to 1.7%, However, ZrCl 4 +HfCl 4 : 0.5 to 1.8%, CH 4 : 1.0 to 6.0%, N 2 : 25.0 to 60.0%, H 2 : Remaining Gas group D; TiCl 4 : 0.2 to 0.5%, but less than the TiCl 4 concentration of gas group A ZrCl 4 : 0.1 to 2.2%, HfCl 4 : 0.0 to 2.2%, However, ZrCl 4 +HfCl 4 :0.8 to 2.2%, Moreover, the concentration of ZrCl 4 +HfCl 4 in the gas group C is exceeded, CH 4 : 2.0 to 8.0%, however, exceeding CH 4 of gas group C N 2 : 15.0 to 50.0%, but less than N 2 concentration of gas group C H 2
  • the supply time of each gas group is 5 seconds or more for both gas group C and gas group D, and the gas supply time per cycle is 10 seconds or more. If the gas supply time per cycle is less than 10 seconds, it will be difficult to clearly distinguish and form the composition variation structure. On the other hand, as the gas supply time per cycle is lengthened, the composition fluctuation of the composition fluctuation structure in the crystal grains becomes longer, and as a result, the above-mentioned "Zr and Hf and C-rich regions and Zr and Hf Since the effect of hindering the movement of dislocations between regions where C is poor and improving the hardness is small, the hardness is lowered. In order to set the cycle of periodic composition change to 100 nm or less, the gas supply time per cycle is preferably 180 seconds or less.
  • the gas supply time per cycle is preferably 10 seconds or more and 180 seconds or less.
  • the layer thickness of the composite carbonitride layer is adjusted by increasing or decreasing the number of repetitions of the gas supply cycle (gas group C ⁇ gas group D).
  • the reaction atmosphere temperature if the reaction atmosphere temperature is less than 1000° C., a sufficient film formation rate cannot be obtained and the chlorine content of the TiZrNC layer or TiZrHfNC layer tends to increase.
  • elements such as C may diffuse from the cemented carbide base material into the coating, and sufficient adhesion strength may not be obtained.
  • reaction atmosphere temperature is preferably 1000° C. or higher and lower than 1080° C.
  • Reaction atmosphere pressure 16 kPa or more and less than 40 kPa If it is less than 16 kPa, a sufficient film formation rate cannot be obtained, and if it is 40 kPa or more, pores are likely to be contained in the film. Therefore, the reaction atmosphere pressure is preferably 16 kPa or more and less than 40 kPa.
  • a lower layer is provided between the tool substrate and the composite carbonitride layer (TiZrNC layer or TiZrHfNC layer), and a composite carbonitride layer (TiZrNC layer or TiZrHfNC layer).
  • a top layer can be deposited over the (layer). See Table 3 below for the compounds to be deposited and the deposition conditions.
  • WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 ⁇ m are prepared, and these raw material powders are prepared.
  • wax was further added, the mixture was ball-milled in acetone for 24 hours, dried under reduced pressure, and then press-molded at a pressure of 98 MPa into a powder compact having a predetermined shape. Is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470° C. for 1 hour, and after sintering, a tool made of WC-based cemented carbide having an insert shape of ISO standard CNMG120408 Substrates A to C were manufactured respectively.
  • ZrC powders ZrC powders
  • TaC powders ZrC powders
  • NbC powders NbC powders
  • Mo 2 C powders Mo 2 C powders
  • WC powders each having an average particle diameter of 0.5 to 2 ⁇ m.
  • Co powder and Ni powder were prepared, and these raw material powders were blended to the blending composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa, This green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an insert shape of ISO standard CNMG120408, E was produced.
  • each of these tool substrates A to E is charged into a chemical vapor deposition apparatus, and a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer is formed to form the coated tools 1 to 14 of the present invention, respectively.
  • the lower layer and the upper layer were provided as needed.
  • the tool substrate is selected from Table 1 or Table 2 based on the tool substrate symbol, and then based on the formation symbol, from Table 4, the TiZrNC layer of the film forming step of the present invention or The film forming conditions of the TiZrHfNC layer were selected, and the TiZrNC layer or the TiZrHfNC layer having the target average layer thickness shown in Table 5 was formed.
  • the film was formed under the formation conditions shown in Table 3 and the average target layer thickness shown in Table 5. Then, the obtained TiZrNC layer/TiZrHfNC layer of the coated tools 1 to 14 of the present invention have an average composition, an area ratio in which the composition varying structure occupies the structure of the composite carbonitride layer, a ZrHf maximum content ratio (average value), and a ZrHf minimum value.
  • Comparative coated tools 1 to 9 were manufactured in the same procedure as the coated tools 1 to 14 of the present invention.
  • a tool substrate is selected from Table 1 or Table 2 based on the tool substrate symbol, and then based on the formation symbol, from Table 4, the TiZrNC layer or the TiZrHfNC layer in the comparative example film forming step is selected.
  • the film forming conditions were selected, and the TiZrNC layer or the TiZrHfNC layer having the target average layer thickness shown in Table 6 was formed.
  • the film formation was performed under the formation conditions shown in Table 3 and with the average target layer thickness shown in Table 6.
  • the average composition of the obtained TiZrNC layer and TiZrHfNC layer of the coated tools 1 to 9 of the comparative example the area ratio of the composition varying structure in the structure of the composite carbonitride layer, the ZrHf maximum content ratio (average value), and the ZrHf minimum Content ratio (average value), C highest content ratio (average value), C lowest content ratio (average value), interval between ZrHf highest content point and ZrHf lowest content point (average value), C highest content point and C lowest content point
  • Table 6 shows the interval (average value), the interval (average value) between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point, and the average film thickness.
  • the film thickness was measured with a scanning electron microscope (magnification: 5000 times).
  • polishing was performed at a position 100 ⁇ m away from the cutting edge on the rake face near the cutting edge so that the cross section in the direction perpendicular to the tool base was exposed.
  • the TiZrN layer and the TiZrHfN layer were observed with a field of view of 5000 times so as to include a position 100 ⁇ m away from the cutting edge on the rake face in the vicinity of the cutting edge, and the layer thickness at 5 points in the observation field was measured and averaged. The value was taken as the average layer thickness.
  • HAADF-STEM High-angle scattering annular dark-field scanning transmission microscopy
  • EDS energy dispersive X-ray analysis
  • composition at 5 different points in 1.0 ⁇ m ⁇ 1.0 ⁇ m field of view (when the film thickness of the TiZrNC layer or TiZrHfNC layer is 1.0 ⁇ m or less, the film thickness of the TiZrNC layer or TiZrHfNC layer ⁇ 1.0 ⁇ m) Analysis was performed and the average composition of the entire TiZrNC layer or the TiZrHfNC layer was determined from the average value.
  • the area ratio of the composition varying structure to the structure of the composite carbonitride layer was determined using HAADF-STEM. Specifically, in the field of view of 1.0 ⁇ m ⁇ 1.0 ⁇ m (when the thickness of the TiZrNC layer or the TiZrHfNC layer is 1.0 ⁇ m or less, the thickness of the TiZrNC layer or the TiZrHfNC layer ⁇ the field of view of 1.0 ⁇ m), the HAADF -STEM images are observed in five different visual fields, and in each visual field, the area ratio of the composition varying structure to the composite carbonitride layer is determined, and the average value is calculated as the composition varying structure of the composite carbonitride layer structure. It was defined as the area ratio.
  • the "structure with periodic light and dark in the HAADF-STEM image” observed here is “a periodic structure of Ti, Zr and Hf. It is possible to presume that it is “a tissue having a composition change”. Next, it was confirmed that the above-mentioned periodic bright and dark tissue has a periodic composition change of Ti with Zr and Hf by using a line analysis method by EDS.
  • the HAADF-STEM image a plurality of composition variation structures of the laminated structure can be seen in the crystal grain, and the EDS line analysis can be performed on the composition variation structure of the laminated structure.
  • the direction in which the period of the periodic composition change of Ti with Zr and Hf becomes the minimum that is, the direction in which the period width of the contrast of light and dark in the HAADF-STEM image becomes the minimum
  • the HAADF-STEM image has a strong contrast due to the difference in the atomic weights of the constituent elements, and in the HAADF-STEM image, the brighter portion contains more Zr.
  • the crystal orientation mapping by electron diffraction pattern is measured at 10 nm intervals at the same location, and the crystal orientation relationship between the measurement points is analyzed to determine the adjacent measurement points.
  • the orientation difference between (hereinafter, also referred to as “pixel”) is measured, and when there is an orientation difference of 5 degrees or more, it is defined as a grain boundary. Then, the region surrounded by the grain boundaries is defined as one crystal grain.
  • the inclination angle number distributions of the crystal grains forming the composite carbonitride layer of the hard coating layers of the coated tools 1 to 14 of the present invention and the coated tools 1 to 9 of the comparative examples were measured by using a field emission scanning electron microscope and an electron beam backward. It was measured using a scattering diffractometer. That is, from the interface between the lower layer and the composite carbonitride layer, 0.3 ⁇ m in the layer thickness direction of the composite carbonitride layer, and 50 ⁇ m in the direction parallel to the surface of the tool substrate, the measurement range (0.
  • 3 ⁇ m ⁇ 50 ⁇ m is set in the lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV is applied to the polishing surface at an incident angle of 70 degrees with an irradiation current of 1 nA to each polishing surface.
  • crystal grains having the rock salt type cubic crystal lattice existing within the measurement range of 0.1 ⁇ m ⁇ 50 ⁇ m using a field emission scanning electron microscope and electron backscattering diffraction imager.
  • an inclination angle formed by the normal line of the ⁇ 111 ⁇ plane, which is the crystal plane of the crystal grain, with respect to the normal line of the surface-polished surface is 0 to 45 degrees.
  • the tilt angles are distributed in a range of 0 to 10 degrees on the basis of the measurement result, which is represented by a distribution graph of the tilt angle number obtained by totaling the frequencies present in each section.
  • the sum of the frequencies of the crystal grains inside is calculated, and the frequency ratio occupying the entire inclination angle frequency distribution graph is calculated, and shown in Tables 5 and 6.
  • the tilt angle number in the case of ideal random orientation, has a constant value regardless of the tilt angle formed by the normal direction of a certain crystal plane to the normal direction of the tool substrate surface. Is standardized as follows.
  • the longitudinal section of the composite carbonitride layer of the hard coating layers of the coated tools 1 to 14 of the present invention and the coated tools 1 to 9 of the comparative example was examined with a scanning electron microscope (SEM) at a magnification of 5000 times to give a tool substrate.
  • SEM scanning electron microscope
  • the maximum particle width W and the maximum particle length for each of the composite carbonitride crystal grains existing in the region of 10 ⁇ m in the direction parallel to and the height of the thickness of the composite carbonitride layer in the direction perpendicular to the tool substrate While measuring L, the value of the aspect ratio L/W was calculated, and the area ratio of the crystal grains having the aspect ratio L/W of 2 or more to the vertical cross section of the composite carbonitride layer was calculated. Shown in.
  • each component element satisfies the desired average composition, and the ZrHf content ratio and the C content ratio change periodically.
  • it does not cause peeling or chipping has a small flank maximum wear width, and exhibits excellent welding resistance, plastic deformation resistance, and abnormal damage resistance.
  • the composite carbonitride layer included as the hard coating layer does not satisfy the desired average composition or the desired average composition is satisfied, ZrHf is contained. Since it does not have a compositionally varying structure in which the ratio and the C content change periodically or does not have the desired orientation, the desired properties cannot be exhibited, and wear progress and welding Due to the occurrence of chipping and chipping, the life was shortened.
  • the coated tool of the present invention in the composite carbonitride layer included as a hard coating layer, the content ratio of each component changes periodically, by having a desired compositional variation structure, for example, precipitation hardening In intermittent high-feed cutting of type stainless steel, it exhibits excellent welding resistance, chipping resistance, and wear resistance. It is fully satisfied with the cost reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

Provided is a surface-coated cutting tool that has, on a tool substrate surface, a hard coating layer: that has a composite carbonitride layer containing (Ti(1-x)ZrxyHfx(1-y))(N(1-z)Cz)(0.10 ≤ x ≤ 0.90, 0 < y ≤ 1.0 and 0.05 < z <0.75); in which the ZrHf-content proportion and the C-content proportion periodically fluctuate; in which a periodic interval between a highest ZrHf-content point and an adjacent lowest ZrHf-content point and a periodic interval between a highest C-content point and an adjacent lowest C-content point are 5-100 nm; in which the content proportion difference Δx and average Δz are 0.02 or greater; in which the distance between the highest ZrHf-content point and the nearest highest C-content point is 1/5 or less of the interval between the highest content point and the lowest content point of the adjacent ZrHf component; that has a 10% or greater amount of composition fluctuating structure in terms of the area proportion; that additionally has a vertical crystal structure; and in which the highest peak of an inclination angle category for the angle formed by the normal of a plane (111) is present in an inclination angle category in which an inclination angle with respect to the normal of the tool substrate surface is in a range of 0-10º.

