WO2020156462A1 - 一种确定标定支架相对于待测车辆的放置点的方法 - Google Patents
一种确定标定支架相对于待测车辆的放置点的方法 Download PDFInfo
- Publication number
- WO2020156462A1 WO2020156462A1 PCT/CN2020/073869 CN2020073869W WO2020156462A1 WO 2020156462 A1 WO2020156462 A1 WO 2020156462A1 CN 2020073869 W CN2020073869 W CN 2020073869W WO 2020156462 A1 WO2020156462 A1 WO 2020156462A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- line
- point
- reference line
- calibration
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000012360 testing method Methods 0.000 claims description 21
- 230000007246 mechanism Effects 0.000 description 69
- 230000005540 biological transmission Effects 0.000 description 35
- 238000010586 diagram Methods 0.000 description 18
- 230000003044 adaptive effect Effects 0.000 description 13
- 230000033001 locomotion Effects 0.000 description 13
- 230000004297 night vision Effects 0.000 description 11
- 238000009434 installation Methods 0.000 description 10
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 10
- 210000000078 claw Anatomy 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
Definitions
- This application relates to the technical field of vehicle maintenance and equipment calibration, and in particular to a method for determining the placement point of the calibration bracket relative to the vehicle to be tested.
- the Advanced Driver Assistant System uses various sensors installed on the car to collect environmental data inside and outside the car at the first time to identify, detect and detect static and dynamic objects. Tracking and other technical processing, which can allow the driver to detect possible dangers in the fastest time, to attract attention and improve safety of active safety technology.
- the sensors used in ADAS mainly include cameras, radars, lasers and ultrasonics, which can detect light, heat, pressure or other variables used to monitor the state of the car. They are usually located on the front and rear bumpers, side mirrors, steering column or windshield. On the glass. During the use of the vehicle, vibration, collision, environmental temperature and humidity, etc. will change the physical installation status of the above-mentioned sensors, so it needs to be calibrated or calibrated irregularly.
- the current calibration bracket is basically positioned by the mounted beam, which has a relatively large volume and a large floor area, which is not conducive to transportation and also increases the cost.
- the embodiment of the present invention aims to provide a method for determining the placement point of the calibration bracket relative to the vehicle to be tested, which can solve the transportation problems and cost problems caused by the use of beam positioning in the prior art.
- a method for determining the placement point of a calibration bracket relative to a vehicle to be tested is provided.
- the calibration bracket is used to mount a calibration element to calibrate a device to be calibrated in an advanced driving assistance system on the vehicle to be tested.
- the calibration The placement point of the bracket relative to the vehicle under test is located at the front or the rear of the vehicle under test, and the method includes: determining a first reference line where the first reference line passes through the vehicle under test In the symmetrical central axis plane of the front and rear of the vehicle; a first reference point is determined on the first reference line, and the projection of the first reference point and the front or rear of the vehicle on the first reference line The distance between the points is a preset distance; a second reference line is determined, the second reference line is perpendicular to the first reference line, and the first reference line and the second reference line intersect at the A first reference point; a positioning component is placed on the second reference line, the positioning component includes a line laser and a positioning pattern board, and a cross-shaped pattern is
- the method further includes: turning on a laser on the calibration bracket, the laser is located on the stand assembly of the calibration bracket, and the laser emits a laser beam perpendicular to the ground to form a laser beam on the ground. Laser point; move the calibration bracket until the laser point coincides with the placement point.
- the method further includes: determining a second reference point on the second reference line, the second reference point and the first reference point being located on both sides of the placement point;
- the line laser on the calibration bracket adjust the angle of the calibration bracket relative to the symmetrical central axis of the vehicle to be tested, so that the laser lines formed on the ground by the laser beam emitted by the line laser pass through the first
- the reference point and the second reference point are such that the calibration bracket is perpendicular to the symmetrical central axis plane.
- the method further includes: after the calibration bracket is perpendicular to the symmetrical central axis, replacing the line laser on the calibration bracket with a calibration for calibrating the device to be calibrated element.
- the determining the first reference line includes: determining a first positioning point and a second positioning point, where the first positioning point is a central projection of the rear of the vehicle to be tested on the ground, and The second positioning point is the middle projection of the front of the vehicle under test on the ground; the line laser is placed on the ground so that a laser line formed by the line laser on the ground passes through the first The positioning point and the second positioning point form the first reference line.
- the determining the first positioning point includes suspending a plumb line in the middle of the rear of the vehicle to be tested to determine the projection of the middle of the rear of the vehicle to be tested; and/or the Determining the second positioning point includes suspending a plumb line in the middle of the front of the vehicle under test to determine the projection of the middle of the front of the vehicle under test.
- the determining the second reference line includes: placing a line laser at the first reference point; using the line laser to form a second reference line perpendicular to the first reference line on the ground Line, the second reference line is a ray or a straight line.
- the positioning component can determine the placement of the calibration bracket It avoids the transportation problems and cost problems caused by the use of beam positioning.
- Figure 1 is a perspective view of a calibration bracket provided by one of the embodiments of the present invention, wherein the calibration bracket is mounted with a multi-line laser;
- Figure 2 is a perspective view of the calibration bracket shown in Figure 1 from another angle;
- FIG. 3 is a perspective view of the calibration bracket shown in FIG. 1, in which the beam assembly of the calibration bracket is in a retracted state;
- FIG. 4 is a perspective view of the stand assembly of the calibration bracket shown in FIG. 1;
- Figure 5 is a perspective view of the stand assembly shown in Figure 4, in which some elements are omitted;
- Figure 6 is a perspective view of a stand assembly according to some embodiments, in which some elements are omitted;
- Figure 7 is a perspective view of a stand assembly according to further embodiments.
- Figure 8 is an exploded view of the stand assembly shown in Figure 7;
- Fig. 9 is a perspective view of the beam assembly of the calibration bracket shown in Fig. 1;
- Figure 10 is a cross-sectional view of the beam assembly shown in Figure 9;
- Figure 11 is an exploded view of the beam assembly shown in Figure 9;
- Figure 11a is a partial enlarged view of a first beam portion of the beam assembly shown in Figure 11;
- Figure 11b is a partial enlarged view of the second beam portion of the beam assembly shown in Figure 11;
- Figure 12 is a partial enlarged view of part A in Figure 9;
- Figure 13 is an exploded view of the adjustment mechanism of the beam assembly shown in Figure 9;
- Figure 14 is an exploded view of the adjustment mechanism shown in Figure 13 from another angle;
- Figure 15 is a perspective view of the joint mechanism of the beam assembly shown in Figure 9;
- Figure 16 is a perspective view of the joint mechanism shown in Figure 15 from another angle;
- Figure 17 is a cross-sectional view of the joint mechanism shown in Figure 15;
- Figure 18 is a perspective view of a joint mechanism according to some embodiments.
- Figure 19 is a cross-sectional view of the joint mechanism shown in Figure 18;
- FIG. 20 is a schematic diagram showing the first fastening member and the second fastening member overlapping each other according to some embodiments;
- 21 is a perspective view of a calibration system provided by another embodiment, wherein the calibration system includes a calibration bracket and a calibration element, the calibration element is a reflector, which is mounted on the calibration bracket;
- Figure 22 is a three-dimensional view of the calibration system shown in Figure 21, in which the reflector is replaced with a pattern plate, which is mounted on the calibration bracket;
- FIG. 23 is a perspective view of a calibration bracket provided by another embodiment, in which a calibration element is mounted on the calibration bracket, and the calibration element is an adaptive cruise system calibration element;
- Figure 24 is an exploded view of the calibration bracket shown in Figure 23;
- Figure 25 is a perspective view of the mounting portion and the mounting portion of the calibration bracket shown in Figure 23;
- Figure 26 is a perspective view from another angle of the mounting portion and the mounting portion of the calibration bracket shown in Figure 23;
- Figure 27 is a perspective view of the clamping portion of the calibration bracket shown in Figure 23;
- Figure 28 is a perspective view of the calibration element shown in Figure 23;
- Figure 29 is a perspective view of the calibration bracket shown in Figure 23, in which the calibration element mounted on the calibration bracket is replaced with a blind spot detection system calibration element;
- FIG. 30 is a perspective view of the calibration bracket shown in FIG. 23, in which the calibration components mounted on the calibration bracket are replaced with night vision system calibrators and auxiliary pendants;
- Figure 31 is an exploded view of the calibration bracket shown in Figure 30;
- Figure 32 is a perspective view of the auxiliary pendant of the calibration bracket shown in Figure 30;
- FIG. 33a is one of the flowcharts of a method for determining the placement point of the calibration bracket relative to the vehicle to be tested according to still another embodiment of the present invention.
- FIG. 33b is the second flowchart of a method for determining the placement point of the calibration bracket relative to the vehicle to be tested according to still another embodiment of the present invention.
- FIG. 34a is one of the scene diagrams of step 710 of the method shown in FIG. 33a;
- FIG. 34b is the second scene diagram of step 710 of the method shown in FIG. 33a;
- FIG. 35 is a scene diagram of step 720 of the method shown in FIG. 33a;
- FIG. 36 is a scene diagram of step 730 of the method shown in FIG. 33a;
- FIG. 37 is a scene diagram of step 740 of the method shown in FIG. 33a;
- FIG. 38a is one of the scene diagrams of step 750 of the method shown in FIG. 33a;
- FIG. 38b is the second scene diagram of step 750 of the method shown in FIG. 33a;
- FIG. 39 is a scene diagram of step 720' of the method shown in FIG. 33b;
- FIG. 40 is a scene diagram of step 730' of the method shown in FIG. 33b;
- FIG. 41 is a scene diagram of step 740' of the method shown in FIG. 33b;
- FIG. 42 is a scene diagram of step 750' of the method shown in FIG. 33b;
- Fig. 43 is a scene diagram of one of the additional steps of the method shown in Fig. 33a;
- Fig. 44 is a scene diagram of the second additional step of the method shown in Fig. 33a;
- Fig. 45a is one of the scene diagrams of the third additional step of the method shown in Fig. 33a;
- Fig. 45b is the second scene diagram of the third additional step of the method shown in Fig. 33a;
- Figure 46a is one of the scene diagrams of the fourth additional step of the method shown in Figure 33a;
- Fig. 46b is the second scene diagram of the fifth additional step of the method shown in Fig. 33a.
- the calibration bracket 100 provided by one embodiment of the present invention includes a base 10, a stand assembly 20, and a beam assembly 30.
- the stand assembly 20 is fixedly connected to the base 10.
- the crossbeam assembly 30 includes a first crossbeam portion 32, a second crossbeam portion 34, and a connecting portion 36.
- the connecting portion 36 is mounted on the stand assembly 20, and one end of the connecting portion 36 is hinged to the first A beam portion 32.
- the other end of the connecting portion 36 is hinged to the second beam portion 34.
- the first cross-beam portion 32 and the second cross-beam portion 34 can respectively rotate relative to the connecting portion 36 so that the cross-beam assembly 30 is stowed.
- the first cross-beam portion 32 and the second cross-beam The portions 34 can also be rotated back relative to the connecting portion 36 to expand the beam assembly 30.
- the "installation” includes fixed installation such as welding installation, as well as detachable installation.
- the beam assembly 30 can be used to mount a calibration element, for example, a multi-line laser 200, a calibration target, a radar reflection or absorption device, etc., to calibrate the vehicle-mounted auxiliary driving system.
- a calibration element for example, a multi-line laser 200, a calibration target, a radar reflection or absorption device, etc.
- the first cross-beam portion 32 and the second cross-beam portion 34 can respectively pivotably rotate relative to the connecting portion 36.
- the volume of the calibration bracket 100 can be reduced to facilitate shipment.
- the first cross beam portion 32, the second cross beam portion 34 and the connecting portion 36 constitute a cross beam.
- the cross beam assembly is installed on the top surface of the movable vertical pole. This makes the center of gravity of the beam assembly closer to the center of gravity of the vertical pole compared to the traditional calibration frame, which can increase the stability of the calibration frame and can use a smaller area base.
- first cross-beam portion 32 and the second cross-beam portion 34 can rotate relative to the connecting portion 36, for example, they can be stowed downward together, or stowed upward, forward, and backward together.
- the length of the connecting portion 36 can be relatively short, and the first and second cross-beam portions 32 and 34 are in a drooping state, so that the cross-beam The assembly 30 does not need to be removed from the stand assembly 20, and the space occupied by the calibration bracket 100 is also significantly reduced, which can be conveniently carried by transportation.
- a device for rotating the cross-beam can be provided, so that the final retracting direction of the first cross-beam portion 32 and the second cross-beam portion 34 is It is also possible to make the two hanging down; or to make the length of the connecting part 36 relatively long, so that the first beam part 32 and the second beam part 34 can be placed close to the connecting part 36 and pass
- the releasable fixing device is fixed on the connecting portion 36. In the latter case, in order to further reduce the space occupied by the calibration bracket 100, the beam assembly 30 can be removed from the stand assembly 20, carried to the place where it is needed, and then installed on the stand assembly 20.
- the manner of stowing the beam assembly 30 is not limited to the above manner.
- the beam can be folded into two sections without the connecting portion 36; the beam can also be folded into four or more sections.
- three sections are preferred, because this makes the middle section of the cross beam no fracture, so that only one fastening component can be used at the middle section to fix the cross beam on the pole stably and balancedly.
- the base 10 includes a base body 12, a roller 14, a height adjusting member 16 and a pull ring 18.
- the base body 12 has a triangular claw shape and includes three claws, and the three claws extend in three different directions.
- the base body 12 may be made of metal materials.
- the roller 14 is mounted on the bottom surface of the base body 12, the number of the roller 14 can be three, and each roller 14 is mounted on the end of a corresponding claw for convenient movement of the The base body 12.
- the roller 14 is a universally movable roller, so that the base body 12 can move arbitrarily back and forth, left and right.
- the height adjusting member 16 is installed on the base body 12 for adjusting the height of the base body 12.
- the height adjusting member 16 is an adjusting knob, the number is three, and there is at least a section of screw rod under the knob, and the screw rod cooperates with the thread of the through hole at the base to achieve height adjustment.
- Each of the height adjustment members 16 is installed on a corresponding one of the claws and is close to a corresponding one of the rollers 14, and the three height adjustment members 16 are distributed in a regular triangle.
- the pull ring 18 can be installed on the upper surface of one of the claws to facilitate pulling the calibration bracket 100.
- the shape of the base body 12 can be changed according to actual needs, and is not limited to a triangular claw shape.
- the base body 12 can be rectangular or circular; the roller 14
- the number of the height adjusting members 16 and the height adjusting members 16 can be increased or decreased according to actual needs.
- the stand assembly 20 may include a fixed stand 22, a movable stand 24 and a driving mechanism 26, the moving stand 24 is sleeved in the fixed stand 22, so The movable vertical rod 24 can move relative to the fixed vertical rod 22 along the length direction of the fixed vertical rod 22, and the driving mechanism 26 is installed on the fixed vertical rod 22 for driving the movable vertical rod 24 along The length direction of the fixed upright rod 22 moves relative to the fixed upright rod 22.
- the height of the vertical frame assembly 20 can be reduced to nearly half of the original height. With the folding of the cross-bar assembly 30, the vertical frame assembly 20 can be very suitable for placing in a car. Carry it in the trunk of other vehicles.
- the fixed vertical rod can be used as the inner rod
- the movable vertical rod can be used as the outer rod.
- the driving mechanism 26 is installed on the fixed vertical rod 22 to drive the movable vertical rod 24 along the fixed vertical rod 22.
- the length direction of ⁇ moves relative to the fixed pole 22.
- the fixed upright pole 22 and the movable upright pole 24 are respectively square-shaped, and the movable upright pole 24 is tightly sleeved in the fixed upright pole 22, so that the movable upright pole 24 is only It can move relative to the fixed stand 22 along the length direction of the fixed stand 22, and can prevent the movable stand 24 from moving in other directions relative to the fixed stand 22.
- This structure is very important for the calibration bracket 100 to be retractable, because in the calibration process, it is usually necessary to use the fixed relative position relationship between the components of the calibration bracket 100, for example, it is possible to fix a fixed pole 22 on the outer surface
- the laser is used to locate the center axis of the vehicle to determine the relative position between the target carried on the beam assembly 30 and the vehicle.
- the fixed upright rod 22 and the movable upright rod 24 may also be pipes of other shapes, for example, pipes with mutually matched polygonal cross-sections, which can make the movable vertical
- the rod 24 can only move relative to the fixed vertical rod 22 along the length direction of the fixed vertical rod 22, and can prevent the movable vertical rod 24 from moving in other directions relative to the fixed vertical rod 22.
- “cooperating with each other” does not necessarily require that the cross-sections of the fixed upright 22 and the movable upright 24 must be the same.
- the cross-section of the fixed upright 22 arranged outside may be hexagonal
- the cross-section of the movable upright 24 arranged inside may be Being a quadrilateral connected with the hexagon, the effect that the movable vertical rod 24 can only move relative to the fixed vertical rod 22 along the length direction of the fixed vertical rod 22 can also be achieved.
- the cross section of the fixed upright 22 and the movable upright 24 can also be elliptical cylindrical pipes that cooperate with each other, and the elliptical cross section can also restrict relative rotation between the two to a certain extent.
- the fixed upright rod 22 and the movable upright rod 24 may also be cylindrical pipes with a circular cross-section.
- a guide mechanism can be used to prevent the fixed upright rod 22 from rotating relative to the movable upright rod 24.
- a simple guide mechanism is a guide rail and a sliding block device matched with it.
- a guide rail can be set on one of the fixed vertical rod 22 and the movable vertical rod 24 at the contact surface, and the other Slider devices such as bumps, plastic rubber strips, rollers, balls, gears, etc.
- the guide rail can be a groove, a linear protrusion, a rack, etc. additionally arranged on the wall of the vertical rod, or a groove, a linear protrusion, or between two linear protrusions formed on the wall of the vertical rod.
- the formed grooves, that is, the vertical rod uses a special-shaped tube wall, and the shape of the tube wall itself has grooves, linear protrusions and other parts that can be used as guide rails.
- the slider device may be an additional component that is additionally provided on the wall of the vertical rod, or it may be a protruding structure formed by the wall of the vertical rod itself, without the need to provide additional components on the wall of the vertical rod.
- racks and other mechanisms that achieve transmission through meshing also have a guiding effect, and this specification also includes them in the category of guide rails.
- the gear and rack transmission mechanism described in the following embodiments can also achieve the guiding effect.
- the rack can be arranged in the groove guide rail.
- the setting positions of the guide rail and the sliding block device can be interchanged, the guide rail can be arranged on the movable vertical pole, the sliding block device can be arranged on the fixed vertical pole, or can be exchanged.
- the guiding mechanism is not limited to the fixed vertical rod 22 and the movable vertical rod 24 with a circular cross-section, and the fixed vertical rod 22 and the movable vertical rod 24 with other cross-sectional shapes may also use guiding mechanisms to enhance the guiding effect, and Obtain more stable or less frictional relative movement.
- the fixed vertical rod 22 and the movable vertical rod 24 with other cross-sectional shapes may also use guiding mechanisms to enhance the guiding effect, and Obtain more stable or less frictional relative movement.
- guide rails it is also possible not to use guide rails, and only use linear motion devices to obtain a more stable or less frictional relative movement. At this time, the non-circular external pole itself plays a guiding role.
- the driving mechanism 26 includes a rack 260, a housing 261, a handle 262, and a gear reduction assembly.
- the gear reduction assembly includes a first helical gear 263, a second helical gear 264, a first transmission gear 265 and a second transmission gear 266.
- the rack 260 is fixedly installed on the movable vertical rod 24, and the rack 260 is arranged along the length direction of the movable vertical rod 24.
- the fixed upright 22, the movable upright 24 and the rack 260 are all vertically arranged.
- the housing 261 is fixedly installed on the fixed pole 22.
- the handle 262 is mounted on the housing 261, and the handle 262 can rotate around the first rotation axis O1.
- the gear reduction assembly can make the position of the movable pole move more accurate and labor-saving, which is beneficial to accurately determine the height of the calibration target.
- the first helical gear 263 is located in the housing 261 and is fixedly installed on the handle 262.
- the rotation axis of the first helical gear 263 coincides with the rotation axis of the handle 262, and the first helical gear 263 and the handle 262 can rotate together about the first rotation axis O1.
- the second helical gear 264 is mounted on the inner wall of the housing 261 and can rotate around the second rotation axis O2.
