WO2020149310A1 - Threaded joint for pipes and method for manufacturing threaded joint for pipes - Google Patents
Threaded joint for pipes and method for manufacturing threaded joint for pipes Download PDFInfo
- Publication number
- WO2020149310A1 WO2020149310A1 PCT/JP2020/001097 JP2020001097W WO2020149310A1 WO 2020149310 A1 WO2020149310 A1 WO 2020149310A1 JP 2020001097 W JP2020001097 W JP 2020001097W WO 2020149310 A1 WO2020149310 A1 WO 2020149310A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- box
- pin
- threaded joint
- solid lubricating
- contact surface
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000007787 solid Substances 0.000 claims abstract description 203
- 239000011521 glass Substances 0.000 claims abstract description 91
- 239000000314 lubricant Substances 0.000 claims abstract description 46
- 239000011230 binding agent Substances 0.000 claims abstract description 28
- 238000000576 coating method Methods 0.000 claims description 206
- 239000011248 coating agent Substances 0.000 claims description 202
- 230000001050 lubricating effect Effects 0.000 claims description 186
- 238000007747 plating Methods 0.000 claims description 140
- 239000000203 mixture Substances 0.000 claims description 108
- 229910052751 metal Inorganic materials 0.000 claims description 57
- 239000002184 metal Substances 0.000 claims description 57
- 229920005989 resin Polymers 0.000 claims description 49
- 239000011347 resin Substances 0.000 claims description 49
- 238000009713 electroplating Methods 0.000 claims description 36
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 28
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 18
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- -1 polytetrafluoroethylene Polymers 0.000 claims description 14
- 239000003822 epoxy resin Substances 0.000 claims description 11
- 229920000647 polyepoxide Polymers 0.000 claims description 11
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- 239000004962 Polyamide-imide Substances 0.000 claims description 7
- 239000005011 phenolic resin Substances 0.000 claims description 7
- 229920006122 polyamide resin Polymers 0.000 claims description 7
- 229920002312 polyamide-imide Polymers 0.000 claims description 7
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 6
- 239000007849 furan resin Substances 0.000 claims description 5
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 4
- 229920002530 polyetherether ketone Polymers 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 239000009719 polyimide resin Substances 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 238000007788 roughening Methods 0.000 claims description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 3
- 238000005461 lubrication Methods 0.000 abstract description 6
- 238000011282 treatment Methods 0.000 description 118
- 239000010410 layer Substances 0.000 description 84
- 229910045601 alloy Inorganic materials 0.000 description 81
- 239000000956 alloy Substances 0.000 description 81
- 229910007567 Zn-Ni Inorganic materials 0.000 description 61
- 229910007614 Zn—Ni Inorganic materials 0.000 description 61
- 238000012360 testing method Methods 0.000 description 51
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 43
- 229910000831 Steel Inorganic materials 0.000 description 29
- 230000003746 surface roughness Effects 0.000 description 29
- 239000010959 steel Substances 0.000 description 28
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 24
- 239000002904 solvent Substances 0.000 description 24
- 239000000126 substance Substances 0.000 description 24
- 229910019142 PO4 Inorganic materials 0.000 description 23
- 239000010452 phosphate Substances 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 21
- 239000002245 particle Substances 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 239000010949 copper Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000001035 drying Methods 0.000 description 14
- 239000004519 grease Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 229910052759 nickel Inorganic materials 0.000 description 14
- 239000011701 zinc Substances 0.000 description 14
- 230000008878 coupling Effects 0.000 description 13
- 238000010168 coupling process Methods 0.000 description 13
- 238000005859 coupling reaction Methods 0.000 description 13
- 238000005507 spraying Methods 0.000 description 13
- 239000000654 additive Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 238000007711 solidification Methods 0.000 description 12
- 230000008023 solidification Effects 0.000 description 12
- 239000003129 oil well Substances 0.000 description 11
- 229910020994 Sn-Zn Inorganic materials 0.000 description 10
- 229910009069 Sn—Zn Inorganic materials 0.000 description 10
- 239000008186 active pharmaceutical agent Substances 0.000 description 10
- 238000005422 blasting Methods 0.000 description 10
- 239000011135 tin Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000003921 oil Substances 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000005554 pickling Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000003449 preventive effect Effects 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- ZQKXQUJXLSSJCH-UHFFFAOYSA-N melamine cyanurate Chemical compound NC1=NC(N)=NC(N)=N1.O=C1NC(=O)NC(=O)N1 ZQKXQUJXLSSJCH-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 239000010702 perfluoropolyether Substances 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005488 sandblasting Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 241001163841 Albugo ipomoeae-panduratae Species 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 229910017755 Cu-Sn Inorganic materials 0.000 description 2
- 229910017927 Cu—Sn Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- HJJOHHHEKFECQI-UHFFFAOYSA-N aluminum;phosphite Chemical compound [Al+3].[O-]P([O-])[O-] HJJOHHHEKFECQI-UHFFFAOYSA-N 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- NNLOHLDVJGPUFR-UHFFFAOYSA-L calcium;3,4,5,6-tetrahydroxy-2-oxohexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(=O)C([O-])=O.OCC(O)C(O)C(O)C(=O)C([O-])=O NNLOHLDVJGPUFR-UHFFFAOYSA-L 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000007739 conversion coating Methods 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 2
- 238000003703 image analysis method Methods 0.000 description 2
- 229920000592 inorganic polymer Polymers 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910001453 nickel ion Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 2
- 229910000165 zinc phosphate Inorganic materials 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910018516 Al—O Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229910007564 Zn—Co Inorganic materials 0.000 description 1
- 229910007746 Zr—O Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- IQBJFLXHQFMQRP-UHFFFAOYSA-K calcium;zinc;phosphate Chemical compound [Ca+2].[Zn+2].[O-]P([O-])([O-])=O IQBJFLXHQFMQRP-UHFFFAOYSA-K 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- AWKHTBXFNVGFRX-UHFFFAOYSA-K iron(2+);manganese(2+);phosphate Chemical compound [Mn+2].[Fe+2].[O-]P([O-])([O-])=O AWKHTBXFNVGFRX-UHFFFAOYSA-K 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010002 mechanical finishing Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910001432 tin ion Inorganic materials 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
- C03C8/04—Frit compositions, i.e. in a powdered or comminuted form containing zinc
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M103/00—Lubricating compositions characterised by the base-material being an inorganic material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M103/00—Lubricating compositions characterised by the base-material being an inorganic material
- C10M103/02—Carbon; Graphite
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M103/00—Lubricating compositions characterised by the base-material being an inorganic material
- C10M103/06—Metal compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/20—Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/38—Lubricating compositions characterised by the base-material being a macromolecular compound containing halogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/40—Lubricating compositions characterised by the base-material being a macromolecular compound containing nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/04—Screw-threaded joints; Forms of screw-threads for such joints with additional sealings
Definitions
- the present disclosure relates to a threaded joint for pipes and a method for manufacturing a threaded joint for pipes.
- the oil well pipes such as tubing and casing used for oil well drilling for crude oil and gas oil are generally connected (fastened) using tubular threaded joints.
- the depth of the oil well was conventionally 2000 to 3000 m.
- it reaches 8,000 to 10,000 meters.
- the length of each oil well pipe is typically a dozen meters.
- a plurality of casings enclose the circumference of the tubing in which a fluid such as crude oil flows.
- the number of connected oil country tubular goods may reach an enormous number such as over 1,000.
- a typical pipe threaded joint used for fastening oil country tubular goods has a pin-box structure composed of a member called a pin having a male screw and a member called a box having a female screw.
- the pin includes a pin side screw portion (male screw portion) formed on the outer peripheral surface of the end portion of the steel pipe.
- the pin may further include a pin side metal seal portion and a pin side shoulder portion.
- the box includes a box side screw portion (female screw portion) formed on the inner peripheral surface of the end portion of the steel pipe.
- the box may further include a box-side metal seal portion and a box-side shoulder portion.
- a viscous liquid lubricant grey lubricating oil
- compound grease a viscous liquid lubricant containing heavy metal powder
- An example of compound grease is described in API standard BUL 5A2.
- Patent Document 1 International Publication No. 2014/042144 (Patent Document 1) and International Publication No. 2015/141159 (Patent Document 2) propose a threaded joint for pipes which is excellent in seizure resistance even without compound grease.
- the composition for forming a solid lubricating coating described in Patent Document 1 is a powdery organic compound which is at least partially soluble in a dipolar aprotic solvent in a mixed solvent containing water and a dipolar aprotic solvent. It is a composition containing a resin.
- the powdery organic resin exists in the mixed solvent in a dissolved state or a dispersed state. It is described in Patent Document 1 that this makes it possible to suppress the generation of rust and to have excellent seizure resistance without using compound grease.
- the threaded joint for pipes described in Patent Document 2 has a solid lubricating coating on the contact surface.
- the solid lubricating coating contains a binder, a fluorine-based additive, a solid lubricant, and an anticorrosive additive.
- the binder contains an ethylene vinyl acetate resin, a polyolefin resin, and a wax having a melting point of 110° C. or less, and the ratio of the mass of the ethylene vinyl acetate resin to the mass of the polyolefin resin is 1.0 to The ratio of the mass of the polyolefin resin and the ethylene vinyl acetate resin to the mass of the wax is 0.7 to 1.6.
- fastening torque the torque at the time of completion of fastening
- the threaded joint for pipes is required to have high torque performance, which is the performance of maintaining high torque at high surface pressure.
- the torque generated at this time is called shouldering torque.
- shouldering torque When tightening the threaded joint for pipes, after reaching the shouldering torque, further tightening is performed until the tightening is completed. Thereby, the airtightness of the threaded joint for pipes is enhanced.
- yield torque The torque generated at this time is called yield torque.
- the torque on-shoulder resistance ⁇ T′ means a difference between the shouldering torque and the yield torque.
- An object of the present disclosure is to provide a pipe threaded joint having excellent seizure resistance and excellent high torque performance, and a manufacturing method thereof.
- the threaded joint for pipes according to the present disclosure includes a pin, a box, and a solid lubricating coating.
- the pin has a pin side contact surface that includes a pin side thread.
- the box has a box-side contact surface that includes box-side threads.
- the solid lubricating coating is disposed on at least one of the pin side contact surface and the box side contact surface.
- the solid lubricating coating contains a binder, a lubricant and a glass frit.
- the method for manufacturing a threaded joint for pipes includes a preparation step and a solid lubricant film forming step.
- a pin, a box, and a composition for forming a solid lubricating coating are prepared.
- the pin has a pin side contact surface that includes a pin side thread.
- the box has a box-side contact surface that includes box-side threads.
- the composition for forming a solid lubricating coating contains a binder, a lubricant and a glass frit.
- the solid lubricating coating forming composition is applied to at least one of the pin-side contact surface and the box-side contact surface and then solidified to form a solid lubricating coating.
- the pipe threaded joint according to the present disclosure has excellent seizure resistance and excellent high torque performance.
- the method for manufacturing a threaded joint for pipes according to the present disclosure can manufacture a threaded joint for pipes having excellent seizure resistance and excellent high torque performance.
- FIG. 1 is a diagram showing a relationship between a rotational speed and a torque of a steel pipe when a pipe threaded joint having a shoulder portion is screwed.
- FIG. 2 is a graph showing the relationship between the glass frit content in the solid lubricating coating and the torque on-shoulder resistance ⁇ T'.
- FIG. 3 is a diagram showing the relationship between the glass frit content in the solid lubricating coating and seizure resistance.
- FIG. 4 is a diagram showing the configuration of the coupling type threaded joint for pipes according to the present embodiment.
- FIG. 5: is a figure which shows the structure of the integral type threaded joint for pipes by this embodiment.
- FIG. 6 is a sectional view of a threaded joint for pipes.
- FIG. 7 is a cross-sectional view of the pipe threaded joint according to the present embodiment.
- FIG. 8 is a sectional view of a threaded joint for pipes according to another embodiment, which is different from FIG. 7.
- FIG. 9 is a cross-sectional view of a threaded joint for pipes according to another embodiment, which is different from FIGS. 7 and 8.
- FIG. 10 is a diagram for explaining the torque on-shoulder resistance ⁇ T′ in the embodiment.
- FIG. 11 is a micrograph of a glass frit in the example.
- FIG. 12 is a micrograph of whiskers in the example.
- the present inventor has conducted various studies on the relationship between a threaded joint for pipes, seizure resistance, and high torque performance, using a pipe screw having a shoulder. As a result, the following findings were obtained.
- FIG. 1 is a diagram showing a relationship between a rotational speed and a torque of a steel pipe when a pipe threaded joint having a shoulder portion is screwed.
- FIG. 1 is also called a torque chart.
- the torque increases in proportion to the rotation speed. At this time, the rate of increase in torque is low. If the screws are further tightened, the shoulders will come into contact with each other. The torque at this time is called shouldering torque. If the screwing is further tightened after reaching the shouldering torque, the torque rises again in proportion to the rotation speed.
- the rate of increase in torque at this time is higher than that before reaching the shouldering torque.
- torque reaches a predetermined value (fastening torque)
- screw tightening is completed. If the torque for tightening the screws reaches the tightening torque, the metal seal portions interfere with each other with an appropriate surface pressure. In this case, the airtightness of the pipe threaded joint is increased.
- the torque on-shoulder resistance ⁇ T′ which is the difference between the shouldering torque and the yield torque, is large, there is a margin in the fastening torque range. As a result, the tightening torque can be easily adjusted. Therefore, it is preferable that the torque on-shoulder resistance ⁇ T′ is large.
- excellent high torque performance means that the torque-on-shoulder resistance ⁇ T′ is large when the pipe threaded joint has a shoulder portion.
- the present inventor In order to obtain excellent high torque performance, it is effective to reduce the shouldering torque or increase the yield torque when the pipe threaded joint has a shoulder portion.
- the present inventor has focused on a method of increasing the yield torque.
- the present inventor considered that the inclusion of hard particles in the solid lubricating coating would increase the yield torque at high surface pressure, and as a result, enhance the high torque performance.
- PTFE polytetrafluoroethylene
- FIG. 2 is a diagram showing the relationship between the glass frit content in the solid lubricating coating and the torque on shoulder resistance ⁇ T′.
- FIG. 2 was obtained by the example described below.
- the torque-on-shoulder resistance ⁇ T′ was obtained by using the numerical value of the torque-on-shoulder resistance ⁇ T′ when API standard dope was used instead of the solid lubricating coating in Test No. 9 in Examples described later as a reference (100). Further, it is a relative value of the torque on-shoulder resistance ⁇ T′ in the present embodiment.
- the white circles ( ⁇ ) in FIG. 2 indicate the torque-on-shoulder resistance ⁇ T′ of the example in which the solid lubricating coating is formed.
- the triangle mark ( ⁇ ) in FIG. 2 indicates the torque on-shoulder resistance ⁇ T′ when the API standard dope is used instead of the solid lubricating coating.
- the solid lubricating coating contains glass frit, it is not clear why excellent high torque performance can be obtained.
- the contact pressure between the contact surfaces becomes high (high contact pressure).
- the glass frit is present on the contact surface at the time of high surface pressure and in the powder generated by the wear of the solid lubricating coating and the threaded joint for pipes. Glass frits increase the coefficient of friction between contacting surfaces. As a result, high torque is maintained at high surface pressure, and excellent high torque performance is obtained.
- the glass frit exhibits excellent high torque performance by increasing the friction coefficient at high surface pressure. Therefore, even when the pipe threaded joint having no shoulder is used, the glass frit exhibits excellent high torque performance in the final stage of screw tightening.
- the present inventor has further found that not only excellent high torque performance but also excellent seizure resistance can be obtained by adjusting the content of the glass frit in the solid lubricating coating.
- FIG. 3 is a diagram showing the relationship between the glass frit content in the solid lubricating coating and seizure resistance.
- FIG. 3 was obtained by the example described below.
- the vertical axis represents the number of times (times) the fastening could be performed without burning.
- the number of times that it can be fastened without burning is 8 or more. That is, when the glass frit content is 10.0 mass% or less, excellent seizure resistance is obtained in addition to excellent high torque performance.
- the above-mentioned solid lubricating coating contains 0.01 to 10.0% by mass of glass frit.
- the pipe threaded joint has excellent seizure resistance in addition to excellent high torque performance.
- the method for manufacturing a threaded joint for pipes includes a preparation step and a solid lubricant film forming step.
- a pin, a box, and a composition for forming a solid lubricating coating are prepared.
- the pin has a pin side contact surface that includes a pin side thread.
- the box has a box-side contact surface that includes box-side threads.
- the composition for forming a solid lubricating coating contains a binder, a lubricant and a glass frit.
- the solid lubricating coating forming composition is applied to at least one of the pin-side contact surface and the box-side contact surface and then solidified to form a solid lubricating coating.
- a solid lubricating coating is manufactured using a composition for forming a solid lubricating coating containing glass frit. Therefore, a pipe threaded joint having excellent high torque performance can be obtained.
- the pin further includes a pin side metal seal and a pin side shoulder portion
- the box further includes a box side metal seal portion and a box side shoulder portion.
- FIG. 6 is a sectional view of a pipe threaded joint.
- the pin 3 includes a pin side screw portion 31, a pin side metal seal portion 32, and a pin side shoulder portion 33.
- the box 4 includes a box-side screw portion 41, a box-side metal seal portion 42, and a box-side shoulder portion 43.
- the portions that come into contact when the pin 3 and the box 4 are screwed are referred to as contact surfaces 34 and 44.
- the screw parts pin side screw part 31 and box side screw part 41
- metal seal parts pin side metal seal part 32 and box side metal seal part). 42
- the shoulder portions the pin side shoulder portion 33 and the box side shoulder portion 43
- the pin side shoulder portion 33, the pin side metal seal portion 32, and the pin side screw portion 31 are arranged in this order from the end of the steel pipe 1.
- the box-side screw portion 41, the box-side metal seal portion 42, and the box-side shoulder portion 43 are arranged in this order from the end of the steel pipe 1 or the coupling 2.
- the arrangement of the pin-side screw portion 31 and the box-side screw portion 41, the pin-side metal seal portion 32 and the box-side metal seal portion 42, and the pin-side shoulder portion 33 and the box-side shoulder portion 43 is limited to the arrangement of FIG. 6. Instead, it can be changed as appropriate. For example, as shown in FIG.
- the pin side screw part 31 in the pin 3, from the end of the steel pipe 1, the pin side screw part 31, the pin side metal seal part 32, the pin side shoulder part 33, the pin side metal seal part 32 and the pin side screw part. They may be arranged in the order of 31.
- the box-side screw portion 41, the box-side metal seal portion 42, the box-side shoulder portion 43, the box-side metal seal portion 42, and the box-side screw portion 41 are arranged in this order from the end of the steel pipe 1 or the coupling 2. May be.
- a so-called premium joint including a metal seal portion (pin side metal seal portion 32 and box side metal seal portion 42) and a shoulder portion (pin side shoulder portion 33 and box side shoulder portion 43) is shown. ..
- the metal seal portion (pin side metal seal portion 32 and box side metal seal portion 42) and shoulder portion (pin side shoulder portion 33 and box side shoulder portion 43) may be omitted.
- the solid lubricating coating of the present embodiment can be suitably applied to a pipe threaded joint having no metal seal portion and shoulder portion. Without the metal seal and shoulder, the pin-side contact surface 34 includes the pin-side threaded portion 31. Without the metal seal and shoulder, the box-side contact surface 44 includes the box-side threaded portion 41.
- the pipe threaded joint comprises a solid lubricating coating on at least one of the pin side contact surface 34 and the box side contact surface 44.
- FIG. 7 is a cross-sectional view of the pipe threaded joint according to the present embodiment.
- the solid lubricating coating 21 is formed by applying a composition for forming a solid lubricating coating to at least one of the pin-side contact surface 34 and the box-side contact surface 44 and then solidifying the composition, as in the production method described later.
- the solid lubricating coating 21 contains a binder, a lubricant and a glass frit. Therefore, the composition for forming the solid lubricating coating 21 also contains the binder, the lubricant and the glass frit.
- the composition may be a solvent-free composition or a solvent-type composition dissolved in a solvent.
- the mass% of each component means the mass% when the total mass of all components other than the solvent contained in the composition is 100%. That is, the content of each component in the composition and the content of each component in the solid lubricating coating 21 are the same.
- the composition for forming the solid lubricating coating 21 is also simply referred to as “composition”.
- the organic resin is, for example, one or two selected from the group consisting of thermosetting resins and thermoplastic resins.
- the thermosetting resin is, for example, epoxy resin, phenol resin, furan resin, polyimide resin, melamine resin, urea resin, silicone resin, polyurethane resin (thermosetting), unsaturated polyester resin, casein resin, alkyd resin, diallyl phthalate resin. And one or more selected from the group consisting of polyamino bismaleimide resin.
- thermoplastic ionomer resin, acrylonitrile/butadiene/styrene resin, acrylonitrile/styrene resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyvinylidene chloride resin, polyethylene terephthalate resin, polyacetal resin, polycarbonate resin, polyphenylene ether resin, polybutylene terephthalate
- the binder is one or more selected from the group consisting of epoxy resin, phenol resin, furan resin, polyamideimide resin, polyamide resin, polyimide resin, urethane resin and polyetheretherketone resin.
- epoxy resin phenol resin, furan resin, polyamideimide resin, polyamide resin, polyimide resin, urethane resin and polyetheretherketone resin.
- organic resins have appropriate hardness. Therefore, the wear resistance, seizure resistance, and high torque performance of the solid lubricating coating 21 are further enhanced.
- the binder is one or more selected from the group consisting of epoxy resin, phenol resin, furan resin, polyamide-imide resin and polyamide resin.
- the binder is one or more selected from the group consisting of epoxy resin, polyamide-imide resin and polyamide resin.
- the content of the binder in the solid lubricating coating 21 is preferably 50 to 90% by mass.
- the content of the binder is 60% by mass or more, the adhesion of the solid lubricating coating 21 to the contact surface 34 or 44 of the pipe threaded joint is further enhanced. Therefore, the lower limit of the content of the binder in the solid lubricating coating 21 is more preferably 60% by mass.
- the glass frit refers to glass particles.
- the shape of the glass frit is not fibrous but granular, lumpy and spherical.
- the glass frit is generally used mainly in various fields of electronics, such as sealing (sealing, adhesion) of a display panel and various electronic components, coating (protective film), and insulating film.
- sealing sealing, adhesion
- coating protecting film
- insulating film insulating film
- the glass frit a commercially available glass frit can be used.
- the glass frit is, for example, one or two kinds such as (trade name) ASF-1560 and (trade name) ASF-1561 manufactured by Asahi Glass Co., Ltd., and (trade name) VY0144 and (trade name) EY0077 manufactured by Nippon Frit Co., Ltd. The above can be mixed and used.
- the major axis of the glass frit is calculated by the following method. First, a part of the solid lubricating coating 21 is sampled. The solid lubricating coating 21 is burned at 600° C., and the burning residue is collected. The glass frit is recovered from the residue by the difference in specific gravity. The obtained glass frit is analyzed according to the dynamic image analysis method specified in JIS Z8827-1 (2008) and JIS Z8827-1-2 (2010). From the analysis result, the arithmetic average of the maximum Feret diameters of the respective particles of the glass frit within the same visual field is calculated, and the major axis ( ⁇ m) is calculated.
- the glass frit has an aspect ratio of 10 or less.
- the aspect ratio of the glass frit is a value defined by JIS Z8827-1 (2008), which is obtained by dividing the maximum Feret diameter of each particle by the minimum Feret diameter of each particle.
- the aspect ratio of the glass frit is more preferably less than 10, still more preferably 5 or less, and most preferably 3 or less.
- the aspect ratio of the glass frit is calculated by the following method. First, a part of the solid lubricating coating 21 is sampled. The solid lubricating coating 21 is burned at 600° C., and the burning residue is collected. The glass frit is recovered from the residue by the difference in specific gravity. The obtained glass frit is analyzed according to the dynamic image analysis method specified in JIS Z8827-1 (2008) and JIS Z8827-1-2 (2010). From the analysis result, the arithmetic mean of the maximum Feret diameters of the respective particles of the glass frit within the same visual field is calculated. From the analysis result, the arithmetic average of the minimum Feret diameters of the respective particles of the glass frit within the same visual field is calculated. The arithmetic mean of the largest Feret diameter is divided by the arithmetic mean of the smallest Feret diameter. This is the aspect ratio of the glass frit.
- the lower limit of the content of the glass frit in the solid lubricating coating 21 is, for example, 0.001% by mass.
- the content of the glass frit is preferably 0.01% by mass or more.
- the lower limit of the content of the glass frit is more preferably 0.5% by mass, further preferably 1.0% by mass.
- the chemical composition of the glass frit can be adjusted appropriately.
- the glass frit is, for example, in mass %, SiO 2 : 40 to 70%, Al 2 O 3 : 1 to 20%, CaO: 0.1 to 25%, B 2 O 3 : 0 to 40%, MgO: 0 to 3%, Na 2 O: 0 to 15%, K 2 O: 0 to 10%, and ZnO: 0 to 10% may be contained.
- the solid lubricating coating 21 may also contain other known rust preventive additives, preservatives and the like.
- the solid lubricating coating 21 needs to have rust-preventive properties for a long period of time before being actually used. Therefore, the solid lubricating coating 21 may contain a rust preventive additive.
- the anticorrosive additive is a general term for additives having corrosion resistance.
- the rust preventive additive is, for example, one or more selected from the group consisting of aluminum tripolyphosphate, aluminum phosphite and calcium ion exchange silica.
- the antirust additive contains one or two selected from the group consisting of calcium ion exchange silica and aluminum phosphite.
- As the rust preventive additive a commercially available reaction water repellent agent or the like can also be used.
- the total content of other components (corrosion preventive additives, preservatives, etc.) in the solid lubricating coating 21 is 10% by mass or less.
- the total content of other components is 10% by mass or less, the lubricity of the solid lubricating coating 21 is stably enhanced.
- the thickness of the solid lubricating coating 21 is measured by the following method.
- the thickness of the solid lubricating coating 21 is measured at four points on the contact surface 34 or 44 on which the solid lubricating coating 21 is formed, using an eddy current phase type film thickness meter PHASCOPE PMP910 manufactured by Helmut Fischer GmbH.
- the measurement is performed by a method according to ISO (International Organization for Standardization) 21968 (2005).
- the measurement points are four points (four points of 0°, 90°, 180°, 270°) in the pipe circumferential direction of the pipe threaded joint.
- the arithmetic average of the measurement results is the thickness of the solid lubricating coating 21.
- the solid lubricating coating 21 may be disposed on the entire surface of at least one of the pin-side contact surface 34 and the box-side contact surface 44, or may be disposed only on a part thereof.