Description

硬質被覆層がすぐれた耐溶着性、耐塑性変形性および耐異常損傷性を発揮する表面被覆切削工具Surface-coated cutting tool with excellent hard coating layer that exhibits excellent welding resistance, plastic deformation resistance and abnormal damage resistance
 本発明は、切刃に対して衝撃的な高負荷が作用する、例えば、析出硬化型ステンレス鋼の高送り断続切削加工において、硬質被覆層がすぐれた耐溶着性、耐塑性変形性および耐異常損傷性を備えることにより、長期の使用に亘り、すぐれた切削性能を有する表面被覆工具に関するものである。
 本願は、2019年2月7日に日本に出願された特願2019-020911号及び2020年1月15日に日本に出願された特願2020-004689号に基づき優先権を主張し、その内容をここに援用する。
INDUSTRIAL APPLICABILITY The present invention has an impact high load acting on a cutting edge, for example, in high feed interrupted cutting of precipitation hardening stainless steel, a hard coating layer has excellent welding resistance, plastic deformation resistance and abnormal resistance. The present invention relates to a surface-coated tool which has excellent cutting performance due to its damaging property over a long-term use.
The present application claims priority based on Japanese Patent Application No. 2019-020911 filed in Japan on February 7, 2019 and Japanese Patent Application No. 2020-004689 filed in Japan on January 15, 2020, and the contents thereof Is used here.
 従来、一般に、各種鋼の切削加工においては、炭化タングステン基等の超硬合金基体表面に、下部層として化学蒸着形成されたTiの炭窒化物(TiCN)層等のTi化合物層を有し、上部層として化学蒸着形成された酸化アルミニウム層を有する硬質被覆層が形成された被覆工具が用いられている。
 しかしながら、近年、各種鋼の断続切削加工における高能率化が求められており、特に、析出硬化型ステンレス鋼の断続切削加工においては、高送り化が求められる中、従来の前記被覆工具では、溶着チッピングが発生し易く、また、溶着チッピングが発生せず、正常摩耗となった場合においても正常摩耗の進行が早いため、高送り化への対応は十分なものではなかった。
Conventionally, generally, in the cutting of various steels, a Ti compound layer such as a Ti carbonitride (TiCN) layer formed by chemical vapor deposition is formed as a lower layer on the surface of a cemented carbide substrate such as a tungsten carbide base, Coated tools have been used which have a hard coating layer with a chemical vapor deposited aluminum oxide layer as the top layer.
However, in recent years, there has been a demand for higher efficiency in intermittent cutting of various steels, and in particular, in intermittent cutting of precipitation hardening stainless steel, while high feed is required, in the conventional coated tool, welding Since chipping is likely to occur and normal wear does not occur when welding chipping does not occur, normal wear progresses quickly, so that it is not sufficient to cope with high feed rate.
 そこで、例えば、特許文献1では、基体表面にTiZr炭窒化物皮膜を有する被覆切削工具において、前記皮膜が、Zrを0.3質量%以上50質量%以下、塩素を2質量%以下にて含有し、引っ張り残留応力を有することにより、機械構造用鋼等の切削加工に際し、膜硬度が高まり耐摩耗性にすぐれるとともに、すぐれた切削耐久特性を有する被覆切削工具が提案されている。
 また、特許文献2では、TiZr炭窒化物皮膜を有する被覆切削工具において、さらに、前記皮膜の結晶方位を(422)面、または、(311)面に配向させることにより、粒界強度を高め、被膜硬質金属やサーメットなどからなる基材に対し、被覆層として、高温での膜硬度が高く、膜厚が厚くなるにつれても膜表面付近の結晶粒の幅が粗大化せず、良好な耐摩耗性と靱性を有し、すぐれた切削耐久特性を示す被覆切削工具が提案されている。
Therefore, for example, in Patent Document 1, in a coated cutting tool having a TiZr carbonitride coating on the surface of the substrate, the coating contains 0.3% by mass or more and 50% by mass or less of Zr and 2% by mass or less of chlorine. However, a coated cutting tool having a tensile residual stress has been proposed, which has high film hardness and excellent wear resistance during cutting of machine structural steel and the like, and has excellent cutting durability characteristics.
Further, in Patent Document 2, in a coated cutting tool having a TiZr carbonitride coating, by further orienting the crystal orientation of the coating to the (422) plane or the (311) plane, the grain boundary strength is increased, As a coating layer for a base material made of hard metal or cermet, the hardness of the film is high at high temperature, and even if the film thickness increases, the width of the crystal grains near the film surface does not become coarse and good wear resistance. A coated cutting tool having excellent toughness and excellent cutting durability has been proposed.
日本国特開2001-11632号公報(A)Japanese Patent Laid-Open No. 2001-11632 (A) 日本国特開2001-170804号公報(A)Japanese Patent Laid-Open No. 2001-170804 (A)
 近年の切削加工における省力化および省エネ化への要求は強く、これに伴い、被覆工具は一段と過酷な条件下にて使用されるようになってきているため、たとえば、析出硬化型ステンレス鋼の高送り断続切削加工においては、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を発揮することが求められている。
 しかしながら、前記特許文献1および特許文献2にて提案されている、TiZr炭窒化物皮膜を有する被覆層からなる被覆工具を析出硬化型ステンレス鋼の高送り断続切削加工に用いた場合において、前者では、耐摩耗性の向上効果は認められるものの、皮膜の微小チッピングが生じ易く、また、耐溶着性の不足により溶着チッピングが生じるという問題点を有し、また、後者では、皮膜の微小チッピングはある程度抑制されるものの、粒界強度がまだ不十分であり、耐溶着性が不足するため、溶着チッピングが発生し、実用には不向きであるという問題点を有していた。
In recent years, there has been a strong demand for labor saving and energy saving in cutting work, and accordingly, coated tools have come to be used under more severe conditions. In the intermittent feed cutting, it is required to exhibit excellent welding resistance, plastic deformation resistance and abnormal damage resistance.
However, in the case of using the coated tool composed of the coating layer having the TiZr carbonitride coating proposed in Patent Document 1 and Patent Document 2 described above for high feed interrupted cutting of precipitation hardening stainless steel, However, although the effect of improving wear resistance is recognized, there is a problem that fine chipping of the coating is likely to occur, and welding chipping occurs due to lack of welding resistance. Although suppressed, the grain boundary strength is still insufficient and the welding resistance is insufficient, so that welding chipping occurs, which is not suitable for practical use.
 そこで、本発明者らは、前述の観点から、前記被覆工具において、析出硬化型ステンレス鋼の高送り断続切削加工に用いた場合であっても、長期の使用にわたり、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を兼ね備え、工具寿命の向上をもたらす、被覆工具について、鋭意研究を行った結果、以下の知見を得た。
 すなわち、本発明者らは、TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層を有する硬質被覆層において、前記TiZr複合炭窒化物またはTiZrHf複合炭窒化物のC量に対するN量の比を増加させることにより、耐溶着性が高まり、例えば、析出硬化型ステンレス鋼の高送り断続切削加工において課題とされた溶着チッピングの問題を解決できることを知見した。
 さらに、本発明者らは、前記TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層において、ZrとHfとの合量がTiとZrとHfとの合量に占める含有割合(以後、「ZrHf含有割合」と記すこともある)、および、C量がNとCとの合量に占める含有割合(以後、「C含有割合」と記すこともある)がそれぞれ周期的に変化する組成変動組織であって、前記ZrHfとの合量が占める含有割合および前記C量が占める含有割合の組成変動に対応し、Ti量がTiとZrとHfとの合量に占める含有割合(以後、「Ti含有割合」と記すこともある)、および、N量がNとCとの合量に占める含有割合(以後、「N含有割合」と記すこともある)が、同様に周期的に変化する組成変動組織であって、特に、ZrHf含有割合について最高含有割合を示すZrHf最高含有点および最低含有割合を示すZrHf最低含有点の周期および位置と、C含有割合について最高含有割合を示すC最高含有点および最低含有割合を示すC最低含有点の周期および位置とをそれぞれ同期させ、高硬度の結晶粒を含有する組織とすることにより、耐塑性変形性を発揮し、異常損傷の問題を解決できる、耐異常損傷性にすぐれた硬質被覆層が得られることを知見した。
 また、さらに、前記複合炭窒化物層を縦長結晶組織、すなわち、アスペクト比が2.0以上の結晶が面積比にて50%以上含まれる組織とした上で、工具基体の表面の法線に対して、前記結晶粒の結晶面である(111)面の法線がなす傾斜角を0~45度の範囲内で測定し、傾斜角度数分布グラフを作成した場合に、工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35%以上を占める少なくとも1層を有するものとすることにより、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を兼ね備え、析出硬化型ステンレス鋼の高送り断続切削加工用としても、長期の使用にわたり、工具寿命の向上をもたらすものであることを見出した。
 なお、本発明の表面被覆切削工具が備えるTiZr複合炭窒化物およびTiZrHf複合炭窒化物は、従来に比べ、C含有量に対するN含有量の比率が高いため、本明細書では、それぞれ、TiZrNCおよびTiZrHfNCと表現する場合もある。
Therefore, from the above-mentioned viewpoint, the inventors of the present invention, in the above-mentioned coated tool, have excellent welding resistance and excellent resistance to welding over a long period of time even when used for high-feed interrupted cutting of precipitation hardening stainless steel. The following findings were obtained as a result of diligent research on a coated tool that has both plastic deformability and abnormal damage resistance and improves the tool life.
That is, the inventors have increased the ratio of the amount of N to the amount of C of the TiZr composite carbonitride or the TiZrHf composite carbonitride in the hard coating layer having the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer. It has been found that by doing so, the welding resistance is enhanced and, for example, the problem of welding chipping, which has been a problem in high feed interrupted cutting of precipitation hardening stainless steel, can be solved.
Furthermore, the present inventors have found that in the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer, the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr, and Hf (hereinafter referred to as “ZrHf And a composition variation structure in which the content of C in the total amount of N and C (hereinafter also referred to as “C content”) periodically changes. In addition, the Ti content corresponds to the composition variation of the content ratio of the total content of ZrHf and the content ratio of the C content, and the content ratio of Ti content in the total content of Ti, Zr, and Hf (hereinafter, “Ti And a content ratio of N in the total amount of N and C (hereinafter, also referred to as “N content ratio”) similarly change periodically. A variable structure, in particular, the cycle and position of the ZrHf highest content point showing the highest content rate and the ZrHf lowest content point showing the lowest content rate with respect to the ZrHf content rate, and the C highest content point showing the highest content rate with respect to the C content rate. And, by synchronizing the cycle and the position of the C lowest content point showing the lowest content ratio with each other to obtain a structure containing high hardness crystal grains, plastic deformation resistance can be exhibited, and the problem of abnormal damage can be solved. It was found that a hard coating layer having excellent abnormal damage resistance can be obtained.
Further, the composite carbonitride layer is made to have a vertically long crystal structure, that is, a structure in which a crystal having an aspect ratio of 2.0 or more is contained in an area ratio of 50% or more, and the normal line of the surface of the tool base is set. On the other hand, when the inclination angle formed by the normal to the (111) plane, which is the crystal plane of the crystal grains, is measured within the range of 0 to 45 degrees, and the inclination angle number distribution graph is created, the surface of the tool base is The maximum peak exists in the tilt angle section within the range of 0 to 10 degrees and the total of the frequencies existing in the tilt angle section within the range of 0 to 10 degrees is the tilt angle number distribution graph. By having at least one layer that occupies 35% or more of the total frequency in the above, it has excellent welding resistance, plastic deformation resistance and abnormal damage resistance, and is used for high feed interrupted cutting of precipitation hardening stainless steel. However, it has been found that the tool life is improved over a long period of use.
Since the TiZr composite carbonitride and the TiZrHf composite carbonitride included in the surface-coated cutting tool of the present invention have a higher ratio of N content to C content than in the past, in the present specification, TiZrNC and TiZrNC, respectively. It may be expressed as TiZrHfNC.
 本発明は、前記知見に基づいてなされたものであって、以下の態様を含む。
 (1)工具基体の表面に硬質被覆層を有する表面被覆切削工具であって、
 (a)前記硬質被覆層は、平均層厚0.5μm以上20.0μm以下のTiZr複合炭窒化物層またはTiZrHf複合炭窒化物層の少なくとも一層を含み、
 (b)前記複合炭窒化物層は、TiZr複合炭窒化物またはTiZrHf複合炭窒化物を含有し、前記複合炭窒化物は、組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))にて表わした場合、
 TiとZrとHfとの合量に対してZrとHfとの合量が占める平均含有割合x、ZrとHfとの合量に対してZr量が占める平均含有割合y、および、NとCとの合量に対してC量が占める平均含有割合z(但し、x、yおよびzはいずれも原子比)が、それぞれ、0.10≦x≦0.90、0<y≦1.0、および、0.05<z<0.75を満足する平均組成を有し、
 (c)前記複合炭窒化物層は、少なくとも一部の結晶粒内に、TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合、および、NとCとの合量に対してC量が占める含有割合が周期的に変化する組成変動組織を有し、
 (c-1)縦断面観察において、前記組成変動組織が前記複合炭窒化物層の組織に占める面積割合が10%以上であり、
 (c-2)前記組成変動組織における前記TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合について、最高含有割合xmaxを示すZrHf最高含有点と最低含有割合xminを示すZrHf最低含有点とが繰り返され、前記繰り返される隣接するZrHf最高含有点とZrHf最低含有点の間隔の平均値である平均間隔が5~100nmであり、前記ZrHf最高含有点の最高含有割合xmaxと前記ZrHf最低含有点の最低含有割合xminとの差Δxの絶対値の平均値が0.02以上であり、
 (c-3)前記組成変動組織における前記NとCとの合量に対してC量が占める含有割合について、最高含有割合zmaxを示すC最高含有点と最低含有割合zminを示すC最低含有点とが繰り返され、前記繰り返される隣接するC最高含有点とC最低含有点の間隔の平均値である平均間隔が5~100nmであり、前記C最高含有点の最高含有割合zmaxと前記C最低含有割合zminとの差Δzの絶対値の平均値が0.02以上であり、
 (c-4)前記組成変動組織における前記TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合について、最高含有割合xmaxを示すZrHf最高含有点と最低含有割合xminを示すZrHf最低含有点とのそれぞれの周期および位置と、前記NとCとの合量に対してC量が占める含有割合について、最高含有割合zmaxを示すC最高含有点と、最低含有割合zminを示すC最低含有点とのそれぞれの周期および位置とはそれぞれに対応して同期しており、前記ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値が、前記ZrHf最高含有点とその隣接するZrHf最低含有点との平均間隔の1/5以下であり、
 (d)前記複合炭窒化物層は、縦長結晶組織を有し、
 (e)電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、前記複合炭窒化物層の断面研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する結晶粒のそれぞれに電子線を照射し、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(111)面の法線がなす傾斜角を0~45度の範囲内で測定して傾斜角度数分布グラフを作成した場合、工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35%以上を占める層を少なくとも一層を有することを特徴とする表面被覆切削工具。
 (2)前記組成変動組織が、積層組織であることを特徴とする前記(1)に記載された表面被覆切削工具。
 なお、本明細書および本願発明の態様の記載において、数値範囲を示す際に、「~」、あるいは、「-」を用いる場合は、その範囲は、数値の下限および上限を含むことを意味する。
The present invention has been made based on the above findings, and includes the following aspects.
(1) A surface-coated cutting tool having a hard coating layer on the surface of a tool base,
(A) The hard coating layer includes at least one of a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer having an average layer thickness of 0.5 μm or more and 20.0 μm or less,
(B) said composite carbonitride layer contains TiZr complex carbonitride or TiZrHf complex carbonitride, said composite carbonitride, the composition formula (Ti (1-x) Zr xy Hf x (1-y ) )(N (1-z) C z ),
The average content ratio x of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, the average content ratio y of the Zr amount to the total amount of Zr and Hf, and N and C. The average content ratio z (where x, y and z are all atomic ratios) of the C content with respect to the total amount thereof is 0.10≦x≦0.90 and 0<y≦1.0, respectively. , And an average composition satisfying 0.05<z<0.75,
(C) In the composite carbonitride layer, the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, and N and C in at least a part of the crystal grains. Has a composition-varying structure in which the content ratio of the C content relative to the total content of
(C-1) In a longitudinal cross-section observation, the area ratio of the composition varying structure to the structure of the composite carbonitride layer is 10% or more,
(C-2) Regarding the content ratio of the total amount of Zr and Hf with respect to the total amount of Ti, Zr and Hf in the composition varying structure, the maximum content point and the minimum content of ZrHf showing the maximum content ratio x max. The ZrHf minimum content point indicating the ratio x min is repeated, and the average interval between the repeated ZrHf highest content points and the ZrHf lowest content point is 5 to 100 nm, and the ZrHf highest content point is The average value of the absolute values of the differences Δx between the highest content rate x max and the lowest content rate x min of the ZrHf lowest content point is 0.02 or more,
(C-3) Regarding the content ratio of the C content with respect to the total amount of N and C in the composition varying structure, the C highest content point showing the highest content ratio z max and the C lowest content showing the lowest content ratio z min. The content point is repeated, and the average interval, which is the average value of the intervals between the adjacent C highest content point and C lowest content point, is 5 to 100 nm, and the highest content ratio z max of the C highest content point and the above The average absolute value of the difference Δz from the C minimum content ratio z min is 0.02 or more,
(C-4) Regarding the content ratio of the total amount of Zr and Hf with respect to the total amount of Ti, Zr and Hf in the composition varying structure, the maximum content point and the minimum content of ZrHf showing the maximum content ratio x max. Each cycle and position of the ZrHf minimum content point indicating the ratio x min , and the content ratio of the C content relative to the total amount of N and C, the C maximum content point indicating the maximum content ratio z max , The respective cycles and positions with the C lowest content point indicating the lowest content ratio z min are correspondingly synchronized with each other, and the highest ZrHf content point and the highest C point at the position closest to the highest ZrHf content point. The average value of the distance from the content point is 1/5 or less of the average distance between the ZrHf highest content point and its adjacent ZrHf lowest content point,
(D) The composite carbonitride layer has a vertically long crystal structure,
(E) Using a field emission scanning electron microscope and an electron beam backscattering diffractometer, an electron is applied to each crystal grain having a rock salt type cubic crystal lattice present within the measurement range of the cross-section polished surface of the composite carbonitride layer. Line, and an inclination angle formed by the normal line of the (111) plane, which is the crystal plane of the crystal grain, with respect to the normal line of the surface of the tool base is measured within a range of 0 to 45 degrees. When a number distribution graph is created, the highest peak exists in the tilt angle section within the range of 0 to 10 degrees with respect to the normal to the surface of the tool base, and the tilt angle section within the range of 0 to 10 degrees. The surface-coated cutting tool is characterized by having at least one layer in which the total of the frequencies present in 3) accounts for 35% or more of the total frequencies in the inclination angle frequency distribution graph.
