[go: up one dir, main page]

WO2020137880A1 - Oxytocin derivative and use thereof - Google Patents

Oxytocin derivative and use thereof Download PDF

Info

Publication number
WO2020137880A1
WO2020137880A1 PCT/JP2019/050089 JP2019050089W WO2020137880A1 WO 2020137880 A1 WO2020137880 A1 WO 2020137880A1 JP 2019050089 W JP2019050089 W JP 2019050089W WO 2020137880 A1 WO2020137880 A1 WO 2020137880A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
oxytocin
compounds
hotr
administration
Prior art date
Application number
PCT/JP2019/050089
Other languages
French (fr)
Japanese (ja)
Inventor
陽博 東田
横山 茂
スタニスラフ ミハイロヴィチ チェレパノフ
周東 智
亘 一ノ瀬
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2020563200A priority Critical patent/JP7390031B2/en
Publication of WO2020137880A1 publication Critical patent/WO2020137880A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/04Drugs for genital or sexual disorders; Contraceptives for inducing labour or abortion; Uterotonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/16Oxytocins; Vasopressins; Related peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring

Definitions

  • the present invention relates to an oxytocin derivative and its use. More specifically, the present invention relates to a novel oxytocin derivative, oxytocin receptor agonist, and oxytocin receptor agonist pharmaceutical composition.
  • the present application claims priority based on Japanese Patent Application No. 2018-246141 filed in Japan on December 27, 2018, and the content thereof is incorporated herein.
  • Oxytocin (CAS number: 50-56-6) is a compound represented by the following formula (A), which is a peptide hormone secreted from the posterior pituitary.
  • Oxytocin is present in peripheral organs such as the uterus and mammary gland and in the central nervous system, and is known to induce uterine contraction and lactation. Oxytocin is also known to enhance social communication such as social behavior, cognition and memory in mammals including humans.
  • autism spectrum disorder is a congenital disease characterized by social communication, social interaction, repetitive behavior, limited interest, etc.
  • ASD autism spectrum disorder
  • Oxytocin may be associated with abnormal social communication behavior in ASD patients.
  • ASD patients have been reported to have low levels of oxytocin in blood or salivary glands.
  • high frequency gene mutations are detected in the coding region and non-coding region of the oxytocin receptor in ASD patients.
  • CD38 which is a transmembrane protein related to oxytocin signal transduction, causes autism-like symptoms in mice.
  • the single nucleotide polymorphism of CD38 is associated with ASD.
  • oxytocin may be a valuable lead compound for the development of new drugs that restore normal social behavior in patients with neurodevelopmental disorders or psychiatric disorders.
  • Carbetocin (CAS number: 37025-55-1) is a derivative of oxytocin and is used as a uterine contractor together with oxytocin.
  • oxytocin and carbetocin lack selectivity for vasopressin receptors, particularly V 2 receptors. Therefore, side effects such as antidiuresis and hyponatremia may be observed during administration of oxytocin and carbetocin.
  • the present invention aims to provide a novel oxytocin derivative.
  • a compound represented by the following formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof (wherein, in the following formula (1), X is a sulfur atom or a methylene group, and R 3 is It is a group represented by the following formula (2) or the following formula (3).
  • An oxytocin receptor agonist comprising the compound according to [1], a pharmacologically acceptable salt thereof, or a solvate thereof as an active ingredient.
  • the oxytocin receptor agonist according to [2] which is a therapeutic agent for neurodevelopmental disorders or mental disorders or a uterine contractor.
  • An oxytocin receptor agonist pharmaceutical composition comprising the oxytocin receptor agonist according to [2] or [3] and a pharmacologically acceptable carrier.
  • a novel oxytocin derivative can be provided.
  • FIG. 9 is a graph showing the results of a radiation competition assay in Experimental Example 2.
  • (A)-(d) is a graph showing the measurement results of intracellular calcium ion concentration in Experimental Example 3.
  • 9 is a graph showing the results of the tail suspension test in Experimental Example 5.
  • (A) And (b) is a graph which shows the result of having quantified the consumption of water and a sucrose solution in Experimental example 6.
  • (A) to (c) are graphs showing the results of measuring the plasma concentration of each compound in Experimental Example 7.
  • 9 is a graph showing the measurement results of the plasma concentration of each compound in Experimental Example 8.
  • (A)-(c) is a graph showing the exercise competition curve measured in Experimental Example 9.
  • 11 is a graph showing the results of measuring the uterine contractility inducing effect of each compound in Experimental Example 10.
  • the present invention provides a compound represented by the following formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof.
  • X is a sulfur atom or a methylene group
  • R 3 is a group represented by the following formula (2) or the following formula (3).
  • X is preferably a sulfur atom.
  • R 3 is a group represented by the above formula (2) (hereinafter, referred to as “compound 2”).
  • having a super agonist activity means having an agonist activity having a higher oxytocin receptor activation ability than oxytocin, which is a natural ligand for the oxytocin receptor.
  • the chemical formula of compound 2 is shown in the following formula (4).
  • the inventors of the present invention have a compound in which X is a sulfur atom and R 3 is a group represented by the formula (3) (hereinafter, may be referred to as “compound 5”).
  • compound 5 was an agonist showing a long-term and lasting activation effect on the oxytocin receptor.
  • the term “long term” means that the duration of activation of the oxytocin receptor is longer than that of oxytocin, which is a natural ligand for the oxytocin receptor, and for example, even after 24 hours after acting on the oxytocin receptor. It may be that the activation effect of the oxytocin receptor is maintained.
  • the chemical formula of compound 5 is shown in the following formula (5).
  • examples of the pharmaceutically acceptable salt include salts commonly used pharmaceutically, and examples thereof include metal salts, ammonium salts, organic amine addition salts, amino acid addition salts and the like. More specifically, for example, hydrochloride, sulfate, hydrobromide, nitrate, inorganic acid salt such as phosphate, acetate, mesylate, succinate, maleate, fumarate, Organic acid salts such as citrate and tartrate, alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, metal salts such as aluminum salt and zinc salt, ammonium salt, tetra salt Examples thereof include ammonium salts such as methylammonium salt, organic amine addition salts such as morpholine and piperidine, amino acid addition salts such as glycine, phenylalanine, lysine, aspartic acid and glutamic acid.
  • solvate of the compound represented by formula (1) and the solvate of the salt of the compound represented by formula (1) are not particularly limited as long as they are pharmaceutically acceptable solvates. Examples include hydrates and organic solvates.
  • the present invention provides an oxytocin receptor agonist comprising a compound represented by the above formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof as an active ingredient.
  • the inventors have clarified that the compound represented by the above formula (1) has an agonistic activity on the oxytocin receptor.
  • the compound 2 represented by the above formula (4) exhibits superagonist activity on the oxytocin receptor.
  • the compound 5 represented by the above formula (5) is an agonist that exhibits a long-lasting activating effect on the oxytocin receptor.
  • the salts and solvates of the oxytocin receptor agonist of the present embodiment are the same as those described above.
  • the oxytocin receptor agonist may be a therapeutic agent for neurodevelopmental disorders or mental disorders, or a uterine contractile agent.
  • Neurodevelopmental disorders or mental disorders include autism spectrum disorder (ASD; Asperger's syndrome, high functioning autism, autism including Kanner's syndrome), schizophrenia, attention deficit hyperactivity disorder (ADHD), Parkinson's disease Mental disorders associated with autism spectrum disorder (ASD; Asperger's syndrome, high functioning autism, autism including Kanner's syndrome), schizophrenia, attention deficit hyperactivity disorder (ADHD), Parkinson's disease Mental disorders associated with autism spectrum disorder (ASD; Asperger's syndrome, high functioning autism, autism including Kanner's syndrome), schizophrenia, attention deficit hyperactivity disorder (ADHD), Parkinson's disease Mental disorders associated with ASD; Asperger's syndrome, high functioning autism, autism including Kanner's syndrome), schizophrenia, attention deficit hyperactivity disorder (ADHD), Parkinson's disease Mental disorders associated with ADHD and others.
  • ADHD attention deficit hyperactivity disorder
  • the uterine contractile agent can be used as a hemostatic agent (uterine contractile hemostatic agent) or the like that induces labor, promotes labor, and prevents blood loss from the uterus after labor.
  • the above-mentioned oxytocin receptor agonist may be formulated as a oxytocin receptor agonist-containing pharmaceutical composition containing a pharmacologically acceptable carrier.
  • the above-mentioned pharmaceutical composition is orally administered in the form of tablets, capsules, elixirs, microcapsules and the like, or parenterally in the form of injections, suppositories, external preparations for the skin, etc.
  • the external preparation for skin include dosage forms such as ointments and patches.
  • binders such as gelatin, corn starch, tragacanth gum, gum arabic; excipients such as starch and crystalline cellulose; swelling agents such as alginic acid; solvents for injection such as water, ethanol and glycerin;
  • adhesives such as rubber-based adhesives and silicone-based adhesives.
  • the pharmaceutical composition may contain additives.
  • additives such as calcium stearate and magnesium stearate; sweeteners such as sucrose, lactose, saccharin and maltitol; flavoring agents such as peppermint and red oil; stabilizers such as benzyl alcohol and phenol; phosphoric acid Examples thereof include buffers such as salts and sodium acetate; solubilizing agents such as benzyl benzoate and benzyl alcohol; antioxidants; preservatives.
  • the pharmaceutical composition is prepared by admixing the above-mentioned oxytocin receptor agonist and the above-mentioned pharmaceutically acceptable carrier and additive in an appropriate combination in a unit dose form required for generally accepted pharmaceutical practice. Can be converted.
  • the dose of the pharmaceutical composition varies depending on the symptoms, weight, age, sex, etc. of the patient and cannot be determined unconditionally, but in the case of oral administration, for example, 0.1 to 100 ⁇ g/kg body weight per unit dosage form is used.
  • the active ingredient (oxytocin receptor agonist) may be administered. In the case of an injection, for example, 0.01 to 50 ⁇ g/kg body weight of the active ingredient may be administered per dosage unit form.
  • the daily dose of the pharmaceutical composition varies depending on the symptoms, weight, age, sex, etc. of the patient and cannot be determined unconditionally, but for example, an adult dose of 0.1-100 ⁇ g/kg body weight is effective.
  • the components may be administered once a day or in 2 to 4 divided doses.
  • the present invention provides a compound represented by the above formula (1) or a pharmaceutically acceptable salt thereof or a solvate thereof for use as a medicine (in the above formula (1), X is a sulfur atom or a methylene group, and R 3 is a group represented by the above formula (2) or the above formula (3).
  • the present invention provides a compound represented by the above formula (1) or a pharmaceutically acceptable salt thereof or a solvate thereof for treating a neurodevelopmental disorder or a psychiatric disorder (the above formula ( 1), X is a sulfur atom or a methylene group, and R 3 is a group represented by the above formula (2) or the above formula (3).
  • the present invention provides a compound represented by the above formula (1) or a pharmaceutically acceptable salt thereof or a solvate thereof for the treatment of blood loss from the uterus (the above formula (1)
  • X is a sulfur atom or a methylene group
  • R 3 is a group represented by the above formula (2) or the above formula (3).
  • the present invention provides a compound represented by the above formula (1) for producing a therapeutic agent for neurodevelopmental disorder or psychiatric disorder or a uterine contractor, a pharmaceutically acceptable salt thereof, or a salt thereof.
  • a solvate in the above formula (1), X is a sulfur atom or a methylene group, and R 3 is a group represented by the above formula (2) or the above formula (3) is provided.
  • the present invention provides a compound represented by the above formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof (wherein, X is a sulfur atom or a methylene group).
  • R 3 is a group represented by the above formula (2) or the above formula (3).
  • the present invention provides a compound represented by the above formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof (wherein, X is a sulfur atom or a methylene group).
  • R 3 is a group represented by the above formula (2) or the above formula (3).
  • a linear peptide was synthesized on a resin by a general solid-phase peptide synthesis method using a 9-fluorenylmethyloxycarbonyl group (Fmoc group) as a protecting group.
  • Fmoc group 9-fluorenylmethyloxycarbonyl group
  • Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Cys(Trt)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt) were used as protected amino acids.
  • -OH, Fmoc-Ile-OH and Fmoc-Tyr(tBu)-OH were used.
  • a piperidine/DMF (1:4) solution was used for the removal of the Fmoc group.
  • a mixed solution of TFA (trifluoroacetic acid)/TIS (triisopropylsilane)/water (99:2:2) was used to cut out the protected peptide from the resin.
  • the obtained cyclic peptide was subjected to catalytic hydrogenation reaction in a mixed solvent of ethanol/methanol with 10% Pd-C (0.1 equivalent) and hydrogen at 1 atm, and the reverse After purification by phase HPLC (water-acetonitrile solvent containing 0.1% TFA), the deprotected desired compounds 3 and 6 were obtained as the trifluoroacetate salt.
  • the chemical formula of compound 3 is shown in the following formula (6).
  • the chemical formula of compound 6 is shown in the following formula (7).
  • FIG. 1 is a graph showing the results of a radiation competition assay.
  • OT represents oxytocin
  • AVP represents vasopressin
  • 1” to “6” represent compounds 1 to 6, respectively.
  • the horizontal axis of FIG. 1 represents the concentration of each compound, and the vertical axis represents the ratio (%) of the remaining [ 3 H]oxytocin.
  • Table 2 also shows the results of the radiation binding assay.
  • Compounds other than compound 2 showed slightly lower binding affinity compared to the binding affinity of oxytocin for hOTR.
  • Free Ca 2+ ion concentration was measured using a fluorescent probe, fura-2/AM, and a fluorescent microscope. The measurement results of the free Ca 2+ ion concentration are shown in FIGS. 2(a) to (d). Table 3 shows the EC 50 , selectivity, and E max of each compound calculated based on the measurement results of the free Ca 2+ ion concentration.
  • FIG. 2( a) is a graph showing the measurement results of the agonist activity of Compound 2 against hOTR, hV 1a R and hV 1b R.
  • FIG. 2( b) is a graph showing the measurement results of the agonist activity of Compound 5 against hOTR, hV 1a R and hV 1b R.
  • OTR indicates HOTR
  • V 1A denotes the hV 1a R
  • V 1B indicates the hV 1b R
  • the horizontal axis represents the concentration of each compound and the vertical axis shows the proportion (%) of the free Ca 2+ ion concentration in the case of the free Ca 2+ ion concentration in the case of addition of oxytocin as 100%.
  • FIG. 2(c) is a graph showing the measurement results of hOTR activation by oxytocin, vasopressin, compound 2 and compound 5.
  • OT indicates oxytocin
  • AVP indicates vasopressin
  • 2 indicates compound 2
  • 5 indicates compound 5
  • the horizontal axis indicates the concentration of each compound.
  • the vertical axis shows the proportion (%) of the free Ca 2+ ion concentration in the case of the free Ca 2+ ion concentration in the case of addition of oxytocin as 100%.
  • FIG. 2( d) is a graph showing the measurement results of hV 1a R activation by oxytocin, vasopressin, compound 2 and compound 5.
  • OT represents oxytocin
  • AVP represents vasopressin
  • 2 represents compound 2
  • 5 represents compound 5
  • the horizontal axis represents the concentration of each compound.
  • the vertical axis shows the proportion (%) of the free Ca 2+ ion concentration in the case of the free Ca 2+ ion concentration in the case of addition of vasopressin as 100%.
  • the hOTR selectivity for hV 1a R and hV 1b R was slightly different.
  • Oxytocin, compounds 2 and 3, showed an approximately 20-75 fold increase in selectivity for hOTR over hV 1a R.
  • Carbetocin showed an approximately 200-fold increased selectivity for hOTR over hV 1a R.
  • Compounds 1, 4, 5 and 6 showed >1000-fold increased selectivity for hOTR over hV 1a R.
  • the data for compounds 1 and 4 (Table 2) were in good agreement with the reported values.
  • the selectivity of hOTR for hV 1a R of compound 4 was high, but the selectivity of hOTR for hV 1b R was not high.
  • CD38KOCC mouse a mouse that knocked out CD38 by editing the genome.
  • the sgRNA was designed to target exon 2 of the Cd38 locus.
  • hCas9 mRNA and sgRNA were synthesized using an in vitro RNA transcription kit (trade name “mMESSAGE mMACHINE T7 Transcription Kit", Thermo Fisher Scientific Co.) and an electroporator (model “NEPA21”, NEPA GENE Co.) was used. Introduced into mouse eggs.
  • DNA was isolated from the F 0 generation mouse tail, PCR was used to amplify the genomic region spanning the sgRNA binding site, and individuals having a mutation in the Cd38 gene were screened. Then, 30 or more pups were screened using a commercially available kit (trade name "Guide-it Mutation detection kit", Takara Bio Inc.). As a result, pups having a 2-base pair insertion in the Cd38 gene were identified. This insertion forms a stop codon within the open reading frame of the Cd38 gene, resulting in a loss-of-function mutation of the Cd38 gene.
  • the pups of CD38KOCC mice were weaned at 21 to 28 days of age, and were kept in the same sex group of 5 mice under the standard conditions of 24° C., 12 hours of light/dark cycle, and lighting at 8:00 am, and used in the experiment described later.
  • the tail suspension test (Tail suspension test) is a test for measuring the struggling time of a mouse suspended upside down, and is generally one of the tests for evaluating depression-like behavior.
  • the suspended mouse moves about to escape, but the time it does not move (immobility time) gradually increases.
  • immobility time in mice treated with antidepressants.
  • a longer immobility time is interpreted as an increase in depression-like behavior, and a decrease in immobility time is interpreted as a decrease in depression-like behavior.
  • the short duration of inactivity can be interpreted as reflecting attention-deficit/hyperactivity disorder-like behavior, and the duration of inactivity can be used to test the effect on attention-deficit/hyperactivity disorder. it can.
  • the tail of the mouse was taped to a suspension bar in a suspension box made of Plastec having a height of 55 cm, a width of 60 cm and a depth of 11.5 cm.
  • the test time was 6 minutes, and the total immobility time in the last 4 minutes was measured.
  • Oxytocin, Compounds 2 and 5 were each dissolved in phosphate buffered saline (PBS) at a concentration of 100 ng/mL, and a single dose of 0.3 mL/mouse was intraperitoneally administered to CD38KOCC male mice. A group to which only PBS was administered was also prepared as a control. Subsequently, a microsuspension test was performed 30 minutes and 24 hours after the administration.
  • PBS phosphate buffered saline
  • FIG. 3 is a graph showing the results of the tail suspension test.
  • OT represents oxytocin
  • 2 represents compound 2
  • 5 represents compound 5.
  • the vertical axis represents the length of idle time (seconds).
  • * indicates that there is a significant difference at p ⁇ 0.05.
  • sucrose preference test The sucrose preference test is considered to reflect the depression state of human depression or Parkinson's disease and the apathy (unpleasant sensation) that is observed due to a decrease in the willingness to socialize (QOL), and indifference to others. There is. In mice that are overstressed, there is a behavioral change in which they no longer take the sucrose water that they originally prefer. It is also known that this reaction is improved by treatment with antidepressant drugs.
  • oxytocin, Compounds 2 and 5 were each dissolved in phosphate buffered saline (PBS) at a concentration of 100 ng/mL, and each was intraperitoneally administered once to each CD38KOCC male mouse at a dose of 0.3 mL/mouse. .. A group to which only PBS was administered was also prepared as a control.
  • PBS phosphate buffered saline
  • mice in each group were placed in a state where they could freely choose between water and 1% sucrose solution, and the consumption of water and sucrose solution was quantified 1 hour and 24 hours after administration. did.
  • FIGS. 4A and 4B are graphs showing the results of quantifying the consumption amounts of water and sucrose solution.
  • FIG. 4(a) is a graph showing the results 1 hour after the administration of each compound
  • FIG. 4(b) is a graph showing the results 24 hours after the administration of each compound.
  • “OT” represents oxytocin
  • “2” represents compound 2
  • “5” represents compound 5
  • the vertical axis represents the consumption of water or sucrose solution.
  • "*" indicates that there is a significant difference at p ⁇ 0.05.
  • FIGS. 5(a) to 5(c) are graphs showing the measurement results of plasma concentrations of oxytocin, compound 2 and compound 5 measured by the LC-MS/MS method.
  • 5A shows the measurement result of oxytocin
  • FIG. 5B shows the measurement result of compound 2
  • FIG. 5C shows the measurement result of compound 5.
  • the concentration of endogenous oxytocin was also measured at the same time.
  • OT indicates oxytocin
  • 2 indicates compound 2
  • 5 indicates compound 5.
  • the horizontal axis shows the time (minutes) after administration, and the vertical axis shows the plasma concentration (ng/mL) of each compound.
  • Table 4 shows the measurement results of pharmacokinetic parameters.
  • “Fast period” indicates that the calculation was performed based on the measured value 15 minutes after the administration of the compound
  • “Slow period” was calculated based on the measured value 15 to 60 minutes after the administration of the compound.
  • CSF indicates cerebrospinal fluid.
  • FIG. 6 is a graph showing the measurement results of the plasma concentration of each compound.
  • OT represents oxytocin
  • 2 represents compound 2
  • 5 represents compound 5.
  • the horizontal axis represents time (minutes) and the vertical axis represents the ratio (%) to the initial concentration.
  • the concentration of all compounds was within the range of 85 to 115% with respect to the initial concentration, and it was considered that they were stable even after incubation in plasma at 37°C for 2 hours.
  • This result indicates that the disappearance of oxytocin, Compound 2 and Compound 5 in blood is not due to decomposition by enzymatic digestion, but is due to clearance or adsorption to various tissues and organs.
  • a kinetic competition curve was measured for each of oxytocin, compound 2, and compound 5 at three concentrations (near Ki, 5-fold Ki, and 10-fold Ki). Specifically, 500 pM [ 3 H]oxytocin and various concentrations of competing compounds were added to the crude membrane fraction of HEK-293 cells forcibly expressing hOTR, and after incubation for various times, [ 3 H] The amount of oxytocin bound was measured. Non-specific binding was determined in the presence of 1 ⁇ M unlabeled oxytocin.
  • FIG. 7(a) to 7(c) are graphs showing measured exercise competition curves.
  • FIG. 7( a) shows the results for oxytocin
  • FIG. 7( b) shows the results for compound 2
  • FIG. 7( c) shows the results for compound 5.
  • Table 5 below shows the measurement results of reaction kinetic parameters of each compound.
  • Compound 2 showed a t 1/2 of about 1/2 that of [ 3 H]oxytocin. Moreover, the compound 2 showed t 1/2 of about 1/6 of the compound 5. Compound 5 also showed faster association and dissociation rates compared to [ 3 H]oxytocin.
  • FIG. 8 is a graph showing the measurement results of the uterine muscle contraction inducing effect of oxytocin, carbetocin, compound 2 and compound 5.
  • the horizontal axis represents the concentration of each compound
  • the vertical axis represents the ratio (%) with the spontaneous contraction value as 100%.
  • the EC 50 of Compound 2 was 55.5 pM, which was the same among natural oxytocin (238.8 pM), carbetosine (2.7 nM), Compound 1 (182.3 pM) and Compound 5 (3.1 nM). It became clear that it was the highest. Further, the EC 50 of Compound 3 was >10 nM and the EC 50 of Compound 6 was 8.1 nM.
  • a novel oxytocin derivative can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Psychiatry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention is a compound represented by Formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof (in Formula (1), X is a sulfur atom or a methylene group and R3 is a group represented by Formula (2) or Formula (3)).