- the pipe threaded joint has a metal seal portion (pin side metal seal portion 32 and box side metal seal portion 42) and a shoulder portion (pin side shoulder portion 33 and box side shoulder portion 43)
- the metal seal portions 32 and 42 are provided with a pin side contact surface 34 having a metal seal portion (pin side metal seal portion 32 and box side metal seal portion 42) and a shoulder portion (pin side shoulder portion 33 and box side shoulder portion 43).
- the box side contact surfaces 44 When partially arranged on at least one of the box side contact surfaces 44, it is arranged at at least one of the pin side metal seal portion 32, the box side metal seal portion 42, the pin side shoulder portion 33 and the box side shoulder portion 43. May be. On the other hand, if the solid lubricating coating 21 is arranged on at least one of the pin side contact surface 34 and the box side contact surface 44, the production efficiency of the threaded joint for pipes is increased.
- the solid lubricating coating 21 may be a single layer or multiple layers.
- the multi-layer means a state in which the solid lubricating coating 21 is laminated in two or more layers from the contact surface 34 or 44 side. By repeating the application and solidification of the composition, two or more solid lubricating coatings 21 can be formed.
- the solid lubricating coating 21 may be directly arranged on at least one of the pin-side contact surface 34 and the box-side contact surface 44, or may be arranged after being subjected to a base treatment described later.
- the composition of the base material of the threaded joint for pipes is not particularly limited.
- the base material is, for example, carbon steel, stainless steel, alloy steel or the like.
- alloy steels duplex stainless steels containing alloy elements such as Cr, Ni and Mo and high alloy steels such as Ni alloys have high corrosion resistance. Therefore, when these high alloy steels are used as the base material, excellent corrosion resistance can be obtained in a corrosive environment containing hydrogen sulfide, carbon dioxide and the like.
- the pin 3 has a pin-side contact surface 34 including a pin-side threaded portion 31, as described above.
- the pin 3 may have the pin-side contact surface 34 including the pin-side screw portion 31, the pin-side metal seal portion 32, and the pin-side shoulder portion 33, as described above.
- the box 4 has a box-side contact surface 44 including a box-side threaded portion 41, as described above.
- the box 4 may have a box-side contact surface 44 including a box-side threaded portion 41, a box-side metal seal portion 42, and a box-side shoulder portion 43, as described above.
- the solvent type composition can be produced, for example, by dissolving or dispersing a binder, a lubricant and a glass frit in a solvent and mixing them.
- the solvent is, for example, one or two selected from the group consisting of water and an organic solvent.
- the ratio of the solvent is not particularly limited. The proportion of the solvent may be adjusted to an appropriate viscosity according to the coating method. The ratio of the solvent is, for example, 30 to 50% by mass based on 100% by mass of all components other than the solvent.
- the solid lubricant film forming step includes a coating step and a solidifying step.
- the coating step the solid lubricating coating forming composition is coated on at least one of the pin-side contact surface 34 and the box-side contact surface 44.
- the solidifying step the solid lubricating coating forming composition applied on at least one of the pin-side contact surface 34 and the box-side contact surface 44 is solidified to form the solid lubricating coating 21.
- the composition can be applied using the hot melt method.
- the hot melt method the composition is heated to melt the resin and bring it into a low-viscosity fluid state. It is carried out by spraying the composition in a fluid state from a spray gun having a temperature maintaining function.
- the composition is heated and melted in a tank equipped with a suitable stirring device, and is supplied to a spray head (maintained at a predetermined temperature) of a spray gun through a metering pump by a compressor to be sprayed.
- the holding temperature in the tank and in the spraying head is adjusted according to the melting point of the resin in the composition.
- the coating method may be brush coating, dipping or the like instead of spray coating.
- the composition in a solution state is applied to at least one of the pin side contact surface 34 and the box side contact surface 44 by spray coating or the like.
- the viscosity of the composition is adjusted so that the composition can be spray-applied at room temperature and atmospheric pressure.
- the solid lubricant film 21 is formed by solidifying the composition applied to at least one of the pin side contact surface 34 and the box side contact surface 44.
- the composition in a molten state solidifies to solid lubricant coating 21. Is formed.
- a known cooling method can be used.
- the cooling method is, for example, air cooling or air cooling.
- the solidification process may be performed by rapid cooling such as a nitrogen gas and carbon dioxide cooling system.
- rapid cooling such as a nitrogen gas and carbon dioxide cooling system.
- rapid cooling it is indirectly cooled from the opposite surface of the contact surface 34 or 44 (the outer surface of the steel pipe 1 or the coupling 2 in the case of the box 4, the inner surface of the steel pipe 1 in the case of the pin 3).
- rapid cooling it is indirectly cooled from the opposite surface of the contact surface 34 or 44 (the outer surface of the steel pipe 1 or the coupling 2 in the case of the box 4, the inner surface of the steel pipe 1 in the case of the pin 3).
- the arithmetic mean roughness Ra and the maximum height roughness Rz referred to in this specification are measured based on JIS B 0601 (2001). Measurement is performed using a scanning probe microscope SPI3800N manufactured by SII Nano Technology. The measurement condition is a region of 2 ⁇ m ⁇ 2 ⁇ m of the sample as a unit of the number of acquired data, and the number of acquired data is 1024 ⁇ 1024. The standard length is 2.5 mm.
- the pickling treatment is a treatment for roughening the contact surface 34 or 44 by immersing at least one of the pin-side contact surface 34 and the box-side contact surface 44 in a strong acid solution such as sulfuric acid, hydrochloric acid, nitric acid or hydrofluoric acid. This can increase the surface roughness of the contact surface 34 or 44.
- the chemical conversion treatment is a treatment for forming a porous chemical conversion film having a large surface roughness.
- the chemical conversion treatment is, for example, a phosphate chemical conversion treatment, an oxalate chemical conversion treatment, and a borate chemical conversion treatment. From the viewpoint of the adhesion of the solid lubricating coating 21, the phosphate chemical conversion treatment is preferable.
- the phosphate chemical conversion treatment is, for example, a phosphate chemical conversion treatment using manganese phosphate, zinc phosphate, iron manganese phosphate or zinc calcium phosphate.
- the surface may be adjusted before the phosphate chemical conversion treatment.
- Surface conditioning is a treatment of immersing in a surface conditioning aqueous solution containing colloidal titanium. After the phosphate conversion treatment, it is preferable to wash with water or hot water and then dry.
- the chemical conversion coating is porous. Therefore, if the solid lubricating coating 21 is formed on the chemical conversion coating, the adhesion of the solid lubricating coating 21 is further enhanced by the so-called “anchor effect".
- the preferred thickness of the phosphate coating is 5-40 ⁇ m. If the thickness of the phosphate coating is 5 ⁇ m or more, sufficient corrosion resistance can be secured. When the thickness of the phosphate coating is 40 ⁇ m or less, the adhesiveness of the solid lubricating coating 21 is stably enhanced.
- the thickness of the phosphate coating is calculated by the following method.
- the threaded pipe joint with the phosphate coating is cut in the thickness direction of the phosphate coating (perpendicular to the axial direction of the thread joint for the pipe).
- the cross section of the phosphate coating is observed with an optical microscope at a magnification of 500 times to measure the thickness of the phosphate coating.
- the cutting is performed again by cutting again.
- the threaded joint for pipes is cut in a direction inclined by 60° from the direction perpendicular to the axial direction of the threaded joint for pipes.
- the cross section of the obtained phosphate coating is observed with an optical microscope at a magnification of 500 times to measure the thickness of the phosphate coating.
- the thickness measured again is the thickness of the phosphate coating.
- a Zn alloy plating layer is formed by electroplating on the surface roughness formed on at least one of the pin side contact surface 34 and the box side contact surface 44.
- the Zn alloy plating layer forming step includes, for example, a single layer plating process using Cu, Sn or Ni metal, a single layer plating process using a Cu—Sn alloy, a two layer plating process including a Cu layer and a Sn layer, and a Ni layer and Cu. It is a three-layer plating process using a layer and a Sn layer.
- a single layer plating process using Cu, Sn or Ni metal a single layer plating process using a Cu—Sn alloy
- a two layer plating process including a Cu layer and a Sn layer and a Ni layer and Cu. It is a three-layer plating process using a layer and a Sn layer.
- Cu-Sn alloy plating treatment, Cu plating-Sn plating two-layer plating treatment, and Ni plating-Cu plating-Sn plating three-layer plating Treatment is preferred.
- the plating bath when forming a Cu—Sn—Zn alloy plating layer, contains copper ions, tin ions and zinc ions.
- the composition of the plating bath is preferably Cu: 1 to 50 g/L, Sn: 1 to 50 g/L and Zn: 1 to 50 g/L.
- the electroplating conditions are, for example, a plating bath pH: 1 to 10, a plating bath temperature: 60° C., a current density: 1 to 100 A/dm 2, and a treatment time: 0.1 to 30 minutes.
- the plating bath When forming a Zn—Ni alloy plating layer, the plating bath contains zinc ions and nickel ions.
- the composition of the plating bath is preferably Zn: 1 to 100 g/L and Ni: 1 to 50 g/L.
- the electroplating conditions are, for example, a plating bath pH: 1 to 10, a plating bath temperature: 60° C., a current density: 1 to 100 A/dm 2, and a treatment time: 0.1 to 30 minutes.
- the hardness of the Zn alloy plating layer is preferably 300 or more in micro Vickers. When the hardness of the Zn alloy plating layer is 300 or more, the corrosion resistance of the threaded joint for pipes is more stably enhanced.
- the hardness of the Zn alloy plating layer is measured as follows. In the Zn alloy plating layer of the obtained threaded joint for pipes, five arbitrary regions are selected. In each selected area, the Vickers hardness (HV) is measured according to JIS Z2244 (2009). The test conditions are, for example, a test temperature of room temperature (25° C.) and a test force of 2.94 N (300 gf). The average of the obtained values (5 in total) is defined as the hardness of the Zn alloy plating layer.
- the thickness of the lowermost plating layer be less than 1 ⁇ m.
- the thickness of the plating layer is preferably 5 to 15 ⁇ m.
- Measure the thickness of the Zn alloy plating layer as follows. A probe of an overcurrent phase type film thickness meter conforming to ISO (International Organization for Standardization) 21968 (2005) is brought into contact with the contact surface 34 or 44 on which the Zn alloy plating layer is formed. The phase difference between the high frequency magnetic field on the input side of the probe and the overcurrent excited by it on the Zn—Ni alloy plating is measured. This phase difference is converted into the thickness of the Zn alloy plating layer.
- ISO International Organization for Standardization
- trivalent chromate treatment When the above-mentioned Zn alloy plating treatment is carried out, trivalent chromate treatment may be carried out after the Zn alloy plating treatment.
- the trivalent chromate treatment is a treatment for forming a chromate film of trivalent chromium.
- the coating film formed by the trivalent chromate treatment suppresses white rust on the surface of the Zn alloy plating layer. This improves the product appearance.
- the white rust of the Zn alloy plating layer is not the rust of the pipe thread joint base material. Therefore, it does not affect the seizure resistance and corrosion resistance of the thread joint for pipe.
- the solid lubricating film 21 on the trivalent chromate film By forming, the adhesiveness of the solid lubricating coating 21 is further enhanced.
- the trivalent chromate treatment can be performed by a known method. For example, at least one of the pin-side contact surface 34 and the box-side contact surface 44 is dipped in the chromate treatment liquid or the chromate treatment liquid is sprayed on at least one of the pin-side contact surface 34 and the box-side contact surface 44. Then, the contact surface is washed with water. Alternatively, the contact surface 34 or 44 is dipped in a chromate treatment liquid, and after being energized, washed with water. Alternatively, the chromate treatment liquid is applied to the contact surface 34 or 44 and dried by heating. The treatment conditions of trivalent chromate can be set appropriately. The thickness of the trivalent chromate coating can be measured by the same method as the solid lubricating coating 21.
- the above-mentioned base treatments may be carried out for only one type, but a plurality of base treatments may be combined.
- one kind of undercoating it is preferable to carry out at least one kind of undercoating selected from the group consisting of sandblasting, pickling, phosphate chemical conversion and Zn alloy plating.
- Two or more types of base treatment may be implemented.
- the phosphate chemical conversion treatment is carried out after the sandblast treatment.
- a Zn alloy plating treatment is performed after the sandblast treatment.
- the zinc alloy plating treatment is performed after the sandblast treatment, and the trivalent chromate treatment is further performed.
- the solid lubricating coating 21 is formed. Thereby, the adhesion and corrosion resistance of the solid lubricating coating 21 can be further improved.
- the present disclosure is not limited to the embodiments.
- the contact surface of the pin is called the pin surface and the contact surface of the box is called the box surface.
- % in the examples is% by mass unless otherwise specified.
- seizure resistance peerated fastening test
- high torque performance were evaluated using a real pipe (length of about 12 m).
- the repeated fastening test was performed with a fastening torque of 28450 Nm. Fastening was carried out until irreversible seizure of the threaded portion or seizure of the metal seal portion occurred. The number of times that screw tightening and screw returning could be repeated without seizure was judged to be acceptable when the number of times was 5 or more.
- screw joints VAM21 (registered trademark) for oil country tubular goods made by Nippon Steel Co., Ltd. (outer diameter: 244.48 mm (9 inches 5 minutes), wall thickness: 11.99 mm (0.472 inches)), steel grade Is carbon steel (C: 0.25%, Si: 0.22%, Mn: 0.7%, P: 0.02%, S: 0.01%, Cu: 0.04%, Ni: 0. 05%, Cr: 0.95%, Mo: 0.15%, balance: iron and impurities).
- the surface treatment (appropriate) shown in Table 1 and the solid lubricating coating or the other lubricating coating formed by the composition for forming a solid lubricating coating according to the present embodiment are formed on the pin surface and the box surface of each test number, and each test is performed. Numbered pins and boxes were prepared.
- Blasting was performed on the pin surface and the box surface of each test number with the test numbers as shown in Table 1.
- the blasting was performed by sandblasting (abrasive grain Mesh100) to form a surface roughness.
- the arithmetic mean roughness Ra and the maximum height roughness Rz of each test number were as shown in Table 1.
- the arithmetic average roughness Ra and the maximum height roughness Rz were measured based on JIS-B0601 (2001).
- a scanning probe microscope SPI3800N manufactured by SII Nano Technology was used to measure the arithmetic average roughness Ra and the maximum height roughness Rz.
- the measurement conditions were a region of 2 ⁇ m ⁇ 2 ⁇ m of the sample as a unit of the number of acquired data, and the number of acquired data was 1024 ⁇ 1024.
- a Zn-Ni alloy plating layer, a Cu-Sn-Zn alloy plating layer, and a solid lubricating coating shown in Table 1 were formed to prepare pins and boxes for each test number.
- Table 1 only the main components are described in the column of "solid lubricating coating”.
- the detailed composition of the solid lubricating coating was as follows.
- "thickness" in the column of "solid lubricating coating” describes the thickness of the obtained solid lubricating coating.
- the method for measuring the thickness of the solid lubricating coating was as described above.
- each Zn-Ni alloy plating layer, Cu-Sn-Zn alloy plating layer, and solid lubricating coating was as follows.
- the thicknesses of the alloy plating layer and other coating layers were as shown in Table 1.
- the method for measuring the thickness of each layer was as described above.
- Test number 1 In test number 1, mechanical grinding finish was performed on the pin and box surfaces.
- the composition for forming a solid lubricating coating was applied thereon.
- the composition for forming a solid lubricating coating contained an epoxy resin (the balance), PTFE particles (20%), glass frit A (0.8%), and a solvent (water, alcohol, surfactant).
- the composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
- Test number 2 mechanical grinding finish was performed on the pin and box surfaces.
- the composition for forming a solid lubricating coating was applied thereon.
- the composition for forming a solid lubricating coating contained an epoxy resin (the balance), PTFE particles (10%), glass frit B (2.0%), and a solvent (water, alcohol, surfactant).
- the composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
- Test number 3 surface roughness was formed on the pin surface by blasting.
- Zn—Ni alloy plating was performed by electroplating on the pin surface having surface roughness to form a Zn—Ni alloy plating layer.
- the Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd.
- the electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%.
- a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film.
- the trivalent chromate treatment liquid Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used.
- the trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
- Test number 4 surface roughness was formed on the pin surface by blasting.
- Zn—Ni alloy plating was performed by electroplating on the pin surface having surface roughness to form a Zn—Ni alloy plating layer.
- the Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd.
- the electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%.
- a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film.
- the trivalent chromate treatment liquid Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used.
- the trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
- the composition for forming a solid lubricating coating contained a polyamideimide resin (the balance), fluorinated graphite particles (10%), glass frit D (8.0%), and a solvent (water, alcohol, surfactant).
- the composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After drying by heating, solidification treatment was performed at 230° C. for 20 minutes to form a solid lubricating coating.
- Test number 5 In test number 5, the pin surface was subjected to mechanical grinding finish. Zn-Ni alloy plating was performed thereon by electroplating to form a Zn-Ni alloy plating layer.
- the Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd.
- the electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film.
- Zn-Ni alloy plating was performed by electroplating on the surface of the box having surface roughness to form a Zn-Ni alloy plating layer.
- the Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd.
- the electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, the composition for forming a solid lubricating coating was applied on the obtained Zn-Ni alloy plated layer.
- the composition for forming a solid lubricating coating contained a phenol resin (the balance), PTFE particles (15%), glass frit A (10.0%), and a solvent (water, alcohol, surfactant).
- the composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After drying by heating, solidification treatment was performed at 230° C. for 20 minutes to form a solid lubricating coating.
- the trivalent chromate treatment liquid Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used.
- the trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
- Cu-Sn-Zn alloy plating was carried out by electroplating on the surface of the box having a surface roughness to form a Cu-Sn-Zn alloy plating layer.
- As the Cu-Sn-Zn alloy plating bath a plating bath manufactured by Nippon Kagaku Sangyo Co., Ltd. was used.
- the Cu-Sn-Zn alloy plating layer was formed by electroplating.
- the electroplating conditions were: plating bath pH: 14, plating bath temperature: 45° C., current density: 2 A/dm 2, and treatment time: 40 minutes.
- the composition of the Cu—Sn—Zn alloy plated layer was Cu: 60%, Sn: 30%, Zn: 10%.
- the composition for forming a solid lubricating coating was applied on the obtained Cu—Sn—Zn alloy plated layer.
- the composition for forming a solid lubricating coating contained a polyamide resin (the balance), graphite particles (5%), glass frit A (8.0%), and a solvent (water, alcohol, surfactant).
- the composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After drying by heating, solidification treatment was performed at 230° C. for 20 minutes to form a solid lubricating coating.
- Test number 7 In test number 7, the pin surface was mechanically ground. Zn-Ni alloy plating was performed thereon by electroplating to form a Zn-Ni alloy plating layer.
- the Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd.
- the electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film.
- the trivalent chromate treatment liquid Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used.
- the trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
- the composition for forming a solid lubricating coating contained an epoxy resin (the balance), PTFE particles (10%), glass frit A (15.0%), and a solvent (water, alcohol, surfactant).
- the composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
- Test number 8 In test number 8, the pin surface was mechanically ground. Zn-Ni alloy plating was performed thereon by electroplating to form a Zn-Ni alloy plating layer.
- the Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd.
- the electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film.
- the trivalent chromate treatment liquid Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used.
- the trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
- the surface roughness was formed on the box surface by blasting.
- Zn-Ni alloy plating was performed by electroplating on the surface of the box having surface roughness to form a Zn-Ni alloy plating layer.
- the electroplating conditions were the same as for the pin surface.
- the composition for forming a solid lubricating coating was applied onto the Zn-Ni alloy plating layer.
- the composition for forming a solid lubricating coating contained an epoxy resin (the balance), PTFE particles (10%), and a solvent (water, alcohol, surfactant).
- the composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
- the trivalent chromate treatment liquid Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used.
- the trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
- the surface roughness was formed on the box surface by blasting.
- Zn-Ni alloy plating was performed by electroplating on the surface of the box having surface roughness to form a Zn-Ni alloy plating layer.
- the electroplating conditions were the same as for the pin surface.
- the composition for forming a solid lubricating coating was applied onto the Zn-Ni alloy plating layer.
- the composition for forming a solid lubricating coating is phenol resin (the balance), PTFE particles (15%), solvent (water, alcohol, surfactant), whisker (trade name) whisker manufactured by Maruo Calcium Co., Ltd. simulating glass fiber. It contained A (10%).
- the composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
- Ty yield torque
- the line segment L is used to define MTV.
- the difference between MTV and Ts was set as the torque on-shoulder resistance ⁇ T′ in this embodiment.
- the torque-on-shoulder resistance ⁇ T′ was obtained by using the numerical value of the torque-on-shoulder resistance ⁇ T′ when the API standard dope was used instead of the solid lubricating coating in Test No. 9 as a reference (100). It is a relative value of the shoulder resistance ⁇ T′. The results are shown in Table 3.
- the glass frit content of the solid lubricating coating was 0.01 to 10.0% by mass. Therefore, the seizure resistance was excellent as compared with Test No. 7 in which the glass frit content was 15.0% by mass.
- the pipe threaded joint of Test No. 8 had a solid lubricating coating on the box surface, but the solid lubricating coating did not contain glass frit. Therefore, excellent high torque performance could not be obtained.
- Test number 9 is a comparative example using a conventional compound grease.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Mechanical Engineering (AREA)
- Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
- Glass Compositions (AREA)
- Lubricants (AREA)
Abstract
The present invention provides a threaded joint for pipes that has excellent high torque performance and a method for manufacturing the same. This threaded joint for pipes includes a pin (3), a box (4), and a solid lubrication film (21). The pin (3) has a pin-side contacting surface (34) that includes a pin-side threaded portion (31). The box (4) has a box-side contacting surface (44) that includes a box-side threaded portion (41). The solid lubrication film (21) is disposed on the pin-side contacting surface (34) and/or the box-side contacting surface (44). The solid lubrication film (21) comprises a binder, a lubricant, and glass frit.
Description
本開示は、管用ねじ継手及び管用ねじ継手の製造方法に関する。
The present disclosure relates to a threaded joint for pipes and a method for manufacturing a threaded joint for pipes.
原油やガス油の採掘のための油井掘削に用いられる、チュービングやケーシングといった油井管は、一般に管状ねじ継手を用いて接続(締結)される。油井の深さは、従来は2000~3000mであった。しかしながら、近年の海洋油田などにおける深油井では、8000~10000mにも達する。個々の油井管の長さは典型的には十数メートルである。内部を原油などの流体が流れるチュービングの周囲を、複数のケーシングが内包する。接続される油井管の本数は千本以上といった莫大な数に達することがある。
The oil well pipes such as tubing and casing used for oil well drilling for crude oil and gas oil are generally connected (fastened) using tubular threaded joints. The depth of the oil well was conventionally 2000 to 3000 m. However, in deep oil wells such as offshore oil fields in recent years, it reaches 8,000 to 10,000 meters. The length of each oil well pipe is typically a dozen meters. A plurality of casings enclose the circumference of the tubing in which a fluid such as crude oil flows. The number of connected oil country tubular goods may reach an enormous number such as over 1,000.
油井管用のねじ継手には、使用環境下で油井管及び継手自体の質量に起因する軸方向引張力といった荷重、内外面圧力などの複合した圧力、さらには地中の熱が作用する。従って管用ねじ継手には、このような過酷な環境下においても破損することなく、気密性を保持することが要求される。
▽ Under the operating environment, a load such as an axial tensile force due to the mass of the oil well pipe and the joint itself, a combined pressure such as inner and outer surface pressure, and even underground heat act on the threaded joint for the oil well pipe. Therefore, the pipe threaded joint is required to maintain airtightness without being damaged even under such a severe environment.
油井管の締結に使用される典型的な管用ねじ継手としては、雄ねじを有するピンと呼ばれる部材と、雌ねじを有するボックスと呼ばれる部材とから構成されるピン-ボックス構造が挙げられる。ピンは、鋼管の端部の外周面に形成されたピン側ねじ部(雄ねじ部)を含む。ピンはさらに、ピン側金属シール部及びピン側ショルダー部を含んでいてもよい。ボックスは、鋼管の端部の内周面に形成されたボックス側ねじ部(雌ねじ部)を含む。ボックスはさらに、ボックス側金属シール部及びボックス側ショルダー部を含んでいてもよい。鋼管同士がねじ締めされる際、雄ねじ部及び雌ねじ部が接触する。管用ねじ継手が金属シール部及びショルダー部を含む場合には、ねじ締めの際に金属シール部同士並びにショルダー部同士が接触する。
A typical pipe threaded joint used for fastening oil country tubular goods has a pin-box structure composed of a member called a pin having a male screw and a member called a box having a female screw. The pin includes a pin side screw portion (male screw portion) formed on the outer peripheral surface of the end portion of the steel pipe. The pin may further include a pin side metal seal portion and a pin side shoulder portion. The box includes a box side screw portion (female screw portion) formed on the inner peripheral surface of the end portion of the steel pipe. The box may further include a box-side metal seal portion and a box-side shoulder portion. When the steel pipes are screwed together, the male screw portion and the female screw portion come into contact with each other. When the threaded joint for pipes includes the metal seal portion and the shoulder portion, the metal seal portions and the shoulder portions contact each other during screw tightening.
チュービングやケーシングの油井への降下作業時には、トラブルなどの種々の理由により、一度締結した管用ねじ継手を緩め、それらの継手を一旦油井から引き上げた後、再度締結して降下させることがある。ピン及びボックスのねじ部、金属シール部及びショルダー部は、鋼管のねじ締め及びねじ戻し時に強い摩擦を繰り返し受ける。これらの部位に、摩擦に対する十分な耐久性がなければ、ねじ締め及びねじ戻しを繰り返した時にゴーリング(修復不可能な焼付き)が発生する。したがって、管用ねじ継手には、摩擦に対する十分な耐久性、すなわち、優れた耐焼付き性が要求される。
During tubing or casing lowering work to an oil well, due to various reasons such as trouble, loosening the threaded joints for pipes that have been once tightened, pulling up these joints once from the oil well, and then re-fastening them may lower them. The pin, the screw part of the box, the metal seal part, and the shoulder part are repeatedly subjected to strong friction when the steel pipe is screwed and unscrewed. If these parts do not have sufficient durability against friction, galling (irreparable seizure) occurs when screw tightening and unscrewing are repeated. Therefore, the pipe threaded joint is required to have sufficient durability against friction, that is, excellent seizure resistance.
従来、管用ねじ継手の耐焼付き性及び気密性の向上を図るために、「コンパウンドグリース」と呼ばれる重金属粉を含有する粘稠な液状潤滑剤(グリス潤滑油)がねじ継手の接触表面(即ち、ねじ部、又は、管用ねじ継手が金属シール部及びショルダー部を有する場合には、ねじ部、金属シール部及びショルダー部)に塗布されてきた。コンパウンドグリースの例がAPI規格BUL 5A2に記載されている。
Conventionally, in order to improve seizure resistance and airtightness of threaded joints for pipes, a viscous liquid lubricant (grease lubricating oil) containing heavy metal powder called "compound grease" is used as a contact surface (that is, When a threaded portion or a threaded joint for pipes has a metal seal portion and a shoulder portion, it has been applied to the screw portion, the metal seal portion and the shoulder portion). An example of compound grease is described in API standard BUL 5A2.