(2) The surface-coated cutting tool as described in (1) above, wherein the composition varying structure is a laminated structure.
In the present specification and the description of the embodiments of the present invention, when a numerical range is indicated by "to" or "-", it means that the range includes the lower limit and the upper limit of the numerical value. ..
 本発明の態様に係る表面被覆切削工具(以下、「本発明の表面被覆切削工具」、「本発明の被覆工具」又は「本発明被覆工具」と称する)は、工具基体の表面に形成されている硬質被覆層が、TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層を有し、C含有量に対するN含有量の比を増加させることにより、耐溶着性を高め、析出硬化型ステンレス鋼の高送り断続切削加工において課題とされた溶着チッピングの問題を解決したものである。
 さらに、前記TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層は、ZrHf含有割合、および、C含有割合が、周期的に変化する組成変動組織を有し、特に、ZrHf最高含有点およびZrHf最低含有点の周期および位置と、C最高含有点およびC最低含有点の周期および位置がそれぞれ同期した高硬度の結晶粒を含有させることにより、すぐれた耐塑性変形性を発揮し、異常損傷の問題を解決したものである。
 そして、かかる複合炭窒化物層を硬質被覆層として有する被覆切削工具は、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を兼ね備えているため、析出硬化型ステンレス鋼の高送り断続切削加工用として、長期の使用にわたり、工具寿命の向上をもたらすものである。
A surface-coated cutting tool according to an aspect of the present invention (hereinafter, referred to as “surface-coated cutting tool of the present invention”, “coated tool of the present invention” or “present invention coated tool”) is formed on the surface of a tool base. The hard coating layer has a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer, and by increasing the ratio of the N content to the C content, the welding resistance is increased and the precipitation hardening stainless steel This is a solution to the problem of welding chipping, which was a problem in high-feed intermittent cutting.
Furthermore, the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer has a composition variation structure in which the ZrHf content ratio and the C content ratio change periodically, and in particular, the ZrHf highest content point and the ZrHf lowest By containing high hardness crystal grains in which the cycles and positions of the content points and the cycles and positions of the C highest content points and the C lowest content points are synchronized, excellent plastic deformation resistance is exhibited, and abnormal damage is caused. Is a solution.
And, the coated cutting tool having such a composite carbonitride layer as a hard coating layer has excellent welding resistance, plastic deformation resistance and abnormal damage resistance, so that high feed interrupted cutting of precipitation hardening stainless steel is performed. It is intended to improve the tool life over long-term use for machining.
本発明被覆工具のTiZrHf複合炭窒化物層の組成変動組織の組成変動方向における、ZrHf含有割合およびC含有割合について、以下で説明される、ZrHf最高含有割合、ZrHf最低含有割合、ZrHf平均含有割合、C最高含有割合、C最低含有割合、および、C平均含有割合と、それぞれの含有割合に対応する、ZrHf最高含有点、ZrHf最低含有点、ZrHf平均含有点、C最高含有点、C最低含有点、および、C平均含有点の位置との関係を示す概念図である。Regarding the ZrHf content ratio and the C content ratio in the composition fluctuation direction of the composition fluctuation structure of the TiZrHf composite carbonitride layer of the coated tool of the present invention, the ZrHf highest content ratio, the ZrHf lowest content ratio, and the ZrHf average content ratio will be described below. , C highest content rate, C lowest content rate, and C average content rate, and ZrHf highest content point, ZrHf lowest content point, ZrHf average content point, C highest content point, C lowest content corresponding to each content rate. It is a conceptual diagram which shows the relationship with a point and the position of a C average content point. 本発明被覆工具5の硬質被覆層の複合炭窒化物層を構成するTiZrHf炭窒化物における{111}面の傾斜角度数分布グラフである。It is a tilt angle number distribution graph of {111} plane in TiZrHf carbonitride which comprises the composite carbonitride layer of the hard coating layer of the coating tool 5 of this invention.
つぎに、本発明の被覆工具の実施形態について、詳細に説明する。 Next, an embodiment of the coated tool of the present invention will be described in detail.
工具基体;
 工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。
 例えば、超硬合金(WC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、または、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)のいずれかであることが好ましい。
Tool base;
As the tool base, any base can be used as long as it is a base conventionally known as a tool base of this type, as long as it does not impair the achievement of the object of the present invention.
For example, cemented carbide (including WC-based cemented carbide, WC, Co, or those containing carbonitrides such as Ti, Ta, and Nb), cermet (TiC, TiN, TiCN, etc.) It is preferable that it is one of the main components) or ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.).
硬質被覆層;
 本発明の表面被覆切削工具が備える硬質被覆層は、少なくとも複合炭窒化物層を有するものであって、前記複合炭窒化物層は、TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層を含んでなるものである。
 また、硬質被覆層は、その他の層として、必要に応じ、工具基体と前記複合炭窒化物層との間に下部層を設けることや、前記複合炭窒化物層の上に上部層を設けることができる。
ここで、硬質被覆層の平均層厚は、0.5μm未満では、長期にわたる耐摩耗性を発揮することができず、一方、30.0μmを超えて厚くなると硬質被覆層全体として欠損やチッピングが発生しやすくなるため、0.5~30.0μmとすることが好ましい。
 硬質被覆層の平均層厚は、例えば、工具基体に対し垂直方向断面において、SEM(走査型電子顕微鏡)またはTEM(透過型電子顕微鏡)を用いて測定することができる。
Hard coating layer;
The hard coating layer included in the surface-coated cutting tool of the present invention has at least a composite carbonitride layer, and the composite carbonitride layer includes a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer. It consists of
In addition, as the hard coating layer, as another layer, a lower layer may be provided between the tool base and the composite carbonitride layer, or an upper layer may be provided on the composite carbonitride layer, if necessary. You can
Here, if the average layer thickness of the hard coating layer is less than 0.5 μm, long-term wear resistance cannot be exhibited, while if it exceeds 30.0 μm, the hard coating layer as a whole will suffer defects and chipping. Since it is likely to occur, it is preferable to set the thickness to 0.5 to 30.0 μm.
The average layer thickness of the hard coating layer can be measured using, for example, a SEM (scanning electron microscope) or a TEM (transmission electron microscope) in a cross section in the direction perpendicular to the tool substrate.
複合炭窒化物層;
(1)成分組成、平均層厚
 本発明の表面被覆切削工具が備える複合炭窒化物層は、TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層からなるものであって、前記複合炭窒化物層を構成するTiZr複合炭窒化物またはTiZrHf複合炭窒化物は、組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))にて表した場合、0.10≦x≦0.90、0<y≦1.0、および、0.05<z<0.75をそれぞれ満足する。
 ここで、xは、TiとZrとHfとの合量に対してZrとHfとの合量が占める平均含有割合を表し、yはZrとHfとの合量に対してZr量が占める平均含有割合を表す。また、zはNとCとの合量に対してC量が占める平均含有割合を示す。但し、x、yおよびzはいずれも原子比である。
 本発明の表面被覆切削工具が備える前記TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層においては、耐溶着性向上元素であるNと、硬度向上元素であるCについて、Cの平均含有割合zを0.05<z<0.75にて含有させることにより、高耐溶着性、高硬度の両特性にすぐれた硬質被覆層を得ることができた。
 ここで、xが0.10より小さい、もしくは、xが0.90よりも大きい場合は、十分な格子ひずみが導入されず、十分な硬さを確保することができないため、0.10≦x≦0.90と規定した。
 なお、前記複合炭窒化物層は、Ti、Zr、Hf、N、Cの各成分以外に、酸素(O)および塩素(Cl)を不純物として含んでおり、酸素(O)を3.0原子%以下、塩素(Cl)を0.20原子%以下にて含むことができる。
Composite carbonitride layer;
(1) Component composition, average layer thickness The composite carbonitride layer provided in the surface-coated cutting tool of the present invention comprises a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer, and the composite carbonitride is the same. The TiZr composite carbonitride or the TiZrHf composite carbonitride constituting the layer is represented by a composition formula (Ti (1-x) Zr xy Hf x (1-y) )(N (1-z) C z ). In this case, 0.10≦x≦0.90, 0<y≦1.0, and 0.05<z<0.75 are satisfied.
Here, x represents the average content ratio of the total amount of Zr and Hf with respect to the total amount of Ti, Zr, and Hf, and y represents the average content of the Zr amount with respect to the total amount of Zr and Hf. Indicates the content rate. Further, z represents the average content ratio of the amount of C with respect to the total amount of N and C. However, x, y, and z are all atomic ratios.
In the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer provided in the surface-coated cutting tool of the present invention, the average content ratio z of C is N for the welding resistance improving element N and the hardness improving element C. Was added in an amount of 0.05<z<0.75, a hard coating layer excellent in both welding resistance and high hardness could be obtained.
Here, when x is smaller than 0.10 or larger than 0.90, sufficient lattice strain is not introduced and sufficient hardness cannot be ensured, so 0.10≦x It was defined as ≤0.90.
The composite carbonitride layer contains oxygen (O) and chlorine (Cl) as impurities in addition to the components of Ti, Zr, Hf, N, and C, and contains 3.0 atoms of oxygen (O). % Or less, and chlorine (Cl) may be contained at 0.20 atomic% or less.
 また、前記複合炭窒化物層の平均層厚は、0.5μm未満では、長期にわたる耐摩耗性を発揮することができず、一方、20.0μmを超えると、欠損やチッピングが発生しやすくなるため、硬度および耐摩耗性の観点からすぐれた効果を発揮する、0.5~20.0μmとする。
 なお、前記複合炭窒化物層の平均層厚は、走査型電子顕微鏡(倍率5000倍)を用いて、工具基体に垂直な方向の断面の観察視野内の5点の層厚を測り、これらを平均して平均層厚を求めることができる。
Further, if the average layer thickness of the composite carbonitride layer is less than 0.5 μm, long-term wear resistance cannot be exhibited, while if it exceeds 20.0 μm, chipping or chipping tends to occur. Therefore, the thickness is 0.5 to 20.0 μm, which is excellent in terms of hardness and wear resistance.
The average layer thickness of the composite carbonitride layer was measured by using a scanning electron microscope (magnification: 5000 times) to measure the layer thickness at five points in the observation field of view of the cross section in the direction perpendicular to the tool base. The average layer thickness can be determined on average.
(2)組成変動組織を有する結晶粒
 本発明の表面被覆切削工具が備える前記複合炭窒化物(TiZrNCまたはTiZrHfNC)層において、ZrHf含有割合、Ti含有割合、C含有割合およびN含有割合が周期的に変化する組成変動組織を有する結晶粒を含む。
(2) Crystal grains having a composition varying structure In the composite carbonitride (TiZrNC or TiZrHfNC) layer included in the surface-coated cutting tool of the present invention, ZrHf content ratio, Ti content ratio, C content ratio and N content ratio are periodic. It includes crystal grains having a composition variation structure that changes to.
1)ZrHf最高含有点、ZrHf最高含有割合(xmax)、ZrHf最低含有点、ZrHf最低含有割合(xmin)の定義;
 前記組成変動組織において、ZrHf含有割合は、前記ZrHf含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、例えば、ZrHf最高含有割合-ZrHf最低含有割合-ZrHf最高含有割合-ZrHf最低含有割合・・・というように所定の間隔を保ち、周期的な含有割合の変化を示す。
 ここでいうZrHf最高含有割合(xmax)、ZrHf最低含有割合(xmin)について説明すると、ZrHf最高含有割合(xmax)とは、各測定点におけるZrHf含有割合が、層全体の組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))におけるTiとZrとHfとの合量に対してZrとHfとの合量が占めるZrHf平均含有割合(xav)の値以上の連続した領域におけるZrHf含有割合の最大値をいう。連続してZrHf平均含有割合(xav)の値以上となる領域が複数ある場合は、それぞれの領域におけるZrHf含有割合の最大値をZrHf最高含有割合と定義し、それぞれの領域におけるZrHf含有割合が最大値をとる位置をそれぞれの領域におけるZrHf最高含有点と定義する。以後、ZrHf最高含有割合についてはxmaxと記すこともある。
 同様に、ZrHf最低含有割合(xmin)とは、各測定点におけるZrHf含有割合が、層全体の組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))におけるTiとZrとHfとの合量に対してZrとHfとの合量が占める平均含有割合(xav)の値以下となる連続した領域におけるZrHf含有割合の最小値をいう。連続してxavの値以下となる領域が複数ある場合は、それぞれの領域におけるZrHf含有割合の最小値をZrHf最低含有割合(xmin)と定義し、それぞれの領域におけるZrHf含有割合が最小値をとる位置をそれぞれの領域におけるZrHf最低含有点と定義する。以後、ZrHf最低含有割合についてはxminと記すこともある。
 この定義によれば、ZrHf平均含有割合(xav)の値近傍での周期的な変化が存在する場合、ZrHf最高含有点とZrHf最低含有点が交互に出現する。
具体的に図1に基づき説明する。図1の左側を積層上部位置とするとZrHf含有割合は、上部より、ZrHf平均含有点(P1)-ZrHf最高含有点1(Pmax1)-ZrHf平均含有点(P2)-ZrHf最低含有点1(Pmin1)-ZrHf平均含有点(P3)-ZrHf最高含有点2(Pmax2)-ZrHf平均含有点(P4)-ZrHf最低含有点1(Pmin2)-ZrHf平均含有点(P5)の位置において、ZrHf含有割合は、ZrHf平均含有割合(xav)-ZrHf最高含有割合1(xmax1)-ZrHf平均含有割合(xav)-ZrHf最低含有割合1(xmin1)-ZrHf平均含有割合(xav)-ZrHf最高含有割合2(xmax2)-ZrHf平均含有割合(xav)-ZrHf最低含有割合1(xmin2)の順に変化する。
 ここで、例えば、ZrHf平均含有点(P2)とZrHf平均含有点(P3)の位置の間において、連続してZrHfの平均含有割合(xav)を下回る極小点が(Pmin1)と(Pq)との2か所にて出現するが、その場合には、上記の定義により、より低いZrHf含有割合(xmin1)を示す(Pmin1)位置をZrHf最低含有点とする。
 以下、Ti成分、C成分、N成分についても、その平均含有割合の値以上の連続した領域において、それぞれの各領域における最大値をとる位置をそれぞれの領域における最高含有点といい、各成分の平均含有割合の値以下の連続した領域における最小値をとる位置をそれぞれの領域における最低含有点という。
1) Definition of ZrHf highest content point, ZrHf highest content rate (x max ), ZrHf lowest content point, ZrHf lowest content rate (x min );
In the composition-varying structure, the ZrHf content ratio is determined by, for example, a ZrHf maximum content ratio-ZrHf minimum content ratio-ZrHf maximum content ratio-in the direction in which the period width of the periodic composition change of the ZrHf content ratio becomes the minimum. The ZrHf minimum content ratio is maintained at a predetermined interval such that a periodic change in the content ratio is shown.
Explaining the ZrHf maximum content ratio (x max ) and the ZrHf minimum content ratio (x min ) here, the ZrHf maximum content ratio (x max ) means that the ZrHf content ratio at each measurement point is the composition formula ( ZrHf average of the total amount of Zr and Hf with respect to the total amount of Ti, Zr and Hf in Ti (1-x) Zr xy Hf x(1-y) )(N (1-z) C z ). It means the maximum value of the ZrHf content ratio in a continuous region that is equal to or greater than the content ratio (x av ). When there are a plurality of regions in which the ZrHf average content ratio (x av ) is continuously equal to or higher than the value, the maximum value of the ZrHf content ratio in each region is defined as the ZrHf maximum content ratio, and the ZrHf content ratio in each region is The position where the maximum value is obtained is defined as the ZrHf highest content point in each region. Hereinafter, the maximum ZrHf content may be referred to as x max .
Similarly, the ZrHf minimum content ratio (x min ) means that the ZrHf content ratio at each measurement point is the composition formula (Ti (1-x) Zr xy Hf x(1-y) )(N (1- the minimum value of ZrHf content in continuous area becomes a value less than the mean content of total amount occupied of Zr and Hf (x av) against the total amount of Ti and Zr and Hf in z) C z) Say. When there are a plurality of regions in which the value of x av is continuously less than or equal to, the minimum value of the ZrHf content ratio in each region is defined as the ZrHf minimum content ratio (x min ), and the ZrHf content ratio in each region is the minimum value. Is defined as the ZrHf minimum content point in each region. Hereinafter, the minimum content ratio of ZrHf may be referred to as x min .
According to this definition, when there is a periodic change in the vicinity of the value of the ZrHf average content ratio (x av ), the ZrHf highest content point and the ZrHf lowest content point appear alternately.
This will be specifically described with reference to FIG. Assuming that the left side of FIG. 1 is the stack upper position, the ZrHf content ratio is as follows from the top: ZrHf average content point (P1)-ZrHf maximum content point 1 (Pmax1)-ZrHf average content point (P2)-ZrHf minimum content point 1 (Pmin1 )-ZrHf average content point (P3)-ZrHf maximum content point 2 (Pmax2)-ZrHf average content point (P4)-ZrHf minimum content point 1 (Pmin2)-ZrHf average content point (P5), ZrHf content ratio Is the ZrHf average content ratio (x av )-ZrHf maximum content ratio 1 (x max1 )-ZrHf average content ratio (x av )-ZrHf minimum content ratio 1 (x min1 )-ZrHf average content ratio (x av )-ZrHf The highest content ratio 2 (x max2 )-ZrHf average content ratio (x av )-ZrHf lowest content ratio 1 (x min2 ) changes in this order.
Here, for example, between the positions of the ZrHf average content point (P2) and the ZrHf average content point (P3), local minimum points continuously lower than the average content ratio (x av ) of ZrHf are (Pmin1) and (Pq). , And in that case, the (Pmin1) position showing the lower ZrHf content ratio (x min1 ) is defined as the ZrHf minimum content point according to the above definition.
Hereinafter, also for Ti component, C component, and N component, in a continuous region having a value equal to or more than the average content ratio, the position having the maximum value in each region is referred to as the highest content point in each region, The position at which the minimum value is obtained in a continuous region that is less than or equal to the average content ratio value is called the minimum content point in each region.
2)Ti最高含有点、Ti最高含有割合(αmax)、Ti最低含有点、Ti最低含有割合(αmin)の定義;
 前記組成変動組織において、TiとZrとHfとの合量に対してTi量が占める含有割合(以後、Ti含有割合とも記す)は、ZrHf含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、ZrHf最高含有点では、Ti最低含有割合αmin(=1-xmax)を示し、ZrHf最低含有点では、Ti最高含有割合αmax(=1-xmin)を示す。なお、αは原子比である。
 すなわち、Ti含有割合は、前記ZrHf含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、同周期にて、Ti最低含有割合-Ti最高含有割合-Ti最低含有割合-Ti最高含有割合・・・という含有割合の変化を示す。ここでいう、Ti最高含有点、Ti最高含有割合、Ti最低含有点、Ti最低含有割合の定義は、前記ZrHfをTiに置き換え同様の定義である。
2) Definition of the highest Ti content point, the highest Ti content rate (α max ), the lowest Ti content point, and the lowest Ti content rate (α min );
In the composition varying structure, the content ratio of the Ti amount to the total amount of Ti, Zr, and Hf (hereinafter also referred to as Ti content ratio) is such that the periodic width of the periodic composition change of the ZrHf content ratio is the minimum. Along the direction, the ZrHf highest content point indicates the Ti minimum content ratio α min (=1-x max ) and the ZrHf lowest content point indicates the Ti maximum content ratio α max (=1-x min ). Note that α is an atomic ratio.
That is, the Ti content ratio is the minimum Ti content ratio-the maximum Ti content ratio-the minimum Ti content ratio-Ti in the same cycle along the direction in which the periodic width of the periodic composition change of the ZrHf content ratio becomes the minimum. The change of the content ratio of the highest content ratio is shown. Here, the definitions of the highest Ti content point, the highest Ti content rate, the lowest Ti content point, and the lowest Ti content rate are the same as those in which ZrHf is replaced with Ti.