Description

オキシトシン誘導体及びその使用Oxytocin derivative and use thereof
 本発明は、オキシトシン誘導体及びその使用に関する。より具体的には、本発明は、新規オキシトシン誘導体、オキシトシン受容体作動薬、オキシトシン受容体作動用医薬組成物に関する。本願は、2018年12月27日に、日本に出願された特願2018-246141号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an oxytocin derivative and its use. More specifically, the present invention relates to a novel oxytocin derivative, oxytocin receptor agonist, and oxytocin receptor agonist pharmaceutical composition. The present application claims priority based on Japanese Patent Application No. 2018-246141 filed in Japan on December 27, 2018, and the content thereof is incorporated herein.
 オキシトシン(CAS番号:50-56-6)は、下記式(A)で表される化合物であり、下垂体後葉から分泌されるペプチドホルモンである。 Oxytocin (CAS number: 50-56-6) is a compound represented by the following formula (A), which is a peptide hormone secreted from the posterior pituitary.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 オキシトシンは、子宮、乳腺等の末梢器官及び中枢神経系に存在し、子宮収縮や、乳分泌を誘発することが知られている。オキシトシンはまた、ヒトを含む哺乳動物における、社会的ふるまい、認識、記憶等の社会的コミュニケーションを増強することが知られている。 Oxytocin is present in peripheral organs such as the uterus and mammary gland and in the central nervous system, and is known to induce uterine contraction and lactation. Oxytocin is also known to enhance social communication such as social behavior, cognition and memory in mammals including humans.
 ところで、自閉症スペクトラム障害(ASD)は、社会的コミュニケーション、社会的相互作用、反復性行動、制限された関心等を特徴とする先天性疾患である。ASDの治療法が検討されているが、まだ有効な治療薬が存在しないのが現状である。 By the way, autism spectrum disorder (ASD) is a congenital disease characterized by social communication, social interaction, repetitive behavior, limited interest, etc. Although a treatment method for ASD is being investigated, the current situation is that there is no effective therapeutic drug.
 オキシトシンは、ASD患者の異常な社会的コミュニケーション行動に関連している可能性がある。例えば、ASD患者は、血液又は唾液腺におけるオキシトシン濃度が低いことが報告されている。また、ASD患者ではオキシトシン受容体のコード領域及び非コード領域に高頻度の遺伝子変異が検出されることが報告されている。また、オキシトシンシグナル伝達に関連する膜貫通タンパク質であるCD38の遺伝子変異は、マウスに自閉症様症状を引き起こすことが知られている。また、CD38の一塩基多型はASDと関連していることが知られている。これらの事象は、社会的行動におけるオキシトシンシグナル伝達の重要性を示唆している。 Oxytocin may be associated with abnormal social communication behavior in ASD patients. For example, ASD patients have been reported to have low levels of oxytocin in blood or salivary glands. In addition, it has been reported that high frequency gene mutations are detected in the coding region and non-coding region of the oxytocin receptor in ASD patients. It is known that a gene mutation of CD38, which is a transmembrane protein related to oxytocin signal transduction, causes autism-like symptoms in mice. Further, it is known that the single nucleotide polymorphism of CD38 is associated with ASD. These events suggest the importance of oxytocin signaling in social behavior.
 したがって、オキシトシンは、神経発達障害若しくは精神疾患を有する患者における正常な社会的行動を回復させる新薬の開発のための有益なリード化合物であり得る。 Therefore, oxytocin may be a valuable lead compound for the development of new drugs that restore normal social behavior in patients with neurodevelopmental disorders or psychiatric disorders.
 カルベトシン(CAS番号:37025-55-1)は、オキシトシンの誘導体であり、オキシトシンとともに子宮収縮剤等として利用されている。しかしながら、オキシトシンやカルベトシンは、バソプレシン受容体、特にV受容体に対する選択性が欠如していることが知られている。このため、オキシトシンやカルベトシンの投与中に、抗利尿、低ナトリウム血症等の副作用が観察される場合がある。 Carbetocin (CAS number: 37025-55-1) is a derivative of oxytocin and is used as a uterine contractor together with oxytocin. However, it is known that oxytocin and carbetocin lack selectivity for vasopressin receptors, particularly V 2 receptors. Therefore, side effects such as antidiuresis and hyponatremia may be observed during administration of oxytocin and carbetocin.
 オキシトシンの薬理学的特性を改善するため、様々なオキシトシン誘導体が合成されてきた(例えば、特許文献1を参照)。 Various oxytocin derivatives have been synthesized in order to improve the pharmacological properties of oxytocin (see, for example, Patent Document 1).
特許第5539310号公報Japanese Patent No. 5539310
 このような背景のもと、本発明は新規オキシトシン誘導体を提供することを目的とする。 Against this background, the present invention aims to provide a novel oxytocin derivative.
 本発明は以下の態様を含む。
[1]下記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物(下記式(1)中、Xは硫黄原子又はメチレン基であり、Rは下記式(2)又は下記式(3)で表される基である。)。
Figure JPOXMLDOC01-appb-C000003
[2][1]に記載の化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物を有効成分とする、オキシトシン受容体作動薬。
[3]神経発達障害若しくは精神疾患の治療剤又は子宮収縮剤である、[2]に記載のオキシトシン受容体作動薬。
[4][2]又は[3]に記載のオキシトシン受容体作動薬と、薬理学的に許容される担体とを含む、オキシトシン受容体作動用医薬組成物。
The present invention includes the following aspects.
[1] A compound represented by the following formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof (wherein, in the following formula (1), X is a sulfur atom or a methylene group, and R 3 is It is a group represented by the following formula (2) or the following formula (3).
Figure JPOXMLDOC01-appb-C000003
[2] An oxytocin receptor agonist comprising the compound according to [1], a pharmacologically acceptable salt thereof, or a solvate thereof as an active ingredient.
[3] The oxytocin receptor agonist according to [2], which is a therapeutic agent for neurodevelopmental disorders or mental disorders or a uterine contractor.
[4] An oxytocin receptor agonist pharmaceutical composition comprising the oxytocin receptor agonist according to [2] or [3] and a pharmacologically acceptable carrier.
 本発明によれば、新規オキシトシン誘導体を提供することができる。 According to the present invention, a novel oxytocin derivative can be provided.
実験例2における放射線競合アッセイの結果を示すグラフである。9 is a graph showing the results of a radiation competition assay in Experimental Example 2. (a)~(d)は、実験例3における細胞内カルシウムイオン濃度の測定結果を示すグラフである。(A)-(d) is a graph showing the measurement results of intracellular calcium ion concentration in Experimental Example 3. 実験例5における尾懸垂試験の結果を示すグラフである。9 is a graph showing the results of the tail suspension test in Experimental Example 5. (a)及び(b)は、実験例6において、水及びショ糖溶液の消費量を定量した結果を示すグラフである。(A) And (b) is a graph which shows the result of having quantified the consumption of water and a sucrose solution in Experimental example 6. (a)~(c)は、実験例7において、各化合物の血漿中濃度を測定した結果を示すグラフである。(A) to (c) are graphs showing the results of measuring the plasma concentration of each compound in Experimental Example 7. 実験例8において、各化合物の血漿中濃度の測定結果を示すグラフである。9 is a graph showing the measurement results of the plasma concentration of each compound in Experimental Example 8. (a)~(c)は、実験例9において測定した運動競合曲線を示すグラフである。(A)-(c) is a graph showing the exercise competition curve measured in Experimental Example 9. 実験例10において、各化合物の子宮筋縮誘導効果を測定した結果を示すグラフである。11 is a graph showing the results of measuring the uterine contractility inducing effect of each compound in Experimental Example 10.
[オキシトシン誘導体]
 1実施形態において、本発明は、下記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物を提供する。下記式(1)中、Xは硫黄原子又はメチレン基であり、Rは下記式(2)又は下記式(3)で表される基である。
[Oxytocin derivative]
In one embodiment, the present invention provides a compound represented by the following formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof. In the following formula (1), X is a sulfur atom or a methylene group, and R 3 is a group represented by the following formula (2) or the following formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(1)において、Xは硫黄原子であることが好ましい。実施例において後述するように、発明者らは、上記式(1)において、Xが硫黄原子であり、Rが上記式(2)で表される基である化合物(以下、「化合物2」という場合がある。)が、オキシトシン受容体のスーパーアゴニスト活性を有することを明らかにした。ここで、スーパーアゴニスト活性を有するとは、オキシトシン受容体に対する天然のリガンドであるオキシトシンよりもオキシトシン受容体活性化能が高いアゴニスト活性を有することを意味する。下記式(4)に化合物2の化学式を示す。 In the above formula (1), X is preferably a sulfur atom. As will be described later in Examples, the inventors of the present invention have shown that in the above formula (1), X is a sulfur atom and R 3 is a group represented by the above formula (2) (hereinafter, referred to as “compound 2”). Has a super agonist activity of oxytocin receptor. Here, having a super agonist activity means having an agonist activity having a higher oxytocin receptor activation ability than oxytocin, which is a natural ligand for the oxytocin receptor. The chemical formula of compound 2 is shown in the following formula (4).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、発明者らは、上記式(1)において、Xが硫黄原子であり、Rが上記式(3)で表される基である化合物(以下、「化合物5」という場合がある。)が、オキシトシン受容体に対して長期間持続的な活性化効果を示すアゴニストであることを明らかにした。ここで、長期間とは、オキシトシン受容体に対する天然のリガンドであるオキシトシンよりもオキシトシン受容体活性化の持続時間が長いことを意味し、例えば、オキシトシン受容体に作用させてから24時間後においてもオキシトシン受容体の活性化効果を維持していることであってもよい。下記式(5)に化合物5の化学式を示す。 Further, in the formula (1), the inventors of the present invention have a compound in which X is a sulfur atom and R 3 is a group represented by the formula (3) (hereinafter, may be referred to as “compound 5”). Was an agonist showing a long-term and lasting activation effect on the oxytocin receptor. Here, the term “long term” means that the duration of activation of the oxytocin receptor is longer than that of oxytocin, which is a natural ligand for the oxytocin receptor, and for example, even after 24 hours after acting on the oxytocin receptor. It may be that the activation effect of the oxytocin receptor is maintained. The chemical formula of compound 5 is shown in the following formula (5).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本明細書において、薬学的に許容される塩としては、薬学的に通常用いられる塩が挙げられ、例えば、金属塩、アンモニウム塩、有機アミン付加塩、アミノ酸付加塩等であることができる。より具体的には、例えば、塩酸塩、硫酸塩、臭化水素酸塩、硝酸塩、リン酸塩等の無機酸塩、酢酸塩、メシル酸塩、コハク酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、酒石酸塩等の有機酸塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アルミニウム塩、亜鉛塩等の金属塩、アンモニウム塩、テトラメチルアンモニウム塩等のアンモニウム塩、モルホリン、ピペリジン等の有機アミン付加塩、グリシン、フェニルアラニン、リジン、アスパラギン酸、グルタミン酸等のアミノ酸付加塩等が挙げられる。 In the present specification, examples of the pharmaceutically acceptable salt include salts commonly used pharmaceutically, and examples thereof include metal salts, ammonium salts, organic amine addition salts, amino acid addition salts and the like. More specifically, for example, hydrochloride, sulfate, hydrobromide, nitrate, inorganic acid salt such as phosphate, acetate, mesylate, succinate, maleate, fumarate, Organic acid salts such as citrate and tartrate, alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, metal salts such as aluminum salt and zinc salt, ammonium salt, tetra salt Examples thereof include ammonium salts such as methylammonium salt, organic amine addition salts such as morpholine and piperidine, amino acid addition salts such as glycine, phenylalanine, lysine, aspartic acid and glutamic acid.
 また、式(1)で表される化合物の溶媒和物、式(1)で表される化合物の塩の溶媒和物としては、薬学的に許容される溶媒和物であれば特に制限されず、例えば、水和物、有機溶媒和物等が挙げられる。 Further, the solvate of the compound represented by formula (1) and the solvate of the salt of the compound represented by formula (1) are not particularly limited as long as they are pharmaceutically acceptable solvates. Examples include hydrates and organic solvates.
[オキシトシン受容体作動薬]
 1実施形態において、本発明は、上記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物を有効成分とする、オキシトシン受容体作動薬を提供する。
[Oxytocin receptor agonist]
In one embodiment, the present invention provides an oxytocin receptor agonist comprising a compound represented by the above formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof as an active ingredient.
 実施例において後述するように、発明者らは、上記式(1)で表される化合物が、オキシトシン受容体に対するアゴニスト活性を有することを明らかにした。なかでも、上記式(4)で表される化合物2は、オキシトシン受容体に対するスーパーアゴニスト活性を示す。また、上記式(5)で表される化合物5は、オキシトシン受容体に対して長期間持続的な活性化効果を示すアゴニストである。 As will be described later in Examples, the inventors have clarified that the compound represented by the above formula (1) has an agonistic activity on the oxytocin receptor. Among them, the compound 2 represented by the above formula (4) exhibits superagonist activity on the oxytocin receptor. In addition, the compound 5 represented by the above formula (5) is an agonist that exhibits a long-lasting activating effect on the oxytocin receptor.
