WO2020144815A1 - Method for controlling power conditioner and system interconnection inverter device - Google Patents
Method for controlling power conditioner and system interconnection inverter device Download PDFInfo
- Publication number
- WO2020144815A1 WO2020144815A1 PCT/JP2019/000547 JP2019000547W WO2020144815A1 WO 2020144815 A1 WO2020144815 A1 WO 2020144815A1 JP 2019000547 W JP2019000547 W JP 2019000547W WO 2020144815 A1 WO2020144815 A1 WO 2020144815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- grid
- inverter device
- commercial
- power conditioner
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 19
- 238000004891 communication Methods 0.000 claims abstract description 26
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 8
- 230000002265 prevention Effects 0.000 claims description 26
- 238000001514 detection method Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 37
- 238000010586 diagram Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/66—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal
Definitions
- the present invention relates to a power conditioner that can supply electric power supplied from a storage battery mounted on an electric vehicle or the like to an electric load device, and a method for controlling a grid interconnection inverter device.
- V2H Vehicle to Home
- storage battery an electric load device
- the DC power generated by the solar cell is converted into AC power by the grid-connected inverter device that is connected to the commercial grid.
- a power conditioner for an electric vehicle is used to charge a storage battery with surplus power of the converted AC power or to supply electric power charged with the storage battery to an electric load device.
- a power conditioner for an electric vehicle is a power conversion device including a power converter, a filter circuit, a control circuit, an auxiliary battery, and the like.
- the power conditioner for an electric vehicle is abbreviated as "power conditioner” as appropriate.
- the control circuit can be operated by using the auxiliary battery built in the electric vehicle power conditioner as a power source, even if the commercial system is cut off due to a natural disaster or the like.
- the DC voltage supplied from the storage battery is converted into an AC voltage and supplied to the grid-connected inverter apparatus, so that the grid-connected inverter apparatus can be operated in the same manner as when there is no power failure.
- the electric power generated by the solar cell can be used to supply electric power to household electrical load devices even during a power failure of the commercial system, and the electric power generated by the solar cell can be secured. It will be possible.
- the power from the electric vehicle power conditioner and the grid interconnection inverter device is prevented from being continuously supplied to the accident point, which is the point where the accident occurred.
- the automotive power conditioner opens a switch provided between the grid interconnection inverter device and the commercial grid. As a result, the grid interconnection inverter device is disconnected from the commercial grid.
- the grid-connected inverter device is operated independently so that the grid-connected inverter device can be prevented from continuing to supply power to the accident point when the commercial power system fails. It describes the requirements for implementing prevention functions. More specifically, the grid-connected inverter device is required to have an islanding operation detection function that combines a passive system and an active system so as not to be in an islanding state mainly from the viewpoint of security. Has been done.
- the isolated operation state means a state in which the system continues to operate in a state where the power generation equipment or the like is not disconnected from the grid when the grid is stopped.
- the grid-connected inverter device when the grid-connected inverter device is operated by the power conditioner during a power failure of the commercial grid, the grid-connected inverter device uses the AC voltage generated by the power conditioner for commercial operation.
- the voltage output from the grid in other words, is regarded as the voltage simulating the commercial grid, and the interconnection operation is performed.
- the filter circuit, etc., provided in the power conditioner with the minimum necessary in order to reduce costs. Therefore, the quality of the AC voltage generated by the power conditioner is lower than that of the AC voltage generated by the commercial system.
- the grid interconnection inverter device outputs reactive power so as to promote the frequency change due to the frequency fluctuation of the degraded voltage, and the operation is stopped by the islanding detection function of the islanding prevention function. There was something. Further, since the specifications of the islanding operation detection function of the grid interconnection inverter device differ depending on the product, even a slight harmonic component or a slight frequency variation may be detected and promoted.
- the conventional V2H system has a problem that the grid-connected inverter device may stop operating due to the deteriorated AC voltage output from the power conditioner.
- the present invention has been made in view of the above, and provides a power conditioner capable of suppressing the operation stop of the grid interconnection inverter device that may occur due to the quality of the AC voltage output from the power conditioner.
- the purpose is to get.
- the present invention is a power conditioner that exchanges electric power with a grid-connected inverter device that is connected to a commercial grid.
- the power conditioner includes a bidirectional power converter that mutually converts DC power supplied from an external DC power supply and AC power supplied from the commercial grid side, a power converter, a grid interconnection inverter device, and a commercial grid.
- a first switch that electrically opens and closes between the commercial system
- a second switch that electrically opens and closes between the power converter and the interconnecting point.
- Switch and communication means for enabling communication between the power conditioner and the grid interconnection inverter device.
- the power conditioner electrically opens the first switch, disables the islanding prevention function of the system interconnection inverter device, and then shifts to the self-sustained operation mode.
- the power conditioner of the present invention it is possible to prevent the operation stop of the grid interconnection inverter device that may occur due to the quality of the AC voltage output from the power conditioner.
- FIG. 3 is a block diagram showing another example of the hardware configuration for realizing the function of the control circuit according to the first and second embodiments.
- FIG. 1 is a configuration diagram of a grid interconnection system including a power conditioner 1 according to the first embodiment.
- the components of the power conditioner 1 according to the first embodiment are shown together with the external components connected to the power conditioner 1.
- the power conditioner 1 includes a power converter 2, a system disconnection switch 9 that is a first switch, and an interconnection system that is a second switch. It includes a relay 10 and a control circuit 11 as a control means. Further, the power conditioner 1 includes a power supply circuit 12, a secondary battery opening circuit breaker 13, a secondary battery 14 that is an auxiliary battery, a communication circuit 15 that is a communication unit, and a communication cable 16.
- An electric vehicle 3, an operation monitor 6, a commercial grid 5, a grid-connected inverter device 7, and an electric load device 8 are connected to the power conditioner 1.
- the electric vehicle 3 includes a storage battery 30.
- the power conditioner 1 exchanges electric power with the commercial system 5, the system interconnection inverter device 7, and the storage battery 30. Further, the power conditioner 1 supplies electric power to the electric load device 8.
- the electric vehicle 3 is an example of an external DC power supply and is not limited to this. Instead of the electric vehicle 3, a stationary storage battery may be used.
- the system interconnection inverter device 7 is a power conversion device that is connected to the commercial system 5.
- the solar cell panel 4 is connected to the grid interconnection inverter device 7.
- the solar cell panel 4 may be a single solar cell string or a single solar cell string.
- the solar cell panel 4 may be any power supply device or power supply system connected to the grid interconnection inverter device 7, and may be other than the solar cell panel.
- the communication circuit 15 and the communication cable 16 enable communication between the power conditioner 1 and the grid interconnection inverter device 7.
- the power conditioner 1 uses the communication circuit 15 to perform required communication with the grid interconnection inverter device 7.
- FIG. 1 illustrates a configuration in which the communication circuit 15 and the grid interconnection inverter device 7 are connected by the communication cable 16, the configuration is not limited to this.
- the communication circuit 15 and the grid interconnection inverter device 7 may be connected via another device, or may be connected by wireless communication means.
- the power converter 2 includes a DC/DC converter 20, a DC/AC converter 21, and a gate drive circuit 22.
- the DC/DC converter 20 converts the first DC power supplied from the storage battery 30 included in the electric vehicle 3 into the second DC power and supplies the second DC power to the DC/AC converter 21. Further, the DC/DC converter 20 converts the second DC power supplied from the DC/AC converter 21 into the first DC power and supplies the first DC power to the storage battery 30. That is, the DC/DC converter 20 is a bidirectional DC/DC converter that mutually converts the first DC power and the second DC power. Generally, the second DC power is higher in DC voltage than the first DC power, but the voltage of the first DC power and the voltage of the second DC power are the same. Alternatively, the first DC power may have a higher voltage than the second DC power.
- the DC/AC converter 21 converts the second DC power supplied from the DC/DC converter 20 into AC power and outputs the AC power to the interconnection relay 10 side. Further, the DC/AC converter 21 converts the AC power supplied from the interconnection relay 10 side into second DC power and supplies the second DC power to the DC/DC converter 20. That is, the DC/AC converter 21 is a bidirectional DC/AC converter that mutually converts the second DC power and the AC power.
- the interconnection relay 10 side may be restated as the commercial system 5 side or the system interconnection inverter device 7 side.
- the control circuit 11 generates a control signal for controlling a switching element (not shown) included in the DC/DC converter 20 and the DC/AC converter 21, and outputs the control signal to the gate drive circuit 22.
- the gate drive circuit 22 generates a drive signal based on the control signal to drive each switching element.
- the power converter 2 Since each of the DC/DC converter 20 and the DC/AC converter 21 is a bidirectional power converter, the power converter 2 also operates as a bidirectional power converter. When viewed as a whole of the power converter 2, the power converter 2 converts the first DC power supplied from the storage battery 30 into AC power and outputs the AC power to the interconnection relay 10 side. Further, the power converter 2 converts the AC power supplied from the interconnection relay 10 side into the first DC power and supplies the first DC power to the storage battery 30. That is, the power converter 2 is a bidirectional power converter that mutually converts the DC power supplied from the storage battery 30 and the AC power supplied from the commercial grid 5 side or the grid interconnection inverter device 7 side. ..
- each of the power converter 2, the grid-connected inverter device 7, the commercial grid 5, and the electric load device 8 is electrically connected to a grid point 17. That is, the interconnection point 17 is a connection point to which the power converter 2, the grid interconnection inverter device 7, the commercial grid 5, and the electric load device 8 are electrically connected.