- the first helical gear 263 and the second helical gear 264 mesh, and the diameter of the first helical gear 263 is smaller than the diameter of the second helical gear 264.
- the first transmission gear 265 is fixedly mounted on the second helical gear 264, the rotation axis of the first transmission gear 265 coincides with the rotation axis of the second helical gear 264, and the first transmission gear 265 is
- the second helical gear 264 can rotate together around the second rotation axis O2.
- the second transmission gear 266 is mounted on the inner wall of the housing 261 and can rotate around the third rotation axis O3.
- the second transmission gear 266 meshes with the first transmission gear 265 and the rack 260 respectively.
- the second transmission gear 266 is provided with a protrusion 2662 for cooperating with a ratchet wheel (not shown), so that the second transmission gear 266 is stopped at a preset position.
- Both the first transmission gear 265 and the second transmission gear 266 are spur gears, and the diameter of the first transmission gear 265 is smaller than the diameter of the second transmission gear 266.
- the first rotation axis O1 is perpendicular to the second rotation axis O2 and the third rotation axis O3, and the first rotation axis O1 is perpendicular to the rack 260.
- the second rotation axis O2 and the third rotation axis O3 are arranged in parallel, and the second rotation axis O2 and the third rotation axis O3 are perpendicular to the rack 260.
- the first helical gear 263 is driven to rotate around the first rotation axis O1
- the second helical gear 264 and the first transmission gear 265 rotate around the second rotation axis O2.
- the second transmission gear 266 rotates around the third rotation axis O3.
- the second transmission gear 266 rotates around the third rotation axis O3, it drives the rack 260 to rise or fall along the length direction of the movable vertical rod 24, so that the movable vertical rod 24 is relative to the fixed vertical
- the rod 22 rises or falls.
- the first helical gear 263 and the second helical gear 264 mesh, the first transmission gear 265 and the second helical gear 264 can rotate together about the second rotation axis O2, and the second The transmission gear 266 meshes with the first transmission gear 265 and the rack 260 respectively, and can drive the movable vertical rod 24 to move stably relative to the fixed vertical rod 22.
- the diameter of the first helical gear 263 is smaller than the diameter of the second helical gear 264
- the diameter of the first transmission gear 265 is smaller than the diameter of the second transmission gear 266, so that the movable pole can be driven by a relatively small force. 24 moves relative to the fixed pole 22.
- the first helical gear 263 and the second helical gear 264 can be omitted, the first transmission gear 265 is fixedly mounted on the handle 262, and the handle 262 can be wound around the The second rotation axis O2 rotates, thereby driving the first transmission gear 265 to rotate around the second rotation axis O2.
- first helical gear 263, the second helical gear 264, and the first transmission gear 265 may be omitted, and the second transmission gear 266 is fixedly mounted on the handle 262, so The handle 262 can rotate about the third rotation axis O3, thereby driving the second transmission gear 266 to rotate about the third rotation axis O3.
- the first helical gear 263, the second helical gear 264 and the first transmission gear 265 may be replaced with a worm mechanism, and the worm mechanism includes a worm 263 a and a worm gear 265 a.
- One end of the worm 263a is fixedly installed on the handle 262, and the rotation axis of the worm 263a coincides with the rotation axis of the handle 262, the worm 263a and the handle 262 can rotate together about the first rotation axis O1 .
- the worm 263a is cylindrical, and its outer surface has tooth parts 264a, and the tooth parts 264a mesh with the worm gear 265a.
- the worm gear 265a is fixedly mounted on the second transmission gear 266, the rotation axis of the worm gear 265a coincides with the rotation axis of the second transmission gear 266, and the worm gear 265a and the second transmission gear 266 can circulate the second transmission gear 266 together.
- the rotation axis O2 rotates.
- the diameter of the worm gear 265a is smaller than the diameter of the second transmission gear 266, so that the movable vertical rod 24 can be driven to move relative to the fixed vertical rod 22 with a relatively small force.
- the first rotation axis O1 is perpendicular to the second rotation axis O2, and the second rotation axis O2 is perpendicular to the rack 260.
- the movable vertical rod 24 moves to a desired position relative to the fixed vertical rod 22, the movable vertical rod 24 can be fixed at the desired position by means of the self-locking function of the worm mechanism.
- the handle 262 may be replaced with a motor.
- the driving mechanism 26 may be other driving mechanisms, such as a screw drive, a timing belt, etc., as long as it can drive the movable vertical rod 24 relative to the The fixed pole 22 can be moved.
- the movable upright 24 is provided with a limiting member 242, the limiting member 242 is located in the fixed upright 22, the inner wall of the fixed upright 22 is provided with a flange, the flange is close to At the top end of the fixed upright pole 22, when the movable upright pole 24 moves relative to the fixed upright pole 22 until the stopper 242 abuts the flange, the movable upright pole 24 stops moving, which can prevent The movable vertical rod 24 is separated from the fixed vertical rod 22.
- the limiting member 242 is a collar, which is sleeved on the outer wall of the movable vertical rod 24.
- the driving mechanism 26 is omitted, and the stand assembly 20 further includes a fastening mechanism 27 and an elastic body 28.
- the fastening mechanism 27 may be installed at one end of the fixed vertical rod 22 for fixing the movable vertical rod 24 to the fixed vertical rod 22.
- the fastening mechanism 27 includes a fastening ring 272 and a bolt 274.
- the fastening ring 272 is sleeved on the fixed pole 22.
- the fastening ring 272 can be formed by bending a metal strip. 274 is installed at both ends of the fastening ring 272.
- the elastic body 28 is located in the fixed pole 22 and the movable pole 24, and the elastic body 28 is compressed between the bottom of the fixed pole 22 and the movable pole 24. According to requirements, the elastic body 28 can be connected to the movable pole 24 at a position at the bottom, top or middle of the movable pole 24. When the movable vertical rod moves to the bottom closest to the fixed vertical rod, the elastic body is in a compressed state. In this embodiment, the elastic body 28 is a compression spring. It can be understood that, in some other embodiments, the elastic body 28 may be other elastic elements, such as elastic pieces, pneumatic rods, hydraulic rods, and so on.
- the bolt 274 When it is necessary to raise the movable vertical rod 24 relative to the fixed vertical rod 22, the bolt 274 is rotated so that the fastening ring 272 loosens the fixed vertical rod 22 and exerts upward force on the movable vertical rod 24.
- the force can make the movable pole 24 rise along the length of the fixed pole 22, and the elastic force of the elastic body 28 can reduce the external force applied to the movable pole 24, for example, the external force applied by the operator.
- the bolt 274 When the required position is reached, the bolt 274 is rotated to fasten the fixed upright 22 so that the movable upright 24 is fixed at the required position.
- the bolt 274 When the movable pole 24 needs to be lowered relative to the fixed pole 22, the bolt 274 is rotated so that the fastening ring 272 loosens the fixed pole 22.
- the movable vertical rod 24 Under the action of the gravity of the cross beam assembly 30, the movable vertical rod 24 can be caused to descend along the length direction of the fixed vertical rod 22. With the elastic force of the elastic body 28, the descending speed of the movable vertical rod 24 can be reduced to avoid The movable vertical rod 24 descends too fast and collides with the fixed vertical rod 24, thereby causing damage.
- the fastening mechanism 27 may also have other structures, as long as the movable pole 24 can be fixed at a desired position.
- the fastening mechanism 27 may be It is a screw that passes through the fixed pole 22 and is threadedly fitted with the fixed pole 22.
- the screw is rotated The screw makes it abut the movable vertical rod 24 to fix the movable vertical rod 24 at a desired position. Rotate the screw to disengage the movable vertical rod 24, and the movable vertical rod 24 can move relative to the fixed vertical rod 22 along the length direction of the fixed vertical rod 22.
- the beam assembly 30 includes a first support rod 31, the first beam portion 32, a second support rod 33, the second beam portion 34, a mounting seat 35, The connecting portion 36, the adjustment mechanism 37, and the joint mechanism 39 are described.
- the function of the first supporting rod 31 and the second supporting rod 33 is to lift the target to prevent it from falling, especially when the target area is large and the weight is large.
- One end of the first supporting rod 31 can be pivotally connected to the first cross beam portion 32 by a hinge mechanism, a hinge mechanism, etc., and the first supporting rod 31 can rotate relative to the first cross beam portion 32 , So as to expand to be perpendicular to the first cross-beam portion 32, and can also be engaged with and parallel to the first cross-beam portion 32.
- the first supporting rod 31 includes a first supporting rod body 310 and a first supporting member 312. One end of the first supporting rod body 310 is hinged to the first beam portion 32, and the first supporting rod body 310 The first bracket 312 is installed at the other end.
- the side wall of the first supporting rod body 310 is provided with a first slot (not shown).
- the second supporting rod 33 can be hinged to the second beam portion 34 by a hinge mechanism, a hinge mechanism, etc., and the second supporting rod 33 can rotate relative to the second beam portion 34, So as to expand to be perpendicular to the second cross-beam portion 34, it can also be engaged with the second cross-beam portion 34 and parallel to the second cross-beam portion 34.
- the second supporting rod 33 includes a second supporting rod body 330 and a second supporting member 332. One end of the second supporting rod body 330 is hinged to the second cross beam portion 34. The second supporting member 332 is installed at the other end.
- the side wall of the second supporting rod body 330 is provided with a second slot 3300.
- the first supporting member 312 and the second supporting member 332 extend in the same direction.
- the first supporting rod 31 is expanded to be perpendicular to the first beam portion 32
- the second supporting rod 33 is expanded to be perpendicular to the second beam
- the first slot and the second slot 3300 are set back, and the first bracket 312 and the second bracket 332 can be used to jointly support a calibration element, such as a pattern plate.
- the first beam portion 32 is provided with a first block 320 and a first guide rail 322.
- the first clamping block 320 and the first supporting rod 31 are both connected to the same side of the first beam portion 32.
- the first supporting rod 31 rotates to be parallel to the first beam portion 32, the first The clamping block 320 is clamped into the first clamping slot, and the first supporting rod 31 is clamped to the first beam portion 32.
- the first guide rail 322 is arranged on the other side of the first beam portion 32, the first guide rail 322 is arranged in parallel with the first beam portion 32, and the first guide rail 322 is used to mount hangers for mounting calibration Components, such as a calibration target, a mirror, a laser, etc., are mounted, and the pendant can slide along the first guide rail 322.
- the second cross beam portion 34 is provided with a second block 340 and a second guide rail 342.
- the second clamping block 340 and the second supporting rod 33 are both connected to the same side of the second beam portion 34.
- the second The clamping block 340 is clamped into the second clamping slot 3300 to clamp the second supporting rod 33 to the second beam portion 34.
- the second guide rail 342 is arranged on the other side of the second cross beam portion 34, the second guide rail 342 is arranged parallel to the second cross beam portion 34, and the second guide rail 342 is used to mount hangers for mounting calibration For example, a mirror is mounted on the component, and the pendant can slide along the second guide rail 342.
- the first guide rail 322 and the second guide rail 342 are arranged symmetrically with respect to the connecting portion 36, and the first cross beam portion 32 and the second cross beam portion 34 are also arranged symmetrically with respect to the connecting portion 36.
- the first guide rail 322, the second guide rail 342, the first beam portion 32 and the second beam portion 34 are all horizontally arranged.
- the first guide rail 322 includes a first base 3220, a first support wall 3222 and a second support wall 3224.
- the first base portion 3220 is connected to the first beam portion 32
- the first supporting wall 3222 is opposite to the second supporting wall 3224, and both are connected to the first base portion 3220 facing away from the first beam
- the first and second supporting walls 3222, 3224 and the first base portion 3220 jointly constitute the guiding channel of the first guide rail 322.
- An end of the first supporting wall 3222 away from the first base 3220 extends toward the second supporting wall 3224 with a first clamping portion 3226, and an end of the second supporting wall 3224 away from the first base 3220
- a second clamping portion 3228 extends toward the direction of the first supporting wall 3222.
- the second guide rail 342 includes a second base 3420, a third support wall 3422, and a fourth support wall 3424.
- the second base 3420 is connected to the second beam portion 34
- the third support wall 3422 is opposite to the fourth support wall 3424, and both are connected to the second base 3420 facing away from the second beam
- the third and fourth support walls 3422, 3424, and the second base 3420 jointly constitute a guiding channel of the second guide rail 342.
- An end of the third support wall 3422 away from the second base 3420 extends toward the fourth support wall 3424 with a third clamping portion 3426, and an end of the fourth support wall 3424 away from the second base 3420
- a fourth clamping portion 3428 extends toward the direction of the third supporting wall 3422.
- the positions of the first locking block 320 and the first slot can be interchanged, that is, the first locking block 320 is installed on the first supporting rod body 310,
- the first card slot is provided in the first beam portion 32;
- the positions of the second card block 340 and the second card slot 3300 can also be exchanged, that is, the second card block 340 is installed In the second supporting rod body 330, and the second slot 3300 is provided in the second beam portion 34.
- the first slot and the second slot 3300 are recessed in the corresponding beam portion.
- first guide rail 322 and the second guide rail 342 may be provided on other surfaces of the beam, such as the top surface.
- the first guide rail 322 and the second guide rail 342 do not need to be provided, and the calibration element can be directly hung on the crossbeam using a hook or the like.
- the first guide rail 322 and the second guide rail 342 can also have other forms, and do not need to be as shown in the figure. For example, they can be one or more groove lines arranged on the top surface of the beam, and the outer wall of the beam itself can be used. The groove line is formed without installing additional rails.
- the number of the support rods is not limited by the foregoing embodiment.
- the target located at the approximate center of the beam assembly 30 can also be lifted well.
- the supporting rod can also be set in the corresponding position for lifting.
- the position of the supporting rods can also be greater than two.
- the supporting rod can also be arranged on a track, which is arranged on the side or bottom surface of the beam assembly 30, so that the supporting rod can move along the assembled beam assembly 30 to lift the parts that may be in different positions in a suitable position.
- Target can be arranged on a track, which is arranged on the side or bottom surface of the beam assembly 30, so that the supporting rod can move along the assembled beam assembly 30 to lift the parts that may be in different positions in a suitable position.
- the support rod can also be clamped on the beam assembly 30 by means of a clamping block and a slot.
- the connecting portion 36 of the beam is sleeved in the mounting seat 35, and the first surface 360 of the connecting portion 36 is recessed with positioning holes 3604.
- the number of positioning holes 3604 is preferably two, and two positioning holes 3604 is arranged along the length direction of the connecting portion 36.
- the connecting portion 36 is provided with a fixing groove 3620, a fixing surface 3624 is provided in the fixing groove 3620, and the fixing groove 3620 is used in conjunction with the fixing rod 354 in FIG. 13 to fix the beam assembly in the installation Seat 35.
- the fixing groove 3620 is provided so that the fixing surface 3624 and the bottom surface of the mounting seat 35 are at a certain angle. The advantages of this arrangement are explained in conjunction with the fixing rod in FIG. 13.
- the fixing groove 3620 may be arranged between the second surface 362 and the top surface of the beam, wherein the second surface 362 is arranged parallel to the first surface 360, and the fixing surface 3624 is connected to the first surface 360 and the second surface 362.
- An included angle, for example, the fixing surface 3624 and the first surface 360 and the second surface 362 are arranged at 45 degrees.
- the first beam portion 32, the second beam portion 34 and the connecting portion 36 are all square-shaped, which can reduce the weight of the calibration bracket 100 and make the connecting portion 36 easy to be firmly secured. It is sleeved in the adjusting mechanism 38. It can be understood that, in some other embodiments, the first beam portion 32, the second beam portion 34, and the connecting portion 36 may also be pipes of other shapes, special-shaped materials or rods, etc., for example, they may be polygonal or circular. Shaped pipe or rod. When the beam is a pipe with other shapes, the fixing groove 3620 can be arranged at a position where the fixing surface 3624 and the bottom surface of the mounting seat 35 can be at a certain angle.
- the mounting seat 35 is used to sleeve the connecting portion 36.
- the mounting base 35 includes a fixing member 352, a fixing rod 354 and a mounting shell 356.
- the mounting seat 35 may be provided on the adjusting mechanism 37, so that the mounting seat 35 can be rotated relative to the stand assembly 20 around the adjusting rotation axis L under the adjustment of the adjusting mechanism 37 to adjust The horizontal angle of the mounting base 35 and the beam assembly 30.
- the adjustment mechanism 37 and the mounting seat are arranged in an up-and-down relationship, so as to facilitate the removal and installation of the beam from above while realizing horizontal angle adjustment.
- the adjustment rotation axis L is arranged parallel to the fixed upright rod 22 and the movable upright rod 24, that is, when the calibration bracket 100 is placed on a horizontal plane, the adjustment rotation axis L is arranged vertically.
- the mounting base 35 is provided with a notch 350 for facilitating putting the connecting part 36 into the mounting base 35 or removing the connecting part 36 from the mounting base 35.
- the holding member 352 is generally hook-shaped to facilitate holding the connecting portion 36.
- One end of the retaining member 352 is fixedly connected to the mounting shell 356, for example, mounted on the upper surface or side of the mounting shell 356, and the other end surrounds and grasps the connecting portion 36 of the beam assembly 30, leaving a gap 350.
- the holding member 352 may have the shape shown in FIG. 13, of course, it may also have other shapes, such as a circular hook shape, a hook shape of other polygons, a hook shape combining a circular ring and a polygon, as long as it can realize the alignment of the connecting portion 36 The stable control is sufficient.
- the “substantially hook-shaped” mentioned here means that the holding member 352 can extend from a certain angle and a certain length, so as to support and hold the connecting portion 36.
- the holding member 352 and the mounting shell 356 surround a mounting channel for receiving the connecting portion 36.
- the installation channel communicates with the gap 350.
- the inner surface of the holding member 352 is provided with positioning posts 3524, and the two positioning posts 3524 are located in the installation channel and are used to insert the two positioning holes 3604 (see FIG. 8) to facilitate the
- the connecting portion 36 is positioned in the installation channel.
- the function of the positioning hole is to further reduce any displacement of the beam assembly 20 relative to the mounting seat 35 in the horizontal direction during calibration.
- the positioning post 3524 may also be arranged on the upper surface of the mounting shell 356 or on both the upper surface of the mounting shell 356 and the inner surface of the holder 352.
- the “positioning post” herein includes round, square, and long positioning posts
- the “positioning hole” includes round, square, and long positioning holes.
- the positioning posts and the positioning holes are roughly point-shaped, there are preferably at least two positioning posts 3524 along the length direction of the connecting portion 36 to ensure that the connecting portion 36 does not shift along the length direction.
- the positioning post and the positioning hole are roughly elongated, only one pair of the positioning post and the positioning hole can be used. It is understandable that in some other embodiments, the positions of the positioning hole 3604 and the positioning post 3524 can be interchanged, that is, the positioning hole 3604 is opened in the holding member 352 and is connected to the mounting The channels are connected, and the positioning column 3524 is disposed on the first surface 360 (see FIG. 8).
- the fixing rod 354 is disposed on the holding member 352, which includes a knob and at least a section of screw, and cooperates with the thread of the holding member 352, when the connecting portion 36 is sleeved on the mounting seat At 35 o'clock, the central axis of the fixed rod 354 is perpendicular to the fixed surface 3624 at the beam connecting portion 36. Rotating the fixed rod 354 can make the fixed rod 354 abut the fixed surface 3624, so that the beam
- the connecting portion 36 of the assembly is fixed to the mounting seat 35, or, by rotating the fixing rod 354, the fixing rod 354 can be separated from the fixing surface 3624, and the connecting portion 36 can be removed from the mounting seat through the notch 350.
- the mounting base 35 is removed.
- the fixing surface 3624 and the bottom surface (ie, the horizontal plane) of the mounting base 35 are at a certain angle
- the fixing rod 354 and the bottom surface of the mounting base 35 are at a certain angle, the angle being greater than 0 degrees and less than 90 degrees.
- the angle is approximately 45 degrees.
- only one fixing rod 354 can be used to apply a pressing force to the connecting portion 36 toward the bottom surface and a side surface of the mounting seat, which is the side opposite to the extension direction of the fixing rod 354, thereby achieving
- the fixing seat is highly stable to fix the connecting portion 36, and the beam assembly can be easily disassembled and assembled.
- the mounting base 35 may have other structures, for example, a notch may not necessarily be maintained.
- a baffle or the like can be used to block the notch.
- the connecting portion 36 can also be installed in other ways.