しかしながら、コンパウンドグリースに含まれるPb等の重金属は環境に影響を与える可能性がある。このため、コンパウンドグリースを使用しない管用ねじ継手の開発が望まれている。
However, heavy metals such as Pb contained in compound grease may affect the environment. Therefore, it is desired to develop a threaded joint for pipes that does not use compound grease.
国際公開第2014/042144号(特許文献1)及び国際公開第2015/141159号(特許文献2)は、コンパウンドグリース無しでも耐焼付き性に優れる管用ねじ継手を提案する。
International Publication No. 2014/042144 (Patent Document 1) and International Publication No. 2015/141159 (Patent Document 2) propose a threaded joint for pipes which is excellent in seizure resistance even without compound grease.
特許文献1に記載されている固体潤滑被膜形成用組成物は、水と双極性非プロトン溶媒とを含む混合溶媒中に、双極性非プロトン溶媒に対して少なくとも部分的に可溶性を有する粉末状有機樹脂を含有させた組成物である。特許文献1の固体潤滑被膜形成用組成物では、粉末状有機樹脂が混合溶媒中に溶解状態又は分散状態で存在している。これにより、コンパウンドグリースを使用せずに、錆の発生を抑制し、優れた耐焼付き性を有することができる、と特許文献1には記載されている。
The composition for forming a solid lubricating coating described in Patent Document 1 is a powdery organic compound which is at least partially soluble in a dipolar aprotic solvent in a mixed solvent containing water and a dipolar aprotic solvent. It is a composition containing a resin. In the composition for forming a solid lubricating coating of Patent Document 1, the powdery organic resin exists in the mixed solvent in a dissolved state or a dispersed state. It is described in Patent Document 1 that this makes it possible to suppress the generation of rust and to have excellent seizure resistance without using compound grease.
特許文献2に記載されている管用ねじ継手は、接触表面上に固体潤滑被膜を備える。固体潤滑被膜は、結合剤と、フッ素系添加剤と、固体潤滑剤と、防錆添加剤とを含有する。特許文献2では、結合剤は、エチレン酢酸ビニル樹脂と、ポリオレフィン樹脂と、融点が110°C以下のワックスとを含有し、ポリオレフィン樹脂の質量に対するエチレン酢酸ビニル樹脂の質量の比が1.0~1.8であり、ワックスの質量に対する、ポリオレフィン樹脂及びエチレン酢酸ビニル樹脂を合わせた質量の比が0.7~1.6であることを特徴とする。これにより、極低温環境下でも、コンパウンドグリースを使用することなく、錆の発生を抑制し、優れた耐焼付き性と気密性を示し、かつ表面がべたつきにくい管用ねじ継手が得られる、と特許文献2には記載されている。
The threaded joint for pipes described in Patent Document 2 has a solid lubricating coating on the contact surface. The solid lubricating coating contains a binder, a fluorine-based additive, a solid lubricant, and an anticorrosive additive. In Patent Document 2, the binder contains an ethylene vinyl acetate resin, a polyolefin resin, and a wax having a melting point of 110° C. or less, and the ratio of the mass of the ethylene vinyl acetate resin to the mass of the polyolefin resin is 1.0 to The ratio of the mass of the polyolefin resin and the ethylene vinyl acetate resin to the mass of the wax is 0.7 to 1.6. As a result, it is possible to obtain a threaded joint for pipes that suppresses rust generation, exhibits excellent seizure resistance and airtightness, and has a surface that is not sticky easily even in an extremely low temperature environment without using compound grease. 2 is described.
ところで、管用ねじ継手をねじ締めする際、締結完了時のトルク(以下、締結トルクという)は、ねじ干渉量の大小に関わらず、十分なシール面圧が得られるように設定されている。
By the way, when tightening a threaded joint for pipes, the torque at the time of completion of fastening (hereinafter referred to as fastening torque) is set so that a sufficient sealing surface pressure can be obtained regardless of the amount of screw interference.
ねじ締めの最終段階においては、ねじ同士の面圧が高くなる。面圧が高くなった場合でも、焼付くことなく高いトルクが維持されれば、締結トルクの調整が容易になる。したがって、管用ねじ継手には、高面圧時に高いトルクを維持する性能である、高トルク性能が要求される。
▽In the final stage of screw tightening, the surface pressure between screws becomes high. Even if the surface pressure becomes high, if the high torque is maintained without seizure, the fastening torque can be easily adjusted. Therefore, the threaded joint for pipes is required to have high torque performance, which is the performance of maintaining high torque at high surface pressure.
ショルダーを有する管用ねじ継手の場合、高トルク性能は、トルクオンショルダー抵抗ΔT’として表すことができる。
In the case of a pipe threaded joint having a shoulder, high torque performance can be expressed as torque-on-shoulder resistance ΔT'.
管用ねじ継手がショルダー部を有している場合、ねじ締めの際にはピン及びボックスのショルダー部同士が接触する。このときに生じるトルクをショルダリングトルクという。管用ねじ継手をねじ締めする際には、ショルダリングトルクに到達した後、締結が完了するまでさらにねじ締めを行う。これにより、管用ねじ継手の気密性が高まる。ねじ締めを過剰に行えば、ピン及びボックスの少なくとも一方を構成する金属が塑性変形を起こし始める。このときに生じるトルクをイールドトルクという。トルクオンショルダー抵抗ΔT’とは、上記ショルダリングトルクと上記イールドトルクとの差をいう。
If the pipe threaded joint has a shoulder, the shoulders of the pin and box will contact each other when tightening the screw. The torque generated at this time is called shouldering torque. When tightening the threaded joint for pipes, after reaching the shouldering torque, further tightening is performed until the tightening is completed. Thereby, the airtightness of the threaded joint for pipes is enhanced. If the screws are tightened excessively, the metal forming at least one of the pin and the box starts to undergo plastic deformation. The torque generated at this time is called yield torque. The torque on-shoulder resistance ΔT′ means a difference between the shouldering torque and the yield torque.
管用ねじ継手がショルダー部を有している場合、トルクオンショルダー抵抗ΔT’が大きければ、締結トルクの調整が容易になる。管用ねじ継手がショルダー部を有していない場合であっても、高面圧時に高いトルクが維持されれば、締結トルクの調整は容易になる。
When the threaded joint for pipes has a shoulder portion, if the torque-on-shoulder resistance ΔT' is large, the tightening torque can be easily adjusted. Even if the pipe threaded joint does not have a shoulder portion, the fastening torque can be easily adjusted if a high torque is maintained at a high surface pressure.
上述の技術によれば、コンパウンドグリース無しでも優れた耐焼付き性を得ることができる。しかしながら、十分な高トルク性能が得られない場合があった。
According to the above technology, excellent seizure resistance can be obtained without compound grease. However, there are cases where sufficient high torque performance cannot be obtained.
本開示の目的は、優れた耐焼付き性と、優れた高トルク性能とを有する管用ねじ継手及びその製造方法を提供することである。
An object of the present disclosure is to provide a pipe threaded joint having excellent seizure resistance and excellent high torque performance, and a manufacturing method thereof.
本開示による管用ねじ継手は、ピンと、ボックスと、固体潤滑被膜とを備える。ピンは、ピン側ねじ部を含むピン側接触表面を有する。ボックスは、ボックス側ねじ部を含むボックス側接触表面を有する。固体潤滑被膜は、ピン側接触表面上又はボックス側接触表面上の少なくとも一方に配置される。固体潤滑被膜は、結合剤、潤滑剤及びガラスフリットを含有する。
The threaded joint for pipes according to the present disclosure includes a pin, a box, and a solid lubricating coating. The pin has a pin side contact surface that includes a pin side thread. The box has a box-side contact surface that includes box-side threads. The solid lubricating coating is disposed on at least one of the pin side contact surface and the box side contact surface. The solid lubricating coating contains a binder, a lubricant and a glass frit.
本開示による管用ねじ継手の製造方法は、準備工程と、固体潤滑被膜形成工程とを備える。準備工程では、ピンと、ボックスと、固体潤滑被膜形成用組成物とを準備する。ピンは、ピン側ねじ部を含むピン側接触表面を有する。ボックスは、ボックス側ねじ部を含むボックス側接触表面を有する。固体潤滑被膜形成用組成物は、結合剤、潤滑剤及びガラスフリットを含有する。固体潤滑被膜形成工程では、ピン側接触表面上又はボックス側接触表面上の少なくとも一方に、固体潤滑被膜形成用組成物を塗布した後固化させて固体潤滑被膜を形成する。
The method for manufacturing a threaded joint for pipes according to the present disclosure includes a preparation step and a solid lubricant film forming step. In the preparation step, a pin, a box, and a composition for forming a solid lubricating coating are prepared. The pin has a pin side contact surface that includes a pin side thread. The box has a box-side contact surface that includes box-side threads. The composition for forming a solid lubricating coating contains a binder, a lubricant and a glass frit. In the solid lubricating coating forming step, the solid lubricating coating forming composition is applied to at least one of the pin-side contact surface and the box-side contact surface and then solidified to form a solid lubricating coating.
本開示による管用ねじ継手は、優れた耐焼付き性と、優れた高トルク性能とを有する。本開示による管用ねじ継手の製造方法は、優れた耐焼付き性と優れた高トルク性能とを有する管用ねじ継手を製造することができる。
The pipe threaded joint according to the present disclosure has excellent seizure resistance and excellent high torque performance. The method for manufacturing a threaded joint for pipes according to the present disclosure can manufacture a threaded joint for pipes having excellent seizure resistance and excellent high torque performance.
以下、図面を参照して、本実施形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
Hereinafter, the present embodiment will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference characters and description thereof will not be repeated.
本発明者は、管用ねじ継手と、耐焼付き性及び高トルク性能との関係について、ショルダーを有する管用ねじを用いて種々検討を行った。その結果、以下の知見を得た。
The present inventor has conducted various studies on the relationship between a threaded joint for pipes, seizure resistance, and high torque performance, using a pipe screw having a shoulder. As a result, the following findings were obtained.
鋼管同士をねじ締めする際、ねじ締めを終了する最適なトルクがあらかじめ決められている。図1は、ショルダー部を有する管用ねじ継手をねじ締めした際の、鋼管の回転数とトルクとの関係を示す図である。図1はトルクチャートとも呼ばれる。図1を参照して、管用ねじ継手をねじ締めすれば、初めは、回転数に比例してトルクが上昇する。この時のトルクの上昇率は低い。さらにねじ締めをすれば、ショルダー部同士が接触する。この時のトルクを、ショルダリングトルクという。ショルダリングトルクに達した後、さらにねじ締めをすれば、再び回転数に比例してトルクが上昇する。この時のトルクの上昇率は、ショルダリングトルクに達する前よりも、高い。トルクが所定の数値(締結トルク)に達した時点で、ねじ締めは完了する。ねじ締めの際のトルクが、締結トルクに達していれば、金属シール部同士が適切な面圧で干渉し合う。この場合、管用ねじ継手の気密性が高まる。
When screwing steel pipes together, the optimum torque to finish screwing is predetermined. FIG. 1 is a diagram showing a relationship between a rotational speed and a torque of a steel pipe when a pipe threaded joint having a shoulder portion is screwed. FIG. 1 is also called a torque chart. Referring to FIG. 1, when the pipe threaded joint is screwed, initially, the torque increases in proportion to the rotation speed. At this time, the rate of increase in torque is low. If the screws are further tightened, the shoulders will come into contact with each other. The torque at this time is called shouldering torque. If the screwing is further tightened after reaching the shouldering torque, the torque rises again in proportion to the rotation speed. The rate of increase in torque at this time is higher than that before reaching the shouldering torque. When the torque reaches a predetermined value (fastening torque), screw tightening is completed. If the torque for tightening the screws reaches the tightening torque, the metal seal portions interfere with each other with an appropriate surface pressure. In this case, the airtightness of the pipe threaded joint is increased.
締結トルクに達した後さらにねじ締めを実施すれば、トルクが高くなり過ぎる。トルクが高くなり過ぎれば、ピン及びボックスの一部が塑性変形を起こす。この時のトルクをイールドトルクという。ショルダリングトルクとイールドトルクとの差であるトルクオンショルダー抵抗ΔT’が大きければ、締結トルクの範囲に余裕ができる。その結果、締結トルクの調整が容易になる。したがって、トルクオンショルダー抵抗ΔT’は大きい方が好ましい。本明細書において、優れた高トルク性能とは、管用ねじ継手がショルダー部を有する場合は、トルクオンショルダー抵抗ΔT’が大きいことを意味する。
If the screw is tightened further after reaching the tightening torque, the torque will be too high. If the torque becomes too high, some of the pin and box will plastically deform. The torque at this time is called yield torque. If the torque on-shoulder resistance ΔT′, which is the difference between the shouldering torque and the yield torque, is large, there is a margin in the fastening torque range. As a result, the tightening torque can be easily adjusted. Therefore, it is preferable that the torque on-shoulder resistance ΔT′ is large. In the present specification, excellent high torque performance means that the torque-on-shoulder resistance ΔT′ is large when the pipe threaded joint has a shoulder portion.
優れた高トルク性能を得るためには、管用ねじ継手がショルダー部を有する場合、ショルダリングトルクを低下させる、若しくは、イールドトルクを高めることが有効である。本発明者は、イールドトルクを高める方法について着目した。本発明者は、固体潤滑被膜中に硬質粒子を含有させれば、高面圧時にイールドトルクが高まり、その結果、高トルク性能が高まると考えた。
In order to obtain excellent high torque performance, it is effective to reduce the shouldering torque or increase the yield torque when the pipe threaded joint has a shoulder portion. The present inventor has focused on a method of increasing the yield torque. The present inventor considered that the inclusion of hard particles in the solid lubricating coating would increase the yield torque at high surface pressure, and as a result, enhance the high torque performance.
しかしながら、本発明者が調査した結果、単純に硬質粒子を固体潤滑被膜に含有させても、優れた高トルク性能は得られなかった。たとえばポリテトラフルオロエチレン(PTFE)は硬質粒子である。しかしながら、後述の実施例でも示すとおり、PTFEでは優れた高トルク性能は得られなかった。
However, as a result of the investigation by the present inventors, excellent high torque performance could not be obtained even if the solid particles were simply contained in the solid lubricating coating. For example, polytetrafluoroethylene (PTFE) is a hard particle. However, as shown in the examples below, PTFE did not provide excellent high torque performance.
本発明者は種々検討を行い、固体潤滑被膜中にガラスフリットを含有させることにより優れた高トルク性能が得られることを見出した。
The inventor conducted various studies and found that excellent high torque performance can be obtained by including glass frit in the solid lubricating coating.
図2は、固体潤滑被膜中のガラスフリット含有量とトルクオンショルダー抵抗ΔT’との関係を示す図である。図2は後述の実施例により得られた。なお、トルクオンショルダー抵抗ΔT’は、後述の実施例中の試験番号9において、固体潤滑被膜の代わりにAPI規格ドープを使用した際のトルクオンショルダー抵抗ΔT’の数値を基準(100)として求めた、本実施例のトルクオンショルダー抵抗ΔT’の相対値である。図2中の白丸印(○)は、固体潤滑被膜を形成した実施例のトルクオンショルダー抵抗ΔT’を示す。図2中の三角印(△)は、固体潤滑被膜の代わりにAPI規格ドープを使用した際のトルクオンショルダー抵抗ΔT’を示す。
FIG. 2 is a diagram showing the relationship between the glass frit content in the solid lubricating coating and the torque on shoulder resistance ΔT′. FIG. 2 was obtained by the example described below. The torque-on-shoulder resistance ΔT′ was obtained by using the numerical value of the torque-on-shoulder resistance ΔT′ when API standard dope was used instead of the solid lubricating coating in Test No. 9 in Examples described later as a reference (100). Further, it is a relative value of the torque on-shoulder resistance ΔT′ in the present embodiment. The white circles (◯) in FIG. 2 indicate the torque-on-shoulder resistance ΔT′ of the example in which the solid lubricating coating is formed. The triangle mark (Δ) in FIG. 2 indicates the torque on-shoulder resistance ΔT′ when the API standard dope is used instead of the solid lubricating coating.
図2より、固体潤滑被膜がガラスフリットを含有すれば、トルクオンショルダー抵抗ΔT’が100を超える。つまり、固体潤滑被膜がガラスフリットを含有すれば、優れた高トルク性能が得られる。
From Fig. 2, if the solid lubricating coating contains glass frit, the torque on shoulder resistance ΔT' exceeds 100. That is, if the solid lubricating coating contains glass frit, excellent high torque performance can be obtained.
固体潤滑被膜がガラスフリットを含有すれば、優れた高トルク性能が得られる理由は定かではない。しかしながら、次のとおりと推測される。ねじ締めの最終段階においては、接触表面同士の面圧が高くなる(高面圧)。ガラスフリットは、高面圧時に接触表面上や、固体潤滑被膜及び管用ねじ継手が摩耗して生じた粉の中に存在する。ガラスフリットは、接触表面同士の摩擦係数を高める。これにより、高面圧時に高いトルクが維持され、優れた高トルク性能が得られる。ガラスフリットは高面圧時の摩擦係数を高めることにより、優れた高トルク性能を示す。したがって、ショルダーが無い管用ねじ継手を用いた場合であっても、ガラスフリットは、ねじ締めの最終段階において優れた高トルク性能を発揮する。
If the solid lubricating coating contains glass frit, it is not clear why excellent high torque performance can be obtained. However, it is presumed that: At the final stage of screw tightening, the contact pressure between the contact surfaces becomes high (high contact pressure). The glass frit is present on the contact surface at the time of high surface pressure and in the powder generated by the wear of the solid lubricating coating and the threaded joint for pipes. Glass frits increase the coefficient of friction between contacting surfaces. As a result, high torque is maintained at high surface pressure, and excellent high torque performance is obtained. The glass frit exhibits excellent high torque performance by increasing the friction coefficient at high surface pressure. Therefore, even when the pipe threaded joint having no shoulder is used, the glass frit exhibits excellent high torque performance in the final stage of screw tightening.
本発明者はさらに、固体潤滑被膜中のガラスフリットの含有量を調整すれば、優れた高トルク性能だけでなく、優れた耐焼付き性も得られることを見出した。
The present inventor has further found that not only excellent high torque performance but also excellent seizure resistance can be obtained by adjusting the content of the glass frit in the solid lubricating coating.
図3は、固体潤滑被膜中のガラスフリット含有量と耐焼付き性との関係を示す図である。図3は後述の実施例により得られた。図3において、縦軸は、焼きつかずに締結できた回数(回)を示す。
FIG. 3 is a diagram showing the relationship between the glass frit content in the solid lubricating coating and seizure resistance. FIG. 3 was obtained by the example described below. In FIG. 3, the vertical axis represents the number of times (times) the fastening could be performed without burning.
図3より、ガラスフリット含有量が10.0質量%以下であれば、焼きつかずに締結できた回数が8回以上になる。つまり、ガラスフリット含有量が10.0質量%以下であれば、優れた高トルク性能に加えて、優れた耐焼付き性が得られる。
From Fig. 3, if the glass frit content is 10.0 mass% or less, the number of times that it can be fastened without burning is 8 or more. That is, when the glass frit content is 10.0 mass% or less, excellent seizure resistance is obtained in addition to excellent high torque performance.
以上の知見に基づいて完成した本実施形態による管用ねじ継手は、ピンと、ボックスと、固体潤滑被膜とを備える。ピンは、ピン側ねじ部を含むピン側接触表面を有する。ボックスは、ボックス側ねじ部を含むボックス側接触表面を有する。固体潤滑被膜は、ピン側接触表面上又はボックス側接触表面上の少なくとも一方に配置される。固体潤滑被膜は、結合剤、潤滑剤及びガラスフリットを含有する。
The threaded joint for pipes according to the present embodiment completed based on the above findings includes pins, a box, and a solid lubricating coating. The pin has a pin side contact surface that includes a pin side thread. The box has a box-side contact surface that includes box-side threads. The solid lubricating coating is disposed on at least one of the pin side contact surface and the box side contact surface. The solid lubricating coating contains a binder, a lubricant and a glass frit.
本実施形態による管用ねじ継手の固体潤滑被膜は、ガラスフリットを含有する。その結果、本実施形態による管用ねじ継手は、優れた高トルク性能を有する。
The solid lubricating coating of the threaded joint for pipes according to the present embodiment contains glass frit. As a result, the pipe threaded joint according to the present embodiment has excellent high torque performance.
好ましくは、上述の固体潤滑被膜は、0.01~10.0質量%のガラスフリットを含有する。
Preferably, the above-mentioned solid lubricating coating contains 0.01 to 10.0% by mass of glass frit.
この場合、管用ねじ継手は、優れた高トルク性能に加え、優れた耐焼付き性も有する。
In this case, the pipe threaded joint has excellent seizure resistance in addition to excellent high torque performance.
上記ガラスフリットは、質量%で、SiO2:40~70%、Al2O3:1~20%、CaO:0.1~25%、B2O3:0~40%、MgO:0~3%、Na2O:0~15%、K2O:0~10%、及びZnO:0~10%を含有してもよい。
The above glass frit is, in mass %, SiO 2 : 40 to 70%, Al 2 O 3 : 1 to 20%, CaO: 0.1 to 25%, B 2 O 3 :0 to 40%, MgO: 0 to 3%, Na 2 O: 0 to 15%, K 2 O: 0 to 10%, and ZnO: 0 to 10% may be contained.
好ましくは、上記結合剤は、エポキシ樹脂、フェノール樹脂、フラン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂、ウレタン樹脂及びポリエーテルエーテルケトン樹脂からなる群から選ばれる1種又は2種以上である。
Preferably, the binder is one or more selected from the group consisting of epoxy resin, phenol resin, furan resin, polyamideimide resin, polyamide resin, polyimide resin, urethane resin and polyetheretherketone resin.
好ましくは、上記潤滑剤は、二硫化モリブデン、黒鉛、ポリテトラフルオロエチレン及びフッ化黒鉛からなる群から選ばれる1種又は2種以上である。
Preferably, the lubricant is one or more selected from the group consisting of molybdenum disulfide, graphite, polytetrafluoroethylene and fluorinated graphite.
好ましくは、上記ピンはさらに、ピン側金属シール及びピン側ショルダー部を含み、上記ボックスはさらに、ボックス側金属シール部及びボックス側ショルダー部を含む。
Preferably, the pin further includes a pin side metal seal and a pin side shoulder portion, and the box further includes a box side metal seal portion and a box side shoulder portion.
本実施形態による管用ねじ継手の製造方法は、準備工程と、固体潤滑被膜形成工程とを備える。準備工程では、ピンと、ボックスと、固体潤滑被膜形成用組成物とを準備する。ピンは、ピン側ねじ部を含むピン側接触表面を有する。ボックスは、ボックス側ねじ部を含むボックス側接触表面を有する。固体潤滑被膜形成用組成物は、結合剤、潤滑剤及びガラスフリットを含有する。固体潤滑被膜形成工程では、ピン側接触表面上又はボックス側接触表面上の少なくとも一方に、固体潤滑被膜形成用組成物を塗布した後固化させて固体潤滑被膜を形成する。
The method for manufacturing a threaded joint for pipes according to the present embodiment includes a preparation step and a solid lubricant film forming step. In the preparation step, a pin, a box, and a composition for forming a solid lubricating coating are prepared. The pin has a pin side contact surface that includes a pin side thread. The box has a box-side contact surface that includes box-side threads. The composition for forming a solid lubricating coating contains a binder, a lubricant and a glass frit. In the solid lubricating coating forming step, the solid lubricating coating forming composition is applied to at least one of the pin-side contact surface and the box-side contact surface and then solidified to form a solid lubricating coating.
上述の製造方法では、ガラスフリットを含有する固体潤滑被膜形成用組成物を用いて、固体潤滑被膜を製造する。そのため、優れた高トルク性能を有する管用ねじ継手が得られる。
In the above-mentioned manufacturing method, a solid lubricating coating is manufactured using a composition for forming a solid lubricating coating containing glass frit. Therefore, a pipe threaded joint having excellent high torque performance can be obtained.
上述の製造方法はさらに、固体潤滑被膜を形成する工程の前に、ピン側接触表面上及びボックス側接触表面上の少なくとも一方に、電気めっきによりZn合金めっき層を形成する工程を備えてもよい。
The above-described manufacturing method may further include a step of forming a Zn alloy plating layer by electroplating on at least one of the pin-side contact surface and the box-side contact surface before the step of forming the solid lubricating coating. ..
この場合、管用ねじ継手の耐焼付き性及び耐食性がさらに高まる。
In this case, seizure resistance and corrosion resistance of the threaded joint for pipes are further enhanced.
上述の製造方法はさらに、電気めっきによりZn合金めっき層を形成する工程の前に、ピン側接触表面及びボックス側接触表面の少なくとも一方を粗くする工程を備えてもよい。
The above-described manufacturing method may further include a step of roughening at least one of the pin side contact surface and the box side contact surface before the step of forming the Zn alloy plating layer by electroplating.
この場合、固体潤滑被膜の密着性がさらに高まる。
In this case, the adhesion of the solid lubricating coating is further increased.
好ましくは、上述の製造方法では、上記ピンはさらに、ピン側金属シール及びピン側ショルダー部を含み、上記ボックスはさらに、ボックス側金属シール部及びボックス側ショルダー部を含む。
Preferably, in the above manufacturing method, the pin further includes a pin side metal seal and a pin side shoulder portion, and the box further includes a box side metal seal portion and a box side shoulder portion.
以下、本実施形態による管用ねじ継手及びその製造方法について詳述する。
Hereinafter, the pipe threaded joint according to the present embodiment and the method for manufacturing the same will be described in detail.
[管用ねじ継手]
管用ねじ継手は、ピン及びボックスを備える。図4は、本実施形態によるカップリング型の管用ねじ継手の構成を示す図である。図4を参照して、カップリング型の管用ねじ継手の場合、管用ねじ継手は、鋼管1とカップリング2とを備える。鋼管1の両端には、外面に雄ねじ部を有するピン3が形成される。カップリング2の両端には、内面に雌ねじ部を有するボックス4が形成される。ピン3とボックス4とをねじ締めすることによって、鋼管1の端に、カップリング2が取り付けられる。なお、図示されていないが、相手部材が装着されていない鋼管1のピン3及びカップリング2のボックス4には、それぞれのねじ部を保護するため、プロテクターが装着される場合がある。 [Pipe threaded joint]
The pipe threaded joint includes a pin and a box. FIG. 4 is a diagram showing the configuration of the coupling type threaded joint for pipes according to the present embodiment. Referring to FIG. 4, in the case of a coupling type threaded joint for pipes, the threaded joint for pipes includes asteel pipe 1 and a coupling 2. At both ends of the steel pipe 1, pins 3 having male threads on the outer surface are formed. At both ends of the coupling 2, a box 4 having an internal thread portion on the inner surface is formed. The coupling 2 is attached to the end of the steel pipe 1 by screwing the pin 3 and the box 4 together. Although not shown, a protector may be attached to the pin 3 of the steel pipe 1 and the box 4 of the coupling 2 to which the mating members are not attached, in order to protect the respective screw portions.