- a switch 9 for disconnecting the system is provided between the interconnection point 17 and the commercial system 5. Further, an interconnection relay 10 is provided between the interconnection point 17 and the power converter 2. That is, in the configuration of FIG. 1, between the commercial grid 5 and the grid point 17 to which the power converter 2, the grid-connected inverter device 7, the commercial grid 5, and the electric load device 8 are electrically connected, respectively. It is configured to be electrically connected via a system disconnecting switch 9, and the power converter 2 and the interconnection point 17 are electrically connected by an interconnection relay 10.
- the control circuit 11 controls the opening/closing operations of the system disconnecting switch 9 and the interconnection relay 10.
- the system disconnection switch 9 opens and closes the electrical connection between the commercial system 5 and the interconnection point 17. Specifically, when the system disconnection switch 9 is controlled to be closed, the commercial system 5 and the interconnection point 17 are electrically connected. When the system disconnection switch 9 is controlled to be opened, the commercial system 5 and the interconnection point 17 are electrically opened, and the power conditioner 1 and the commercial system 5 are electrically disconnected.
- the interconnection relay 10 opens and closes the electrical connection between the power converter 2 and the interconnection point 17. Specifically, when the interconnection relay 10 is controlled to be closed, the power converter 2 and the interconnection point 17 are electrically connected. When the interconnection relay 10 is controlled to be open, the power converter 2 and the interconnection point 17 are electrically opened.
- the grid-connected inverter device is equipped with the islanding prevention function to prevent the grid-connected inverter device from continuing to supply power to the accident point when the commercial grid fails.
- the method for realizing the islanding prevention function is roughly classified into a passive method and an active method.
- the passive method is a method that detects an isolated operation by detecting a phenomenon such as a voltage phase change or a sudden frequency change that may occur when the commercial grid loses power and the grid-connected inverter device enters the independent operation state.
- the grid interconnection inverter device outputs an active signal for varying the voltage or the frequency to the commercial system, and increases the variation in the voltage or the frequency when the commercial system fails.
- This is a method for detecting isolated operation.
- a frequency feedback system with step injection is widely used, which has features that it can detect an isolated operation state at high speed, there is no mutual interference between the same systems, and it does not perform unnecessary operation at the time of system disturbance.
- This system can detect the islanding operation at high speed by injecting reactive power sharply from the frequency change rate of the system so as to further promote the frequency change.
- the islanding detection function operates regardless of whether or not there is a grid, and it is necessary to avoid unnecessary injection of reactive power when the grid is normal. Therefore, when the system is normal and the frequency change is small, it is required not to inject the reactive power or to reduce the injection amount.
- the switching of the self-sustained operation function can be performed using the operation monitor 6, for example.
- the power conditioner 1 is equipped with a power supply circuit 12, a secondary battery opening circuit breaker 13, and a secondary battery 14 as a configuration for starting the control circuit 11 in the self-sustained operation mode. ..
- the circuit breaker 13 for opening the secondary battery is provided to prevent the secondary battery 14 from discharging. For example, when the power conditioner 1 is not used for a long period of time such as when the product is shipped, the secondary battery opening circuit breaker 13 is opened.
- FIG. 2 is a diagram showing a flow chart of the activation sequence in the first embodiment.
- FIG. 2 shows a start-up sequence until the power conditioner 1 switches to the independent operation and the grid interconnection inverter device 7 starts the grid interconnection operation. Note that the reference numerals are omitted in FIG.
- the power conditioner 1 and the grid interconnection inverter device 7 stop their operations due to the protection function such as a system abnormality.
- the interconnection relay 10 and the system disconnection switch 9 are controlled to open.
- the power conditioner 1 and the grid interconnection inverter device 7 are disconnected from the commercial grid 5, that is, electrically disconnected from the commercial grid 5.
- the electrical connection between the power conditioner 1 and the electric vehicle 3 is also opened.
- the circuit breaker 13 for opening the secondary battery drives the control circuit 11 of the power conditioner 1, and therefore is controlled to be in the closed state if it is in the open state, or maintains that state if it is in the closed state.
- step S1 when the operation mode of the power conditioner 1 is switched to the independent operation mode by operating the operation monitor 6, the power conditioner 1 and the grid interconnection inverter device 7 are electrically connected to the commercial grid 5. In order to prevent this, the system disconnecting switch 9 is controlled to be open (step S1).
- step S3 the islanding prevention function of the grid interconnection inverter device 7 is invalidated.
- the control of step S3 is performed by communication between the power conditioner 1 and the grid interconnection inverter device 7 using the communication circuit 15.
- the power conditioner 1 sends a command for disabling the islanding prevention function to the grid interconnection inverter device 7 via the communication circuit 15.
- the grid interconnection inverter device 7 receives this command and disables the islanding prevention function according to the contents of the command.
- the islanding prevention function that is disabled may be only the active method or both the active method and the passive method.
- step S4 the power conditioner 1 starts independent operation (step S4).
- the interconnection relay 10 is controlled to be closed. That is, the power conditioner 1 shifts to the self-sustained operation after the islanding prevention function of the grid interconnection inverter device 7 is set to be invalid.
- the output voltage of the power conditioner 1 is added to the output of the interconnection inverter device 7 (step S5).
- the DC output voltage of the solar cell panel 4 and the AC voltage simulating the commercial grid 5 are applied to the grid interconnection inverter device 7. Therefore, the grid interconnection inverter device 7 starts the grid interconnection operation as in the case where the commercial grid 5 is normal (step S6).
- the voltage generated by the power conditioner 1 is used as the voltage output from the commercial power system 5 in the self-sustained operation when the commercial power system 5 fails.
- the grid-connected inverter device 7 When the grid-connected inverter device 7 is considered to operate, the islanding prevention function of the grid-connected inverter device 7 is disabled by the communication means built between the power conditioner 1 and the grid-connected inverter device 7. .. As a result, it is possible to prevent the grid interconnection inverter device 7 from stopping due to the islanding prevention function. As a result, even if the commercial system 5 fails, the electric power generated by the solar cell panel 4 can be effectively used.
- the grid interconnection inverter device 7 regards the output voltage of the power conditioner 1 during the self-sustained operation as the grid voltage and continues the grid interconnection operation.
- the output voltage of the power conditioner 1 is inferior in quality such as large waveform distortion as compared with the commercial system. Therefore, depending on the product specifications of the grid-connected inverter device 7, the output voltage of poor quality output from the power conditioner 1 causes the isolated operation prevention function, which is a protection function, to operate, and the operation of the grid-connected inverter device 7 to operate. Can stop.
- the islanding prevention function is a function for disconnecting the system interconnection inverter device 7 that is connected to the commercial system 5 from the commercial system 5 when the commercial system 5 fails. ..
- the commercial system 5 and the system interconnection inverter device 7 are electrically connected inside the power conditioner 1 and are not electrically connected outside the power conditioner 1.
- the composition Therefore, if the commercial system 5 and the grid interconnection inverter device 7 are disconnected by the power conditioner 1, the commercial grid 5 and the grid interconnection inverter device 7 are not interconnected, so It is possible to disable the driving prevention function. Accordingly, it is possible to prevent the operation stop of the grid interconnection inverter device 7 that may occur due to the quality of the AC voltage output from the power conditioner 1.
- the islanding prevention function of the grid interconnection inverter device 7 is disabled by the communication means between the power conditioner 1 and the grid interconnection inverter device 7. can do. This makes it possible to disable the islanding prevention function of the grid-connected inverter device 7 without being affected by the specifications of the grid-connected inverter device 7. The generated power can be used reliably and stably.
- FIG. 3 is a flowchart showing an operation sequence according to the second embodiment.
- FIG. 3 shows an operation sequence when the power conditioner 1 switches from the independent operation mode to the interconnection operation mode. Similar to FIG. 2, reference numerals are omitted in FIG.
- the basic configuration is the same as or equivalent to the configuration of the first embodiment shown in FIG. 1, and a description of the specific configuration will be omitted.
- the power conditioner 1 and the grid-connected inverter device 7 will stop operating due to a protection function such as a system error.
- the interconnection relay 10 and the system disconnection switch 9 are controlled to open.
- the power conditioner 1 and the grid interconnection inverter device 7 are disconnected from the commercial grid 5, that is, electrically disconnected from the commercial grid 5.
- the electrical connection between the power conditioner 1 and the electric vehicle 3 is also opened.
- the circuit breaker 13 for opening the secondary battery drives the control circuit 11 of the power conditioner 1, and therefore is controlled to be in the closed state if it is in the open state, or maintains that state if it is in the closed state.
- step S11 when the commercial system 5 is restored, when the operation mode of the power conditioner 1 is switched to the interconnection operation mode by the operation of the operation monitor 6, the power conditioner 1 is stopped and the interconnection relay 10 Is controlled to open (step S11).
- step S12 After the processing of step S12, the electrical connection between the power conditioner 1 and the electric vehicle 3 is released (step S13), and the system disconnection switch 9 is controlled to be closed (step S14).
- step S14 the switch 9 for system disconnection is controlled to be closed, the interconnection relay 10 is controlled to be closed, and the power conditioner 1 starts interconnection operation (step S15).
- the independent operation prevention function of the grid interconnection inverter device 7 is automatically switched. Done in. As a result, it is possible to prevent the grid-connected inverter device 7 from running in an interconnected manner while the islanding prevention function is disabled. This makes it possible to comply with the grid interconnection regulations.
- FIG. 4 is a block diagram showing an example of a hardware configuration for realizing the function of the control circuit 11 in the first and second embodiments.
- FIG. 5 is a block diagram showing another example of the hardware configuration for realizing the function of the control circuit 11 in the first and second embodiments.
- a processor 200 that performs an operation and a program read by the processor 200 are stored.
- the memory 202 and the interface 204 for inputting/outputting signals can be included.
