[go: up one dir, main page]

WO2020135817A1 - 基于感应阵列的控制方法、装置、存储介质及计算机设备 - Google Patents

基于感应阵列的控制方法、装置、存储介质及计算机设备 Download PDF

Info

Publication number
WO2020135817A1
WO2020135817A1 PCT/CN2019/129652 CN2019129652W WO2020135817A1 WO 2020135817 A1 WO2020135817 A1 WO 2020135817A1 CN 2019129652 W CN2019129652 W CN 2019129652W WO 2020135817 A1 WO2020135817 A1 WO 2020135817A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
excitation
position array
control
induction
Prior art date
Application number
PCT/CN2019/129652
Other languages
English (en)
French (fr)
Inventor
于洋
张桂芳
程永甫
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020135817A1 publication Critical patent/WO2020135817A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of gesture control, in particular to a control method based on a sensor array, a device storage medium and a computer device.
  • gestures are used as the difference between operation instructions. For example, the number of extended fingers is different and the corresponding instruction is different; the palm or the back of the hand is also corresponding to different instructions.
  • images of gestures are obtained through a camera, and then image recognition technology is used to recognize different forms of gestures.
  • image recognition technology is used to recognize different forms of gestures.
  • gesture control In the actual application of gesture control, after the user makes a gesture for controlling the device, the control device needs to react to the gesture in time, so that the user can obtain a better user experience. Therefore, the controller needs to process a large amount of data in a very short time, and the controller needs to have better processing performance, which increases the production cost in actual production.
  • Embodiments of the present invention provide a control method based on a sensor array. In the process of recognizing gestures, there is no need to process a large amount of image data, which reduces the performance requirements of the processor and saves production costs.
  • a control method based on a sensing array is provided.
  • control method includes:
  • the determining the control command according to the excitation position array where the one or more excitation state sensing receiving ends are located includes:
  • the control instruction is determined according to the relative position array.
  • the determining the control instruction according to the excitation position where the one or more receiving terminals of the excited state sensing includes:
  • the control command is determined according to the standard position array corresponding to the difference value that is used to characterize the minimum deviation between the excitation position array and the standard position array.
  • the method before determining the control command according to the excitation position array where the one or more excitation state sensing receiving ends are, the method further includes:
  • a control command is determined according to the movement speed and the excitation position array.
  • a control device based on a sensing array is provided.
  • control device includes:
  • the first acquisition module is used to acquire the determination signal through the induction array formed by the induction receiving end;
  • a first determination module configured to determine an excitation position array in the induction array of one or more excitation state induction receiving terminals for acquiring the determination signal
  • a second determining module configured to determine a control command according to the excitation position array where the one or more excitation state sensing receiving ends are located;
  • the first control module is used to control the corresponding device according to the control instruction.
  • the second determining module is specifically configured to: determine one or more relative position arrays of the excited state sensing receiving end according to the excitation position array, and according to the relative position array The control instruction is determined.
  • the second determination module is specifically configured to: acquire one or more differential position arrays between the excitation position array and one or more standard position arrays;
  • the control command is determined according to the standard position array corresponding to the difference value that is used to characterize the minimum deviation between the excitation position array and the standard position array.
  • control device further includes:
  • a first determining module configured to determine the first required by the sensing array to obtain the determination signal before the control instruction is determined according to the excitation position array where the one or more excitation state sensing receiving ends are located time;
  • the second determination module is specifically used to:
  • a control command is determined according to the movement speed and the excitation position array.
  • a computer device is provided.
  • the computer device memory, a processor, and a program stored on the memory and executable by the processor, when the processor executes the program, the foregoing sensing-based Array control method.
  • a storage medium is provided.
  • the storage medium stores a computer program, and when the computer program is executed by the processor, the foregoing control method based on the sensing array is implemented.
  • the beneficial effects of the embodiments of the present invention are: reducing the performance requirements of the control method on the processor and reducing the production cost.
  • the sensing receiver is used to obtain the coverage of a person's hand or arm, and different gestures correspond to different coverages. Therefore, the gesture information of the person can be obtained through a sensing array.
  • the data output from the sensor array is either a digital signal represented by high and low levels, or an analog signal represented by peaks/valleys of voltage/current.
  • the above digital signals or analog signals are easy to process and reduce the The requirement of processor performance reduces the production cost.
  • Fig. 1 is a schematic structural diagram of a sensing array according to an exemplary embodiment
  • Fig. 2 is a schematic structural diagram of a sensing array according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart of a control method based on a sensing array according to an exemplary embodiment
  • Fig. 4 is a schematic flowchart of determining a control instruction according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of determining a control instruction according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart of a control method based on a sensing array according to an exemplary embodiment
  • Fig. 7 is a schematic flowchart of acquiring gesture motion information of a person according to an exemplary embodiment
  • Fig. 8 is a schematic flowchart of determining a control instruction according to an exemplary embodiment
  • Fig. 9 is a block schematic diagram of a control device based on a sensing array according to an exemplary embodiment
  • Fig. 10 is a block schematic diagram of a control device based on a sensing array according to an exemplary embodiment
  • Fig. 11 is a block schematic diagram of a computer device according to an exemplary embodiment.
  • a control method based on a sensing array is provided.
  • the control method can be applied to the control of air conditioning equipment such as air conditioners, the control of lighting equipment such as lamps, and the control of kitchen equipment such as range hoods.
  • control method can be applied to a controller that obtains the gesture information of the person through the sensing array, determines the corresponding control instruction according to the gesture information, and then sends the corresponding control instruction to the corresponding controlled device , So that the user can control the controlled device through gestures.
  • the controller can be integrated on the corresponding equipment, such as the housing of the indoor unit of the air conditioner, for example, on the side of the range hood near the user; the controller can also be set separately from the corresponding equipment Devices communicate with each other to transfer control commands, for example, they are installed on the remote controller of the air conditioner, for example, they are installed on the wall, and communicate with the air conditioner or lamp in a wired or wireless manner.
  • the sensor array includes two or more sensor receivers, and the two or more sensor receivers form a sensor array according to a set rule.
  • the sensor array includes two or more sensor receivers arranged in a “one” shape.
  • the sensing array includes two or more sensing receiving ends in a uniform shape of " ⁇ ", as shown in Figure 2; or, the sensing array includes two or more in a " ⁇ " shape distribution Induction receiver.
  • the output signal can be a digital signal represented by positive and negative levels; or, the output signal of the sensing receiver can also be an analog signal represented by voltage or current.
  • the output signal through the sensing receiver It can be judged whether the induction receiving end has received the arm signal of the person. For example, when the induction receiving terminal detects a person's arm signal, its output signal changes from low level to high level, or its output current or output voltage has a peak/valley value.
  • the sensing receiving end may be an infrared sensor or an ultrasonic sensor.
  • the inductive receiving end is an ultrasonic sensor, it has a corresponding ultrasonic generator and ultrasonic receiver; when the inductive receiving end is an infrared sensor, only an infrared receiver or an infrared generator may be provided.
  • control method based on the sensing array includes:
  • the determination signal is used to characterize that one or more sensing receivers in the sensing array have detected a person's arm signal. That is, the setting detection area of one or more sensing receivers appears in the hand or arm of the person.