 本実施形態のオキシトシン受容体作動薬において、塩、溶媒和物については上述したものと同様である。オキシトシン受容体作動薬は、神経発達障害又は精神疾患の治療剤であってもよいし、子宮収縮剤であってもよい。 The salts and solvates of the oxytocin receptor agonist of the present embodiment are the same as those described above. The oxytocin receptor agonist may be a therapeutic agent for neurodevelopmental disorders or mental disorders, or a uterine contractile agent.
 神経発達障害又は精神疾患としては、自閉スペクトラム症(ASD;アスペルガー症候群、高機能自閉症、カナー症候群を含む自閉症)、統合失調症、注意欠陥多動性障害(ADHD)、パーキンソン病に伴う精神疾患等が挙げられる。 Neurodevelopmental disorders or mental disorders include autism spectrum disorder (ASD; Asperger's syndrome, high functioning autism, autism including Kanner's syndrome), schizophrenia, attention deficit hyperactivity disorder (ADHD), Parkinson's disease Mental disorders associated with
 子宮収縮剤は、分娩誘発、分娩促進、分娩後の子宮からの失血を予防する止血剤(子宮収縮止血剤)等として用いることができる。 The uterine contractile agent can be used as a hemostatic agent (uterine contractile hemostatic agent) or the like that induces labor, promotes labor, and prevents blood loss from the uterus after labor.
[オキシトシン受容体作動用医薬組成物]
 1実施形態において、上述したオキシトシン受容体作動薬は、薬理学的に許容される担体を含むオキシトシン受容体作動用医薬組成物として製剤化されていてもよい。
[Pharmaceutical composition for activating oxytocin receptor]
In one embodiment, the above-mentioned oxytocin receptor agonist may be formulated as a oxytocin receptor agonist-containing pharmaceutical composition containing a pharmacologically acceptable carrier.
 上記の医薬組成物は、例えば、錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤等の形態で経口的に、あるいは、注射剤、坐剤、皮膚外用剤等の形態で非経口的に投与することができる。皮膚外用剤としては、より具体的には、軟膏剤、貼付剤等の剤型が挙げられる。 The above-mentioned pharmaceutical composition is orally administered in the form of tablets, capsules, elixirs, microcapsules and the like, or parenterally in the form of injections, suppositories, external preparations for the skin, etc. You can Specific examples of the external preparation for skin include dosage forms such as ointments and patches.
 薬学的に許容される担体としては、通常医薬組成物の製剤に用いられるものを特に制限なく用いることができる。より具体的には、例えば、ゼラチン、コーンスターチ、トラガントガム、アラビアゴム等の結合剤;デンプン、結晶性セルロース等の賦形剤;アルギン酸等の膨化剤;水、エタノール、グリセリン等の注射剤用溶剤;ゴム系粘着剤、シリコーン系粘着剤等の粘着剤等が挙げられる。 As the pharmaceutically acceptable carrier, those usually used for preparation of pharmaceutical compositions can be used without particular limitation. More specifically, for example, binders such as gelatin, corn starch, tragacanth gum, gum arabic; excipients such as starch and crystalline cellulose; swelling agents such as alginic acid; solvents for injection such as water, ethanol and glycerin; Examples thereof include adhesives such as rubber-based adhesives and silicone-based adhesives.
 医薬組成物は添加剤を含んでいてもよい。添加剤としては、ステアリン酸カルシウム、ステアリン酸マグネシウム等の潤滑剤;ショ糖、乳糖、サッカリン、マルチトール等の甘味剤;ペパーミント、アカモノ油等の香味剤;ベンジルアルコール、フェノール等の安定剤;リン酸塩、酢酸ナトリウム等の緩衝剤;安息香酸ベンジル、ベンジルアルコール等の溶解補助剤;酸化防止剤;防腐剤等が挙げられる。 The pharmaceutical composition may contain additives. As additives, lubricants such as calcium stearate and magnesium stearate; sweeteners such as sucrose, lactose, saccharin and maltitol; flavoring agents such as peppermint and red oil; stabilizers such as benzyl alcohol and phenol; phosphoric acid Examples thereof include buffers such as salts and sodium acetate; solubilizing agents such as benzyl benzoate and benzyl alcohol; antioxidants; preservatives.
 医薬組成物は、上述したオキシトシン受容体作動薬と、上述した薬学的に許容される担体及び添加剤を適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することができる。 The pharmaceutical composition is prepared by admixing the above-mentioned oxytocin receptor agonist and the above-mentioned pharmaceutically acceptable carrier and additive in an appropriate combination in a unit dose form required for generally accepted pharmaceutical practice. Can be converted.
 医薬組成物の投与量は、患者の症状、体重、年齢、性別等によって異なり、一概には決定できないが、経口投与の場合には、例えば、投与単位形態あたり0.1~100μg/kg体重の有効成分(オキシトシン受容体作動薬)を投与すればよい。また、注射剤の場合には、例えば、投与単位形態あたり0.01~50μg/kg体重の有効成分を投与すればよい。 The dose of the pharmaceutical composition varies depending on the symptoms, weight, age, sex, etc. of the patient and cannot be determined unconditionally, but in the case of oral administration, for example, 0.1 to 100 μg/kg body weight per unit dosage form is used. The active ingredient (oxytocin receptor agonist) may be administered. In the case of an injection, for example, 0.01 to 50 μg/kg body weight of the active ingredient may be administered per dosage unit form.
 また、医薬組成物の1日あたりの投与量は、患者の症状、体重、年齢、性別等によって異なり、一概には決定できないが、例えば、成人1日あたり0.1~100μg/kg体重の有効成分を1日1回又は2~4回程度に分けて投与すればよい。 Further, the daily dose of the pharmaceutical composition varies depending on the symptoms, weight, age, sex, etc. of the patient and cannot be determined unconditionally, but for example, an adult dose of 0.1-100 μg/kg body weight is effective. The components may be administered once a day or in 2 to 4 divided doses.
[その他の実施形態]
 1実施形態において、本発明は、医薬としての使用のための上記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物(上記式(1)中、Xは硫黄原子又はメチレン基であり、Rは上記式(2)又は上記式(3)で表される基である。)を提供する。
[Other Embodiments]
In one embodiment, the present invention provides a compound represented by the above formula (1) or a pharmaceutically acceptable salt thereof or a solvate thereof for use as a medicine (in the above formula (1), X is a sulfur atom or a methylene group, and R 3 is a group represented by the above formula (2) or the above formula (3).
 1実施形態において、本発明は、神経発達障害又は精神疾患の治療のための上記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物(上記式(1)中、Xは硫黄原子又はメチレン基であり、Rは上記式(2)又は上記式(3)で表される基である。)を提供する。 In one embodiment, the present invention provides a compound represented by the above formula (1) or a pharmaceutically acceptable salt thereof or a solvate thereof for treating a neurodevelopmental disorder or a psychiatric disorder (the above formula ( 1), X is a sulfur atom or a methylene group, and R 3 is a group represented by the above formula (2) or the above formula (3).
 1実施形態において、本発明は、子宮からの失血の治療のための上記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物(上記式(1)中、Xは硫黄原子又はメチレン基であり、Rは上記式(2)又は上記式(3)で表される基である。)を提供する。 In one embodiment, the present invention provides a compound represented by the above formula (1) or a pharmaceutically acceptable salt thereof or a solvate thereof for the treatment of blood loss from the uterus (the above formula (1) In the above, X is a sulfur atom or a methylene group, and R 3 is a group represented by the above formula (2) or the above formula (3).
 1実施形態において、本発明は、神経発達障害若しくは精神疾患の治療剤又は子宮収縮剤を製造するための上記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物(上記式(1)中、Xは硫黄原子又はメチレン基であり、Rは上記式(2)又は上記式(3)で表される基である。)の使用を提供する。 In one embodiment, the present invention provides a compound represented by the above formula (1) for producing a therapeutic agent for neurodevelopmental disorder or psychiatric disorder or a uterine contractor, a pharmaceutically acceptable salt thereof, or a salt thereof. The use of a solvate (in the above formula (1), X is a sulfur atom or a methylene group, and R 3 is a group represented by the above formula (2) or the above formula (3)) is provided.
 1実施形態において、本発明は、上記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物(上記式(1)中、Xは硫黄原子又はメチレン基であり、Rは上記式(2)又は上記式(3)で表される基である。)の有効量を、治療を必要とする患者に投与することを含む、神経発達障害又は精神疾患の治療方法を提供する。 In one embodiment, the present invention provides a compound represented by the above formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof (wherein, X is a sulfur atom or a methylene group). And R 3 is a group represented by the above formula (2) or the above formula (3).) A neurodevelopmental disorder or a mental illness, which comprises administering to a patient in need of treatment an effective amount of To provide a treatment method.
 1実施形態において、本発明は、上記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物(上記式(1)中、Xは硫黄原子又はメチレン基であり、Rは上記式(2)又は上記式(3)で表される基である。)の有効量を、治療を必要とする患者に投与することを含む、子宮からの失血の治療方法を提供する。 In one embodiment, the present invention provides a compound represented by the above formula (1), a pharmaceutically acceptable salt thereof, or a solvate thereof (wherein, X is a sulfur atom or a methylene group). And R 3 is a group represented by the above formula (2) or the above formula (3).) Treatment of blood loss from the uterus, which comprises administering to a patient in need thereof an effective amount. Provide a way.
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[実験例1]
(オキシトシン誘導体の合成)
 下記式(F)で表される化合物において、R、R、R、R、Xが下記表1の化合物1~6である化合物をそれぞれ合成した。化合物2、3、5、6は新規化合物である。
[Experimental Example 1]
(Synthesis of oxytocin derivative)
In the compounds represented by the following formula (F), compounds in which R 1 , R 2 , R 3 , R 4 and X are compounds 1 to 6 in the following Table 1 were respectively synthesized. Compounds 2, 3, 5, 6 are new compounds.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 化合物2、3、5及び6は、下記スキーム1に要約されるように合成した。また、後述する実験例における比較のために、既知化合物である化合物1及び4も合成した。 Compounds 2, 3, 5 and 6 were synthesized as summarized in Scheme 1 below. In addition, known compounds, Compounds 1 and 4, were also synthesized for comparison in Experimental Examples described later.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 まず、9-フルオレニルメチルオキシカルボニル基(Fmoc基)を保護基に用いた一般的な固相ペプチド合成法により、樹脂上に線状ペプチドを合成した。化合物2及び化合物5の合成には、保護アミノ酸として、Fmoc-Gly-OH、Fmoc-Leu-OH、Fmoc-Cys(Trt)-OH、Fmoc-Asn(Trt)-OH、Fmoc-Gln(Trt)-OH、Fmoc-Ile-OH及びFmoc-Tyr(tBu)-OHを用いた。また、化合物3及び化合物6の合成には、保護アミノ酸として、Fmoc-Gly-OH、Fmoc-Leu-OH、Fmoc-Cys((CHCH(NH-pNZ)COAllyl)-OH、Fmoc-Asn(Trt)-OH、Fmoc-Gln(Trt)-OH、Fmoc-Ile-OH及びFmoc-Tyr(tBu)-OHを用いた。 First, a linear peptide was synthesized on a resin by a general solid-phase peptide synthesis method using a 9-fluorenylmethyloxycarbonyl group (Fmoc group) as a protecting group. For the synthesis of compound 2 and compound 5, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Cys(Trt)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt) were used as protected amino acids. -OH, Fmoc-Ile-OH and Fmoc-Tyr(tBu)-OH were used. Furthermore, the synthesis of Compound 3 and Compound 6, a protected amino acid, Fmoc-Gly-OH, Fmoc -Leu-OH, Fmoc-Cys ((CH 2) 2 CH (NH-pNZ) CO 2 Allyl) -OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH and Fmoc-Tyr(tBu)-OH were used.
 アミノ酸の縮合反応には、Fmoc-アミノ酸(3当量)、DIC(ジイソプロピルカルボジイミド、3当量)、HOAt(1-ヒドロキシ-7-アザベンゾトリアゾール、3当量)、溶媒としてDMF(N,N-ジメチルホルムアミド)を用いた。但し、N-アルキルグリシン残基については、ブロモ酢酸(4当量)、DIC(4当量)、HOAt(4当量)を用いてNMP(N-メチルピロリドン)中でN-アシル化を行い、続いてp-フルオロベンジルアミン(10当量)又は3-t-ブトキシプロピルアミン(10当量)によってNMP中で処理することにより結合させた。Fmoc基の除去には、ピペリジン/DMF(1:4)溶液を用いた。樹脂からの保護ペプチドの切出しには、TFA(トリフルオロ酢酸)/TIS(トリイソプロピルシラン)/水(99:2:2)の混合液を用いた。 For the condensation reaction of amino acids, Fmoc-amino acid (3 equivalents), DIC (diisopropylcarbodiimide, 3 equivalents), HOAt (1-hydroxy-7-azabenzotriazole, 3 equivalents), and DMF (N,N-dimethylformamide) as a solvent are used. ) Was used. However, for the N-alkylglycine residue, N-acylation was performed in NMP (N-methylpyrrolidone) using bromoacetic acid (4 equivalents), DIC (4 equivalents), HOAt (4 equivalents), and then Coupling was done by treatment with p-fluorobenzylamine (10 eq) or 3-t-butoxypropylamine (10 eq) in NMP. A piperidine/DMF (1:4) solution was used for the removal of the Fmoc group. A mixed solution of TFA (trifluoroacetic acid)/TIS (triisopropylsilane)/water (99:2:2) was used to cut out the protected peptide from the resin.