管用ねじ継手は、ピン及びボックスを備える。図4は、本実施形態によるカップリング型の管用ねじ継手の構成を示す図である。図4を参照して、カップリング型の管用ねじ継手の場合、管用ねじ継手は、鋼管1とカップリング2とを備える。鋼管1の両端には、外面に雄ねじ部を有するピン3が形成される。カップリング2の両端には、内面に雌ねじ部を有するボックス4が形成される。ピン3とボックス4とをねじ締めすることによって、鋼管1の端に、カップリング2が取り付けられる。なお、図示されていないが、相手部材が装着されていない鋼管1のピン3及びカップリング2のボックス4には、それぞれのねじ部を保護するため、プロテクターが装着される場合がある。 [Pipe threaded joint]
The pipe threaded joint includes a pin and a box. FIG. 4 is a diagram showing the configuration of the coupling type threaded joint for pipes according to the present embodiment. Referring to FIG. 4, in the case of a coupling type threaded joint for pipes, the threaded joint for pipes includes a
一方、カップリング2を使用せず、鋼管1の一方の端をピン3とし、他方の端をボックス4とした、インテグラル型の油井管用ねじ継手を用いてもよい。図5は、本実施形態によるインテグラル型の管用ねじ継手の構成を示す図である。図5を参照して、インテグラル型の管用ねじ継手の場合、管用ねじ継手は、鋼管1を備える。鋼管1の一方の端には、外面に雄ねじ部を有するピン3が形成される。鋼管1の他方の端には、内面に雌ねじ部を有するボックス4が形成される。ピン3とボックス4とをねじ締めすることによって、鋼管1同士を連結できる。本実施形態の管用ねじ継手は、カップリング型及びインテグラル型の両方の管用ねじ継手に使用できる。
On the other hand, without using the coupling 2, an integral type oil well pipe threaded joint in which one end of the steel pipe 1 is the pin 3 and the other end is the box 4 may be used. FIG. 5: is a figure which shows the structure of the integral type threaded joint for pipes by this embodiment. With reference to FIG. 5, in the case of an integral type threaded joint for pipes, the threaded joint for pipes includes a steel pipe 1. A pin 3 having a male screw portion on the outer surface is formed at one end of the steel pipe 1. At the other end of the steel pipe 1, a box 4 having an internal thread portion on its inner surface is formed. The steel pipes 1 can be connected to each other by screwing the pin 3 and the box 4 together. The pipe threaded joint of the present embodiment can be used for both coupling type and integral type pipe threaded joints.
図6は、管用ねじ継手の断面図である。図6では、ピン3は、ピン側ねじ部31、ピン側金属シール部32及びピン側ショルダー部33を備える。図6では、ボックス4は、ボックス側ねじ部41、ボックス側金属シール部42及びボックス側ショルダー部43を備える。ピン3とボックス4とをねじ締めした時に接触する部分を、接触表面34及び44という。具体的には、ピン3とボックス4とをねじ締めすると、ねじ部同士(ピン側ねじ部31及びボックス側ねじ部41)、金属シール部同士(ピン側金属シール部32及びボックス側金属シール部42)、及び、ショルダー部同士(ピン側ショルダー部33及びボックス側ショルダー部43)が互いに接触する。図6では、ピン側接触表面34は、ピン側ねじ部31、ピン側金属シール部32及びピン側ショルダー部33を含む。図6では、ボックス側接触表面44は、ボックス側ねじ部41、ボックス側金属シール部42及びボックス側ショルダー部43を含む。
FIG. 6 is a sectional view of a pipe threaded joint. In FIG. 6, the pin 3 includes a pin side screw portion 31, a pin side metal seal portion 32, and a pin side shoulder portion 33. In FIG. 6, the box 4 includes a box-side screw portion 41, a box-side metal seal portion 42, and a box-side shoulder portion 43. The portions that come into contact when the pin 3 and the box 4 are screwed are referred to as contact surfaces 34 and 44. Specifically, when the pin 3 and the box 4 are screwed together, the screw parts (pin side screw part 31 and box side screw part 41), metal seal parts (pin side metal seal part 32 and box side metal seal part). 42) and the shoulder portions (the pin side shoulder portion 33 and the box side shoulder portion 43) contact each other. In FIG. 6, the pin-side contact surface 34 includes a pin-side screw portion 31, a pin-side metal seal portion 32, and a pin-side shoulder portion 33. In FIG. 6, the box-side contact surface 44 includes a box-side screw portion 41, a box-side metal seal portion 42, and a box-side shoulder portion 43.
図6では、ピン3においては、鋼管1の端から、ピン側ショルダー部33、ピン側金属シール部32及びピン側ねじ部31の順で配置される。また、ボックス4においては、鋼管1又はカップリング2の端から、ボックス側ねじ部41、ボックス側金属シール部42及びボックス側ショルダー部43の順で配置される。しかしながら、ピン側ねじ部31及びボックス側ねじ部41、ピン側金属シール部32及びボックス側金属シール部42、及び、ピン側ショルダー部33及びボックス側ショルダー部43の配置は図6の配置に限定されず、適宜変更できる。たとえば、図5において示す様に、ピン3においては、鋼管1の端から、ピン側ねじ部31、ピン側金属シール部32、ピン側ショルダー部33、ピン側金属シール部32及びピン側ねじ部31の順で配置されてもよい。ボックス4においては、鋼管1又はカップリング2の端から、ボックス側ねじ部41、ボックス側金属シール部42、ボックス側ショルダー部43、ボックス側金属シール部42及びボックス側ねじ部41の順に配置されてもよい。
In FIG. 6, in the pin 3, the pin side shoulder portion 33, the pin side metal seal portion 32, and the pin side screw portion 31 are arranged in this order from the end of the steel pipe 1. Further, in the box 4, the box-side screw portion 41, the box-side metal seal portion 42, and the box-side shoulder portion 43 are arranged in this order from the end of the steel pipe 1 or the coupling 2. However, the arrangement of the pin-side screw portion 31 and the box-side screw portion 41, the pin-side metal seal portion 32 and the box-side metal seal portion 42, and the pin-side shoulder portion 33 and the box-side shoulder portion 43 is limited to the arrangement of FIG. 6. Instead, it can be changed as appropriate. For example, as shown in FIG. 5, in the pin 3, from the end of the steel pipe 1, the pin side screw part 31, the pin side metal seal part 32, the pin side shoulder part 33, the pin side metal seal part 32 and the pin side screw part. They may be arranged in the order of 31. In the box 4, the box-side screw portion 41, the box-side metal seal portion 42, the box-side shoulder portion 43, the box-side metal seal portion 42, and the box-side screw portion 41 are arranged in this order from the end of the steel pipe 1 or the coupling 2. May be.
図5及び図6では、金属シール部(ピン側金属シール部32及びボックス側金属シール部42)及びショルダー部(ピン側ショルダー部33及びボックス側ショルダー部43)を備える、いわゆるプレミアムジョイントを図示した。しかしながら、金属シール部(ピン側金属シール部32及びボックス側金属シール部42)及びショルダー部(ピン側ショルダー部33及びボックス側ショルダー部43)は無くてもよい。本実施形態の固体潤滑被膜は、金属シール部及びショルダー部が無い管用ねじ継手にも好適に適用可能である。金属シール部及びショルダー部無しの場合、ピン側接触表面34は、ピン側ねじ部31を含む。金属シール部及びショルダー部無しの場合、ボックス側接触表面44は、ボックス側ねじ部41を含む。
5 and 6, a so-called premium joint including a metal seal portion (pin side metal seal portion 32 and box side metal seal portion 42) and a shoulder portion (pin side shoulder portion 33 and box side shoulder portion 43) is shown. .. However, the metal seal portion (pin side metal seal portion 32 and box side metal seal portion 42) and shoulder portion (pin side shoulder portion 33 and box side shoulder portion 43) may be omitted. The solid lubricating coating of the present embodiment can be suitably applied to a pipe threaded joint having no metal seal portion and shoulder portion. Without the metal seal and shoulder, the pin-side contact surface 34 includes the pin-side threaded portion 31. Without the metal seal and shoulder, the box-side contact surface 44 includes the box-side threaded portion 41.
[固体潤滑被膜]
管用ねじ継手は、ピン側接触表面34上及びボックス側接触表面44上の少なくとも一方に、固体潤滑被膜を備える。図7は、本実施形態による管用ねじ継手の断面図である。固体潤滑被膜21は、後述の製造方法のとおり、固体潤滑被膜形成用組成物を、ピン側接触表面34上及びボックス側接触表面44上の少なくとも一方に塗布した後固化することで形成される。 [Solid lubrication film]
The pipe threaded joint comprises a solid lubricating coating on at least one of the pinside contact surface 34 and the box side contact surface 44. FIG. 7 is a cross-sectional view of the pipe threaded joint according to the present embodiment. The solid lubricating coating 21 is formed by applying a composition for forming a solid lubricating coating to at least one of the pin-side contact surface 34 and the box-side contact surface 44 and then solidifying the composition, as in the production method described later.
管用ねじ継手は、ピン側接触表面34上及びボックス側接触表面44上の少なくとも一方に、固体潤滑被膜を備える。図7は、本実施形態による管用ねじ継手の断面図である。固体潤滑被膜21は、後述の製造方法のとおり、固体潤滑被膜形成用組成物を、ピン側接触表面34上及びボックス側接触表面44上の少なくとも一方に塗布した後固化することで形成される。 [Solid lubrication film]
The pipe threaded joint comprises a solid lubricating coating on at least one of the pin
固体潤滑被膜21は、結合剤、潤滑剤及びガラスフリットを含有する。したがって、固体潤滑被膜21を形成するための組成物も、結合剤、潤滑剤及びガラスフリットを含有する。組成物は、無溶媒型の組成物であっても、溶媒に溶解させた溶媒型の組成物であってもよい。溶媒型の組成物の場合、各成分の質量%とは、組成物に含まれる溶媒以外の全成分を合計した質量を100%とした場合の質量%をいう。つまり、組成物中の各成分の含有量と、固体潤滑被膜21中の各成分の含有量とは、同じである。以下、固体潤滑被膜21を形成するための組成物を単に「組成物」とも称する。
The solid lubricating coating 21 contains a binder, a lubricant and a glass frit. Therefore, the composition for forming the solid lubricating coating 21 also contains the binder, the lubricant and the glass frit. The composition may be a solvent-free composition or a solvent-type composition dissolved in a solvent. In the case of a solvent type composition, the mass% of each component means the mass% when the total mass of all components other than the solvent contained in the composition is 100%. That is, the content of each component in the composition and the content of each component in the solid lubricating coating 21 are the same. Hereinafter, the composition for forming the solid lubricating coating 21 is also simply referred to as “composition”.
以下、各成分について詳述する。
Details of each component are given below.
[結合剤]
結合剤は、潤滑剤及びガラスフリットの管用ねじ継手の接触表面上への付着性を高める。結合剤は、有機樹脂及び無機高分子からなる群から選択される1種又は2種である。 [Binder]
The binder enhances the adhesion of the lubricant and the glass frit on the contact surface of the threaded joint for pipes. The binder is one or two selected from the group consisting of organic resins and inorganic polymers.
結合剤は、潤滑剤及びガラスフリットの管用ねじ継手の接触表面上への付着性を高める。結合剤は、有機樹脂及び無機高分子からなる群から選択される1種又は2種である。 [Binder]
The binder enhances the adhesion of the lubricant and the glass frit on the contact surface of the threaded joint for pipes. The binder is one or two selected from the group consisting of organic resins and inorganic polymers.
有機樹脂は、公知のものを選択できる。有機樹脂はたとえば、熱硬化性樹脂及び熱可塑性樹脂からなる群から選択される1種又は2種である。熱硬化性樹脂はたとえば、エポキシ樹脂、フェノール樹脂、フラン樹脂、ポリイミド樹脂、メラミン樹脂、ユリア樹脂、シリコン樹脂、ポリウレタン樹脂(熱硬化性)、不飽和ポリエステル樹脂、カゼイン樹脂、アルキド樹脂、ジアリルフタレート樹脂及びポリアミノビスマレイミド樹脂からなる群から選択される1種又は2種以上である。熱可塑性樹脂はたとえば、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエーテルエーテルケトン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂、ポリフェニレンオキシド樹脂、ポリウレタン樹脂(熱可塑性)、アイオノマー樹脂、アクリロニトリル・ブタジエン・スチレン樹脂、アクリロニトリル・スチレン樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリブチレンテレフタレート樹脂、ポリフッ化ビニリデン樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリアリレート樹脂及びポリエーテルイミド樹脂からなる群から選択される1種又は2種以上である。
Known organic resins can be selected. The organic resin is, for example, one or two selected from the group consisting of thermosetting resins and thermoplastic resins. The thermosetting resin is, for example, epoxy resin, phenol resin, furan resin, polyimide resin, melamine resin, urea resin, silicone resin, polyurethane resin (thermosetting), unsaturated polyester resin, casein resin, alkyd resin, diallyl phthalate resin. And one or more selected from the group consisting of polyamino bismaleimide resin. The thermoplastic resin is, for example, polyamideimide resin, polyamide resin, polyetheretherketone resin, polyvinyl chloride resin, polyvinyl acetate resin, polyethylene resin, polypropylene resin, polystyrene resin, polymethyl methacrylate resin, polyphenylene oxide resin, polyurethane resin. (Thermoplastic), ionomer resin, acrylonitrile/butadiene/styrene resin, acrylonitrile/styrene resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyvinylidene chloride resin, polyethylene terephthalate resin, polyacetal resin, polycarbonate resin, polyphenylene ether resin, polybutylene terephthalate One or more selected from the group consisting of resin, polyvinylidene fluoride resin, polysulfone resin, polyethersulfone resin, polyphenylene sulfide resin, polyarylate resin and polyetherimide resin.
無機高分子は、ポリメタロキサンである。ポリメタロキサンとは、金属(M)及び酸素(O)の結合であるM-O結合を主鎖骨格とする高分子化合物である。ポリメタロキサンのM-O結合におけるM(金属)は、Si、Al、Ti、V、Cr、Mn、Fe、Ba、Co、Ni、Cu、Zn、Ga、Ge、Zr、Ce、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Sb、Hf、Ta、W、Re、Os、Ir、Pt、Au及びBiからなる群から選択される1種又は2種以上である。ポリメタロキサンとはたとえば、ポリチタノキサン(Ti-O)、ポリシロキサン(Si-O)、ポリアルミノキサン(Al-O)、ポリジルコノキサン(Zr-O)及びポリタンタロキサン(Ta-O)からなる群から選択される1種又は2種以上である。好ましくは、ポリメタロキサンは、ポリチタノキサン(Ti-O)及びポリシロキサン(Si-O)からなる群から選択される1種又は2種である。
The inorganic polymer is polymetalloxane. Polymetalloxane is a polymer compound having a main chain skeleton that is an MO bond that is a bond between a metal (M) and oxygen (O). M (metal) in the MO bond of polymetalloxane is Si, Al, Ti, V, Cr, Mn, Fe, Ba, Co, Ni, Cu, Zn, Ga, Ge, Zr, Ce, Nb, Mo. , Ru, Rh, Pd, Ag, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi. The polymetalloxane includes, for example, polytitanoxane (Ti-O), polysiloxane (Si-O), polyaluminoxane (Al-O), polyzirconoxane (Zr-O), and polytantaloxane (Ta-O). It is one kind or two or more kinds selected from the group. Preferably, the polymetalloxane is one or two selected from the group consisting of polytitanoxane (Ti-O) and polysiloxane (Si-O).
好ましくは、結合剤は、エポキシ樹脂、フェノール樹脂、フラン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂、ウレタン樹脂及びポリエーテルエーテルケトン樹脂からなる群から選ばれる1種又は2種以上である。これらの有機樹脂は、適切な硬度を有する。そのため、固体潤滑被膜21の耐摩耗性、耐焼付き性、及び高トルク性能がさらに高まる。
Preferably, the binder is one or more selected from the group consisting of epoxy resin, phenol resin, furan resin, polyamideimide resin, polyamide resin, polyimide resin, urethane resin and polyetheretherketone resin. These organic resins have appropriate hardness. Therefore, the wear resistance, seizure resistance, and high torque performance of the solid lubricating coating 21 are further enhanced.
さらに好ましくは、結合剤は、エポキシ樹脂、フェノール樹脂、フラン樹脂、ポリアミドイミド樹脂及びポリアミド樹脂からなる群から選択される1種又は2種以上である。
More preferably, the binder is one or more selected from the group consisting of epoxy resin, phenol resin, furan resin, polyamide-imide resin and polyamide resin.
特に好ましくは、結合剤は、エポキシ樹脂、ポリアミドイミド樹脂及びポリアミド樹脂からなる群から選択される1種又は2種以上である。
Particularly preferably, the binder is one or more selected from the group consisting of epoxy resin, polyamide-imide resin and polyamide resin.
固体潤滑被膜21中の結合剤の含有量は、50~90質量%であることが好ましい。結合剤の含有量が60質量%以上であれば、固体潤滑被膜21の管用ねじ継手の接触表面34又は44への密着性がさらに高まる。したがって、固体潤滑被膜21中の結合剤の含有量の下限は、より好ましくは60質量%である。
The content of the binder in the solid lubricating coating 21 is preferably 50 to 90% by mass. When the content of the binder is 60% by mass or more, the adhesion of the solid lubricating coating 21 to the contact surface 34 or 44 of the pipe threaded joint is further enhanced. Therefore, the lower limit of the content of the binder in the solid lubricating coating 21 is more preferably 60% by mass.
[潤滑剤]
固体潤滑被膜21は、固体潤滑被膜21の潤滑性をさらに高めるために、潤滑剤を含有する。潤滑剤とは、潤滑性を有する物質の総称である。潤滑剤は、公知のものを使用できる。 [lubricant]
Thesolid lubricating coating 21 contains a lubricant in order to further enhance the lubricity of the solid lubricating coating 21. Lubricant is a general term for substances having lubricity. A known lubricant can be used.
固体潤滑被膜21は、固体潤滑被膜21の潤滑性をさらに高めるために、潤滑剤を含有する。潤滑剤とは、潤滑性を有する物質の総称である。潤滑剤は、公知のものを使用できる。 [lubricant]
The
潤滑剤はたとえば、以下の5種類に大別される。すなわち、潤滑剤は、以下の(1)~(5)からなる群から選ばれる1種又は2種以上を含有する。
(1)滑り易い特定の結晶構造、たとえば、六方晶層状結晶構造を有することにより潤滑性を示すもの(たとえば、黒鉛、土状黒鉛、酸化亜鉛、窒化硼素及びタルク)、
(2)結晶構造に加えて反応性元素を有することにより潤滑性を示すもの(たとえば、二硫化モリブデン、二硫化タングステン、フッ化黒鉛、硫化スズ、硫化ビスマス及び有機モリブデン)、
(3)化学反応性により潤滑性を示すもの(たとえば、チオ硫酸塩化合物)、
(4)摩擦応力下での塑性又は粘塑性挙動により潤滑性を示すもの(たとえば、ポリテトラフルオロエチレン(PTFE)、銅(Cu)、メラミンシアヌレート(MCA))、及び
(5)液状又はグリース状であり、接触面の境界に存在して面と面との直接接触を防ぐことにより潤滑性を示すもの(たとえば、パーフルオロポリエーテル(PFPE))。 Lubricants are roughly classified into the following five types. That is, the lubricant contains one kind or two or more kinds selected from the group consisting of the following (1) to (5).
(1) A material exhibiting lubricity by having a specific crystal structure that is slippery, for example, a hexagonal layered crystal structure (for example, graphite, earth graphite, zinc oxide, boron nitride and talc),
(2) Those that exhibit a lubricity by having a reactive element in addition to the crystal structure (for example, molybdenum disulfide, tungsten disulfide, graphite fluoride, tin sulfide, bismuth sulfide and organic molybdenum),
(3) Those exhibiting lubricity due to chemical reactivity (for example, thiosulfate compounds),
(4) Those exhibiting lubricity by plastic or viscoplastic behavior under frictional stress (for example, polytetrafluoroethylene (PTFE), copper (Cu), melamine cyanurate (MCA)), and (5) liquid or grease And has lubricity by being present at the boundary of the contact surfaces and preventing direct contact between the surfaces (for example, perfluoropolyether (PFPE)).
(1)滑り易い特定の結晶構造、たとえば、六方晶層状結晶構造を有することにより潤滑性を示すもの(たとえば、黒鉛、土状黒鉛、酸化亜鉛、窒化硼素及びタルク)、
(2)結晶構造に加えて反応性元素を有することにより潤滑性を示すもの(たとえば、二硫化モリブデン、二硫化タングステン、フッ化黒鉛、硫化スズ、硫化ビスマス及び有機モリブデン)、
(3)化学反応性により潤滑性を示すもの(たとえば、チオ硫酸塩化合物)、
(4)摩擦応力下での塑性又は粘塑性挙動により潤滑性を示すもの(たとえば、ポリテトラフルオロエチレン(PTFE)、銅(Cu)、メラミンシアヌレート(MCA))、及び
(5)液状又はグリース状であり、接触面の境界に存在して面と面との直接接触を防ぐことにより潤滑性を示すもの(たとえば、パーフルオロポリエーテル(PFPE))。 Lubricants are roughly classified into the following five types. That is, the lubricant contains one kind or two or more kinds selected from the group consisting of the following (1) to (5).
(1) A material exhibiting lubricity by having a specific crystal structure that is slippery, for example, a hexagonal layered crystal structure (for example, graphite, earth graphite, zinc oxide, boron nitride and talc),
(2) Those that exhibit a lubricity by having a reactive element in addition to the crystal structure (for example, molybdenum disulfide, tungsten disulfide, graphite fluoride, tin sulfide, bismuth sulfide and organic molybdenum),
(3) Those exhibiting lubricity due to chemical reactivity (for example, thiosulfate compounds),
(4) Those exhibiting lubricity by plastic or viscoplastic behavior under frictional stress (for example, polytetrafluoroethylene (PTFE), copper (Cu), melamine cyanurate (MCA)), and (5) liquid or grease And has lubricity by being present at the boundary of the contact surfaces and preventing direct contact between the surfaces (for example, perfluoropolyether (PFPE)).
好ましくは、潤滑剤は上記(1)~(5)からなる群から選ばれる1種又は2種以上を含有する。つまり、好ましくは、潤滑剤は、黒鉛、土状黒鉛、酸化亜鉛、窒化硼素、タルク、二硫化モリブデン、二硫化タングステン、フッ化黒鉛、硫化スズ、硫化ビスマス、有機モリブデン、チオ硫酸塩化合物、ポリテトラフルオロエチレン(PTFE)、銅(Cu)、メラミンシアヌレート(MCA)、パーフルオロポリエーテル(PFPE)からなる群から選択される1種又は2種以上である。より好ましくは、潤滑剤は、固体潤滑粉末である。ここで、「固体潤滑粉末」とは、潤滑性を示す固体粉末を意味する。すなわち、潤滑剤は、上記(1)~(4)からなる群から選ばれる1種又は2種以上を含有するのが好ましい。潤滑剤が固体潤滑粉末である場合、好ましくは、潤滑剤は、二硫化モリブデン、黒鉛、ポリテトラフルオロエチレン(PTFE)及びフッ化黒鉛からなる群から選ばれる1種又は2種以上である。潤滑剤は、固体潤滑被膜21の密着性及び防錆性の観点からは黒鉛が好ましく、成膜性の観点からは土状黒鉛が好ましい。潤滑剤は、潤滑性の観点からは、ポリテトラフルオロエチレン(PTFE)が好ましい。
Preferably, the lubricant contains one or more selected from the group consisting of (1) to (5) above. That is, preferably, the lubricant is graphite, earth graphite, zinc oxide, boron nitride, talc, molybdenum disulfide, tungsten disulfide, graphite fluoride, tin sulfide, bismuth sulfide, organic molybdenum, thiosulfate compound, poly One or more selected from the group consisting of tetrafluoroethylene (PTFE), copper (Cu), melamine cyanurate (MCA), and perfluoropolyether (PFPE). More preferably, the lubricant is a solid lubricating powder. Here, the "solid lubricating powder" means a solid powder exhibiting lubricity. That is, the lubricant preferably contains one kind or two or more kinds selected from the group consisting of the above (1) to (4). When the lubricant is a solid lubricating powder, the lubricant is preferably one or more selected from the group consisting of molybdenum disulfide, graphite, polytetrafluoroethylene (PTFE) and graphite fluoride. The lubricant is preferably graphite from the viewpoints of adhesion and rustproofness of the solid lubricating coating 21, and earth graphite is preferred from the viewpoint of film-forming property. The lubricant is preferably polytetrafluoroethylene (PTFE) from the viewpoint of lubricity.
固体潤滑被膜21中の潤滑剤の含有量は、5~30質量%であることが好ましい。潤滑剤の含有量が5質量%以上であれば、耐焼付き性がさらに高まる。このため、焼付きを生じないでねじ締め及びねじ戻しができる回数が増加する。潤滑剤の含有量のさらに好ましい下限は、10質量%である。一方、潤滑剤の含有量が30質量%以下であれば、固体潤滑被膜21の強度がさらに高まる。このため、固体潤滑被膜21の損耗が抑制される。
The content of the lubricant in the solid lubricating coating 21 is preferably 5 to 30% by mass. When the content of the lubricant is 5% by mass or more, the seizure resistance is further enhanced. For this reason, the number of times the screw can be tightened and unscrewed without causing seizure increases. A more preferable lower limit of the content of the lubricant is 10% by mass. On the other hand, when the content of the lubricant is 30% by mass or less, the strength of the solid lubricating coating 21 is further increased. Therefore, the wear of the solid lubricating coating 21 is suppressed.
[ガラスフリット]
本明細書において、ガラスフリットとは、ガラスの粒子をいう。ガラスフリットの形状は、繊維状ではなく、粒状、塊状及び球状である。ガラスフリットは、一般的には、ディスプレイパネルや各種電子部品の封着(封止、接着)、被覆(保護膜)及び絶縁膜など、主にエレクトロニクスの各分野で使用される。しかしながら、本発明者は、固体潤滑被膜21にガラスフリットを含有させることによって、管用ねじ継手の高トルク性能が高まることを見出した。 [Glass frit]
In the present specification, the glass frit refers to glass particles. The shape of the glass frit is not fibrous but granular, lumpy and spherical. The glass frit is generally used mainly in various fields of electronics, such as sealing (sealing, adhesion) of a display panel and various electronic components, coating (protective film), and insulating film. However, the present inventor has found that the high torque performance of the threaded joint for pipes is enhanced by including the glass frit in thesolid lubricating coating 21.