  • S302. Determine an excitation position array in the induction array of one or more excitation state induction receiving terminals for acquiring a determination signal.
  • the inductive receiving terminal When the output signal of an inductive receiving terminal is a definite signal, then the inductive receiving terminal is the excited state inductive receiving terminal, and the position of the inductive receiving terminal is the excited position, indicating that the hand or arm of the person covers the inductive receiving terminal Location.
  • the corresponding one or more excitation positions constitute an array of excitation positions.
  • the excitation position array includes excitation positions and non-excitation positions, where excitation positions are marked with characteristic values and non-excitation positions are marked with default values, for example, excitation positions are marked with "1" and non-excitation positions are marked with "0", Then, the excitation position array is a matrix composed of element "1" and element "0".
  • the excitation position array and the control command have a direct and indirect correspondence.
  • corresponding control instructions can be obtained according to the excitation position array. For example, based on the matrix composed of the element "1" and the element "0", the control command corresponding to the matrix is retrieved.
  • the control commands are related to the equipment to be controlled. It can be calculated that when used to control the lights, the control commands include any one or more of turning the lights on, off, increasing the brightness, and reducing the brightness; optionally, when used to When controlling the air conditioner, the control commands include any one or more of temperature adjustment, wind speed adjustment, mode switching, power-on and power-off.
  • the coverage area of a person's hand or arm is obtained by using a sensing receiver, and different gestures correspond to different coverage areas. Therefore, a person's gesture information can be obtained through a sensing array.
  • the data output from the sensor array is either a digital signal represented by high and low levels, or an analog signal represented by peaks/valleys of voltage/current. The above digital signals or analog signals are easy to process and reduce the The requirement of processor performance reduces the production cost.
  • S303 determines a control command according to an excitation position array where one or more excitation state sensing receiving ends are located, including:
  • S401 Determine the relative position array of one or more excited state sensing receiving ends according to the excitation position array.
  • the excited position array is used to describe the actual position of one or more excited state sensing receivers in the sensing array; the relative position array is used to describe the relative position between one or more excited state sensing receivers.
  • the obtained array of excitation positions is different, but the same relative position array can be obtained.
  • m ⁇ n (m ⁇ 2, n ⁇ 2) induction matrix For example, for a 2 ⁇ 2 sensing array, in the sensing array, an inductive receiving end is set in the upper left corner, an inductive receiving end is set in the upper right corner, an inductive receiving end is set in the lower left corner, and an inductive receiving end is set in the lower right corner.
  • the first excitation position array When the sensing receivers in the lower left and lower right corners are excited, the first excitation position array can be obtained. Because the excitation position array is used to describe the actual position of one or more excited state sensing receivers in the sensing array, the first The excitation position array is a 2 ⁇ 2 matrix, where element (2, 1) and element (2, 2) are eigenvalues, element (1, 1) and element (1, 2) are the default values; when the upper left and When the sensing receiver in the upper right corner is excited, the second excitation position array can be obtained.
  • the second excitation position array is a 2 ⁇ 2 matrix, in which element (1, 1) and element (1, 2) are eigenvalues, Element (2, 1) and element (2, 2) are default values, and it can be seen that the first excitation position matrix and the second position matrix are different.
  • the first relative position array can be obtained according to the first excitation position array.
  • the relative position array is used to describe the relative position between one or more excited state sensing receiving ends, that is, the relative position matrix only records the relative position relationship of the eigenvalues.
  • the first relative position matrix is a 1 ⁇ 2 matrix, where element (1, 1) is the eigenvalue and element (1, 2) is the eigenvalue;
  • the second relative position matrix can be obtained according to the second excitation position matrix
  • the second relative position matrix is a 1 ⁇ 2 matrix, in which element (1, 1) and element (1, 2) are eigenvalues. It can be seen that the first relative position matrix and the second relative position matrix are the same.
  • the relative position array of one or more excitation state sensing receiving ends determined according to the excitation position array may be implemented as:
  • the first setting direction is any one of left, upper, right, lower, upper left, lower left, upper right, and lower right directions.
  • the same relative position array can be obtained by acquiring the same relative position array in different areas of the induction array, which increases the recognition's extensiveness. That is, the user can show the same gestures in different areas of the sensing array to achieve the same control of the device.
  • S103 determines a control instruction according to an excitation position where one or more excitation state sensing receiving ends are located, including:
  • each standard position array corresponds to a control instruction.
  • the excitation position array is compared with each element of each standard position array, and the comparison result of all elements is the difference position array.
  • the difference position array is used to describe the difference between the difference position array and the standard position array.
  • the element assignment characteristics of the corresponding positions in the difference position array Value when the element in the excitation position array and the element in the corresponding position in the standard position array are the same, the element in the corresponding position in the difference position array is assigned a default value.
  • the corresponding positions of the difference position array are assigned the first characteristic value; It is used to characterize the non-excited state.
  • the corresponding position of the difference position array is assigned a second eigenvalue; , The corresponding position of the difference position array is assigned a default value.
  • the dimension of the standard position array is the same as the dimension of the excitation position array. If the relative position array is obtained according to the excitation position array, the standard position array is also used to describe the relative position between the excitation positions.
  • S501 may be implemented as:
  • One or more difference position arrays can be obtained through the above S501, and one difference value can be obtained through each difference position array and the corresponding standard position array. Therefore, one or more difference values can be obtained in S502.
  • the difference value is used to describe the degree to which the excitation position array deviates from the standard position array. For example, the greater the difference value, the greater the degree of deviation of the excitation position array from the standard position array, and the smaller the difference value, the smaller the degree of deviation of the excitation position array from the standard position array; or, the lower the difference value, the deviation of the excitation position array The greater the degree of the standard position array, the greater the difference value, the smaller the degree of characterization of the excitation position array from the standard position array.
  • the difference position array obtained through the above S501 is used to describe the difference of the excitation positions, or to describe the redundant excitation positions and the insufficient excitation positions in the excitation position array.
  • the difference value of the excitation position array is determined according to the difference position array and the corresponding standard position array.
  • the element positions in the difference position array and the element positions in the standard position array have a corresponding relationship. If the position corresponding to the feature value element in the difference position array is the element of the standard position array as the feature value, the feature value element at the position in the difference position array is used to characterize: the excitation position array corresponding to the position The excitation position is missing at the position in, that is, in the induction array, if the standard position array is used as the reference, the induction receiving end at the position corresponding to the eigenvalue element in the difference position array should be in the excited state; in practice, the The sensing receiver at the location is in a non-excited state.
  • the element in the standard position array is the default value
  • the characteristic value element at the position in the difference position array is used to characterize: the excitation position array corresponding to the position Excessive excitation position at the position in, that is, in the induction array, if the standard position array is used as the reference, the induction receiving end at the position corresponding to the eigenvalue element in the difference position array should be in the non-excitation state; in practice, The sensing receiver at this position is in an excited state.
  • the difference value of the excitation position array is determined according to the difference position array.
  • S502 it is necessary to determine that the feature value elements in the difference position array are used to characterize the redundant excitation positions or to characterize the lack of excitation positions. Further optionally, S502 also includes:
  • the difference value of the excitation position array is determined.