3)C最高含有点、C最高含有割合(zmax)、C最低含有点、C最低含有割合(zmin)の定義;
 前記組成変動組織において、C含有割合は、前記TiとZrHfの周期的な組成変化の周期幅が最小となる方向に沿って、C最高含有割合-C最低含有割合-C最高含有割合-C最低含有割合・・・というように所定の間隔を保ち、周期的な含有割合の変化を示す。
 ここでいうC最高含有割合、C最低含有割合について説明すると、C最高含有割合とは、各測定点におけるC含有割合が、層全体の組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))におけるNとCとの合量に対してC量が占める平均含有割合(zav)の値以上の連続した領域におけるC含有割合の最大値をいう。連続してzavの値以上となる領域が複数ある場合は、それぞれの領域におけるC含有割合の最大値をC最高含有割合と定義し、それぞれの領域におけるC含有割合が最大値をとる位置をそれぞれの領域におけるC最高含有点と定義する。以後、C最高含有割合についてはzmaxと記すこともある。
 同様に、C最低含有点とは、各測定点におけるC含有割合が、層全体の組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))におけるNとCとの合量に対してC量が占める平均含有割合(zav)の値以下となる連続した領域におけるC含有割合の最小値をいう。連続してzavの値以下となる領域が複数ある場合は、それぞれの領域におけるC含有割合の最小値をC最低含有割合と定義し、それぞれの領域におけるC含有割合が最小値をとる位置をそれぞれの領域におけるC最低含有点と定義する。以後、C最低含有割合についてはzminと記すこともある。
 この定義によれば、C平均含有割合(zav)の値近傍での周期的な変化が存在する場合、最高含有点と最低含有点が交互に出現する。
 C含有割合についても、ZrHf含有割合と同様、具体的に図1に示す。図1の左側を積層上部位置とするとC含有割合は、上部より、C平均含有点(R1)-C最高含有点1(Rmax1)-C平均含有点(R2)-C最低含有点1(Rmin1)-C平均含有点(R3)-C最高含有点2(Rmax2)-C平均含有点(R4)-C最低含有点1(Rmin2)-C平均含有点(R5)の位置において、C平均含有割合(zav)-C最高含有割合1(zmax1)-C平均含有割合(zav)-C最低含有割合1(zmin1)-ZrHf平均含有割合(zav)-C最高含有割合2(zmax2)-C平均含有割合(zav)-C最低含有割合1(zmin2)の順に変化する。
 ここで、例えば、C平均含有点(R2)とC平均含有点(R3)の位置の間において、連続してCの平均含有割合(zav)を下回る極小点が(Rmin1)と(Rq)の2か所出現するが、その場合には、前記の定義により、より低いC含有割合(zmin1)を示す位置(Rmin1)をC最低含有点とする。
3) Definition of C highest content point, C highest content rate (z max ), C lowest content point, C lowest content rate (z min );
In the composition-varying structure, the C content ratio is as follows: C highest content ratio-C lowest content ratio-C highest content ratio-C lowest along the direction in which the periodic width of the periodic composition change of Ti and ZrHf becomes the minimum. Content ratio shows a periodic change in content ratio with a predetermined interval.
The maximum C content and the minimum C content here will be described. The maximum C content means that the C content at each measurement point is the composition formula (Ti (1-x) Zr xy Hf x(1 -Y) ) (N (1-z) C z ) The maximum value of the C content ratio in a continuous region that is equal to or greater than the average content ratio (z av ) of the C content relative to the total amount of N and C Say. When there are a plurality of regions that continuously exceed the value of z av , the maximum value of the C content ratio in each region is defined as the C maximum content ratio, and the position where the C content ratio in each region has the maximum value is defined. It is defined as the highest C content point in each region. Hereinafter, the highest C content may be referred to as z max .
Similarly, the C minimum content point, C content at each measurement point, the overall composition formula layer (Ti (1-x) Zr xy Hf x (1-y)) (N (1-z) C z ) Is the minimum value of the C content ratio in a continuous region where the amount of C occupies the total amount of N and C in () and is equal to or less than the value of the average content ratio (z av ). When there are a plurality of regions in which the value of z av is continuously less than or equal to, the minimum value of the C content ratio in each region is defined as the C minimum content ratio, and the position where the C content ratio in each region has the minimum value is defined. It is defined as the C lowest content point in each region. Hereinafter, the lowest C content may be referred to as z min .
According to this definition, when there is a periodic change in the vicinity of the value of the C average content ratio (z av ), the highest content point and the lowest content point appear alternately.
The C content ratio is also specifically shown in FIG. 1, like the ZrHf content ratio. When the left side of FIG. 1 is the upper position of the stack, the C content ratio is as follows: C average content point (R1)-C highest content point 1 (Rmax1)-C average content point (R2)-C lowest content point 1 (Rmin1 )-C average content point (R3)-C highest content point 2 (Rmax2)-C average content point (R4)-C lowest content point 1 (Rmin2)-C average content point (R5) Ratio (z av )-C maximum content ratio 1 (z max1 )-C average content ratio (z av )-C minimum content ratio 1 (z min1 )-ZrHf average content ratio (z av )-C maximum content ratio 2 ( z max2 )-C average content ratio (z av )-C minimum content ratio 1 (z min2 ).
Here, for example, between the positions of the C average content point (R2) and the C average content point (R3), local minimum points continuously lower than the average content ratio (z av ) of C are (Rmin1) and (Rq). In this case, the position (Rmin1) showing a lower C content ratio (z min1 ) is defined as the C minimum content point in that case.
4)N最高含有点、N最高含有割合(βmax)、N最低含有点、N最低含有割合(βmin);
 前記組成変動組織において、NとCとの合量に対してN量が占める含有割合(以後、N含有割合とも記す)は、C含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、C最高含有点では、N最低含有割合βmin(=1-zmax)を示し、C最低含有点では、N最高含有割合βmax(=1-zmin)を示す。なお、βは原子比である。
 すなわち、N含有割合は、前記C含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、同周期にて、N最低含有割合-N最高含有割合-N最低含有割合-N最高含有割合・・・という含有割合の変化を示す。ここでいう、N最高含有点、N最高含有割合、N最低含有点、N最低含有割合の定義は、前記CをNに置き換え同様の定義である。
4) N highest content point, N highest content rate (β max ), N lowest content point, N lowest content rate (β min );
In the composition varying structure, the content ratio of the N content relative to the total content of N and C (hereinafter also referred to as N content ratio) is such that the cycle width of the periodic composition change of the C content ratio is minimized. Along the line, the C highest content point indicates the N lowest content ratio β min (=1-z max ), and the C lowest content point indicates the N highest content ratio β max (=1-z min ). Note that β is an atomic ratio.
That is, the N content ratio is the N minimum content ratio-N highest content ratio-N lowest content ratio-N in the same cycle along the direction in which the cycle width of the periodic composition change of the C content ratio becomes the minimum. The change of the content ratio of the highest content ratio is shown. Here, the definitions of the N highest content point, the N highest content ratio, the N lowest content point, and the N lowest content ratio are the same as those in which C is replaced with N.
5)ZrHf最高含有点およびZrHf最低含有点におけるZrHf含有割合差(xmax-xmin)ならびにC最高含有点およびC最低含有点におけるC含有割合差(zmax-zmin);
 ZrHf最高含有点およびC最高含有点の位置、および、それぞれの最高含有点と最低含有点の周期は、後述する成膜方法において、同期させることができる。
 さらに、ZrHf最高含有割合xmaxとZrHf最低含有割合xminの差Δxの絶対値の平均値が0.02以上、かつ、C最高含有割合zmaxとC最低含有割合zminの差Δzの絶対値の平均値が0.02以上の組成変動組織とすることにより、硬さが向上する。硬さが向上する要因は下記の2点が考えられる。
(1)ZrおよびHfとCが増加した領域(富化された領域)とZrおよびHfとCが減少した領域(貧化された領域)の間において転位の移動を妨げることにより、硬さを向上させることができる。
(2)ZrおよびHfが増加した領域においてCを増加させているため、均一なTiZrHfNC層に比較して「ZrとNの結合の影響」および「HfとNの結合の影響」が小さい。ZrNおよびHfNは、ZrC、TiC、TiNと比較して硬さに劣るため、ZrおよびHfとNの結合の影響を小さくすることで硬さを向上させることができる。
 なお、ZrHf最高含有割合xmaxとZrHf最低含有割合xminの差は、0.02以上、0.90以下がより好ましく、C最高含有割合zmaxとC最低含有割合zminの差は、0.02以上、0.75以下がより好ましい。これらの差が大きすぎると微小チッピング等の異常損傷が起こり易くなる。この原因は明らかではないが、組成変動組織内での格子定数の変化が大きくなり過ぎ、結晶粒としての靭性が低下したものと推定している。
5) ZrHf content ratio difference (x max -x min ) at the ZrHf highest content point and ZrHf lowest content point, and C content ratio difference (z max -z min ) at the C highest content point and the C lowest content point.
The positions of the ZrHf highest content point and the C highest content point, and the cycles of the highest content point and the lowest content point can be synchronized in the film forming method described later.
Furthermore, the average absolute value of the difference Δx between the ZrHf maximum content ratio x max and the ZrHf minimum content ratio x min is 0.02 or more, and the absolute value of the difference Δz between the C maximum content ratio z max and the C minimum content ratio z min. The hardness is improved by setting the composition varying structure in which the average value of the values is 0.02 or more. The following two points are considered as factors that improve hardness.
(1) The hardness is increased by preventing dislocation movement between the region where Zr and Hf and C are increased (enriched region) and the region where Zr and Hf and C are decreased (poor region). Can be improved.
(2) Since C is increased in the region where Zr and Hf are increased, “the influence of the bond of Zr and N” and “the influence of the bond of Hf and N” are smaller than that of the uniform TiZrHfNC layer. Since ZrN and HfN are inferior in hardness to ZrC, TiC and TiN, the hardness can be improved by reducing the influence of the bond between Zr and Hf and N.
The difference between the ZrHf maximum content ratio x max and the ZrHf minimum content ratio x min is more preferably 0.02 or more and 0.90 or less, and the difference between the C maximum content ratio z max and the C minimum content ratio z min is 0. It is more preferably 0.02 or more and 0.75 or less. If these differences are too large, abnormal damage such as minute chipping is likely to occur. The cause of this is not clear, but it is presumed that the change in the lattice constant within the compositionally varying structure becomes too large, and the toughness as crystal grains deteriorates.
6)隣接するZrHf最高含有点とZrHf最低含有点の間隔(平均値);
 ZrHf最高含有点とZrHf最低含有点の間隔については「複合炭窒化物層の縦断面観察において、周期的な組成変化の周期が最小になる方向で測定される平均間隔が5~100nmであること」が、硬さ向上のために必要である。
 前記硬さ向上効果を発揮させるためには、平均間隔は小さい方が望ましく、100nm以下であることが必要である。一方、平均間隔が5nm未満では、それぞれを明確に区別して形成することが困難となるため、所望の硬度が得られず、耐摩耗性を確保することができない。
 例えば、図1では、ZrHf最高含有点1(Pmax1)とZrHf最低含有点1(Pmin1)との間隔(Pmin1-Pmax1)と、ZrHf最高含有点2(Pmax2)とZrHf最低含有点2(Pmin2)との間隔(Pmin2-Pmax2)との平均値として求めることができる。
6) Distance between adjacent ZrHf highest content points and ZrHf lowest content points (average value);
Regarding the distance between the highest content point of ZrHf and the lowest content point of ZrHf, "When observing the longitudinal section of the composite carbonitride layer, the average distance measured in the direction in which the period of periodic composition change is the minimum is 5 to 100 nm. Is necessary for improving hardness.
In order to exert the effect of improving the hardness, it is desirable that the average interval is small, and it is necessary that the average interval is 100 nm or less. On the other hand, if the average interval is less than 5 nm, it is difficult to form the layers so that they are clearly distinguished from each other, so that desired hardness cannot be obtained and wear resistance cannot be secured.
For example, in FIG. 1, the interval (Pmin1-Pmax1) between the ZrHf highest content point 1 (Pmax1) and the ZrHf lowest content point 1 (Pmin1), and the ZrHf highest content point 2 (Pmax2) and the ZrHf lowest content point 2 (Pmin2). Can be obtained as an average value with the interval (Pmin2-Pmax2).
7)ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値;
 前記硬さ向上効果(段落0020の(2)の効果)を発揮させるためには、「ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値」は、小さい方が好ましく、隣接するZrHf最高含有点とZrHf最低含有点の平均間隔の1/5以下であることが必要である。
 なお、上述の通り「ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値」は、小さい方が好ましいと考えられるが、本発明で開示する方法によって、ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値が、前記ZrHf最高含有点とその隣接するZrHf最低含有点との平均間隔の15/100でも効果を発揮することが確認されている。特に限定されないがこの平均間隔の下限値は0超である。
 ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値については、例えば、図1では、ZrHf最高含有点1(Pmax1)と、そのZrHf最高含有点1(Pmax1)から最も近い位置にあるC最高含有点1(Rmax1)との間隔(Rmax1-Pmax1)と、ZrHf最高含有点2(Pmax2)と、そのZrHf最高含有点2(Pmax2)から最も近い位置にあるC最高含有点2(Rmax2)との間隔(Rmax2-Pmax2)との平均値として求めることができる。
 この値を隣接するZrHf最高含有点とZrHf最低含有点の間隔(平均値)、すなわち、ZrHf最高含有点1(Pmax1)とZrHf最低含有点1(Pmin1)との間隔(Pmin1-Pmax1)と、ZrHf最高含有点2(Pmax2)とZrHf最低含有点2(Pmin2)との間隔(Pmin2-Pmax2)との平均値の1/5と対比することにより、効果の有無を判断することができる。
7) The average value of the interval between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point;
In order to exert the hardness improving effect (the effect of paragraph (0020) of paragraph 0020), "the average value of the intervals between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point. "Is preferably as small as possible and needs to be ⅕ or less of the average interval between the ZrHf highest content point and the ZrHf lowest content point which are adjacent to each other.
It should be noted that, as described above, it is considered that it is preferable that the "average value of the intervals between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point" is preferably small, but it is disclosed in the present invention. Depending on the method, the average value of the distances between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point is the average distance between the ZrHf highest content point and its adjacent ZrHf lowest content point. It has been confirmed that the effect is exhibited even at 15/100. Although not particularly limited, the lower limit value of this average interval is more than 0.
For the average value of the interval between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point, for example, in FIG. 1, the ZrHf highest content point 1 (Pmax1) and the ZrHf highest content point are shown. The interval (Rmax1-Pmax1) from the C highest content point 1 (Rmax1) closest to the point 1 (Pmax1), the ZrHf highest content point 2 (Pmax2), and the ZrHf highest content point 2 (Pmax2) It can be obtained as an average value with the interval (Rmax2-Pmax2) between the C highest content point 2 (Rmax2) at a close position.
This value is set to the interval (average value) between the adjacent ZrHf highest content point and ZrHf lowest content point, that is, the interval (Pmin1-Pmax1) between the ZrHf highest content point 1 (Pmax1) and the ZrHf lowest content point 1 (Pmin1), The presence or absence of the effect can be judged by comparing with 1/5 of the average value of the interval (Pmin2-Pmax2) between the ZrHf highest content point 2 (Pmax2) and the ZrHf lowest content point 2 (Pmin2).
8)組成変動組織が複合炭窒化物層の組織に占める面積割合;
 前記硬さ向上効果を発揮させるためには、組成変動組織が複合炭窒化物層の組織に占める面積割合は大きい方が好ましく、複合炭窒化物層の縦断面観察において、組成変動組織が複合炭窒化物層の組織に占める面積割合が10%以上であることが必要である。
 なお、上述の通り「組成変動組織が複合炭窒化物層の組織に占める面積割合」は、大きい方が好ましいと考えられるが、本発明で開示する方法によって、組成変動組織が複合炭窒化物層の組織に占める面積割合が15%であっても効果を発揮することが確認されている。特に限定されないがこの面積割合の上限値は98未満である。
8) Area ratio of the composition varying structure to the structure of the composite carbonitride layer;
In order to exert the effect of improving the hardness, it is preferable that the composition variation structure has a large area ratio in the structure of the composite carbonitride layer, and in the longitudinal cross-section observation of the composite carbonitride layer, the composition variation structure is It is necessary that the area ratio of the nitride layer to the structure is 10% or more.
As described above, it is considered that it is preferable that the “area ratio of the composition varying structure to the structure of the composite carbonitride layer” is large, but according to the method disclosed in the present invention, the composition varying structure has the composite carbonitride layer. It has been confirmed that the effect is exhibited even if the area ratio of the above structure is 15%. Although not particularly limited, the upper limit of this area ratio is less than 98.
9)積層組織;
 前記硬さ向上効果をより発揮させるためには、前記組成変動組織は積層組織であることが好ましい。ここでいう積層組織とは「組成変動組織のうち、隣接するZrHf平均含有点の間には、1つのZrHf極大含有点もしくは1つのZrHf極小含有点のみが存在し、隣接するC平均含有点の間には、1つのC極大含有点もしくは1つのC極小含有点のみが存在する組織」を指す。
 なお、硬さ向上の観点からは、積層組織の積層方向(TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層の縦断面観察において周期的な組成変化の周期が最小になる方向)は膜厚方向と一致する必要は無い。後述する成膜方法の場合、積層組織を有する結晶粒を含む複合炭窒化物層が得られるが、積層組織の積層方向は膜厚方向と一致するとは限らない。
 その他、粒界近傍は積層構造でない場合や、粒界近傍にTi、Zr、Hf、C、N、O、Clのいずれかの元素が濃化している場合があるが、前述の通り、組成変動組織(この場合、積層構造の組成変動組織)が複合炭窒化物層の組織に占める面積割合が10%以上であれば、硬さ向上効果を発揮する。
9) Layered structure;
In order to further exert the effect of improving the hardness, the composition varying structure is preferably a laminated structure. The term “laminated structure” as used herein refers to “of the composition-varying structure, only one ZrHf maximum content point or one ZrHf minimum content point exists between adjacent ZrHf average content points, In between, it refers to a tissue in which only one C-maximum content point or one C-minimum content point exists.
From the viewpoint of improving hardness, the film thickness is in the lamination direction (direction in which the cycle of periodic composition change is the minimum in the longitudinal cross-sectional observation of the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer). It does not have to match the direction. In the case of the film forming method described later, a composite carbonitride layer containing crystal grains having a laminated structure is obtained, but the laminated direction of the laminated structure does not always coincide with the film thickness direction.
In addition, there are cases where the vicinity of the grain boundary does not have a laminated structure, or where any of the elements Ti, Zr, Hf, C, N, O, and Cl is concentrated near the grain boundary. If the area ratio of the structure (in this case, composition change structure of the laminated structure) to the structure of the composite carbonitride layer is 10% or more, the hardness improving effect is exhibited.
10)縦長結晶組織;