- the processor 200 may be a computing unit such as a computing device, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
- the memory 202 is a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM).
- a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and a BD (Blu-ray (registered trademark) Disk) can be exemplified.
- a program for executing the function of the control circuit 11 is stored in the memory 202.
- the processor 200 sends and receives necessary information via the interface 204, the processor 200 executes the program stored in the memory 202, and the processor 200 refers to the table stored in the memory 202 to perform the above-described arithmetic processing. It can be performed.
- the calculation result by the processor 200 can be stored in the memory 202.
- Information input by operating the operation monitor 6 can be loaded into the processor 200 or the memory 202 via the interface 204. Further, the processing result of the processor 200 can be displayed on the operation monitor 6 via the interface 204.
- the processor 200 and the memory 202 shown in FIG. 4 may be replaced with the processing circuit 203 as shown in FIG.
- the processing circuit 203 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
A power conditioner (1) is provided with: a bidirectional power converter (2) for converting DC power supplied from an electric vehicle (3) and AC power supplied from a commercial system (5) side to each other; a system parallel-off switch (9) for electrically switching between the commercial system (5) and an interconnection point (17) to which the power converter (2), a system interconnection inverter device (7), and the commercial system (5) are each electrically connected; an interconnection relay (10) for electrically switching between the power converter (2) and the interconnection point (17); and a communication circuit (15) for enabling communication between the power conditioner (1) and the system interconnection inverter device (7). When the commercial system (5) is failed, the power conditioner (1) electrically opens the system parallel-off switch (9) and transitions to an autonomous operation after disabling the stand-alone operation protection function of the system interconnection inverter device (7).
Description
本発明は、電気自動車などに搭載される蓄電池から供給される電力を電気負荷機器へ供給することができるパワーコンディショナ、及び系統連系インバータ装置の制御方法に関する。
The present invention relates to a power conditioner that can supply electric power supplied from a storage battery mounted on an electric vehicle or the like to an electric load device, and a method for controlling a grid interconnection inverter device.
近年、電気自動車の駆動用車載電池(以下、「蓄電池」と呼ぶ)を電気負荷機器に利用するシステムであるV2H(Vehicle to Home)システムが普及しつつある。このV2Hシステムでは、商用系統に連系する系統連系インバータ装置によって、太陽電池で発電された直流電力が交流電力に変換される。V2Hシステムでは、変換された交流電力のうちの余剰電力を蓄電池に充電したり、蓄電池に充電された電力を電気負荷機器に給電したりするために、電気自動車用パワーコンディショナが利用されている。電気自動車用パワーコンディショナは、電力変換器、フィルタ回路、制御回路、補助電池等を具備する電力変換装置である。以下、電気自動車用パワーコンディショナを、適宜「パワーコンディショナ」と略す。
In recent years, a V2H (Vehicle to Home) system, which is a system that uses an in-vehicle battery for driving an electric vehicle (hereinafter, referred to as “storage battery”) as an electric load device, is becoming popular. In this V2H system, the DC power generated by the solar cell is converted into AC power by the grid-connected inverter device that is connected to the commercial grid. In the V2H system, a power conditioner for an electric vehicle is used to charge a storage battery with surplus power of the converted AC power or to supply electric power charged with the storage battery to an electric load device. .. A power conditioner for an electric vehicle is a power conversion device including a power converter, a filter circuit, a control circuit, an auxiliary battery, and the like. Hereinafter, the power conditioner for an electric vehicle is abbreviated as "power conditioner" as appropriate.
上記V2Hシステムでは、自然災害などで商用系統が停電した場合でも、電気自動車用パワーコンディショナに内蔵された補助電池を電源として制御回路を動作させることができる。これにより、蓄電池から供給される直流電圧を交流電圧に変換して、系統連系インバータ装置に供給することで非停電時と同じように系統連系インバータ装置を動作させることができる。これにより、V2Hシステムでは、商用系統の停電時においても、太陽電池の発電電力を利用して、家庭内の電気負荷機器に電力を供給することができ、太陽電池が発電した分の電力確保が可能となる。
In the V2H system described above, the control circuit can be operated by using the auxiliary battery built in the electric vehicle power conditioner as a power source, even if the commercial system is cut off due to a natural disaster or the like. As a result, the DC voltage supplied from the storage battery is converted into an AC voltage and supplied to the grid-connected inverter apparatus, so that the grid-connected inverter apparatus can be operated in the same manner as when there is no power failure. As a result, in the V2H system, the electric power generated by the solar cell can be used to supply electric power to household electrical load devices even during a power failure of the commercial system, and the electric power generated by the solar cell can be secured. It will be possible.
また、V2Hシステムでは、商用系統が停電した場合、電気自動車用パワーコンディショナ及び系統連系インバータ装置からの電力が、事故が生起した地点である事故点に供給され続けることを回避するため、電気自動車用パワーコンディショナは、系統連系インバータ装置と商用系統との間に設けられた開閉器を開放する。これにより、系統連系インバータ装置は、商用系統から切り離される。
In addition, in the V2H system, when the commercial system is cut off, the power from the electric vehicle power conditioner and the grid interconnection inverter device is prevented from being continuously supplied to the accident point, which is the point where the accident occurred. The automotive power conditioner opens a switch provided between the grid interconnection inverter device and the commercial grid. As a result, the grid interconnection inverter device is disconnected from the commercial grid.
また、下記非特許文献1には、商用系統が停電した場合において、系統連系インバータ装置が事故点に電力を供給し続けることが回避されるように、系統連系インバータ装置には、単独運転防止機能を実装することの要求が記載されている。より詳細に説明すると、系統連系インバータ装置には、主に保安面の観点から、単独運転状態にならないように、受動的方式と能動的方式とを組み合わせた単独運転検出機能を有することが要求されている。ここで、単独運転状態とは、系統停止時において、発電設備等が系統から解列されない状態で運転を継続する状態を意味している。
Further, in Non-Patent Document 1 below, the grid-connected inverter device is operated independently so that the grid-connected inverter device can be prevented from continuing to supply power to the accident point when the commercial power system fails. It describes the requirements for implementing prevention functions. More specifically, the grid-connected inverter device is required to have an islanding operation detection function that combines a passive system and an active system so as not to be in an islanding state mainly from the viewpoint of security. Has been done. Here, the isolated operation state means a state in which the system continues to operate in a state where the power generation equipment or the like is not disconnected from the grid when the grid is stopped.
上記のように、従来のV2Hシステムでは、商用系統の停電時において、パワーコンディショナによって系統連系インバータ装置を動作させる場合、系統連系インバータ装置は、パワーコンディショナによって生成された交流電圧が商用系統から出力される電圧、別言すると商用系統を模擬した電圧であるとみなして連系動作する。
As described above, in the conventional V2H system, when the grid-connected inverter device is operated by the power conditioner during a power failure of the commercial grid, the grid-connected inverter device uses the AC voltage generated by the power conditioner for commercial operation. The voltage output from the grid, in other words, is regarded as the voltage simulating the commercial grid, and the interconnection operation is performed.
ところが、パワーコンディショナに具備されるフィルタ回路等は、コスト削減のために必要最低限のもので構成することが一般的である。このため、パワーコンディショナによって生成される交流電圧は、商用系統によって生成される交流電圧と比較すると、交流電圧の品質が低下している。その結果、系統連系インバータ装置は、品質の低下した電圧の周波数変動により、周波数変化を助長するように無効電力が出力され、単独運転防止機能のうちの単独運転検出機能によって、動作を停止することがあった。また、系統連系インバータ装置の単独運転検出機能は、製品によって仕様が異なるため、僅かな高調波成分、又は僅かな周波数変動でも、それらを検出して助長させることもあった。
However, it is general to configure the filter circuit, etc., provided in the power conditioner with the minimum necessary in order to reduce costs. Therefore, the quality of the AC voltage generated by the power conditioner is lower than that of the AC voltage generated by the commercial system. As a result, the grid interconnection inverter device outputs reactive power so as to promote the frequency change due to the frequency fluctuation of the degraded voltage, and the operation is stopped by the islanding detection function of the islanding prevention function. There was something. Further, since the specifications of the islanding operation detection function of the grid interconnection inverter device differ depending on the product, even a slight harmonic component or a slight frequency variation may be detected and promoted.
以上のように、従来のV2Hシステムでは、パワーコンディショナから出力される品質の低下した交流電圧が原因で、系統連系インバータ装置が動作を停止する場合があるという課題があった。
As described above, the conventional V2H system has a problem that the grid-connected inverter device may stop operating due to the deteriorated AC voltage output from the power conditioner.
本発明は、上記に鑑みてなされたものであって、パワーコンディショナから出力される交流電圧の品質に起因して生じ得る系統連系インバータ装置の動作停止を抑止することができるパワーコンディショナを得ることを目的とする。
The present invention has been made in view of the above, and provides a power conditioner capable of suppressing the operation stop of the grid interconnection inverter device that may occur due to the quality of the AC voltage output from the power conditioner. The purpose is to get.