  • the product of the first quantity and the first set coefficient is added to the product of the second quantity and the second set coefficient to obtain the difference value of the excitation position array.
  • the above scheme fully considers the difference between the redundant excitation position and the missing excitation position, so as to obtain a more accurate difference value of the excitation position array.
  • the first setting coefficient is smaller than the second setting coefficient. That is, the importance of excess excitation positions is greater than that of lacking excitation positions.
  • the standard position array corresponding to the excitation position array can be more accurately matched, so that the control command is determined more accurately.
  • the signal received by the sensor array is prevailing.
  • it is difficult to recognize static forms such as the palm of the hand and the back of the hand.
  • a gesture is a motion gesture
  • the importance of its static features decreases
  • the importance of its athletic properties has increased.
  • the foregoing technical solution is used to recognize dynamic gestures to improve the accuracy of recognition.
  • control method includes:
  • the gesture motion information of the dynamic gesture includes any one or more of a movement trajectory, a movement direction, and a movement speed, and the dynamic gesture can be recognized in multiple dimensions to improve the recognition accuracy rate.
  • S602 Determine the corresponding control instruction according to the gesture motion information.
  • the gesture motion information is linear motion information, for example: the gesture moves to the left corresponds to the power-on command, the gesture moves to the right corresponds to the power-off command, and the gesture moves upward to increase the temperature, the gesture Moving down corresponds to lowering the temperature, moving from the lower right to upper left corresponds to increasing the wind speed, moving from the upper left to lower right corresponds to lowering the wind speed, and moving from the lower left to upper right corresponds to the switching mode.
  • the gesture motion information is arc motion information, for example: drawing a circle clockwise corresponds to increasing the temperature, and drawing a circle counterclockwise corresponds to decreasing the temperature; or, drawing a circle clockwise corresponds to increasing the wind speed, and drawing counterclockwise
  • the circle corresponds to the lower wind speed.
  • the set temperature is determined according to the size of the radian, for example: sliding from the middle of the left to the center of the right, the set temperature is determined to be 30 degrees, the minimum detection range is set to 16 degrees, and the middle is based on the size of the radian To divide.
  • the set temperature is determined according to the movement speed, for example, if the movement speed is fast, the temperature is increased, and when the movement speed is slow, the temperature is decreased; or, the temperature adjustment direction is determined according to the movement direction, and the temperature adjustment range is determined according to the movement speed .
  • the movement speed is the first set speed, it is increased by 5 degrees
  • the movement speed is the second set speed, it is increased by 1 degree
  • the first set speed is greater than the second set speed.
  • S601 obtains the gesture motion information of the person through the sensing array formed by the sensing receiving end, including:
  • S702 Determine an excitation position array in the induction array of one or more excitation state induction receiving terminals for acquiring a determination signal.
  • S703 Determine gesture motion information according to any one of the acquisition order and the acquisition time and the excitation position array.
  • any one of the movement trajectory or the movement speed can be identified.
  • the determination signal is acquired through the sensing array, and the first sequence of acquiring one or more determination signals is recorded
  • the movement trajectory can be identified accordingly.
  • the determination signal is obtained through the induction array, and the first sequence of acquiring one or more new positions is recorded, the movement speed can be identified accordingly.
  • the process of recognizing the movement speed of gestures through the sensor array can be understood as:
  • the method further includes: determining the first time required by the sensing array to obtain the determination signal.
  • the time required for the sensing array to obtain the determined signal is more than the time required for the person to present the set gesture, and the controller needs more time to judge the signal obtained through the sensing array; the controller needs to receive the signal through the sensing array and make the judgment.
  • the time taken is far less than the time required for the person to show the set gesture. Therefore, the first time required for the sensing array to obtain the determination signal can be used as the time required for the person to present the set gesture.
  • S303 determines the control command according to the excitation position array where the one or more excitation state sensing receivers are located, including:
  • S801 Determine the movement speed of the excitation source according to the first time.
  • the excitation source may be a person's hand or arm.
  • the sensing receiving end in the setting area of the sensing array is in an excited state, that is, the The induction receiver of the set area has detected the person's hand or arm.
  • the total movement distance of the gesture can be determined. After the first time required for the person to make the gesture is determined, the movement speed of the hand or arm of the person can be determined according to the first time and the total movement distance of the gesture.
  • a control device based on a sensing array is provided.
  • control device based on the sensing array includes:
  • the first obtaining module 91 is configured to obtain the determination signal through the sensing array formed by the sensing receiving end;
  • the first determining module 92 is configured to determine an excitation position array in the sensing array of one or more excited state sensing receiving ends for acquiring a determination signal;
  • the second determination module 93 is configured to determine a control command according to an excitation position array where one or more excitation state sensing receivers are located;
  • the first control module 94 is used to control the corresponding device according to the control instruction.
  • the second determination module is specifically configured to: determine the relative position array of one or more excited state sensing receiving ends according to the excitation position array, and determine the control command according to the relative position array.
  • the second determination module is specifically configured to: acquire one or more differential position arrays between the excitation position array and one or more standard position arrays;
  • the difference position array or, according to the difference position array and the corresponding standard position array, determine the difference value of the excitation position array
  • the control command is determined according to the standard position array corresponding to the difference value that is used to characterize the minimum deviation between the excitation position array and the standard position array.
  • control device further includes:
  • the third determining module is used to determine the first time required by the sensing array to obtain the determination signal before determining the control command according to the excitation position array where the one or more excited state sensing receiving ends are located;
  • the second determination module is specifically used for:
  • the control command is determined according to the movement speed and the excitation position array.
  • control device includes:
  • the second obtaining module 1001 is used to obtain the gesture motion information of the person through the sensing array formed by the sensing receiving end
  • the fourth determination module 1002 is used to determine the corresponding control instruction according to the gesture motion information
  • the second control module 1003 is used to control the corresponding device according to the control instruction.
  • the gesture movement information of the person includes any one or more of a movement trajectory, a movement direction, and a movement speed.
  • the control command when the control device is used for an air conditioner, includes any one or more of temperature adjustment, wind speed adjustment, mode switching, and power on/off.
  • the second acquisition module is specifically used to:
  • the gesture motion information is determined according to any one of the acquisition order and acquisition time and the array of excitation positions.
  • control device is used to realize the aforementioned control method.
  • the further limitation of the control method and the steps added to the control method in the foregoing are also applicable to the control device.
  • control method and control apparatus may be implemented in a network-side server, or in a mobile terminal, or in a dedicated control device.
  • a computer device is provided.
  • the computer device includes a memory 1102, a processor 1101, and a program stored on the memory 1102 and executable by the processor 1101.
  • the processor 1101 executes the program, the foregoing Control method based on induction array.
  • a non-transitory computer-readable storage medium including instructions such as a memory including instructions.
  • the above instructions can be executed by a processor to complete the aforementioned method.
  • the non-transitory computer-readable storage medium may be a read-only memory ROM (Read Only Memory), a random access memory RAM (Random Access Memory), a magnetic tape, and an optical storage device.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of code that contains one or more of the Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks can actually be executed substantially in parallel, and sometimes they can also be executed in reverse order, depending on the functions involved.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented with a dedicated hardware-based system that performs specified functions or actions Or, it can be realized by a combination of dedicated hardware and computer instructions.
  • the present invention is not limited to the processes and structures already described above and shown in the drawings, and various modifications and changes can be made without departing from the scope thereof. The scope of the invention is only limited by the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种基于感应阵列(10)的控制方法,属于手势控制技术领域。控制方法包括:(S301)通过由感应接收端(11)构成的感应阵列(10)获取确定信号,(S302)确定出用于获取确定信号的一个或多个激发态感应接收端(11)在感应阵列(10)中的激发位置阵列,(S303)根据一个或多个激发态感应接收端(11)所在的激发位置阵列确定出控制指令,(S304)根据控制指令控制对应的设备。有益效果:可降低产品的生产成本。

Description

基于感应阵列的控制方法、装置、存储介质及计算机设备 技术领域
本发明涉及手势控制技术领域,特别涉及一种基于感应阵列的控制方法、装置存储介质及计算机设备。
背景技术
在现有的手势控制中,用手势的不同形态作为操作指令的区别,例如,伸出手指的数量不同,对应的指令不同;手心或手背,也对应着不同的指令。一般通过摄像头获取手势的图像,再利用图像识别技术识别出手势的不同形态。在上述过程中,首先需要解析图像以获取图像数据,再对图像数据进行除噪处理,并提取特征数据,再根据特征数据匹配出对应的手势信息。可见,在上述过程中,需要处理大量的数据。而在手势控制的实际应用中,当用户作出用于控制设备的手势后,需要控制设备及时对该手势进行反应,用户方可获得较佳的使用体验。故,需要控制器在极短的时间内处理大量的数据,需要控制器具有较佳的处理性能,在实际生产中,提高了生产成本。
发明内容
本发明实施例提供了一种基于感应阵列的控制方法,在识别手势的过程中,无需处理大量的图像数据,降低了对处理器性能的要求,节省了生产成本。
为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种基于感应阵列的控制方法。
在一种可选的实施例中,所述控制方法包括:
通过由感应接收端构成的感应阵列获取确定信号;
确定出用于获取所述确定信号的一个或多个激发态感应接收端在所述感应阵列中的激发位置阵列;
根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确 定出控制指令;
根据所述控制指令控制对应的设备。
在一种可选的实施方式中,所述根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令,包括:
根据所述激发位置阵列确定出一个或多个所述激发态感应接收端的相对位置阵列;
根据所述相对位置阵列确定出所述控制指令。
在一种可选的实施方式中,所述根据一个或多个所述激发态感应接收端所在的所述激发位置确定出控制指令,包括:
获取所述激发位置阵列与一个或多个标准位置阵列之间的一个或多个差异位置阵列;
根据差异位置阵列,或,根据差异位置阵列和对应的标准位置阵列,确定出所述激发位置阵列的差异值;
根据用于表征所述激发位置阵列与所述标准位置阵列之间的偏离最小的差异值所对应的标准位置阵列,确定出控制指令。
在一种可选的实施方式中,在所述根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令之前,还包括:
确定出由感应阵列获取所述确定信号所需的第一时间;
所述根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令,包括:
根据所述第一时间确定出激发源的运动速度;
根据所述运动速度和所述激发位置阵列确定出控制指令。
根据本发明实施例的第二方面,提供一种基于感应阵列的控制装置。
在一种可选的实施例中,所述控制装置包括:
第一获取模块,用于通过由感应接收端构成的感应阵列获取确定信号;
第一确定模块,用于确定出用于获取所述确定信号的一个或多个激发态感应接收端在所述感应阵列中的激发位置阵列;
第二确定模块,用于根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令;
第一控制模块,用于根据所述控制指令控制对应的设备。
在一种可选的实施方式中,所述第二确定模块,具体用于:根据所述激发位置阵列确定出一个或多个所述激发态感应接收端的相对位置阵列, 根据所述相对位置阵列确定出所述控制指令。
在一种可选的实施方式中,所述第二确定模块,具体用于:获取所述激发位置阵列与一个或多个标准位置阵列之间的一个或多个差异位置阵列;
根据差异位置阵列,或,根据差异位置阵列和对应的标准位置阵列,确定出所述激发位置阵列的差异值;
根据用于表征所述激发位置阵列与所述标准位置阵列之间的偏离最小的差异值所对应的标准位置阵列,确定出控制指令。
在一种可选的实施方式中,所述控制装置还包括:
第一确定模块,用于在所述根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令之前,确定出由感应阵列获取所述确定信号所需的第一时间;
所述第二确定模块具体用于:
根据所述第一时间确定出激发源的运动速度;
根据所述运动速度和所述激发位置阵列确定出控制指令。
根据本发明实施例的第三方面,提供一种计算机设备。
在一种可选的实施例中,所述计算机设备存储器、处理器及存储在所述存储器上并可被所述处理器运行的程序,所述处理器执行所述程序时实现前述的基于感应阵列的控制方法。
根据本发明实施例的第四方面,提供一种存储介质。
在一种可选的实施例中,所述存储介质存储有计算机程序,当所述计算机程序被处理器执行时实现前述的基于感应阵列的控制方法。
本发明实施例的有益效果是:降低了控制方法对处理器性能的要求,降低了生产成本。利用感应接收端获取人员的手或臂的覆盖范围,不同的手势对应着不同的覆盖范围,故,通过一个感应阵列即可获取人员的手势信息。而在感应阵列所输出的数据,或是以高低电平为代表的数字信号,或是以电压/电流的波峰/波谷为代表的模拟信号,上述数字信号或模拟信号均便于处理,降低了对处理器性能的要求,降低了生产成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种感应阵列的结构示意图;
图2是根据一示例性实施例示出的一种感应阵列的结构示意图;
图3是根据一示例性实施例示出的一种基于感应阵列的控制方法的流程示意图;
图4是根据一示例性实施例示出的一种确定出控制指令的流程示意图;
图5是根据一示例性实施例示出的一种确定出控制指令的流程示意图;
图6是根据一示例性实施例示出的一种基于感应阵列的控制方法的流程示意图;
图7是根据一示例性实施例示出的一种获取人员的手势运动信息的流程示意图;
图8是根据一示例性实施例示出的一种确定出控制指令的流程示意图;
图9是根据一示例性实施例示出的一种基于感应阵列的控制装置的方框示意图;
图10是根据一示例性实施例示出的一种基于感应阵列的控制装置的方框示意图;
图11是根据一示例性实施例示出的一种计算机设备的方框示意图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第 一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
根据本发明实施例的第一方面,提供一种基于感应阵列的控制方法。
该控制方法可应用于对空调等空气调节设备的控制,可应用于对灯等照明设备的控制,可应用于对油烟机等厨房设备的控制。
总之,该控制方法可应用于一种控制器中,该控制器通过感应阵列获取人员的手势信息,并根据手势信息确定出对应的控制指令,再将对应的控制指令发送至对应的被控设备,从而实现用户通过手势控制被控设备。
该控制器可集成在对应的设备上,例如设置在空调室内机的外壳上,例如设置在油烟机的靠近用户的一侧的外壳上;该控制器还可与对应的设备分离设置,与对应的设备通信以传递控制指令,例如设置在空调的遥控器上,例如设置在墙壁上,以有线或无线的方式与空调或灯通信。
感应阵列中包括两个或多个感应接收端,两个或多个感应接收端按照设定规则构成感应阵列,例如,感应阵列包括呈“一”形排列的两个或多个感应接收端,如图1所示;或,感应阵列包括呈“◇”形均匀的两个或多个感应接收端,如图2所示;或,感应阵列包括呈“□”形分布的两个或多个感应接收端。
关于感应接收端,其输出信号可以是以正负电平为代表的数字信号;或,感应接收端的输出信号还可以是以电压或电流为代表的模拟信号,总之,通过该感应接收端的输出信号,可以判断出该感应接收端是否已经接收到人员的手臂信号。例如当感应接收端检测到人员的手臂信号时,其输出信号由低电平变成高电平,或,其输出电流或输出电压出现峰值/谷值。
该感应接收端可以是红外传感器,可以是超声波传感器。当该感应接收端为超声波传感器时,其具备对应的超声波发生器以及超声波接收器;当该感应接收端为红外传感器时,可以只设置红外线接收器,还可以设置红外线发生器。
如图3所示,在一种可选的实施例中,基于感应阵列的控制方法包括:
S301、通过由感应接收端构成的感应阵列获取确定信号。
其中,确定信号用于表征感应阵列中一个或多个感应接收端检测到了人员的手臂信号。也即,人员的手或臂,出现的了一个或多个感应接收端的设定检测区域。
S302、确定出用于获取确定信号的一个或多个激发态感应接收端在感应阵列中的激发位置阵列。
当一个感应接收端的输出信号为确定信号时,那么,该感应接收端即为激发态感应接收端,该感应接收端所在的位置即为激发位置,表示人员的手或臂覆盖了该感应接收端所在的位置。当激发态感应接收端的数量为一个或多个时,对应的一个或多个激发位置构成了激发位置阵列。在激发位置阵列中,包括激发位置和未激发位置,其中,激发位置用特征值标注,非激发位置用默认值标注,例如,激发位置用“1”标注,非激发位置用“0”标注,那么,该激发位置阵列即为一个由元素“1”和元素“0”构成的矩阵。
S303、根据一个或多个激发态感应接收端所在的激发位置阵列确定出控制指令。
其中,激发位置阵列和控制指令具有直接和间接的对应关系。当一个激发位置阵列的形态确定以后,即可根据该激发位置阵列获取对应的控制指令。例如根据上述由元素“1”和元素“0”构成的矩阵,检索出与该矩阵对应的控制指令。
控制指令与所需要的控制的设备相关,可算地,当用于控制灯时,控制指令包括开灯、关灯、提高亮度和降低亮度是的任意一个或多个;可选地,当用于控制空调时,控制指令包括温度调节、风速调节、模式切换、开机和关机中的任意一个或多个。
S304、根据控制指令控制对应的设备。
在本实施例中,利用感应接收端获取人员的手或臂的覆盖范围,不同的手势对应着不同的覆盖范围,故,通过一个感应阵列即可获取人员的手 势信息。而在感应阵列所输出的数据,或是以高低电平为代表的数字信号,或是以电压/电流的波峰/波谷为代表的模拟信号,上述数字信号或模拟信号均便于处理,降低了对处理器性能的要求,降低了生产成本。
如图4所示,在一种可选的实施方式中,S303根据一个或多个激发态感应接收端所在的激发位置阵列确定出控制指令,包括:
S401、根据激发位置阵列确定出一个或多个激发态感应接收端的相对位置阵列。
激发位置阵列用于描述一个或多个激发态感应接收端在感应阵列中的实际位置;相对位置阵列用于描述一个或多个激发态感应接收端之间的相对位置。对于一个相同的手势,出示在感应阵列的不同区域,所获取的激发位置阵列不同,但可获取相同的相对位置阵列。一般用于m×n(m≥2,n≥2)的感应矩阵。例如,对于一个2×2的感应阵列,在该感应阵列中,左上角设置一个感应接收端,右上角设置一个感应接收端,左下角设置一个感应接收端,右下角设置一个感应接收端。当左下角和右下角的感应接收端被激发时,可获取第一激发位置阵列,因激发位置阵列用于描述一个或多个激发态感应接收端在感应阵列中的实际位置,故,第一激发位置阵列为一个2×2的矩阵,其中元素(2,1)和元素(2,2)为特征值,元素(1,1)和元素(1,2)为默认值;当左上角和右上角的感应接收端被激发时,可获取第二激发位置阵列,第二激发位置阵列为一个2×2的矩阵,其中,元素(1,1)和元素(1,2)为特征值,元素(2,1)和元素(2,2)为默认值,可见,第一激发位置矩阵和第二位置矩阵不同。根据第一激发位置阵列可获取第一相对位置阵列,相对位置阵列用于描述一个或多个激发态感应接收端之间的相对位置,即,相对位置矩阵只记录有特征值的相对位置关系,故,第一相对位置矩阵为一个1×2的矩阵,其中,元素(1,1)为特征值,元素(1,2)为特征值;根据第二激发位置矩阵可获取第二相对位置矩阵,第二相对位置矩阵为一个1×2的矩阵,其中,元素(1,1)和元素(1,2)为特征值,可见,第一相对位置矩阵和第二相对位置矩阵是相同的。
可选地,根据激发位置阵列确定出一个或多个激发态感应接收端的相对位置阵列,可实施为:
在第一设定方向上获取激发位置矩阵的最边沿的激发位置;
以该激发位置为参考位置,获取激发位置矩阵中所有剩余激发位置在 相对位置阵列中的映射位置。
可选地,上述第一设定方向为左方、上方、右方、下方、左上方向、左下方向、右上方向和右下方向中的任意一个。
可保证所有激发位置在激发位置阵列中和在相对激发位置阵列中保持一致的相对位置。
S402、根据相对位置阵列确定出控制指令。
感应阵列的不同区域获取到相同的相对位置阵列,即可确定出相同的控制指令,增加了识别的广泛性。即,用户在感应阵列的不同区域出示相同的手势,可对设备实现相同的控制。
如图5所示,在一种可选的实施方式中,S103根据一个或多个激发态感应接收端所在的激发位置确定出控制指令,包括:
S501、获取激发位置阵列与一个或多个标准位置阵列之间的一个或多个差异位置阵列。
其中,标准位置阵列有多个,每个标准位置阵列均对应着一个控制指令。激发位置阵列与每一个标准位置阵列的每一个元素作比对,所有元素的比对结果即为差异位置阵列。激发位置阵列与多个标准位置阵列作比对,即可获取多个差异位置阵列。
差异位置阵列用于描述差异位置阵列与标准位置阵列的区别点,可选地,当激发位置阵列中的元素和标准位置阵列中对应位置的元素不同时,差异位置阵列的对应位置的元素赋值特征值;当激发位置阵列中的元素和标准位置阵列中的对应位置的元素相同时,差异位置阵列的对应位置的元素赋值默认值。通过检查差异位置阵列中的元素值,即可获取标准位置阵列和激发位置阵列的差异。
可选地,当激发位置阵列的元素用于表征激发态,标准位置阵列的对应位置的元素用于表征非激发态时,差异位置阵列的对应位置赋值第一特征值;当激发位置阵列的元素用于表征非激发态,标准位置阵列的对应的元素用于表征激发态时,差异位置阵列的对应位置赋值第二特征值;当激发位置阵列的元素与标准位置阵列的对应位置的元素相同时,差异位置阵列的对应位置赋值默认值。通过检查差异位置阵列中的元素值,即可获取激发位置阵列中多余的激发位置和缺少的激发位置,便于后序更具针对性的为激发位置阵列匹配正确的标准位置阵列。
可见,在上述流程中,标准位置阵列的维数与激发位置阵列的维数相 同。若根据激发位置阵列获取相对位置阵列,则标准位置阵列也用于描述激发位置之间的相对位置。
此时,S501可实施为:
获取相对位置阵列与一个或多个标准位置阵列之间的一个或多个差异位置阵列,其中,相对位置阵列的维数和标准位置阵列的维数中较大的维数为差异位置阵列的维数。
S502、根据差异位置阵列,或,根据差异位置阵列和对应的标准位置阵列确定出激发位置阵列的差异值。
通过上述S501可获取一个或多个差异位置阵列,通过每个差异位置阵列和对应的标准位置阵列均可获取一个差异值,故,在S502中可获取一个或多个差异值。其中,差异值用于描述激发位置阵列偏离标准位置阵列的程度。例如,差异值越大,表征激发位置阵列偏离标准位置阵列的程度越大,差异值越小,表征激发位置阵列偏离标准位置阵列的程度越小;或,差异值越下,表征激发位置阵列偏离标准位置阵列的程度越大,差异值越大,表征激发位置阵列偏离标准位置阵列的程度越小。
通过上述S501所获取的差异位置阵列用于描述激发位置的不同,或,用于描述激发位置阵列中多余的激发位置和不足的激发位置。
当差异位置阵列用于描述差异位置阵列与标准位置阵列的区别点时,根据差异位置阵列和对应的标准位置阵列确定出激发位置阵列的差异值。
差异位置阵列中的元素位置和标准位置阵列中的元素位置具有对应关系。若对应于差异位置阵列中的特征值元素的位置处的,标准位置阵列的元素为特征值,则差异位置阵列中的该位置处的特征值元素用于表征:对应于该位置的激发位置阵列中的位置处缺少激发位置,即,在感应阵列中,若以标准位置阵列为参照,对应于差异位置阵列中特征值元素的位置处的感应接收端应该处于激发态;而在实际中,该位置处的感应接收端处于非激发态。对应于差异位置阵列中的特征值元素的位置处的,标准位置阵列中的元素为默认值,在差异位置阵列中的该位置处的特征值元素用于表征:对应于该位置的激发位置阵列中的位置处多余激发位置,即,在感应阵列中,若以标准位置阵列为参照,对应于差异位置阵列中特征值元素的位置处的感应接收端应该处于非激发态;而在实际中,该位置处的感应接收端处于激发态。
当差异位置阵列用于描述差异位置阵列用于描述激发位置阵列中的 多余激发位置和缺少激发位置时,根据差异位置阵列确定出激发位置阵列的差异值。
根据上述分析,可见,在S502中需判断出差异位置阵列中的特征值元素用于表征多余激发位置或用于表征缺少激发位置。进一步可选地,S502还包括:
获取差异位置阵列中用于表征缺少激发位置的特征值元素的第一数量;
获取差异位置阵列中用于表征多余激发位置的特征值元素的第二数量;
根据第一数量和第一设定系数,第二数量和第二设定系数,确定出激发位置阵列的差异值。
第一数量和第一设定系数的乘积,与,第二数量和第二设定系数的乘积,相加以获取激发位置阵列的差异值。上述方案充分考虑的多余激发位置和缺少激发位置之间的不同,便于获取更加准确的激发位置阵列的差异值。在通过感应阵列识别手势的过程中,在手或臂的覆盖区域内,一般不存在只有一个点不被覆盖的情况;在标准位置阵列所标准的手或臂的覆盖区域外,若出现表征被覆盖的点,则极有可能表示该标准位置阵列与激发位置阵列不匹配。可选地,第一设定系数小于第二设定系数。即,多余激发位置的重要性大于缺少激发位置的重要性。
S503、根据用于表征激发位置阵列和标准位置阵列之间的偏离程度最小的差异值所对应的标准位置阵列,确定出控制指令。
可更加准确地匹配到与激发位置阵列相对应的标准位置阵列,从而更加准地确定出控制指令。
在识别手势的过程中,以感应阵列所接收的信号为准,对于感应阵列而言,难以识别出手心、手背等静态的形态,当一个手势为运动的手势时,其静态特征的重要程度降低,其运动特性的重要性提高。在一种可选的实施方式中,前述技术方案用于识别动态的手势,以提高其识别正确率。
在识别动态的手势时,若采用获取并解析手势的图像,以获取手势指令的方法,则需要处理大量帧的图像,需要处理大量的图像数据,相比于以获取图像的形式获取静态的手势,获取动态的手势需更大的计算量,进一步提高了对处理器性能的要求。
在一种可选的实施方式中,如图6所示,控制方法包括:
S601、通过由感应接收端构成的感应阵列获取人员的手势运动信息。
可选地,动态手势的手势运动信息包括:运动轨迹、运动方向和运动速度中的任意一个或多个,可在多个维度识别动态手势,以提高识别正确率。
S602、根据手势运动信息确定出对应的控制指令。
当用于空调的控制时,可选地,手势运动信息为直线运动信息,例如:手势向左移动对应着开机指令,手势向右移动对应着关机指令,手势向上移动对应着提高温度,手势向下移动对应着降低温度,手势从右下向左上移动对应着调高风速,手势左上向右下移动对应着调低风速,手势从左下向右上移动对应着切换模式。可选地,手势运动信息为圆弧运动信息,例如:顺时针画圆对应着调高温度,逆时针画圆对应着调低温度;或,顺时针画圆对应着调高风速,逆时针画圆对应这调低风速。可选地,根据弧度的大小确定出设定温度,例如:从左侧中部滑到右侧中部,则确定设定温度为30度,最小的检测幅度范围设置为16度,中间根据弧度的大小进行划分。可选地,根据运动速度确定出设定温度,例如运动速度快则调高温度,运动速度慢则调低温度;或者,根据运动方向确定出温度调节方向,根据运动速度确定出温度的调整幅度。例如当运动速度为第一设定速度时,调高5度,当运动速度为第二设定速度时,调高1度,第一设定速度大于第二设定速度。
S603、根据控制指令控制对应的设备。
可获取人员的手势运动信息,并根据手势运动信息控制对应的设备,无需处理复杂的图像,及可实现对手势的识别,从而控制对应的设备,降低了对处理器性能的要求,降低了生产成本。
可选地,S601通过由感应接收端构成的感应阵列获取人员的手势运动信息,包括:
S701、通过感应阵列获取确定信号,并记录获取一个或多个确定信号的第一顺序和第一时间中的任意一个或多个。
S702、确定出用于获取确定信号的一个或多个激发态感应接收端在感应阵列中的激发位置阵列。
S703、根据获取顺序与获取时间的任意一个和激发位置阵列确定出手势运动信息。
在S701中,可识别出运动轨迹或运动速度中的任意一个。当通过感 应阵列获取确定信号,并记录获取一个或多个确定信号的第一顺序时,可据此识别出运动轨迹。当过感应阵列获取确定信号,并记录获取一个或多个确定新仓的第一顺序时,可据此识别出运动速度。关于通过感应阵列识别手势的运动速度的流程,可理解为:
在S303根据一个或多个激发态感应接收端所在的激发位置阵列确定出控制指令之前,还包括:确定出由感应阵列获取确定信号所需的第一时间。
感应阵列获取确定信号所需的时间与人员出示设定的手势所需的时间相比,多了控制器判断通过感应阵列所获取的信号的时间;控制器通过感应阵列接收信号并作出判断所需的时间,远远小于人员出示设定的手势所需的时间。故,感应阵列获取确定信号所需的第一时间,可作为人员出示设定的手势所需的时间。
对应地,如图8所示,S303根据一个或多个激发态感应接收端所在的激发位置阵列确定出控制指令,包括:
S801、根据第一时间确定出激发源的运动速度。
该激发源可为人员的手或臂,当人员的手或臂覆盖了感应阵列的设定区域后,处于感应阵列的该设定区域的感应接收端处于激发态,也即,感应阵列的该设定区域的感应接收端检测到了人员的手或臂。
在动态手势的运动信息包括运动轨迹时,即可确定出手势的总移动路程。当确定出人员作出手势所需的第一时间后,即可根据第一时间和手势的总移动路程确定出人员的手或臂的运动速度。
S802、根据运动速度和激发位置阵列确定出控制指令。
根据本发明实施例的第二方面,提供一基于感应阵列的控制装置。
如图9所示,在一种可选的实施例中,该基于感应阵列的控制装置包括:
第一获取模块91,用于通过由感应接收端构成的感应阵列获取确定信号;
第一确定模块92,用于确定出用于获取确定信号的一个或多个激发态感应接收端在感应阵列中的激发位置阵列;
第二确定模块93,用于根据一个或多个激发态感应接收端所在的激发位置阵列确定出控制指令;
第一控制模块94,用于根据控制指令控制对应的设备。
在一种可选的实施方式中,第二确定模块具体用于:根据激发位置阵列确定出一个或多个激发态感应接收端的相对位置阵列,根据相对位置阵列确定出控制指令。
在一种可选的实施方式中,第二确定模块具体用于:获取激发位置阵列与一个或多个标准位置阵列之间的一个或多个差异位置阵列;
根据差异位置阵列,或,根据差异位置阵列和对应的标准位置阵列,确定出激发位置阵列的差异值;
根据用于表征激发位置阵列与标准位置阵列之间的偏离最小的差异值所对应的标准位置阵列,确定出控制指令。
在一种可选的实施方式中,该控制装置还包括:
第三确定模块,用于在根据一个或多个激发态感应接收端所在的激发位置阵列确定出控制指令之前,确定出由感应阵列获取确定信号所需的第一时间;
第二确定模块具体用于:
根据第一时间确定出激发源的运动速度;
根据运动速度和激发位置阵列确定出控制指令。
如图10所示,在一种可选的实施方式中,控制装置包括:
第二获取模块1001,用于通过由感应接收端构成的感应阵列获取人员的手势运动信息;
第四确定模块1002,用于根据手势运动信息确定出对应的控制指令;
第二控制模块1003,用于根据控制指令控制对应的设备。
在一种可选的实施方式中,人员的手势运动信息包括:运动轨迹、运动方向、运动速度中的任意一个或多个。
在一种可选的实施方式中,当控制装置用于空调时,控制指令包括:温度调节、风速调节、模式切换和开关机中的任意一个或多个。
在一种可选的实施方式中,第二获取模块具体用于:
通过感应阵列获取确定信号,并记录获取一个或多个确定信号的第一顺序和第一时间中的任意一个或多个;
确定出用于获取确定信号的一个或多个激发态感应接收端在感应阵列中的激发位置阵列;
根据获取顺序与获取时间的任意一个和激发位置阵列确定出手势运动信息。
本控制装置用于实现前述的控制方法,前文中对于控制方法的进一步限定及在控制方法中增加的步骤,同样适用于控制装置。
可选地,前文的控制方法和控制装置可以在网络侧服务器中实现,或者,在移动终端中实现,或者,在专用的控制设备中实现。
根据本发明实施例的第三方面,提供一种计算机设备。
如图11所示,在一种可选实施例中,该计算机设备包括存储器1102、处理器1101及存储在存储器1102上并可被处理器1101运行的程序,处理器1101执行程序时实现前述的基于感应阵列的控制方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由处理器执行以完成前文所述的方法。上述非临时性计算机可读存储介质可以是只读存储器ROM(Read Only Memory)、随机存取存储器RAM(Random Access Memory)、磁带和光存储设备等。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。所属技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,应该理解到,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施 例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
应当理解的是,附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种基于感应阵列的控制方法,包括:
    通过由感应接收端构成的感应阵列获取确定信号;
    确定出用于获取所述确定信号的一个或多个激发态感应接收端在所述感应阵列中的激发位置阵列;
    根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令;
    根据所述控制指令控制对应的设备。
  2. 根据权利要求1所述的控制方法,其中,所述根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令,包括:
    根据所述激发位置阵列确定出一个或多个所述激发态感应接收端的相对位置阵列;
    根据所述相对位置阵列确定出所述控制指令。
  3. 根据权利要求1所述的控制方法,其中,所述根据一个或多个所述激发态感应接收端所在的所述激发位置确定出控制指令,包括:
    获取所述激发位置阵列与一个或多个标准位置阵列之间的一个或多个差异位置阵列;
    根据差异位置阵列,或,根据差异位置阵列和对应的标准位置阵列,确定出所述激发位置阵列的差异值;
    根据用于表征所述激发位置阵列与所述标准位置阵列之间的偏离最小的差异值所对应的标准位置阵列,确定出控制指令。
  4. 根据权利要求1所述的控制方法,其中,在所述根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令之前,还包括:
    确定出由感应阵列获取所述确定信号所需的第一时间;
    所述根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令,包括:
    根据所述第一时间确定出激发源的运动速度;
    根据所述运动速度和所述激发位置阵列确定出控制指令。
  5. 一种基于感应阵列的控制装置,包括:
    第一获取模块,用于通过由感应接收端构成的感应阵列获取确定信号;
    第一确定模块,用于确定出用于获取所述确定信号的一个或多个激发态感应接收端在所述感应阵列中的激发位置阵列;
    第二确定模块,用于根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令;
    第一控制模块,用于根据所述控制指令控制对应的设备。
  6. 根据权利要求5所述的控制装置,其中,所述第二确定模块,具体用于:根据所述激发位置阵列确定出一个或多个所述激发态感应接收端的相对位置阵列,根据所述相对位置阵列确定出所述控制指令。
  7. 根据权利要求5所述的控制装置,其中,所述第二确定模块,具体用于:获取所述激发位置阵列与一个或多个标准位置阵列之间的一个或多个差异位置阵列;
    根据差异位置阵列,或,根据差异位置阵列和对应的标准位置阵列,确定出所述激发位置阵列的差异值;
    根据用于表征所述激发位置阵列与所述标准位置阵列之间的偏离最小的差异值所对应的标准位置阵列,确定出控制指令。
  8. 根据权利要求5所述的控制装置,其中,还包括:
    第三确定模块,用于在所述根据一个或多个所述激发态感应接收端所在的所述激发位置阵列确定出控制指令之前,确定出由感应阵列获取所述确定信号所需的第一时间;
    所述第二确定模块具体用于:
    根据所述第一时间确定出激发源的运动速度;
    根据所述运动速度和所述激发位置阵列确定出控制指令。
  9. 一种计算机设备,包括存储器、处理器及存储在所述存储器上并可被所述处理器运行的程序,其中,所述处理器执行所述程序时实现如权利要求1至4中任意一项所述的基于感应阵列的控制方法。
  10. 一种存储介质,其上存储有计算机程序,其中,当所述计算机程序被处理器执行时实现如权利要求1至4中任意一项所述的基于感应阵列的控制方法。
PCT/CN2019/129652 2018-12-29 2019-12-29 基于感应阵列的控制方法、装置、存储介质及计算机设备 WO2020135817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811644827.0A CN109782616B (zh) 2018-12-29 2018-12-29 基于感应阵列的控制方法、装置、存储介质及计算机设备
CN201811644827.0 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135817A1 true WO2020135817A1 (zh) 2020-07-02

Family

ID=66499606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129652 WO2020135817A1 (zh) 2018-12-29 2019-12-29 基于感应阵列的控制方法、装置、存储介质及计算机设备

Country Status (2)

Country Link
CN (1) CN109782616B (zh)
WO (1) WO2020135817A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782616B (zh) * 2018-12-29 2022-01-21 青岛海尔空调器有限总公司 基于感应阵列的控制方法、装置、存储介质及计算机设备
CN109737563B (zh) * 2018-12-29 2021-08-24 重庆海尔空调器有限公司 基于感应阵列的控制方法、装置、存储介质及计算机设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150145420A1 (en) * 2013-11-27 2015-05-28 Google Inc. Switch discriminating touchless lightswitch
CN106054972A (zh) * 2016-07-20 2016-10-26 芜湖美的厨卫电器制造有限公司 混水器及其控制方法
CN206181307U (zh) * 2016-08-12 2017-05-17 北京金锐德路科技有限公司 头戴式耳机
CN106919261A (zh) * 2017-03-08 2017-07-04 广州致远电子股份有限公司 一种基于区域顺序重构的红外手势识别方法和装置
CN107844250A (zh) * 2016-09-18 2018-03-27 中兴通讯股份有限公司 一种控制方法、装置及终端
CN109737563A (zh) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 基于感应阵列的控制方法、装置、存储介质及计算机设备
CN109782616A (zh) * 2018-12-29 2019-05-21 青岛海尔空调器有限总公司 基于感应阵列的控制方法、装置、存储介质及计算机设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20095880A0 (fi) * 2009-08-26 2009-08-26 Valtion Teknillinen Menetelmä sensorin valmistamiseksi ja sensori
CN103034429A (zh) * 2011-10-10 2013-04-10 北京千橡网景科技发展有限公司 用于触摸屏的身份验证方法和装置
US20130325256A1 (en) * 2012-05-29 2013-12-05 Delphi Technologies, Inc. Non-contact gesture recognition system and method
CN104731326A (zh) * 2015-03-19 2015-06-24 广东好帮手电子科技股份有限公司 一种车载后视镜导航仪的手势识别系统及其方法
CN105069988A (zh) * 2015-07-09 2015-11-18 成都史塔克智能科技有限公司 煤气报警的控制方法及煤气报警装置
CN205722395U (zh) * 2016-04-08 2016-11-23 科世达(上海)管理有限公司 一种采用手势识别的开关控制装置
CN106568107A (zh) * 2016-05-23 2017-04-19 广东万和新电气股份有限公司 手势控制方法及其吸油烟机
CN106254636A (zh) * 2016-07-27 2016-12-21 努比亚技术有限公司 一种控制方法及移动终端
CN106371682A (zh) * 2016-09-13 2017-02-01 努比亚技术有限公司 一种基于接近传感器的手势识别系统及其方法
CN206848829U (zh) * 2017-04-26 2018-01-05 刘亚福 美发器具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150145420A1 (en) * 2013-11-27 2015-05-28 Google Inc. Switch discriminating touchless lightswitch
CN106054972A (zh) * 2016-07-20 2016-10-26 芜湖美的厨卫电器制造有限公司 混水器及其控制方法
CN206181307U (zh) * 2016-08-12 2017-05-17 北京金锐德路科技有限公司 头戴式耳机
CN107844250A (zh) * 2016-09-18 2018-03-27 中兴通讯股份有限公司 一种控制方法、装置及终端
CN106919261A (zh) * 2017-03-08 2017-07-04 广州致远电子股份有限公司 一种基于区域顺序重构的红外手势识别方法和装置
CN109737563A (zh) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 基于感应阵列的控制方法、装置、存储介质及计算机设备
CN109782616A (zh) * 2018-12-29 2019-05-21 青岛海尔空调器有限总公司 基于感应阵列的控制方法、装置、存储介质及计算机设备

Also Published As

Publication number Publication date
CN109782616B (zh) 2022-01-21
CN109782616A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN106440245B (zh) 一种人体位置获取方法和装置
WO2020135816A1 (zh) 基于感应阵列的控制方法、装置、存储介质及计算机设备
CN110163806B (zh) 一种图像处理方法、装置以及存储介质
CN112665135B (zh) 用于空调的控制方法、装置及空调
CN113932429B (zh) 用于家电的控制方法、控制装置、智能床垫和服务器
US10234954B2 (en) Apparatus and method for remote control using camera-based virtual touch
CN110186167B (zh) 空调器的控制方法、装置、空调器及存储介质
US10817136B2 (en) Method for switching user interface based upon a rotation gesture and electronic device using the same
CN102444957B (zh) 空调器及其控制方法
CN108954692B (zh) 一种环境温度计算方法及空调器
CN108920066B (zh) 触摸屏滑动调整方法、调整装置及触控设备
CN110554793B (zh) 终端设备和压力触控方法
WO2020135817A1 (zh) 基于感应阵列的控制方法、装置、存储介质及计算机设备
CN106227375A (zh) 用于控制电子装置的显示器的方法及其电子装置
CN108803986A (zh) 一种移动终端虚拟按键的调整方法及装置
CN118031379A (zh) 用于控制空调的方法、装置及空调
CN113639430B (zh) 用于控制空调器的方法及装置、空调器、可读存储介质
CN108227923A (zh) 一种基于体感技术的虚拟触控系统和方法
CN113310182B (zh) 温度调节设备的控制方法及电子设备
CN107044711B (zh) 空调的控制方法及装置
CN114838472B (zh) 用于控制空调器的方法及装置、空调器、存储介质
CN103873671A (zh) 一种信息处理方法及电子设备
US9395858B2 (en) Capacitive finger navigation device with hybrid mode and operating method thereof
KR102122793B1 (ko) 전자 디바이스 및 전자 디바이스에서 이미지 처리 방법
CN115235067A (zh) 空调控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905389

Country of ref document: EP

Kind code of ref document: A1