 化合物2及び5の合成では、樹脂上でのペプチド合成の後、末端Fmoc基を除去し、化合物2及び5の鎖状前駆体を樹脂から切断し、水/アセトニトリル(1:4)混合液に溶解後、I-メタノール溶液(0.1M)を加えて環化反応を行い、逆相HPLC(0.1%TFAを含有する水-アセトニトリル溶媒)で精製後、所望の化合物2及び5をトリフルオロ酢酸塩として得た。化合物2の化学式は上記式(4)に示した。また、化合物5の化学式は上記式(5)に示した。 In the synthesis of Compounds 2 and 5, after peptide synthesis on the resin, the terminal Fmoc group was removed, the chain precursors of Compounds 2 and 5 were cleaved from the resin, and a water/acetonitrile (1:4) mixture was prepared. After dissolution, I 2 -methanol solution (0.1 M) was added to carry out a cyclization reaction, and after purification by reverse phase HPLC (water-acetonitrile solvent containing 0.1% TFA), desired compounds 2 and 5 were obtained. Obtained as the trifluoroacetate salt. The chemical formula of compound 2 is shown in the above formula (4). The chemical formula of compound 5 is shown in the above formula (5).
 化合物2:
 HPLC:Rt=11.1 min,solvent A/B=75/25;Purity:97.8%;LRMS(ESI)m/z 1075.45[(M+H)],1097.43[(M+Na)];HRMS(ESI)calcd for C4767FN1212Na:1097.4319[(M+Na)],found:1097.4321.
Compound 2:
HPLC: Rt=11.1 min, solvent A/B=75/25; Purity: 97.8%; LRMS(ESI) m/z 1075.45 [(M+H) + ], 1097.43 [(M+Na) +. ]; HRMS(ESI) calcd for C 47 H 67 FN 12 O 12 S 2 Na: 1097.4319 [(M+Na) + ], found: 1097.4321.
 化合物5:
 HPLC:Rt=5.61 min,solvent A/B=80/20;Purity:98.8%;LRMS(ESI)m/z 1025.45[(M+H)],1047.44[(M+Na)];HRMS(ESI)calcd for C43691213Na:1025.4543[(M+Na)],found:1025.4540.
Compound 5:
HPLC: Rt=5.61 min, solvent A/B=80/20; Purity: 98.8%; LRMS(ESI) m/z 1025.45[(M+H) + ], 1047.44[(M+Na) +. ]; HRMS(ESI) calcd for C 43 H 69 N 12 O 13 S 2 Na: 1025.4543 [(M+Na) + ], found: 1025.4540.
 化合物3及び6の合成では、樹脂上でのペプチド合成の後、Pd(PPh(パラジウムテトラキストリフェニルホスフィン、3当量)を含むクロロホルム/N-メチルモルホリン/酢酸(37:1:2)混合液で処理してアリル基を除去し、続いてピペラジンによって末端Fmoc基を除去した。さらに、PyBop(ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム、5当量)、HOAt(5当量)、ジイソプロピルエチルアミン(10当量)でDMF中処理することにより環化反応を行った。続いて、樹脂からペプチドを切断後、得られた環状ペプチドを10%Pd-C(0.1当量)と1気圧の水素によるエタノール/メタノール混合溶媒中での接触水素化反応に付し、逆相HPLC(0.1%TFAを含有する水-アセトニトリル溶媒)で精製後、脱保護された所望の化合物3及び6をトリフルオロ酢酸塩として得た。下記式(6)に化合物3の化学式を示す。また、下記式(7)に化合物6の化学式を示す。 In the synthesis of compounds 3 and 6, after peptide synthesis on the resin, chloroform/N-methylmorpholine/acetic acid (37:1:2) containing Pd(PPh 3 ) 4 (palladium tetrakistriphenylphosphine, 3 equivalents) was used. Treatment with the mixture removed the allyl group, followed by removal of the terminal Fmoc group with piperazine. Further, PyBop (hexafluorophosphate (benzotriazol-1-yloxy)tripyrrolidinophosphonium, 5 equivalents), HOAt (5 equivalents), and diisopropylethylamine (10 equivalents) were treated in DMF to carry out the cyclization reaction. .. Then, after cleaving the peptide from the resin, the obtained cyclic peptide was subjected to catalytic hydrogenation reaction in a mixed solvent of ethanol/methanol with 10% Pd-C (0.1 equivalent) and hydrogen at 1 atm, and the reverse After purification by phase HPLC (water-acetonitrile solvent containing 0.1% TFA), the deprotected desired compounds 3 and 6 were obtained as the trifluoroacetate salt. The chemical formula of compound 3 is shown in the following formula (6). Further, the chemical formula of compound 6 is shown in the following formula (7).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 化合物3:
 HPLC:Rt=5.4 min,solvent A/B=70/30;Purity:97.4%;LRMS(ESI)m/z 1057.50[(M+H)],1079.48[(M+Na)];HRMS(ESI)calcd for C4869FN1212SNa:1079.4755[(M+Na)],found:1079.4773.
Compound 3:
HPLC: Rt=5.4 min, solvent A/B=70/30; Purity: 97.4%; LRMS(ESI) m/z 1057.50 [(M+H) + ], 1079.48 [(M+Na) +. ]; HRMS(ESI) calcd for C 48 H 69 FN 12 O 12 SNa: 1079.4755 [(M+Na) + ], found: 1079.4773.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 化合物6:
 HPLC:Rt=4.9 min,solvent A/B=80/20;Purity:96.1%;LRMS(ESI)m/z 1007.50[(M+H)],1029.48[(M+Na)];HRMS(ESI)calcd for C44701213SNa:1029.4798[(M+Na)],found:1029.4812.
Compound 6:
HPLC: Rt=4.9 min, solvent A/B=80/20; Purity: 96.1%; LRMS(ESI) m/z 1007.50 [(M+H) + ], 1029.48 [(M+Na) +. ]; HRMS(ESI) calcd for C 44 H 70 N 12 O 13 SNa: 1029.4798 [(M+Na) + ], found: 1029.4812.
[実験例2]
(受容体結合アッセイ)
 まず、ヒトオキシトシン受容体(hOTR)に対するオキシトシンの結合を検討した。具体的には、まず、ヒト胎児腎細胞であるHEK-293細胞にhOTRを強制発現させた。続いて、hOTRを発現するHEK-293細胞の粗膜画分中のhOTRへの[H]オキシトシンの結合を検討した。その結果、[H]オキシトシンは、Kd値0.3±0.06nMで特異的かつ可逆的にhOTRに結合することが明らかとなった。非特異的結合は1μM非標識オキシトシンの存在下で測定した。
[Experimental Example 2]
(Receptor binding assay)
First, the binding of oxytocin to the human oxytocin receptor (hOTR) was examined. Specifically, first, hOTR was forcibly expressed in human embryonic kidney HEK-293 cells. Subsequently, [ 3 H]oxytocin binding to hOTR in the crude membrane fraction of HEK-293 cells expressing hOTR was examined. As a result, it was revealed that [ 3 H]oxytocin specifically and reversibly binds to hOTR with a Kd value of 0.3±0.06 nM. Non-specific binding was determined in the presence of 1 μM unlabeled oxytocin.
 続いて、放射線競合アッセイにより、オキシトシン、バソプレッシン、カルベトシン、化合物1~6のhOTRへの結合親和性を測定した。具体的には、1pMから1μMの各化合物の存在下における、hOTRに結合した[H]オキシトシンの置換を測定した。 Subsequently, the binding affinity of oxytocin, vasopressin, carbetosine, and compounds 1 to 6 to hOTR was measured by a radiation competition assay. Specifically, the displacement of [ 3 H]oxytocin bound to hOTR in the presence of 1 pM to 1 μM of each compound was measured.
 図1は、放射線競合アッセイの結果を示すグラフである。図1中、「OT」はオキシトシンを示し、「AVP」はバソプレッシンを示し、「1」~「6」はそれぞれ化合物1~6を示す。図1の横軸は各化合物の濃度を示し、縦軸は残存した[H]オキシトシンの割合(%)を示す。表2にも、放射線結合アッセイの結果を示す。 FIG. 1 is a graph showing the results of a radiation competition assay. In FIG. 1, “OT” represents oxytocin, “AVP” represents vasopressin, and “1” to “6” represent compounds 1 to 6, respectively. The horizontal axis of FIG. 1 represents the concentration of each compound, and the vertical axis represents the ratio (%) of the remaining [ 3 H]oxytocin. Table 2 also shows the results of the radiation binding assay.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 その結果、バソプレッシン及び化合物1~6は、いずれもhOTRに対する強い結合親和性を示すことが明らかとなった(Ki≦3.0nM)。特に、化合物2は、hOTRに対する高い結合親和性を示し(Ki=0.51nM)、これはオキシトシンのhOTRに対する結合親和性(Ki=0.58nM)と同等であった。化合物2以外の化合物は、オキシトシンのhOTRに対する結合親和性と比較するとわずかに低い結合親和性を示した。 As a result, it was revealed that vasopressin and compounds 1 to 6 all showed strong binding affinity to hOTR (Ki≦3.0 nM). In particular, compound 2 showed a high binding affinity for hOTR (Ki=0.51 nM), which was comparable to the binding affinity of oxytocin for hOTR (Ki=0.58 nM). Compounds other than compound 2 showed slightly lower binding affinity compared to the binding affinity of oxytocin for hOTR.
 化合物2及び3は、化合物5及び6と比較してより高い結合親和性を示した。測定されたカルベトシンのhOTRに対する結合親和性(Ki=1.81nM)は、報告された値と一致した。 Compounds 2 and 3 showed higher binding affinity compared to compounds 5 and 6. The measured binding affinity of carbetocin for hOTR (Ki=1.81 nM) was in agreement with the reported values.
[実験例3]
(細胞内カルシウムイオン濃度の測定)
 オキシトシン、バソプレッシン、カルベトシン、化合物1~6のhOTRアゴニスト活性を測定した。具体的には、受容体活性化に続く、細胞内イノシトール-1,4,5-トリスリン酸感受性Ca2+貯蔵細胞小器官からのCa2+の動員を、hOTRを強制発現させたHEK-293細胞、ヒトバソプレシン1a受容体(hV1aR)を強制発現させたHEK-293細胞、ヒトバソプレシン1b受容体(hV1bR)を強制発現させたHEK-293細胞中の遊離Ca2+イオン濃度を測定することにより測定した。遊離Ca2+イオン濃度は、蛍光プローブであるfura-2/AM及び蛍光顕微鏡を用いて測定した。遊離Ca2+イオン濃度の測定結果を図2(a)~(d)に示す。また、遊離Ca2+イオン濃度の測定結果に基づいて算出した、各化合物のEC50、選択性及びEmaxを表3に示す。
[Experimental Example 3]
(Measurement of intracellular calcium ion concentration)
The hOTR agonist activity of oxytocin, vasopressin, carbetocin, and compounds 1 to 6 was measured. Specifically, HEK-293 cells forcibly expressing hOTR for mobilization of Ca 2+ from intracellular inositol-1,4,5-trisphosphate-sensitive Ca 2+ storage organelles following receptor activation, To measure free Ca 2+ ion concentration in HEK-293 cells forcibly expressing human vasopressin 1a receptor (hV 1a R) and HEK-293 cells forcibly expressing human vasopressin 1b receptor (hV 1b R). It was measured by. Free Ca 2+ ion concentration was measured using a fluorescent probe, fura-2/AM, and a fluorescent microscope. The measurement results of the free Ca 2+ ion concentration are shown in FIGS. 2(a) to (d). Table 3 shows the EC 50 , selectivity, and E max of each compound calculated based on the measurement results of the free Ca 2+ ion concentration.
 図2(a)は、化合物2のhOTR、hV1aR、hV1bRに対するアゴニスト活性の測定結果を示すグラフである。図2(b)は、化合物5のhOTR、hV1aR、hV1bRに対するアゴニスト活性の測定結果を示すグラフである。 FIG. 2( a) is a graph showing the measurement results of the agonist activity of Compound 2 against hOTR, hV 1a R and hV 1b R. FIG. 2( b) is a graph showing the measurement results of the agonist activity of Compound 5 against hOTR, hV 1a R and hV 1b R.
 図2(a)及び(b)中、「OTR」はhOTRを示し、「V1A」はhV1aRを示し、「V1B」はhV1bRを示し、横軸は各化合物の濃度を示し、縦軸はオキシトシンを添加した場合の遊離Ca2+イオン濃度を100%とした場合の遊離Ca2+イオン濃度の割合(%)を示す。 In FIG. 2 (a) and (b), "OTR" indicates HOTR, "V 1A" denotes the hV 1a R, "V 1B" indicates the hV 1b R, the horizontal axis represents the concentration of each compound and the vertical axis shows the proportion (%) of the free Ca 2+ ion concentration in the case of the free Ca 2+ ion concentration in the case of addition of oxytocin as 100%.
 図2(c)は、オキシトシン、バソプレッシン、化合物2、化合物5によるhOTRの活性化の測定結果を示すグラフである。図2(c)中、「OT」はオキシトシンを示し、「AVP」はバソプレッシンを示し、「2」は化合物2を示し、「5」は化合物5を示し、横軸は各化合物の濃度を示し、縦軸はオキシトシンを添加した場合の遊離Ca2+イオン濃度を100%とした場合の遊離Ca2+イオン濃度の割合(%)を示す。 FIG. 2(c) is a graph showing the measurement results of hOTR activation by oxytocin, vasopressin, compound 2 and compound 5. In FIG. 2(c), “OT” indicates oxytocin, “AVP” indicates vasopressin, “2” indicates compound 2, “5” indicates compound 5, and the horizontal axis indicates the concentration of each compound. and the vertical axis shows the proportion (%) of the free Ca 2+ ion concentration in the case of the free Ca 2+ ion concentration in the case of addition of oxytocin as 100%.
 図2(d)は、オキシトシン、バソプレッシン、化合物2、化合物5によるhV1aRの活性化の測定結果を示すグラフである。図2(d)中、「OT」はオキシトシンを示し、「AVP」はバソプレッシンを示し、「2」は化合物2を示し、「5」は化合物5を示し、横軸は各化合物の濃度を示し、縦軸はバソプレッシンを添加した場合の遊離Ca2+イオン濃度を100%とした場合の遊離Ca2+イオン濃度の割合(%)を示す。 FIG. 2( d) is a graph showing the measurement results of hV 1a R activation by oxytocin, vasopressin, compound 2 and compound 5. In FIG. 2(d), “OT” represents oxytocin, “AVP” represents vasopressin, “2” represents compound 2, “5” represents compound 5, and the horizontal axis represents the concentration of each compound. and the vertical axis shows the proportion (%) of the free Ca 2+ ion concentration in the case of the free Ca 2+ ion concentration in the case of addition of vasopressin as 100%.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 その結果、オキシトシン、カルベトシン及びバソプレッシンは、hOTR、hV1aR、hV1bRを全て活性化することが明らかとなった。EC50に基づいてランク付けしたこれらの化合物のhOTRに対するアゴニスト活性は、オキシトシン(0.010nM)=カルベトシン(0.010nM)>化合物1(0.025nM)≒化合物2(0.028nM)≒化合物5(0.031nM)>化合物3(0.089nM)≒バソプレッシン(0.10nM)≒化合物6(0.15nM)>化合物4(0.27nM)であった。 As a result, it was revealed that oxytocin, carbetocin and vasopressin all activate hOTR, hV 1a R and hV 1b R. The agonistic activity of these compounds on hOTR, ranked based on EC 50 , is oxytocin (0.010 nM)=carbetosine (0.010 nM)>compound 1 (0.025 nM)≈compound 2 (0.028 nM)≈compound 5 (0.031 nM)>Compound 3 (0.089 nM)≈vasopressin (0.10 nM)≈Compound 6 (0.15 nM)>Compound 4 (0.27 nM).
 hV1aR及びhV1bRに対するhOTR選択性はわずかに異なっていた。オキシトシン、化合物2及び3は、hV1aRと比較して約20~75倍のhOTRに対する選択性の増加を示した。カルベトシンは、hV1aRと比較して約200倍のhOTRに対する選択性の増加を示した。化合物1、4、5及び6は、hV1aRと比較して>1000倍のhOTRに対する選択性の増加を示した。化合物1及び4のデータ(表2)は、報告された値とよく一致していた。化合物4のhV1aRに対するhOTRの選択性は高かったが、hV1bRに対するhOTRの選択性は高くはなかった。 The hOTR selectivity for hV 1a R and hV 1b R was slightly different. Oxytocin, compounds 2 and 3, showed an approximately 20-75 fold increase in selectivity for hOTR over hV 1a R. Carbetocin showed an approximately 200-fold increased selectivity for hOTR over hV 1a R. Compounds 1, 4, 5 and 6 showed >1000-fold increased selectivity for hOTR over hV 1a R. The data for compounds 1 and 4 (Table 2) were in good agreement with the reported values. The selectivity of hOTR for hV 1a R of compound 4 was high, but the selectivity of hOTR for hV 1b R was not high.