上述した課題を解決し、目的を達成するために、本発明は、商用系統に連系する系統連系インバータ装置との間で電力の授受を行うパワーコンディショナである。パワーコンディショナは、外部直流電源から供給される直流電力と商用系統側から供給される交流電力とを相互に変換する双方向の電力変換器と、電力変換器、系統連系インバータ装置及び商用系統のそれぞれが電気的に接続される連系点と、商用系統との間を電気的に開閉する第1の開閉器と、電力変換器と連系点との間を電気的に開閉する第2の開閉器と、パワーコンディショナと系統連系インバータ装置との間の通信を可能とする通信手段と、を備える。パワーコンディショナは、商用系統が停電した場合には、第1の開閉器を電気的に開放し、系統連系インバータ装置の単独運転防止機能を無効にした後に自立運転動作に移行する。
In order to solve the above-mentioned problems and to achieve the object, the present invention is a power conditioner that exchanges electric power with a grid-connected inverter device that is connected to a commercial grid. The power conditioner includes a bidirectional power converter that mutually converts DC power supplied from an external DC power supply and AC power supplied from the commercial grid side, a power converter, a grid interconnection inverter device, and a commercial grid. Each of which is electrically connected to each other, a first switch that electrically opens and closes between the commercial system, and a second switch that electrically opens and closes between the power converter and the interconnecting point. Switch and communication means for enabling communication between the power conditioner and the grid interconnection inverter device. When the commercial power system fails, the power conditioner electrically opens the first switch, disables the islanding prevention function of the system interconnection inverter device, and then shifts to the self-sustained operation mode.
本発明に係るパワーコンディショナによれば、パワーコンディショナから出力される交流電圧の品質に起因して生じ得る系統連系インバータ装置の動作停止を抑止することができるという効果を奏する。
According to the power conditioner of the present invention, it is possible to prevent the operation stop of the grid interconnection inverter device that may occur due to the quality of the AC voltage output from the power conditioner.
以下に、本発明の実施の形態に係るパワーコンディショナ及び系統連系インバータ装置の制御方法を図面に基づいて詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。
A control method of the power conditioner and the grid interconnection inverter device according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to the embodiments described below.
実施の形態1.
図1は、実施の形態1に係るパワーコンディショナ1を含む系統連系システムの構成図である。図1では、実施の形態1に係るパワーコンディショナ1の構成要素が、パワーコンディショナ1に接続される外部の構成要素と共に示されている。Embodiment 1.
FIG. 1 is a configuration diagram of a grid interconnection system including apower conditioner 1 according to the first embodiment. In FIG. 1, the components of the power conditioner 1 according to the first embodiment are shown together with the external components connected to the power conditioner 1.
図1は、実施の形態1に係るパワーコンディショナ1を含む系統連系システムの構成図である。図1では、実施の形態1に係るパワーコンディショナ1の構成要素が、パワーコンディショナ1に接続される外部の構成要素と共に示されている。
FIG. 1 is a configuration diagram of a grid interconnection system including a
実施の形態1に係るパワーコンディショナ1は、図1に示すように、電力変換器2と、第1の開閉器である系統解列用開閉器9と、第2の開閉器である連系リレー10と、制御手段である制御回路11と、を備える。また、パワーコンディショナ1は、電源回路12と、二次電池開放用遮断器13と、補助電池である二次電池14と、通信手段である通信回路15及び通信ケーブル16と、を備える。
As shown in FIG. 1, the power conditioner 1 according to the first embodiment includes a power converter 2, a system disconnection switch 9 that is a first switch, and an interconnection system that is a second switch. It includes a relay 10 and a control circuit 11 as a control means. Further, the power conditioner 1 includes a power supply circuit 12, a secondary battery opening circuit breaker 13, a secondary battery 14 that is an auxiliary battery, a communication circuit 15 that is a communication unit, and a communication cable 16.
パワーコンディショナ1には、電気自動車3、操作モニタ6、商用系統5、系統連系インバータ装置7、及び電気負荷機器8が接続される。電気自動車3は、蓄電池30を備える。パワーコンディショナ1は、商用系統5、系統連系インバータ装置7及び蓄電池30との間で電力の授受を行う。また、パワーコンディショナ1は、電気負荷機器8に電力を供給する。なお、電気自動車3は、外部直流電源の一例であり、これに限定されない。電気自動車3に代えて、据え置き型の蓄電池を使用してもよい。
An electric vehicle 3, an operation monitor 6, a commercial grid 5, a grid-connected inverter device 7, and an electric load device 8 are connected to the power conditioner 1. The electric vehicle 3 includes a storage battery 30. The power conditioner 1 exchanges electric power with the commercial system 5, the system interconnection inverter device 7, and the storage battery 30. Further, the power conditioner 1 supplies electric power to the electric load device 8. The electric vehicle 3 is an example of an external DC power supply and is not limited to this. Instead of the electric vehicle 3, a stationary storage battery may be used.
系統連系インバータ装置7は、商用系統5に連系する電力変換装置である。系統連系インバータ装置7には、太陽電池パネル4が接続される。太陽電池パネル4は、単一もしくは複数を単一にまとめた太陽電池ストリングでもよい。太陽電池パネル4は、系統連系インバータ装置7に接続される電源装置又は電源システムであればよく、太陽電池パネル以外でもよい。
The system interconnection inverter device 7 is a power conversion device that is connected to the commercial system 5. The solar cell panel 4 is connected to the grid interconnection inverter device 7. The solar cell panel 4 may be a single solar cell string or a single solar cell string. The solar cell panel 4 may be any power supply device or power supply system connected to the grid interconnection inverter device 7, and may be other than the solar cell panel.
通信回路15及び通信ケーブル16によって、パワーコンディショナ1と系統連系インバータ装置7との間の通信が可能になる。パワーコンディショナ1は、通信回路15を使用して系統連系インバータ装置7との間で所要の通信を行う。なお、図1は、通信回路15と系統連系インバータ装置7とが通信ケーブル16で接続される構成を例示しているが、これに限定されない。通信回路15と系統連系インバータ装置7とが、別の機器を介して接続されていてもよいし、無線通信手段により接続される構成でもよい。
The communication circuit 15 and the communication cable 16 enable communication between the power conditioner 1 and the grid interconnection inverter device 7. The power conditioner 1 uses the communication circuit 15 to perform required communication with the grid interconnection inverter device 7. Although FIG. 1 illustrates a configuration in which the communication circuit 15 and the grid interconnection inverter device 7 are connected by the communication cable 16, the configuration is not limited to this. The communication circuit 15 and the grid interconnection inverter device 7 may be connected via another device, or may be connected by wireless communication means.
電力変換器2は、直流直流変換器20と、直流交流変換器21と、ゲート駆動回路22と、を備える。
The power converter 2 includes a DC/DC converter 20, a DC/AC converter 21, and a gate drive circuit 22.
直流直流変換器20は、電気自動車3に具備される蓄電池30から供給される第1の直流電力を第2の直流電力に変換して直流交流変換器21に供給する。また、直流直流変換器20は、直流交流変換器21から供給される第2の直流電力を第1の直流電力に変換して蓄電池30に供給する。即ち、直流直流変換器20は、第1の直流電力と第2の直流電力とを相互に変換する双方向の直流直流変換器である。一般的に、第2の直流電力は、第1の直流電力よりも高電圧の直流電力であるが、第1の直流電力の電圧と、第2の直流電力の電圧とが同じ電圧であってもよいし、第1の直流電力が第2の直流電力よりも高電圧の直流電力であってもよい。
The DC/DC converter 20 converts the first DC power supplied from the storage battery 30 included in the electric vehicle 3 into the second DC power and supplies the second DC power to the DC/AC converter 21. Further, the DC/DC converter 20 converts the second DC power supplied from the DC/AC converter 21 into the first DC power and supplies the first DC power to the storage battery 30. That is, the DC/DC converter 20 is a bidirectional DC/DC converter that mutually converts the first DC power and the second DC power. Generally, the second DC power is higher in DC voltage than the first DC power, but the voltage of the first DC power and the voltage of the second DC power are the same. Alternatively, the first DC power may have a higher voltage than the second DC power.
直流交流変換器21は、直流直流変換器20から供給される第2の直流電力を交流電力に変換して連系リレー10側に出力する。また、直流交流変換器21は、連系リレー10側から供給される交流電力を第2の直流電力に変換して直流直流変換器20に供給する。即ち、直流交流変換器21は、第2の直流電力と交流電力とを相互に変換する双方向の直流交流変換器である。なお、連系リレー10側は、商用系統5側、又は系統連系インバータ装置7側と言い替えてもよい。
The DC/AC converter 21 converts the second DC power supplied from the DC/DC converter 20 into AC power and outputs the AC power to the interconnection relay 10 side. Further, the DC/AC converter 21 converts the AC power supplied from the interconnection relay 10 side into second DC power and supplies the second DC power to the DC/DC converter 20. That is, the DC/AC converter 21 is a bidirectional DC/AC converter that mutually converts the second DC power and the AC power. The interconnection relay 10 side may be restated as the commercial system 5 side or the system interconnection inverter device 7 side.
制御回路11は、直流直流変換器20及び直流交流変換器21に具備される図示しないスイッチング素子を制御するための制御信号を生成してゲート駆動回路22に出力する。ゲート駆動回路22は、制御信号に基づいて駆動信号を生成してそれぞれのスイッチング素子を駆動する。
The control circuit 11 generates a control signal for controlling a switching element (not shown) included in the DC/DC converter 20 and the DC/AC converter 21, and outputs the control signal to the gate drive circuit 22. The gate drive circuit 22 generates a drive signal based on the control signal to drive each switching element.
直流直流変換器20及び直流交流変換器21のそれぞれが双方向の電力変換器であることから、電力変換器2も双方向の電力変換器として動作する。電力変換器2全体で見ると、電力変換器2は、蓄電池30から供給される第1の直流電力を交流電力に変換して連系リレー10側に出力する。また、電力変換器2は、連系リレー10側から供給される交流電力を第1の直流電力に変換して蓄電池30に供給する。即ち、電力変換器2は、蓄電池30から供給される直流電力と、商用系統5側又は系統連系インバータ装置7側から供給される交流電力とを相互に変換する双方向の電力変換器である。
Since each of the DC/DC converter 20 and the DC/AC converter 21 is a bidirectional power converter, the power converter 2 also operates as a bidirectional power converter. When viewed as a whole of the power converter 2, the power converter 2 converts the first DC power supplied from the storage battery 30 into AC power and outputs the AC power to the interconnection relay 10 side. Further, the power converter 2 converts the AC power supplied from the interconnection relay 10 side into the first DC power and supplies the first DC power to the storage battery 30. That is, the power converter 2 is a bidirectional power converter that mutually converts the DC power supplied from the storage battery 30 and the AC power supplied from the commercial grid 5 side or the grid interconnection inverter device 7 side. ..