本明細書において、ガラスフリットとは、ガラスの粒子をいう。ガラスフリットの形状は、繊維状ではなく、粒状、塊状及び球状である。ガラスフリットは、一般的には、ディスプレイパネルや各種電子部品の封着(封止、接着)、被覆(保護膜)及び絶縁膜など、主にエレクトロニクスの各分野で使用される。しかしながら、本発明者は、固体潤滑被膜21にガラスフリットを含有させることによって、管用ねじ継手の高トルク性能が高まることを見出した。 [Glass frit]
In the present specification, the glass frit refers to glass particles. The shape of the glass frit is not fibrous but granular, lumpy and spherical. The glass frit is generally used mainly in various fields of electronics, such as sealing (sealing, adhesion) of a display panel and various electronic components, coating (protective film), and insulating film. However, the present inventor has found that the high torque performance of the threaded joint for pipes is enhanced by including the glass frit in the
ガラスフリットは、市販のガラスフリットを使用できる。ガラスフリットはたとえば、旭硝子株式会社製(商品名)ASF-1560及び(商品名)ASF-1561、及び、日本フリット株式会社製(商品名)VY0144及び(商品名)EY0077等の1種又は2種以上を混合して使用できる。
As the glass frit, a commercially available glass frit can be used. The glass frit is, for example, one or two kinds such as (trade name) ASF-1560 and (trade name) ASF-1561 manufactured by Asahi Glass Co., Ltd., and (trade name) VY0144 and (trade name) EY0077 manufactured by Nippon Frit Co., Ltd. The above can be mixed and used.
好ましくは、ガラスフリットの長径は1~40μmである。長径とは、JIS Z8827-1(2008)に規定する、各粒子の最大のフェレー径(フェレー径:粒子の像を2本の平行線で挟んだ時の平行線の間隔)をいう。ガラスフリットの長径が1μm以上であれば、管用ねじ継手の優れた高トルク性能がより安定して得られる。ガラスフリットの長径が40μm以下であれば、固体潤滑被膜21の成形性が高まる。
Preferably, the major axis of the glass frit is 1 to 40 μm. The major axis refers to the maximum Feret diameter of each particle (Feret diameter: spacing between parallel lines when a particle image is sandwiched between two parallel lines), which is defined in JIS Z8827-1 (2008). When the major axis of the glass frit is 1 μm or more, excellent high torque performance of the threaded joint for pipes can be obtained more stably. When the major axis of the glass frit is 40 μm or less, the moldability of the solid lubricating coating 21 is improved.
ガラスフリットの長径は次の方法で求める。はじめに、固体潤滑被膜21の一部を採取する。固体潤滑被膜21を600℃で燃焼させ、燃焼残渣を回収する。残渣から、比重差によりガラスフリットを回収する。得られたガラスフリットを、JIS Z8827-1(2008)及びJIS Z8827-2(2010)に規定される、動的画像解析法にしたがって解析する。解析結果から、同一視野内のガラスフリットの各粒子の最大のフェレー径の算術平均を算出し、長径(μm)とする。
The major axis of the glass frit is calculated by the following method. First, a part of the solid lubricating coating 21 is sampled. The solid lubricating coating 21 is burned at 600° C., and the burning residue is collected. The glass frit is recovered from the residue by the difference in specific gravity. The obtained glass frit is analyzed according to the dynamic image analysis method specified in JIS Z8827-1 (2008) and JIS Z8827-1-2 (2010). From the analysis result, the arithmetic average of the maximum Feret diameters of the respective particles of the glass frit within the same visual field is calculated, and the major axis (μm) is calculated.
好ましくは、ガラスフリットのアスペクト比は10以下である。ここで、ガラスフリットのアスペクト比とは、JIS Z8827-1(2008)に規定する、各粒子の最大フェレー径を各粒子の最小フェレー径で除した値である。ガラスフリットのアスペクト比が10以下であれば、優れた高トルク性能が安定して得られる。ガラスフリットのアスペクト比はより好ましくは10未満、さらに好ましくは5以下、最も好ましくは3以下である。
Preferably, the glass frit has an aspect ratio of 10 or less. Here, the aspect ratio of the glass frit is a value defined by JIS Z8827-1 (2008), which is obtained by dividing the maximum Feret diameter of each particle by the minimum Feret diameter of each particle. When the glass frit has an aspect ratio of 10 or less, excellent high torque performance can be stably obtained. The aspect ratio of the glass frit is more preferably less than 10, still more preferably 5 or less, and most preferably 3 or less.
ガラスフリットのアスペクト比は次の方法で求める。はじめに、固体潤滑被膜21の一部を採取する。固体潤滑被膜21を600℃で燃焼させ、燃焼残渣を回収する。残渣から、比重差によりガラスフリットを回収する。得られたガラスフリットを、JIS Z8827-1(2008)及びJIS Z8827-2(2010)に規定される、動的画像解析法にしたがって解析する。解析結果から、同一視野内のガラスフリットの各粒子の最大のフェレー径の算術平均を算出する。解析結果から、同一視野内のガラスフリットの各粒子の最小のフェレー径の算術平均を算出する。最大のフェレー径の算術平均を、最小のフェレー径の算術平均で除する。これを、ガラスフリットのアスペクト比とする。
The aspect ratio of the glass frit is calculated by the following method. First, a part of the solid lubricating coating 21 is sampled. The solid lubricating coating 21 is burned at 600° C., and the burning residue is collected. The glass frit is recovered from the residue by the difference in specific gravity. The obtained glass frit is analyzed according to the dynamic image analysis method specified in JIS Z8827-1 (2008) and JIS Z8827-1-2 (2010). From the analysis result, the arithmetic mean of the maximum Feret diameters of the respective particles of the glass frit within the same visual field is calculated. From the analysis result, the arithmetic average of the minimum Feret diameters of the respective particles of the glass frit within the same visual field is calculated. The arithmetic mean of the largest Feret diameter is divided by the arithmetic mean of the smallest Feret diameter. This is the aspect ratio of the glass frit.
固体潤滑被膜21に、ガラスフリットがわずかでも含有されれば、高トルク性能が高まる。したがって、固体潤滑被膜21のガラスフリットの含有量の下限はたとえば、0.001質量%である。しかしながら、固体潤滑被膜21に、ガラスフリットが0.01質量%以上含有されれば、優れた高トルク性能がより安定して得られる。そのため、ガラスフリットの含有量は0.01質量%以上であることが好ましい。ガラスフリットの含有量の下限はより好ましくは0.5質量%、さらに好ましくは1.0質量%である。
High torque performance is enhanced if the solid lubricating coating 21 contains even a small amount of glass frit. Therefore, the lower limit of the content of the glass frit in the solid lubricating coating 21 is, for example, 0.001% by mass. However, when the solid lubricating coating 21 contains 0.01% by mass or more of glass frit, excellent high torque performance can be obtained more stably. Therefore, the content of the glass frit is preferably 0.01% by mass or more. The lower limit of the content of the glass frit is more preferably 0.5% by mass, further preferably 1.0% by mass.
ガラスフリットの含有量の上限は、特に限定されない。ガラスフリットの含有量は、固体潤滑被膜21が結合剤、潤滑剤及びガラスフリットを含有できる範囲で適宜調整すればよい。ガラスフリットの含有量の上限はたとえば45.0質量%である。一方、ガラスフリットの含有量の上限が10.0質量%以下であれば、高トルク性能に加え、管用ねじ継手の耐焼付き性が高まる。したがって、ガラスフリットの含有量は10.0質量%以下であることが好ましい。ガラスフリットの含有量の上限は、より好ましくは8.0質量%、さらに好ましくは5.0質量%である。
The upper limit of the glass frit content is not particularly limited. The content of the glass frit may be appropriately adjusted within the range that the solid lubricating coating 21 can contain the binder, the lubricant and the glass frit. The upper limit of the content of the glass frit is, for example, 45.0% by mass. On the other hand, when the upper limit of the content of the glass frit is 10.0 mass% or less, in addition to high torque performance, seizure resistance of the threaded joint for pipes is enhanced. Therefore, the content of the glass frit is preferably 10.0 mass% or less. The upper limit of the content of the glass frit is more preferably 8.0% by mass, further preferably 5.0% by mass.
ガラスフリットの化学組成は、適宜調整できる。ガラスフリットはたとえば、質量%で、SiO2:40~70%、Al2O3:1~20%、CaO:0.1~25%、B2O3:0~40%、MgO:0~3%、Na2O:0~15%、K2O:0~10%、及びZnO:0~10%を含有してもよい。
The chemical composition of the glass frit can be adjusted appropriately. The glass frit is, for example, in mass %, SiO 2 : 40 to 70%, Al 2 O 3 : 1 to 20%, CaO: 0.1 to 25%, B 2 O 3 : 0 to 40%, MgO: 0 to 3%, Na 2 O: 0 to 15%, K 2 O: 0 to 10%, and ZnO: 0 to 10% may be contained.
[その他の成分]
固体潤滑被膜21は、その他、公知の防錆添加剤、防腐剤等を含有してもよい。 [Other ingredients]
Thesolid lubricating coating 21 may also contain other known rust preventive additives, preservatives and the like.
固体潤滑被膜21は、その他、公知の防錆添加剤、防腐剤等を含有してもよい。 [Other ingredients]
The
[防錆添加剤]
固体潤滑被膜21は、実際に使用されるまでの長期間に渡る防錆性を有する必要がある。そのため、固体潤滑被膜21は、防錆添加剤を含有してもよい。防錆添加剤とは、耐食性を有する添加剤の総称である。防錆添加剤はたとえば、トリポリリン酸アルミニウム、亜燐酸アルミニウム及びカルシウムイオン交換シリカからなる群から選択される1種又は2種以上である。好ましくは、防錆添加剤は、カルシウムイオン交換シリカ及び亜燐酸アルミニウムからなる群から選択される1種又は2種を含有する。防錆添加剤として、他に市販の反応撥水剤なども使用できる。 [Rust preventive additive]
Thesolid lubricating coating 21 needs to have rust-preventive properties for a long period of time before being actually used. Therefore, the solid lubricating coating 21 may contain a rust preventive additive. The anticorrosive additive is a general term for additives having corrosion resistance. The rust preventive additive is, for example, one or more selected from the group consisting of aluminum tripolyphosphate, aluminum phosphite and calcium ion exchange silica. Preferably, the antirust additive contains one or two selected from the group consisting of calcium ion exchange silica and aluminum phosphite. As the rust preventive additive, a commercially available reaction water repellent agent or the like can also be used.
固体潤滑被膜21は、実際に使用されるまでの長期間に渡る防錆性を有する必要がある。そのため、固体潤滑被膜21は、防錆添加剤を含有してもよい。防錆添加剤とは、耐食性を有する添加剤の総称である。防錆添加剤はたとえば、トリポリリン酸アルミニウム、亜燐酸アルミニウム及びカルシウムイオン交換シリカからなる群から選択される1種又は2種以上である。好ましくは、防錆添加剤は、カルシウムイオン交換シリカ及び亜燐酸アルミニウムからなる群から選択される1種又は2種を含有する。防錆添加剤として、他に市販の反応撥水剤なども使用できる。 [Rust preventive additive]
The
[防腐剤]
固体潤滑被膜21はさらに、防腐剤を含有してもよい。防腐剤とは、耐食性を有する添加剤の総称である。 [Preservative]
Thesolid lubricating coating 21 may further contain a preservative. The antiseptic is a general term for additives having corrosion resistance.
固体潤滑被膜21はさらに、防腐剤を含有してもよい。防腐剤とは、耐食性を有する添加剤の総称である。 [Preservative]
The
固体潤滑被膜21中のその他の成分(防錆添加剤及び防腐剤等)の含有量は合計で10質量%以下であることが好ましい。その他の成分の合計含有量が10質量%以下であれば、固体潤滑被膜21の潤滑性が安定的に高まる。
It is preferable that the total content of other components (corrosion preventive additives, preservatives, etc.) in the solid lubricating coating 21 is 10% by mass or less. When the total content of other components is 10% by mass or less, the lubricity of the solid lubricating coating 21 is stably enhanced.
上述の結合剤、潤滑剤、ガラスフリット、必要であればその他の成分及び溶媒を混合することにより、固体潤滑被膜形成用組成物(以下単に、組成物ともいう)を製造できる。固体潤滑皮膜形成用組成物を、管用ねじ継手のピン側接触表面34上及びボックス側接触表面44上の少なくとも一方に塗布して固化することにより、固体潤滑被膜21を有する、本実施形態による管用ねじ継手を製造できる。
A solid lubricant film-forming composition (hereinafter also simply referred to as a composition) can be produced by mixing the above-mentioned binder, lubricant, glass frit, and other components and solvent if necessary. For a pipe according to the present embodiment, which has the solid lubricating coating 21 by applying the solid lubricating coating forming composition to at least one of the pin-side contact surface 34 and the box-side contact surface 44 of the threaded joint for pipe and solidifying the composition. Can manufacture threaded joints.
[固体潤滑被膜の厚さ]
固体潤滑被膜21の厚さは特に限定されない。固体潤滑被膜21の厚さはたとえば、10~50μmである。固体潤滑被膜21の厚さが10μm以上であれば、優れた高トルク性能がより安定して得られる。固体潤滑被膜21の厚さが50μm以下であれば、固体潤滑被膜21の密着性が安定する。さらに、固体潤滑被膜21の厚さが50μm以下であれば、摺動面のねじ公差(クリアランス)が広くなるため、摺動時の面圧が低くなる。そのため、締結トルクが過剰に高くなることを抑制できる。 [Thickness of solid lubricant film]
The thickness of thesolid lubricating coating 21 is not particularly limited. The thickness of the solid lubricating coating 21 is, for example, 10 to 50 μm. When the thickness of the solid lubricating coating 21 is 10 μm or more, excellent high torque performance can be obtained more stably. When the thickness of the solid lubricating coating 21 is 50 μm or less, the adhesion of the solid lubricating coating 21 is stable. Further, when the thickness of the solid lubricating coating 21 is 50 μm or less, the screw tolerance (clearance) of the sliding surface is widened, so that the surface pressure during sliding becomes low. Therefore, it is possible to prevent the fastening torque from becoming excessively high.
固体潤滑被膜21の厚さは特に限定されない。固体潤滑被膜21の厚さはたとえば、10~50μmである。固体潤滑被膜21の厚さが10μm以上であれば、優れた高トルク性能がより安定して得られる。固体潤滑被膜21の厚さが50μm以下であれば、固体潤滑被膜21の密着性が安定する。さらに、固体潤滑被膜21の厚さが50μm以下であれば、摺動面のねじ公差(クリアランス)が広くなるため、摺動時の面圧が低くなる。そのため、締結トルクが過剰に高くなることを抑制できる。 [Thickness of solid lubricant film]
The thickness of the
[固体潤滑被膜の厚さの測定方法]
固体潤滑被膜21の厚さは、次の方法で測定する。固体潤滑被膜21を形成した接触表面34又は44の4箇所に対して、Helmut Fischer GmbH製、渦電流位相式膜厚計PHASCOPE PMP910を用いて、固体潤滑被膜21の厚さを測定する。測定は、ISO(International Organization for Standardization)21968(2005)に準拠する方法で行う。測定箇所は、管用ねじ継手の管周方向の4箇所(0°、90°、180°、270°の4箇所)である。測定結果の算術平均を、固体潤滑被膜21の厚さとする。 [Measurement method of thickness of solid lubricating film]
The thickness of thesolid lubricating coating 21 is measured by the following method. The thickness of the solid lubricating coating 21 is measured at four points on the contact surface 34 or 44 on which the solid lubricating coating 21 is formed, using an eddy current phase type film thickness meter PHASCOPE PMP910 manufactured by Helmut Fischer GmbH. The measurement is performed by a method according to ISO (International Organization for Standardization) 21968 (2005). The measurement points are four points (four points of 0°, 90°, 180°, 270°) in the pipe circumferential direction of the pipe threaded joint. The arithmetic average of the measurement results is the thickness of the solid lubricating coating 21.
固体潤滑被膜21の厚さは、次の方法で測定する。固体潤滑被膜21を形成した接触表面34又は44の4箇所に対して、Helmut Fischer GmbH製、渦電流位相式膜厚計PHASCOPE PMP910を用いて、固体潤滑被膜21の厚さを測定する。測定は、ISO(International Organization for Standardization)21968(2005)に準拠する方法で行う。測定箇所は、管用ねじ継手の管周方向の4箇所(0°、90°、180°、270°の4箇所)である。測定結果の算術平均を、固体潤滑被膜21の厚さとする。 [Measurement method of thickness of solid lubricating film]
The thickness of the
[固体潤滑被膜の配置]
固体潤滑被膜21は、ピン側接触表面34上及びボックス側接触表面44上の少なくとも一方に配置されればよい。図7では、固体潤滑被膜21は、ピン側接触表面34上及びボックス側接触表面44上の両方に配置されている。しかしながら、固体潤滑被膜21の配置は図7に限定されない。図8に示す様に、固体潤滑被膜21は、ピン側接触表面34上のみに配置されてもよい。また、図9に示す様に、固体潤滑被膜21は、ボックス側接触表面44上のみに配置されてもよい。 [Arrangement of solid lubricating coating]
Thesolid lubricating coating 21 may be disposed on at least one of the pin side contact surface 34 and the box side contact surface 44. In FIG. 7, the solid lubricant coating 21 is disposed on both the pin side contact surface 34 and the box side contact surface 44. However, the arrangement of the solid lubricating coating 21 is not limited to that shown in FIG. 7. As shown in FIG. 8, the solid lubricating coating 21 may be disposed only on the pin side contact surface 34. Further, as shown in FIG. 9, the solid lubricating coating 21 may be arranged only on the box-side contact surface 44.
固体潤滑被膜21は、ピン側接触表面34上及びボックス側接触表面44上の少なくとも一方に配置されればよい。図7では、固体潤滑被膜21は、ピン側接触表面34上及びボックス側接触表面44上の両方に配置されている。しかしながら、固体潤滑被膜21の配置は図7に限定されない。図8に示す様に、固体潤滑被膜21は、ピン側接触表面34上のみに配置されてもよい。また、図9に示す様に、固体潤滑被膜21は、ボックス側接触表面44上のみに配置されてもよい。 [Arrangement of solid lubricating coating]
The
また、固体潤滑被膜21は、ピン側接触表面34上及びボックス側接触表面44上の少なくとも一方の全体に配置されてもよいし、一部にのみ配置されてもよい。管用ねじ継手が、金属シール部(ピン側金属シール部32及びボックス側金属シール部42)及びショルダー部(ピン側ショルダー部33及びボックス側ショルダー部43)を有する場合は、金属シール部32及び42、ショルダー部33及び43は、ねじ締め最終段階で特に面圧が高くなる。したがって、固体潤滑被膜21を、金属シール部(ピン側金属シール部32及びボックス側金属シール部42)及びショルダー部(ピン側ショルダー部33及びボックス側ショルダー部43)を有するピン側接触表面34及びボックス側接触表面44上の少なくとも一方に部分的に配置する場合、ピン側金属シール部32、ボックス側金属シール部42、ピン側ショルダー部33及びボックス側ショルダー部43の少なくとも1か所に配置されてもよい。一方、固体潤滑被膜21をピン側接触表面34上及びボックス側接触表面44上の少なくとも一方の全体に配置すれば、管用ねじ継手の生産効率が高まる。
Further, the solid lubricating coating 21 may be disposed on the entire surface of at least one of the pin-side contact surface 34 and the box-side contact surface 44, or may be disposed only on a part thereof. When the pipe threaded joint has a metal seal portion (pin side metal seal portion 32 and box side metal seal portion 42) and a shoulder portion (pin side shoulder portion 33 and box side shoulder portion 43), the metal seal portions 32 and 42. The shoulder portions 33 and 43 have particularly high surface pressure at the final stage of screw tightening. Therefore, the solid lubricating coating 21 is provided with a pin side contact surface 34 having a metal seal portion (pin side metal seal portion 32 and box side metal seal portion 42) and a shoulder portion (pin side shoulder portion 33 and box side shoulder portion 43). When partially arranged on at least one of the box side contact surfaces 44, it is arranged at at least one of the pin side metal seal portion 32, the box side metal seal portion 42, the pin side shoulder portion 33 and the box side shoulder portion 43. May be. On the other hand, if the solid lubricating coating 21 is arranged on at least one of the pin side contact surface 34 and the box side contact surface 44, the production efficiency of the threaded joint for pipes is increased.
固体潤滑被膜21は、単層でもよいし、複層でもよい。複層とは、固体潤滑被膜21が接触表面34又は44側から2層以上積層している状態をいう。組成物の塗布と固化とを繰り返すことにより、固体潤滑被膜21を2層以上形成できる。固体潤滑被膜21は、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に直接配置されてもよいし、後述する下地処理をした上に配置されてもよい。
The solid lubricating coating 21 may be a single layer or multiple layers. The multi-layer means a state in which the solid lubricating coating 21 is laminated in two or more layers from the contact surface 34 or 44 side. By repeating the application and solidification of the composition, two or more solid lubricating coatings 21 can be formed. The solid lubricating coating 21 may be directly arranged on at least one of the pin-side contact surface 34 and the box-side contact surface 44, or may be arranged after being subjected to a base treatment described later.
[管用ねじ継手の母材]
管用ねじ継手の母材の組成は、特に限定されない。母材はたとえば、炭素鋼、ステンレス鋼及び合金鋼等である。合金鋼の中でも、Cr、Ni及びMo等の合金元素を含んだ二相ステンレス鋼及びNi合金等の高合金鋼は耐食性が高い。そのため、これらの高合金鋼を母材に使用すれば、硫化水素や二酸化炭素等を含有する腐食環境において、優れた耐食性が得られる。 [Base material for threaded joints for pipes]
The composition of the base material of the threaded joint for pipes is not particularly limited. The base material is, for example, carbon steel, stainless steel, alloy steel or the like. Among alloy steels, duplex stainless steels containing alloy elements such as Cr, Ni and Mo and high alloy steels such as Ni alloys have high corrosion resistance. Therefore, when these high alloy steels are used as the base material, excellent corrosion resistance can be obtained in a corrosive environment containing hydrogen sulfide, carbon dioxide and the like.
管用ねじ継手の母材の組成は、特に限定されない。母材はたとえば、炭素鋼、ステンレス鋼及び合金鋼等である。合金鋼の中でも、Cr、Ni及びMo等の合金元素を含んだ二相ステンレス鋼及びNi合金等の高合金鋼は耐食性が高い。そのため、これらの高合金鋼を母材に使用すれば、硫化水素や二酸化炭素等を含有する腐食環境において、優れた耐食性が得られる。 [Base material for threaded joints for pipes]
The composition of the base material of the threaded joint for pipes is not particularly limited. The base material is, for example, carbon steel, stainless steel, alloy steel or the like. Among alloy steels, duplex stainless steels containing alloy elements such as Cr, Ni and Mo and high alloy steels such as Ni alloys have high corrosion resistance. Therefore, when these high alloy steels are used as the base material, excellent corrosion resistance can be obtained in a corrosive environment containing hydrogen sulfide, carbon dioxide and the like.
[製造方法]
以下、本実施形態による管用ねじ継手の製造方法を説明する。本実施形態による管用ねじ継手の製造方法は、準備工程と、固体潤滑被膜形成工程とを備える。 [Production method]
Hereinafter, the method for manufacturing the pipe threaded joint according to the present embodiment will be described. The method for manufacturing a threaded joint for pipes according to the present embodiment includes a preparing step and a solid lubricating coating forming step.
以下、本実施形態による管用ねじ継手の製造方法を説明する。本実施形態による管用ねじ継手の製造方法は、準備工程と、固体潤滑被膜形成工程とを備える。 [Production method]
Hereinafter, the method for manufacturing the pipe threaded joint according to the present embodiment will be described. The method for manufacturing a threaded joint for pipes according to the present embodiment includes a preparing step and a solid lubricating coating forming step.
[準備工程]
準備工程では、ピン3、ボックス4及び固体潤滑被膜形成用組成物を準備する。ピン3は、上述のとおり、ピン側ねじ部31を含むピン側接触表面34を有する。ピン3は、上述のとおり、ピン側ねじ部31、ピン側金属シール部32及びピン側ショルダー部33を含むピン側接触表面34を有してもよい。ボックス4は、上述のとおり、ボックス側ねじ部41を含むボックス側接触表面44を有する。ボックス4は、上述のとおり、ボックス側ねじ部41、ボックス側金属シール部42及びボックス側ショルダー部43を含むボックス側接触表面44を有してもよい。ピン側接触表面34及びボックス側接触表面44の少なくとも一方に対して周知の前処理を実施してもよい。前処理はたとえば、脱脂である。脱脂により、ピン側接触表面34及びボックス側接触表面44の少なくとも一方の表面に付着している油及び油性の汚れ等を除去する。脱脂はたとえば、溶剤脱脂、アルカリ脱脂及び電解脱脂である。前処理としてさらに、酸洗を実施してもよい。酸洗により、ピン側接触表面34及びボックス側接触表面44の少なくとも一方の錆及び加工時に生じた酸化被膜等を除去できる。 [Preparation process]
In the preparation step, thepin 3, the box 4 and the composition for forming a solid lubricating coating are prepared. The pin 3 has a pin-side contact surface 34 including a pin-side threaded portion 31, as described above. The pin 3 may have the pin-side contact surface 34 including the pin-side screw portion 31, the pin-side metal seal portion 32, and the pin-side shoulder portion 33, as described above. The box 4 has a box-side contact surface 44 including a box-side threaded portion 41, as described above. The box 4 may have a box-side contact surface 44 including a box-side threaded portion 41, a box-side metal seal portion 42, and a box-side shoulder portion 43, as described above. Well-known pretreatment may be performed on at least one of the pin-side contact surface 34 and the box-side contact surface 44. The pretreatment is, for example, degreasing. The degreasing removes oil and oily dirt adhering to at least one of the pin-side contact surface 34 and the box-side contact surface 44. Degreasing is, for example, solvent degreasing, alkaline degreasing, and electrolytic degreasing. As a pretreatment, pickling may be further performed. By pickling, the rust on at least one of the pin-side contact surface 34 and the box-side contact surface 44 and the oxide film formed during processing can be removed.