 化合物1、3、4、6は、hOTRの部分的なアゴニスト活性を維持していることが明らかとなった。化合物1のEmaxは61%であり、化合物3のEmaxは82%であり、化合物4のEmaxは57%であり、化合物6のEmaxは50%であった。 It was revealed that compounds 1, 3, 4, and 6 maintain partial agonist activity of hOTR. Compound 1 had an E max of 61%, compound 3 had an E max of 82%, compound 4 had an E max of 57%, and compound 6 had an E max of 50%.
 化合物5はhOTRのほぼ完全なアゴニスト活性を維持していることが明らかとなった。化合物5のEmaxは88%であった。 It was revealed that compound 5 maintains almost complete agonist activity of hOTR. The E max of compound 5 was 88%.
 驚くべきことに、化合物2はhOTRのスーパーアゴニスト活性を有していることが明らかとなった。オキシトシンのEmaxを100%とした場合の化合物2のEmaxは131%であった。 Surprisingly, it was revealed that compound 2 has a hOTR superagonist activity. E max of the compounds 2 in the case of the E max of oxytocin as 100% was 131%.
[実験例4]
(CD38KOCCマウスの作製)
 すべての動物実験は、文部科学省の管轄下にある学術研究機関における動物実験および関連活動の適切な実施のための基本ガイドラインにしたがって実施され、金沢大学動物実験委員会によって承認された(倫理認証コードAP-173824)。
[Experimental Example 4]
(Production of CD38KOCC mouse)
All animal experiments were conducted in accordance with the basic guidelines for the proper implementation of animal experiments and related activities at academic research institutions under the jurisdiction of MEXT, and were approved by the Kanazawa University Animal Experiment Committee (ethical certification Code AP-173824).
 まず、ゲノム編集によりCD38をノックアウトしたマウス(以下、「CD38KOCCマウス」という場合がある。)を作製した。sgRNAは、Cd38遺伝子座のエクソン2を標的とするように設計した。hCas9 mRNA及びsgRNAを、インビトロRNA転写キット(商品名「mMESSAGE mMACHINE T7 Transcription Kit」、サーモフィッシャーサイエンティフィック社)を使用して合成し、エレクトロポレーター(型式「NEPA21」、NEPA GENE社)を用いてマウスの卵に導入した。 First, we created a mouse that knocked out CD38 by editing the genome (hereinafter sometimes referred to as "CD38KOCC mouse"). The sgRNA was designed to target exon 2 of the Cd38 locus. hCas9 mRNA and sgRNA were synthesized using an in vitro RNA transcription kit (trade name "mMESSAGE mMACHINE T7 Transcription Kit", Thermo Fisher Scientific Co.) and an electroporator (model "NEPA21", NEPA GENE Co.) was used. Introduced into mouse eggs.
 F世代のマウス尾からDNAを単離し、PCRを用いてsgRNA結合部位にまたがるゲノム領域を増幅し、Cd38遺伝子に変異を有する個体をスクリーニングした。その後、市販のキット(商品名「Guide-it Mutation detection kit」、タカラバイオ社)を用いて30匹以上の仔をスクリーニングした。その結果、Cd38遺伝子に2塩基対の挿入を有する仔を同定した。この挿入は、Cd38遺伝子のオープンリーディングフレーム内に終止コドンを形成し、Cd38遺伝子の機能喪失突然変異をもたらす。 DNA was isolated from the F 0 generation mouse tail, PCR was used to amplify the genomic region spanning the sgRNA binding site, and individuals having a mutation in the Cd38 gene were screened. Then, 30 or more pups were screened using a commercially available kit (trade name "Guide-it Mutation detection kit", Takara Bio Inc.). As a result, pups having a 2-base pair insertion in the Cd38 gene were identified. This insertion forms a stop codon within the open reading frame of the Cd38 gene, resulting in a loss-of-function mutation of the Cd38 gene.
 CD38KOCCマウスの仔は21~28日齢で離乳し、5匹ずつの同性グループで、24℃、明/暗サイクル12時間、午前8時に点灯する標準条件で飼育し、後述する実験に用いた。 The pups of CD38KOCC mice were weaned at 21 to 28 days of age, and were kept in the same sex group of 5 mice under the standard conditions of 24° C., 12 hours of light/dark cycle, and lighting at 8:00 am, and used in the experiment described later.
[実験例5]
(尾懸垂試験)
 尾懸垂試験(Tail Suspension Test、TST)とは、逆さ向きに吊されたマウスのもがく時間を測定する試験であり、一般にはうつ様行動を評価する試験の一種である。吊されたマウスは脱出しようと動き回るが、次第に動かない時間(無動時間)が増える。抗うつ薬を投与したマウスでは尾懸垂試験における無動時間が減少することが知られている。無動時間が長くなることはうつ様行動の増加を示し、無動時間の短縮はうつ様行動の減少を示すと解釈されている。また、無働時間が短いことは注意欠陥多動性障害様行動を反映していると解釈することもでき、無働時間の長さにより注意欠陥多動性障害への効果を試験することもできる。
[Experimental Example 5]
(Tail suspension test)
The tail suspension test (TST) is a test for measuring the struggling time of a mouse suspended upside down, and is generally one of the tests for evaluating depression-like behavior. The suspended mouse moves about to escape, but the time it does not move (immobility time) gradually increases. It is known that the immobility time in the tail suspension test is reduced in mice treated with antidepressants. A longer immobility time is interpreted as an increase in depression-like behavior, and a decrease in immobility time is interpreted as a decrease in depression-like behavior. Also, the short duration of inactivity can be interpreted as reflecting attention-deficit/hyperactivity disorder-like behavior, and the duration of inactivity can be used to test the effect on attention-deficit/hyperactivity disorder. it can.
 本実験例においては、高さ55cm、幅60cm奥行き11.5cmのプラステック製の懸垂箱内の懸垂バーにマウスの尾をテープで固定した。試験時間は6分間とし、最後の4分間における無動時間の合計時間を測定した。 In this experimental example, the tail of the mouse was taped to a suspension bar in a suspension box made of Plastec having a height of 55 cm, a width of 60 cm and a depth of 11.5 cm. The test time was 6 minutes, and the total immobility time in the last 4 minutes was measured.
 尾懸垂試験の結果、CD38KOCCマウスは、野生型のICRマウスよりも無働時間が短く、注意欠陥多動性障害様行動を示すことが明らかとなった。 As a result of the tail suspension test, it was revealed that the CD38KOCC mouse exhibited shorter attentionless time than the wild-type ICR mouse, and exhibited attention-deficit/hyperactivity disorder-like behavior.
 オキシトシン、化合物2及び5をリン酸緩衝生理食塩水(PBS)に100ng/mLの濃度でそれぞれ溶解し、0.3mL/マウスの投与量でそれぞれCD38KOCC雄マウスに腹腔内単回投与した。対照としてPBSのみを投与した群も用意した。続いて、投与から30分後及び24時間後に微懸垂試験を行った。 Oxytocin, Compounds 2 and 5 were each dissolved in phosphate buffered saline (PBS) at a concentration of 100 ng/mL, and a single dose of 0.3 mL/mouse was intraperitoneally administered to CD38KOCC male mice. A group to which only PBS was administered was also prepared as a control. Subsequently, a microsuspension test was performed 30 minutes and 24 hours after the administration.
 図3は尾懸垂試験の結果を示すグラフである。図3中「OT」はオキシトシンを示し、「2」は化合物2を示し、「5」は化合物5を示す。また、縦軸は無働時間の長さ(秒)を示す。また、「*」はp<0.05で有意差が存在することを示す。 FIG. 3 is a graph showing the results of the tail suspension test. In FIG. 3, “OT” represents oxytocin, “2” represents compound 2, and “5” represents compound 5. The vertical axis represents the length of idle time (seconds). Also, "*" indicates that there is a significant difference at p<0.05.
 その結果、PBSを投与したCD38KOCCマウスでは、投与30分後の無動時間は74.2±2.9秒であった(n=5)。これに対し、オキシトシン、化合物2、化合物5を投与したCD38KOCCマウスでは、投与30分後の無動時間は、それぞれ171±13.46秒(n=5、p=0.012)、149.5±13.8秒(n=8、p=0.029)、151.83±21.3秒(n=6)であり、顕著な増加を示し、野生型への回復が見られた。 As a result, in the CD38KOCC mice administered with PBS, the immobility time 30 minutes after administration was 74.2±2.9 seconds (n=5). In contrast, in CD38KOCC mice administered with oxytocin, compound 2 and compound 5, the immobility time 30 minutes after administration was 171±13.46 seconds (n=5, p=0.0012), 149.5, respectively. ±13.8 seconds (n=8, p=0.029) and 151.83±21.3 seconds (n=6), showing a marked increase, and recovery to the wild type was observed.
 また、投与24時間後では、PBSを投与したCD38KOCCマウスの無動時間は56.5±18.8秒であった(n=5、p=0.0135)。これに対し、化合物5を投与したCD38KOCCマウスの無動時間は157.3±21.4秒(n=5、p=0.039)であり、化合物5を投与した群のみがPBSを投与した群と比較して顕著な無働時間の増加を示し、野生型への回復を示した。 24 hours after administration, the immobility time of PBS-administered CD38KOCC mice was 56.5±18.8 seconds (n=5, p=0.135). On the other hand, the immobility time of CD38KOCC mice administered with Compound 5 was 157.3±21.4 seconds (n=5, p=0.039), and only the group administered with Compound 5 was administered with PBS. It showed a marked increase in absent time compared to the group and showed recovery to wild type.
 2方向ANOVAによる統計解析の結果、時間の有意性(F1,31=7.103、P=0.0121)及び処置の有意性(F3,31=10.55、p=0.0001)が認められた。一方、投与24時間後では、PBSと比較してオキシトシン又は化合物2を投与したCD38KOCCマウスについて統計的に有意な差は認められなかった。 2-way ANOVA by statistical analysis results, the time significance (F 1,31 = 7.103, P = 0.0121) and significance of the treatment (F 3,31 = 10.55, p = 0.0001) Was recognized. On the other hand, at 24 hours after administration, no statistically significant difference was observed in CD38KOCC mice administered with oxytocin or compound 2 as compared with PBS.
[実験例6]
(ショ糖嗜好試験)
 ショ糖嗜好試験は、ヒトのうつ病又はパーキンソン病のうつ状態や社会性交流への意欲(QOL)の低下で認められる無欲(無快感)、他への無関心症状を反映するものと考えられている。過剰なストレスを負荷したマウスでは、元来好むショ糖水を摂取しなくなるという行動変化が見られる。またこの反応は抗うつ薬の処置により改善されることが知られている。
[Experimental example 6]
(Sucrose preference test)
The sucrose preference test is considered to reflect the depression state of human depression or Parkinson's disease and the apathy (unpleasant sensation) that is observed due to a decrease in the willingness to socialize (QOL), and indifference to others. There is. In mice that are overstressed, there is a behavioral change in which they no longer take the sucrose water that they originally prefer. It is also known that this reaction is improved by treatment with antidepressant drugs.
 本実験例では、まず、野生型マウス及びCD38KOCC雄マウスを、水と1%ショ糖溶液との間で自由に選択することができる状態に置いた。その結果、ショ糖溶液の消費は、野生型マウスよりもCD38KOCC雄マウスで有意に低いことが明らかとなった。 In this experimental example, first, wild type mice and CD38KOCC male mice were placed in a state in which they could freely select between water and a 1% sucrose solution. As a result, it was revealed that the consumption of the sucrose solution was significantly lower in the CD38KOCC male mouse than in the wild-type mouse.
 続いて、オキシトシン、化合物2及び5をリン酸緩衝生理食塩水(PBS)に100ng/mLの濃度でそれぞれ溶解し、0.3mL/マウスの投与量でそれぞれCD38KOCC雄マウスに腹腔内単回投与した。対照としてPBSのみを投与した群も用意した。 Subsequently, oxytocin, Compounds 2 and 5 were each dissolved in phosphate buffered saline (PBS) at a concentration of 100 ng/mL, and each was intraperitoneally administered once to each CD38KOCC male mouse at a dose of 0.3 mL/mouse. .. A group to which only PBS was administered was also prepared as a control.
 続いて、各群のマウスを水及び1%ショ糖溶液との間で自由に選択することができる状態に置き、投与から1時間後及び24時間後の水及びショ糖溶液の消費量を定量した。 Subsequently, the mice in each group were placed in a state where they could freely choose between water and 1% sucrose solution, and the consumption of water and sucrose solution was quantified 1 hour and 24 hours after administration. did.
 図4(a)及び(b)は、水及びショ糖溶液の消費量を定量した結果を示すグラフである。図4(a)は、各化合物の投与から1時間後の結果を示すグラフであり、図4(b)は、各化合物の投与から24時間後の結果を示すグラフである。図4(a)及び(b)中、「OT」はオキシトシンを示し、「2」は化合物2を示し、「5」は化合物5を示し、縦軸は、水又はショ糖溶液の消費量の割合を示す。また、「*」はp<0.05で有意差が存在することを示す。 FIGS. 4A and 4B are graphs showing the results of quantifying the consumption amounts of water and sucrose solution. FIG. 4(a) is a graph showing the results 1 hour after the administration of each compound, and FIG. 4(b) is a graph showing the results 24 hours after the administration of each compound. In FIGS. 4A and 4B, “OT” represents oxytocin, “2” represents compound 2, “5” represents compound 5, and the vertical axis represents the consumption of water or sucrose solution. Indicates a percentage. Also, "*" indicates that there is a significant difference at p<0.05.
 その結果、PBSを投与したCD38KOCCマウスはスクロース選好を示さなかった(0.54±0.04、p=0.21、n=8)。これに対し、オキシトシンを投与したCD38KOCCマウスは、投与から1時間後に、有意にスクロース選好の回復を示した(0.21±0.02から0.80±0.02、p=0.0001、n=5)。また、化合物2を投与したCD38KOCCマウスは、投与から1時間後に、有意にスクロース選好の回復を示した(0.20±0.02から0.79±0.02、p=0.0001、n=5)。また、化合物5を投与したCD38KOCCマウスは、投与から1時間後に、有意にスクロース選好の回復を示した(0.29±0.05から0.72±0.05、p=0.001、n=5)。 As a result, CD38KOCC mice administered with PBS did not show sucrose preference (0.54±0.04, p=0.21, n=8). In contrast, oxytocin-administered CD38KOCC mice showed a significant recovery of sucrose preference 1 hour after administration (0.21±0.02 to 0.80±0.02, p=0.0001, n=5). In addition, the CD38KOCC mice administered with Compound 2 showed a significant recovery of sucrose preference 1 hour after the administration (0.20±0.02 to 0.79±0.02, p=0.0001, n). = 5). In addition, CD38KOCC mice administered with compound 5 showed a significant recovery of sucrose preference 1 hour after administration (0.29±0.05 to 0.72±0.05, p=0.001,n). = 5).