電力変換器2、系統連系インバータ装置7、商用系統5及び電気負荷機器8のそれぞれは、連系点17に電気的に接続される。即ち、連系点17は、電力変換器2、系統連系インバータ装置7、商用系統5及び電気負荷機器8のそれぞれが電気的に接続される接続点である。
Each of the power converter 2, the grid-connected inverter device 7, the commercial grid 5, and the electric load device 8 is electrically connected to a grid point 17. That is, the interconnection point 17 is a connection point to which the power converter 2, the grid interconnection inverter device 7, the commercial grid 5, and the electric load device 8 are electrically connected.
連系点17と、商用系統5との間には系統解列用開閉器9が設けられている。また、連系点17と電力変換器2との間には、連系リレー10が設けられている。即ち、図1の構成は、電力変換器2、系統連系インバータ装置7、商用系統5及び電気負荷機器8のそれぞれが電気的に接続される連系点17と、商用系統5との間が系統解列用開閉器9を介して電気的に接続され、電力変換器2と連系点17との間が連系リレー10によって電気的に接続される構成である。
A switch 9 for disconnecting the system is provided between the interconnection point 17 and the commercial system 5. Further, an interconnection relay 10 is provided between the interconnection point 17 and the power converter 2. That is, in the configuration of FIG. 1, between the commercial grid 5 and the grid point 17 to which the power converter 2, the grid-connected inverter device 7, the commercial grid 5, and the electric load device 8 are electrically connected, respectively. It is configured to be electrically connected via a system disconnecting switch 9, and the power converter 2 and the interconnection point 17 are electrically connected by an interconnection relay 10.
系統解列用開閉器9及び連系リレー10の開閉動作は、制御回路11によって制御される。系統解列用開閉器9は、商用系統5と連系点17との間の電気的接続を開閉する。具体的に、系統解列用開閉器9が閉に制御されると、商用系統5と連系点17との間が電気的に接続される。系統解列用開閉器9が開に制御されると、商用系統5と連系点17との間が電気的に開放され、パワーコンディショナ1と商用系統5とは、電気的に切り離される。
The control circuit 11 controls the opening/closing operations of the system disconnecting switch 9 and the interconnection relay 10. The system disconnection switch 9 opens and closes the electrical connection between the commercial system 5 and the interconnection point 17. Specifically, when the system disconnection switch 9 is controlled to be closed, the commercial system 5 and the interconnection point 17 are electrically connected. When the system disconnection switch 9 is controlled to be opened, the commercial system 5 and the interconnection point 17 are electrically opened, and the power conditioner 1 and the commercial system 5 are electrically disconnected.
連系リレー10は、電力変換器2と連系点17との間の電気的接続を開閉する。具体的に、連系リレー10が閉に制御されると、電力変換器2と連系点17との間が電気的に接続される。連系リレー10が開に制御されると、電力変換器2と連系点17との間が電気的に開放される。
The interconnection relay 10 opens and closes the electrical connection between the power converter 2 and the interconnection point 17. Specifically, when the interconnection relay 10 is controlled to be closed, the power converter 2 and the interconnection point 17 are electrically connected. When the interconnection relay 10 is controlled to be open, the power converter 2 and the interconnection point 17 are electrically opened.
次に、電源回路12、二次電池開放用遮断器13及び二次電池14の役割について説明する。
Next, the roles of the power supply circuit 12, the secondary battery opening circuit breaker 13, and the secondary battery 14 will be described.
前述したように、系統連系インバータ装置には、商用系統が停電した場合において、系統連系インバータ装置が事故点に電力を供給し続けることが回避されるように、単独運転防止機能が実装されている。ここで、単独運転防止機能を実現する方式には、大きく分けて受動的方式と、能動的方式とがある。
As described above, the grid-connected inverter device is equipped with the islanding prevention function to prevent the grid-connected inverter device from continuing to supply power to the accident point when the commercial grid fails. ing. Here, the method for realizing the islanding prevention function is roughly classified into a passive method and an active method.
受動的方式は、商用系統が停電し、系統連系インバータ装置が単独運転状態になると発生し得る電圧位相変化、周波数急変などの現象を検出することで単独運転を検出する方式である。
The passive method is a method that detects an isolated operation by detecting a phenomenon such as a voltage phase change or a sudden frequency change that may occur when the commercial grid loses power and the grid-connected inverter device enters the independent operation state.
これに対し、能動的方式は、商用系統に対し、系統連系インバータ装置が、電圧又は周波数を変動させるための能動信号を出力し、商用系統の停電時に電圧又は周波数の変動を増長させることで単独運転を検出する方式である。能動的方式の一例としては、単独運転状態を高速に検出できる、同一方式間の相互干渉がない、系統擾乱時に不要動作しない、といった特徴を持つステップ注入付周波数フィードバック方式が広く使用されている。この方式は、系統の周波数変化率から、更に周波数変化を助長させるように急峻に無効電力を注入することにより、単独運転の検出を高速に行うことが可能である。
On the other hand, in the active method, the grid interconnection inverter device outputs an active signal for varying the voltage or the frequency to the commercial system, and increases the variation in the voltage or the frequency when the commercial system fails. This is a method for detecting isolated operation. As an example of the active system, a frequency feedback system with step injection is widely used, which has features that it can detect an isolated operation state at high speed, there is no mutual interference between the same systems, and it does not perform unnecessary operation at the time of system disturbance. This system can detect the islanding operation at high speed by injecting reactive power sharply from the frequency change rate of the system so as to further promote the frequency change.
単独運転検出機能は、系統の有無に関わらず動作する機能であり、系統が正常の場合は不要な無効電力の注入を避ける必要がある。そのため、系統が正常で周波数変化が僅かである場合は、無効電力を注入しないか、又は注入量を減少することが要求される。
The islanding detection function operates regardless of whether or not there is a grid, and it is necessary to avoid unnecessary injection of reactive power when the grid is normal. Therefore, when the system is normal and the frequency change is small, it is required not to inject the reactive power or to reduce the injection amount.
電気自動車用のパワーコンディショナであるパワーコンディショナ1は、商用系統5が停電した場合も太陽電池パネル4で発電電力を活用するために自立運転機能が実装されている。自立運転機能の切り替えは、例えば操作モニタ6を使用して行うことができる。
The power conditioner 1, which is a power conditioner for electric vehicles, is equipped with a self-sustained operation function so that the solar battery panel 4 can utilize the generated power even when the commercial system 5 fails. The switching of the self-sustained operation function can be performed using the operation monitor 6, for example.
一方、商用系統5が停電した場合、パワーコンディショナ1に給電される商用系統5の電力は遮断される。パワーコンディショナ1が商用系統5の電力のみで動作するものであれば、制御回路11を起動することができない。これを回避するため、パワーコンディショナ1には、自立運転モード時に制御回路11を起動するための構成として、電源回路12、二次電池開放用遮断器13及び二次電池14が搭載されている。なお、二次電池開放用遮断器13は、二次電池14の放電を防止するために設けられている。例えば製品出荷時のように、パワーコンディショナ1を長期間使用しない場合には、二次電池開放用遮断器13は開放される。
On the other hand, when the commercial grid 5 fails, the power of the commercial grid 5 that is fed to the power conditioner 1 is cut off. If the power conditioner 1 operates only with the electric power of the commercial grid 5, the control circuit 11 cannot be activated. In order to avoid this, the power conditioner 1 is equipped with a power supply circuit 12, a secondary battery opening circuit breaker 13, and a secondary battery 14 as a configuration for starting the control circuit 11 in the self-sustained operation mode. .. The circuit breaker 13 for opening the secondary battery is provided to prevent the secondary battery 14 from discharging. For example, when the power conditioner 1 is not used for a long period of time such as when the product is shipped, the secondary battery opening circuit breaker 13 is opened.
次に、実施の形態1における起動シーケンスについて、図1及び図2を参照して説明する。図2は、実施の形態1における起動シーケンスをフローチャートで示した図である。図2には、パワーコンディショナ1が自立運転に切り替わり、系統連系インバータ装置7が連系運転を開始するまでの起動シーケンスが示されている。なお、図2では、符号の表記は省略している。
Next, the activation sequence in the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 2 is a diagram showing a flow chart of the activation sequence in the first embodiment. FIG. 2 shows a start-up sequence until the power conditioner 1 switches to the independent operation and the grid interconnection inverter device 7 starts the grid interconnection operation. Note that the reference numerals are omitted in FIG.
まず、商用系統5が正常の場合、パワーコンディショナ1及び系統連系インバータ装置7は、連系運転を継続する。このとき、図1の連系リレー10、系統解列用開閉器9及び二次電池開放用遮断器13は閉の状態である。
First, when the commercial system 5 is normal, the power conditioner 1 and the system interconnection inverter device 7 continue the interconnection operation. At this time, the interconnection relay 10, the system disconnecting switch 9 and the secondary battery opening circuit breaker 13 of FIG. 1 are in the closed state.