準備工程では、ピン3、ボックス4及び固体潤滑被膜形成用組成物を準備する。ピン3は、上述のとおり、ピン側ねじ部31を含むピン側接触表面34を有する。ピン3は、上述のとおり、ピン側ねじ部31、ピン側金属シール部32及びピン側ショルダー部33を含むピン側接触表面34を有してもよい。ボックス4は、上述のとおり、ボックス側ねじ部41を含むボックス側接触表面44を有する。ボックス4は、上述のとおり、ボックス側ねじ部41、ボックス側金属シール部42及びボックス側ショルダー部43を含むボックス側接触表面44を有してもよい。ピン側接触表面34及びボックス側接触表面44の少なくとも一方に対して周知の前処理を実施してもよい。前処理はたとえば、脱脂である。脱脂により、ピン側接触表面34及びボックス側接触表面44の少なくとも一方の表面に付着している油及び油性の汚れ等を除去する。脱脂はたとえば、溶剤脱脂、アルカリ脱脂及び電解脱脂である。前処理としてさらに、酸洗を実施してもよい。酸洗により、ピン側接触表面34及びボックス側接触表面44の少なくとも一方の錆及び加工時に生じた酸化被膜等を除去できる。 [Preparation process]
In the preparation step, the
固体潤滑被膜形成用組成物は、上述のとおり、溶媒を除いて固体潤滑被膜21と同じ組成を有する。つまり、固体潤滑皮膜形成用組成物(組成物)は、結合剤、潤滑剤及びガラスフリットを含有する。無溶媒型の組成物はたとえば、結合剤を加熱して溶融状態とし、潤滑剤及びガラスフリットを添加して混練することにより製造できる。全ての成分を粉末状として混合した粉末混合物を組成物としてもよい。
The composition for forming the solid lubricating coating has the same composition as the solid lubricating coating 21 except for the solvent as described above. That is, the composition for forming a solid lubricating film (composition) contains a binder, a lubricant and a glass frit. A solventless composition can be produced, for example, by heating a binder to a molten state, adding a lubricant and a glass frit, and kneading the mixture. The composition may be a powder mixture obtained by mixing all components in powder form.
溶媒型の組成物はたとえば、溶媒中に、結合剤、潤滑剤及びガラスフリットを溶解又は分散させて混合することにより製造できる。溶媒はたとえば、水及び有機溶剤からなる群から選択される1種又は2種である。溶媒の割合は特に限定されない。溶媒の割合は、塗布方法に応じて適正な粘性に調整すればよい。溶媒の割合はたとえば、溶媒以外の全成分を100質量%として、30~50質量%である。
The solvent type composition can be produced, for example, by dissolving or dispersing a binder, a lubricant and a glass frit in a solvent and mixing them. The solvent is, for example, one or two selected from the group consisting of water and an organic solvent. The ratio of the solvent is not particularly limited. The proportion of the solvent may be adjusted to an appropriate viscosity according to the coating method. The ratio of the solvent is, for example, 30 to 50% by mass based on 100% by mass of all components other than the solvent.
[固体潤滑被膜形成工程]
固体潤滑被膜形成工程は、塗布工程と固化工程とを含む。塗布工程では、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に、固体潤滑被膜形成用組成物を塗布する。固化工程では、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に塗布された固体潤滑被膜形成用組成物を固化して固体潤滑被膜21を形成する。 [Solid lubrication film formation process]
The solid lubricant film forming step includes a coating step and a solidifying step. In the coating step, the solid lubricating coating forming composition is coated on at least one of the pin-side contact surface 34 and the box-side contact surface 44. In the solidifying step, the solid lubricating coating forming composition applied on at least one of the pin-side contact surface 34 and the box-side contact surface 44 is solidified to form the solid lubricating coating 21.
固体潤滑被膜形成工程は、塗布工程と固化工程とを含む。塗布工程では、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に、固体潤滑被膜形成用組成物を塗布する。固化工程では、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に塗布された固体潤滑被膜形成用組成物を固化して固体潤滑被膜21を形成する。 [Solid lubrication film formation process]
The solid lubricant film forming step includes a coating step and a solidifying step. In the coating step, the solid lubricating coating forming composition is coated on at least one of the pin-
[塗布工程]
塗布工程では、組成物を周知の方法でピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に塗布(コート)する。 [Coating process]
In the coating step, the composition is coated on at least one of the pinside contact surface 34 and the box side contact surface 44 by a known method.
塗布工程では、組成物を周知の方法でピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に塗布(コート)する。 [Coating process]
In the coating step, the composition is coated on at least one of the pin
無溶媒型の組成物の場合、ホットメルト法を用いて組成物を塗布できる。ホットメルト法では、組成物を加熱して樹脂を溶融させ、低粘度の流動状態にする。流動状態の組成物を、温度保持機能を有するスプレーガンから噴霧することにより行われる。組成物は、適当な撹拌装置を備えたタンク内で加熱して溶融され、コンプレッサーにより計量ポンプを経てスプレーガンの噴霧ヘッド(所定温度に保持)に供給されて、噴霧される。タンク内と噴霧ヘッドの保持温度は組成物中の樹脂の融点に応じて調整される。塗布方法は、スプレー塗布に替えて、刷毛塗り及び浸漬等でもよい。組成物の加熱温度は、樹脂の融点より10~50℃高い温度とすることが好ましい。組成物を塗布する際、組成物が塗布されるピン側接触表面34上又はボックス側接触表面44上の少なくとも一方は、基剤の融点より高い温度に加熱しておくことが好ましい。それにより良好な被覆性を得ることができる。
In the case of a solventless composition, the composition can be applied using the hot melt method. In the hot melt method, the composition is heated to melt the resin and bring it into a low-viscosity fluid state. It is carried out by spraying the composition in a fluid state from a spray gun having a temperature maintaining function. The composition is heated and melted in a tank equipped with a suitable stirring device, and is supplied to a spray head (maintained at a predetermined temperature) of a spray gun through a metering pump by a compressor to be sprayed. The holding temperature in the tank and in the spraying head is adjusted according to the melting point of the resin in the composition. The coating method may be brush coating, dipping or the like instead of spray coating. The heating temperature of the composition is preferably 10 to 50° C. higher than the melting point of the resin. At the time of applying the composition, at least one of the pin-side contact surface 34 and the box-side contact surface 44 to which the composition is applied is preferably heated to a temperature higher than the melting point of the base. As a result, good coverage can be obtained.
溶媒型の組成物の場合、溶液状態となった組成物をスプレー塗布等でピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に塗布する。この場合、組成物を、常温及び常圧の環境下で、スプレー塗布できるよう粘度を調整する。
In the case of a solvent type composition, the composition in a solution state is applied to at least one of the pin side contact surface 34 and the box side contact surface 44 by spray coating or the like. In this case, the viscosity of the composition is adjusted so that the composition can be spray-applied at room temperature and atmospheric pressure.
[固化工程]
固化工程では、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に塗布された組成物を固化して固体潤滑被膜21を形成する。 [Solidification process]
In the solidifying step, thesolid lubricant film 21 is formed by solidifying the composition applied to at least one of the pin side contact surface 34 and the box side contact surface 44.
固化工程では、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に塗布された組成物を固化して固体潤滑被膜21を形成する。 [Solidification process]
In the solidifying step, the
無溶媒型の組成物の場合、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に塗布された組成物を冷却することにより、溶融状態の組成物が固化して固体潤滑被膜21が形成される。冷却方法は周知の方法で実施できる。冷却方法はたとえば、大気放冷及び空冷である。
In the case of a solvent-free composition, by cooling the composition applied to at least one of the pin-side contact surface 34 and the box-side contact surface 44, the composition in a molten state solidifies to solid lubricant coating 21. Is formed. A known cooling method can be used. The cooling method is, for example, air cooling or air cooling.
溶媒型の組成物の場合、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に塗布された組成物を乾燥させることにより、組成物が固化して固体潤滑被膜21が形成される。乾燥方法は周知の方法で実施できる。乾燥方法はたとえば、自然乾燥、低温送風乾燥及び真空乾燥である。
In the case of a solvent type composition, by drying the composition applied to at least one of the pin side contact surface 34 and the box side contact surface 44, the composition is solidified to form the solid lubricating coating 21. .. The drying method can be carried out by a known method. The drying method is, for example, natural drying, low temperature blast drying and vacuum drying.
固化工程は、窒素ガス及び炭酸ガス冷却システム等の急速冷却によって実施してもよい。急速冷却を実施する場合、接触表面34又は44の反対面(ボックス4の場合は鋼管1又はカップリング2の外面、ピン3の場合は鋼管1の内面)から間接的に冷却する。これにより、固体潤滑被膜21の急速冷却による劣化を抑制できる。
ㆍThe solidification process may be performed by rapid cooling such as a nitrogen gas and carbon dioxide cooling system. When performing rapid cooling, it is indirectly cooled from the opposite surface of the contact surface 34 or 44 (the outer surface of the steel pipe 1 or the coupling 2 in the case of the box 4, the inner surface of the steel pipe 1 in the case of the pin 3). As a result, deterioration of the solid lubricating coating 21 due to rapid cooling can be suppressed.
[下地処理]
本実施形態による管用ねじ継手の製造方法は、固体潤滑被膜形成工程の前に、下地処理工程を備えてもよい。下地処理工程はたとえば、表面粗さ形成工程、Zn合金めっき層形成工程、及び、三価クロメート処理工程からなる群から選ばれる1種又は2種以上である。 [surface treatment]
The method for manufacturing the threaded joint for pipes according to the present embodiment may include a base treatment step before the solid lubricant film forming step. The base treatment step is, for example, one or more selected from the group consisting of a surface roughness forming step, a Zn alloy plating layer forming step, and a trivalent chromate processing step.
本実施形態による管用ねじ継手の製造方法は、固体潤滑被膜形成工程の前に、下地処理工程を備えてもよい。下地処理工程はたとえば、表面粗さ形成工程、Zn合金めっき層形成工程、及び、三価クロメート処理工程からなる群から選ばれる1種又は2種以上である。 [surface treatment]
The method for manufacturing the threaded joint for pipes according to the present embodiment may include a base treatment step before the solid lubricant film forming step. The base treatment step is, for example, one or more selected from the group consisting of a surface roughness forming step, a Zn alloy plating layer forming step, and a trivalent chromate processing step.
[表面粗さ形成工程]
表面粗さ形成工程では、ピン側接触表面34又はボックス側接触表面44の少なくとも一方を粗くする。これにより、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に表面粗さを付与する。表面粗さは、算術平均粗さRaが1.0~8.0μm、かつ最大高さ粗さRzが10.0~40.0μmであるのが好ましい。算術平均粗さRaが1.0μm以上かつ最大高さ粗さRzが10.0μm以上であれば、アンカー効果により固体潤滑被膜21の密着性がさらに高まる。算術平均粗さRaが8.0μm以下かつ最大高さ粗さRzが40.0μm以下であれば、摩擦が抑制され、固体潤滑被膜21の損傷及び剥離が抑制される。 [Surface roughness forming step]
In the surface roughness forming step, at least one of the pinside contact surface 34 and the box side contact surface 44 is roughened. This imparts surface roughness to at least one of the pin-side contact surface 34 and the box-side contact surface 44. As for the surface roughness, it is preferable that the arithmetic mean roughness Ra is 1.0 to 8.0 μm and the maximum height roughness Rz is 10.0 to 40.0 μm. When the arithmetic average roughness Ra is 1.0 μm or more and the maximum height roughness Rz is 10.0 μm or more, the adhesion effect of the solid lubricating coating 21 is further enhanced by the anchor effect. When the arithmetic average roughness Ra is 8.0 μm or less and the maximum height roughness Rz is 40.0 μm or less, friction is suppressed, and damage and peeling of the solid lubricating coating 21 are suppressed.
表面粗さ形成工程では、ピン側接触表面34又はボックス側接触表面44の少なくとも一方を粗くする。これにより、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に表面粗さを付与する。表面粗さは、算術平均粗さRaが1.0~8.0μm、かつ最大高さ粗さRzが10.0~40.0μmであるのが好ましい。算術平均粗さRaが1.0μm以上かつ最大高さ粗さRzが10.0μm以上であれば、アンカー効果により固体潤滑被膜21の密着性がさらに高まる。算術平均粗さRaが8.0μm以下かつ最大高さ粗さRzが40.0μm以下であれば、摩擦が抑制され、固体潤滑被膜21の損傷及び剥離が抑制される。 [Surface roughness forming step]
In the surface roughness forming step, at least one of the pin
本明細書でいう算術平均粗さRa及び最大高さ粗さRzは、JIS B 0601(2001)に基づいて、測定される。エスアイアイ・ナノテクノロジー社製 走査型プローブ顕微鏡 SPI3800Nを用いて測定する。測定条件は、取得データ数の単位としてサンプルの2μm×2μmの領域で、取得データ数1024×1024である。基準長さは2.5mmとする。
The arithmetic mean roughness Ra and the maximum height roughness Rz referred to in this specification are measured based on JIS B 0601 (2001). Measurement is performed using a scanning probe microscope SPI3800N manufactured by SII Nano Technology. The measurement condition is a region of 2 μm×2 μm of the sample as a unit of the number of acquired data, and the number of acquired data is 1024×1024. The standard length is 2.5 mm.
管用ねじ継手の接触表面34及び44の表面粗さは、一般に最大高さ粗さRzが3.0~5.0μm程度である。接触表面34及び44の表面粗さが適度に大きければ、その上に形成される被膜(固体潤滑被膜21又はZn合金めっき層)の密着性が高まる。その結果、管用ねじ継手の耐焼付き性及び耐食性がさらに高まる。したがって、上述の固体潤滑被膜21を形成するための組成物が塗布される前の接触表面34又は44に、下地処理を施すことが好ましい。表面粗さの形成はたとえば、サンドブラスト処理、酸洗処理及び化成処理からなる群から選ばれる1種以上である。
As for the surface roughness of the contact surfaces 34 and 44 of the threaded joint for pipes, the maximum height roughness Rz is generally about 3.0 to 5.0 μm. If the surface roughness of the contact surfaces 34 and 44 is appropriately large, the adhesiveness of the coating film (the solid lubricating coating 21 or the Zn alloy plating layer) formed thereon is enhanced. As a result, seizure resistance and corrosion resistance of the threaded joint for pipes are further enhanced. Therefore, it is preferable that the contact surface 34 or 44 before being coated with the composition for forming the solid lubricating coating 21 is subjected to a base treatment. The formation of the surface roughness is, for example, one or more selected from the group consisting of sandblasting treatment, pickling treatment and chemical conversion treatment.
[サンドブラスト処理]
サンドブラスト処理は、ブラスト材(研磨剤)と圧縮空気とを混合してピン側接触表面34又はボックス側接触表面44の少なくとも一方に投射する処理である。ブラスト材はたとえば、球状のショット材及び角状のグリッド材である。サンドブラスト処理により、ピン側接触表面34又はボックス側接触表面44の少なくとも一方の表面粗さを大きくできる。サンドブラスト処理は、周知の方法により実施できる。たとえば、コンプレッサーで空気を圧縮し、圧縮空気とブラスト材を混合する。ブラスト材の材質はたとえば、ステンレス鋼、アルミ、セラミック及びアルミナ等である。サンドブラスト処理の投射速度等の条件は、適宜設定できる。 [Sandblast processing]
The sandblast treatment is a treatment in which a blast material (abrasive) and compressed air are mixed and projected onto at least one of the pin-side contact surface 34 and the box-side contact surface 44. The blast material is, for example, a spherical shot material and a square grid material. The sandblast treatment can increase the surface roughness of at least one of the pin-side contact surface 34 and the box-side contact surface 44. The sandblast treatment can be performed by a known method. For example, the air is compressed by a compressor, and the compressed air and the blast material are mixed. The material of the blast material is, for example, stainless steel, aluminum, ceramic, alumina or the like. The conditions such as the projection speed of the sandblast process can be set as appropriate.
サンドブラスト処理は、ブラスト材(研磨剤)と圧縮空気とを混合してピン側接触表面34又はボックス側接触表面44の少なくとも一方に投射する処理である。ブラスト材はたとえば、球状のショット材及び角状のグリッド材である。サンドブラスト処理により、ピン側接触表面34又はボックス側接触表面44の少なくとも一方の表面粗さを大きくできる。サンドブラスト処理は、周知の方法により実施できる。たとえば、コンプレッサーで空気を圧縮し、圧縮空気とブラスト材を混合する。ブラスト材の材質はたとえば、ステンレス鋼、アルミ、セラミック及びアルミナ等である。サンドブラスト処理の投射速度等の条件は、適宜設定できる。 [Sandblast processing]
The sandblast treatment is a treatment in which a blast material (abrasive) and compressed air are mixed and projected onto at least one of the pin-
[酸洗処理]
酸洗処理は、硫酸、塩酸、硝酸もしくはフッ酸等の強酸液に、ピン側接触表面34又はボックス側接触表面44の少なくとも一方を浸漬して接触表面34又は44を荒らす処理である。これにより、接触表面34又は44の表面粗さを大きくできる。 [Pickling treatment]
The pickling treatment is a treatment for roughening the contact surface 34 or 44 by immersing at least one of the pin-side contact surface 34 and the box-side contact surface 44 in a strong acid solution such as sulfuric acid, hydrochloric acid, nitric acid or hydrofluoric acid. This can increase the surface roughness of the contact surface 34 or 44.
酸洗処理は、硫酸、塩酸、硝酸もしくはフッ酸等の強酸液に、ピン側接触表面34又はボックス側接触表面44の少なくとも一方を浸漬して接触表面34又は44を荒らす処理である。これにより、接触表面34又は44の表面粗さを大きくできる。 [Pickling treatment]
The pickling treatment is a treatment for roughening the
[化成処理]
化成処理は、表面粗さの大きな多孔質の化成被膜を形成する処理である。化成処理はたとえば、燐酸塩化成処理、蓚酸塩化成処理及び硼酸塩化成処理である。固体潤滑被膜21の密着性の観点からは、燐酸塩化成処理が好ましい。燐酸塩化成処理はたとえば、燐酸マンガン、燐酸亜鉛、燐酸鉄マンガン又は燐酸亜鉛カルシウムを用いた燐酸塩化成処理である。 [Chemical conversion treatment]
The chemical conversion treatment is a treatment for forming a porous chemical conversion film having a large surface roughness. The chemical conversion treatment is, for example, a phosphate chemical conversion treatment, an oxalate chemical conversion treatment, and a borate chemical conversion treatment. From the viewpoint of the adhesion of thesolid lubricating coating 21, the phosphate chemical conversion treatment is preferable. The phosphate chemical conversion treatment is, for example, a phosphate chemical conversion treatment using manganese phosphate, zinc phosphate, iron manganese phosphate or zinc calcium phosphate.
化成処理は、表面粗さの大きな多孔質の化成被膜を形成する処理である。化成処理はたとえば、燐酸塩化成処理、蓚酸塩化成処理及び硼酸塩化成処理である。固体潤滑被膜21の密着性の観点からは、燐酸塩化成処理が好ましい。燐酸塩化成処理はたとえば、燐酸マンガン、燐酸亜鉛、燐酸鉄マンガン又は燐酸亜鉛カルシウムを用いた燐酸塩化成処理である。 [Chemical conversion treatment]
The chemical conversion treatment is a treatment for forming a porous chemical conversion film having a large surface roughness. The chemical conversion treatment is, for example, a phosphate chemical conversion treatment, an oxalate chemical conversion treatment, and a borate chemical conversion treatment. From the viewpoint of the adhesion of the
燐酸塩化成処理は周知の方法で実施できる。処理液としては、一般的な亜鉛めっき材用の酸性燐酸塩化成処理液が使用できる。たとえば、燐酸イオン1~150g/L、亜鉛イオン3~70g/L、硝酸イオン1~100g/L、ニッケルイオン0~30g/Lを含有する燐酸亜鉛系化成処理を挙げることができる。管用ねじ継手に慣用されている燐酸マンガン系化成処理液も使用できる。液温はたとえば、常温から100℃である。処理時間は所望の膜厚に応じて適宜設定でき、たとえば15分である。化成被膜の形成を促すため、燐酸塩化成処理前に、表面調整を行ってもよい。表面調整は、コロイドチタンを含有する表面調整用水溶液に浸漬する処理のことである。燐酸塩化成処理後、水洗又は湯洗してから、乾燥することが好ましい。
The phosphate chemical conversion treatment can be carried out by a well-known method. As the treatment liquid, a general acidic phosphate chemical conversion treatment liquid for galvanized materials can be used. For example, there may be mentioned a zinc phosphate chemical conversion treatment containing 1 to 150 g/L of phosphate ions, 3 to 70 g/L of zinc ions, 1 to 100 g/L of nitrate ions, and 0 to 30 g/L of nickel ions. A manganese phosphate-based chemical conversion treatment liquid commonly used for pipe threaded joints can also be used. The liquid temperature is, for example, room temperature to 100°C. The treatment time can be appropriately set according to the desired film thickness, and is, for example, 15 minutes. In order to promote the formation of the chemical conversion film, the surface may be adjusted before the phosphate chemical conversion treatment. Surface conditioning is a treatment of immersing in a surface conditioning aqueous solution containing colloidal titanium. After the phosphate conversion treatment, it is preferable to wash with water or hot water and then dry.
化成被膜は多孔質である。そのため、化成被膜上に固体潤滑被膜21を形成すれば、いわゆる「アンカー効果」により、固体潤滑被膜21の密着性がさらに高まる。燐酸塩被膜の好ましい厚さは、5~40μmである。燐酸塩被膜の厚さが5μm以上であれば、十分な耐食性が確保できる。燐酸塩被膜の厚さが40μm以下であれば、固体潤滑被膜21の密着性が安定的に高まる。
The chemical conversion coating is porous. Therefore, if the solid lubricating coating 21 is formed on the chemical conversion coating, the adhesion of the solid lubricating coating 21 is further enhanced by the so-called "anchor effect". The preferred thickness of the phosphate coating is 5-40 μm. If the thickness of the phosphate coating is 5 μm or more, sufficient corrosion resistance can be secured. When the thickness of the phosphate coating is 40 μm or less, the adhesiveness of the solid lubricating coating 21 is stably enhanced.
燐酸塩被膜の厚さは、次の方法で求める。燐酸塩被膜を形成した管用ねじ継手を燐酸塩被膜の厚さ方向に(管用ねじ継手の軸方向に対して垂直に)切断する。燐酸塩被膜の断面を、光学顕微鏡を用いて倍率500倍で観察し、燐酸塩被膜の厚さを測定する。上記測定方法により測定した燐酸塩被膜の厚さが10μm以下の場合、切断し直して再度測定する。この場合、管用ねじ継手の軸方向に対して垂直な方向から60°傾いた方向に管用ねじ継手を切断する。得られた燐酸塩被膜の断面を、光学顕微鏡を用いて倍率500倍で観察し、燐酸塩皮膜の厚さを測定する。燐酸塩皮膜の厚さを再度測定した場合、再測定の厚さを、燐酸塩皮膜の厚さとする。
The thickness of the phosphate coating is calculated by the following method. The threaded pipe joint with the phosphate coating is cut in the thickness direction of the phosphate coating (perpendicular to the axial direction of the thread joint for the pipe). The cross section of the phosphate coating is observed with an optical microscope at a magnification of 500 times to measure the thickness of the phosphate coating. When the thickness of the phosphate coating measured by the above measuring method is 10 μm or less, the cutting is performed again by cutting again. In this case, the threaded joint for pipes is cut in a direction inclined by 60° from the direction perpendicular to the axial direction of the threaded joint for pipes. The cross section of the obtained phosphate coating is observed with an optical microscope at a magnification of 500 times to measure the thickness of the phosphate coating. When the thickness of the phosphate coating is measured again, the thickness measured again is the thickness of the phosphate coating.
[Zn合金めっき層形成工程]
Zn合金めっき層形成工程では、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に、電気めっきによりZn合金めっき層を形成する。 [Zn alloy plating layer forming step]
In the Zn alloy plating layer forming step, a Zn alloy plating layer is formed by electroplating on at least one of the pinside contact surface 34 and the box side contact surface 44.
Zn合金めっき層形成工程では、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に、電気めっきによりZn合金めっき層を形成する。 [Zn alloy plating layer forming step]
In the Zn alloy plating layer forming step, a Zn alloy plating layer is formed by electroplating on at least one of the pin
又は、Zn合金めっき層形成工程では、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に形成された表面粗さの上に、電気めっきによりZn合金めっき層を形成する。
Alternatively, in the Zn alloy plating layer forming step, a Zn alloy plating layer is formed by electroplating on the surface roughness formed on at least one of the pin side contact surface 34 and the box side contact surface 44.
Zn合金めっき層形成工程を実施すれば、管用ねじ継手の耐焼付き性及び耐食性が高まる。Zn合金めっき層形成工程はたとえば、Cu、SnもしくはNi金属による単層めっき処理、又はCu-Sn合金による単層めっき処理、Cu層とSn層との2層めっき処理、及び、Ni層、Cu層及びSn層による3層めっき処理である。Cr含有量が5%以上の鋼からなる鋼管1に対しては、Cu-Sn合金めっき処理、Cuめっき-Snめっきの2層めっき処理、及び、Niめっき-Cuめっき-Snめっきの3層めっき処理が好ましい。より好ましいのは、Cuめっき-Snめっきの2層めっき処理、及びNiストライクめっき-Cuめっき-Snめっきの3層めっき処理、Zn-Co合金めっき処理、Cu-Sn-Zn合金めっき処理、及び、Zn-Ni合金めっき処理である。
Conducting the Zn alloy plating layer formation process improves seizure resistance and corrosion resistance of the threaded joint for pipes. The Zn alloy plating layer forming step includes, for example, a single layer plating process using Cu, Sn or Ni metal, a single layer plating process using a Cu—Sn alloy, a two layer plating process including a Cu layer and a Sn layer, and a Ni layer and Cu. It is a three-layer plating process using a layer and a Sn layer. For the steel pipe 1 made of steel having a Cr content of 5% or more, Cu-Sn alloy plating treatment, Cu plating-Sn plating two-layer plating treatment, and Ni plating-Cu plating-Sn plating three-layer plating Treatment is preferred. More preferable are Cu plating-Sn plating two-layer plating treatment, Ni strike plating-Cu plating-Sn plating three-layer plating treatment, Zn-Co alloy plating treatment, Cu-Sn-Zn alloy plating treatment, and Zn-Ni alloy plating treatment.
電気めっき処理は、周知の方法で実施することができる。たとえば、合金めっきに含まれる金属元素のイオンを含む浴を準備する。次に、ピン側接触表面34又はボックス側接触表面44の少なくとも一方を浴に浸漬する。浴に浸漬した接触表面34又は44に通電することにより、ピン側接触表面34上又はボックス側接触表面44上の少なくとも一方に合金めっき皮膜が形成される。浴の温度及びめっき時間等の条件は、適宜設定できる。
The electroplating process can be performed by a known method. For example, a bath containing ions of a metal element contained in alloy plating is prepared. Next, at least one of the pin side contact surface 34 and the box side contact surface 44 is immersed in a bath. By energizing the contact surface 34 or 44 immersed in the bath, an alloy plating film is formed on at least one of the pin side contact surface 34 and the box side contact surface 44. Conditions such as bath temperature and plating time can be appropriately set.