- the mounting base 35 can be a complete ring structure without a gap to be inserted into the beam.
- the weighing can be assembled first, and then the mounting base 35 can be inserted.
- the fixing rod 354 is used to tighten and fix the beam.
- the bottom surface or the side surface of the mounting seat 35 pressed by the connecting portion 36 may be arc-shaped or other irregular shapes.
- the fixing rod 354 can also be used to press the connecting portion 36 on these surfaces. When the fixed rod and these surfaces may be in line contact instead of surface contact, it will not affect the pressing effect.
- the surface of the mounting base 35 facing away from the notch 350 can also be used to mount a calibration element, for example, a multi-line laser 200 (see FIG. 1).
- the mounting shell 356 is generally a cube with an opening on one side.
- the adjusting mechanism 37 is disposed in the opening of the mounting shell 356.
- the mounting shell 356 defines a threaded hole 3562.
- the adjusting mechanism 37 includes a supporting shaft 371, a first elastic member 372, a rotating member 373, a bearing seat 374, a base 375 and an adjusting rod 376.
- the adjustment mechanism 37 is used to adjust the angle of the beam assembly 20 in the horizontal direction (ie, the yaw angle).
- the supporting shaft 371 is received in the mounting shell 356 and fixedly installed on the inner wall of the mounting shell 356.
- the central axis of the support shaft 371 coincides with the adjustment rotation axis L.
- first elastic member 372 is fixed to the mounting post 3560, and the other end of the first elastic member 372 is fixed to the rotating member 373.
- the first elastic member 372 is a spring.
- the rotating member 373 is substantially a cube, one end of which is provided with a protrusion 3732, and the protrusion 3732 and the first elastic member 372 are located on opposite sides of the rotating member 373, respectively.
- the rotating member 373 is sleeved on the bearing seat 374.
- the bearing seat 374 is fixedly installed on a surface of the base 375, and the central axis of the bearing seat 374 coincides with the adjustment rotation axis L.
- the rotating member 373 is fixedly installed on the base 375 and sleeved on the bearing seat 374.
- One end of the supporting shaft 371 is inserted into the bearing housing 374, so that the supporting shaft 371 and the mounting shell 356 can be relative to the rotating member 373, the bearing housing 374 and the base 375 together about the adjustment rotation axis L Rotate.
- the base 375 is used to be installed on the movable pole 24, and the movable pole 24 can drive the base 375 to rise or fall.
- the base 375 is a cube, and the base 375 covers the opening of the mounting shell 356.
- the supporting shaft 371, the first elastic member 372 and the rotating member 373 are all contained in a cavity formed by the mounting shell 356 and the base 375.
- the "cube” in this specification includes a thin plate shape.
- the adjusting rod 376 is installed in the threaded hole 3562, and the adjusting rod 376 is rotated so that the adjusting rod 376 abuts the protrusion 3732, pushing the mounting seat 35 relative to the adjusting rotation axis L
- the rotating member 373 and the base 375 rotate to adjust the horizontal angle of the mounting seat 35 and the connecting portion 36, and the first elastic member 372 is stretched.
- Rotate the adjusting rod 376 in the opposite rotation direction the mounting seat 35 is pulled by the first elastic member 372 around the adjusting rotation axis L to rotate and reset relative to the rotating member 373 and the base 375.
- the base 375 may be omitted, and the rotating member 373 and the bearing seat 374 may be directly fixedly mounted on the top surface of the movable pole 24.
- the aforementioned adjustment mechanism 37 can be selectively used.
- the mounting shell 356 of the mounting seat 35 can be eliminated, and the holding member 352 is mounted on the top surface of the movable pole 24 or other additional mounting surfaces.
- the holding member 352 may also extend to form a bottom surface and surround the lower surface of the connecting portion 36 of the beam assembly 30, that is, the holding member 352 may have a bottom surface which is mounted on the mounting shell 356.
- the number of the joint mechanism 39 is two, one of the joint mechanism 39 is connected between the first beam portion 32 and the connecting portion 36, and the other joint mechanism 39 is connected to Between the second beam portion 34 and the connecting portion 36.
- the joint mechanism 39 is fixed in the wall tubes of the first beam portion 32, the second beam portion 34 and the connecting portion 36.
- the joint mechanism 39 is fixed outside the wall tubes of the first beam portion 32, the second beam portion 34, and the connecting portion 36, and is connected to the wall tube by means such as clamping, screws, or bonding. The cross-sections of the wall pipes of the first cross-beam portion 32, the second cross-beam portion 34, and the connecting portion 36 are connected.
- the joint mechanism 39 includes a first fixing member 391, a second fixing member 396, a first rotating shaft 397, a locking member 392, a second rotating shaft 393, a second elastic member 394 and a tightening mechanism 395.
- the first fixing member 391 and the second fixing member 396 are hingedly connected together by a first rotating shaft 397.
- the first fixing member 391 is approximately a cube, one end of which is hinged to one end of the second fixing member 396.
- the first fixing member 391 defines a first through hole 3910.
- the locking member 392 is received in the first through hole 3910, the second rotating shaft 393 passes through the middle of the locking member 392, and both ends of the second rotating shaft 393 are respectively mounted on the first fixing Pieces 391 of the side wall.
- the buckle 392 can rotate around the second shaft 393, one end of the buckle 392 has a hook 3922, and one end of the second elastic member 394 abuts the other end of the buckle 392 The other end of the second elastic member 394 abuts the inner wall of the first fixing member 391.
- the second elastic member 394 is a compression spring for restoring elastic deformation to push the locking member 392 to rotate around the second rotating shaft 393.
- the tightening mechanism 395 includes a knob and at least a section of screw. One end of the tightening mechanism 395 passes through the first fixing member 391 from the outside of the first fixing member 391, and resists the buckle 392.
- the tightening mechanism 395 and the second elastic member 394 are located on the same side of the central axis of the second rotating shaft 393, and the hook portion 3922 is located on the other side of the central axis of the second rotating shaft 393.
- the second fixing member 396 is also roughly a cube, and a second through hole 3960 is opened.
- the inner wall of the second through hole 3960 is provided with a protrusion 3962.
- the first fixing member 391 is fixed to the inside of the connecting portion 36
- the second fixing member 396 is fixed to the inside of the first beam portion 32 or the second beam portion 34, so that the first beam portion 32 or The second beam portion 34 can be engaged with the connecting portion 36.
- the first fixing member 391 and the second fixing member 396 are closed, the first fixing member 391 is in contact with the second fixing member 396, and the first through hole 3910 communicates with the second through hole 3960.
- the hook portion 3922 is buckled on the protrusion 3962, and the tightening mechanism 395 is rotated so that the tightening mechanism 395 presses the buckle 392 so that the The hook portion 3922 is further locked to the locking protrusion 3962, so that the first cross beam portion 32 or the second cross beam portion 34 is stably deployed relative to the connecting portion 36.
- the hook portion 3922 can be conveniently buckled on the hook 3962, so that the hook portion 3922 and the hook 3962 are pre-buckled, and then The tightening mechanism 395 presses the locking member 392 so that the hook portion 3922 is further locked to the locking protrusion 3962.
- first fixing member 391 and the second fixing member 396 can be exchanged, that is, the first fixing member 391 is fixed to the first beam portion 32 or Inside the second beam part 34, the second fixing member 396 is fixed inside the connecting part 36.
- first fixing member 391 and the second fixing member 396 may also be integrally formed with the inner wall of the first beam portion 32, the second beam portion 34, or the connecting portion 36, that is, the first fixing member 391 And the second fixing member 396 may be a part of the inner wall of the first cross beam portion 32, the second cross beam portion 34 or the connecting portion 36.
- the first fixing member 391 and the second fixing member 396, the first fixing member 391 and the second fixing member 396 may not be connected together by a first shaft, and the two are not connected, but the first A cross-beam portion 32 or a second cross-beam portion 34 and the outer wall of the connection portion 36 are connected together by an additional rotating shaft, which can also realize the pivotable between the first cross-beam portion 32 or the second cross-beam portion 34 and the connection portion 36 connection.
- the relative position between the second elastic member 394 and the tightening mechanism 395 and the second rotating shaft 393 can be changed, that is, the second elastic member 394 can be closer to the second rotating shaft 393 than the tightening mechanism 395, as long as the The locking member 392 can lock the locking protrusion 3962.
- FIGS. 18 and 19 shows a second embodiment of the structure of the joint mechanism 39.
- the joint mechanism 39a provided by this second embodiment is basically the same as the joint mechanism 39 in the above embodiment, except that one end of the buckle 392a is provided with a hook 3922a and a protrusion 3924a, and the two hooks 3922a are located at the same place.
- the inner wall of the second through hole 3960 is provided with a latch 3962a, the number of the latch 3962a is two, and the position of each latch 3962a corresponds to a corresponding one of the hook
- the position of the part 3922a corresponds.
- the knob 395 is replaced with a button 395a, and the button 395a is mounted on the second fixing member 396.
- the second elastic member 394 is a compression spring compressed between the first fixing member 391 and the locking member 392a.
- the first fixing member 391 and the second fixing member 396 When the first fixing member 391 and the second fixing member 396 are closed, the first fixing member 391 is in contact with the second fixing member 396, the first through hole 3910 is in communication with the second through hole 3960, and the The second elastic member 394 is pressed against the locking member 392a, so that the two hook portions 3922a are respectively fastened to the two locking protrusions 3962a, and the first fixing member 391 and the second fixing member 396 are fastened to each other , So that the first beam portion 32 or the second beam portion 34 is expanded relative to the connecting portion 36.
- the button 395a When the button 395a is pressed, the button 395a pushes the protrusion 3924a to push the buckle 392a to rotate around the second shaft 393, the hook portion 3922a separates from the protrusion 3962a, so The second elastic member 394 is further compressed. At this time, the first fixing member 391 can rotate relative to the second fixing member 396, so that the first fixing member 391 is separated from the second fixing member 396, so that the The first cross-beam portion 32 or the second cross-beam portion 34 can rotate relative to the connecting portion 36 so that the cross-beam assembly 30 can be stowed.
- the calibration bracket 100 may also include a buckle structure 50, one of the buckle structures 50 is connected between the first beam portion 32 and the connecting portion 36, and the other buckle structure 50 is connected to the Between the two cross beam portion 34 and the connecting portion 36.
- Each of the buckle structures 50 includes a first buckle 52 and a second buckle 54.
- the connecting portion 36 is provided with a first fastener 52, one end of the first fastener 52 is hinged to the connecting portion 36, and the first fastener 52 is hinged to one end of the connecting portion 36
- a pull portion 522 is provided, the other end of the first fastener 52 is provided with a hook rod 524, the first cross beam portion 32 or the second cross beam portion 34 is provided with a second fastener 54.
- the second buckle member 54 is provided with a buckle portion 544.
- the hinged joint between the first cross beam portion 32 or the second cross beam portion 34 and the connecting portion 36 is located on one side of the connecting portion 36, and the first fastener 52 and the second fastener 54 are located on the The other side of the connecting portion 36.
- the first cross-beam portion 32 and the second cross-beam portion 34 are expanded relative to the connecting portion 36, the first and second cross-beam portions 32 and 34 respectively contact the connecting portion 36, and the hook rod 524 is fastened to the buckle part 544. Pull the pull portion 522, the hook rod 524 is separated from the buckle portion 544, the first buckle member 52 and the second buckle member 54 can be separated, so that the first beam portion 32 or The second beam portion 34 can be stowed relative to the connecting portion 36.
- first fastener 52 and the second fastener 54 can be interchanged, that is, the first fastener 52 is disposed on the first beam Portion 32 or second cross-beam portion 34, the second fastener 54 is disposed on the connecting portion 36.
- first buckle 52 and the second buckle 54 can be used in conjunction with the joint mechanism 39, that is, in the inner wall of the first beam portion 32, the second beam portion 34, and the connecting portion 36, there are Joint mechanism 39.
- the first buckle 52 and the second buckle 54 can also be used separately, that is, there is no joint mechanism in the inner wall of the first beam portion 32, the second beam portion 34, and the connecting portion 36. 39.
- FIG. 21 and FIG. 22 Another embodiment of the present invention also provides a calibration system 600, which includes a calibration element and the calibration bracket 100 provided in the above embodiment, and the calibration element can be mounted on the calibration bracket 100
- the calibration element is a reflector 300 and a distance measuring device 400 (see FIG. 21).
- the reflector 300 can be mounted on the first guide rail 322 or the second guide rail 342 by a slider, and the slider is mounted on The first guide rail 322 or the second guide rail 342 can slide along the first guide rail 322 or the second guide rail 342 together with the reflector 300, and the distance measuring device 400 is fixedly installed on the beam assembly 30.
- the reflector 300 may also be a target 300, and two targets are mounted on the first guide rail 322 and the second guide rail 342 through a slider.
- the reflector or target 300 can also be directly mounted on the beam assembly 30 by means of hooks or the like. In this case, the first guide rail 322 and the second guide rail 342 can be eliminated.
- the above-mentioned distance measuring device 400 is used to measure the height of the beam assembly 30 from the ground, and is preferably displayed on the liquid crystal screen of the distance measuring device 400.
- the distance measuring device 400 is a laser rangefinder.
- the base 10 is provided with a through hole 120 for making the laser of the laser rangefinder 400 hit the ground, so as to measure the height of the beam assembly 30 from the ground.
- the calibration element is a pattern plate 500 (see FIG. 22), and the first supporting member 312 and the second supporting member 332 jointly lift the pattern plate 500 to prevent falling.
- a first fixing block 510 may be installed on the first guide rail 322, the first fixing block 510 can slide along the first guide rail 322, and a second fixing block 520 is installed on the second guide rail 342.
- the second fixing block 520 can slide along the second guide rail 342, the first fixing block 510 and the second fixing block 520 are respectively located on opposite sides of the pattern plate 500, and the first fixing block 510
- the pattern plate 500 is clamped in cooperation with the second fixing block 520.
- the first fixing block 510 and the second fixing block 520 are sliders on which the mirror 300 is installed. A slot is opened on the opposite side of the slider to clamp the pattern plate 500 to form a fixed block. It can be understood that the first fixing block 510 and the second fixing block 520 may also be magnetic blocks, which attract the pattern plate 500 from behind by magnetic adsorption, so as to enhance the firmness of the pattern plate 500 on the beam assembly 30.
- the first beam part 32, the second beam part 34, the first support rod 31, and the second support rod 33 are used to carry the calibration Component, it will cause the beam to deform, or the calibration component cannot be placed at the preset height.
- FIG. 23 and Figure 24 yet another embodiment of the present invention provides a calibration bracket 101, which is basically the same as the calibration bracket 100 provided in the previous embodiment, except that the calibration bracket 101 also includes a mounting assembly 60 .
- the mounting assembly 60 includes a mounting portion 62, a clamping portion 64 and a mounting portion 66.
- the clamping portion 64 is connected to the mounting portion 62, and is used to mount the entire mounting assembly 60 on the stand assembly 20 so that the mounting assembly 60 can move along the stand assembly 20 moves in the length direction, that is, moves along the length direction of the fixed pole.
- the mounting portion 62 is provided with the mounting portion 66, and the mounting portion 66 is connected to the cross beam assembly 30 so that the cross beam assembly 30 can drive the cross beam assembly 30 along the length direction of the stand assembly 20.
- the mounting assembly 60 moves along the length direction of the stand assembly 20, and the mounting portion 62 is used to mount the calibration element 102.
- the mounting assembly 60 is installed on the vertical frame assembly 20 and the cross beam assembly 30 respectively.
- the vertical frame assembly 20 and the cross beam assembly 30 jointly support the mounting assembly 60, and the calibration bracket can be mounted A heavier calibration element, in addition, in the case where the calibration bracket 101 is mounted with a calibration element of the same weight, the hidden danger of easy deformation of the beam caused by the calibration element supported by the beam can be avoided.
- the clamping portion 64 and the mounting portion 62 together form a sleeve for sleeve of the stand assembly 20.
- the clamping portion 64 is a sliding structure mounted on the stand assembly 20, the sliding structure can slide along the length of the stand assembly 20, and the mounting portion 62 is connected to The clamping portion 64.
- the inner diameter of the sleeve formed by the clamping portion 64 or the mounting portion 62 is slightly larger than the outer diameter of the stand assembly 20, so that there is a movable space between the sleeve and the stand assembly 20 to support the hanging portion 62 It can move along the length of the stand assembly 20.
- the clamping portion 64 and the hanging portion 62 can be connected to the stand assembly 20 and can move along the length direction of the stand assembly 20.
- the clamping portion 64 may also be omitted, and the mounting portion 62 is only connected to the beam assembly 30 in the following manner.
- the cross-beam assembly 30 When the ends of the first cross-beam portion 32 and the second cross-beam portion 34 far away from the connecting portion 36 are located at the first position relative to the stand assembly 20, the cross-beam assembly 30 is stowed, that is The first cross-beam portion 32 and the second cross-beam portion 34 in the cross-beam assembly 30 are in a naturally drooping state, and the first cross-beam portion 32 and the second cross-beam portion 34 are closer to the stand from the end away from the connecting portion 36 ⁇ Components.
- the cross-beam assembly 30 When one end of the first cross-beam portion 32 and the second cross-beam portion 34 away from the connecting portion 36 is located at a second position relative to the stand assembly 20, the cross-beam assembly 30 is deployed.
- the mounting portion 66 is connected to the connecting portion 36.
- the movement of the connecting portion 36 along the length direction of the stand assembly 20 drives the movement of the mounting portion 62.
- the mounting portion 66 is connected to at least one of the first cross-beam portion 32 or the second cross-beam portion 34.
- the pivotal movement of the first cross-beam portion 32 or the second cross-beam portion 34 relative to the connecting portion or the movement of the first cross-beam portion 32 or the second cross-beam portion 34 along the length direction of the vertical rod assembly drives the hanging portion 62 along the vertical Movement in the length direction of the rod assembly.
- the mounting portion 66 includes a first mounting portion 660 and a second mounting portion 662, and the first mounting portion 660 and the second mounting portion 662 are respectively disposed on the mounting portion 62 On both sides.
- the first mounting portion 660 is connected to the first cross beam portion 32
- the second mounting portion 662 is connected to the second cross beam portion 34. According to the actual situation, one of the first mounting portion 660 and the second mounting portion 662 can be omitted, and only the remaining one of the first mounting portion 660 and the second mounting portion 662 is connected to the
- the cross beam assembly 30 is connected, and can also drive the suspension assembly 60 to move along the length direction of the stand assembly 20 when the cross beam assembly 30 moves along the length direction of the stand assembly 20.
- the ground height of the mounting assembly 60 can be made as small as possible, and the calibration element 102 mounted on the mounting assembly 60 can be used for the lower position of the vehicle-mounted auxiliary driving system Calibration of the equipment to be calibrated.
- the first mounting portion 660 has an upright plate shape as a whole, and is substantially flush with the mounting portion 62.
- a first supporting hole 6600 is formed on the side of the first mounting portion 660 facing the first beam portion 32, and the first supporting hole 6600 is used to insert the first supporting member 312 , For the first supporting member 312 to support the first mounting portion 660.
- the first beam portion 32 and the first mounting portion 660 can also be fixed by bolts.
- a structure for inserting the first supporting hole 6600 can be designed on the first beam portion 32. To replace the first bracket 312.
- the first mounting portion 660 is also provided with a first locking structure 6602.
- the first locking structure 6602 is used to lock the first guide rail 322 so that the first beam portion 32 and the first The mounting part 660 remains fixed.
- the first locking structure 6602 includes a first locking knob 6604, a first connecting shaft (not shown in the figure), and a first stop bar 6606.
- the first locking knob 6604 is located on the side of the first mounting portion 660 facing away from the first beam portion 32, and the first stop bar 6606 is located on the first mounting portion 660 facing the first
- the first mounting portion 660 is formed with a first shaft hole (not shown in the figure) for connecting the first connecting shaft, and both ends of the first connecting shaft are connected to the first connecting shaft.
- the first stop bar 6606 By turning the first locking knob 6604, the first stop bar 6606 is driven to rotate.
- the first stop bar 6606 rotates to a designated position relative to the first mounting portion 660, that is, when the first stop bar 6606 is parallel to the length direction of the first guide rail 322, the first stop bar 6606 is A stop bar 6606 can pass through the gap between the first clamping part 3226 and the second clamping part 3228, so that the first stop bar 6606 enters or exits the guide channel of the first guide rail 322.