一方、商用系統5が停電した場合、パワーコンディショナ1及び系統連系インバータ装置7は、系統異常等の保護機能により、運転を停止する。この運転停止に合わせて、連系リレー10及び系統解列用開閉器9は、開に制御される。これにより、パワーコンディショナ1及び系統連系インバータ装置7は、商用系統5から解列、即ち商用系統5から電気的に切り離される。また、このときパワーコンディショナ1と、電気自動車3との間の電気的接続も開放される。一方、二次電池開放用遮断器13は、パワーコンディショナ1の制御回路11を駆動するため、開状態であれば閉状態に制御され、もしくは閉状態であればその状態を維持する。
On the other hand, when the commercial power system 5 fails, the power conditioner 1 and the grid interconnection inverter device 7 stop their operations due to the protection function such as a system abnormality. In accordance with this operation stop, the interconnection relay 10 and the system disconnection switch 9 are controlled to open. As a result, the power conditioner 1 and the grid interconnection inverter device 7 are disconnected from the commercial grid 5, that is, electrically disconnected from the commercial grid 5. At this time, the electrical connection between the power conditioner 1 and the electric vehicle 3 is also opened. On the other hand, the circuit breaker 13 for opening the secondary battery drives the control circuit 11 of the power conditioner 1, and therefore is controlled to be in the closed state if it is in the open state, or maintains that state if it is in the closed state.
上記の状態において、操作モニタ6の操作にて、パワーコンディショナ1の運転モードが自立運転モードに切り替えられると、パワーコンディショナ1及び系統連系インバータ装置7が、商用系統5に電気的に接続されるのを防ぐため、系統解列用開閉器9は開に制御される(ステップS1)。
In the above state, when the operation mode of the power conditioner 1 is switched to the independent operation mode by operating the operation monitor 6, the power conditioner 1 and the grid interconnection inverter device 7 are electrically connected to the commercial grid 5. In order to prevent this, the system disconnecting switch 9 is controlled to be open (step S1).
ステップS1の処理後、パワーコンディショナ1と電気自動車3とが電気的に接続される(ステップS2)。そして、パワーコンディショナ1の制御によって、系統連系インバータ装置7の単独運転防止機能は無効にされる(ステップS3)。ステップS3の制御は、通信回路15を使用した、パワーコンディショナ1と、系統連系インバータ装置7との間の通信で行われる。一例を示すと、パワーコンディショナ1は、通信回路15により、単独運転防止機能を無効にする指令を系統連系インバータ装置7へ送信する。系統連系インバータ装置7は、この指令を受信し、指令の内容に従って単独運転防止機能を無効にする。なお、無効とされる単独運転防止機能は、能動的方式のみでもよいし、能動的方式及び受動的方式の両方であってもよい。
After the processing of step S1, the power conditioner 1 and the electric vehicle 3 are electrically connected (step S2). Then, by the control of the power conditioner 1, the islanding prevention function of the grid interconnection inverter device 7 is invalidated (step S3). The control of step S3 is performed by communication between the power conditioner 1 and the grid interconnection inverter device 7 using the communication circuit 15. As an example, the power conditioner 1 sends a command for disabling the islanding prevention function to the grid interconnection inverter device 7 via the communication circuit 15. The grid interconnection inverter device 7 receives this command and disables the islanding prevention function according to the contents of the command. The islanding prevention function that is disabled may be only the active method or both the active method and the passive method.
ステップS3の処理後、パワーコンディショナ1は自立運転を開始する(ステップS4)。その後、連系リレー10は閉に制御される。即ち、パワーコンディショナ1は、系統連系インバータ装置7の単独運転防止機能が無効に設定された後に自立運転動作に移行する。連系リレー10が閉に制御されると、パワーコンディショナ1の出力電圧が系統連系インバータ装置7の出力に加わる(ステップS5)。このとき、日中であれば、太陽電池パネル4の直流出力電圧及び商用系統5を模擬した交流電圧が系統連系インバータ装置7に印加される。このため、系統連系インバータ装置7は、商用系統5が正常時の場合と同様に、連系運転を開始する(ステップS6)。
After the processing of step S3, the power conditioner 1 starts independent operation (step S4). After that, the interconnection relay 10 is controlled to be closed. That is, the power conditioner 1 shifts to the self-sustained operation after the islanding prevention function of the grid interconnection inverter device 7 is set to be invalid. When the interconnection relay 10 is controlled to be closed, the output voltage of the power conditioner 1 is added to the output of the interconnection inverter device 7 (step S5). At this time, during the daytime, the DC output voltage of the solar cell panel 4 and the AC voltage simulating the commercial grid 5 are applied to the grid interconnection inverter device 7. Therefore, the grid interconnection inverter device 7 starts the grid interconnection operation as in the case where the commercial grid 5 is normal (step S6).
以上に説明したように、実施の形態1に係るパワーコンディショナ1は、商用系統5が停電した場合における自立運転において、パワーコンディショナ1によって生成される電圧を商用系統5から出力される電圧とみなして系統連系インバータ装置7が運転する場合は、パワーコンディショナ1と系統連系インバータ装置7との間に構築した通信手段によって、系統連系インバータ装置7の単独運転防止機能を無効にする。これにより、系統連系インバータ装置7が単独運転防止機能により停止することを防ぐことができる。その結果、商用系統5が停電したとしても太陽電池パネル4で発電された電力を効果的に利用することができる。
As described above, in the power conditioner 1 according to the first embodiment, the voltage generated by the power conditioner 1 is used as the voltage output from the commercial power system 5 in the self-sustained operation when the commercial power system 5 fails. When the grid-connected inverter device 7 is considered to operate, the islanding prevention function of the grid-connected inverter device 7 is disabled by the communication means built between the power conditioner 1 and the grid-connected inverter device 7. .. As a result, it is possible to prevent the grid interconnection inverter device 7 from stopping due to the islanding prevention function. As a result, even if the commercial system 5 fails, the electric power generated by the solar cell panel 4 can be effectively used.
また、商用系統5が停電した場合、パワーコンディショナ1は自立運転モードに切り替わる。このとき、系統連系インバータ装置7は自立運転時におけるパワーコンディショナ1の出力電圧を系統電圧とみなし、連系運転を継続する。但し、パワーコンディショナ1の出力電圧は、商用系統と比べると、波形ひずみが大きいなど品質が悪い。このため、系統連系インバータ装置7の製品仕様によっては、パワーコンディショナ1から出力される品質の悪い出力電圧によって、保護機能である単独運転防止機能が働いて、系統連系インバータ装置7の動作が停止してしまうことが起こり得る。一方、系統連系規定によると、単独運転防止機能は、商用系統5の停電時に、商用系統5に連系している系統連系インバータ装置7を商用系統5から解列させるための機能である。図1のシステム構成からも理解できるように、商用系統5と系統連系インバータ装置7とは、パワーコンディショナ1の内部で電気的に接続され、パワーコンディショナ1の外部では電気的に接続されない構成である。従って、パワーコンディショナ1によって、商用系統5と系統連系インバータ装置7とが解列されている状態であれば、商用系統5と系統連系インバータ装置7とは連系していないので、単独運転防止機能を無効にすることができる。これにより、パワーコンディショナ1から出力される交流電圧の品質に起因して生じ得る系統連系インバータ装置7の動作停止を抑止することができる。
Also, if the commercial system 5 fails, the inverter 1 will switch to the independent operation mode. At this time, the grid interconnection inverter device 7 regards the output voltage of the power conditioner 1 during the self-sustained operation as the grid voltage and continues the grid interconnection operation. However, the output voltage of the power conditioner 1 is inferior in quality such as large waveform distortion as compared with the commercial system. Therefore, depending on the product specifications of the grid-connected inverter device 7, the output voltage of poor quality output from the power conditioner 1 causes the isolated operation prevention function, which is a protection function, to operate, and the operation of the grid-connected inverter device 7 to operate. Can stop. On the other hand, according to the system interconnection regulation, the islanding prevention function is a function for disconnecting the system interconnection inverter device 7 that is connected to the commercial system 5 from the commercial system 5 when the commercial system 5 fails. .. As can be understood from the system configuration of FIG. 1, the commercial system 5 and the system interconnection inverter device 7 are electrically connected inside the power conditioner 1 and are not electrically connected outside the power conditioner 1. The composition. Therefore, if the commercial system 5 and the grid interconnection inverter device 7 are disconnected by the power conditioner 1, the commercial grid 5 and the grid interconnection inverter device 7 are not interconnected, so It is possible to disable the driving prevention function. Accordingly, it is possible to prevent the operation stop of the grid interconnection inverter device 7 that may occur due to the quality of the AC voltage output from the power conditioner 1.
また、実施の形態1に係るパワーコンディショナ1によれば、パワーコンディショナ1と、系統連系インバータ装置7との間の通信手段によって、系統連系インバータ装置7の単独運転防止機能を無効にすることができる。これにより、系統連系インバータ装置7の仕様の影響を受けずに、系統連系インバータ装置7の単独運転防止機能を無効にすることができ、商用系統5の停電時において、太陽電池パネル4で発電された電力を確実、且つ安定的に利用することができる。
Further, according to the power conditioner 1 according to the first embodiment, the islanding prevention function of the grid interconnection inverter device 7 is disabled by the communication means between the power conditioner 1 and the grid interconnection inverter device 7. can do. This makes it possible to disable the islanding prevention function of the grid-connected inverter device 7 without being affected by the specifications of the grid-connected inverter device 7. The generated power can be used reliably and stably.
実施の形態2.
次に、実施の形態2における動作シーケンスについて、図1及び図3を参照して説明する。図3は、実施の形態2における動作シーケンスをフローチャートで示した図である。図3には、パワーコンディショナ1が自立運転モードから連系運転モードに切り替わる際の動作シーケンスが示されている。図2と同様に、図3では、符号の表記は省略している。なお、基本的な構成は、図1に示す実施の形態1の構成と同一または同等であり、具体的な構成に関する説明は省略する。Embodiment 2.