より詳しくは、たとえば、Cu-Sn-Zn合金めっき層を形成する場合、めっき浴は銅イオン、錫イオン及び亜鉛イオンを含有する。めっき浴の組成は好ましくは、Cu:1~50g/L、Sn:1~50g/L及びZn:1~50g/Lである。電気めっきの条件はたとえば、めっき浴pH:1~10、めっき浴温度:60℃、電流密度:1~100A/dm2及び、処理時間:0.1~30分である。
More specifically, for example, when forming a Cu—Sn—Zn alloy plating layer, the plating bath contains copper ions, tin ions and zinc ions. The composition of the plating bath is preferably Cu: 1 to 50 g/L, Sn: 1 to 50 g/L and Zn: 1 to 50 g/L. The electroplating conditions are, for example, a plating bath pH: 1 to 10, a plating bath temperature: 60° C., a current density: 1 to 100 A/dm 2, and a treatment time: 0.1 to 30 minutes.
Zn-Ni合金めっき層を形成する場合、めっき浴は亜鉛イオン及びニッケルイオンを含有する。めっき浴の組成は好ましくは、Zn:1~100g/L及びNi:1~50g/Lである。電気めっきの条件はたとえば、めっき浴pH:1~10、めっき浴温度:60℃、電流密度:1~100A/dm2及び、処理時間:0.1~30分である。
When forming a Zn—Ni alloy plating layer, the plating bath contains zinc ions and nickel ions. The composition of the plating bath is preferably Zn: 1 to 100 g/L and Ni: 1 to 50 g/L. The electroplating conditions are, for example, a plating bath pH: 1 to 10, a plating bath temperature: 60° C., a current density: 1 to 100 A/dm 2, and a treatment time: 0.1 to 30 minutes.
Zn合金めっき層の硬度は、マイクロビッカースで300以上であることが好ましい。Zn合金めっき層の硬度が300以上であれば、管用ねじ継手の耐食性がさらに安定して高まる。
The hardness of the Zn alloy plating layer is preferably 300 or more in micro Vickers. When the hardness of the Zn alloy plating layer is 300 or more, the corrosion resistance of the threaded joint for pipes is more stably enhanced.
Zn合金めっき層の硬度は、次のとおり測定する。得られた管用ねじ継手のZn合金めっき層において、任意の領域を5箇所選択する。選択された各領域において、JIS Z2244(2009)に準拠してビッカース硬さ(HV)を測定する。試験条件はたとえば、試験温度を常温(25℃)とし、試験力を2.94N(300gf)とする。得られた値(合計5個)の平均を、Zn合金めっき層の硬度と定義する。
The hardness of the Zn alloy plating layer is measured as follows. In the Zn alloy plating layer of the obtained threaded joint for pipes, five arbitrary regions are selected. In each selected area, the Vickers hardness (HV) is measured according to JIS Z2244 (2009). The test conditions are, for example, a test temperature of room temperature (25° C.) and a test force of 2.94 N (300 gf). The average of the obtained values (5 in total) is defined as the hardness of the Zn alloy plating layer.
多層めっき処理の場合、最下層のめっき層は、膜厚1μm未満とすることが好ましい。めっき層の膜厚(多層めっきの場合は合計膜厚)は5~15μmとすることが好ましい。
In the case of multi-layer plating, it is preferable that the thickness of the lowermost plating layer be less than 1 μm. The thickness of the plating layer (total thickness in the case of multi-layer plating) is preferably 5 to 15 μm.
Zn合金めっき層の厚さは、次のとおり測定する。Zn合金めっき層を形成した接触表面34又は44上に、ISO(International Organization for Standardization)21968(2005)に準拠する過電流位相式の膜厚測定器のプローブを接触させる。プローブの入力側の高周波磁界と、それにより励起されたZn-Ni合金めっき上の過電流との位相差を測定する。この位相差をZn合金めっき層の厚さに変換する。
Measure the thickness of the Zn alloy plating layer as follows. A probe of an overcurrent phase type film thickness meter conforming to ISO (International Organization for Standardization) 21968 (2005) is brought into contact with the contact surface 34 or 44 on which the Zn alloy plating layer is formed. The phase difference between the high frequency magnetic field on the input side of the probe and the overcurrent excited by it on the Zn—Ni alloy plating is measured. This phase difference is converted into the thickness of the Zn alloy plating layer.
[三価クロメート処理]
上述のZn合金めっき処理を実施した場合、Zn合金めっき処理の後に、三価クロメート処理を実施してもよい。三価クロメート処理とは、三価クロムのクロム酸塩の被膜を形成する処理である。三価クロメート処理により形成される被膜は、Zn合金めっき層の表面の白錆びを抑制する。これにより、製品外観が向上する。(Zn合金めっき層の白錆びは、管用ねじ継手母材の錆ではない。そのため、管用ねじ継手の耐焼付き性及び耐食性に影響は与えない。)三価クロメートによる被膜の上に固体潤滑被膜21を形成すれば、固体潤滑被膜21の密着性がさらに高まる。 [Trivalent chromate treatment]
When the above-mentioned Zn alloy plating treatment is carried out, trivalent chromate treatment may be carried out after the Zn alloy plating treatment. The trivalent chromate treatment is a treatment for forming a chromate film of trivalent chromium. The coating film formed by the trivalent chromate treatment suppresses white rust on the surface of the Zn alloy plating layer. This improves the product appearance. (The white rust of the Zn alloy plating layer is not the rust of the pipe thread joint base material. Therefore, it does not affect the seizure resistance and corrosion resistance of the thread joint for pipe.) Thesolid lubricating film 21 on the trivalent chromate film By forming, the adhesiveness of the solid lubricating coating 21 is further enhanced.
上述のZn合金めっき処理を実施した場合、Zn合金めっき処理の後に、三価クロメート処理を実施してもよい。三価クロメート処理とは、三価クロムのクロム酸塩の被膜を形成する処理である。三価クロメート処理により形成される被膜は、Zn合金めっき層の表面の白錆びを抑制する。これにより、製品外観が向上する。(Zn合金めっき層の白錆びは、管用ねじ継手母材の錆ではない。そのため、管用ねじ継手の耐焼付き性及び耐食性に影響は与えない。)三価クロメートによる被膜の上に固体潤滑被膜21を形成すれば、固体潤滑被膜21の密着性がさらに高まる。 [Trivalent chromate treatment]
When the above-mentioned Zn alloy plating treatment is carried out, trivalent chromate treatment may be carried out after the Zn alloy plating treatment. The trivalent chromate treatment is a treatment for forming a chromate film of trivalent chromium. The coating film formed by the trivalent chromate treatment suppresses white rust on the surface of the Zn alloy plating layer. This improves the product appearance. (The white rust of the Zn alloy plating layer is not the rust of the pipe thread joint base material. Therefore, it does not affect the seizure resistance and corrosion resistance of the thread joint for pipe.) The
三価クロメート処理は、周知の方法で実施できる。たとえば、ピン側接触表面34又はボックス側接触表面44の少なくとも一方をクロメート処理液に浸漬又はクロメート処理液をピン側接触表面34又はボックス側接触表面44の少なくとも一方にスプレー塗布する。その後接触表面を水洗する。あるいは、接触表面34又は44をクロメート処理液に浸漬し、通電した後水洗する。あるいは、接触表面34又は44にクロメート処理液を塗布し、加熱乾燥する。三価クロメートの処理条件は適宜設定することができる。三価クロメート被膜の厚さは、固体潤滑被膜21と同様の方法で測定できる。
The trivalent chromate treatment can be performed by a known method. For example, at least one of the pin-side contact surface 34 and the box-side contact surface 44 is dipped in the chromate treatment liquid or the chromate treatment liquid is sprayed on at least one of the pin-side contact surface 34 and the box-side contact surface 44. Then, the contact surface is washed with water. Alternatively, the contact surface 34 or 44 is dipped in a chromate treatment liquid, and after being energized, washed with water. Alternatively, the chromate treatment liquid is applied to the contact surface 34 or 44 and dried by heating. The treatment conditions of trivalent chromate can be set appropriately. The thickness of the trivalent chromate coating can be measured by the same method as the solid lubricating coating 21.
以上の下地処理は1種類のみを実施してもよいが、複数の下地処理を組み合わせてもよい。1種類の下地処理を実施する場合、サンドブラスト処理、酸洗処理、燐酸塩化成処理及びZn合金めっき処理からなる群から選ばれる少なくとも1種の下地処理を実施することが好ましい。下地処理は、2種類以上を実施してもよい。その場合、たとえば、サンドブラスト処理の後に燐酸塩化成処理を実施する。あるいは、サンドブラスト処理の後にZn合金めっき処理を実施する。あるいは、サンドブラスト処理の後に亜鉛合金めっき処理を実施し、さらに三価クロメート処理を実施する。これらの下地処理を施した後、固体潤滑被膜21を形成する。これにより、固体潤滑被膜21の密着性及び耐食性をさらに高めることができる。
The above-mentioned base treatments may be carried out for only one type, but a plurality of base treatments may be combined. When one kind of undercoating is carried out, it is preferable to carry out at least one kind of undercoating selected from the group consisting of sandblasting, pickling, phosphate chemical conversion and Zn alloy plating. Two or more types of base treatment may be implemented. In that case, for example, the phosphate chemical conversion treatment is carried out after the sandblast treatment. Alternatively, a Zn alloy plating treatment is performed after the sandblast treatment. Alternatively, the zinc alloy plating treatment is performed after the sandblast treatment, and the trivalent chromate treatment is further performed. After performing these base treatments, the solid lubricating coating 21 is formed. Thereby, the adhesion and corrosion resistance of the solid lubricating coating 21 can be further improved.
下地処理は、ピン3とボックス4とで同じ下地処理としてもよいし、ピン3とボックス4とで異なる下地処理を実施してもよい。
As for the base treatment, the same base treatment may be performed on the pin 3 and the box 4, or different base treatment may be performed on the pin 3 and the box 4.
本開示は実施例により制限されるものではない。実施例において、ピンの接触表面をピン表面、ボックスの接触表面をボックス表面という。また、実施例中の%は、特に指定しない限り、質量%である。
The present disclosure is not limited to the embodiments. In the examples, the contact surface of the pin is called the pin surface and the contact surface of the box is called the box surface. In addition,% in the examples is% by mass unless otherwise specified.
締結性能として、耐焼付き性(繰り返し締結試験)及び高トルク性能を実管(長さおよそ12m)により評価した。繰り返し締結試験は締結トルク28450Nmで実施した。締結は、ねじ部の修復不能な焼付き発生もしくは金属シール部の焼付き発生まで実施した。焼付くことなくねじ締め及びねじ戻しを繰り返すことができた回数が5回以上で合格と判断した。
As the fastening performance, seizure resistance (repeated fastening test) and high torque performance were evaluated using a real pipe (length of about 12 m). The repeated fastening test was performed with a fastening torque of 28450 Nm. Fastening was carried out until irreversible seizure of the threaded portion or seizure of the metal seal portion occurred. The number of times that screw tightening and screw returning could be repeated without seizure was judged to be acceptable when the number of times was 5 or more.
実施例においては、日本製鉄(株)製の油井管用ねじ継手VAM21(登録商標)(外径:244.48mm(9インチ5分)、肉厚:11.99mm(0.472インチ))、鋼種は炭素鋼(C:0.25%、Si:0.22%、Mn:0.7%、P:0.02%、S:0.01%、Cu:0.04%、Ni:0.05%、Cr:0.95%、Mo:0.15%、残部:鉄及び不純物)を用いた。
In the examples, screw joints VAM21 (registered trademark) for oil country tubular goods made by Nippon Steel Co., Ltd. (outer diameter: 244.48 mm (9 inches 5 minutes), wall thickness: 11.99 mm (0.472 inches)), steel grade Is carbon steel (C: 0.25%, Si: 0.22%, Mn: 0.7%, P: 0.02%, S: 0.01%, Cu: 0.04%, Ni: 0. 05%, Cr: 0.95%, Mo: 0.15%, balance: iron and impurities).
各試験番号のピン表面及びボックス表面に対し、表1に示す下地処理(適宜)及び本実施形態に係る固体潤滑被膜形成用組成物による固体潤滑被膜又は他の潤滑被膜を形成して、各試験番号のピン及びボックスを準備した。
The surface treatment (appropriate) shown in Table 1 and the solid lubricating coating or the other lubricating coating formed by the composition for forming a solid lubricating coating according to the present embodiment are formed on the pin surface and the box surface of each test number, and each test is performed. Numbered pins and boxes were prepared.
各試験番号のピン表面及びボックス表面に対し、表1に示すとおりの試験番号において、ブラスト加工を実施した。ブラスト加工はサンドブラスト加工(砥粒Mesh100)を実施して、表面粗さを形成した。各試験番号の算術平均粗さRa及び最大高さ粗さRzは表1に示すとおりであった。算術平均粗さRa及び最大高さ粗さRzは、JIS-B0601(2001)に基づいて測定した。算術平均粗さRa及び最大高さ粗さRzの測定には、エスアイアイ・ナノテクノロジー社製 走査型プローブ顕微鏡 SPI3800Nを用いた。測定条件は、取得データ数の単位としてサンプルの2μm×2μmの領域で、取得データ数1024×1024とした。
Blasting was performed on the pin surface and the box surface of each test number with the test numbers as shown in Table 1. The blasting was performed by sandblasting (abrasive grain Mesh100) to form a surface roughness. The arithmetic mean roughness Ra and the maximum height roughness Rz of each test number were as shown in Table 1. The arithmetic average roughness Ra and the maximum height roughness Rz were measured based on JIS-B0601 (2001). A scanning probe microscope SPI3800N manufactured by SII Nano Technology was used to measure the arithmetic average roughness Ra and the maximum height roughness Rz. The measurement conditions were a region of 2 μm×2 μm of the sample as a unit of the number of acquired data, and the number of acquired data was 1024×1024.
その後、表1に示すZn-Ni合金めっき層、Cu-Sn-Zn合金めっき層、固体潤滑被膜を形成して、各試験番号のピン及びボックスを準備した。表1中、「固体潤滑被膜」の欄には、主要成分のみ記載した。固体潤滑被膜の詳細な組成は以下のとおりであった。表1中、「固体潤滑被膜」の欄の「厚さ」には、得られた固体潤滑被膜の厚さを記載する。固体潤滑被膜の厚さの測定方法は上述のとおりであった。
After that, a Zn-Ni alloy plating layer, a Cu-Sn-Zn alloy plating layer, and a solid lubricating coating shown in Table 1 were formed to prepare pins and boxes for each test number. In Table 1, only the main components are described in the column of "solid lubricating coating". The detailed composition of the solid lubricating coating was as follows. In Table 1, "thickness" in the column of "solid lubricating coating" describes the thickness of the obtained solid lubricating coating. The method for measuring the thickness of the solid lubricating coating was as described above.
表1に示すガラスフリットは、表2に示すガラスフリットを用いた。図11に、ガラスフリットAの顕微鏡写真を示す。
The glass frit shown in Table 1 used the glass frit shown in Table 2. FIG. 11 shows a micrograph of glass frit A.
各Zn-Ni合金めっき層、Cu-Sn-Zn合金めっき層、固体潤滑被膜の形成方法は以下のとおりであった。合金めっき層及びその他被膜層の厚さは表1に示すとおりであった。各層の厚さの測定方法は上述のとおりであった。
The method of forming each Zn-Ni alloy plating layer, Cu-Sn-Zn alloy plating layer, and solid lubricating coating was as follows. The thicknesses of the alloy plating layer and other coating layers were as shown in Table 1. The method for measuring the thickness of each layer was as described above.
[試験番号1]
試験番号1では、ピン及びボックス表面に対し、機械研削仕上げを行った。その上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、エポキシ樹脂(残部)、PTFE粒子(20%)、ガラスフリットA(0.8%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、210℃で20分間の固化処理を行い、固体潤滑被膜を形成した。 [Test number 1]
Intest number 1, mechanical grinding finish was performed on the pin and box surfaces. The composition for forming a solid lubricating coating was applied thereon. The composition for forming a solid lubricating coating contained an epoxy resin (the balance), PTFE particles (20%), glass frit A (0.8%), and a solvent (water, alcohol, surfactant). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
試験番号1では、ピン及びボックス表面に対し、機械研削仕上げを行った。その上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、エポキシ樹脂(残部)、PTFE粒子(20%)、ガラスフリットA(0.8%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、210℃で20分間の固化処理を行い、固体潤滑被膜を形成した。 [Test number 1]
In
[試験番号2]
試験番号2では、ピン及びボックス表面に対し、機械研削仕上げを行った。その上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、エポキシ樹脂(残部)、PTFE粒子(10%)、ガラスフリットB(2.0%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、210℃で20分間の固化処理を行い、固体潤滑被膜を形成した。 [Test number 2]
In Test No. 2, mechanical grinding finish was performed on the pin and box surfaces. The composition for forming a solid lubricating coating was applied thereon. The composition for forming a solid lubricating coating contained an epoxy resin (the balance), PTFE particles (10%), glass frit B (2.0%), and a solvent (water, alcohol, surfactant). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
試験番号2では、ピン及びボックス表面に対し、機械研削仕上げを行った。その上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、エポキシ樹脂(残部)、PTFE粒子(10%)、ガラスフリットB(2.0%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、210℃で20分間の固化処理を行い、固体潤滑被膜を形成した。 [Test number 2]
In Test No. 2, mechanical grinding finish was performed on the pin and box surfaces. The composition for forming a solid lubricating coating was applied thereon. The composition for forming a solid lubricating coating contained an epoxy resin (the balance), PTFE particles (10%), glass frit B (2.0%), and a solvent (water, alcohol, surfactant). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
[試験番号3]
試験番号3では、ピン表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するピン表面に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 3]
In Test No. 3, surface roughness was formed on the pin surface by blasting. Zn—Ni alloy plating was performed by electroplating on the pin surface having surface roughness to form a Zn—Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
試験番号3では、ピン表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するピン表面に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 3]
In Test No. 3, surface roughness was formed on the pin surface by blasting. Zn—Ni alloy plating was performed by electroplating on the pin surface having surface roughness to form a Zn—Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
ボックス表面に対し、機械研削仕上げを行った。その上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、エポキシ樹脂(残部)、二硫化モリブデン粒子(10%)、ガラスフリットC(4.0%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、210℃で20分間の固化処理を行い、固体潤滑被膜を形成した。
Mechanical finishing was performed on the box surface. The composition for forming a solid lubricating coating was applied thereon. The composition for forming a solid lubricating coating contained an epoxy resin (the balance), molybdenum disulfide particles (10%), glass frit C (4.0%), and a solvent (water, alcohol, surfactant). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
[試験番号4]
試験番号4では、ピン表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するピン表面に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 4]
In Test No. 4, surface roughness was formed on the pin surface by blasting. Zn—Ni alloy plating was performed by electroplating on the pin surface having surface roughness to form a Zn—Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
試験番号4では、ピン表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するピン表面に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 4]
In Test No. 4, surface roughness was formed on the pin surface by blasting. Zn—Ni alloy plating was performed by electroplating on the pin surface having surface roughness to form a Zn—Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
ボックス表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するボックス表面上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、ポリアミドイミド樹脂(残部)、フッ化黒鉛粒子(10%)、ガラスフリットD(8.0%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、230℃で20分間の固化処理を行い、固体潤滑被膜を形成した。
Surface roughness was formed on the box surface by blasting. Zn-Ni alloy plating was performed by electroplating on the surface of the box having surface roughness to form a Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, the composition for forming a solid lubricating coating was applied on the obtained Zn-Ni alloy plated layer. The composition for forming a solid lubricating coating contained a polyamideimide resin (the balance), fluorinated graphite particles (10%), glass frit D (8.0%), and a solvent (water, alcohol, surfactant). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After drying by heating, solidification treatment was performed at 230° C. for 20 minutes to form a solid lubricating coating.
[試験番号5]
試験番号5では、ピン表面に対し、機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 5]
Intest number 5, the pin surface was subjected to mechanical grinding finish. Zn-Ni alloy plating was performed thereon by electroplating to form a Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
試験番号5では、ピン表面に対し、機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 5]
In
ボックス表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するボックス表面上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、フェノール樹脂(残部)、PTFE粒子(15%)、ガラスフリットA(10.0%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、230℃で20分間の固化処理を行い、固体潤滑被膜を形成した。
Surface roughness was formed on the box surface by blasting. Zn-Ni alloy plating was performed by electroplating on the surface of the box having surface roughness to form a Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, the composition for forming a solid lubricating coating was applied on the obtained Zn-Ni alloy plated layer. The composition for forming a solid lubricating coating contained a phenol resin (the balance), PTFE particles (15%), glass frit A (10.0%), and a solvent (water, alcohol, surfactant). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After drying by heating, solidification treatment was performed at 230° C. for 20 minutes to form a solid lubricating coating.
[試験番号6]
試験番号6では、ピン表面に対し、機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 6]
Intest number 6, the pin surface was mechanically ground. Zn-Ni alloy plating was performed thereon by electroplating to form a Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
試験番号6では、ピン表面に対し、機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 6]
In
ボックス表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するボックス表面上に、電気めっきによりCu-Sn-Zn合金めっきを実施して、Cu-Sn-Zn合金めっき層を形成した。Cu-Sn-Zn合金めっき浴は、日本化学産業株式会社製のめっき浴を用いた。Cu-Sn-Zn合金めっき層は電気めっきにより形成された。電気めっきの条件は、めっき浴pH:14、めっき浴温度:45℃、電流密度:2A/dm2及び、処理時間:40分であった。Cu-Sn-Zn合金めっき層の組成は、Cu:60%、Sn:30%、Zn:10%であった。さらに、得られたCu-Sn-Zn合金めっき層上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、ポリアミド樹脂(残部)、黒鉛粒子(5%)、ガラスフリットA(8.0%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、230℃で20分間の固化処理を行い、固体潤滑被膜を形成した。
Surface roughness was formed on the box surface by blasting. Cu-Sn-Zn alloy plating was carried out by electroplating on the surface of the box having a surface roughness to form a Cu-Sn-Zn alloy plating layer. As the Cu-Sn-Zn alloy plating bath, a plating bath manufactured by Nippon Kagaku Sangyo Co., Ltd. was used. The Cu-Sn-Zn alloy plating layer was formed by electroplating. The electroplating conditions were: plating bath pH: 14, plating bath temperature: 45° C., current density: 2 A/dm 2, and treatment time: 40 minutes. The composition of the Cu—Sn—Zn alloy plated layer was Cu: 60%, Sn: 30%, Zn: 10%. Further, the composition for forming a solid lubricating coating was applied on the obtained Cu—Sn—Zn alloy plated layer. The composition for forming a solid lubricating coating contained a polyamide resin (the balance), graphite particles (5%), glass frit A (8.0%), and a solvent (water, alcohol, surfactant). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After drying by heating, solidification treatment was performed at 230° C. for 20 minutes to form a solid lubricating coating.
[試験番号7]
試験番号7では、ピン表面に対し、機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 7]
Intest number 7, the pin surface was mechanically ground. Zn-Ni alloy plating was performed thereon by electroplating to form a Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
試験番号7では、ピン表面に対し、機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 7]
In
ボックス表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するボックス表面上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、エポキシ樹脂(残部)、PTFE粒子(10%)、ガラスフリットA(15.0%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、210℃で20分間の固化処理を行い、固体潤滑被膜を形成した。
Surface roughness was formed on the box surface by blasting. Zn-Ni alloy plating was performed by electroplating on the surface of the box having surface roughness to form a Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, the composition for forming a solid lubricating coating was applied on the obtained Zn-Ni alloy plated layer. The composition for forming a solid lubricating coating contained an epoxy resin (the balance), PTFE particles (10%), glass frit A (15.0%), and a solvent (water, alcohol, surfactant). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
[試験番号8]
試験番号8では、ピン表面に対し機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 8]
Intest number 8, the pin surface was mechanically ground. Zn-Ni alloy plating was performed thereon by electroplating to form a Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
試験番号8では、ピン表面に対し機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 8]
In
ボックス表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するボックス表面上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。電気めっきの条件はピン表面と同様であった。Zn-Ni合金めっき層の上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、エポキシ樹脂(残部)、PTFE粒子(10%)、溶媒(水、アルコール、界面活性剤)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、210℃で20分間の固化処理を行い、固体潤滑被膜を形成した。
The surface roughness was formed on the box surface by blasting. Zn-Ni alloy plating was performed by electroplating on the surface of the box having surface roughness to form a Zn-Ni alloy plating layer. The electroplating conditions were the same as for the pin surface. The composition for forming a solid lubricating coating was applied onto the Zn-Ni alloy plating layer. The composition for forming a solid lubricating coating contained an epoxy resin (the balance), PTFE particles (10%), and a solvent (water, alcohol, surfactant). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
[試験番号9]
試験番号9では、ピン及びボックス表面に対し、機械研削仕上げを行った。その上に、API規格ドープを刷毛で塗布した。API規格ドープとは、API Bul 5A2に準拠して製造された油井管用ねじ用コンパウンドグリースである。API規格ドープの組成はグリースを基材とし、質量%で、黒鉛粉:18±1.0%、鉛粉:30.5±0.6%、及び銅フレーク:3.3±0.3%含有すると規定されている。なお、この成分範囲においては、油井管用ねじ用コンパウンドグリースは同等の性能を有すると理解されている。 [Test number 9]
In Test No. 9, mechanical grinding finish was performed on the pin and box surfaces. Then, the API standard dope was applied with a brush. The API standard dope is a compound grease for oil well pipe threads manufactured according to API Bul 5A2. The composition of the API standard dope is based on grease, and in mass%, graphite powder: 18±1.0%, lead powder: 30.5±0.6%, and copper flakes: 3.3±0.3% It is regulated to contain. In this component range, it is understood that the compound grease for oil country tubular goods screws has equivalent performance.
試験番号9では、ピン及びボックス表面に対し、機械研削仕上げを行った。その上に、API規格ドープを刷毛で塗布した。API規格ドープとは、API Bul 5A2に準拠して製造された油井管用ねじ用コンパウンドグリースである。API規格ドープの組成はグリースを基材とし、質量%で、黒鉛粉:18±1.0%、鉛粉:30.5±0.6%、及び銅フレーク:3.3±0.3%含有すると規定されている。なお、この成分範囲においては、油井管用ねじ用コンパウンドグリースは同等の性能を有すると理解されている。 [Test number 9]
In Test No. 9, mechanical grinding finish was performed on the pin and box surfaces. Then, the API standard dope was applied with a brush. The API standard dope is a compound grease for oil well pipe threads manufactured according to API Bul 5A2. The composition of the API standard dope is based on grease, and in mass%, graphite powder: 18±1.0%, lead powder: 30.5±0.6%, and copper flakes: 3.3±0.3% It is regulated to contain. In this component range, it is understood that the compound grease for oil country tubular goods screws has equivalent performance.
[試験番号10]
試験番号10では、ピン表面に対し、機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 10]
In Test No. 10, the pin surface was mechanically ground and finished. Zn-Ni alloy plating was performed thereon by electroplating to form a Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
試験番号10では、ピン表面に対し、機械研削仕上げを行った。その上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。 [Test number 10]
In Test No. 10, the pin surface was mechanically ground and finished. Zn-Ni alloy plating was performed thereon by electroplating to form a Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. The electroplating conditions were: plating bath pH: 6.5, plating bath temperature: 25° C., current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn—Ni alloy plating layer was Zn:85% and Ni:15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plated layer to form a film. As the trivalent chromate treatment liquid, Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used. The trivalent chromate treatment conditions were: bath pH: 4.0, bath temperature: 25° C., and treatment time: 50 seconds.
ボックス表面に対し、ブラスト加工により表面粗さを形成した。表面粗さを有するボックス表面上に、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。電気めっきの条件はピン表面と同様であった。Zn-Ni合金めっき層の上に、固体潤滑被膜形成用組成物を塗布した。固体潤滑被膜形成用組成物は、フェノール樹脂(残部)、PTFE粒子(15%)、溶媒(水、アルコール、界面活性剤)、ガラス繊維を模擬した丸尾カルシウム株式会社製ウィスカ-(商品名)ウイスカルA(10%)を含有した。固体潤滑被膜形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、210℃で20分間の固化処理を行い、固体潤滑被膜を形成した。
The surface roughness was formed on the box surface by blasting. Zn-Ni alloy plating was performed by electroplating on the surface of the box having surface roughness to form a Zn-Ni alloy plating layer. The electroplating conditions were the same as for the pin surface. The composition for forming a solid lubricating coating was applied onto the Zn-Ni alloy plating layer. The composition for forming a solid lubricating coating is phenol resin (the balance), PTFE particles (15%), solvent (water, alcohol, surfactant), whisker (trade name) whisker manufactured by Maruo Calcium Co., Ltd. simulating glass fiber. It contained A (10%). The composition for forming a solid lubricating coating was applied by spraying, and then dried by heating at 90° C. for 5 minutes. After heating and drying, solidification treatment was performed at 210° C. for 20 minutes to form a solid lubricating coating.
[高トルク性能評価試験]
試験番号1~試験番号10のピン及びボックスを用いて、トルクオンショルダー抵抗ΔT’を測定した。具体的には、締付け速度10rpm、締付けトルク42.8kN・mでねじ締めを行った。ねじ締めの際にトルクを測定し、図10に示す様なトルクチャートを作成した。図10中のTsは、ショルダリングトルクを現す。図10中のMTVは、線分Lと、トルクチャートとが交わるトルク値を現す。線分Lは、ショルダリング後のトルクチャートにおける線形域の傾きと同じ傾きを持ち、同線形域と比べて回転数が0.2%多い直線である。通常、トルクオンショルダー抵抗ΔT’を測定する場合には、Ty(イールドトルク)を使用する。しかしながら、本実施例では、イールドトルク(ショルダリング後におけるトルクチャートにおける、線形域と非線形域との境界)が不明瞭であった。そのため、線分Lを用いて、MTVを規定した。MTVとTsとの差分を、本実施例のトルクオンショルダー抵抗ΔT’とした。トルクオンショルダー抵抗ΔT’は、試験番号9において、固体潤滑被膜の代わりにAPI規格ドープを使用した際のトルクオンショルダー抵抗ΔT’の数値を基準(100)として求めた、各試験番号のトルクオンショルダー抵抗ΔT’の相対値である。結果を表3に示す。 [High torque performance evaluation test]
The torque-on-shoulder resistance ΔT′ was measured using the pins and boxes oftest numbers 1 to 10. Specifically, the screw was tightened at a tightening speed of 10 rpm and a tightening torque of 42.8 kN·m. The torque was measured when tightening the screw, and a torque chart as shown in FIG. 10 was created. Ts in FIG. 10 represents shouldering torque. MTV in FIG. 10 represents a torque value at which the line segment L and the torque chart intersect. The line segment L is a straight line having the same slope as that of the linear region in the torque chart after shouldering and having the rotational speed increased by 0.2% as compared with the linear region. Normally, Ty (yield torque) is used when measuring the torque on-shoulder resistance ΔT′. However, in this embodiment, the yield torque (the boundary between the linear range and the non-linear range in the torque chart after shouldering) was unclear. Therefore, the line segment L is used to define MTV. The difference between MTV and Ts was set as the torque on-shoulder resistance ΔT′ in this embodiment. The torque-on-shoulder resistance ΔT′ was obtained by using the numerical value of the torque-on-shoulder resistance ΔT′ when the API standard dope was used instead of the solid lubricating coating in Test No. 9 as a reference (100). It is a relative value of the shoulder resistance ΔT′. The results are shown in Table 3.
試験番号1~試験番号10のピン及びボックスを用いて、トルクオンショルダー抵抗ΔT’を測定した。具体的には、締付け速度10rpm、締付けトルク42.8kN・mでねじ締めを行った。ねじ締めの際にトルクを測定し、図10に示す様なトルクチャートを作成した。図10中のTsは、ショルダリングトルクを現す。図10中のMTVは、線分Lと、トルクチャートとが交わるトルク値を現す。線分Lは、ショルダリング後のトルクチャートにおける線形域の傾きと同じ傾きを持ち、同線形域と比べて回転数が0.2%多い直線である。通常、トルクオンショルダー抵抗ΔT’を測定する場合には、Ty(イールドトルク)を使用する。しかしながら、本実施例では、イールドトルク(ショルダリング後におけるトルクチャートにおける、線形域と非線形域との境界)が不明瞭であった。そのため、線分Lを用いて、MTVを規定した。MTVとTsとの差分を、本実施例のトルクオンショルダー抵抗ΔT’とした。トルクオンショルダー抵抗ΔT’は、試験番号9において、固体潤滑被膜の代わりにAPI規格ドープを使用した際のトルクオンショルダー抵抗ΔT’の数値を基準(100)として求めた、各試験番号のトルクオンショルダー抵抗ΔT’の相対値である。結果を表3に示す。 [High torque performance evaluation test]
The torque-on-shoulder resistance ΔT′ was measured using the pins and boxes of
[耐焼付き性評価試験]
試験番号1~試験番号10のピン及びボックスを用いて、ハンドタイト(人力で締結する状態)により、締結初期にねじがかみ合うまで締結した。ハンドタイトでの締結後、パワートングでねじ締め及びねじ戻しを繰り返し、耐焼付き性を評価した。ねじ締め及びねじ戻しを1回行うごとに、ピン表面及びボックス表面を目視により観察した。目視観察により、焼付きの発生状況を確認した。焼付きが軽微であり、回復可能な場合には、焼付き疵を補修して試験を続行した。回復不能な焼付きを生ずることなく、ねじ締め及びねじ戻しができた回数を測定した。結果を表3の「耐焼付き性(焼付かずに締結できた回数(回))」欄に示す。 [Seizure resistance evaluation test]
Using the pins and boxes of Test No. 1 to Test No. 10, they were tightened by hand tight (manually fastened state) until the screws were engaged at the initial stage of fastening. After fastening with Handtight, screw tightening and unscrewing were repeated with power tongs to evaluate seizure resistance. The surface of the pin and the surface of the box were visually observed each time the screw was tightened and the screw was unscrewed once. The occurrence of seizure was confirmed by visual observation. If the seizure was slight and recoverable, the seizure defect was repaired and the test was continued. The number of times the screw was tightened and unscrewed without causing irreversible seizure was measured. The results are shown in the column of "Seizure resistance (number of times of fastening without seizure (times))" in Table 3.
試験番号1~試験番号10のピン及びボックスを用いて、ハンドタイト(人力で締結する状態)により、締結初期にねじがかみ合うまで締結した。ハンドタイトでの締結後、パワートングでねじ締め及びねじ戻しを繰り返し、耐焼付き性を評価した。ねじ締め及びねじ戻しを1回行うごとに、ピン表面及びボックス表面を目視により観察した。目視観察により、焼付きの発生状況を確認した。焼付きが軽微であり、回復可能な場合には、焼付き疵を補修して試験を続行した。回復不能な焼付きを生ずることなく、ねじ締め及びねじ戻しができた回数を測定した。結果を表3の「耐焼付き性(焼付かずに締結できた回数(回))」欄に示す。 [Seizure resistance evaluation test]
Using the pins and boxes of Test No. 1 to Test No. 10, they were tightened by hand tight (manually fastened state) until the screws were engaged at the initial stage of fastening. After fastening with Handtight, screw tightening and unscrewing were repeated with power tongs to evaluate seizure resistance. The surface of the pin and the surface of the box were visually observed each time the screw was tightened and the screw was unscrewed once. The occurrence of seizure was confirmed by visual observation. If the seizure was slight and recoverable, the seizure defect was repaired and the test was continued. The number of times the screw was tightened and unscrewed without causing irreversible seizure was measured. The results are shown in the column of "Seizure resistance (number of times of fastening without seizure (times))" in Table 3.
なお、試験番号9においては、ねじ締め及びねじ戻しを1回行うごとに、新しくAPI規格ドープを塗りなおした。これは、通常、API規格ドープは、ねじ締め及びねじ戻しを1回行うごとに新しく塗りなおして使用されているためである。また、API規格ドープはそのような使用方法しか想定されていない。一方、試験番号1~8及び試験番号10では、試験終了まで固体潤滑被膜を形成しなおすことなしに試験を続けた。
In Test No. 9, a new API standard dope was reapplied every time screw tightening and screw unscrewing were performed. This is because the API standard dope is usually repainted and used again each time screwing and unscrewing are performed. In addition, the API standard dope is supposed only for such usage. On the other hand, in Test Nos. 1 to 8 and Test No. 10, the test was continued until the test was completed without re-forming the solid lubricating coating.
[評価結果]
表1及び表3を参照して、試験番号1~試験番号7の管用ねじ継手は、ピン及びボックスの少なくとも一方の接触表面に、固体潤滑被膜を有した。固体潤滑被膜は、結合剤と、潤滑剤と、ガラスフリットとを含有した。そのため、試験番号1~試験番号7の管用ねじ継手は、トルクオンショルダー抵抗ΔT’が100を超え、優れた高トルク性能を示した。 [Evaluation results]
With reference to Table 1 and Table 3, the threaded joints for pipes of Test Nos. 1 to 7 had a solid lubricating coating on the contact surface of at least one of the pin and the box. The solid lubricating coating contained a binder, a lubricant, and a glass frit. Therefore, the threaded joints for pipes of Test Nos. 1 to 7 had torque-on-shoulder resistance ΔT' of over 100, and showed excellent high torque performance.
表1及び表3を参照して、試験番号1~試験番号7の管用ねじ継手は、ピン及びボックスの少なくとも一方の接触表面に、固体潤滑被膜を有した。固体潤滑被膜は、結合剤と、潤滑剤と、ガラスフリットとを含有した。そのため、試験番号1~試験番号7の管用ねじ継手は、トルクオンショルダー抵抗ΔT’が100を超え、優れた高トルク性能を示した。 [Evaluation results]
With reference to Table 1 and Table 3, the threaded joints for pipes of Test Nos. 1 to 7 had a solid lubricating coating on the contact surface of at least one of the pin and the box. The solid lubricating coating contained a binder, a lubricant, and a glass frit. Therefore, the threaded joints for pipes of Test Nos. 1 to 7 had torque-on-shoulder resistance ΔT' of over 100, and showed excellent high torque performance.
試験番号1~試験番号6の管用ねじ継手はさらに、固体潤滑被膜のガラスフリット含有量が0.01~10.0質量%であった。そのため、ガラスフリット含有量が15.0質量%であった試験番号7と比較して、耐焼付き性が優れた。
Further, in the threaded joints for pipes of Test Nos. 1 to 6, the glass frit content of the solid lubricating coating was 0.01 to 10.0% by mass. Therefore, the seizure resistance was excellent as compared with Test No. 7 in which the glass frit content was 15.0% by mass.
一方、試験番号8の管用ねじ継手は、ボックス表面に固体潤滑被膜を有したものの、固体潤滑被膜がガラスフリットを含有しなかった。そのため、優れた高トルク性能が得られなかった。
On the other hand, the pipe threaded joint of Test No. 8 had a solid lubricating coating on the box surface, but the solid lubricating coating did not contain glass frit. Therefore, excellent high torque performance could not be obtained.
試験番号9は従来のコンパウンドグリースを使用した比較例である。
Test number 9 is a comparative example using a conventional compound grease.
試験番号10は、固体潤滑被膜に、ガラスフリットの代わりにガラス繊維を含有させた場合を模擬して試験した。しかしながら、ガラス繊維では、優れた高トルク性能が得られなかった。図12に、ウイスカルの顕微鏡写真を示す。
Test No. 10 was tested by simulating the case where glass fibers were contained in the solid lubricating coating instead of the glass frit. However, with glass fiber, excellent high torque performance could not be obtained. FIG. 12 shows a micrograph of the whiskers.
以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
The embodiments of the present disclosure have been described above. However, the embodiments described above are merely examples for implementing the present disclosure. Therefore, the present disclosure is not limited to the above-described embodiments, and can be implemented by appropriately modifying the above-described embodiments without departing from the spirit thereof.
1 鋼管
2 カップリング
3 ピン
4 ボックス
21 固体潤滑被膜
31 ピン側ねじ部
32 ピン側金属シール部
33 ピン側ショルダー部
34 ピン側接触表面
41 ボックス側ねじ部
42 ボックス側金属シール部
43 ボックス側ショルダー部
44 ボックス側接触表面 1Steel Pipe 2 Coupling 3 Pin 4 Box 21 Solid Lubrication Film 31 Pin Side Screw Part 32 Pin Side Metal Seal Part 33 Pin Side Shoulder Part 34 Pin Side Contact Surface 41 Box Side Screw Part 42 Box Side Metal Seal Part 43 Box Side Shoulder Part 44 Box side contact surface
2 カップリング
3 ピン
4 ボックス
21 固体潤滑被膜
31 ピン側ねじ部
32 ピン側金属シール部
33 ピン側ショルダー部
34 ピン側接触表面
41 ボックス側ねじ部
42 ボックス側金属シール部
43 ボックス側ショルダー部
44 ボックス側接触表面 1
Claims (10)
- 管用ねじ継手であって、
ピン側ねじ部を含むピン側接触表面を有するピンと、
ボックス側ねじ部を含むボックス側接触表面を有するボックスと、
前記ピン側接触表面上又は前記ボックス側接触表面上の少なくとも一方に、結合剤、潤滑剤及びガラスフリットを含有する固体潤滑被膜とを備える、管用ねじ継手。 A threaded joint for pipes,
A pin having a pin-side contact surface including a pin-side threaded portion,
A box having a box-side contact surface including a box-side threaded portion,
A threaded joint for pipes, comprising a solid lubricating coating containing a binder, a lubricant and a glass frit on at least one of the pin side contact surface and the box side contact surface. - 請求項1に記載の管用ねじ継手であって、
前記固体潤滑被膜は、
0.01~10.0質量%の前記ガラスフリットを含有する、管用ねじ継手。 The pipe threaded joint according to claim 1,
The solid lubricating coating is
A threaded joint for pipes, which contains 0.01 to 10.0% by mass of the glass frit. - 請求項1又は請求項2に記載の管用ねじ継手であって、
前記ガラスフリットは、質量%で、
SiO2:40~70%、
Al2O3:1~20%、
CaO:0.1~25%、
B2O3:0~40%、
MgO:0~3%、
Na2O:0~15%、
K2O:0~10%、及び
ZnO:0~10%を含有する、管用ねじ継手。 The pipe threaded joint according to claim 1 or 2, wherein
The glass frit is in mass %,
SiO 2 : 40-70%,
Al 2 O 3 : 1-20%,
CaO: 0.1-25%,
B 2 O 3 : 0-40%,
MgO: 0-3%,
Na 2 O: 0-15%,
A threaded joint for pipes containing K 2 O: 0-10% and ZnO: 0-10%. - 請求項1~請求項3のいずれか1項に記載の管用ねじ継手であって、
前記結合剤は、エポキシ樹脂、フェノール樹脂、フラン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂、ウレタン樹脂及びポリエーテルエーテルケトン樹脂からなる群から選ばれる1種又は2種以上である、管用ねじ継手。 The threaded joint for pipes according to any one of claims 1 to 3,
The binder is one or more kinds selected from the group consisting of epoxy resin, phenol resin, furan resin, polyamideimide resin, polyamide resin, polyimide resin, urethane resin and polyetheretherketone resin, a threaded joint for pipes .. - 請求項1~請求項4のいずれか1項に記載の管用ねじ継手であって、
前記潤滑剤は、二硫化モリブデン、黒鉛、ポリテトラフルオロエチレン及びフッ化黒鉛からなる群から選ばれる1種又は2種以上である、管用ねじ継手。 The threaded joint for pipes according to any one of claims 1 to 4,
A threaded joint for pipes, wherein the lubricant is one or more selected from the group consisting of molybdenum disulfide, graphite, polytetrafluoroethylene and fluorinated graphite. - 請求項1~請求項5のいずれか1項に記載の管用ねじ継手であって、
前記ピンはさらに、ピン側金属シール部及びピン側ショルダー部を含み、
前記ボックスはさらに、ボックス側金属シール部及びボックス側ショルダー部を含む、管用ねじ継手。 The threaded joint for pipes according to any one of claims 1 to 5,
The pin further includes a pin side metal seal portion and a pin side shoulder portion,
The box further includes a pipe threaded joint including a box-side metal seal portion and a box-side shoulder portion. - 管用ねじ継手の製造方法であって、
ピン側ねじ部を含むピン側接触表面を有するピンと、ボックス側ねじ部を含むボックス側接触表面を有するボックスと、結合剤、潤滑剤及びガラスフリットを含有する固体潤滑被膜形成用組成物とを準備する工程と、
前記ピン側接触表面上又は前記ボックス側接触表面上の少なくとも一方に、前記固体潤滑被膜形成用組成物を塗布した後固化させて固体潤滑被膜を形成する工程とを備える、管用ねじ継手の製造方法。 A method for manufacturing a pipe threaded joint, comprising:
Preparing a pin having a pin side contact surface including a pin side thread portion, a box having a box side contact surface including a box side screw portion, and a composition for forming a solid lubricating coating containing a binder, a lubricant and a glass frit The process of
A method for producing a threaded joint for pipes, comprising the steps of applying the composition for forming a solid lubricating coating and then solidifying the composition to form a solid lubricating coating on at least one of the pin-side contact surface or the box-side contact surface. .. - 請求項7に記載の管用ねじ継手の製造方法であってさらに、
前記固体潤滑被膜を形成する工程の前に、
前記ピン側接触表面上及び前記ボックス側接触表面上の少なくとも一方に、電気めっきによりZn合金めっき層を形成する工程を備える、管用ねじ継手の製造方法。 The method for manufacturing a threaded joint for pipes according to claim 7, further comprising:
Before the step of forming the solid lubricating coating,
A method for manufacturing a threaded joint for pipes, comprising the step of forming a Zn alloy plating layer by electroplating on at least one of the pin-side contact surface and the box-side contact surface. - 請求項8に記載の管用ねじ継手の製造方法であってさらに、
前記電気めっきによりZn合金めっき層を形成する工程の前に、
前記ピン側接触表面及び前記ボックス側接触表面の少なくとも一方を粗くする工程を備える、管用ねじ継手の製造方法。 The method for producing a threaded joint for pipes according to claim 8, further comprising:
Before the step of forming the Zn alloy plating layer by the electroplating,
A method for manufacturing a threaded joint for pipe, comprising a step of roughening at least one of the pin-side contact surface and the box-side contact surface. - 請求項7~請求項9のいずれか1項に記載の管用ねじ継手の製造方法であって、
前記ピンはさらに、ピン側金属シール部及びピン側ショルダー部を含み、
前記ボックスはさらに、ボックス側金属シール部及びボックス側ショルダー部を含む、管用ねじ継手の製造方法。 A method for manufacturing the threaded joint for pipes according to any one of claims 7 to 9,
The pin further includes a pin side metal seal portion and a pin side shoulder portion,
The said box is a manufacturing method of the threaded joint for pipes which further includes a box side metal seal part and a box side shoulder part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020566433A JPWO2020149310A1 (en) | 2019-01-16 | 2020-01-15 | Manufacturing method of threaded joints for pipes and threaded joints for pipes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-004852 | 2019-01-16 | ||
JP2019004852 | 2019-01-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020149310A1 true WO2020149310A1 (en) | 2020-07-23 |
Family
ID=71613921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/001097 WO2020149310A1 (en) | 2019-01-16 | 2020-01-15 | Threaded joint for pipes and method for manufacturing threaded joint for pipes |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2020149310A1 (en) |
AR (1) | AR117811A1 (en) |
WO (1) | WO2020149310A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230595A1 (en) * | 2021-04-28 | 2022-11-03 | 日本製鉄株式会社 | Steel pipe for oil well |
WO2022255169A1 (en) * | 2021-05-31 | 2022-12-08 | Jfeスチール株式会社 | Chemical agent, oil well pipe, and screw joint for oil well pipe |
JP2024530808A (en) * | 2021-09-07 | 2024-08-23 | ヴァルレック オイル アンド ガス フランス | Solid lubricant for Zn-Ni on tubular threaded elements |
RU2834697C2 (en) * | 2021-05-31 | 2025-02-12 | ДжФЕ СТИЛ КОРПОРЕЙШН | Means for forming film of solid lubricant coating, oil and gas field pipes and threaded connection for oil and gas field pipes |
US12312552B2 (en) | 2021-05-31 | 2025-05-27 | Jfe Steel Corporation | Agent for forming solid lubricating coating film, oil country tubular goods, threaded joint for oil country tubular goods, and method for manufacturing oil country tubular goods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002257270A (en) * | 2001-02-27 | 2002-09-11 | Sumitomo Metal Ind Ltd | Threaded fittings for oil country tubular goods |
JP2002348587A (en) * | 2001-05-24 | 2002-12-04 | Sumitomo Metal Ind Ltd | Screw joints for steel pipes |
JP2013545946A (en) * | 2010-11-10 | 2013-12-26 | ヴァルレック・マンネスマン・オイル・アンド・ガス・フランス | Process for coating threaded tubular components, threaded tubular components and resulting connections |
WO2018216416A1 (en) * | 2017-05-22 | 2018-11-29 | 新日鐵住金株式会社 | Threaded joint for pipe and method for producing threaded joint for pipe |
-
2020
- 2020-01-13 AR ARP200100084A patent/AR117811A1/en unknown
- 2020-01-15 WO PCT/JP2020/001097 patent/WO2020149310A1/en active Application Filing
- 2020-01-15 JP JP2020566433A patent/JPWO2020149310A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002257270A (en) * | 2001-02-27 | 2002-09-11 | Sumitomo Metal Ind Ltd | Threaded fittings for oil country tubular goods |
JP2002348587A (en) * | 2001-05-24 | 2002-12-04 | Sumitomo Metal Ind Ltd | Screw joints for steel pipes |
JP2013545946A (en) * | 2010-11-10 | 2013-12-26 | ヴァルレック・マンネスマン・オイル・アンド・ガス・フランス | Process for coating threaded tubular components, threaded tubular components and resulting connections |
WO2018216416A1 (en) * | 2017-05-22 | 2018-11-29 | 新日鐵住金株式会社 | Threaded joint for pipe and method for producing threaded joint for pipe |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230595A1 (en) * | 2021-04-28 | 2022-11-03 | 日本製鉄株式会社 | Steel pipe for oil well |
JPWO2022230595A1 (en) * | 2021-04-28 | 2022-11-03 | ||
JP7531055B2 (en) | 2021-04-28 | 2024-08-08 | 日本製鉄株式会社 | Oil well steel pipes |
WO2022255169A1 (en) * | 2021-05-31 | 2022-12-08 | Jfeスチール株式会社 | Chemical agent, oil well pipe, and screw joint for oil well pipe |
JP7193681B1 (en) * | 2021-05-31 | 2022-12-20 | Jfeスチール株式会社 | Chemicals, oil country tubular goods, and oil country tubular goods threaded joints |
EP4332204A4 (en) * | 2021-05-31 | 2024-08-28 | JFE Steel Corporation | CHEMICAL AGENT, OIL WELL PIPE AND SCREW JOINT FOR OIL WELL PIPE |
RU2834697C2 (en) * | 2021-05-31 | 2025-02-12 | ДжФЕ СТИЛ КОРПОРЕЙШН | Means for forming film of solid lubricant coating, oil and gas field pipes and threaded connection for oil and gas field pipes |
US12312552B2 (en) | 2021-05-31 | 2025-05-27 | Jfe Steel Corporation | Agent for forming solid lubricating coating film, oil country tubular goods, threaded joint for oil country tubular goods, and method for manufacturing oil country tubular goods |
JP2024530808A (en) * | 2021-09-07 | 2024-08-23 | ヴァルレック オイル アンド ガス フランス | Solid lubricant for Zn-Ni on tubular threaded elements |
Also Published As
Publication number | Publication date |
---|---|
AR117811A1 (en) | 2021-08-25 |
JPWO2020149310A1 (en) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11435014B2 (en) | Threaded connection for pipes or tubes and method for producing the threaded connection for pipes or tubes | |
WO2020149310A1 (en) | Threaded joint for pipes and method for manufacturing threaded joint for pipes | |
EP2128506B1 (en) | Screw joint for steel pipe | |
JP6815498B2 (en) | Manufacturing method of threaded joints for pipes and threaded joints for pipes | |
US20040195825A1 (en) | Threaded joint for steel pipes | |
WO2018003455A1 (en) | Screw joint for pipe and manufacturing method for screw joint for pipe | |
JP7583817B2 (en) | Metallic pipe for oil well and method for manufacturing the same | |
CN113286869B (en) | Composition and threaded joint for pipe having lubricating coating layer made of the composition | |
EP3696256B1 (en) | Composition, and threaded connection for pipes or tubes including lubricant coating layer formed from the composition | |
JP2018123349A (en) | Screw joint for tube and manufacturing method of screw joint for tube | |
JP2018123831A (en) | Screw joint for pipe and manufacturing method of screw joint for pipe | |
OA19360A (en) | Threaded joint for pipe and method for producing threaded joint for pipe. | |
EA045795B1 (en) | METAL PIPE FOR OIL WELL AND METHOD OF ITS MANUFACTURE | |
WO2023063384A1 (en) | Metal pipe for oil wells | |
JP2024106003A (en) | Metallic pipe for oil well and composition for forming lubricating coating on metallic pipe for oil well | |
WO2023063385A1 (en) | Metal pipe for oil wells | |
OA19598A (en) | Composition and threaded joint for pipes provided with lubricating coating film layer that is formed from said composition. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20741883 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020566433 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20741883 Country of ref document: EP Kind code of ref document: A1 |