 また、各化合物の投与から24時間後には、化合物5を投与したCD38KOCCマウスのみが、有意にスクロース選好の回復を示した(0.41±0.03から0.59±0.03、p=0.004、n=5)。一方、オキシトシン、化合物2の投与は、投与から24時間後にはスクロース選好の回復の効果を示さないことが明らかとなった。この結果から、化合物5が持続的な効果を有することが明らかとなった。 Also, 24 hours after the administration of each compound, only CD38KOCC mice to which the compound 5 was administered showed a significant recovery of sucrose preference (0.41±0.03 to 0.59±0.03, p= 0.004, n=5). On the other hand, it was revealed that the administration of oxytocin and compound 2 did not show the effect of restoring the sucrose preference 24 hours after the administration. From this result, it became clear that the compound 5 has a lasting effect.
[実験例7]
(薬物動態の検討)
 オキシトシン、化合物2、化合物5の薬理学的効力及び持続時間を理解するために、これらの化合物の薬物動態を試験した。具体的には、まず、オキシトシン、化合物2、化合物5を、体重30gの雄のICRマウスに、それぞれ3μg/マウスずつ尾静脈投与した。続いて、各マウスを、投与直後、5分後、15分後、30分後にと殺し、血液を採取した。また、投与30分後及び12時間後に脳脊髄液を採取した。血漿中及び脳脊髄液中の各化合物の濃度はLC-MS/MS法より測定した。
[Experimental Example 7]
(Pharmacokinetic study)
To understand the pharmacological potency and duration of oxytocin, compound 2, compound 5, the pharmacokinetics of these compounds were tested. Specifically, first, oxytocin, compound 2 and compound 5 were tail vein-administered at 3 μg/mouse to male ICR mice each weighing 30 g. Then, each mouse was killed immediately after administration, 5 minutes, 15 minutes, and 30 minutes later, and blood was collected. Cerebrospinal fluid was collected 30 minutes and 12 hours after administration. The concentration of each compound in plasma and cerebrospinal fluid was measured by the LC-MS/MS method.
 図5(a)~(c)は、LC-MS/MS法により測定した、オキシトシン、化合物2及び化合物5の血漿中濃度の測定結果を示すグラフである。図5(a)はオキシトシンの測定結果を示し、図5(b)は化合物2の測定結果を示し、図5(c)は化合物5の測定結果を示す。化合物2及び5の測定においては、同時に内在性のオキシトシンの濃度も測定した。 FIGS. 5(a) to 5(c) are graphs showing the measurement results of plasma concentrations of oxytocin, compound 2 and compound 5 measured by the LC-MS/MS method. 5A shows the measurement result of oxytocin, FIG. 5B shows the measurement result of compound 2, and FIG. 5C shows the measurement result of compound 5. In measuring the compounds 2 and 5, the concentration of endogenous oxytocin was also measured at the same time.
 図5(a)~(c)中、「OT」はオキシトシンを示し、「2」は化合物2を示し、「5」は化合物5を示す。また、横軸は投与後の時間(分)を示し、縦軸は各化合物の血漿中濃度(ng/mL)を示す。 In FIGS. 5A to 5C, “OT” indicates oxytocin, “2” indicates compound 2, and “5” indicates compound 5. The horizontal axis shows the time (minutes) after administration, and the vertical axis shows the plasma concentration (ng/mL) of each compound.
 また、下記表4に薬物動態パラメータの測定結果を示す。表4中、「高速期」は化合物の投与から15分後の測定値に基づいて計算したことを示し、「低速期」は化合物の投与から15~60分後の測定値に基づいて計算したことを示し、「CSF」は脳脊髄液を示す。 Also, Table 4 below shows the measurement results of pharmacokinetic parameters. In Table 4, "Fast period" indicates that the calculation was performed based on the measured value 15 minutes after the administration of the compound, and "Slow period" was calculated based on the measured value 15 to 60 minutes after the administration of the compound. "CSF" indicates cerebrospinal fluid.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 その結果、投与直後の血漿中のオキシトシン濃度は、334±155ng/mL(n=5)であった。また、投与直後の血漿中の化合物2の濃度は、118±60ng/mL(n=3)であった。また、投与直後の血漿中の化合物5の濃度は、108±35ng/mL(n=3)であった。これらの3つの化合物は、血漿から急速に消失し、半減期はほぼ10分であった。オキシトシン、化合物2及び化合物5の高速期のt1/2は、それぞれ2.91分、2.84分及び3.1分であった。 As a result, the oxytocin concentration in plasma immediately after administration was 334±155 ng/mL (n=5). The concentration of Compound 2 in plasma immediately after administration was 118±60 ng/mL (n=3). The concentration of compound 5 in plasma immediately after administration was 108±35 ng/mL (n=3). These three compounds cleared rapidly from plasma with a half-life of approximately 10 minutes. The fast phase t 1/2 of oxytocin, Compound 2 and Compound 5 were 2.91 min, 2.84 min and 3.1 min, respectively.
 また、化合物2は、オキシトシン及び化合物5よりも迅速に血液から除去されたことが明らかとなった。また、投与から30分後の脳脊髄液中の化合物2の濃度は100pg/mLであった。驚いたことに、投与から12時間後の脳脊髄液中の化合物2の濃度は、より高くなり、380pg/mLとなった。また、脳脊髄液中の化合物5の濃度は、検出限界以下であったため測定できなかった。 Also, it was revealed that Compound 2 was removed from blood more quickly than Oxytocin and Compound 5. The concentration of Compound 2 in the cerebrospinal fluid 30 minutes after administration was 100 pg/mL. Surprisingly, the concentration of Compound 2 in cerebrospinal fluid 12 hours after administration was higher, reaching 380 pg/mL. The concentration of Compound 5 in the cerebrospinal fluid was below the detection limit and therefore could not be measured.
[実験例8]
(血漿中安定性の検討)
 オキシトシン、化合物2、化合物5の血漿中安定性を検討した。具体的には、プールしたマウス血漿100μLに、オキシトシン、化合物2又は化合物5をそれぞれ終濃度50ng/mLで添加し、1、5、15、30、60、120分間37℃でインキュベートした。その後、内部標準を含有するアセトニトリル/メタノール=1:1(v/v)400μLを加え、LC-MS/MS法により各化合物の濃度を測定した。
[Experimental Example 8]
(Study of plasma stability)
The plasma stability of oxytocin, Compound 2 and Compound 5 was examined. Specifically, oxytocin, Compound 2 or Compound 5 was added to 100 μL of pooled mouse plasma at a final concentration of 50 ng/mL, and incubated at 37° C. for 1, 5, 15, 30, 60 and 120 minutes. Then, 400 μL of acetonitrile/methanol=1:1 (v/v) containing an internal standard was added, and the concentration of each compound was measured by the LC-MS/MS method.
 図6は各化合物の血漿中濃度の測定結果を示すグラフである。図6中、「OT」はオキシトシンを示し、「2」は化合物2を示し、「5」は化合物5を示す。また、横軸は時間(分)を示し、縦軸は、初期濃度に対する割合(%)を示す。 FIG. 6 is a graph showing the measurement results of the plasma concentration of each compound. In FIG. 6, “OT” represents oxytocin, “2” represents compound 2, and “5” represents compound 5. The horizontal axis represents time (minutes) and the vertical axis represents the ratio (%) to the initial concentration.
 その結果、全ての化合物の濃度は、初期濃度に対して85~115%の範囲内であり、血漿中37℃で2時間インキュベート後においても安定であると考えられた。この結果は、血液中のオキシトシン、化合物2、化合物5の消失が、酵素的消化による分解によるものではなく、様々な組織及び器官へのクリアランス又は吸着によるものであることを示す。 As a result, the concentration of all compounds was within the range of 85 to 115% with respect to the initial concentration, and it was considered that they were stable even after incubation in plasma at 37°C for 2 hours. This result indicates that the disappearance of oxytocin, Compound 2 and Compound 5 in blood is not due to decomposition by enzymatic digestion, but is due to clearance or adsorption to various tissues and organs.
[実験例9]
(反応速度論的解析)
 MotulskyとMahanの方程式を用いて、オキシトシン、化合物2及び化合物5の反応速度論的パラメータを計算した。
[Experimental Example 9]
(Kinetic analysis)
The Motulsky and Mahan equations were used to calculate the kinetic parameters for oxytocin, compound 2 and compound 5.
 まず、[H]オキシトシンの反応速度論的パラメータを決定した。具体的には、3つの異なる[H]オキシトシン濃度の範囲を使用して、関連動態曲線を作成した。結果を下記表5に示す。 First, the kinetic parameters of [ 3 H]oxytocin were determined. Specifically, three different [ 3 H]oxytocin concentration ranges were used to generate the relevant kinetic curves. The results are shown in Table 5 below.
 続いて、オキシトシン、化合物2、化合物5について、それぞれ3つの濃度(Kiの近く、5倍のKi、10倍のKi)で運動競合曲線を測定した。具体的には、hOTRを強制発現させたHEK-293細胞の粗膜画分に500pMの[H]オキシトシン及び様々な濃度の競合化合物を添加し、様々な時間インキュベートした後に、[H]オキシトシンの結合量を測定した。非特異的結合は1μM非標識オキシトシンの存在下で測定した。 Subsequently, a kinetic competition curve was measured for each of oxytocin, compound 2, and compound 5 at three concentrations (near Ki, 5-fold Ki, and 10-fold Ki). Specifically, 500 pM [ 3 H]oxytocin and various concentrations of competing compounds were added to the crude membrane fraction of HEK-293 cells forcibly expressing hOTR, and after incubation for various times, [ 3 H] The amount of oxytocin bound was measured. Non-specific binding was determined in the presence of 1 μM unlabeled oxytocin.
 図7(a)~(c)は、測定した運動競合曲線を示すグラフである。図7(a)はオキシトシンの結果を示し、図7(b)は化合物2の結果を示し、図7(c)は化合物5の結果を示す。また、下記表5に、各化合物の反応速度論的パラメータの測定結果を示す。 7(a) to 7(c) are graphs showing measured exercise competition curves. FIG. 7( a) shows the results for oxytocin, FIG. 7( b) shows the results for compound 2, and FIG. 7( c) shows the results for compound 5. Table 5 below shows the measurement results of reaction kinetic parameters of each compound.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 その結果、化合物2は[H]オキシトシンの約1/2のt1/2を示した。また、化合物2は化合物5の約1/6のt1/2を示した。また、化合物5は、[H]オキシトシンと比較して、より速い会合速度及び解離速度を示した。 As a result, Compound 2 showed a t 1/2 of about 1/2 that of [ 3 H]oxytocin. Moreover, the compound 2 showed t 1/2 of about 1/6 of the compound 5. Compound 5 also showed faster association and dissociation rates compared to [ 3 H]oxytocin.
 なお、本実験例の結果からは、上述した実験例5、実験例6において、CD38KOCCマウスへの化合物5の投与が長期的な効果を示した理由を説明することができない。この点からも、CD38KOCCマウスへの化合物5の投与が長期的な効果を示すことは意外な効果である。 From the results of this experimental example, it is not possible to explain the reason why administration of Compound 5 to CD38KOCC mice showed a long-term effect in Experimental Examples 5 and 6 described above. From this point as well, it is an unexpected effect that administration of Compound 5 to CD38KOCC mice shows a long-term effect.
[実験例10]
(子宮収縮誘発能の検討)
 等尺力測定により、オキシトシン、バソプレッシン、カルベトシン、化合物1~6によるマウスの子宮収縮誘発効果をEx vivoで評価した。まず、マウス子宮内膜を除去した後、子宮角を縦方向に切断して1mm幅の子宮筋層にした。続いて、子宮筋層を、95%O-5%CO環境下、37℃に維持したPBSで満たした培養槽中の2本のタングステンワイヤの間に取り付けた。一方のワイヤは静止しており、他方のワイヤはトランスデューサ(AD instrument社)に接続した。
[Experimental Example 10]
(Study of uterine contraction inducing ability)
The effect of oxytocin, vasopressin, carbetocin, and compounds 1 to 6 on inducing uterine contraction in mice was evaluated ex vivo by isometric force measurement. First, after removing the endometrium of the mouse, the uterine horn was longitudinally cut to form a 1 mm wide myometrium. Subsequently, the myometrium was attached between two tungsten wires in a culture tank filled with PBS maintained at 37° C. in a 95% O 2 -5% CO 2 environment. One wire was stationary and the other wire was connected to a transducer (AD instrument).
 続いて、子宮筋層を一定の応答が得られるまで60mMのカリウムイオンで15分ごとに刺激した。オキシトシン、バソプレッシン、カルベトシン、化合物1~6を培養層中に添加して子宮筋縮を誘発し、LabChatソフトウェア(AD instrument社)で力の面積(曲線下面積)を計算した。測定した応答は、各化合物を適用する前に測定した一定の自発収縮のデータで正規化した。表6に、各化合物による子宮筋縮誘導効果の評価結果を示す。また、図8は、オキシトシン、カルベトシン、化合物2、化合物5の子宮筋縮誘導効果の測定結果を示すグラフである。図8中、横軸は各化合物の濃度を示し、縦軸は自発収縮の値を100%とした割合(%)を示す。 Next, the myometrium was stimulated with 60 mM potassium ion every 15 minutes until a constant response was obtained. Oxytocin, vasopressin, carbetocin, and compounds 1 to 6 were added to the culture layer to induce uterine muscular contraction, and the force area (area under the curve) was calculated with LabChat software (AD instrument). The measured responses were normalized with the data of constant spontaneous contractions measured before applying each compound. Table 6 shows the evaluation results of the uterine contractility inducing effect of each compound. Further, FIG. 8 is a graph showing the measurement results of the uterine muscle contraction inducing effect of oxytocin, carbetocin, compound 2 and compound 5. In FIG. 8, the horizontal axis represents the concentration of each compound, and the vertical axis represents the ratio (%) with the spontaneous contraction value as 100%.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 その結果、化合物2のEC50が55.5pMであり、これは天然のオキシトシン(238.8pM)、カルベトシン(2.7nM)、化合物1(182.3pM)及び化合物5(3.1nM)の中で最も高いことが明らかとなった。また、化合物3のEC50は>10nMであり、化合物6のEC50は8.1nMであった。 As a result, the EC 50 of Compound 2 was 55.5 pM, which was the same among natural oxytocin (238.8 pM), carbetosine (2.7 nM), Compound 1 (182.3 pM) and Compound 5 (3.1 nM). It became clear that it was the highest. Further, the EC 50 of Compound 3 was >10 nM and the EC 50 of Compound 6 was 8.1 nM.
 この結果は、化合物2が天然オキシトシンに近い親和性を有しており、hOTRに対するスーパーアゴニスト活性を示すという上述した結果を更に支持するものである。 This result further supports the above-mentioned result that compound 2 has an affinity close to that of natural oxytocin and exhibits superagonist activity against hOTR.
 本発明によれば、新規オキシトシン誘導体を提供することができる。 According to the present invention, a novel oxytocin derivative can be provided.

Claims (4)

  1.  下記式(1)で表される化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物(下記式(1)中、Xは硫黄原子又はメチレン基であり、Rは下記式(2)又は下記式(3)で表される基である。)。
    Figure JPOXMLDOC01-appb-C000001
    A compound represented by the following formula (1), a pharmacologically acceptable salt thereof, or a solvate thereof (in the following formula (1), X is a sulfur atom or a methylene group, and R 3 is the following formula ( 2) or a group represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000001
  2.  請求項1に記載の化合物若しくはその薬理学的に許容される塩又はそれらの溶媒和物を有効成分とする、オキシトシン受容体作動薬。 An oxytocin receptor agonist comprising the compound according to claim 1, a pharmacologically acceptable salt thereof, or a solvate thereof as an active ingredient.
  3.  神経発達障害若しくは精神疾患の治療剤又は子宮収縮剤である、請求項2に記載のオキシトシン受容体作動薬。 The oxytocin receptor agonist according to claim 2, which is a therapeutic agent for neurodevelopmental disorders or mental disorders or a uterine contractile agent.
  4.  請求項2又は3に記載のオキシトシン受容体作動薬と、薬理学的に許容される担体とを含む、オキシトシン受容体作動用医薬組成物。 An oxytocin receptor agonist pharmaceutical composition comprising the oxytocin receptor agonist according to claim 2 or 3 and a pharmacologically acceptable carrier.
PCT/JP2019/050089 2018-12-27 2019-12-20 Oxytocin derivative and use thereof WO2020137880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563200A JP7390031B2 (en) 2018-12-27 2019-12-20 Oxytocin derivatives and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-246141 2018-12-27
JP2018246141 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137880A1 true WO2020137880A1 (en) 2020-07-02

Family

ID=71128657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050089 WO2020137880A1 (en) 2018-12-27 2019-12-20 Oxytocin derivative and use thereof

Country Status (2)

Country Link
JP (1) JP7390031B2 (en)
WO (1) WO2020137880A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150050A (en) * 1980-03-24 1981-11-20 Ferring Ab Oxitocin derivative
JP2004527496A (en) * 2001-02-28 2004-09-09 モベルグ、ケルスティン ユブナス New substance
JP2011516460A (en) * 2008-03-31 2011-05-26 フェリング ベスローテン フェンノートシャップ Oxytocin analogue
US20130130985A1 (en) * 2010-04-01 2013-05-23 Paul Alewood Oxytocin peptide analogues
JP2013543492A (en) * 2010-09-30 2013-12-05 フェリング ベスローテン フェンノートシャップ Pharmaceutical composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150050A (en) * 1980-03-24 1981-11-20 Ferring Ab Oxitocin derivative
JP2004527496A (en) * 2001-02-28 2004-09-09 モベルグ、ケルスティン ユブナス New substance
JP2011516460A (en) * 2008-03-31 2011-05-26 フェリング ベスローテン フェンノートシャップ Oxytocin analogue
US20130130985A1 (en) * 2010-04-01 2013-05-23 Paul Alewood Oxytocin peptide analogues
JP2013543492A (en) * 2010-09-30 2013-12-05 フェリング ベスローテン フェンノートシャップ Pharmaceutical composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ICHINOSE, WATARU ET AL.: "Development of Highly Potent Analogue and a Long-Acting Analogue of Oxytocin for the Treatment of Social Impairment- Like Behaviors", JOURNAL OF MEDICINAL CHEMISTRY, vol. 62, 21 March 2019 (2019-03-21), pages 3297 - 3310, XP055721202 *

Also Published As

Publication number Publication date
JPWO2020137880A1 (en) 2020-07-02
JP7390031B2 (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6220180B2 (en) Synthetic peptide amides and their dimers
JP5244810B2 (en) Synthetic peptide amide
US9321810B2 (en) Uses of kappa opioid synthetic peptide amides
HU227640B1 (en) Kappa receptor opioid tetra peptides and pharmaceutical compositions comprising thereof
TW201102082A (en) Melanocortin receptor-specific peptides
JP2008533101A (en) Compounds for use in the treatment of obesity
EP3193939A1 (en) Small lipopeptidomimetic inhibitors of ghrelin o-acyl transferase
JP2010046088A (en) New peptides
TW201002340A (en) Melanocortin receptor-specific peptides for treatment of obesity
JP2015511600A (en) Modified kisspeptin peptides and uses thereof
Gao et al. Recent advances in neurokinin receptor antagonists
JP2003508512A (en) Non-peptidic cyclophilin binding compounds and their uses
CN115243702A (en) Cyclic peptide receptor lanthionine synthase C-like protein (LANCL) and uses thereof
WO2020137880A1 (en) Oxytocin derivative and use thereof
US12180251B2 (en) Nucleic acids encoding peptides that block binding of a2d-1 to glutamate receptors for treating diseases and disorders
US20230391838A1 (en) Conformationally-Constrained Alpha-RGIA Analogues
Giardina et al. Lead generation and lead optimization processes in the discovery of selective nonpeptide neurokinin
JP4512273B2 (en) New peptides
EP2605770A1 (en) Antifungal agents and uses thereof
US20230399361A1 (en) Macrocyclic peptides
KR20070119614A (en) High Potency Complete and Partial Agonists and Antagonists of Nociceptin / Opanin FQ Receptors
Reedy Assessing ADME properties of CJ-15,208: synthesis of new analogs and examination of P-glycoprotein interactions
Hadden Synthesis and evaluation of the antipsychotic potential of novel, orally bioavailable, NT (8–13) analogues containing non-natural arginine and lysine residues
BRPI0718650B1 (en) SYNTHETIC PEPTIDE AMIDES, THEIR PHARMACEUTICAL COMPOSITION AND USE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904218

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020563200

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904218

Country of ref document: EP

Kind code of ref document: A1