- the first stop bar 6606 When the first stop bar 6606 is located in the guide channel of the first guide rail 322, and the first stop bar 6606 rotates to a non-designated position relative to the first mounting portion 660, the first A card portion 3226 and the second card portion 3228 jointly block the first stop bar 6606 to prevent the first stop bar 6606 from exiting from the guide channel of the first guide rail 322.
- the second mounting portion 662 has an upright plate shape as a whole and is substantially flush with the mounting portion 62.
- a second supporting hole 6620 is formed on the side of the second mounting portion 662 facing the second beam portion 34, and the second supporting hole 6620 is used to insert the second supporting member 332.
- the second beam portion 34 and the second mounting portion 662 can also be fixed by bolts.
- a structure specially designed for inserting the second supporting hole 6620 on the second beam portion 34 To replace the second bracket 332.
- the second mounting portion 662 is also provided with a second locking structure 6622, and the second locking structure 6622 is used to lock the second guide rail 342 so that the second cross beam portion 34 and the second The mounting part 662 remains fixed.
- the second locking structure 6622 includes a second locking knob 6624, a second connecting shaft (not shown), and a second stop bar 6626.
- the second locking knob 6624 is located on the side of the second mounting portion 662 facing away from the second beam portion 34, and the second stop bar 6626 is located on the second mounting portion 662 facing the second On one side of the beam portion 34, the second mounting portion 662 is formed with a second shaft hole (not shown in the figure) for connecting the second connecting shaft, and both ends of the second connecting shaft are connected to the first Two locking knobs 6624 and the second stop bar 6626.
- the second locking knob 6624 is turned to drive the second stop bar 6626 to rotate.
- the first The second stop bar 6626 can pass through the gap between the third clamping portion 3426 and the fourth clamping portion 3428 so that the second stop bar 6626 enters or exits the guide channel of the second guide rail 342.
- the third The clamping portion 3426 and the fourth clamping portion 3428 jointly block the second stop bar 6626 to prevent the second stop bar 6626 from exiting from the guide channel of the second guide rail 342.
- the clamping portion 64 and the mounting portion 62 are integrally formed, and before the sleeve is sleeved on the stand assembly 20, the beam assembly 30 and the stand The frame assembly 20 is disassembled, or the stand assembly 20 and the base 10 are disassembled first.
- the clamping portion 64 and the mounting portion 62 are detachably connected, so that the two can form a sleeve for housing the stand assembly 20 .
- Two insertion grooves 620 are formed on the side of the mounting portion 62 facing the clamping portion 64 for supporting the clamping portion 64.
- the clamping portion 64 includes a connecting plate 640, and two extension plates 642 respectively connected to both sides of the connecting plate 640 and extending toward the mounting portion 62. Each extension plate 642 is away from the A plug-in board 644 is formed at one end of the connecting board 640 for plugging into a corresponding plug-in slot 620.
- the mounting portion 62, the connecting plate 640, and the two extension plates 642 together form the sleeve. According to actual conditions, the clamping portion 64 and the mounting portion 62 may also be connected by bolts.
- the mounting portion 62 is basically in the shape of an upright plate.
- the calibration element 102 is located on the mounting portion 62.
- the portion 62 faces away from the clamping portion 64.
- the mounting portion 62 can also be designed in other shapes, such as an upright triangular prism. Accordingly, the calibration element 102 is mounted on the The position of the mounting portion 62 is also different, and it is not necessarily located on the side facing away from the clamping portion 64.
- the mounting portion 62 is also formed with at least two first mounting holes 622, which are commonly used for mounting the calibration element 102.
- the calibration element 102 is formed on the side facing away from its calibration direction.
- vehicle assisted driving systems can be divided into adaptive cruise system, night vision system, blind spot system, vehicle departure warning system, etc.
- the adaptive cruise system mainly includes a radar.
- the radar of the adaptive cruise system may be a single radar or a dual radar.
- the single radar is generally installed in the middle of the front of the vehicle, and the dual radar is generally installed on both sides of the front of the vehicle.
- the radar in the adaptive cruise system can be calibrated by the adaptive cruise system calibration element 102a.
- the adaptive cruise system calibration element 102a can be a radar calibration board (used to reflect the waves emitted by the radar), a radar calibration box, Radar calibration parts such as corner reflectors, and the adaptive cruise system calibration element 102a is shown in FIG. 23.
- the night vision system is mainly set at a position where the front of the vehicle deviates from the midpoint.
- the night vision system can be calibrated by a night vision system calibrator 102c, which can be an infrared transmitter such as an infrared radar.
- the device, such as infrared radar, etc., the night vision system calibrator 102c is shown in FIG. 30.
- the blind spot system mainly includes a radar.
- the radar of the blind spot system is generally set at the rear of the vehicle.
- the blind spot system can be calibrated by the blind spot detection system calibration element 102b, and the blind spot detection system calibration element 102b can be a Doprey. Generator, namely blind spot box, radar calibration box, etc.
- the calibration element 102b of the blind spot detection system is shown in FIG. 29.
- the vehicle departure warning system mainly includes a camera on the window of the vehicle, and the vehicle departure warning system can be calibrated through a pattern board.
- the meter 102c has a structure 1020c protruding from its back. Accordingly, the calibration element 102 can be divided into a first calibration element and a second calibration element.
- the first calibration element includes at least one of the following: the adaptive cruise system calibration element 102a and the blind spot detection system calibration element 102b.
- the second calibration element includes the night vision system calibrator 102c.
- the mounting part 62 is used to mount the first mounting component.
- the calibration bracket 200 further includes an auxiliary hanger 70 that is used to hang on the side of the hanger 62 that faces away from the clamping portion 64, and the auxiliary hanger 70 Used to mount the second calibration element.
- the second calibration element is mounted on the auxiliary pendant 70, the second calibration element is located on the side of the auxiliary pendant 70 facing away from the mounting portion 62.
- At least two second support portions 72 are formed on the side of the auxiliary hanging member 70 facing the hanging portion 62 for hanging in the at least two first hanging holes 622.
- At least two second mounting holes 74 are formed on the side of the auxiliary hanging member 70 facing away from the mounting portion 62 for mounting the second calibration element.
- the pattern board needs a high ground clearance and can be hung on the unfolded beam assembly 30.
- a calibration system is further provided, including the calibration bracket 200 and the calibration element 102 of the foregoing embodiment.
- the calibration system and the calibration bracket provided by the embodiments of the present invention are respectively installed on the beam assembly and the stand assembly through mounting components.
- the mounting assembly is mounted with calibration
- the crossbeam assembly and the stand assembly jointly carry the calibration components, which can avoid the hidden danger of the crossbeam being bent due to the calibration components supported by the crossbeam.
- another embodiment of the present invention also provides a method 700, 700' for determining the placement points D0, D0' of the calibration bracket relative to the vehicle 103 to be tested.
- the calibration bracket may be the aforementioned
- the calibration bracket 101 is taken as an example.
- the calibration bracket 101 is used to mount a calibration element to calibrate the equipment to be calibrated 1030, 1030' in the advanced driving assistance system on the vehicle 103 to be tested.
- the placement point D0 is located at the front 1032 of the vehicle to be tested 103, and the calibration device 101 placed at the placement point D0 can calibrate the to-be-calibrated device 1030 located at the front 1032.
- the placement point D0' is located at the rear of the vehicle 1034, and the calibration device 101 placed at the placement point D0' can be calibrated by the calibration device 1030' located at the rear of the vehicle 1034.
- the calibration bracket 101, the vehicle under test 103, and the placement point D0 are all on the ground P1
- the ground P1 is the plane where the three or more wheels of the vehicle under test 103 contact together, including operations Indoor ground, plane formed by lifting machine, etc.
- the vehicle 103 to be calibrated has a symmetrical center plane P2, and the symmetrical center plane P2 passes through the front 1032 and the rear 1034, and is substantially perpendicular to the ground P1.
- the device 1030, 1030' to be calibrated deviates from the symmetrical center plane P2 of the vehicle 103 to be calibrated.
- the device to be calibrated 1030 may be a sensor of an adaptive cruise system, a sensor of a night vision system, a sensor of a blind spot system, a sensor of a vehicle departure warning system, etc.
- the sensor of the blind spot system is generally at the rear of the vehicle, and the sensor of a night vision system is generally When the front of the car deviates from the midpoint, the sensors of the adaptive cruise system are generally on both sides of the front of the car.
- the method in the embodiment of the present application can be implemented by an operator in combination with a tool.
- the method 700 can be used to calibrate the sensor of the adaptive cruise system or the sensor of the night vision system. As shown in FIG. 33a, the method includes:
- Step 710 Determine a first reference line S1, the first reference line S1 being in the symmetrical central axis plane P2, as shown in FIG. 34a and FIG. 34b;
- Step 720 Determine a first reference point D1 on the first reference line S1, the distance between the first reference point D1 and the second positioning point D3 of the front of the vehicle 1032 on the first reference line S1 Is the preset distance L1, as shown in Figure 35; it should be noted that in step 720, the projection point of the vehicle head on the first reference line is the projection outer contour of the vehicle head on the ground and the first reference line The intersection of a reference line; the projection point can be determined by the projection of the vertical line at the center of the front of the car on the ground.
- the second positioning point D3 can be understood as the projection point d1 of the vehicle head 1032 on the first reference line S1.
- Step 730 Determine a second reference line S2.
- the second reference line S2 is perpendicular to the first reference line S1, and the first reference line S1 and the second reference line S2 intersect at the first reference line S2.
- Reference point D as shown in Figure 36;
- first reference line and the second reference line are visible, and the first reference line and the second reference line can be presented with a laser line.
- other methods can also be used, which are not limited here.
- Step 740 Place a positioning component on the second reference line S2.
- the positioning component includes a line laser 104 and a positioning pattern plate 105.
- a cross-shaped pattern is displayed on the positioning pattern plate 105, and the cross-shaped pattern includes mutual Two vertical linear marks 1050, 1052, one linear mark 1050 in the cross-shaped pattern is in the plane formed by the laser beam s1 emitted by the line laser 104, that is, the linear mark 1050 and the laser beam emitted by the laser 104 are in The laser lines formed on the ground overlap, and another linear mark 1052 in the cross-shaped pattern overlaps with the second reference line S2, as shown in FIG. 37;
- step 750 move the positioning component on the second reference line S2 to determine the placement point D0 of the calibration bracket 101, at the placement point D0, the line laser 104 is on the vehicle 103 under test
- the laser line formed on the above coincides with the center line of the device to be calibrated 1030.
- the center line of the device to be calibrated 1030 refers to the center line of the surface of the device to be calibrated 1030 facing forward, that is, the direction in which the head of the vehicle extends, and the center line is approximately perpendicular to the ground , As shown in Figures 38a and 38b.
- the first reference line S1 there may be multiple ways to determine the first reference line S1, one of which is:
- the first positioning point D3 is the middle projection of the rear end 1034 on the ground P1
- the second positioning point D4 is the front end 1032 on the ground Middle projection on P1;
- vertical lines can be used to determine the first positioning point D3 and the second positioning point D4, for example, please refer to Figure 46a and Figure 46b, the vertical line is suspended in the middle of the rear of the vehicle 1034 to determine the rear of the vehicle 1034 central projection;
- a plumb line is suspended in the middle of the front 1032 to determine the projection of the middle of the front 1032.
- a measuring ruler or other precision instruments can be used to determine the middle of the front and the middle of the rear, and the plumb money can be suspended on the middle of the front and the middle of the rear.
- the projection area of the plumb line on the ground is the middle projection.
- the central projection can be used to determine the first positioning point D3 and the second positioning point D4.
- the method of determining the first positioning point D3 and the second positioning point D4 by the vertical line can be within the allowable error range.
- the first positioning point D3 and the second positioning point D4 The line common to the two positioning points D4 can be understood as the first reference line, that is, the line where the symmetrical central axis of the vehicle intersects the ground.
- the first positioning point D3 and the second positioning point D4 can be marked on the ground to determine the first reference line.
- the first datum line can be marked on the ground with a ruler, marking tool, etc., or a wired laser 106 (as shown in Figure 45b) can be placed on the ground, so that the line laser 106 forms a laser line on the ground to pass through the first reference line.
- the line laser can be a single-line laser, which is placed near the center point of the rear of the vehicle, or placed at the first positioning point D3. The laser emitted by it forms a ray on the ground. Adjust the line laser 106 to form it on the ground.
- the laser line passes through the first positioning point D3 and the second positioning point D4. During the positioning of the calibration bracket, the line laser can be always turned on and placed in a fixed position to provide the first reference line.
- the line laser may be a dual-line laser.
- the dual-line laser can emit laser beams in two directions, and the two laser rays formed on the ground face each other to form a laser line, which can be used as the first reference line .
- the line laser may be a four-line laser, which can emit laser beams in four directions to form four laser beams on the ground. Two adjacent two of the four laser beams are perpendicular to each other. Then two of the four laser beams are facing each other.
- the first reference line and the second reference line can be formed by a four-line laser.
- the four-line laser can be placed on the front of the car. While determining the first reference line, the second reference line can also be determined .
- the four-line laser can be turned on to form at least one straight line passing through the first positioning point D3 and the second positioning point D4, that is, the first reference line is determined.
- the four-line laser can also control to turn on the emitting laser to form one or two rays perpendicular to the first reference line on the ground. If it is determined that only the sensor on the front side of the vehicle is calibrated, one ray can be formed as the second reference line; if the calibration is determined The sensors on both sides of the front can form two rays as the second reference line.
- the line laser may be a three-line laser.
- the three-line laser emits laser light to form a laser beam on the ground as a first reference line or as a second reference line. Refer to the above-mentioned four-line laser for the usage mode.
- the line laser may be a five-line laser.
- the five-line laser can also form a laser spot on the ground.
- a laser emitting device is installed at the bottom of the five-line laser. The laser is emitted to form a laser spot on the ground.
- the line laser 104 in the positioning assembly can emit a laser beam in a fan-shaped surface, so that a laser beam will be formed when the laser beam falls on an object on the fan-shaped surface.
- the line laser 104 may be a single line laser, that is, it only emits a laser beam in one direction, that is, the fan-shaped surface of the laser beam emitted by the line laser 104 is parallel to the first reference line. If a method other than the laser line is used to mark the first reference line and the second reference line on the ground, the line laser 104 can be used in the above-mentioned process of determining the first reference line or determining the second reference line.
- the line laser 104 and the positioning pattern board 105 may be fixedly connected, or the line laser 104 may be superimposed on the positioning pattern board 105.
- the positioning pattern plate 105 can be placed so that the linear mark 1052 in the positioning pattern plate 105 coincides with the second reference line, then the line laser 104 on the ground can be It coincides with the linear mark 1051 in the positioning pattern board 105, that is, the angle of the line laser 104 relative to the linear mark 105 is fixed.
- the positioning pattern plate 105 can be aligned first, and then the line laser 104 can be turned on so that the laser line formed by the emitted laser on the ground is perpendicular to the second reference line.
- the pattern of the positioning pattern plate 105 is not limited, and only the auxiliary line laser 104 is required to realize that the laser line formed on the ground is perpendicular to the second reference line.
- the line laser 104 and the positioning pattern board 105 along the second reference line.
- the position of the positioning component can be recorded to determine the placement point of the calibration bracket .
- the placement point may be determined as the center point of the cross-shaped pattern on the positioning pattern board 105.
- a through hole may be provided at the center point of the positioning pattern board 105, and the operator may pass through a tool such as a marking pen. The hole records the placement point on the ground.
- the operator can place the calibration bracket on the placement point, and mount the calibration component on the calibration bracket, and can also use the calibration bracket to adjust the height of the calibration component so that the calibration component is aligned with the equipment to be calibrated, thereby achieving the target calibration The equipment is calibrated.
- the laser is located on the stand assembly of the calibration support 101.
- the laser emits a laser beam perpendicular to the ground P1 to form a laser spot d0 on the ground.
- the laser can also be located on the mounting component of the calibration bracket 101;
- a through hole may be opened on the base of the calibration bracket 101 to allow the laser beam to pass through.
- the laser is located on the central axis of the calibration bracket 101.
- the calibration bracket 101 includes a stand assembly, as shown in FIG. 3, the laser can be mounted on the stand assembly or the above-described mounting part.
- a second reference point D2 is determined on the second reference line S2, S2', and the second reference point D2 and the first reference point D1, D1' are located on both sides of the placement point D0, D0';
- the line laser may be the laser used for aligning the placement point; adjust the angle of the calibration bracket 101 relative to the symmetrical central axis of the vehicle 103 to be tested so that The laser line formed on the ground by the laser beam emitted by the line laser passes through the first reference point D1, D1' and the second reference point D2, so that the calibration bracket 101 is perpendicular to the symmetry central axis plane .
- the step of determining the second reference point D2 can be omitted, and only The laser line formed by the line laser on the ground between 101 and the second reference line needs to be coincident or parallel to the second reference line.
- the line laser is replaced on the calibration bracket 101 with a calibration used to calibrate the equipment to be calibrated 1030, 1030' element. Only by adjusting the height of the calibration component from the ground, the calibration component can be aligned with the device under test.
- the method 700' is roughly the same as the method 700 described above, as shown in FIG. 33b, including :
- Step 710' Determine a first reference line S1, the first reference line S1 is in the symmetrical central axis plane P2, as shown in FIG. 34a and FIG. 34b;
- Step 720' Determine a first reference point D1' on the first reference line S1, between the first reference point D1' and the projection point d2 of the rear end of the vehicle 1034 on the first reference line S1 Is the preset distance L1', as shown in Figure 39; it should be noted that in step 720', the projection point of the rear of the vehicle on the first reference line is the projection of the rear of the vehicle on the ground The intersection of the outer contour and the first reference point;
- Step 730' Determine a second reference line S2', the second reference line S2' is perpendicular to the first reference line S1, and the first reference line S1 and the second reference line S2' intersect at The first reference point D1' is shown in FIG. 40;
- Step 740' Place a positioning component on the second reference line S2'.
- the positioning component includes a line laser 104 and a positioning pattern board 105.
- a cross-shaped pattern is displayed on the positioning pattern board 105.
- the cross-shaped pattern It includes two linear marks 1050, 1052 perpendicular to each other, one of the linear marks 1050 in the cross-shaped pattern is in the plane formed by the laser beam s1' emitted by the line laser 104, and the other of the cross-shaped patterns
- the linear mark 1052 coincides with the second reference line S2', as shown in FIG. 41;
- step 750 move the positioning component on the second reference line S2' to determine the placement point D0' of the calibration bracket 101, on the placement point D0', the line laser 104 is in the standby
- the laser line formed on the test vehicle 103 coincides with the center line of the device to be calibrated 1030', as shown in FIG. 42.
- an embodiment of the present invention provides a method for determining the placement point of the calibration bracket relative to the vehicle to be tested. After the first reference line and the second reference line are determined, the positioning component can be more accurate and fast. The placement point is determined locally, and the calibration bracket is placed at the positioning point to calibrate the equipment under test that is not on the center line of the vehicle.
