WO2020136062A1 - Nicotine formulation comprising metal salt - Google Patents
Nicotine formulation comprising metal salt Download PDFInfo
- Publication number
- WO2020136062A1 WO2020136062A1 PCT/EP2019/086110 EP2019086110W WO2020136062A1 WO 2020136062 A1 WO2020136062 A1 WO 2020136062A1 EP 2019086110 W EP2019086110 W EP 2019086110W WO 2020136062 A1 WO2020136062 A1 WO 2020136062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- percent
- nicotine formulation
- weight
- metal
- aerosol
- Prior art date
Links
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 title claims abstract description 352
- 229960002715 nicotine Drugs 0.000 title claims abstract description 349
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 title claims abstract description 349
- 239000000203 mixture Substances 0.000 title claims abstract description 325
- 238000009472 formulation Methods 0.000 title claims abstract description 314
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 189
- 239000002184 metal Substances 0.000 title claims abstract description 189
- 150000003839 salts Chemical class 0.000 title claims abstract description 80
- 150000005846 sugar alcohols Polymers 0.000 claims abstract description 50
- 239000000443 aerosol Substances 0.000 claims abstract description 44
- VZFUCHSFHOYXIS-UHFFFAOYSA-N Cycloheptanecarboxylic acid Chemical class OC(=O)C1CCCCCC1 VZFUCHSFHOYXIS-UHFFFAOYSA-N 0.000 claims abstract description 14
- WBYWAXJHAXSJNI-UHFFFAOYSA-N cinnamic acid Chemical class OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 claims abstract description 14
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical class CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 claims abstract description 14
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims abstract description 12
- 150000004730 levulinic acid derivatives Chemical class 0.000 claims abstract description 12
- 150000001558 benzoic acid derivatives Chemical class 0.000 claims abstract description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 82
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical class [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 claims description 66
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 45
- 235000011187 glycerol Nutrition 0.000 claims description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 150000007524 organic acids Chemical class 0.000 claims description 17
- 235000005985 organic acids Nutrition 0.000 claims description 6
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 abstract 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 22
- 235000010413 sodium alginate Nutrition 0.000 description 22
- 239000000661 sodium alginate Substances 0.000 description 22
- 229940005550 sodium alginate Drugs 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 20
- 239000000758 substrate Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 10
- 235000010443 alginic acid Nutrition 0.000 description 9
- 229920000615 alginic acid Polymers 0.000 description 9
- 159000000000 sodium salts Chemical class 0.000 description 9
- 238000009834 vaporization Methods 0.000 description 9
- 239000000523 sample Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 230000008016 vaporization Effects 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000796 flavoring agent Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 231100000694 OECD Guidelines for the Testing of Chemicals Toxicity 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- -1 alkali metal salts Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- OOOGOOPXEUGSAS-UHFFFAOYSA-M sodium cycloheptanecarboxylate Chemical compound C1(CCCCCC1)C(=O)[O-].[Na+] OOOGOOPXEUGSAS-UHFFFAOYSA-M 0.000 description 1
- 229940058349 sodium levulinate Drugs 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- DXIHILNWDOYYCH-UHDJGPCESA-M sodium;(e)-3-phenylprop-2-enoate Chemical compound [Na+].[O-]C(=O)\C=C\C1=CC=CC=C1 DXIHILNWDOYYCH-UHDJGPCESA-M 0.000 description 1
- RDKYCKDVIYTSAJ-UHFFFAOYSA-M sodium;4-oxopentanoate Chemical compound [Na+].CC(=O)CCC([O-])=O RDKYCKDVIYTSAJ-UHFFFAOYSA-M 0.000 description 1
- ZOOPHYLANWVUDY-UHFFFAOYSA-M sodium;undecanoate Chemical compound [Na+].CCCCCCCCCCC([O-])=O ZOOPHYLANWVUDY-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
- A24B15/165—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes comprising as heat source a carbon fuel or an oxidized or thermally degraded carbonaceous fuel, e.g. carbohydrates, cellulosic material
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
- A24B15/167—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/24—Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
- A24B15/241—Extraction of specific substances
- A24B15/243—Nicotine
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/28—Treatment of tobacco products or tobacco substitutes by chemical substances
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/28—Treatment of tobacco products or tobacco substitutes by chemical substances
- A24B15/30—Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
- A24B15/32—Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by acyclic compounds
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/20—Devices using solid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/48—Fluid transfer means, e.g. pumps
Definitions
- the invention relates to a nicotine formulation for use in an aerosol-generating system.
- the invention also relates to an aerosol-generating article comprising the nicotine formulation for use in an aerosol-generating system and an aerosol-generating system comprising the nicotine formulation and an atomiser.
- Aerosol-generating systems for delivering nicotine to a user that comprise an atomiser configured to generate an inhalable aerosol from a nicotine formulation are known.
- Some known aerosol-generating systems comprise a thermal atomiser such as an electric heater that is configured to heat and vaporise the nicotine formulation to generate an aerosol.
- Other known aerosol-generating systems comprise a non-thermal atomiser that is configured to generate an aerosol from the nicotine formulation using, for example, impinging jet, ultrasonic or vibrating mesh technologies.
- Typical nicotine formulations for use in aerosol-generating systems are liquid nicotine formulations comprise glycerine, propylene glycol and water as solvents.
- a nicotine formulation for use in an aerosol generating system, the nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol-generating article for use in an aerosol-generating system, the aerosol-generating article containing a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol-generating system comprising: a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight; and an atomiser configured to generate an aerosol from the nicotine formulation.
- a nicotine formulation for use in an aerosol-generating system, the nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight, and wherein the one or more metal salts are selected from the group consisting of metal benzoates, metal cinnamates, metal cycloheptanecarboxylates, metal levulinates, metal propanoates, metal stearates and metal undecanoates.
- an aerosol-generating article for use in an aerosol-generating system, the aerosol-generating article containing a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight, and wherein the one or more metal salts are selected from the group consisting of metal benzoates, metal cinnamates, metal cycloheptanecarboxylates, metal levulinates, metal propanoates, metal stearates and metal undecanoates.
- an aerosol-generating system comprising: a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight; and an atomiser configured to generate an aerosol from the nicotine formulation, and wherein the one or more metal salts are selected from the group consisting of metal benzoates, metal cinnamates, metal cycloheptanecarboxylates, metal levulinates, metal propanoates, metal stearates and metal undecanoates.
- the term“nicotine” describes nicotine, nicotine base or a nicotine salt.
- the amounts of nicotine recited herein are the amount of free base nicotine or amount of protonated nicotine, respectively.
- water-miscible polyhydric alcohol describes a polyhydric alcohol that is liquid at 20°C and mixes with water in all proportions to form a homogenous solution.
- percentages by weight of components of the nicotine formulation recited herein are based on the total weight of the nicotine formulation.
- Bonding between the one or more metal salts and the one or more polyhydric alcohols in the nicotine formulation may elevate the boiling point of the one or more polyhydric alcohols. This may advantageously enhance vaporization of nicotine from the nicotine formulation when used in an aerosol-generating system as compared to a typical liquid nicotine formulation that does not include one or more metal salts.
- the interactions between the one or more metal salts and the molecules of the one or more polyhydric alcohols in the nicotine formulation may be stronger than the interactions between the molecules of the one or more polyhydric alcohols. This may result in more energy being required to vaporize the one or more polyhydric alcohols.
- the inclusion of one or more metal salts in the nicotine formulation may thereby advantageously increase the percentage of nicotine in an aerosol generated from the nicotine formulation by up to one order of magnitude compared to a typical liquid nicotine formulation that does not include one or more metal salts.
- Bonding between the one or more metal salts and the one or more polyhydric alcohols in the nicotine formulation may increase the viscosity of the nicotine formulation compared to a typical liquid nicotine formulation that does not include one or more metal salts. This may advantageously reduce the risk of leakage of the nicotine formulation when used in an aerosol generating system compared to a typical liquid nicotine formulation that does not include one or more metal salts.
- propylene glycol in the nicotine formulation, there may also be an improvement in the nicotine content of the aerosol due to vaporisation of the nicotine. It is believed that this may be due to propylene glycol having a lower boiling point (188°C) compared to glycerine (290°C). However, if there is high amount of propylene glycol in the nicotine formulation then the nicotine content of the aerosol has been found to decrease. Therefore, it may be advantageous to have a limited amount of propylene glycol in the nicotine formulation.
- the nicotine formulation may be a liquid nicotine formulation.
- liquid nicotine formulation describes a liquid formulation comprising nicotine or a gel formulation comprising nicotine.
- the term“gel” describes a substantially dilute cross-linked system, which exhibits no flow when in the steady-state.
- the nicotine formulation may have a viscosity at 25°C of greater than or equal to about
- the nicotine formulation has a viscosity at 25°C of greater than or equal to about 10 Pa-s.
- the nicotine formulation may have a viscosity at 25°C of greater than or equal to about 25 Pa-s, greater than or equal to about 50 Pa-s or greater than or equal to about 75 Pa-s.
- the nicotine formulation has a viscosity at 25°C of greater than or equal to about 100 Pa-s.
- the nicotine formulation may have a viscosity at 25°C of greater than or equal to about 250 Pa-s, greater than or equal to about 500 Pa-s or greater than or equal to about 750 Pa-s.
- the nicotine formulation has a viscosity at 25°C of greater than or equal to about 1000 Pa-s.
- the nicotine formulation may have a viscosity at 25°C of greater than or equal to about 2500 Pa-s, greater than or equal to about 5000 Pa-s, greater than or equal to about 7500 Pa-s or greater than or equal to about 10,000 Pa-s.
- viscosity values recited herein are the viscosity of a 1 cubic centimetre (cm 3 ) sample volume of nicotine formulation measured using a Thermo Scientific HAAKE RheoStress 6000 rheometer using a parallel plate P20 probe with a MP60 (60 mm diameter) measuring plate at 25°C at a speed of 6 revolutions per minute (rpm).
- the nicotine formulation may be a solid nicotine formulation.
- solid nicotine formulation describes a solid formulation comprising nicotine.
- Nicotine formulations according to the invention may advantageously be used as aerosol-forming substrates in aerosol-generating systems that comprise an automatic or manual mechanism to move or advance the aerosol-forming substrate toward the atomiser as illustrated in FIGS. 1 -3.
- the aerosol-forming substrate thus maintains contact with the atomiser even as the aerosol-forming substrate is consumed during use.
- the advancement mechanism may form a portion of an aerosol-generating article comprising the nicotine formulation or a portion of an aerosol-generating device that receives an aerosol generating article comprising the nicotine formulation.
- the nicotine formulation may comprise natural nicotine or synthetic nicotine.
- the nicotine formulation may have a nicotine content of greater than or equal to about 0.5 percent by weight.
- the nicotine formulation has a nicotine content of greater than or equal to about 1 percent by weight. More preferably, the nicotine formulation has a nicotine content of greater than or equal to about 1 .5 percent by weight.
- the nicotine formulation may have a nicotine content of less than or equal to about 10 percent by weight or less than or equal to about 8 percent by weight.
- the nicotine formulation has a nicotine content of less than or equal to about 5 percent by weight. More preferably, the nicotine formulation has a nicotine content of less than or equal to about 3 percent by weight.
- the nicotine formulation may have a nicotine content of between about 0.5 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a nicotine content of between about 0.5 percent by weight and about 8 percent by weight, between about 0.5 percent by weight and about 5 percent by weight or between about 0.5 percent by weight and about 3 percent by weight.
- the nicotine formulation has a nicotine content of between about 1 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a nicotine content of between about 1 percent by weight and about 8 percent by weight, between about 1 percent by weight and about 5 percent by weight or between about 1 percent by weight and about 3 percent by weight.
- the nicotine formulation has a nicotine content of between about 1 .5 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a nicotine content of between about 1 .5 percent by weight and about 8 percent by weight, between about 1 .5 percent by weight and about 5 percent by weight or between about 1 .5 percent by weight and about 3 percent by weight.
- the nicotine formulation may have a water-miscible polyhydric alcohol content of greater than or equal to about 5 percent by weight.
- the nicotine formulation may have a water-miscible polyhydric alcohol content of greater than or equal to about 10 percent by weight, greater than or equal to about 20 percent by weight or greater than or equal to about 30 percent by weight.
- the nicotine formulation has a water-miscible polyhydric alcohol content of greater than or equal to about 40 percent by weight. More preferably, the nicotine formulation has a water-miscible polyhydric alcohol content of greater than or equal to about 50 percent by weight. Most preferably, the nicotine formulation has a water-miscible polyhydric alcohol content of greater than or equal to about 60 percent by weight. For example, the nicotine formulation may have a water-miscible polyhydric alcohol content of greater than or equal to about 70 percent by weight, greater than or equal to about 80 percent by weight or greater than or equal to about 90 percent by weight.
- the nicotine formulation has a water-miscible polyhydric alcohol content of less than or equal to about 95 percent by weight.
- the nicotine formulation may have a water-miscible polyhydric alcohol content of between about 5 percent by weight and about 95 percent by weight.
- the nicotine formulation may have a water-miscible polyhydric alcohol content of between about 10 percent by weight and about 95 percent by weight, between about 20 percent by weight and about 95 percent by weight or between about 30 percent by weight and about 95 percent by weight.
- the nicotine formulation has a water-miscible polyhydric alcohol content of between about 40 percent by weight and about 95 percent by weight. More preferably, the nicotine formulation has a water-miscible polyhydric alcohol content of between about 50 percent by weight and about 95 percent by weight. Most preferably, the nicotine formulation has a water- miscible polyhydric alcohol content of between about 60 percent by weight and about 95 percent by weight. For example, the nicotine formulation may have a water-miscible polyhydric alcohol content of between about 70 percent by weight and about 95 percent by weight, between about 80 percent by weight and about 95 percent by weight or between about 90 percent by weight and about 95 percent by weight. Preferably, the nicotine formulation comprises one or more water-miscible polyhydric alcohols selected from the group consisting of 1 ,3-butanediol, glycerine, propylene glycol, and triethylene glycol.
- the nicotine formulation comprises glycerine.
- the nicotine formulation comprises vegetable glycerine.
- the nicotine formulation has a glycerine content of greater than or equal to about 5 percent by weight.
- a nicotine formulation for use in an aerosol-generating system, the nicotine formulation comprising: glycerine; and one or more metal salts, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating article for use in an aerosol-generating system, the aerosol-generating article containing a nicotine formulation comprising: glycerine; and one or more metal salts, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating system comprising: a nicotine formulation comprising: glycerine; and one or more metal salts, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight; and an atomiser configured to generate an aerosol from the nicotine formulation.
- the nicotine formulation may have a glycerine content of greater than or equal to about 10 percent by weight, greater than or equal to about 20 percent by weight or greater than or equal to about 30 percent by weight.
- the nicotine formulation has a glycerine content of greater than or equal to about 40 percent by weight. More preferably, the nicotine formulation has a glycerine content of greater than or equal to about 50 percent by weight. Most preferably, the nicotine formulation has a glycerine content of greater than or equal to about 60 percent by weight. For example, the nicotine formulation may have a glycerine content of greater than or equal to about 70 percent by weight, greater than or equal to about 80 percent by weight or greater than or equal to about 90 percent by weight.
- the nicotine formulation has a glycerine content of less than or equal to about 95 percent by weight.
- the nicotine formulation may have a glycerine content of between about 5 percent by weight and about 95 percent by weight.
- the nicotine formulation may have a glycerine content of between about 10 percent by weight and about 95 percent by weight, between about 20 percent by weight and about 95 percent by weight or between about 30 percent by weight and about 95 percent by weight.
- the nicotine formulation has a glycerine content of between about 40 percent by weight and about 95 percent by weight. More preferably, the nicotine formulation has a glycerine content of between about 50 percent by weight and about 95 percent by weight. Most preferably, the nicotine formulation has a glycerine content of between about 60 percent by weight and about 95 percent by weight. For example, the nicotine formulation may have a glycerine content of between about 70 percent by weight and about 95 percent by weight, between about 80 percent by weight and about 95 percent by weight or between about 90 percent by weight and about 95 percent by weight.
- the nicotine formulation may comprise glycerine and propylene glycol.
- the ratio of the weight percent glycerine content to the weight percent propylene glycol content of the nicotine formulation is greater than or equal to about 1 . More preferably, the ratio of the weight percent glycerine content to the weight percent propylene glycol content of the nicotine formulation is greater than or equal to about 1 .5. For example, the ratio of the weight percent glycerine content to the weight percent propylene glycol content of the nicotine formulation may be greater than or equal to about 2, greater than or equal to about 2.5 or greater than or equal to about 3.
- the nicotine formulation may have a metal salt content of greater than or equal to about 0.75 percent by weight or greater than or equal to about 1 percent by weight.
- the nicotine formulation has a metal salt content of less than or equal to about 15 percent by weight. More preferably, the nicotine formulation has a metal salt content of less than or equal to about 12 percent by weight. For example, the nicotine formulation may have a metal salt content of less than or equal to about 10 percent by weight.
- the nicotine formulation has a metal salt content of between about 0.5 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a metal salt content of between about 0.5 percent by weight and about 12 percent by weight or between about 0.5 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a metal salt content of between about 0.75 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a metal salt content of between about 0.75 percent by weight and about 12 percent by weight or between about 0.75 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a metal salt content of between about 1 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a metal salt content of between about 1 percent by weight and about 12 percent by weight or between about 1 percent by weight and about 10 percent by weight.
- the one or more metal salts may have a molar mass of less than or equal to about 500 g/mol or less than or equal to about 400 g/mol.
- the one or more metal salts are one or more metal salts selected from the group consisting of metal alginates, metal benzoates, metal cinnamates, metal cycloheptanecarboxylates, metal levulinates, metal propanoates, metal stearates and metal undecanoates.
- the one or more metal salts are selected from the group consisting of metal benzoates, metal cinnamates, metal cycloheptanecarboxylates, metal levulinates, metal propanoates, metal stearates and metal undecanoates.
- the one or more metal salts are selected from the group consisting of metal cinnamates, metal cycloheptanecarboxylates, metal levulinates, metal propanoates, metal stearates and metal undecanoates.
- the one or more metal salts are selected from the group consisting of metal cinnamates, metal cycloheptanecarboxylates, metal stearates and metal undecanoates
- a nicotine formulation for use in an aerosol-generating system, the nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts selected from the group consisting of metal alginates, metal benzoates, metal cinnamates, metal cycloheptanecarboxylates metal levulinates, metal propanoates, metal stearates and metal undecanoates, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating article for use in an aerosol-generating system, the aerosol-generating article containing a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts selected from the group consisting of metal alginates, metal benzoates, metal cinnamates, metal cycloheptanecarboxylates, metal levulinates, metal propanoates, metal stearates and metal undecanoates, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating system comprising: a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts selected from the group consisting of metal alginates, metal benzoates, metal cinnamates, metal cycloheptanecarboxylates, metal levulinates, metal propanoates, metal stearates and metal undecanoates, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight; and an atomiser configured to generate an aerosol from the nicotine formulation.
- the one or more metal salts are selected from the group consisting of metal alginates and metal stearates.
- a nicotine formulation for use in an aerosol-generating system comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts selected from the group consisting of metal alginates and metal stearates, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating article for use in an aerosol-generating system, the aerosol-generating article containing a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts selected from the group consisting of metal alginates and metal stearates, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating system comprising: a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more metal salts selected from the group consisting of metal alginates and metal stearates, wherein the nicotine formulation has a metal salt content of greater than or equal to about 0.5 percent by weight; and an atomiser configured to generate an aerosol from the nicotine formulation.
- the nicotine formulation comprises one or more metal stearates.
- covalent bonding between the one or more metal stearates and the one or more water-miscible polyhydric alcohols in the nicotine formulation may further elevate the boiling point of the one or more water-miscible polyhydric alcohols.
- this may advantageously enhance the efficiency of vaporization of nicotine from the nicotine formulation when used in an aerosol-generating system as compared to a typical liquid nicotine formulation that does not include one or more metal stearates.
- the nicotine formulation comprises glycerine and one or more metal salts selected from the group consisting of metal alginates and metal stearates.
- the nicotine formulation comprises glycerine and one or more metal stearates.
- Covalent bonding between the one or more metal stearates and the glycerine in the nicotine formulation may elevate the boiling point of the glycerine. This may advantageously enhance vaporization of nicotine from the nicotine formulation when used in an aerosol generating system.
- Covalent bonding between the one or more metal stearates and the glycerine in the nicotine formulation may increase the viscosity of the nicotine formulation. This may advantageously reduce the risk of leakage of the nicotine formulation when used in an aerosol generating system.
- the nicotine formulation may comprise one or more salts of any suitable metal.
- the one or more metal salts are one or more alkali metal salts.
- the one or more metal salts are one or more sodium salts.
- the one or more metal salts are one or more sodium salts selected from the group consisting of sodium alginate, sodium benzoate, sodium cinnamate, sodium cycloheptanecarboxylate, sodium levulinate, sodium propanoate, sodium stearate and sodium undecanoate.
- the one or more salts are one or more sodium salts selected from the group consisting of sodium alginate and sodium stearate.
- a nicotine formulation for use in an aerosol-generating system, the nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more sodium salts selected from the group consisting of sodium alginate and sodium stearate, wherein the nicotine formulation has a sodium salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating article for use in an aerosol-generating system, the aerosol-generating article containing a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more sodium salts selected from the group consisting of sodium alginate and sodium stearate, wherein the nicotine formulation has a sodium salt content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating system comprising: a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and one or more sodium salts selected from the group consisting of sodium alginate and sodium stearate, wherein the nicotine formulation has a sodium salt content of greater than or equal to about 0.5 percent by weight; and an atomiser configured to generate an aerosol from the nicotine formulation.
- the nicotine formulation may have a sodium alginate content of greater than or equal to about 0.25 percent by weight or greater than or equal to about 0.5 percent by weight.
- the nicotine formulation may have a sodium alginate content of greater than or equal to about 0.75 percent by weight or greater than or equal to about 1 percent by weight.
- the nicotine formulation has a sodium alginate content of less than or equal to about 15 percent by weight. More preferably, the nicotine formulation has a sodium alginate content of less than or equal to about 12 percent by weight. For example, the nicotine formulation may have a sodium alginate content of less than or equal to about 10 percent by weight.
- the nicotine formulation may have a sodium alginate content of between about 0.25 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a sodium alginate content of between about 0.25 percent by weight and about 12 percent by weight or between about 0.25 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a sodium alginate content of between about 0.5 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a sodium alginate content of between about 0.5 percent by weight and about 12 percent by weight or between about 0.5 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a sodium alginate of between about 0.75 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a sodium alginate of between about 0.75 percent by weight and about 12 percent by weight or between about 0.75 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a sodium alginate of between about 1 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a sodium alginate content of between about 1 percent by weight and about 12 percent by weight or between about 1 percent by weight and about 10 percent by weight.
- the nicotine formulation comprises sodium stearate.
- a metal salt with a high weighted average molecular weight may improve the above mentioned advantages related to efficiency of vaporization of nicotine.
- the weighted average molecular weight of a metal salt is too high then properties such as solubility begin to be negatively affected.
- including sodium stearate in the formulation may provide an optimal trade-off in improved efficiency of vaporization of nicotine, whilst maintaining solubility.
- the nicotine formulation comprises sodium stearate
- the nicotine formulation has a sodium stearate content of greater than or equal to about 0.25 percent by weight. More preferably, the nicotine formulation has a sodium stearate content of greater than or equal to about 0.5 percent by weight.
- a nicotine formulation for use in an aerosol-generating system, the nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and sodium stearate, wherein the nicotine formulation has a sodium stearate content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating article for use in an aerosol-generating system, the aerosol-generating article containing a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and sodium stearate, wherein the nicotine formulation has a sodium stearate content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating system comprising: a nicotine formulation comprising: one or more water-miscible polyhydric alcohols; and sodium stearate, wherein the nicotine formulation has a sodium stearate content of greater than or equal to about 0.5 percent by weight; and an atomiser configured to generate an aerosol from the nicotine formulation.
- the nicotine formulation may have a sodium stearate content of greater than or equal to about 0.75 percent by weight or greater than or equal to about 1 percent by weight.
- the nicotine formulation has a sodium stearate content of less than or equal to about 15 percent by weight. More preferably, the nicotine formulation has a sodium stearate content of less than or equal to about 12 percent by weight. For example, the nicotine formulation may have a sodium stearate content of less than or equal to about 10 percent by weight.
- the nicotine formulation has a sodium stearate content of between about 0.25 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a sodium stearate content of between about 0.25 percent by weight and about 12 percent by weight or between about 0.25 percent by weight and about 10 percent by weight.
- the nicotine formulation has a sodium stearate content of between about 0.5 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a sodium stearate content of between about 0.5 percent by weight and about 12 percent by weight or between about 0.5 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a sodium stearate content of between about 0.75 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a sodium stearate content of between about 0.75 percent by weight and about 12 percent by weight or between about 0.75 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a sodium stearate content of between about 1 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a sodium stearate content of between about 1 percent by weight and about 12 percent by weight or between about 1 percent by weight and about 10 percent by weight.
- the nicotine formulation comprises glycerine and sodium stearate.
- Covalent bonding between the sodium stearate and the glycerine in the nicotine formulation may elevate the boiling point of the glycerine. This may advantageously enhance vaporization of nicotine from the nicotine formulation when used in an aerosol-generating system.
- Covalent bonding between the sodium stearate and the glycerine in the nicotine formulation may increase the viscosity of the nicotine formulation. This may advantageously reduce the risk of leakage of the nicotine formulation when used in an aerosol-generating system.
- a nicotine formulation for use in an aerosol-generating system comprising: glycerine; and sodium stearate, wherein the nicotine formulation has a sodium stearate content of greater than or equal to about 0.5 percent by weight.
- an aerosol-generating article for use in an aerosol-generating system, the aerosol-generating article containing a nicotine formulation comprising: glycerine; and sodium stearate, wherein the nicotine formulation has a sodium stearate content of greater than or equal to about 0.5 percent by weight.
- an aerosol generating system comprising: a nicotine formulation comprising: glycerine; and sodium stearate, wherein the nicotine formulation has a sodium stearate content of greater than or equal to about 0.5 percent by weight; and an atomiser configured to generate an aerosol from the nicotine formulation.
- the nicotine formulation may comprise water.
- the nicotine formulation may have a water content of less than or equal to about 20 percent by weight or less than or equal to about 15 percent by weight.
- the nicotine formulation has a water content of less than or equal to about 10 percent by weight.
- the nicotine formulation may a water content of less than or equal to about 8 percent by weight or less than or equal to about 6 percent by weight.
- the nicotine formulation may have a water content of greater than or equal to about 1 percent by weight.
- the nicotine formulation may have a water content of greater than or equal to about 2 percent by weight or greater than or equal to about 3 percent by weight.
- the nicotine formulation may have a water content of between about 1 percent by weight and about 20 percent by weight.
- the nicotine formulation may have a water content of between about 2 percent by weight and about 20 percent by weight or between about 3 percent by weight and about 20 percent by weight.
- the nicotine formulation may have a water content of between about 1 percent by weight and about 15 percent by weight.
- the nicotine formulation may have a water content of between about 2 percent by weight and about 15 percent by weight or between about 3 percent by weight and about 15 percent by weight.
- the nicotine formulation comprises water
- the nicotine formulation has a water content of between about 1 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a water content of between about 2 percent by weight and about 10 percent by weight or between about 3 percent by weight and about 10 percent by weight.
- the nicotine formulation may have a water content of between about 1 percent by weight and about 8 percent by weight.
- the nicotine formulation may have a water content of between about 2 percent by weight and about 8 percent by weight or between about 3 percent by weight and about 8 percent by weight.
- the nicotine formulation may have a water content of between about 1 percent by weight and about 6 percent by weight.
- the nicotine formulation may have a water content of between about 2 percent by weight and about 6 percent by weight or between about 3 percent by weight and about 6 percent by weight.
- the nicotine formulation may comprise one or more organic acids.
- the one or more organic acids may be water-soluble organic acids.
- water-soluble organic acid describes an organic acid having a water solubility at 20°C of greater than or equal to about 100 mg/ml, preferably greater than or equal to about 500 mg/ml, more preferably greater than or equal to about 750mg/ml most preferably greater than or equal to about 1000mg/ml.
- water solubility values recited herein are the water solubility measured based on the preliminary test of OECD (1995), Test No. 105: Water Solubility, OECD Guidelines for the Testing of Chemicals, Section 1 , OECD Publishing, Paris, https://doi.org/10.1787/9789264069589-en.
- OECD Water Solubility
- OECD Guidelines for the Testing of Chemicals Section 1 , OECD Publishing, Paris, https://doi.org/10.1787/9789264069589-en.
- increasing volumes of distilled water are added at 20°C to 0.1 g of the sample (solid substances must be pulverized) in a 10 ml glass-stoppered measuring cylinder.
- the substance is an acid
- the sample is added to the distilled water in the first step.
- the solubility When the solubility is low, a long time may be required to dissolve a substance and at least 24 hours should be allowed. If, after 24 hours, the substance is still not dissolved, the measuring cylinder is placed for at 40°C in an ultrasound bath for 15 minutes and another 24 hours allowed (up to a maximum of 96 hours). If the substance is still not dissolved, the solubility is considered to be below the limit value or not soluble.
- the nicotine formulation may comprise one or more carboxylic acids.
- Suitable carboxylic acids include, but are not limited to, acetic acid, citric acid, lactic acid, malic acid, malonic acid and pyruvic acid.
- the nicotine formulation may have an organic acid content of greater than or equal to about 0.5 percent by weight or greater than or equal to about 1 percent by weight.
- the nicotine formulation has an organic acid content of less than or equal to about 6 percent by weight. More preferably, the nicotine formulation has an organic acid content of less than or equal to about 4 percent by weight.
- the nicotine formulation may an organic acid content of less than or equal to about 2 percent by weight.
- the nicotine formulation may have an organic acid content of between about 0.5 percent by weight and about 6 percent by weight.
- the nicotine formulation may have an organic acid content of between about 0.5 percent by weight and about 4 percent by weight or between about 0.5 percent by weight and about 2 percent by weight.
- the nicotine formulation may have an organic acid content of between about 1 percent by weight and about 6 percent by weight.
- the nicotine formulation may have an organic acid content of between about 1 percent by weight and about 4 percent by weight or between about 1 percent by weight and about 2 percent by weight.
- the nicotine formulation may comprise one or more flavourants.
- Suitable flavourants include, but are not limited to, menthol.
- the nicotine formulation has a flavourant content of less than or equal to about 4 percent by weight. More preferably, the nicotine formulation has a flavourant content of less than or equal to about 3 percent by weight.
- an aerosol-generating article for use in an aerosol-generating system, the aerosol-generating article containing a nicotine formulation according to the invention.
- the aerosol-generating article may comprise an atomiser configured to generate an aerosol from the nicotine formulation.
- the aerosol-generating article may be a cartridge.
- a cartridge containing the nicotine formulation and an atomiser may be referred to as a “cartomiser”.
- the atomiser may be a thermal atomiser.
- thermoatomiser describes an atomiser that is configured to heat the nicotine formulation to generate an aerosol.
- the aerosol-generating article may comprise any suitable type of thermal atomiser.
- the thermal atomiser may comprise an electric heater.
- the thermal atomiser may comprise an electric heater comprising a resistive heating element or an inductive heating element.
- the heating element may be a grid or mesh element or layer.
- the nicotine formulation may flow into the interstitial spaces forming the grid or mesh element.
- the atomiser may be a non-thermal atomiser.
- the term“non-thermal atomiser” describes an atomiser that is configured to generate an aerosol from the nicotine formulation by means other than heating.
- the aerosol-generating article may comprise any suitable type of non-thermal atomiser.
- the non-thermal atomiser may be an impinging jet atomiser, an ultrasonic atomiser or a vibrating mesh atomiser.
- an aerosol-generating system comprising a nicotine formulation according to the invention and an atomiser configured to generate an aerosol from the nicotine formulation.
- the atomiser may be a thermal atomiser.
- the aerosol-generating system may comprise any suitable type of thermal atomiser.
- the thermal atomiser may comprise an electric heater.
- the thermal atomiser may comprise an electric heater comprising a resistive heating element or an inductive heating element.
- the heating element may be a grid or mesh element or layer.
- the nicotine formulation may flow into the interstitial spaces forming the grid or mesh element.
- the atomiser may be a non-thermal atomiser.
- the aerosol-generating system may comprise any suitable type of non-thermal atomiser.
- the non-thermal atomiser may be an impinging jet atomiser, an ultrasonic atomiser or a vibrating mesh atomiser.
- the aerosol-generating system may comprise an aerosol-generating article according to the invention containing the nicotine formulation and an aerosol-generating device comprising a housing defining a device cavity configured to receive at least a portion of the aerosol-generating article.
- the aerosol-generating system may comprise a consumable aerosol-generating article according to the invention containing the nicotine formulation and a reusable aerosol-generating device comprising a housing defining a device cavity configured to receive at least a portion of the aerosol-generating article.
- the aerosol-generating device may comprise a battery and control electronics.
- the aerosol-generating system may comprise: an aerosol-generating article according to the invention containing the nicotine formulation and the atomiser; and an aerosol-generating device comprising a housing defining a device cavity configured to receive at least a portion of the aerosol-generating article.
- the aerosol-generating system may comprise: an aerosol-generating article according to the invention containing the nicotine formulation; and an aerosol-generating device comprising a housing defining a device cavity configured to receive at least a portion of the aerosol-generating article and the atomiser.
- an aerosol-generating device comprising a housing defining a device cavity configured to receive at least a portion of the aerosol-generating article and the atomiser.
- FIG. 1 is a schematic cross-sectional side view of an aerosol-generating system comprising an aerosol-generating device and an aerosol-generating article comprising a nicotine formulation according to the invention
- FIG. 2 is a schematic sectional view of a spring-loaded aerosol-generating article comprising a nicotine formulation according to the invention.
- FIG. 3 is a schematic sectional view of a “lip-stick” advance mechanism aerosol generating article comprising a nicotine formulation according to the invention.
- FIG. 1 shows an aerosol-generating system 400 comprising an aerosol-generating device 600 and an aerosol-generating article 500.
- the aerosol-generating device 600 shown in FIG. 1 is configured for receiving the aerosol generating article 500.
- the aerosol-generating device 600 comprises a housing 601 and a receptacle 610 formed in the housing 601.
- the receptacle 610 is constructed for receiving the aerosol-generating article 500.
- the receptacle 610 may be sized and shaped so that when the aerosol-generating article 500 is inserted in the receptacle 610, at least a portion of the aerosol generating article 500 remains outside of the receptacle 610.
- the aerosol-generating device 600 comprises a heating element 622 at the closed end of the receptacle 610.
- the heating element 622 comprises a mesh layer.
- the aerosol-generating device 600 may include a power supply 651 operably connected to a controller 653 and optional graphical user interface 652.
- the power supply 651 operably connected to a controller 653 may be disposed within the housing 601 .
- the graphical user interface 652 may be disposed on the housing 601.
- the aerosol-generating article 500 includes a body 512 defining a cavity 512 having a cavity opening 515.
- An aerosol-forming substrate 51 1 is disposed in the cavity 510.
- the body 512 includes a closed end portion 551 that may be a ring or rotation portion or a fixed support.
- the aerosol-generating article 500 may include an advancement mechanism may be arranged in the proximal end of the aerosol-generating article 500.
- the advancement mechanism may be configured as a piston-type element.
- the advancement mechanism may be configured as a screw-type element.
- the advancement mechanism may translate rotational movement into lateral movement.
- the cavity opening of the aerosol-generating article 500 abuts the heating element 622 when the aerosol-generating article 500 is received into the receptacle 610 of the aerosol generating device 600.
- the heating element 622 is disposed proximate to the cavity opening 515.
- the aerosol-forming substrate 51 1 of the aerosol-generating article 500 is a nicotine formulation according to the invention that may flow into and through the mesh layer of the heating element 622.
- Air may flow into the receptacle 610 aerosol-generating device 600 and entrain the volatized aerosol components from the heated aerosol-forming substrate 51 1 and through the aerosol-generating device 600 via an air channel 650 and to the consumer.
- FIG. 2 is a schematic sectional view of a spring-loaded aerosol-generating article 500.
- the aerosol-generating article 500 includes a body 512 defining a cavity 510 having a cavity opening 515.
- the aerosol-forming substrate 51 1 is disposed in the cavity 512.
- the heating element 622 is disposed proximate to the cavity opening 515.
- the body 512 includes a closed end portion 551 that may be a fixed support.
- a spring element 517 biases a movable rigid base 513 to the spring support 551 fixed to the body 512.
- the aerosol-forming substrate 51 1 is a nicotine formulation according to the invention.
- FIG. 3 is a schematic sectional view of a “lip-stick” advance mechanism aerosol generating article 500.
- the aerosol-generating article 500 includes a body 512 defining a cavity 510 having a cavity opening 515.
- the aerosol-forming substrate 51 1 is disposed in the cavity 512.
- the heating element 622 is disposed proximate to the cavity opening 515.
- the body 512 includes a ring or rotation element 551 that is coupled to the movable rigid base 513 and translates rotational movement into lateral movement via a spiral or helical groove 514. Pins (not shown) couple the rigid base 513 to the spiral or helical groove 514 to provide the lateral movement of the aerosol-forming substrate 51 1 .
- the aerosol-forming substrate 51 1 is a nicotine formulation according to the invention.
- the aerosol-generating system may comprise an automatic mechanism to move or advance the aerosol-forming substrate 51 1 toward the heating element 622.
- the controller 653 of the aerosol-generating device 600 may activate an actuator or advancement mechanism on either the aerosol-generating article 500 or the aerosol-generating device 600 to advance the aerosol-forming substrate 51 1 and rigid base 513 toward the heating element 622 upon detecting that the heating element 622 is not in contact the aerosol-forming substrate 51 1 .
- Examples A, B and C Three liquid nicotine formulations according to the invention (Examples A, B and C) were prepared having the compositions and viscosities shown in Table 2.
- Examples D, E and F Three solid nicotine formulations according to the invention (Examples D, E and F) were prepared having the compositions shown in Table 3.
- Each of the nicotine compositions was prepared by:
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Manufacture Of Tobacco Products (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021531582A JP7528084B2 (en) | 2018-12-28 | 2019-12-18 | Nicotine preparations containing metal salts |
KR1020217019580A KR20210107690A (en) | 2018-12-28 | 2019-12-18 | Nicotine Formulations Containing Metal Salts |
US17/417,943 US20220071268A1 (en) | 2018-12-28 | 2019-12-18 | Nicotine formulation comprising metal salt |
EP19829151.0A EP3902416B1 (en) | 2018-12-28 | 2019-12-18 | Nicotine formulation comprising metal salt |
CN201980076401.6A CN113423290B (en) | 2018-12-28 | 2019-12-18 | Nicotine formulation comprising a metal salt |
BR112021009438-5A BR112021009438A2 (en) | 2018-12-28 | 2019-12-18 | nicotine formulation comprising metal salt |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18248224 | 2018-12-28 | ||
EP18248224.0 | 2018-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020136062A1 true WO2020136062A1 (en) | 2020-07-02 |
Family
ID=65010480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/086110 WO2020136062A1 (en) | 2018-12-28 | 2019-12-18 | Nicotine formulation comprising metal salt |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220071268A1 (en) |
EP (1) | EP3902416B1 (en) |
JP (1) | JP7528084B2 (en) |
KR (1) | KR20210107690A (en) |
CN (1) | CN113423290B (en) |
BR (1) | BR112021009438A2 (en) |
WO (1) | WO2020136062A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117378803A (en) * | 2023-10-17 | 2024-01-12 | 东莞市吉纯生物技术有限公司 | Solid atomized oil and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5105836A (en) * | 1989-09-29 | 1992-04-21 | R. J. Reynolds Tobacco Company | Cigarette and smokable filler material therefor |
US5484604A (en) * | 1990-07-21 | 1996-01-16 | Chatfield Pharmaceuticals Limited | Cross-linked alginate transdermal medicine delivery devices |
US20070023056A1 (en) * | 2005-08-01 | 2007-02-01 | Cantrell Daniel V | Smoking article |
US20090221489A1 (en) * | 2005-12-23 | 2009-09-03 | Kjell Stenberg | Water-Soluable Films Comprising Low-Viscosity Alginates |
US20100108059A1 (en) * | 2006-09-27 | 2010-05-06 | Niconovum Ab | Directional use |
US20150096572A1 (en) * | 2012-03-27 | 2015-04-09 | Nicoccino Ab | Nicotine formulation |
US20180199617A1 (en) * | 2017-01-18 | 2018-07-19 | Bianca Iodice | Tobacco Free Hookah Smoking Gel |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1817014B1 (en) * | 2004-11-30 | 2012-08-22 | Fertin Pharma A/S | Method of providing fast relief to a user of a nicotine chewing gum |
SE0800058L (en) | 2008-01-10 | 2009-07-11 | British American Tobacco Co | Tobacco product for oral use |
US20140088044A1 (en) | 2012-09-21 | 2014-03-27 | Basil Rigas | Product comprising a nicotine-containing material and an anti-cancer agent |
US20150013695A1 (en) * | 2013-07-10 | 2015-01-15 | Ahkeo Ventures LLC | Inhalable compositions comprising caffeine, methods of use and an apparatus for using the same |
US10660365B2 (en) * | 2013-07-19 | 2020-05-26 | Altria Client Services Llc | Liquid aerosol formulation of an electronic smoking article |
WO2015167629A1 (en) * | 2014-04-30 | 2015-11-05 | Altria Client Services Inc. | Liquid aerosol formulation of an electronic smoking article |
US10154689B2 (en) | 2015-06-30 | 2018-12-18 | R.J. Reynolds Tobacco Company | Heat generation segment for an aerosol-generation system of a smoking article |
GB201516729D0 (en) * | 2015-09-22 | 2015-11-04 | The Technology Partnership Plc | Liquid nicotine formulation |
KR20180086196A (en) * | 2015-10-23 | 2018-07-30 | 넥스트 제너레이션 랩스, 엘엘씨 | Nicotine composition for baffling apparatus and baffling apparatus using same |
US12114688B2 (en) * | 2017-10-24 | 2024-10-15 | Rai Strategic Holdings, Inc. | Method for formulating aerosol precursor for aerosol delivery device |
CN109007958B (en) * | 2018-09-13 | 2021-05-25 | 云南中烟工业有限责任公司 | A kind of tobacco curing aroma substance and its preparation method and application |
-
2019
- 2019-12-18 JP JP2021531582A patent/JP7528084B2/en active Active
- 2019-12-18 KR KR1020217019580A patent/KR20210107690A/en active Pending
- 2019-12-18 BR BR112021009438-5A patent/BR112021009438A2/en unknown
- 2019-12-18 US US17/417,943 patent/US20220071268A1/en active Pending
- 2019-12-18 EP EP19829151.0A patent/EP3902416B1/en active Active
- 2019-12-18 WO PCT/EP2019/086110 patent/WO2020136062A1/en unknown
- 2019-12-18 CN CN201980076401.6A patent/CN113423290B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5105836A (en) * | 1989-09-29 | 1992-04-21 | R. J. Reynolds Tobacco Company | Cigarette and smokable filler material therefor |
US5484604A (en) * | 1990-07-21 | 1996-01-16 | Chatfield Pharmaceuticals Limited | Cross-linked alginate transdermal medicine delivery devices |
US20070023056A1 (en) * | 2005-08-01 | 2007-02-01 | Cantrell Daniel V | Smoking article |
US20090221489A1 (en) * | 2005-12-23 | 2009-09-03 | Kjell Stenberg | Water-Soluable Films Comprising Low-Viscosity Alginates |
US20100108059A1 (en) * | 2006-09-27 | 2010-05-06 | Niconovum Ab | Directional use |
US20150096572A1 (en) * | 2012-03-27 | 2015-04-09 | Nicoccino Ab | Nicotine formulation |
US20180199617A1 (en) * | 2017-01-18 | 2018-07-19 | Bianca Iodice | Tobacco Free Hookah Smoking Gel |
Non-Patent Citations (1)
Title |
---|
"OECD Guidelines for the Testing of Chemicals", 1995, OECD PUBLISHING, article "Test No. 105: Water Solubility" |
Also Published As
Publication number | Publication date |
---|---|
KR20210107690A (en) | 2021-09-01 |
BR112021009438A2 (en) | 2021-08-17 |
EP3902416B1 (en) | 2023-02-08 |
JP7528084B2 (en) | 2024-08-05 |
JP2022516404A (en) | 2022-02-28 |
CN113423290B (en) | 2023-08-04 |
CN113423290A (en) | 2021-09-21 |
EP3902416A1 (en) | 2021-11-03 |
US20220071268A1 (en) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3902415B1 (en) | High viscosity nicotine formulation | |
CN113163848B (en) | Low viscosity liquid nicotine formulations | |
WO2021122800A1 (en) | A formulation for use in an aerosol-generating system | |
EP3902565B1 (en) | Liquid nicotine formulation comprising low molar mass metal salt | |
EP3902416A1 (en) | Nicotine formulation comprising metal salt | |
RU2804837C2 (en) | High-viscosity nicotine composition | |
CN114828663B (en) | Formulation for aerosol-generating system | |
EP3934456A1 (en) | Method for hydrolysis of lactic acid for aerosol delivery device | |
RU2821713C2 (en) | Liquid nicotine composition containing low molecular weight metal salt | |
EP4501138A1 (en) | Liquid-type inhalation formulation for use in surface wave atomizer, and cartridge and aerosol-generating apparatus comprising same | |
CN109152418B (en) | Tobacco fillers for non-combustible heated smoking articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19829151 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021009438 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2021531582 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019829151 Country of ref document: EP Effective date: 20210728 |
|
ENP | Entry into the national phase |
Ref document number: 112021009438 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210514 |