Next, the operation sequence in the second embodiment will be described with reference to FIGS. 1 and 3. FIG. 3 is a flowchart showing an operation sequence according to the second embodiment. FIG. 3 shows an operation sequence when thepower conditioner 1 switches from the independent operation mode to the interconnection operation mode. Similar to FIG. 2, reference numerals are omitted in FIG. The basic configuration is the same as or equivalent to the configuration of the first embodiment shown in FIG. 1, and a description of the specific configuration will be omitted.
次に、実施の形態2における動作シーケンスについて、図1及び図3を参照して説明する。図3は、実施の形態2における動作シーケンスをフローチャートで示した図である。図3には、パワーコンディショナ1が自立運転モードから連系運転モードに切り替わる際の動作シーケンスが示されている。図2と同様に、図3では、符号の表記は省略している。なお、基本的な構成は、図1に示す実施の形態1の構成と同一または同等であり、具体的な構成に関する説明は省略する。
Next, the operation sequence in the second embodiment will be described with reference to FIGS. 1 and 3. FIG. 3 is a flowchart showing an operation sequence according to the second embodiment. FIG. 3 shows an operation sequence when the
商用系統5が停電した場合、パワーコンディショナ1及び系統連系インバータ装置7は、系統異常等の保護機能により、運転を停止する。この運転停止に合わせて、連系リレー10及び系統解列用開閉器9は、開に制御される。これにより、パワーコンディショナ1及び系統連系インバータ装置7は、商用系統5から解列、即ち商用系統5から電気的に切り離される。また、このときパワーコンディショナ1と、電気自動車3との間の電気的接続も開放される。一方、二次電池開放用遮断器13は、パワーコンディショナ1の制御回路11を駆動するため、開状態であれば閉状態に制御され、もしくは閉状態であればその状態を維持する。
If the commercial power system 5 fails, the power conditioner 1 and the grid-connected inverter device 7 will stop operating due to a protection function such as a system error. In accordance with this operation stop, the interconnection relay 10 and the system disconnection switch 9 are controlled to open. As a result, the power conditioner 1 and the grid interconnection inverter device 7 are disconnected from the commercial grid 5, that is, electrically disconnected from the commercial grid 5. At this time, the electrical connection between the power conditioner 1 and the electric vehicle 3 is also opened. On the other hand, the circuit breaker 13 for opening the secondary battery drives the control circuit 11 of the power conditioner 1, and therefore is controlled to be in the closed state if it is in the open state, or maintains that state if it is in the closed state.
上記の状態において、商用系統5が復電すると、操作モニタ6の操作にて、パワーコンディショナ1の運転モードが連系運転モードに切り替えられると、パワーコンディショナ1が停止し、連系リレー10が開に制御される(ステップS11)。
In the above-mentioned state, when the commercial system 5 is restored, when the operation mode of the power conditioner 1 is switched to the interconnection operation mode by the operation of the operation monitor 6, the power conditioner 1 is stopped and the interconnection relay 10 Is controlled to open (step S11).
連系運転モードの場合、系統解列用開閉器9を閉に制御する必要がある。系統解列用開閉器9が閉に制御されると、商用系統5と系統連系インバータ装置7とが電気的に接続される。そのため、系統解列用開閉器9を閉に制御する前に、系統連系インバータ装置7の単独運転防止機能が有効となるように制御される(ステップS12)。
▽ In the interconnected operation mode, it is necessary to control the switch 9 for grid disconnection to be closed. When the system disconnector switch 9 is controlled to be closed, the commercial system 5 and the system interconnection inverter device 7 are electrically connected. Therefore, before the system disconnecting switch 9 is controlled to be closed, the independent operation prevention function of the system interconnection inverter device 7 is controlled to be effective (step S12).
ステップS12の処理後、パワーコンディショナ1と電気自動車3との電気的接続が解除され(ステップS13)、系統解列用開閉器9が閉に制御される(ステップS14)。
After the processing of step S12, the electrical connection between the power conditioner 1 and the electric vehicle 3 is released (step S13), and the system disconnection switch 9 is controlled to be closed (step S14).
ステップS14の処理後、系統解列用開閉器9が閉に制御され、連系リレー10が閉に制御され、パワーコンディショナ1が連系運転を開始する(ステップS15)。
After the process of step S14, the switch 9 for system disconnection is controlled to be closed, the interconnection relay 10 is controlled to be closed, and the power conditioner 1 starts interconnection operation (step S15).
以上に説明したように、実施の形態2に係るパワーコンディショナ1は、商用系統5が復電して自立運転を停止させる場合に、系統連系インバータ装置7の単独運転防止機能の切り替えが自動で行われる。これにより、単独運転防止機能が無効になったまま、系統連系インバータ装置7が連系運転することを防止することができる。これにより、系統連系規定の遵守が可能となる。
As described above, in the power conditioner 1 according to the second embodiment, when the commercial grid 5 restores power and stops the self-sustaining operation, the independent operation prevention function of the grid interconnection inverter device 7 is automatically switched. Done in. As a result, it is possible to prevent the grid-connected inverter device 7 from running in an interconnected manner while the islanding prevention function is disabled. This makes it possible to comply with the grid interconnection regulations.
最後に、実施の形態1及び実施の形態2における制御回路11の機能を実現するためのハードウェア構成について、図4及び図5の図面を参照して説明する。図4は、実施の形態1及び実施の形態2における制御回路11の機能を実現するためのハードウェア構成の一例を示すブロック図である。図5は、実施の形態1及び実施の形態2における制御回路11の機能を実現するためのハードウェア構成の他の例を示すブロック図である。
Finally, a hardware configuration for realizing the function of the control circuit 11 according to the first and second embodiments will be described with reference to the drawings of FIGS. 4 and 5. FIG. 4 is a block diagram showing an example of a hardware configuration for realizing the function of the control circuit 11 in the first and second embodiments. FIG. 5 is a block diagram showing another example of the hardware configuration for realizing the function of the control circuit 11 in the first and second embodiments.
実施の形態1及び実施の形態2における制御回路11の機能の全部又は一部を実現する場合には、図4に示すように、演算を行うプロセッサ200、プロセッサ200によって読みとられるプログラムが保存されるメモリ202、及び信号の入出力を行うインタフェース204を含む構成とすることができる。
When all or some of the functions of the control circuit 11 according to the first and second embodiments are realized, as shown in FIG. 4, a processor 200 that performs an operation and a program read by the processor 200 are stored. The memory 202 and the interface 204 for inputting/outputting signals can be included.
プロセッサ200は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ202には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)、BD(Blu-ray(登録商標) Disk)を例示することができる。
The processor 200 may be a computing unit such as a computing device, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). In addition, the memory 202 is a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM). A magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and a BD (Blu-ray (registered trademark) Disk) can be exemplified.
メモリ202には、制御回路11の機能を実行するプログラムが格納されている。プロセッサ200は、インタフェース204を介して必要な情報を授受し、メモリ202に格納されたプログラムをプロセッサ200が実行し、メモリ202に格納されたテーブルをプロセッサ200が参照することにより、上述した演算処理を行うことができる。プロセッサ200による演算結果は、メモリ202に記憶することができる。また、操作モニタ6の操作によって入力される情報は、インタフェース204を介してプロセッサ200又はメモリ202に取り込むことができる。また、プロセッサ200の処理結果は、インタフェース204を介して操作モニタ6に表示することができる。
A program for executing the function of the control circuit 11 is stored in the memory 202. The processor 200 sends and receives necessary information via the interface 204, the processor 200 executes the program stored in the memory 202, and the processor 200 refers to the table stored in the memory 202 to perform the above-described arithmetic processing. It can be performed. The calculation result by the processor 200 can be stored in the memory 202. Information input by operating the operation monitor 6 can be loaded into the processor 200 or the memory 202 via the interface 204. Further, the processing result of the processor 200 can be displayed on the operation monitor 6 via the interface 204.
また、図4に示すプロセッサ200及びメモリ202は、図5のように処理回路203に置き換えてもよい。処理回路203は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
The processor 200 and the memory 202 shown in FIG. 4 may be replaced with the processing circuit 203 as shown in FIG. The processing circuit 203 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
Note that the configurations described in the above embodiments are examples of the content of the present invention, and can be combined with other known techniques, and the configurations are within the scope not departing from the gist of the present invention. It is also possible to omit or change a part of.
1 パワーコンディショナ、2 電力変換器、3 電気自動車、4 太陽電池パネル、5 商用系統、6 操作モニタ、7 系統連系インバータ装置、8 電気負荷機器、9 系統解列用開閉器、10 連系リレー、11 制御回路、12 電源回路、13 二次電池開放用遮断器、14 二次電池、15 通信回路、16 通信ケーブル、17 連系点、20 直流直流変換器、21 直流交流変換器、22 ゲート駆動回路、30 蓄電池、200 プロセッサ、202 メモリ、203 処理回路、204 インタフェース。
1 power conditioner, 2 power converter, 3 electric vehicle, 4 solar cell panel, 5 commercial system, 6 operation monitor, 7 system interconnection inverter device, 8 electric load device, 9 system disconnection switch, 10 interconnection system Relay, 11 control circuit, 12 power circuit, 13 secondary battery opening circuit breaker, 14 secondary battery, 15 communication circuit, 16 communication cable, 17 interconnection point, 20 DC/DC converter, 21 DC/AC converter, 22 Gate drive circuit, 30 storage battery, 200 processor, 202 memory, 203 processing circuit, 204 interface.