- the positioning of the calibration element and the device under test can be completed.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
提供一种确定标定支架(100)相对于待测车辆(103)的放置点(D0)的方法,包括:确定相正交的第一基准线(S1)和第二基准线(S2),第一基准线在待测车辆的对称中轴面内;在第二基准线上放置定位组件,定位组件包括线激光器(104)和定位图案板(105),定位图案板上显示有十字形图案,十字形图案包括相互垂直的两条线形标识,十字形图案中的一条线形标识(1050)在线激光器发射的激光束所形成的面内,十字形图案中的另一条线形标识(1052)与第二基准线重合;以及在第二基准线上移动定位组件以确定标定支架的放置点,在放置点上,线激光器在待测车辆上形成的激光线与待标定设备(1030)的中心线重合。该方法避开了使用横梁定位导致的运输问题以及成本问题。
Description
本申请要求于2019年2月1日提交中国专利局、申请号为201910105255.7、申请名称为“一种标定系统及其标定支架”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2019年11月4日提交中国专利局、申请号为201911067125.5、申请名称为“一种确定标定支架相对于待测车辆的放置点的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及车辆维修及设备标定技术领域,特别涉及一种确定标定支架相对于待测车辆的放置点的方法。
先进驾驶辅助系统(Advanced Driver Assistant System),简称ADAS,是利用安装于车上的各式各样的传感器,在第一时间收集车内外的环境数据,进行静、动态物体的辨识、侦测与追踪等技术上的处理,从而能够让驾驶者在最快的时间察觉可能发生的危险,以引起注意和提高安全性的主动安全技术。ADAS采用的传感器主要有摄像头、雷达、激光和超声波等,可以探测光、热、压力或其它用于监测汽车状态的变量,通常位于车辆的前后保险杠、侧视镜、驾驶杆内部或者挡风玻璃上。在车辆使用过程中,震动、碰撞、环境温湿度等均会使上述传感器的物理安装状态发生改变,故需要不定期进行校准或标定。
对上述传感器进行校准或标定前,需要确定标定支架的放置点。目前的标定支架基本是通过所搭载的横梁进行定位的,横梁的体积比较大、占地面积也大,不利于运输,也提高了成本。
发明内容
本发明实施例旨在提供一种确定标定支架相对于待测车辆的放置点的方法,可解决现有技术中使用横梁定位导致的运输问题以及成本问题。
本发明实施例解决其技术问题采用以下技术方案:
提供一种确定标定支架相对于待测车辆的放置点的方法,所述标定支架用于挂载标定元件,以标定所述待测车辆上的高级辅助驾驶系统中的待标定设备,所述标定支架相对于所述待测车辆的放置点位于所述待测车辆的车头处或车尾处,所述方法包括:确定第一基准线,所述第一基准线在经过所述待测车辆的车头与车尾的对称中轴面内;在所述第一基准线上确定第一基准点,所述第一基准点与所述车头或所述车尾在所述第一基准线上的投影点之间的距离为预设距离;确定第二基准线,所述第二基准线与所述第一基准线相垂直,并且所述第一基准线与所述第二基准线相交于所述第一基准点;在所述第二基准 线上放置定位组件,所述定位组件包括线激光器和定位图案板,所述定位图案板上显示有十字形图案,所述十字形图案包括相互垂直的两条线形标识,所述十字形图案中的一条线形标识在所述线激光器发射的激光束所形成的面内,所述十字形图案中的另一条线形标识与所述第二基准线重合;以及在所述第二基准线上移动所述定位组件以确定所述标定支架的放置点,在所述放置点上,所述线激光器在所述待测车辆上形成的激光线与所述待标定设备的中心线重合。
在一些实施例中,所述方法还包括:开启所述标定支架上的激光器,所述激光器位于所述标定支架的立架组件上,所述激光器垂直于地面发射激光束,以在地面上形成激光点;移动所述标定支架直至所述激光点与所述放置点重合。
在一些实施例中,所述方法还包括:在所述第二基准线上确定第二基准点,所述第二基准点与所述第一基准点位于所述放置点的两侧;开启所述标定支架上的线激光器,调整所述标定支架相对于所述待测车辆的对称中轴面的角度,使所述线激光器发射的激光束在地面上形成的激光线分别经过所述第一基准点和所述第二基准点,以使所述标定支架垂直于所述对称中轴面。
在一些实施例中,所述方法还包括:在所述标定支架垂直于所述对称中轴面后,在所述标定支架上将所述线激光器替换为用于标定所述待标定设备的标定元件。
在一些实施例中,所述确定第一基准线包括:确定第一定位点及第二定位点,所述第一定位点为所述待测车辆的车尾在地面上的中部投影,所述第二定位点为所述待测车辆的车头在所述地面上的中部投影;将线激光器放置于所述地面上,使所述线激光器在地面上形成的一条激光线穿过所述第一定位点和所述第二定位点,以形成所述第一基准线。
在一些实施例中,所述确定第一定位点包括,将铅垂线悬挂于所述待测车辆的车尾中部,以确定所述待测车辆的车尾的中部投影;和/或所述确定第二定位点包括,将铅垂线悬挂于所述待测车辆的车头中部,以确定所述待测车辆的车头的中部投影。
在一些实施例中,所述确定第二基准线,包括:在所述第一基准点放置线激光器;利用所述线激光器在所述地面上形成与所述第一基准线垂直的第二基准线,所述第二基准线为射线或直线。
与现有技术相比较,在本实施例提供的确定标定支架相对于待测车辆的放 置点的方法中,在确定第一基准线及第二基准线后,通过定位组件可确定标定支架的放置点,避开了使用横梁定位导致的运输问题以及成本问题。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种标定支架的立体图,其中所述标定支架挂载多线激光器;
图2为图1所示的标定支架的另一角度的立体图;
图3为图1所示的标定支架的立体图,其中标定支架的横梁组件处于收起状态;
图4为图1所示的标定支架的立架组件的立体图;
图5为图4所示的立架组件的立体图,其中部分元件被省略;
图6为根据一些实施例示出的立架组件的立体图,其中部分元件被省略;
图7为根据又一些实施例示出的立架组件的立体图;
图8为图7所示的立架组件的爆炸图;
图9为图1所示的标定支架的横梁组件的立体图;
图10为图9所示的横梁组件的剖视图;
图11为图9所示的横梁组件的爆炸图;
图11a为图11所示的横梁组件的第一横梁部的局部放大图;
图11b为图11所示的横梁组件的第二横梁部的局部放大图;
图12为图9中A部分的局部放大图;
图13为图9所示的横梁组件的调节机构的爆炸图;
图14为图13所示的调节机构的另一角度的爆炸图;
图15为图9所示的横梁组件的关节机构的立体图;
图16为图15所示的关节机构的另一角度的立体图;
图17为图15所示的关节机构的剖视图;
图18为根据一些实施例示出的关节机构的立体图;
图19为图18所示的关节机构的剖面图;
图20为根据一些实施例示出的第一搭扣件和第二搭扣件相互搭的示意图;
图21为另一实施例提供的一种标定系统的立体图,其中标定系统包括标定支架和标定元件,标定元件为反光镜,挂载于标定支架;
图22为图21所示的标定系统的立体图,其中反光镜替换为图案板,图案板挂载于标定支架;
图23为又一实施例提供的一种标定支架的立体图,其中标定支架挂载有标定元件,该标定元件为自适应巡航系统标定元件;
图24为图23所示的标定支架的爆炸图;
图25为图23所示的标定支架的挂载部及安装部的立体图;
图26为图23所示的标定支架的挂载部及安装部的另一个角度的立体图;
图27为图23所示的标定支架的夹持部的立体图;
图28为图23所示的标定元件的立体图;
图29为图23所示的标定支架的立体图,其中标定支架所挂载的标定元件替换为盲点检测系统标定元件;
图30为图23所示的标定支架的立体图,其中标定支架所挂载的标定元件替换为夜视系统校准仪及辅助挂件;
图31为图30所示的标定支架的爆炸图;
图32为图30所示的标定支架的辅助挂件的立体图;
图33a为本发明再一实施例提供的一种确定标定支架相对于待测车辆的放置点的方法的流程图之一;
图33b为本发明再一实施例提供的一种确定标定支架相对于待测车辆的放置点的方法的流程图之二;
图34a为图33a所示的方法的步骤710的场景图之一;
图34b为图33a所示的方法的步骤710的场景图之二;
图35为图33a所示的方法的步骤720的场景图;
图36为图33a所示的方法的步骤730的场景图;
图37为图33a所示的方法的步骤740的场景图;
图38a为图33a所示的方法的步骤750的场景图之一;
图38b为图33a所示的方法的步骤750的场景图之二;
图39为图33b所示的方法的步骤720'的场景图;
图40为图33b所示的方法的步骤730'的场景图;
图41为图33b所示的方法的步骤740'的场景图;
图42为图33b所示的方法的步骤750'的场景图;
图43为图33a所示的方法的附加步骤之一的场景图;
图44为图33a所示的方法的附加步骤之二的场景图;
图45a为图33a所示的方法的附加步骤之三的场景图之一;
图45b为图33a所示的方法的附加步骤之三的场景图之二;
图46a为图33a所示的方法的附加步骤之四的场景图之一;
图46b为图33a所示的方法的附加步骤之五的场景图之二。
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述 “连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“垂直的”、“水平的”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请一并参阅图1,图2和图3,本发明其中一实施例提供的标定支架100,包括底座10,立架组件20以及横梁组件30,所述立架组件20固定连接于所述底座10,所述横梁组件30包括第一横梁部32,第二横梁部34和连接部36,所述连接部36安装于所述立架组件20,所述连接部36的一端铰接于所述第一横梁部32,所述连接部36的另一端铰接于所述第二横梁部34。所述第一横梁部32和所述第二横梁部34可分别相对于所述连接部36相向转动,以使所述横梁组件30收起,所述第一横梁部32和所述第二横梁部34也可分别相对于所述连接部36背向转动,以使所述横梁组件30展开。
所述“安装”包括焊接安装等固定安装,也包括可拆卸安装。
所述横梁组件30可用于挂载标定元件,例如,多线激光器200、标定标靶、雷达反射或吸收装置等,以对车载辅助驾驶系统进行标定。
在本实施例的所述标定支架100中,所述第一横梁部32和所述第二横梁部34可分别相对于所述连接部36可枢转地转动。以使所述横梁组件30收起,可减小所述标定支架100的体积,以方便装运。
所述第一横梁部32,所述第二横梁部34和所述连接部36构成横梁。
可选的,所述横梁组件安装在所述移动立杆的顶面。这使得相比起传统的标定架,横梁组件的重心更加接近立杆重心,可以增加标定架的稳定性,并且可以使用面积更小的底座。
可选的,第一横梁部32和第二横梁部34可相对于所述连接部36相向地转动,例如,它们可以一起向下收起,也可以一起向上、向前、向后收起。可选的,当第一横梁部32和第二横梁部34向下收起时,连接部36的长度可以相对较短,并且第一横梁部32和第二横梁部34呈下垂状态,这样横梁组件30可以无需从立架组件20上取下来,标定支架100占用空间也会显著减小,可以方便使用交通工具携带。当第一横梁部32和第二横梁部34向上、向前、向后收起时,可以设置使横梁转动的装置,从而使第一横梁部32和第二横梁部34的最终收起方向向下,也可以使得这两者呈下垂状态;或者可以使连接部36的长度相对较长,收起后得第一横梁部32和第二横梁部34可以与连接部36紧贴放置,并且通过可松开的固定装置固定在连接部36上。在后一种情况中,为了进一步减小标定支架100所占用空间,横梁组件30可以从立架组件20上取下来,携带到需要使用的地方后,再安装在立架组件20上。
本领域技术人员可以理解,横梁组件30的收起方式不限于上述方式。例如,横梁可以收起为两段,此时没有连接部36;横梁也可以折为四段或更多段。但优选为三段,因为这使得横梁中段无断口,那么可以在中段处只使用一个紧固部件,就可以将横梁稳定且平衡地固定在立杆上。
所述底座10包括底座本体12,滚轮14、高度调节件16和拉环18。
所述底座本体12为三角爪状,包括三个爪部,三个所述爪部分别沿三个不同的方向延伸。所述底座本体12可由金属材料制得。
所述滚轮14安装于所述底座本体12的底表面,所述滚轮14的数量可以为三个,每个所述滚轮14安装于对应的一个所述爪部的末端,用于方便移动所述底座本体12。在本实施例中,所述滚轮14为万向移动滚轮,使得所述底座本体12可以前后左右任意移动。
所述高度调节件16安装于所述底座本体12,用于调节所述底座本体12的高度。在本实施例中,所述高度调节件16为调节旋钮,数量为三个,旋钮下方包含至少一段螺旋杆,该螺旋杆与底座处通孔的螺纹相配合,可以实现高 度调节。每个所述高度调节件16安装于对应的一个所述爪部,并且靠近对应的一个所述滚轮14,三个所述高度调节件16呈正三角形分布。
所述拉环18可以安装于其中的一个所述爪部的上表面,用于方便拉动所述标定支架100。
可以理解的是,在一些其它实施例中,所述底座本体12的形状可以根据实际需求变化,而不限于为三角爪状,例如所述底座本体12可为矩形或圆形;所述滚轮14和所述高度调节件16的数量可以分别根据实际需求增减,例如,对于三角爪状的底座本体12,高度调节件可以为两个,再配合一个固定高度的支脚以调节底座本体12的角度。
请一并参阅图4和图5,所述立架组件20可以包括固定立杆22,移动立杆24和驱动机构26,所述移动立杆24套设于所述固定立杆22内,所述移动立杆24可沿所述固定立杆22的长度方向相对于所述固定立杆22移动,所述驱动机构26安装于所述固定立杆22,用于驱动所述移动立杆24沿所述固定立杆22的长度方向相对于所述固定立杆22移动。使用移动立杆24与固定立杆22套设连接的方式,立架组件20的高度可以减为接近原来的一半,配合横杆组件30的收起,可以使立架组件20非常适合放置在汽车等交通工具的后尾箱内携带。
可以理解,也可以视需要将固定立杆作为内杆,移动立杆作为外杆,驱动机构26安装于所述固定立杆22,用于驱动所述移动立杆24沿所述固定立杆22的长度方向相对于所述固定立杆22移动。
可选的,所述固定立杆22和所述移动立杆24分别为方通,所述移动立杆24紧密地套设于所述固定立杆22内,可使得所述移动立杆24仅能沿所述固定立杆22的长度方向相对于所述固定立杆22移动,并且可防止所述移动立杆24相对于所述固定立杆22朝其它方向运动。这种构造对标定支架100实现可收起非常重要,因为在标定过程中,通常需要利用标定支架100各部件之间固定的相对位置关系,例如,有可能在固定立杆22的外表面固定一个激光器,使用该激光器来定位车辆中心轴线,从而确定横梁组件30上所携带标靶与车辆之间的相对位置。因此,如果各部件之间的相对位置有些许变化,都会使标 定精度受到影响,或者需要增设额外的微调机构来弥补。如果各部件之间的相对位置变化较大,还有可能导致增设的额外微调机构失效。因此,在套叠方式下,移动立杆24与固定立杆22之间除了沿长度方向之外的相对运动,例如相对转动,是需要排除的。一个简便的方法是移动立杆24与固定立杆22同为方通,这样能确保两者之间只发生沿长度方向的相对运动。
可以理解的是,在一些其它实施例中,所述固定立杆22和所述移动立杆24也可为其它形状的管材,例如,截面为相互配合的多边形的管材,可使得所述移动立杆24仅能沿所述固定立杆22的长度方向相对于所述固定立杆22移动,并且可防止所述移动立杆24相对于所述固定立杆22朝其它方向运动。此处“相互配合”不一定要求固定立杆22与移动立杆24的截面必须相同,例如设置在外的固定立杆22的截面可以为六边形,设置在内的移动立杆24的截面可以为与该六边形相接的四边形,同样可以实现使得移动立杆24仅能沿固定立杆22的长度方向相对于固定立杆22移动的效果。固定立杆22和所述移动立杆24的截面也可以为相互配合的椭圆形的圆柱形管材,椭圆形的截面同样可以在一定程度上限制两者之间的相对转动。
所述固定立杆22和所述移动立杆24也可以分别为截面为圆形的圆柱形管材,此时可以通过导向机构防止所述固定立杆22相对于所述移动立杆24转动,用于引导所述移动立杆24稳定地相对于所述固定立杆22移动,或者在标定支架100的其他部件处增设检测及调整固定立杆22相对于移动立杆24发生除长度方向运动的机构。一种简便的导向机构是导轨及与之配合的滑块装置,可以在固定立杆22和所述移动立杆24相互接触的表面处,在该两者之一上设置导轨,在另一者上设置例如凸块、塑料胶条、滚轮、滚珠、齿轮等的滑块装置,此时滑块装置将被限制在导轨上运动,也能确保两个立杆之间只发生沿长度方向的相对运动。导轨可以是附加设置在立杆管壁上的凹槽、线状凸起、齿条等,也可以是立杆管壁自身形成的凹槽、线状凸起、两条线状凸起之间形成的凹槽等,即立杆使用异形管壁,管壁本身形状就带有凹槽、线状凸起等可以作为导轨使用的部分。同样,滑块装置可以是附加设置在立杆管壁上的额外部件,也可以是依靠立杆管壁自身形成的凸起结构,而无需在立杆管壁处设置额外部件。此外,齿条等通过啮合来实现传动的机构,本身也有导向作用,本说明书 也将其归入导轨范畴内。如下面实施例所描述的齿轮与齿条的传动机构,也能实现导向效果。可选的,齿条可以设置在凹槽导轨内。
可以理解的是,导轨与滑块装置的设置位置可以互换,可以导轨设置在移动立杆上、滑块装置设置在固定立杆上,也可以互换。
可以理解的是,导向机构并不限于截面为圆形的固定立杆22和移动立杆24,其他截面形状的固定立杆22和移动立杆24上也可以使用导向机构来增强导向作用,并且获得更加稳定或摩擦力更小的相对运动。对于非圆形的截面形状,也可以不使用导轨,仅使用直线运动装置来获得更稳定或摩擦力更小的相对运动,此时非圆形的外部立杆本身就起到导向作用。
所述驱动机构26包括齿条260,壳体261,手柄262,及齿轮减速组件。齿轮减速组件包括第一斜齿轮263,第二斜齿轮264,第一传动齿轮265和第二传动齿轮266。
所述齿条260固定安装于所述移动立杆24,并且所述齿条260沿所述移动立杆24的长度方向设置。在所述底座10放置于一水平面时,所述固定立杆22,所述移动立杆24和所述齿条260皆竖直设置。
所述壳体261固定安装于所述固定立杆22。
所述手柄262安装于所述壳体261,所述手柄262可绕第一旋转轴线O1转动。
齿轮减速组件可以使移动立杆的位置移动更加精确及省力,有利于精确地确定标定标靶的高度。在齿轮减速组件中,所述第一斜齿轮263位于所述壳体261内,并且固定安装于所述手柄262。所述第一斜齿轮263的旋转轴线与所述手柄262的旋转轴线重合,所述第一斜齿轮263与所述手柄262可一同绕所述第一旋转轴线O1转动。
所述第二斜齿轮264安装于所述壳体261内壁,可绕第二旋转轴线O2转动。所述第一斜齿轮263和第二斜齿轮264啮合,所述第一斜齿轮263的直径小于第二斜齿轮264的直径。
所述第一传动齿轮265固定安装于所述第二斜齿轮264,所述第一传动齿轮265的旋转轴线与所述第二斜齿轮264的旋转轴线重合,所述第一传动齿轮265与所述第二斜齿轮264可一同绕所述第二旋转轴线O2转动。
所述第二传动齿轮266安装于所述壳体261内壁,可绕第三旋转轴线O3转动。所述第二传动齿轮266分别与第一传动齿轮265和齿条260啮合。所述第二传动齿轮266设置有凸柱2662,用于与棘轮(未示出)配合,使得所述第二传动齿轮266止动于预设位置。所述第一传动齿轮265和第二传动齿轮266皆为直齿轮,所述第一传动齿轮265的直径小于第二传动齿轮266的直径。
所述第一旋转轴线O1垂直于所述第二旋转轴线O2和第三旋转轴线O3,并且所述第一旋转轴线O1垂直于所述齿条260。所述第二旋转轴线O2和第三旋转轴线O3平行设置,并且所述第二旋转轴线O2和第三旋转轴线O3垂直于所述齿条260。
所述手柄262绕所述第一旋转轴线O1转动时,驱动所述第一斜齿轮263绕第一旋转轴线O1转动,所述第二斜齿轮264和第一传动齿轮265绕第二旋转轴线O2转动,所述第二传动齿轮266绕第三旋转轴线O3转动。所述第二传动齿轮266在绕第三旋转轴线O3转动时,带动所述齿条260沿所述移动立杆24的长度方向上升或下降,使得所述移动立杆24相对于所述固定立杆22上升或下降。
在本实施例中,所述第一斜齿轮263和第二斜齿轮264啮合,所述第一传动齿轮265与第二斜齿轮264可一同绕所述第二旋转轴线O2转动,所述第二传动齿轮266分别与第一传动齿轮265和齿条260啮合,可驱动所述移动立杆24相对于所述固定立杆22稳定移动。另外所述第一斜齿轮263的直径小于第二斜齿轮264的直径,所述第一传动齿轮265的直径小于第二传动齿轮266的直径,使得可通过较小的力量驱动所述移动立杆24相对于所述固定立杆22移动。
可以理解的是,在一些其它实施例中,所述第一斜齿轮263和第二斜齿轮264可省略,所述第一传动齿轮265固定安装于所述手柄262,所述手柄262可绕第二旋转轴线O2转动,从而驱动所述第一传动齿轮265绕第二旋转轴线O2转动。
可以理解的是,在一些其它实施例中,所述第一斜齿轮263,第二斜齿轮264和第一传动齿轮265可省略,所述第二传动齿轮266固定安装于所述手柄262,所述手柄262可绕第三旋转轴线O3转动,从而驱动所述第二传动齿轮 266绕第三旋转轴线O3转动。
请参阅图6,在一些实施例中,所述第一斜齿轮263,第二斜齿轮264和第一传动齿轮265可替换成蜗杆机构,所述蜗杆机构包括蜗杆263a和蜗轮265a。
所述蜗杆263a的一端固定安装于所述手柄262,并且所述蜗杆263a的旋转轴线与所述手柄262的旋转轴线重合,所述蜗杆263a与所述手柄262可一同绕第一旋转轴线O1转动。
所述蜗杆263a为圆柱形,其外表面具有齿牙部264a,所述齿牙部264a与所述蜗轮265a啮合。
所述蜗轮265a固定安装于所述第二传动齿轮266,所述蜗轮265a的旋转轴线与所述第二传动齿轮266的旋转轴线重合,所述蜗轮265a与第二传动齿轮266可一同绕第二旋转轴线O2转动。所述蜗轮265a的直径小于第二传动齿轮266的直径,使得可通过较小的力量驱动所述移动立杆24相对于所述固定立杆22移动。所述第一旋转轴线O1垂直于所述第二旋转轴线O2,所述第二旋转轴线O2垂直于所述齿条260。
当所述移动立杆24相对于所述固定立杆22移动至需要的位置时,借助所述蜗杆机构的自锁功能,可将所述移动立杆24固定于需要的位置。
可以理解的是,在一些其它实施例中,所述手柄262可替换为电机。
可以理解的是,在一些其它实施例中,除齿轮箱外,所述驱动机构26可为其它驱动机构,例如,丝杠传动、同步带等,只要能驱动所述移动立杆24相对于所述固定立杆22移动即可。
在一些实施例中,所述移动立杆24设置有限位件242,所述限位件242位于所述固定立杆22内,所述固定立杆22的内壁设置凸缘,所述凸缘靠近所述固定立杆22的顶端,当所述移动立杆24相对于所述固定立杆22移动至所述限位件242抵触所述凸缘时,所述移动立杆24停止移动,可防止所述移动立杆24脱离所述固定立杆22。在本实施例中,所述限位件242为套环,其套设于所述移动立杆24的外壁。
请一并参阅图7和图8,在一些实施例中,所述驱动机构26省略,所述 立架组件20还包括紧固机构27和弹性体28。
所述紧固机构27可以安装于所述固定立杆22的一端,用于将所述移动立杆24固定于所述固定立杆22。所述紧固机构27包括紧固环272和螺栓274,所述紧固环272套设于所述固定立杆22,所述紧固环272可由一根金属条弯折而成,所述螺栓274安装于所述紧固环272的两端。
所述弹性体28位于所述固定立杆22和移动立杆24内,所述弹性体28压缩于所述固定立杆22的底部和所述移动立杆24之间。根据需要,弹性体28可以与移动立杆24连接于移动立杆24的底部、顶部或中部某一位置。当所述移动立杆移动至最靠近所述固定立杆的底部时,所述弹性体处于压缩状态。在本实施例中,所述弹性体28为压簧,可以理解的是,在一些其它实施例中,所述弹性体28可以为其它弹性元件,如弹片、气压杆、液压杆等。
需要将所述移动立杆24相对于所述固定立杆22上升时,转动所述螺栓274,使得所述紧固环272松开所述固定立杆22,对所述移动立杆24施加向上的力,可使得所述移动立杆24沿所述固定立杆22的长度方向上升,借助弹性体28的弹力可减少对所述移动立杆24施加的外力,例如,操作人员施加的外力。到达需要位置时,转动所述螺栓274紧固所述固定立杆22,使得所述移动立杆24固定在需要的位置。需要将所述移动立杆24相对于所述固定立杆22下降时,转动所述螺栓274,使得所述紧固环272松开所述固定立杆22,在所述移动立杆24和所述横梁组件30的重力作用下,可使得所述移动立杆24沿所述固定立杆22的长度方向下降,借助所述弹性体28的弹力可降低所述移动立杆24的下降速度,避免所述移动立杆24下降过快,碰撞所述固定立杆24,从而造成损坏。
可以理解的是,在一些其他实施例中,所述紧固机构27也可为其它结构,只要能将所述移动立杆24固定于需要的位置即可,例如,所述紧固机构27可为螺钉,所述螺钉穿过所述固定立杆22,并且与所述固定立杆22螺纹配合,当所述移动立杆24相对于所述固定立杆22移动至需要的位置时,转动所述螺钉,使其抵紧所述移动立杆24,使所述移动立杆24固定于需要的位置。转动所述螺钉,使其脱离所述移动立杆24,所述移动立杆24可沿所述固定立杆22的长度方向相对于所述固定立杆22移动。
请参阅图9,图10和图11,所述横梁组件30包括第一托杆31,所述第一横梁部32,第二托杆33,所述第二横梁部34,安装座35,所述连接部36,调节机构37以及关节机构39。第一托杆31及第二托杆33的作用在于托举标靶以防坠落,尤其当标靶面积较大、重量较大时。
所述第一托杆31的一端可通过铰接机构、合页机构等可枢转地连接于所述第一横梁部32,所述第一托杆31可相对于所述第一横梁部32转动,以展开至垂直于所述第一横梁部32,也可卡合于所述第一横梁部32且与所述第一横梁部32平行。
所述第一托杆31包括第一托杆本体310和第一托件312,所述第一托杆本体310的一端铰接于所述第一横梁部32,所述第一托杆本体310的另一端安装所述第一托件312。所述第一托杆本体310的侧壁设有第一卡槽(图未示)。
相似地,所述第二托杆33的一端可通过铰接机构、合页机构等铰接于所述第二横梁部34,所述第二托杆33可相对于所述第二横梁部34转动,以展开至垂直于所述第二横梁部34,也可卡合于所述第二横梁部34,且与所述第二横梁部34平行。所述第二托杆33包括第二托杆本体330和第二托件332,所述第二托杆本体330的一端铰接于所述第二横梁部34,所述第二托杆本体330的另一端安装所述第二托件332。所述第二托杆本体330的侧壁设有第二卡槽3300。所述第一托件312和第二托件332沿同一方向延伸,当所述第一托杆31展开至垂直于第一横梁部32,所述第二托杆33展开至垂直于第二横梁部34时,所述第一卡槽和第二卡槽3300背向设置,所述第一托件312和第二托件332可用于共同支承标定元件,例如图案板。
所述第一横梁部32设置有第一卡块320和第一导轨322。所述第一卡块320和第一托杆31皆连接于所述第一横梁部32的同一侧,当所述第一托杆31转动至与第一横梁部32平行时,所述第一卡块320卡入第一卡槽,将所述第一托杆31卡接于所述第一横梁部32。所述第一导轨322设置于所述第一横梁部32的另一侧,所述第一导轨322与第一横梁部32平行设置,所述第一导轨322用于挂载挂件以挂载标定元件,例如挂载标定标靶、反光镜、激光器等,所述挂件可沿所述第一导轨322滑动。
类似地,所述第二横梁部34设置有第二卡块340和第二导轨342。所述第二卡块340和第二托杆33皆连接于所述第二横梁部34的同一侧,当所述第二托杆33转动至与第二横梁部34平行时,所述第二卡块340卡入第二卡槽3300,将所述第二托杆33卡接于所述第二横梁部34。所述第二导轨342设置于所述第二横梁部34的另一侧,所述第二导轨342与第二横梁部34平行设置,所述第二导轨342用于挂载挂件以挂载标定元件,例如挂载反光镜等,所述挂件可沿所述第二导轨342滑动。所述第一导轨322与第二导轨342相对于连接部36对称设置,所述第一横梁部32与第二横梁部34也相对于连接部36对称设置。在所述底座10放置于一水平面时,所述第一导轨322、第二导轨342,第一横梁部32和第二横梁部34皆水平设置。
请参阅图11a,所述第一导轨322包括第一基部3220,第一支撑壁3222以及第二支撑壁3224。所述第一基部3220连接于所述第一横梁部32,所述第一支撑壁3222与所述第二支撑壁3224相对,且皆连接于所述第一基部3220背向所述第一横梁部32的一侧,所述第一、二支撑壁3222,3224及所述第一基部3220三者共同构成所述第一导轨322的导向通道。所述第一支撑壁3222远离所述第一基部3220的一端朝所述第二支撑壁3224的方向延伸有第一卡部3226,所述第二支撑壁3224远离所述第一基部3220的一端朝所述第一支撑壁3222的方向延伸有第二卡部3228。
请参阅图11b,相似地,所述第二导轨342包括第二基部3420,第三支撑壁3422以及第四支撑壁3424。所述第二基部3420连接于所述第二横梁部34,所述第三支撑壁3422与所述第四支撑壁3424相对,且皆连接于所述第二基部3420背向所述第二横梁部34的一侧,所述第三、四支撑壁3422,3424及所述第二基部3420三者共同构成所述第二导轨342的导向通道。所述第三支撑壁3422远离所述第二基部3420的一端朝所述第四支撑壁3424的方向延伸有第三卡部3426,所述第四支撑壁3424远离所述第二基部3420的一端朝所述第三支撑壁3422的方向延伸有第四卡部3428。
可以理解的是,在一些其它实施例中,所述第一卡块320与第一卡槽的位 置可以互换,也即所述第一卡块320安装于所述第一托杆本体310,而所述第一卡槽设于所述第一横梁部32;同样地,所述第二卡块340与第二卡槽3300的位置也可以互换,也即所述第二卡块340安装于所述第二托杆本体330,而所述第二卡槽3300设于所述第二横梁部34。可选的,所述第一卡槽与所述第二卡槽3300凹设于相应的横梁部。
可以理解的是,在一些其它实施例中,第一导轨322及第二导轨342可以设置在横梁的其他面上,例如顶面。在一些其它实施例中,不需要设置第一导轨322及第二导轨342,标定元件可以使用挂钩等直接挂在横梁上。第一导轨322及第二导轨342也可以有其他形态,不需要必须如图所示,例如,它们可以是一条或若干条设置于横梁顶面的凹槽线,并且可以使用横梁本身的外壁来形成所述凹槽线而无需安装额外导轨。
可以理解,所述托杆的数量不受上述实施例所限。例如,托杆可以只有一根,并设置在连接部36大致中央的位置,此时也可以很好地托举大致位于横梁组件30中部的标靶。当用于标定的标靶位于其他位置时,也可以将托杆设置于相应位置以进行托举。托杆的位置也可以大于两根。此外,托杆还可以设置在轨道上,该轨道设置在横梁组件30的侧面或底面,这样托杆可以沿着组装好的横梁组件30进行移动,以在合适的位置托举可能处于不同位置的标靶。
可以理解,当使用导轨来使托杆可以移动时,同样可以使用卡块、卡槽的方式,将托杆卡接在横梁组件30上。
横梁的所述连接部36套设于所述安装座35内,所述连接部36的第一表面360凹设有定位孔3604,定位孔3604的数量优选为两个,两个所述定位孔3604沿所述连接部36的长度方向设置。
请参阅图12,所述连接部36设置有固定槽3620,所述固定槽3620内设置有固定表面3624,所述固定槽3620与图13中的固定杆354配合使用以将横梁组件固定在安装座35上。可选的,设置固定槽3620以使得固定表面3624与安装座35的底表面呈一定角度,这种设置方式的优点结合图13中的固定杆一起阐述。例如,固定槽3620可以设置在横梁的第二表面362与顶面之间,其中第二表面362与所述第一表面360平行设置,所述固定表面3624与第一表面360和第二表面362呈夹角,例如所述固定表面3624与第一表面360和 第二表面362呈45度设置。
在本实施例中,所述第一横梁部32,第二横梁部34和连接部36皆为方通,可减轻所述标定支架100的重量,而且可使得所述连接部36容易被牢固地套设于所述调节机构38内。可以理解的是,在一些其它实施例中,所述第一横梁部32,第二横梁部34和连接部36也可为其它形状的管材,异形材或杆等,例如,可为多边形或圆形的管材或杆。当横梁为其它形状的管材时,固定槽3620可以设置在能使固定表面3624与安装座35的底表面呈一定角度的位置上。
请参阅图13和图14,所述安装座35用于套设所述连接部36。所述安装座35包括固持件352,固定杆354和安装壳356。
可选的,所述安装座35可以设置于所述调节机构37上,这样所述安装座35可在调节机构37的调节下,绕调节旋转轴线L相对于立架组件20进行转动,以调节所述安装座35和横梁组件30的水平角度。优选的,所述调节机构37与安装座呈上下关系设置,以利于在实现水平角度调节的同时方便地从上方拆卸及安装横梁。所述调节旋转轴线L与所述固定立杆22及移动立杆24平行设置,也即在所述标定支架100放置于一水平面时,所述调节旋转轴线L竖直设置。所述安装座35设有缺口350,用于方便将连接部36放入安装座35或者将连接部36从安装座35取下。
所述固持件352大体为勾状,以方便固持所述连接部36。所述固持件352的一端与安装壳356固定连接,例如安装于所述安装壳356的上表面或侧面上,另一端环绕并把握住横梁组件30的连接部36,留下缺口350。例如,固持件352可以有图13所示形状,当然也可以有其他形状,例如圆环形的勾状、其他多边形的勾状、圆环与多边形结合的勾状,只要能实现对连接部36的稳定把持即可。此处所述“大体为勾状”是指固持件352能从某个角度、延伸一定长度,从而实现对连接部36的支撑与把持。
所述固持件352与安装壳356围设形成一安装通道,用于收容所述连接部36。所述安装通道与所述缺口350相连通。所述固持件352的内表面上设置有定位柱3524,两个所述定位柱3524位于所述安装通道内,用于插入两个所述 定位孔3604(见图8),以方便将所述连接部36定位于所述安装通道内。定位孔的作用是进一步减少进行标定时,横梁组件20在水平方向上发生相对于安装座35的任何位移。定位柱3524也可以设置在安装壳356的上表面上,或者设置在安装壳356上表面与固持件352内表面两者上。此处所述“定位柱”包括圆形、方形、长条形的定位柱,所述“定位孔”包括圆形、方形、长条形的定位孔。当定位柱及定位孔大致呈点状时,优选地沿连接部36长度方向有至少两个定位柱3524,以确保连接部36不沿其长度方向发生位移。当定位柱及定位孔大致呈长条状时,可以只使用一个对定位柱及定位孔。可以理解的是,在一些其他实施例中,所述定位孔3604与所述定位柱3524的位置可以互换,也即,所述定位孔3604开设于所述固持件352,并且与所述安装通道相连通,而所述定位柱3524设置于所述第一表面360(见图8)。
可选的,所述固定杆354设置于所述固持件352,其包含旋钮及至少一段螺杆,并且与所述固持件352的螺纹相配合,当所述连接部36套设于所述安装座35时,所述固定杆354的中心轴线垂直于横梁连接部36处的所述固定表面3624,转动所述固定杆354,可使得所述固定杆354抵紧所述固定表面3624,以使横梁组件的所述连接部36固定于所述安装座35,或者,转动所述固定杆354,可使得所述固定杆354脱离所述固定表面3624,可将连接部36通过所述缺口350从所述安装座35取下。
可选的,所述固定表面3624与安装座35的底表面(即水平面)呈一定角度,并且固定杆354与安装座35的底表面呈一定角度,该角度大于0度小于90度。可选的,该角度大体为45度。这种设置方式,可以只使用一个固定杆354,即可对连接部36施加朝向安装座的底面及一侧面压紧的力,该侧面为与固定杆354自身延伸方向相对的一侧面,从而实现固定座对连接部36的高稳定度的固定,并且可以很方便地拆卸及组装横梁组件。
可以理解,安装座35可以为其他构造,例如不一定保持有一个缺口,可以在连接部36放入安装座35后,使用挡板等将缺口挡起来。也可以通过其他方式安装所述连接部36,例如,安装座35可以是一个完整的环状结构,无缺口以放入横梁,此时可以先将衡量组装完毕,然后再插入安装座35,再使用固定杆354对横梁进行旋紧固定。
可以理解,连接部36所压紧的安装座35的底面或侧面可能为圆弧形或其他不规则形状,此时同样可以使用所述固定杆354将连接部36压紧在这些面上,此时固定杆与这些面之间可能为线接触而非面接触,但不会影响压紧效果。
可选的,当所述安装座35包含缺口350时,安装座35背向所述缺口350的表面还可以用于安装标定元件,例如,多线激光器200(见图1)等。
所述安装壳356大体为立方体,其一侧具有开口。所述调节机构37设置于所述安装壳356的开口内。所述安装壳356开设螺纹孔3562。所述调节机构37包括支承轴371,第一弹性件372,转动件373,轴承座374,基座375和调节杆376。所述调节机构37用于调整横梁组件20的在水平方向上的角度(即,偏航角)。
所述支承轴371收容于所述安装壳356内,并且固定安装于所述安装壳356的内壁。所述支承轴371的中心轴线与所述调节旋转轴线L重合。
所述第一弹性件372的一端固定于所述安装柱3560,所述第一弹性件372的另一端固定于所述转动件373。在本实施例中,所述第一弹性件372为接簧。
所述转动件373大体为立方体,其一端设置有凸起3732,所述凸起3732与所述第一弹性件372分别位于所述转动件373的相对两侧。所述转动件373套设于所述轴承座374。
所述轴承座374固定安装于所述基座375的一表面上,所述轴承座374的中心轴线与所述调节旋转轴线L重合。所述转动件373固定安装于所述基座375,并且套设于所述轴承座374。所述支承轴371的一端插入所述轴承座374,使得所述支承轴371与所述安装壳356可一同绕所述调节旋转轴线L相对于所述转动件373,轴承座374和基座375转动。
所述基座375用于安装于所述移动立杆24,所述移动立杆24可带动所述基座375上升或下降。在本实施例中,所述基座375为立方体,所述基座375盖住所述安装壳356的开口。所述支承轴371,第一弹性件372和转动件373皆收容于所述安装壳356与所述基座375围设形成的空腔内。
本说明书所述“立方体”包括薄板状的情况。
所述调节杆376安装于所述螺纹孔3562内,转动所述调节杆376,使得所述调节杆376抵紧所述凸起3732,推动所述安装座35绕所述调节旋转轴线 L相对于所述转动件373和基座375转动,从而调节所述安装座35和连接部36的水平角度,所述第一弹性件372被拉伸。朝相反转动方向转动所述调节杆376,所述安装座35通过所述第一弹性件372拉动绕所述调节旋转轴线L相对于所述转动件373和基座375转动复位。
可以理解的是,在一些其他实施例中,所述基座375可以省略,所述转动件373和轴承座374可直接固定安装于所述移动立杆24的顶表面处。
可以理解,上述调节机构37可以选择性地使用。当所述调节机构37取消时,上述安装座35的安装壳356可以取消,固持件352安装在移动立杆24的顶表面处或其他额外的附加安装面上。应该理解,固持件352也可以延伸形成底面并环绕横梁组件30的连接部36的下表面,也就是固持件352可以具有底面,该底面安装在安装壳356之上。
请复参阅图10,所述关节机构39的数量为两个,一个所述关节机构39连接于所述第一横梁部32与所述连接部36之间,另一个所述关节机构39连接于所述第二横梁部34与所述连接部36之间。在一些实施例中,所述关节机构39固定在所述第一横梁部32、第二横梁部34及连接部36的壁管之内。在一些实施例中,所述关节机构39固定在所述第一横梁部32、第二横梁部34及连接部36的壁管之外,通过例如卡接、螺钉、粘接等方式与所述第一横梁部32、第二横梁部34及连接部36的壁管的横截面进行连接。
请一并参阅图15,图16和图17,示出了关节机构39构造的第一实施方式。所述关节机构39包括第一固定件391,第二固定件396,第一转轴397,卡扣件392,第二转轴393,第二弹性件394和旋紧机构395。
所述第一固定件391和所述第二固定件396通过第一转轴397铰接式地连接在一起。所述第一固定件391大致为立方体,其一端铰接于第二固定件396的一端。所述第一固定件391开设第一通孔3910。
所述卡扣件392收容于所述第一通孔3910,所述第二转轴393穿过所述卡扣件392的中部,所述第二转轴393的两端分别安装于所述第一固定件391的侧壁。所述卡扣件392可绕所述第二转轴393转动,所述卡扣件392的一端延伸有勾部3922,所述第二弹性件394的一端抵持所述卡扣件392的另一端, 所述第二弹性件394的另一端抵持所述第一固定件391的内壁。所述第二弹性件394为压簧,用于恢复弹性形变,以推动所述卡扣件392绕所述第二转轴393转动。
所述旋紧机构395包括旋钮及至少一段螺杆,该旋紧机构395的一端从所述第一固定件391的外部穿过所述第一固定件391,抵持所述卡扣件392,所述旋紧机构395与第二弹性件394位于所述第二转轴393的中心轴线的同一侧,所述勾部3922位于所述第二转轴393的中心轴线的另一侧。
所述第二定件396也大致为立方体,其开设有第二通孔3960。所述第二通孔3960的内壁设置有卡凸3962。所述第一固定件391固定于所述连接部36内部,所述第二固定件396固定于所述第一横梁部32或第二横梁部34的内部,使得所述第一横梁部32或第二横梁部34可以与所述连接部36卡合。
当所述第一固定件391与第二固定件396闭合时,所述第一固定件391与第二固定件396接触,所述第一通孔3910与第二通孔3960相连通,在所述第二弹性件394的推动下,所述勾部3922扣于所述卡凸3962,转动所述旋紧机构395,使得所述旋紧机构395压紧所述卡扣件392,使得所述勾部3922进一步锁紧于所述卡凸3962,从而使得所述第一横梁部32或第二横梁部34相对于所述连接部36稳定地处于展开状态。
转动所述旋紧机构395,使其脱离所述卡扣件392,使得所述第一固定件391相对于第二固定件396转动,将所述勾部3922脱离所述卡凸3962,所述第一固定件391与第二固定件396相分离,从而使得所述第一横梁部32或第二横梁部34可相对于所述连接部36转动,以使所述横梁组件30收起。
在本实施例中,借助所述第二弹性件394的推动,所述勾部3922可方便扣于所述卡凸3962,使得所述勾部3922与所述卡凸3962预先扣合,然后所述旋紧机构395压紧所述卡扣件392,使得所述勾部3922进一步锁紧于所述卡凸3962。
可以理解的是,在一些其它实施例中,所述第一固定件391与第二固定件396的位置可以互换,也即所述第一固定件391固定于所述第一横梁部32或第二横梁部34的内部,所述第二固定件396固定于所述连接部36内部。
可以理解,所述第一固定件391和所述第二固定件396也可以与第一横梁 部32、第二横梁部34或连接部36的内壁一体形成,即,所述第一固定件391和所述第二固定件396可以为第一横梁部32、第二横梁部34或连接部36的内壁的一部分。所述第一固定件391和所述第二固定件396,所述第一固定件391和所述第二固定件396也可以不通过第一转轴连接在一起,两者并不连接,但第一横梁部32或第二横梁部34与连接部36的外壁通过一个额外的转轴连接在一起,这也能实现第一横梁部32或第二横梁部34与连接部36之间可枢转的连接。
可以理解,第二弹性件394和旋紧机构395与第二转轴393之间的相对位置可以变化,即,第二弹性件394可以离第二转轴393比旋紧机构395更近,只要能使卡扣件392锁紧卡凸3962即可。
请一并参阅图18和图19,示出了关节机构39构造的第二实施方式。该第二实施方式提供的关节机构39a与上述实施例中的关节机构39基本相同,区别在于所述卡扣件392a的一端设置勾部3922a和凸块3924a,两个所述勾部3922a位于所述凸块3924a的相对两侧,所述第二通孔3960的内壁设置卡凸3962a,所述卡凸3962a的数量为两个,每个所述卡凸3962a的位置与对应的一个所述勾部3922a的位置对应。所述旋钮395替换成按钮395a,所述按钮395a安装于所述第二固定件396。所述第二弹性件394为压簧,其压缩于所述第一固定件391与卡扣件392a之间。
当所述第一固定件391与第二固定件396闭合时,所述第一固定件391与第二固定件396接触,所述第一通孔3910与第二通孔3960相连通,所述第二弹性件394抵紧所述卡扣件392a,使得两个所述勾部3922a分别扣紧于两个所述卡凸3962a,所述第一固定件391与第二固定件396相互扣紧,从而使得所述第一横梁部32或第二横梁部34相对于所述连接部36展开。
按动所述按钮395a,使得所述按钮395a推动所述凸块3924a,以推动所述卡扣件392a绕所述第二转轴393转动时,所述勾部3922a脱离所述卡凸3962a,所述第二弹性件394被进一步压缩,此时,所述第一固定件391可相对于第二固定件396转动,使得所述第一固定件391与第二固定件396相分离,从而使得所述第一横梁部32或第二横梁部34可相对于所述连接部36转动, 以使所述横梁组件30收起。抬起所述按钮395a,以使所述按钮395a远离所述卡扣件392a,所述第二弹性件394恢复弹性形变推动所述卡扣件392a绕所述第二转轴393转动,以使所述勾部3922a扣紧于所述卡凸3962a。
请参阅图20,为了增加所述第一横梁部32和第二横梁部34分别与连接部36的卡合力度,以使所述第一横梁部32和第二横梁部34可挂载重量更大的标定元件,所述标定支架100还可以包括搭扣结构50,一个所述搭扣结构50连接于第一横梁部32与连接部36之间,另一个所述搭扣结构50连接于第二横梁部34与连接部36之间。
每个所述搭扣结构50包括第一搭扣件52和第二搭扣件54。所述连接部36上设置有第一搭扣件52,所述第一搭扣件52的一端铰接于所述连接部36,所述第一搭扣件52铰接于所述连接部36的一端设置有扳动部522,所述第一搭扣件52的另一端设置有拉钩杆524,所述第一横梁部32或第二横梁部34上设置有第二搭扣件54,所述第二搭扣件54设置有搭扣部544。所述第一横梁部32或所述第二横梁部34与连接部36的铰接处位于所述连接部36的一侧,所述第一搭扣件52和第二搭扣件54位于所述连接部36的另一侧。当所述第一横梁部32和第二横梁部34相对于所述连接部36展开时,所述第一横梁部32和第二横梁部34分别与所述连接部36接触,所述拉钩杆524扣紧于所述搭扣部544。扳动所述扳动部522,所述拉钩杆524脱离所述搭扣部544,所述第一搭扣件52和第二搭扣件54可相分离,使得所述第一横梁部32或第二横梁部34可相对于所述连接部36收起。
可以理解的是,在一些其它实施例中,所述第一搭扣件52和第二搭扣件54的位置可以互换,也即所述第一搭扣件52设置于所述第一横梁部32或第二横梁部34,所述第二搭扣件54设置于所述连接部36。在一些实施例中,所述第一搭扣件52和第二搭扣件54可以配合关节机构39使用,即此时在第一横梁部32、第二横梁部34及连接部36内壁内有关节机构39。在一些实施例中,所述第一搭扣件52和第二搭扣件54也可以单独使用,即此时在第一横梁部32、第二横梁部34及连接部36内壁内无关节机构39。
请一并参阅图21和图22,本发明另一实施例还提供一种标定系统600,包括标定元件和上述实施例提供的标定支架100,所述标定元件可挂载于所述标定支架100,例如,所述标定元件为反光镜300和距离测量装置400(见图21),所述反光镜300可以通过滑块挂载于第一导轨322或第二导轨342,所述滑块安装于所述第一导轨322或第二导轨342,可与所述反光镜300一同沿所述第一导轨322或第二导轨342滑动,所述距离测量装置400固定安装于所述横梁组件30。所述反光镜300也可以为标靶300,两个标靶通过滑块挂载于第一导轨322及第二导轨342上。反光镜或标靶300还可以通过挂钩等方式直接挂载横梁组件30上,此时第一导轨322及第二导轨342可以取消。
上述距离测量装置400用于测量横梁组件30距离地面的高度,并且优选地显示在距离测量装置400的液晶屏幕上。在一个实施例中,距离测量装置400是激光测距仪。底座10上设置有通孔120,用于使激光测距仪400的激光打到地面上,从而测量出横梁组件30距离地面的高度。
又例如,所述标定元件为图案板500(见图22),所述第一托件312和第二托件332共同托举所述图案板500,以防坠落。此外,所述第一导轨322上还可以安装有第一固定块510,所述第一固定块510可沿所述第一导轨322滑动,所述第二导轨342上安装有第二固定块520,所述第二固定块520可沿所述第二导轨342滑动,所述第一固定块510和第二固定块520分别位于所述图案板500的相对两侧,所述第一固定块510和第二固定块520协同夹紧所述图案板500。
在一个可选的实施例中,所述第一固定块510及第二固定块520为安装反光镜300的滑块。在滑块的相对的侧边开一条卡槽,以夹住图案板500,即形成固定块。可以理解,所述第一固定块510及第二固定块520也可以为磁性块,通过磁性吸附作用从后面吸住图案板500,以增强图案板500挂载在横梁组件30的牢固度。
若标定元件重量较重超过上述横梁的承载范围,或所要设置的高度较低时,则利用第一横梁部32、第二横梁部34、第一托杆31、第二托杆33来承载标定元件,则会导致横梁变形,或者,标定元件无法放置于预设高度等问题。
请参阅图23和图24,本发明又一另一实施例提供一种标定支架101,与 前述实施例所提供的标定支架100基本相同,区别在于,所述标定支架101还包括挂载组件60。所述挂载组件60包括挂载部62,夹持部64以及安装部66。所述夹持部64连接于所述挂载部62,用于将整个所述挂载组件60安装在所述立架组件20上,并使所述挂载组件60可沿所述立架组件20的长度方向移动,也即沿所述固定立杆的长度方向移动。所述挂载部62上设置有所述安装部66,所述安装部66连接于所述横梁组件30,以使所述横梁组件30沿所述立架组件20的长度方向移动时带动所述挂载组件60沿所述立架组件20的长度方向移动,所述挂载部62用于挂载标定元件102。
相比较于仅由横梁组件30支承标定元件102,通过挂载组件60分别安装于立架组件20及横梁组件30,立架组件20及横梁组件30共同支承挂载组件60,标定支架可以挂载更重的标定元件,此外,在所述标定支架101挂载相同重量的标定元件的情况下,可避免横梁支承标定元件导致横梁易变形的隐患。
在一些实施例中,所述夹持部64与所述挂载部62共同构成一个用于套设所述立架组件20的套筒。根据实际情况,例如,所述夹持部64为安装于所述立架组件20的滑动结构,所述滑动结构可沿所述立架组件20的长度方向滑动,所述挂载部62连接于所述夹持部64。或者,所述夹持部64或挂载部62形成的套筒的内径略大于立架组件20的外径,进而使套筒与立架组件20之间存在活动空间,以支持挂载部62可沿立架组件20的长度方向移动。在此,只要所述夹持部64和所述挂载部62中的至少一个能够连接到所述立架组件20,并且能够沿所述立架组件20的长度方向移动即可。在一些实施例中,夹持部64也可被省略,挂载部62仅通过下述方式与横梁组件30连接。
当所述第一横梁部32和所述第二横梁部34中各自远离所述连接部36的一端位于相对于所述立架组件20的第一位置时,所述横梁组件30收起,即横梁组件30中的第一横梁部32和第二横梁部34处于自然下垂状态,所述第一横梁部32与所述第二横梁部34中自远离所述连接部36的一端靠近所述立架组件。当所述第一横梁部32和所述第二横梁部34中各自远离所述连接部36的一端位于相对于所述立架组件20的第二位置时,所述横梁组件30展开。
在一些实施例中,所述安装部66连接于所述连接部36。由连接部36沿 立架组件20的长度方向的运动而带动挂载部62的运动。或者,安装部66连接于第一横梁部32或第二横梁部34中的至少一个。由第一横梁部32或第二横梁部34相对于连接部的枢转运动或者由第一横梁部32或第二横梁部34沿立杆组件的长度方向的运动来带动挂载部62沿立杆组件长度方向的运动。
在一种实施例中,所述安装部66包括第一安装部660和第二安装部662,所述第一安装部660和所述第二安装部662分别设置于所述挂载部62的两侧。所述第一安装部660连接于所述第一横梁部32,所述第二安装部662连接于所述第二横梁部34。根据实际情况,所述第一安装部660和所述第二安装部662中的一个可以省略,仅由所述第一安装部660和所述第二安装部662中剩下的一个与所述横梁组件30相连,也能够在所述横梁组件30沿所述立架组件20的长度方向移动时,带动所述挂载组件60沿所述立架组件20的长度方向移动。此外,相比较于所述安装部660连接于所述连接部36的方式,通过所述安装部660连接于所述第一、二横梁部32,34的方式,在所述第一、二横梁部32,34向下收起时,可使所述挂载组件60的离地高度尽可能地小,挂载于所述挂载组件60的标定元件102可对位置更低的车载辅助驾驶系统的待标定设备进行标定。
请参阅图24,图25以及图26,所述第一安装部660整体呈竖立的板状,基本与所述挂载部62相持平。在本实施例中,所述第一安装部660朝向所述第一横梁部32的一面成型有第一承托孔6600,所述第一承托孔6600用于插入所述第一托件312,以供所述第一托件312承托所述第一安装部660。根据实际情况,也可以通过螺栓将所述第一横梁部32与所述第一安装部660相固定,另外,可以在第一横梁部32上设计专门用于插入第一承托孔6600的结构以代替第一托件312。
所述第一安装部660还设置有第一锁紧结构6602,所述第一锁紧结构6602用于锁紧所述第一导轨322,以使所述第一横梁部32与所述第一安装部660保持固定。所述第一锁紧结构6602包括第一锁紧旋钮6604,第一连接轴(图未示出)以及第一止挡条6606。所述第一锁紧旋钮6604位于所述第一安装部660背向所述第一横梁部32的一侧,所述第一止挡条6606位于所述第一安装部660朝向所述第一横梁部32的一侧,所述第一安装部660成型有用于供所 述第一连接轴连接的第一轴孔(图未标示),所述第一连接轴的两端分别连接所述第一锁紧旋钮6604及所述第一止挡条6606。通过拧动所述第一锁紧旋钮6604,以带动所述第一止挡条6606转动。当所述第一止挡条6606转动至相对于所述第一安装部660的指定位置,也即所述第一止挡条6606平行于所述第一导轨322的长度方向时,所述第一止挡条6606可通过所述第一卡部3226和所述第二卡部3228之间的间隙,以使所述第一止挡条6606进入或者退出所述第一导轨322的导向通道。当所述第一止挡条6606位于所述第一导轨322的导向通道,并且所述第一止挡条6606位转动至相对于所述第一安装部660的非指定位置时,所述第一卡部3226和所述第二卡部3228共同挡住所述第一止挡条6606,以阻止所述第一止挡条6606从所述第一导轨322的导向通道退出。
相似地,所述第二安装部662整体呈竖立的板状,基本与所述挂载部62相持平。在本实施例中,所述第二安装部662朝向所述第二横梁部34的一面成型有第二承托孔6620,所述第二承托孔6620用于插入所述第二托件332,以供所述第二托件332承托所述第二安装部662。根据实际情况,也可以通过螺栓将所述第二横梁部34与所述第二安装部662相固定,另外,可以在第二横梁部34上设计专门用于插入第二承托孔6620的结构以代替第二托件332。
所述第二安装部662还设置有第二锁紧结构6622,所述第二锁紧结构6622用于锁紧所述第二导轨342,以使所述第二横梁部34与所述第二安装部662保持固定。所述第二锁紧结构6622包括第二锁紧旋钮6624,第二连接轴(图未示)以及第二止挡条6626。所述第二锁紧旋钮6624位于所述第二安装部662背向所述第二横梁部34的一侧,所述第二止挡条6626位于所述第二安装部662朝向所述第二横梁部34的一侧,所述第二安装部662成型有用于供所述第二连接轴连接的第二轴孔(图未标示),所述第二连接轴的两端分别连接所述第二锁紧旋钮6624及所述第二止挡条6626。通过拧动所述第二锁紧旋钮6624,以带动所述第二止挡条6626转动。当所述第二止挡条6626转动至相对于所述第二安装部662的指定位置,也即所述第二止挡条6626平行于所述第二导轨342的长度方向时,所述第二止挡条6626可通过所述第三卡部3426和所述第四卡部3428之间的间隙,以使所述第二止挡条6626进入或者退出所 述第二导轨342的导向通道。当所述第二止挡条6626位于所述第二导轨342的导向通道,并且所述第二止挡条6626转动至相对于所述第二安装部662的非指定位置时,所述第三卡部3426和所述第四卡部3428共同挡住所述第二止挡条6626,以阻止所述第二止挡条6626从所述第二导轨342的导向通道退出。
在其他一些实施例中,所述夹持部64与所述挂载部62一体成型,在将套筒套设于所述立架组件20前,需先将所述横梁组件30与所述立架组件20拆分,或者先将所述立架组件20与所述底座10拆分。
请参阅图26和图27,在本实施例中,所述夹持部64与所述挂载部62可拆卸地连接,便于两者所构成用于套设所述立架组件20的套筒。所述挂载部62朝向所述夹持部64的一面成型有两个插接槽体620,用于承托所述夹持部64。所述夹持部64包括连接板640,以及分别连接于所述连接板640两侧且皆朝所述挂载部62方向延伸的两个延伸板642,每个所述延伸板642远离所述连接板640的一端成型有一个插接板644,用于插接于一个与其对应的所述插接槽体620。所述挂载部62,所述连接板640以及两个所述延伸板642四者共同构成所述套筒。根据实际情况,所述夹持部64与所述挂载部62也可以通过螺栓连接。
请参阅图24,图25以及图28,所述挂载部62基本呈一竖立的板状,当标定元件102挂载于所述挂载部62时,所述标定元件102位于所述挂载部62背向所述夹持部64的一侧,根据实际需要,所述挂载部62也可以设计成其他的形状,例如竖立的三棱柱状,相应的,标定元件102挂载于所述挂载部62的位置也会有所差别,并不一定会位于背向所述夹持部64的一侧。
在本实施例中,所述挂载部62还成型有至少两个第一挂载孔622,共同用于挂置标定元件102,相适配地,标定元件102背向其标定方向一侧成型有至少两个第一支部1020,共同用于挂置于所述至少两个第一挂载孔662。
车辆辅助驾驶系统根据功能不同,可分为自适应巡航系统,夜视系统,盲点系统,车辆偏离警示系统等。所述自适应巡航系统主要包括雷达,所述自适应巡航系统的雷达可以是单雷达或者双雷达,单雷达一般设置在车辆的车头中 间,双雷达一般设置在车辆的车头两侧。可通过自适应巡航系统标定元件102a对所述自适应巡航系统中的雷达进行标定,所述自适应巡航系统标定元件102a可以为雷达标定板(用于反射雷达发射的波),雷达标定盒,角反射器等雷达标定件,所述自适应巡航系统标定元件102a如图23所示。所述夜视系统主要设置在车辆的车头偏离中点的位置上,可通过夜视系统校准仪102c对所述夜视系统进行校准,所述夜视系统校准仪102c可以为红外雷达等红外发射装置,如红外雷达等,所述夜视系统校准仪102c如图30所示。所述盲点系统主要包括雷达,所述盲点系统的雷达一般设置在车尾处,可通过盲点检测系统标定元件102b对所述盲点系统进行标定,所述盲点检测系统标定元件102b可以为多普雷发生器,也即盲点盒子、雷达标定盒,等等。所述盲点检测系统标定元件102b如图29所示,所述车辆偏离警示系统主要包括车辆的车窗上的摄像头,可通过图案板对所述车辆偏离警示系统进行标定。
请参阅图30,图31以及图32,由于存在一些标定元件的形状,挂载于所述挂载部62时易与收起的所述横梁组件30相干涉,例如,所述夜视系统校准仪102c具有突出其背部的构造1020c。据此,标定元件102可分为第一标定元件和第二标定元件。所述第一标定元件包括以下至少一种:所述自适应巡航系统标定元件102a和所述盲点检测系统标定元件102b。所述第二标定元件包括所述夜视系统校准仪102c。所述挂载部62用于挂载所述第一挂载件。
在一些实施例中,所述标定支架200还包括辅助挂件70,所述辅助挂件70用于挂载于所述挂载部62背向所述夹持部64的一侧,所述辅助挂件70用于挂载所述第二标定元件。当所述第二标定元件挂载于所述辅助挂件70时,所述第二标定元件位于所述辅助挂件70背向所述挂载部62的一侧。
所述辅助挂件70朝向所述挂载部62的一侧成型有至少两个第二支部72,用于挂置于所述至少两个第一挂载孔622。所述辅助挂件70背向所述挂载部62的一侧成型有至少两个第二挂载孔74,用于挂置所述第二标定元件。
所述图案板需要较高的离地高度,可挂载于展开的所述横梁组件30上。
请复参阅图21,在本发明又一实施例还提供一种标定系统,包括前述实施例的标定支架200及标定元件102。
与现有技术相比,本发明实施例所提供的标定系统及其标定支架中,通过挂载组件分别安装于所述横梁组件及所述立架组件,当所述挂载组件挂载有标定元件时,所述横梁组件及所述立架组件共同承载标定元件,可避免横梁支承标定元件导致横梁被压弯的隐患。
请参阅图33a至图38b,本发明实施例再一实施例还提供一种确定标定支架相对于待测车辆103的放置点D0,D0'的方法700,700',所述标定支架可以为本发明前述实施例所提供的标定支架100,101,在本实施例中,以所述标定支架为标定支架101为例。所述标定支架101用于挂载标定元件,以标定所述待测车辆103上的高级辅助驾驶系统中的待标定设备1030,1030'。所述放置点D0位于所述待测车辆103的车头处1032,放置于所述放置点D0的标定设备101可对位于所述车头处1032的待标定设备1030进行标定。所述放置点D0'位于所述车尾处1034,放置于所述放置点D0'的标定设备101可位于所述车尾处1034的标定设备1030'进行标定。需要说明,所述标定支架101,所述待测车辆103以及所述放置点D0皆在地面P1上,所述地面P1为所述待测车辆103三个及以上车轮共同接触的平面,包括操作室内的地面,举架机形成的平面等。所述待标定车辆103具有对称中心面P2,所述对称中心面P2经过所述车头1032与车尾1034,并基本垂直于所述地面P1。所述待标定设备1030,1030'偏离所述待标定车辆103的对称中心面P2。所述待标定设备1030可以是自适应巡航系统的传感器,夜视系统的传感器,盲点系统的传感器,车辆偏离警示系统的传感器等,盲点系统的传感器一般在车尾处,夜视系统的传感器一般在车头偏离中点的位置上,自适应巡航系统的传感器一般在车头两侧。以所述待标定设备1030为自适应巡航系统的传感器为例进行说明。
本申请实施例中的方法可由操作者结合工具实施。
当所述放置点D0位于所述车头1032处时,所述方法700可用于标定自适应巡航系统的传感器或夜视系统的传感器,如图33a所示,该方法包括:
步骤710:确定第一基准线S1,所述第一基准线S1在所述对称中轴面P2内,如图34a和图34b所示;
步骤720:在所述第一基准线S1上确定第一基准点D1,所述第一基准点 D1与所述车头1032在所述第一基准线S1上的第二定位点D3之间的距离为预设距离L1,如图35所示;需要说明,在步骤720中,所述车头在所述第一基准线上的投影点为所述车头在所述地面的投影外轮廓与所述第一基准线的交点;该投影点可由位于车头中心的铅垂线在地面的投影确定。其中,第二定位点D3可以理解为是车头1032在第一基准线S1上的投影点d1。
步骤730:确定第二基准线S2,所述第二基准线S2与所述第一基准线S1相垂直,并且所述第一基准线S1与所述第二基准线S2相交于所述第一基准点D1,如图36所示;
其中,第一基准线与第二基准线为可视的,可以利用激光线呈现第一基准线与第二基准线,当然,还可以利用其它方式,在此不予限定。
步骤740:在所述第二基准线S2上放置定位组件,所述定位组件包括线激光器104和定位图案板105,所述定位图案板105上显示有十字形图案,所述十字形图案包括相互垂直的两条线形标识1050,1052,所述十字形图案中的一条线形标识1050在所述线激光器104发射的激光束s1所形成的面内,即线性标识1050与激光器104发射的激光束在地面上形成的激光线重合,所述十字形图案中的另一条线形标识1052与所述第二基准线S2重合,如图37所示;
以及步骤750:在所述第二基准线S2上移动所述定位组件以确定所述标定支架101的放置点D0,在所述放置点D0上,所述线激光器104在所述待测车辆103上形成的激光线与所述待标定设备1030的中心线重合,待标定设备1030的中心线是指待标定设备1030面向前方,即车头延伸方向的面的中心线,该中心线大致垂直于地面,如图38a和38b所示。
在一些实施例中,请参阅图45a和图45b,确定第一基准线S1的方式可以有多种,其中一种为:
确定第一定位点D3及第二定位点D4,所述第一定位点D3为所述车尾1034在地面P1上的中部投影,所述第二定位点D4为所述车头1032在所述地面P1上的中部投影;
将线激光器放置于所述地面上,使所述线激光器在地面P1上形成的一条激光线穿过所述第一定位点D3和所述第二定位点D4,以形成所述第一基准线S1。
其中,可以利用铅垂线来确定第一定位点D3和第二定位点D4,例如,请参阅图46a和图46b,将铅垂线悬挂于所述车尾1034中部,以确定所述车尾1034的中部投影;
将铅垂线悬挂于所述车头1032中部,以确定所述车头1032的中部投影。
具体地,可以利用测量尺或其他精密仪器等确定车头中部和车尾中部,将铅垂钱悬垂在车头中部和车尾中部,铅垂线在地面上的投影区域即为中部投影。进而可以利用中部投影来确定第一定位点D3和第二定位点D4,铅垂线确定第一定位点D3与第二定位点D4的方式可以在误差允许范围内,第一定位点D3与第二定位点D4共同所在的直线可以理解为是第一基准线,即车辆的对称中轴面与地面相交的直线。可以在地面上标识第一定位点D3和第二定位点D4,以确定第一基准线。
可以利用直尺、标识工具等工具在地面上标识出第一基准线,也可以在地面上放置有线激光器106(如图45b中所示),使线激光器106在地面上形成激光线穿过第一定位点D3和第二定位点D4,从而该激光线可以作为第一基准线。线激光器可以为单线激光器,该线激光器放置于车尾中心点附近,或者放置在第一定位点D3处,其发射的激光在地面上形成一条射线,调整该线激光器106使其在地面上形成的激光线穿过第一定位点D3和第二定位点D4,在标定支架摆放的过程中,该线激光器可一直开启并被放置在固定位置以提供第一基准线。
或者,线激光器可以为双线激光器,该双线激光器可以发射两个方向的激光束,在地面上形成的两条激光射线相向,进而形成一条激光直线,该条激光直线可以作为第一基准线。
或者,线激光器可以为四线激光器,该四线激光器可以发射四个方向的激光束,在地面上形成四条激光射线,四条激光射线相邻两条垂直,则四条激光射线中的相向的两条激光射线形成一条基准线,则可以通过四线激光器形成第一基准线和第二基准线,该四线激光器可以放置在车头前端,在确定第一基准线的同时,也可以确定第二基准线。为了使标定支架与车头之间的距离为预设距离,可以测量四线激光器与第二定位点D4之间的距离,调整四线激光器的位置直至四线激光器与第二定位点D4之间的距离为预设距离L1。在可以在该 位置确定第一基准线和第二基准线。在调整四线激光器的位置的过程中,可以开启四线激光器使其形成至少一条直线穿过第一定位点D3和第二定位点D4,即确定第一基准线。四线激光器还可以控制开启发射激光在地面上形成一条或两条与第一基准线垂直的射线,如果确定仅标定车头一侧的传感器,则可以形成一条射线作为第二基准线;如果确定标定车头两侧的传感器,则可以形成两条射线作为第二基准线。
或者,线激光器可以为三线激光器,该三线激光器发射激光在地面上形成一条激光射线作为第一基准线或作为第二基准线,其使用方式参见上述四线激光器。
或者,线激光器可以为五线激光器,除包括上述四线激光器的功能外,五线激光器还可以在地面上形成激光点,例如,在五线激光器的底部安装有激光发射装置,该激光发射装置发射激光在地面上形成激光点。在此种情况下,可以在车尾放置上述单线激光器,确定第一基准线,并在车头利用该激光点对准第一基准点,则可以将五线激光器准确地放置在第一基准点上,调整五线激光仪,使其在地面上形成的一条直线(由两条相向的射线组成)与第一基准线重合,则另一条直线可以作为第二基准线。
其中,如图38B所示,定位组件中的线激光器104可以在一扇形面内发射激光束,从而激光束落在该扇形面的物体上会形成一条激光线。线激光器104可以为单线激光器,即其仅向一个方向发射激光束,即线激光器104发射激光束的扇形面与第一基准线平行。若利用激光线以外的方式在地面上标识除了第一基准线和第二基准线,则线激光器104可以应用在上述确定第一基准线或确定第二基准线的过程中。
线激光器104与定位图案板105可以固定连接,或者线激光器104叠加在定位图案板105上。线激光器104与定位图案板105固定连接的情况下,可以摆放定位图案板105使定位图案板105中的线性标识1052与第二基准线重合,则线激光器104在地面上呈现的线激光可以与定位图案板105中的线性标识1051重合,即线激光器104相对于线性标识105的角度是固定的。线激光器104叠加在定位图案板105的情况下,可以先摆正定位图案板105,然后开启线激光器104,使其发射的激光在地面上形成的激光线垂直于第二基准线。
可以理解地,定位图案板105的图案不限,仅需要辅助线激光器104实现在地面上形成的激光线垂直于第二基准线即可。
沿第二基准线移动线激光器104和定位图案板105,当线激光器104在车辆上形成的激光线大致为待标定设备的中心线时,可以记录定位组件的位置,从而确定标定支架的放置点。
在一些实施例中,可以将放置点确定为定位图案板105上十字形图案的中心点,例如,可以在定位图案板105的中心点设置有通孔,操作者可以通过标识笔等工具通过通孔在地面上记录放置点。
进一步地,操作者可以将标定支架放置在该放置点上,并在标定支架上挂载标定元件,还可以利用标定支架调整标定元件的高度,以使标定元件对齐待标定设备,进而实现对待标定设备进行标定。
为了精准地将标定支架放置于放置点上,可以通过以下方式:
开启所述标定支架101上的激光器,所述激光器位于所述标定支架101的立架组件上,所述激光器垂直于地面P1发射激光束,以在地面上形成激光点d0,可以理解,根据实际情况,激光器也可以位于所述标定支架101的挂载组件上;
移动所述标定支架101直至所述激光点与所述放置点D0,D0'重合。
为了配合激光器发射的激光束可以在地面上形成激光点,可以在标定支架101的底座上开设通孔,以使激光束穿过。其中,激光器位于标定支架101的中心轴上,如标定支架101如果包括立架组件,如图3所示,则可以将激光器挂载在立架组件上,或者上文描述的挂载部上。
进一步地,为了调整标定支架相对于待测车辆的对称中轴面的角度,使其垂直于待测车辆的对称中轴面时,可以利用下述方式,如图43所示:
在所述第二基准线S2,S2'上确定第二基准点D2,所述第二基准点D2与所述第一基准点D1,D1'位于所述放置点D0,D0'的两侧;
开启所述标定支架101上的线激光器,该线激光器可以为上述用于对准放置点的激光器;调整所述标定支架101相对于所述待测车辆103的对称中轴面的角度,使所述线激光器发射的激光束在地面上形成的激光线分别经过所述第一基准点D1,D1'和所述第二基准点D2,以使所述标定支架101垂直于所述对 称中轴面。或者,如果在标定过程中,上文描述的用于确定第二基准线的线激光器一直开启并放置在固定位置,以标识第二基准线,则可以省略确定第二基准点D2的步骤,仅需要标定之间101上的线激光器在地面上形成的激光线与第二基准线重合或平行即可。
如图44所示,在所述标定支架101垂直于所述对称中轴面后,在所述标定支架101上将所述线激光器替换为用于标定所述待标定设备1030,1030'的标定元件。仅通过调整标定元件的离地高度,即可使标定元件与待测设备对齐。
当所述放置点D0'位于所述车尾1034处时,例如,需要对盲点检测系统中的雷达传感器进行标定时,所述方法700'与上述方法700大致相同,如图33b所示,包括:
步骤710':确定第一基准线S1,所述第一基准线S1在所述对称中轴面P2内,如图34a和图34b所示;
步骤720':在所述第一基准线S1上确定第一基准点D1',所述第一基准点D1'与所述车尾1034在所述第一基准线S1上的投影点d2之间的距离为预设距离L1',如图39所示;需要说明,在步骤720'中,所述车尾在所述第一基准线上的投影点为所述车尾在所述地面的投影外轮廓与所述第一基准点的交点;
步骤730':确定第二基准线S2',所述第二基准线S2'与所述第一基准线S1相垂直,并且所述第一基准线S1与所述第二基准线S2'相交于所述第一基准点D1',如图40所示;
步骤740':在所述第二基准线S2'上放置定位组件,所述定位组件包括线激光器104和定位图案板105,所述定位图案板105上显示有十字形图案,所述十字形图案包括相互垂直的两条线形标识1050,1052,所述十字形图案中的一条线形标识1050在所述线激光器104发射的激光束s1'所形成的面内,所述十字形图案中的另一条线形标识1052与所述第二基准线S2'重合,如图41所示;
以及步骤750:在所述第二基准线S2'上移动所述定位组件以确定所述标定支架101的放置点D0',在所述放置点D0'上,所述线激光器104在所述待 测车辆103上形成的激光线与所述待标定设备1030'的中心线重合,如图42所示。
与现有技术相比较,本发明实施例提供的一种确定标定支架相对于待测车辆的放置点的方法,在确定第一基准线及第二基准线后,通过定位组件能够较为准确且快速地确定放置点,在该定位点放置标定支架可对不在车辆中心线的待测设备进行标定。
另外,在标定支架完成校准后,仅通过调整标定元件的离地高度,即可完成对标定元件与待测设备(或称为待标定设备)的定位。
Claims (7)
- 一种确定标定支架相对于待测车辆的放置点的方法,其特征在于,所述标定支架用于挂载标定元件,以标定所述待测车辆上的高级辅助驾驶系统中的待标定设备,所述标定支架相对于所述待测车辆的放置点位于所述待测车辆的车头处或车尾处,所述方法包括:确定第一基准线,所述第一基准线在经过所述待测车辆的车头与车尾的对称中轴面内;在所述第一基准线上确定第一基准点,所述第一基准点与所述车头或所述车尾在所述第一基准线上的投影点之间的距离为预设距离;确定第二基准线,所述第二基准线与所述第一基准线相垂直,并且所述第一基准线与所述第二基准线相交于所述第一基准点;在所述第二基准线上放置定位组件,所述定位组件包括线激光器和定位图案板,所述定位图案板上显示有十字形图案,所述十字形图案包括相互垂直的两条线形标识,所述十字形图案中的一条线形标识在所述线激光器发射的激光束所形成的面内,所述十字形图案中的另一条线形标识与所述第二基准线重合;以及在所述第二基准线上移动所述定位组件以确定所述标定支架的放置点,在所述放置点上,所述线激光器在所述待测车辆上形成的激光线与所述待标定设备的中心线重合。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:开启所述标定支架上的激光器,所述激光器位于所述标定支架的立架组件上,所述激光器垂直于地面发射激光束,以在地面上形成激光点;移动所述标定支架直至所述激光点与所述放置点重合。
- 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:在所述第二基准线上确定第二基准点,所述第二基准点与所述第一基准点位于所述放置点的两侧;开启所述标定支架上的线激光器,调整所述标定支架相对于所述待测车辆的对称中轴面的角度,使所述线激光器发射的激光束在地面上形成的激光线分别经过所述第一基准点和所述第二基准点,以使所述标定支架垂直于所述对称中轴面。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:在所述标定支架垂直于所述对称中轴面后,在所述标定支架上将所述线激光器替换为用于标定所述待标定设备的标定元件。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述确定第一基准线包括:确定第一定位点及第二定位点,所述第一定位点为所述待测车辆的车尾在地面上的中部投影,所述第二定位点为所述待测车辆的车头在所述地面上的中部投影;将线激光器放置于所述地面上,使所述线激光器在地面上形成的一条激光线穿过所述第一定位点和所述第二定位点,以形成所述第一基准线。
- 根据权利要求5所述的方法,其特征在于,所述确定第一定位点包括,将铅垂线悬挂于所述待测车辆的车尾中部,以确定所述待测车辆的车尾的中部投影;和/或所述确定第二定位点包括,将铅垂线悬挂于所述待测车辆的车头中部,以确定所述待测车辆的车头的中部投影。
- 根据权利要求1-6任一项所述的方法,其特征在于,所述确定第二基准线,包括:在所述第一基准点放置线激光器;利用所述线激光器在所述地面上形成与所述第一基准线垂直的第二基准线,所述第二基准线为射线或直线。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910105255.7 | 2019-02-01 | ||
CN201910105255 | 2019-02-01 | ||
CN201911067125.5 | 2019-11-04 | ||
CN201911067125.5A CN111520596B (zh) | 2019-02-01 | 2019-11-04 | 一种确定标定支架相对于待测车辆的放置点的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020156462A1 true WO2020156462A1 (zh) | 2020-08-06 |
Family
ID=71840871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/073869 WO2020156462A1 (zh) | 2019-02-01 | 2020-01-22 | 一种确定标定支架相对于待测车辆的放置点的方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020156462A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130110314A1 (en) * | 2011-10-28 | 2013-05-02 | Hunter Engineering Company | Method and Apparatus For Positioning A Vehicle Service Device Relative To A Vehicle Thrust Line |
CN107672594A (zh) * | 2017-10-20 | 2018-02-09 | 深圳市道通科技股份有限公司 | 一种车道保持系统的标定设备 |
WO2018067354A1 (en) * | 2016-10-04 | 2018-04-12 | Hunter Engineering Company | Vehicle wheel alignment measurement system camera and adas calibration support structure |
CN108036174A (zh) * | 2018-01-12 | 2018-05-15 | 深圳市道通科技股份有限公司 | 一种支架装置 |
CN108318870A (zh) * | 2018-03-07 | 2018-07-24 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备 |
CN108345321A (zh) * | 2018-04-20 | 2018-07-31 | 深圳市道通科技股份有限公司 | 位置调节装置及汽车标定设备 |
-
2020
- 2020-01-22 WO PCT/CN2020/073869 patent/WO2020156462A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130110314A1 (en) * | 2011-10-28 | 2013-05-02 | Hunter Engineering Company | Method and Apparatus For Positioning A Vehicle Service Device Relative To A Vehicle Thrust Line |
WO2018067354A1 (en) * | 2016-10-04 | 2018-04-12 | Hunter Engineering Company | Vehicle wheel alignment measurement system camera and adas calibration support structure |
CN107672594A (zh) * | 2017-10-20 | 2018-02-09 | 深圳市道通科技股份有限公司 | 一种车道保持系统的标定设备 |
CN108036174A (zh) * | 2018-01-12 | 2018-05-15 | 深圳市道通科技股份有限公司 | 一种支架装置 |
CN108318870A (zh) * | 2018-03-07 | 2018-07-24 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备 |
CN108345321A (zh) * | 2018-04-20 | 2018-07-31 | 深圳市道通科技股份有限公司 | 位置调节装置及汽车标定设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111520595B (zh) | 一种标定系统及其标定支架 | |
WO2020186930A1 (zh) | 一种标定系统及其标定支架 | |
US11500079B2 (en) | Calibration system and calibration bracket | |
WO2021190362A1 (zh) | 一种标定系统及其标定支架 | |
WO2021190361A1 (zh) | 一种标定系统及其标定支架 | |
WO2020156463A1 (zh) | 标定系统及其标定支架 | |
US20220049954A1 (en) | Calibration system and calibration bracket thereof | |
CN210036787U (zh) | 一种标定系统及其标定支架 | |
WO2022135007A1 (zh) | 一种车辆检测设备 | |
WO2020156462A1 (zh) | 一种确定标定支架相对于待测车辆的放置点的方法 | |
WO2020156461A1 (zh) | 一种标定系统及其标定支架 | |
CN212691246U (zh) | 一种标定系统及其标定支架 | |
CN111721345B (zh) | 一种标定系统及其标定支架 | |
CN210514606U (zh) | 一种标定系统及其标定支架 | |
CN214667687U (zh) | 一种汽车校准设备 | |
CN214384314U (zh) | 一种车辆检测设备 | |
CN119555395A (zh) | 车辆测量设备 | |
IT202100011453A1 (it) | Apparato e metodo di calibrazione di sensori di un sistema di assistenza avanzata alla guida |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20748482 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20748482 Country of ref document: EP Kind code of ref document: A1 |