 また、本発明の表面被覆切削工具が備える複合炭窒化物層は、前記のとおり、縦長結晶組織を有することにより、被覆層からの粒子の脱落が抑制され、耐摩耗性および耐異常損傷性にすぐれた特性を発揮する。
 なお、ここでいう縦長結晶組織とは、前記複合炭窒化物層の縦断面(工具基体の表面に垂直な断面)を観察した際に、個々の結晶粒について、層厚方向の結晶粒の高さ(長辺)にて、最も大きい値を最大粒子長さ(L)とし、層厚方向に垂直な方向の結晶粒の幅(短辺)にて、最も大きい値を最大粒子幅(W)としたとき、L/Wにて定義されるアスペクト比が2.0以上である結晶粒の前記複合炭窒化物層の縦断面において占める面積割合が50%以上である組織をいう。
 アスペクト比および縦長結晶粒の面積割合の測定は、例えば、走査型電子顕微鏡(SEM)を用い、倍率5000倍にて断面観察により得られた縦断面画像について、電子線後方散乱回折法(EBSD)により、個々の結晶粒につき、最大粒子長さ、最大粒子幅、および、縦断面の面積を測定し、最大粒子長さおよび最大粒子幅よりアスペクト比を求め、次いで、測定対象となった縦断面の面積に対するアスペクト比が2.0以上である結晶粒の縦断面における面積の総和の比率を面積割合として求めた。
 すなわち、アスペクト比2.0以上となるものについての面積率が50%以上であるものと規定することにより、靱性および耐摩耗性が向上する効果を発揮させることができる。
10) Vertical crystal structure;
Further, the composite carbonitride layer provided in the surface-coated cutting tool of the present invention, as described above, by having a vertically elongated crystal structure, the falling of particles from the coating layer is suppressed, wear resistance and abnormal damage resistance. Exhibits excellent characteristics.
The longitudinal crystal structure referred to here means the height of the crystal grain in the layer thickness direction of each crystal grain when the longitudinal cross section of the composite carbonitride layer (cross section perpendicular to the surface of the tool base) is observed. In the length (long side), the largest value is the maximum grain length (L), and in the width (short side) of the crystal grain in the direction perpendicular to the layer thickness direction, the largest value is the largest grain width (W). Is defined as a structure in which the area ratio of crystal grains having an aspect ratio defined by L/W of 2.0 or more in the vertical cross section of the composite carbonitride layer is 50% or more.
The aspect ratio and the area ratio of the elongated crystal grains are measured, for example, by using a scanning electron microscope (SEM), and a longitudinal cross-sectional image obtained by observing the cross section at a magnification of 5000 times is subjected to electron backscatter diffraction (EBSD). By measuring the maximum grain length, the maximum grain width, and the area of the vertical cross section for each crystal grain, determine the aspect ratio from the maximum grain length and the maximum grain width, and then measure the vertical cross section that was the measurement target. The ratio of the total area of the crystal grains having an aspect ratio of 2.0 or more with respect to the area in the vertical section was determined as the area ratio.
That is, by defining the area ratio of those having an aspect ratio of 2.0 or more to be 50% or more, the effect of improving toughness and wear resistance can be exhibited.
11)傾斜角度数分布
 本発明において複合炭窒化物層の複合炭窒化物結晶粒における前記傾斜角度数分布は、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、工具基体の表面に垂直な断面研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する個々の結晶粒に電子線を照射することにより測定することができる。
 すなわち、具体的には、前記工具基体の表面の法線に対して、前記複合炭窒化物層における複合炭窒化物結晶粒の結晶面である{111}面の法線がなす傾斜角を0~45度の範囲内で測定し、測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合に、前記工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、前記傾斜角度数分布グラフにおける度数全体の35%以上を占めるものであって、前記炭窒化物層の結晶粒の{111}面の配向傾向が高く、塑性変形を生じにくい組織を有するものである。
11) Inclination angle number distribution In the present invention, the inclination angle number distribution in the composite carbonitride crystal grains of the composite carbonitride layer is measured on the surface of the tool base using a field emission scanning electron microscope and an electron beam backscattering diffractometer. The measurement can be performed by irradiating each crystal grain having a rock salt type cubic crystal lattice existing within the measurement range of the polished surface of the vertical section with an electron beam.
That is, specifically, with respect to the normal line of the surface of the tool base, the inclination angle formed by the normal line of the {111} plane that is the crystal plane of the composite carbonitride crystal grains in the composite carbonitride layer is 0. In the case of measuring within a range of up to 45 degrees, dividing the measured tilt angle into pitches of 0.25 degrees, and creating a tilt angle number distribution graph that aggregates the frequencies present in each section, The highest peak exists in the tilt angle section in which the tilt angle with respect to the normal to the surface of the tool base is in the range of 0 to 10 degrees, and the total of the frequencies existing in the tilt angle section in the range of 0 to 10 degrees is The inclination angle number distribution graph occupies 35% or more of all the frequencies, and the {111} planes of the crystal grains of the carbonitride layer have a high orientation tendency and have a structure in which plastic deformation hardly occurs. ..
(3)複合炭窒化物層(TiZrNC層またはTiZrHfNC層)の成膜方法
 本発明における、規定する成分組成を有し、特定の組成変動組織を有し、特定の縦長結晶組織を有し、かつ、結晶粒を(111)方向に配向させたTiZrNC層またはTiZrHfNC層は、一例として、例えば、工具基体に対し、化学蒸着法を用いて、以下に示す条件にて成膜を行なうことにより、形成することができる。
 すなわち、TiZrNC層またはTiZrHfNC層の成膜条件は、原料として、TiClガス、ZrClガスまたはZrClガスとHfClガスとの混合ガス、CHガス、Nガス、Hガスを用い、成膜温度は、1000℃以上1080℃未満、圧力条件は、16kPa以上40kPa未満にて、周期的なガス供給可能なCVD装置を用いて行うことができる。
 具体的には、まず、第1工程(初期核形成工程)として、ガス群Aとガス群Bとを周期的に必要回数、繰り返し炉内に導入することにより、TiNCとTiZrNCとが点在した初期核が形成され、第2工程(結晶成長工程)において、初期核の結晶成長により、縦長結晶組織が生成するとともに、TiZrNCは、初期核上において、(111)配向するため、粒界強度が高く、塑性変形を生じにくい組織が得られる。
(3) Film-forming method of composite carbonitride layer (TiZrNC layer or TiZrHfNC layer) In the present invention, the composition of components is regulated, the composition has a specific composition variation structure, the composition has a specific longitudinal crystal structure, and The TiZrNC layer or the TiZrHfNC layer in which the crystal grains are oriented in the (111) direction is formed by, for example, forming a film on a tool base using a chemical vapor deposition method under the following conditions. can do.
That is, the film forming conditions of the TiZrNC layer or the TiZrHfNC layer are as follows: TiCl 4 gas, ZrCl 4 gas or a mixed gas of ZrCl 4 gas and HfCl 4 gas, CH 4 gas, N 2 gas, H 2 gas, The film forming temperature is 1000° C. or more and less than 1080° C., and the pressure condition is 16 kPa or more and less than 40 kPa, and a CVD apparatus capable of periodic gas supply can be used.
Specifically, first, as the first step (initial nucleation step), the gas group A and the gas group B were periodically introduced into the furnace a required number of times, so that TiNC and TiZrNC were scattered. Initial nuclei are formed, and in the second step (crystal growth step), crystal growth of the initial nuclei produces a vertically elongated crystal structure, and TiZrNC is (111) oriented on the initial nuclei, so that the grain boundary strength is A structure that is high and is less likely to undergo plastic deformation is obtained.
[成膜条件]
1)第1工程(初期核形成工程)
 a)反応ガス組成(容量%):
   ガス群A;TiCl:0.4~0.7%、
        CH:2.0~8.0%、
        N:15.0~60.0%、
        H:残、
   ガス群B;TiCl:0.4~0.7%、
        ZrCl:0.1~1.8%、HfCl:0.0~1.7%、
        ただし、ZrCl+HfCl:0.5~1.8%、
        CH:1.0~6.0%、
        N:25.0~60.0%、
        H:残、
 b)供給周期:
 (ガス群A→ガス群B)を一周期としてこれを繰り返す。
 各ガス群の供給時間は、ガス群A、ガス群Bのいずれも5秒以上であり、一周期当たりのガス供給時間は、10秒以上である。一周期当たりのガス供給時間が、10秒未満では、初期核を明確に区別して形成することが困難となる。一方、一周期当たりのガス供給時間が長すぎると、TiNCとTiZrNCとが点在した初期核を得ることが難しいため、一周期当たりのガス供給時間は180秒以下が好ましい。
 よって、一周期当たりのガス供給時間は10秒以上180秒以下とすることが好ましい。
 c)反応雰囲気温度:1000℃以上1080℃未満
 反応雰囲気温度については、1000℃未満では、十分な成膜速度を得にくい傾向がある。一方1080℃以上では、超硬合金母材からC等の元素が皮膜中に拡散し、十分な付着強度が得られないことがある。よって、反応雰囲気温度については1000℃以上1080℃未満が好ましい。
 d)反応雰囲気圧力:16kPa以上40kPa未満
16kPa未満では十分な成膜速度が得られず、40kPa以上では、皮膜中にポアが含まれやすくなる。よって、反応雰囲気圧力については16kPa以上40kPa未満が好ましい。
[Film forming conditions]
1) First step (initial nucleation step)
a) Reaction gas composition (% by volume):
Gas group A; TiCl 4 : 0.4 to 0.7%,
CH 4 : 2.0 to 8.0%,
N 2 : 15.0 to 60.0%,
H 2 : Remaining
Gas group B; TiCl 4 : 0.4 to 0.7%,
ZrCl 4 : 0.1 to 1.8%, HfCl 4 : 0.0 to 1.7%,
However, ZrCl 4 +HfCl 4 : 0.5 to 1.8%,
CH 4 : 1.0 to 6.0%,
N 2 : 25.0 to 60.0%,
H 2 : Remaining
b) Supply cycle:
This is repeated with (gas group A→gas group B) as one cycle.
The supply time of each gas group is 5 seconds or more for both the gas groups A and B, and the gas supply time per cycle is 10 seconds or more. If the gas supply time per cycle is less than 10 seconds, it will be difficult to clearly distinguish and form the initial nuclei. On the other hand, if the gas supply time per cycle is too long, it is difficult to obtain the initial nuclei in which TiNC and TiZrNC are scattered, so the gas supply time per cycle is preferably 180 seconds or less.
Therefore, the gas supply time per cycle is preferably 10 seconds or more and 180 seconds or less.
c) Reaction atmosphere temperature: 1000° C. or higher and lower than 1080° C. As for the reaction atmosphere temperature lower than 1000° C., it tends to be difficult to obtain a sufficient film formation rate. On the other hand, at a temperature of 1080° C. or higher, elements such as C may diffuse from the cemented carbide base material into the coating, and sufficient adhesion strength may not be obtained. Therefore, the reaction atmosphere temperature is preferably 1000° C. or higher and lower than 1080° C.
d) Reaction atmosphere pressure: 16 kPa or more and less than 40 kPa If it is less than 16 kPa, a sufficient film formation rate cannot be obtained, and if it is 40 kPa or more, pores are likely to be contained in the film. Therefore, the reaction atmosphere pressure is preferably 16 kPa or more and less than 40 kPa.
2)第2工程(結晶成長工程)
 a)反応ガス組成(容量%):
   ガス群C;TiCl:0.4~0.7%、
        ZrCl:0.1~1.8%、HfCl:0.0~1.7%、
        ただし、ZrCl+HfCl:0.5~1.8%、
        CH:1.0~6.0%、
        N:25.0~60.0%、
        H:残、
   ガス群D;TiCl:0.2~0.5%、ただし、ガス群AのTiCl濃度未満
        ZrCl:0.1~2.2%、HfCl:0.0~2.2%、
         ただし、ZrCl+HfCl:0.8~2.2%、
         かつ、ガス群CのZrCl+HfCl濃度を超え、
        CH:2.0~8.0%、ただし、ガス群CのCHを超え
        N:15.0~50.0%、ただし、ガス群CのN濃度未満
        H:残、
 b)供給周期:
 (ガス群C→ガス群D)を一周期としてこれを繰り返す。
 各ガス群の供給時間は、ガス群C、ガス群Dのいずれも5秒以上であり、一周期当たりのガス供給時間は、10秒以上である。一周期当たりのガス供給時間が、10秒未満では、組成変動組織を明確に区別して形成することが困難となる。一方、一周期当たりのガス供給時間を長くするに従い、結晶粒内の組成変動組織の組成変動が長周期化する結果、前述の「ZrおよびHfとCが富化された領域とZrおよびHfとCが貧化された領域の間で転位の移動を妨げ、硬さを向上させる効果」が小さくなるため、硬さが低下する。周期的な組成変化の周期を100nm以下とするためには、一周期当たりのガス供給時間は180秒以下が好ましい。よって一周期当たりのガス供給時間は10秒以上180秒以下とすることが好ましい。
 複合炭窒化物層の層厚の調整は、前記ガス供給周期(ガス群C→ガス群D)の繰り返し回数を増減させることにより行う。
 c)反応雰囲気温度:1000℃以上1080℃未満
 反応雰囲気温度については、1000℃未満では、十分な成膜速度が得られず、TiZrNC層またはTiZrHfNC層の塩素含有量が多くなり易い傾向がある。一方1080℃以上では、超硬合金母材からC等の元素が皮膜中に拡散し、十分な付着強度が得られないことがある。よって、反応雰囲気温度については1000℃以上1080℃未満が好ましい。
 d)反応雰囲気圧力:16kPa以上40kPa未満
16kPa未満では十分な成膜速度が得られず、40kPa以上では、皮膜中にポアが含まれやすくなる。よって、反応雰囲気圧力については16kPa以上40kPa未満が好ましい。
2) Second step (crystal growth step)
a) Reaction gas composition (% by volume):
Gas group C; TiCl 4 : 0.4 to 0.7%,
ZrCl 4 : 0.1 to 1.8%, HfCl 4 : 0.0 to 1.7%,
However, ZrCl 4 +HfCl 4 : 0.5 to 1.8%,
CH 4 : 1.0 to 6.0%,
N 2 : 25.0 to 60.0%,
H 2 : Remaining
Gas group D; TiCl 4 : 0.2 to 0.5%, but less than the TiCl 4 concentration of gas group A ZrCl 4 : 0.1 to 2.2%, HfCl 4 : 0.0 to 2.2%,
However, ZrCl 4 +HfCl 4 :0.8 to 2.2%,
Moreover, the concentration of ZrCl 4 +HfCl 4 in the gas group C is exceeded,
CH 4 : 2.0 to 8.0%, however, exceeding CH 4 of gas group C N 2 : 15.0 to 50.0%, but less than N 2 concentration of gas group C H 2 : remaining,
b) Supply cycle:
This is repeated with (gas group C→gas group D) as one cycle.
The supply time of each gas group is 5 seconds or more for both gas group C and gas group D, and the gas supply time per cycle is 10 seconds or more. If the gas supply time per cycle is less than 10 seconds, it will be difficult to clearly distinguish and form the composition variation structure. On the other hand, as the gas supply time per cycle is lengthened, the composition fluctuation of the composition fluctuation structure in the crystal grains becomes longer, and as a result, the above-mentioned "Zr and Hf and C-rich regions and Zr and Hf Since the effect of hindering the movement of dislocations between regions where C is poor and improving the hardness is small, the hardness is lowered. In order to set the cycle of periodic composition change to 100 nm or less, the gas supply time per cycle is preferably 180 seconds or less. Therefore, the gas supply time per cycle is preferably 10 seconds or more and 180 seconds or less.
The layer thickness of the composite carbonitride layer is adjusted by increasing or decreasing the number of repetitions of the gas supply cycle (gas group C→gas group D).
c) Reaction atmosphere temperature: 1000° C. or more and less than 1080° C. Regarding the reaction atmosphere temperature, if the reaction atmosphere temperature is less than 1000° C., a sufficient film formation rate cannot be obtained and the chlorine content of the TiZrNC layer or TiZrHfNC layer tends to increase. On the other hand, at a temperature of 1080° C. or higher, elements such as C may diffuse from the cemented carbide base material into the coating, and sufficient adhesion strength may not be obtained. Therefore, the reaction atmosphere temperature is preferably 1000° C. or higher and lower than 1080° C.
d) Reaction atmosphere pressure: 16 kPa or more and less than 40 kPa If it is less than 16 kPa, a sufficient film formation rate cannot be obtained, and if it is 40 kPa or more, pores are likely to be contained in the film. Therefore, the reaction atmosphere pressure is preferably 16 kPa or more and less than 40 kPa.
(4)下部層および上部層の成膜方法
 本発明においては、工具基体と複合炭窒化物層(TiZrNC層またはTiZrHfNC層)との間に下部層を、複合炭窒化物層(TiZrNC層またはTiZrHfNC層)の上に上部層を成膜することができる。
 なお、成膜する化合物および成膜条件については、後記表3を参照。
(4) Method of Forming Lower Layer and Upper Layer In the present invention, a lower layer is provided between the tool substrate and the composite carbonitride layer (TiZrNC layer or TiZrHfNC layer), and a composite carbonitride layer (TiZrNC layer or TiZrHfNC layer). A top layer can be deposited over the (layer).
See Table 3 below for the compounds to be deposited and the deposition conditions.
 つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are prepared. Compounded with the compounding composition shown in Table 1, wax was further added, the mixture was ball-milled in acetone for 24 hours, dried under reduced pressure, and then press-molded at a pressure of 98 MPa into a powder compact having a predetermined shape. Is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470° C. for 1 hour, and after sintering, a tool made of WC-based cemented carbide having an insert shape of ISO standard CNMG120408 Substrates A to C were manufactured respectively.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、ZrC粉末、TaC粉末、NbC粉末、MoC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体D、Eを作製した。 Further, as raw material powders, TiCN (TiC/TiN=50/50 by mass ratio) powders, ZrC powders, TaC powders, NbC powders, Mo 2 C powders, and WC powders each having an average particle diameter of 0.5 to 2 μm. , Co powder and Ni powder were prepared, and these raw material powders were blended to the blending composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa, This green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an insert shape of ISO standard CNMG120408, E was produced.
 ついで、これらの工具基体A~Eのそれぞれを、化学蒸着装置に装入し、TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層を成膜することにより、本発明被覆工具1~14をそれぞれ製造した。
 なお、下部層、上部層は、必要に応じて設けた。
 具体的には、まず、表5において、工具基体記号に基づき、表1または表2より、工具基体を選択し、次いで、形成記号に基づき、表4より、本発明成膜工程のTiZrNC層またはTiZrHfNC層の成膜条件を選択し、表5に示される目標平均層厚のTiZrNC層またはTiZrHfNC層の成膜を行った。
 下部層および/または上部層を設ける場合は、表3に示される形成条件にて、表5に示される平均目標層厚にて成膜を行った。
 次いで、得られた、本発明被覆工具1~14のTiZrNC層・TiZrHfNC層の平均組成、組成変動組織が複合炭窒化物層の組織に占める面積割合、ZrHf最高含有割合(平均値)、ZrHf最低含有割合(平均値)、C最高含有割合(平均値)、C最低含有割合(平均値)、ZrHf最高含有点とZrHf最低含有点の間隔(平均値)、C最高含有点とC最低含有点の間隔(平均値)、および、ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔(平均値)、平均膜厚を表5に示す。
Then, each of these tool substrates A to E is charged into a chemical vapor deposition apparatus, and a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer is formed to form the coated tools 1 to 14 of the present invention, respectively. Manufactured.
The lower layer and the upper layer were provided as needed.
Specifically, first, in Table 5, the tool substrate is selected from Table 1 or Table 2 based on the tool substrate symbol, and then based on the formation symbol, from Table 4, the TiZrNC layer of the film forming step of the present invention or The film forming conditions of the TiZrHfNC layer were selected, and the TiZrNC layer or the TiZrHfNC layer having the target average layer thickness shown in Table 5 was formed.
When the lower layer and/or the upper layer were provided, the film was formed under the formation conditions shown in Table 3 and the average target layer thickness shown in Table 5.
Then, the obtained TiZrNC layer/TiZrHfNC layer of the coated tools 1 to 14 of the present invention have an average composition, an area ratio in which the composition varying structure occupies the structure of the composite carbonitride layer, a ZrHf maximum content ratio (average value), and a ZrHf minimum value. Content ratio (average value), C highest content ratio (average value), C lowest content ratio (average value), interval between ZrHf highest content point and ZrHf lowest content point (average value), C highest content point and C lowest content point Table 5 shows the interval (average value), the interval (average value) between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point, and the average film thickness.
 また、比較の目的で、本発明被覆工具1~14と同様の手順で比較例被覆工具1~9をそれぞれ製造した。
 具体的には、表6において、工具基体記号に基づき、表1または表2より、工具基体を選択し、次いで、形成記号に基づき、表4より、比較例成膜工程のTiZrNC層またはTiZrHfNC層の成膜条件を選択し、表6に示される目標平均層厚のTiZrNC層またはTiZrHfNC層の成膜を行った。
 下部層および/または上部層を設ける場合は、表3に示される形成条件にて、表6に示される平均目標層厚にて成膜を行った。
 次いで、得られた、比較例被覆工具1~9のTiZrNC層・TiZrHfNC層の平均組成、組成変動組織が複合炭窒化物層の組織に占める面積割合、ZrHf最高含有割合(平均値)、ZrHf最低含有割合(平均値)、C最高含有割合(平均値)、C最低含有割合(平均値)、ZrHf最高含有点とZrHf最低含有点の間隔(平均値)、C最高含有点とC最低含有点の間隔(平均値)、および、ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔(平均値)、平均膜厚を表6に示す。
For the purpose of comparison, Comparative coated tools 1 to 9 were manufactured in the same procedure as the coated tools 1 to 14 of the present invention.
Specifically, in Table 6, a tool substrate is selected from Table 1 or Table 2 based on the tool substrate symbol, and then based on the formation symbol, from Table 4, the TiZrNC layer or the TiZrHfNC layer in the comparative example film forming step is selected. The film forming conditions were selected, and the TiZrNC layer or the TiZrHfNC layer having the target average layer thickness shown in Table 6 was formed.
When providing the lower layer and/or the upper layer, the film formation was performed under the formation conditions shown in Table 3 and with the average target layer thickness shown in Table 6.
Then, the average composition of the obtained TiZrNC layer and TiZrHfNC layer of the coated tools 1 to 9 of the comparative example, the area ratio of the composition varying structure in the structure of the composite carbonitride layer, the ZrHf maximum content ratio (average value), and the ZrHf minimum Content ratio (average value), C highest content ratio (average value), C lowest content ratio (average value), interval between ZrHf highest content point and ZrHf lowest content point (average value), C highest content point and C lowest content point Table 6 shows the interval (average value), the interval (average value) between the ZrHf highest content point and the C highest content point closest to the ZrHf highest content point, and the average film thickness.
 次いで、ここでは、本発明被覆工具1~14、および、比較例被覆工具1~9の分析方法について述べる。
膜厚の測定は、走査型電子顕微鏡(倍率5000倍)を用いた。まず、刃先近傍のすくい面のうち、刃先から100μm離れた位置において、工具基体に垂直な方向の断面が露出するように研磨を施した。次に刃先近傍のすくい面上で切れ刃稜線から100μm離れた位置を含むように、5000倍の視野でTiZrN層およびTiZrHfN層を観察し、観察視野内の5点の層厚を測定し、平均値を平均層厚とした。
Next, here, the analysis methods of the coated tools 1 to 14 of the present invention and the coated tools 1 to 9 of the comparative examples will be described.
The film thickness was measured with a scanning electron microscope (magnification: 5000 times). First, polishing was performed at a position 100 μm away from the cutting edge on the rake face near the cutting edge so that the cross section in the direction perpendicular to the tool base was exposed. Next, the TiZrN layer and the TiZrHfN layer were observed with a field of view of 5000 times so as to include a position 100 μm away from the cutting edge on the rake face in the vicinity of the cutting edge, and the layer thickness at 5 points in the observation field was measured and averaged. The value was taken as the average layer thickness.
 次に、収束イオンビーム(FIB)を用いて工具基体表面に垂直な縦断面を切り出し、TiZrNC層またはTiZrHfNC層の組成を、その層厚方向に沿って、工具基体表面に平行な方向の幅が10μmであり、硬質被覆層の厚み領域が全て含まれるように設定された視野について、高角散乱環状暗視野走査透過顕微鏡法(HAADF-STEM)およびエネルギー分散型X線分析法(EDS)を用いて1.0μm×1.0μmの視野(TiZrNC層またはTiZrHfNC層の膜厚が1.0μm以下の場合は、TiZrNC層またはTiZrHfNC層の膜厚×1.0μmの視野)にて異なる5箇所にて組成分析を行い、その平均値からTiZrNC層またはTiZrHfNC層全体の平均組成を求めた。 Next, using a focused ion beam (FIB), a vertical section perpendicular to the tool substrate surface is cut out, and the composition of the TiZrNC layer or TiZrHfNC layer is measured along the layer thickness direction so that the width in the direction parallel to the tool substrate surface is High-angle scattering annular dark-field scanning transmission microscopy (HAADF-STEM) and energy dispersive X-ray analysis (EDS) were applied to the visual field of 10 μm, which was set to include the entire thickness region of the hard coating layer. Composition at 5 different points in 1.0 μm×1.0 μm field of view (when the film thickness of the TiZrNC layer or TiZrHfNC layer is 1.0 μm or less, the film thickness of the TiZrNC layer or TiZrHfNC layer×1.0 μm) Analysis was performed and the average composition of the entire TiZrNC layer or the TiZrHfNC layer was determined from the average value.
 次に、HAADF-STEMを用いて組成変動組織が、複合炭窒化物層の組織に占める面積割合を求めた。具体的には、1.0μm×1.0μmの視野(TiZrNC層またはTiZrHfNC層の膜厚が1.0μm以下の場合は、TiZrNC層またはTiZrHfNC層の膜厚×1.0μmの視野)において、HAADF-STEM像を異なる5視野で観察し、各視野において、組成変動組織が、前記複合炭窒化物層に占める面積割合を求め、その平均値を、組成変動組織が複合炭窒化物層の組織に占める面積割合とした。
 HAADF-STEM像では構成元素の原子量差に起因するコントラストが強いため、ここで観察された、「HAADF-STEM像で周期的な明暗がある組織」は「TiとZrおよびHfとの周期的な組成変化を有する組織」であることを推定することができる。
 次いで、前記周期的な明暗のある組織について、EDSによるライン分析法を用いて、TiとZrおよびHfとの周期的な組成変化を有するものであるか確認を行った。
Next, the area ratio of the composition varying structure to the structure of the composite carbonitride layer was determined using HAADF-STEM. Specifically, in the field of view of 1.0 μm×1.0 μm (when the thickness of the TiZrNC layer or the TiZrHfNC layer is 1.0 μm or less, the thickness of the TiZrNC layer or the TiZrHfNC layer×the field of view of 1.0 μm), the HAADF -STEM images are observed in five different visual fields, and in each visual field, the area ratio of the composition varying structure to the composite carbonitride layer is determined, and the average value is calculated as the composition varying structure of the composite carbonitride layer structure. It was defined as the area ratio.
Since the HAADF-STEM image has a strong contrast due to the difference in atomic weight of the constituent elements, the "structure with periodic light and dark in the HAADF-STEM image" observed here is "a periodic structure of Ti, Zr and Hf. It is possible to presume that it is “a tissue having a composition change”.
Next, it was confirmed that the above-mentioned periodic bright and dark tissue has a periodic composition change of Ti with Zr and Hf by using a line analysis method by EDS.
 HAADF-STEM像によれば、結晶粒内には、積層構造の組成変動組織を複数見ることができ、積層構造の組成変動組織について、EDSライン分析を行うことができる。
 初めに、HAADF-STEM像から「TiとZrおよびHfとの周期的な組成変化の周期が最小となる方向(すなわち、HAADF-STEM像における明暗のコントラストの周期幅が最小となる方向)」を求めた。
 なお、前述の通り、HAADF-STEM像では構成元素の原子量差に起因するコントラストが強く、HAADF-STEM像において、明るい部分ほどZrが多く含有されている。なお、HAADF-STEMによって粒界が明瞭に観察できない場合は、同じ個所について、電子回折パターンによる結晶方位マッピングを10nm間隔で測定し、各々の測定点同士の結晶方位関係を解析し隣接する測定点(以下、「ピクセル」ともいう)間での方位差を測定し、5度以上の方位差がある場合、そこを粒界と定義する。そして、粒界で囲まれた領域を1つの結晶粒と定義する。(ただし、隣接するピクセルすべてと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱った。)
 そして、前記「TiとZrおよびHfとの周期的な組成変化の周期幅が最小となる方向」にEDSによるライン分析を行うことにより、ZrHf最高含有割合、ZrHf最低含有割合、C最高含有割合、C最低含有割合、ZrHf最高含有点とZrHf最低含有点の間隔、C最高含有点とC最低含有点の間隔、および、前記ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔を測定した。
 これらは、いずれも5個の積層構造の組成変動組織に対してEDSライン分析を行い、各々の積層構造の組成変動組織における測定値(各積層構造毎に10点)の平均値として求めたものである。
 表5および表6に測定および算出したそれぞれの値を示す。 
According to the HAADF-STEM image, a plurality of composition variation structures of the laminated structure can be seen in the crystal grain, and the EDS line analysis can be performed on the composition variation structure of the laminated structure.
First, from the HAADF-STEM image, "the direction in which the period of the periodic composition change of Ti with Zr and Hf becomes the minimum (that is, the direction in which the period width of the contrast of light and dark in the HAADF-STEM image becomes the minimum)" I asked.
As described above, the HAADF-STEM image has a strong contrast due to the difference in the atomic weights of the constituent elements, and in the HAADF-STEM image, the brighter portion contains more Zr. If the grain boundaries cannot be clearly observed by HAADF-STEM, the crystal orientation mapping by electron diffraction pattern is measured at 10 nm intervals at the same location, and the crystal orientation relationship between the measurement points is analyzed to determine the adjacent measurement points. The orientation difference between (hereinafter, also referred to as “pixel”) is measured, and when there is an orientation difference of 5 degrees or more, it is defined as a grain boundary. Then, the region surrounded by the grain boundaries is defined as one crystal grain. (However, a single pixel having an orientation difference of 5 degrees or more with all the adjacent pixels is not a crystal grain, but a pixel in which two or more pixels are connected is treated as a crystal grain.)
Then, by performing a line analysis by EDS in the "direction in which the periodic width of the periodic composition change of Ti and Zr and Hf is the minimum", ZrHf maximum content ratio, ZrHf minimum content ratio, C maximum content ratio, C lowest content ratio, distance between ZrHf highest content point and ZrHf lowest content point, distance between C highest content point and C lowest content point, and C at the position closest to the ZrHf highest content point and the ZrHf highest content point The distance from the highest content point was measured.
These were all obtained by performing EDS line analysis on the composition variation structure of five laminated structures and averaging the measured values (10 points for each laminated structure) in the composition variation structure of each laminated structure. Is.
Table 5 and Table 6 show the measured and calculated values.
 次いで、本発明被覆工具1~14および比較例被覆工具1~9の硬質被覆層の複合炭窒化物層を構成する結晶粒についての傾斜角度数分布を、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて測定した。
 すなわち、前記下部層と前記複合炭窒化物層との界面から複合炭窒化物層の層厚方向へ0.3μm、また、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(0.3μm×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流にて、それぞれの前記研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する結晶粒個々に照射して、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用いて、0.3μm×50μmの測定領域を0.1μm/stepの間隔にて、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を0~45度の範囲にわたって、0.25度のピッチ毎に区分して測定し、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表し、この測定結果に基づいて、前記傾斜角区分が0~10度の範囲内にある結晶粒の度数の合計を求め、さらに、傾斜角度数分布グラフ全体に占める度数割合を求め、表5、表6に示す。(なお、傾斜角度数分布を求めるに当たり、理想的なランダム配向の場合、傾斜角度数は工具基体表面の法線方向に対するある結晶面の法線方向がなす傾斜角によらず一定の値になるように規格化している。)
Next, the inclination angle number distributions of the crystal grains forming the composite carbonitride layer of the hard coating layers of the coated tools 1 to 14 of the present invention and the coated tools 1 to 9 of the comparative examples were measured by using a field emission scanning electron microscope and an electron beam backward. It was measured using a scattering diffractometer.
That is, from the interface between the lower layer and the composite carbonitride layer, 0.3 μm in the layer thickness direction of the composite carbonitride layer, and 50 μm in the direction parallel to the surface of the tool substrate, the measurement range (0. 3 μm×50 μm) is set in the lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV is applied to the polishing surface at an incident angle of 70 degrees with an irradiation current of 1 nA to each polishing surface. Of the crystal grains having the rock salt type cubic crystal lattice existing within the measurement range of 0.1 μm×50 μm using a field emission scanning electron microscope and electron backscattering diffraction imager. At an interval of 1 μm/step, an inclination angle formed by the normal line of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal line of the surface-polished surface is 0 to 45 degrees. It is divided into 25-degree pitches and measured, and the tilt angles are distributed in a range of 0 to 10 degrees on the basis of the measurement result, which is represented by a distribution graph of the tilt angle number obtained by totaling the frequencies present in each section. The sum of the frequencies of the crystal grains inside is calculated, and the frequency ratio occupying the entire inclination angle frequency distribution graph is calculated, and shown in Tables 5 and 6. (In obtaining the tilt angle number distribution, in the case of ideal random orientation, the tilt angle number has a constant value regardless of the tilt angle formed by the normal direction of a certain crystal plane to the normal direction of the tool substrate surface. Is standardized as follows.)
 また、本発明被覆工具1~14および比較例被覆工具1~9の硬質被覆層の複合炭窒化物層の縦断面について、走査型電子顕微鏡(SEM)を用い、倍率5000倍にて、工具基体と平行な方向に10μm、工具基体と垂直な方向に複合炭窒化物層の層厚分の高さの領域内に存在する複合炭窒化物結晶粒のそれぞれについて最大粒子幅W、最大粒子長さLを測定するとともに、アスペクト比L/Wの値を求め、アスペクト比L/Wが2以上である結晶粒が、複合炭窒化物層の縦断面に占める面積割合を求め、表5、表6に示す。 Further, the longitudinal section of the composite carbonitride layer of the hard coating layers of the coated tools 1 to 14 of the present invention and the coated tools 1 to 9 of the comparative example was examined with a scanning electron microscope (SEM) at a magnification of 5000 times to give a tool substrate. The maximum particle width W and the maximum particle length for each of the composite carbonitride crystal grains existing in the region of 10 μm in the direction parallel to and the height of the thickness of the composite carbonitride layer in the direction perpendicular to the tool substrate. While measuring L, the value of the aspect ratio L/W was calculated, and the area ratio of the crystal grains having the aspect ratio L/W of 2 or more to the vertical cross section of the composite carbonitride layer was calculated. Shown in.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 つぎに、前記各種の被覆工具を工具鋼製バイト先端部に固定治具にてクランプした状態で、本発明被覆工具1~14、比較例工具1~9について、以下に示す、析出硬化型ステンレス鋼の高送り断続切削試験を実施し、切刃の逃げ面摩耗幅を測定するとともに、溶着の発生等の有無について観察を行い、結果を表7に示す。 Next, in the state where the above-mentioned various coated tools are clamped at the tip of the tool steel bite by a fixing jig, the following precipitation-hardening stainless steels of the coated tools 1 to 14 of the present invention and the comparative tools 1 to 9 are shown below. A high-feed interrupted cutting test of steel was carried out, the flank wear width of the cutting edge was measured, and the presence or absence of welding was observed, and the results are shown in Table 7.
≪切削条件A≫
 切削試験:析出硬化型ステンレス鋼1スリット材湿式高送り断続切削加工試験
 被削材:JIS・SUS630
 切削速度:110m/min、
 切り込み:1.5mm、
 送り量:0.42mm/rev.、
 切削時間:4.0分、
≪切削条件B≫
  切削試験:析出硬化型ステンレス鋼4スリット材湿式断続高送り切削加工試験
 被削材:JIS・SUS630
 切削速度:90m/min、
 切り込み:1.2mm、
 送り量:0.37mm/rev.、
 切削時間:1.0分、
≪Cutting condition A≫
Cutting test: Precipitation hardening type stainless steel 1 slit material Wet high feed intermittent cutting processing work material: JIS/SUS630
Cutting speed: 110m/min,
Notch: 1.5 mm,
Feed rate: 0.42 mm/rev. ,
Cutting time: 4.0 minutes,
≪Cutting condition B≫
Cutting test: Precipitation hardening type stainless steel 4 slit material Wet intermittent high feed cutting test work material: JIS/SUS630
Cutting speed: 90m/min,
Notch: 1.2 mm,
Feed amount: 0.37 mm/rev. ,
Cutting time: 1.0 minutes,
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7の切削加工試験結果からも明らかなように、本発明被覆工具は、表5において、各成分元素が所望の平均組成を満たし、また、ZrHf含有割合およびC含有割合が周期的に変化し、ZrHf最高含有点とC最高含有点の周期および位置がそれぞれ同期した積層構造の組成変動組織を備えたTiZr複合炭窒化層またはTiZrHf複合炭窒化物層を有することにより、例えば、析出硬化型ステンレス鋼の断続高送り切削加工において、剥離、チッピングを発生することなく、逃げ面最大摩耗幅も小さく、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を発揮する。
 これに対し、比較例被覆工具は、硬質被覆層として含まれる複合炭窒化物層が、所望の平均組成を満たしていない、あるいは、所望の平均組成を満たしている場合であっても、ZrHf含有割合およびC含有割合が周期的に変化する組成変動組織を有していない、または所望の配向性を有していないことにより、所望の特性を発揮することができず、摩耗の進展、溶着の発生、チッピングの発生等により、短時間で寿命に至るものであった。
As is clear from the cutting test results of Table 7, in the coated tool of the present invention, in Table 5, each component element satisfies the desired average composition, and the ZrHf content ratio and the C content ratio change periodically. , A TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer having a composition variation structure of a laminated structure in which the cycles and positions of the ZrHf highest content point and the C highest content point are synchronized, for example, precipitation hardening stainless steel In intermittent high-feed cutting of steel, it does not cause peeling or chipping, has a small flank maximum wear width, and exhibits excellent welding resistance, plastic deformation resistance, and abnormal damage resistance.
On the other hand, in the comparative example coated tool, even if the composite carbonitride layer included as the hard coating layer does not satisfy the desired average composition or the desired average composition is satisfied, ZrHf is contained. Since it does not have a compositionally varying structure in which the ratio and the C content change periodically or does not have the desired orientation, the desired properties cannot be exhibited, and wear progress and welding Due to the occurrence of chipping and chipping, the life was shortened.
 前述のとおり、本発明の被覆工具は、硬質被覆層として含まれる複合炭窒化物層において、各成分の含有割合が周期的に変化する、所望の組成変動組織を有することにより、例えば、析出硬化型ステンレス鋼の断続高送り切削加工において、すぐれた耐溶着性、耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに、低コスト化に十分満足するものである。 As described above, the coated tool of the present invention, in the composite carbonitride layer included as a hard coating layer, the content ratio of each component changes periodically, by having a desired compositional variation structure, for example, precipitation hardening In intermittent high-feed cutting of type stainless steel, it exhibits excellent welding resistance, chipping resistance, and wear resistance. It is fully satisfied with the cost reduction.

Claims (2)

  1.  工具基体の表面に硬質被覆層を有する表面被覆切削工具であって、
     (a)前記硬質被覆層は、平均層厚0.5μm以上20.0μm以下のTiZr複合炭窒化物層またはTiZrHf複合炭窒化物層の少なくとも一層を含み、
     (b)前記複合炭窒化物層は、TiZr複合炭窒化物またはTiZrHf複合炭窒化物を含有し、前記複合炭窒化物は、組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))にて表わした場合、
     TiとZrとHfとの合量に対してZrとHfとの合量が占める平均含有割合x、ZrとHfとの合量に対してZr量が占める平均含有割合y、および、NとCとの合量に対してC量が占める平均含有割合z(但し、x、yおよびzはいずれも原子比)が、それぞれ、0.10≦x≦0.90、0<y≦1.0、および、0.05<z<0.75を満足する平均組成を有し、
     (c)前記複合炭窒化物層は、少なくとも一部の結晶粒内に、TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合、および、NとCとの合量に対してC量が占める含有割合が周期的に変化する組成変動組織を有し、
     (c-1)縦断面観察において、前記組成変動組織が前記複合炭窒化物層の組織に占める面積割合が10%以上であり、
     (c-2)前記組成変動組織における前記TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合について、最高含有割合xmaxを示すZrHf最高含有点と最低含有割合xminを示すZrHf最低含有点とが繰り返され、前記繰り返される隣接するZrHf最高含有点とZrHf最低含有点の間隔の平均値である平均間隔が5~100nmであり、前記ZrHf最高含有点の最高含有割合xmaxと前記ZrHf最低含有点の最低含有割合xminとの差Δxの絶対値の平均値が0.02以上であり、
     (c-3)前記組成変動組織における前記NとCとの合量に対してC量が占める含有割合について、最高含有割合zmaxを示すC最高含有点と最低含有割合zminを示すC最低含有点とが繰り返され、前記繰り返される隣接するC最高含有点とC最低含有点の間隔の平均値である平均間隔が5~100nmであり、前記C最高含有点の最高含有割合zmaxと前記C最低含有割合zminとの差Δzの絶対値の平均値が0.02以上であり、
     (c-4)前記組成変動組織における前記TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合について、最高含有割合xmaxを示すZrHf最高含有点と最低含有割合xminを示すZrHf最低含有点とのそれぞれの周期および位置と、前記NとCとの合量に対してC量が占める含有割合について、最高含有割合zmaxを示すC最高含有点と、最低含有割合zminを示すC最低含有点とのそれぞれの周期および位置とはそれぞれに対応して同期しており、前記ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値が、前記ZrHf最高含有点とその隣接するZrHf最低含有点との平均間隔の1/5以下であり、
     (d)前記複合炭窒化物層は縦長結晶組織を有し、
     (e)電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、前記複合炭窒化物層の断面研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する結晶粒のそれぞれに電子線を照射し、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(111)面の法線がなす傾斜角を0~45度の範囲内で測定して傾斜角度数分布グラフを作成した場合、工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35%以上を占める層を少なくとも1層を有することを特徴とする表面被覆切削工具。
    A surface-coated cutting tool having a hard coating layer on the surface of a tool base,
    (A) The hard coating layer includes at least one of a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer having an average layer thickness of 0.5 μm or more and 20.0 μm or less,
    (B) said composite carbonitride layer contains TiZr complex carbonitride or TiZrHf complex carbonitride, said composite carbonitride, the composition formula (Ti (1-x) Zr xy Hf x (1-y ) )(N (1-z) C z ),
    The average content ratio x of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, the average content ratio y of the Zr amount to the total amount of Zr and Hf, and N and C. The average content ratio z (where x, y and z are all atomic ratios) of the C content with respect to the total amount thereof is 0.10≦x≦0.90 and 0<y≦1.0, respectively. , And an average composition satisfying 0.05<z<0.75,
    (C) In the composite carbonitride layer, the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, and N and C in at least a part of the crystal grains. Has a composition-varying structure in which the content ratio of the C content relative to the total content of
    (C-1) In a longitudinal cross-section observation, the area ratio of the composition varying structure to the structure of the composite carbonitride layer is 10% or more,
    (C-2) Regarding the content ratio of the total amount of Zr and Hf with respect to the total amount of Ti, Zr and Hf in the composition varying structure, the maximum content point and the minimum content of ZrHf showing the maximum content ratio x max. The ZrHf minimum content point indicating the ratio x min is repeated, and the average interval between the repeated ZrHf highest content points and the ZrHf lowest content point is 5 to 100 nm, and the ZrHf highest content point is The average value of the absolute values of the differences Δx between the highest content rate x max and the lowest content rate x min of the ZrHf lowest content point is 0.02 or more,
    (C-3) Regarding the content ratio of the C content with respect to the total amount of N and C in the composition varying structure, the C highest content point showing the highest content ratio z max and the C lowest content showing the lowest content ratio z min. The content point is repeated, and the average interval, which is the average value of the intervals between the adjacent C highest content point and C lowest content point, is 5 to 100 nm, and the highest content ratio z max of the C highest content point and the above The average absolute value of the difference Δz from the C minimum content ratio z min is 0.02 or more,
    (C-4) Regarding the content ratio of the total amount of Zr and Hf with respect to the total amount of Ti, Zr and Hf in the composition varying structure, the maximum content point and the minimum content of ZrHf showing the maximum content ratio x max. Each cycle and position of the ZrHf minimum content point indicating the ratio x min , and the content ratio of the C content relative to the total amount of N and C, the C maximum content point indicating the maximum content ratio z max , The respective cycles and positions with the C lowest content point indicating the lowest content ratio z min are correspondingly synchronized with each other, and the highest ZrHf content point and the highest C point at the position closest to the highest ZrHf content point. The average value of the distance from the content point is 1/5 or less of the average distance between the ZrHf highest content point and its adjacent ZrHf lowest content point,
    (D) The composite carbonitride layer has a vertically long crystal structure,
    (E) Using a field emission scanning electron microscope and an electron beam backscattering diffractometer, an electron is applied to each crystal grain having a rock salt type cubic crystal lattice present within the measurement range of the cross-section polished surface of the composite carbonitride layer. Line, and an inclination angle formed by the normal line of the (111) plane, which is the crystal plane of the crystal grain, with respect to the normal line of the surface of the tool base is measured within a range of 0 to 45 degrees. When a number distribution graph is created, the highest peak exists in the tilt angle section within the range of 0 to 10 degrees with respect to the normal to the surface of the tool base, and the tilt angle section within the range of 0 to 10 degrees. The surface-coated cutting tool is characterized in that the surface-coated cutting tool has at least one layer in which the total of the frequencies present in 3) accounts for 35% or more of the total frequencies in the inclination angle frequency distribution graph.
  2. 前記組成変動組織が、積層組織であることを特徴とする請求項1に記載された表面被覆切削工具。 The surface-coated cutting tool according to claim 1, wherein the composition-varying structure is a laminated structure.
PCT/JP2020/003749 2019-02-07 2020-01-31 Surface-coated cutting tool having hard coating layer exhibiting superior deposition resistance, plastic-deformation resistance, and abnormal damage resistance WO2020162365A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019020911 2019-02-07
JP2019-020911 2019-02-07
JP2020-004689 2020-01-15
JP2020004689A JP2020128001A (en) 2019-02-07 2020-01-15 Surface-coated cutting tool whose hard coating layer exhibiting excellent deposition resistance, plastic-deformation resistance, and abnormal damage resistance

Publications (1)

Publication Number Publication Date
WO2020162365A1 true WO2020162365A1 (en) 2020-08-13

Family

ID=71947105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003749 WO2020162365A1 (en) 2019-02-07 2020-01-31 Surface-coated cutting tool having hard coating layer exhibiting superior deposition resistance, plastic-deformation resistance, and abnormal damage resistance

Country Status (1)

Country Link
WO (1) WO2020162365A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009604A (en) * 1999-06-28 2001-01-16 Mitsubishi Materials Corp Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JP2004074302A (en) * 2002-08-09 2004-03-11 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior chipping resistance under high speed heavy duty cutting condition
JP2009006426A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009604A (en) * 1999-06-28 2001-01-16 Mitsubishi Materials Corp Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JP2004074302A (en) * 2002-08-09 2004-03-11 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior chipping resistance under high speed heavy duty cutting condition
JP2009006426A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting

Similar Documents

Publication Publication Date Title
US10100403B2 (en) Surface-coated cutting tool and method of producing the same
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
US10953473B2 (en) Surface-coated cutting tool and method of producing the same
US10259048B2 (en) Surface-coated cutting tool and method of producing the same
KR20180135497A (en) Surface-coated cutting tool and method of producing the same
US10166611B2 (en) Surface-coated cutting tool and method of producing the same
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP7043869B2 (en) Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer
WO2020162365A1 (en) Surface-coated cutting tool having hard coating layer exhibiting superior deposition resistance, plastic-deformation resistance, and abnormal damage resistance
JP7437623B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance.
JP7486045B2 (en) Surface-coated cutting tools
US11998992B2 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP7453616B2 (en) surface coated cutting tools
WO2021177406A1 (en) Surface-coated cutting tool
JP2020128001A (en) Surface-coated cutting tool whose hard coating layer exhibiting excellent deposition resistance, plastic-deformation resistance, and abnormal damage resistance
WO2020075840A1 (en) Surface-coated cutting tool in which hard coating layer exhibits exceptional adhesion resistance, plastic deformation resistance, and anomalous damage resistance
JP7385172B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent welding resistance, plastic deformation resistance, and abnormal damage resistance.
JP2021137955A (en) Surface coating cutting tool
CN115397589B (en) Surface coated cutting tools
US11407037B1 (en) Cutting tools
US11471951B2 (en) Cutting tools
JP2022139720A (en) Surface coated cutting tool
WO2023190000A1 (en) Surface-coated cutting tool
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2023148468A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20753091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20753091

Country of ref document: EP

Kind code of ref document: A1