Claims (7)
- 商用系統に連系する系統連系インバータ装置との間で電力の授受を行うパワーコンディショナであって、
外部直流電源から供給される直流電力と前記商用系統側から供給される交流電力とを相互に変換する双方向の電力変換器と、
前記電力変換器、前記系統連系インバータ装置及び前記商用系統のそれぞれが電気的に接続される連系点と、前記商用系統との間を電気的に開閉する第1の開閉器と、
前記電力変換器と、前記連系点との間を電気的に開閉する第2の開閉器と、
前記パワーコンディショナと前記系統連系インバータ装置との間の通信を可能とする通信手段と、
を備え、
前記商用系統が停電した場合には、前記第1の開閉器を電気的に開放し、前記系統連系インバータ装置の単独運転防止機能を無効にした後に自立運転動作に移行する
ことを特徴とするパワーコンディショナ。 A power conditioner that exchanges electric power with a grid-connected inverter device that is connected to a commercial grid,
A bidirectional power converter for mutually converting DC power supplied from an external DC power supply and AC power supplied from the commercial system side,
A first switch that electrically opens and closes an interconnection point to which each of the power converter, the grid interconnection inverter device, and the commercial grid is electrically connected, and the commercial grid;
A second switch that electrically opens and closes between the power converter and the interconnection point;
A communication unit that enables communication between the power conditioner and the grid interconnection inverter device,
Equipped with
When the commercial system loses power, the first switch is electrically opened, the islanding prevention function of the system interconnection inverter device is invalidated, and then the operation is shifted to a self-sustained operation. Power conditioner. - 前記商用系統が停電した場合、前記通信手段は、前記第1の開閉器が電気的に開放された後に、単独運転防止機能を無効にする指令を前記系統連系インバータ装置へ送信する
ことを特徴とする請求項1に記載のパワーコンディショナ。 When the commercial system has a power failure, the communication means transmits a command to disable the islanding prevention function to the system interconnection inverter device after the first switch is electrically opened. The power conditioner according to claim 1. - 前記商用系統が復電した場合には、前記第2の開閉器を電気的に開放し、前記系統連系インバータ装置の単独運転防止機能を有効にした後に前記第1の開閉器を電気的に接続する
ことを特徴とする請求項1又は2に記載のパワーコンディショナ。 When the commercial system is restored, the second switch is electrically opened, the islanding prevention function of the system interconnection inverter device is enabled, and then the first switch is electrically opened. It connects, The power conditioner of Claim 1 or 2 characterized by the above-mentioned. - 前記系統連系インバータ装置における単独運転防止機能の無効又は有効の切り替えは、単独運転検出方法における能動的方式のみが対象である
ことを特徴とする請求項1から3の何れか1項に記載のパワーコンディショナ。 The invalid or valid switching of the islanding prevention function in the grid interconnection inverter device is intended only for the active method in the islanding detection method. Power conditioner. - 前記系統連系インバータ装置における単独運転防止機能の無効又は有効の切り替えは、単独運転検出方法における受動的方式及び能動的方式の両方が対象である
ことを特徴とする請求項1から3の何れか1項に記載のパワーコンディショナ。 The inactive or active switching of the islanding prevention function in the grid interconnection inverter device is targeted for both the passive system and the active system in the islanding detection method. The power conditioner according to item 1. - 商用系統に連系する系統連系インバータ装置と、外部直流電源から供給される直流電力と前記商用系統側から供給される交流電力とを相互に変換するパワーコンディショナとの間で電力の授受が行われ、前記パワーコンディショナの電力変換器と、前記系統連系インバータ装置及び前記商用系統のそれぞれが電気的に接続される連系点と、前記商用系統との間が第1の開閉器を介して電気的に接続され、前記電力変換器と前記連系点との間が第2の開閉器によって電気的に接続される構成の系統連系システムに適用される系統連系インバータ装置の制御方法であって、
前記商用系統が停電した場合に、前記第1の開閉器を電気的に開放する第1ステップと、
前記第1ステップの処理後に前記系統連系インバータ装置の単独運転防止機能を無効にする第2ステップと、
を含むことを特徴とする系統連系インバータ装置の制御方法。 Transfer of electric power is performed between a grid interconnection inverter device that is connected to a commercial grid and a power conditioner that mutually converts DC power supplied from an external DC power supply and AC power supplied from the commercial grid side. A first switch is provided between the power converter of the power conditioner, an interconnection point at which the grid interconnection inverter device and the commercial grid are electrically connected, and the commercial grid. Of a grid-connected inverter device applied to a grid-connected system that is electrically connected via a power switch and the connection point is electrically connected by a second switch. Method,
A first step of electrically opening the first switch when the commercial system is out of power;
A second step of disabling the islanding prevention function of the grid interconnection inverter device after the processing of the first step;
A method for controlling a grid-connected inverter device, comprising: - 前記第2ステップの処理によって前記パワーコンディショナの動作を自立運転に切り替える第3ステップと、
前記第3ステップの処理後に、前記第2の開閉器を電気的に接続する第4ステップと、
を含むことを特徴とする請求項6に記載の系統連系インバータ装置の制御方法。 A third step of switching the operation of the power conditioner to an independent operation by the processing of the second step;
A fourth step of electrically connecting the second switch after the processing of the third step;
The control method of the grid interconnection inverter device according to claim 6, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/000547 WO2020144815A1 (en) | 2019-01-10 | 2019-01-10 | Method for controlling power conditioner and system interconnection inverter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/000547 WO2020144815A1 (en) | 2019-01-10 | 2019-01-10 | Method for controlling power conditioner and system interconnection inverter device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020144815A1 true WO2020144815A1 (en) | 2020-07-16 |
Family
ID=71521589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000547 WO2020144815A1 (en) | 2019-01-10 | 2019-01-10 | Method for controlling power conditioner and system interconnection inverter device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020144815A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023072739A (en) * | 2021-11-15 | 2023-05-25 | オムロン株式会社 | Power supply system |
WO2025143267A1 (en) * | 2023-12-28 | 2025-07-03 | 株式会社Dgキャピタルグループ | Individual operation detection device, individual operation detection method, individual operation detection program, and system interconnection system comprising individual operation detection device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013046638A1 (en) * | 2011-09-28 | 2013-04-04 | 京セラ株式会社 | Power conditioner system and storage battery power conditioner |
JP2013063000A (en) * | 2011-09-15 | 2013-04-04 | Sumitomo Electric Ind Ltd | System interconnection protection system, system interconnection protection device, and power conditioner |
JP2013168224A (en) * | 2012-02-14 | 2013-08-29 | Jx Nippon Oil & Energy Corp | Fuel cell system |
JP2014079137A (en) * | 2012-10-12 | 2014-05-01 | Sanken Electric Co Ltd | Emergency power system |
JP2017184362A (en) * | 2016-03-29 | 2017-10-05 | 田淵電機株式会社 | Power conditioner, power supply system, and current control method |
-
2019
- 2019-01-10 WO PCT/JP2019/000547 patent/WO2020144815A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013063000A (en) * | 2011-09-15 | 2013-04-04 | Sumitomo Electric Ind Ltd | System interconnection protection system, system interconnection protection device, and power conditioner |
WO2013046638A1 (en) * | 2011-09-28 | 2013-04-04 | 京セラ株式会社 | Power conditioner system and storage battery power conditioner |
JP2013168224A (en) * | 2012-02-14 | 2013-08-29 | Jx Nippon Oil & Energy Corp | Fuel cell system |
JP2014079137A (en) * | 2012-10-12 | 2014-05-01 | Sanken Electric Co Ltd | Emergency power system |
JP2017184362A (en) * | 2016-03-29 | 2017-10-05 | 田淵電機株式会社 | Power conditioner, power supply system, and current control method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023072739A (en) * | 2021-11-15 | 2023-05-25 | オムロン株式会社 | Power supply system |
WO2025143267A1 (en) * | 2023-12-28 | 2025-07-03 | 株式会社Dgキャピタルグループ | Individual operation detection device, individual operation detection method, individual operation detection program, and system interconnection system comprising individual operation detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4979435B2 (en) | Power storage device | |
US10017138B2 (en) | Power supply management system and power supply management method | |
JP6011845B2 (en) | Self-sustained operation system for distributed power supply | |
WO2017169665A1 (en) | Power conditioner, power supply system, and current control method | |
US9859809B2 (en) | Power conversion device | |
JP4814264B2 (en) | Uninterruptible power system | |
WO2020144815A1 (en) | Method for controlling power conditioner and system interconnection inverter device | |
KR20140107098A (en) | Electric energy storage device | |
US20210328454A1 (en) | Power supply device and power supply system | |
JP6494252B2 (en) | Power conditioner, power system, and control method for power conditioner | |
WO2017134773A1 (en) | Power supply system | |
KR101818969B1 (en) | hot swapping apparatus between grid power and battery system | |
JP6089565B2 (en) | Emergency power system | |
WO2020174657A1 (en) | Solar power generation system | |
JP6391473B2 (en) | Battery system | |
JP6766971B1 (en) | Power system | |
JP2010115097A (en) | Power supply system including power storage device and power generator and control method thereof | |
JP2012105414A (en) | Switching device, switching device control method and switching device control program | |
JP2017046544A (en) | Power conditioner and power management device | |
JP5338831B2 (en) | Power control apparatus and power control method | |
US11799317B2 (en) | Power supply system | |
KR102407417B1 (en) | Module for supplying power and system for supplying power | |
JP2007135364A (en) | Power conditioner device | |
CN112703656B (en) | Power supply device and power supply system | |
WO2020217322A1 (en) | Power conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19909002 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19909002 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |