[go: up one dir, main page]

WO2020129236A1 - Electromagnetic valve - Google Patents

Electromagnetic valve Download PDF

Info

Publication number
WO2020129236A1
WO2020129236A1 PCT/JP2018/047232 JP2018047232W WO2020129236A1 WO 2020129236 A1 WO2020129236 A1 WO 2020129236A1 JP 2018047232 W JP2018047232 W JP 2018047232W WO 2020129236 A1 WO2020129236 A1 WO 2020129236A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
spring
valve
groove
solenoid valve
Prior art date
Application number
PCT/JP2018/047232
Other languages
French (fr)
Japanese (ja)
Inventor
永見 哲郎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/047232 priority Critical patent/WO2020129236A1/en
Priority to JP2020561115A priority patent/JP6843316B2/en
Publication of WO2020129236A1 publication Critical patent/WO2020129236A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to a solenoid valve used for an air bypass valve that controls the flow rate of an intake bypass passage of a turbocharger system.
  • An engine equipped with a turbocharger has an intake bypass passage that recirculates the air flowing through the throttle valve in the intake passage to the turbocharger and a solenoid valve to adjust the boost pressure.
  • This electromagnetic valve opens and closes the intake bypass passage by bringing a valve seat formed in the intake bypass passage into contact with the valve member. Further, since the valve member is seated on the valve seat against the air flowing when the valve is closed, a pressure balance chamber is provided on the downstream side of the valve member to reduce the necessary driving force.
  • the solenoid valve used in the conventional air bypass valve described above has both ends of the spring member supported on the bottom surface of the inner diameter hole of the piston and the end surface of the large diameter portion of the casing, and is mounted on the outer peripheral portion of the large diameter portion,
  • the elastic force of the spring member causes the sealing element of the piston to contact the valve body. Therefore, since the compression and extension are repeated with the spring member in contact with the piston and the casing, the piston, the casing, and the spring member are worn. As a result, there is a problem that the urging force of the spring member is reduced and the performance of the solenoid valve is reduced, and the spring member is damaged to shorten the life of the solenoid valve.
  • the spring member when the piston tilts due to the pressure or vibration of the fluid, the spring member also contacts the casing in a tilted state together with the piston. Further, when the piston rotates in the circumferential direction due to the pressure or vibration of the fluid, the torsion of the spring member causes the spring member to contact the casing in a tilted state. Therefore, the casing and the spring member are partially worn by repeated compression and expansion of the spring member. As a result, there is a problem in that the spring member is insufficient in urging force to reduce the performance of the solenoid valve, and the spring member is damaged to shorten the life of the solenoid valve.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to obtain a solenoid valve that has stable performance and improved durability.
  • the solenoid valve according to the present invention includes a cylindrical core that is excited by energization of a coil to generate a magnetic attraction force, a first spring that generates a biasing force in a direction opposite to the magnetic attraction force, and a magnetic attraction force and a biasing force.
  • a cylindrical plunger that moves in the axial direction of the core, a cylindrical valve that is provided at one end on the protruding side of the plunger and that opens and closes the fluid passage by the movement of the plunger, and is sandwiched between the valve and the plunger.
  • a disk-shaped plate and a second spring formed of a coil spring that urges the plate and the plunger are provided, and the plate has an annular groove that accommodates the second spring, and the diameter of the groove on the inner peripheral side is A groove is formed that is larger than the outer diameter of the plunger in the portion where the second spring is loosely fitted and smaller than the sum of the outer diameter of the plunger and the wire diameter of the second spring.
  • the solenoid valve configured as described above has a disc-shaped plate sandwiched between the valve and the plunger, and includes the plate and the second spring formed of a coil spring for urging the plunger.
  • the plate has an annular groove for accommodating the second spring, and the diameter of the inner peripheral side of the groove is larger than the outer diameter of the plunger at the portion where the second spring is loosely fitted, and the outer diameter of the plunger and the second spring An annular groove formed to be smaller than the combined wire diameter was provided.
  • FIG. 2A is a cross-sectional view showing a structure in which an electronic valve is opened and closed in an example in which the solenoid valve according to Embodiment 1 of the present invention is used as an air bypass valve of a turbocharger system
  • FIG. 2B shows the valve state
  • FIG. 2B shows the open state of the solenoid valve.
  • Fig. 5 is a cross-sectional view of a main part of the solenoid valve according to the first embodiment of the present invention.
  • Fig. 5(a) shows a state where the spring is housed in the groove of the plate, and
  • Fig. 5(b) shows that the spring is close to the plunger side. Shows the state of It is a principal part sectional view which shows the modification of the solenoid valve concerning Embodiment 1 of this invention.
  • FIGS. 1 is a configuration diagram showing an example in which the solenoid valve according to Embodiment 1 of the present invention is used as an air bypass valve of a turbocharger system, and FIG. 1(a) shows a closed state of the solenoid valve, FIG. 1B shows the open state of the solenoid valve.
  • FIG. 2 is a cross-sectional view showing a structure in which an electronic valve is opened and closed in an example in which the solenoid valve according to the first embodiment of the present invention is used as an air bypass valve of a turbocharger system, and FIG. The closed state of the solenoid valve is shown, and FIG.
  • FIG. 2B shows the opened state of the solenoid valve.
  • FIG. 3 is an enlarged sectional view showing a valve portion of the solenoid valve according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view showing a plate of the solenoid valve according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a main part of the solenoid valve according to the first embodiment of the present invention.
  • FIG. 5(a) shows a state where the spring is housed in the annular groove of the plate, and
  • FIG. 5(b) shows the spring. Shows the state of being closer to the plunger side.
  • FIG. 6 is a cross-sectional view of essential parts showing a modified example of the solenoid valve according to the first embodiment of the present invention.
  • the solenoid valve 1 is provided to adjust the supercharging pressure of the intake passage 102 in the engine in which the turbocharger 101 is mounted.
  • the air bypass valve 103 is used as an air bypass valve for adjusting the flow rate of the intake bypass passage 103.
  • the turbocharger system 100 includes an exhaust passage 104 for circulating exhaust gas for driving the turbo-charger 101, and an intake passage 102 for circulating intake air compressed by the turbocharger 101 to an engine via an intercooler.
  • a throttle valve 105 arranged inside the intake passage 102 for controlling the supply of compressed air to the engine, and a turbocharger 101, an intake passage 102, a throttle valve 105, and engine damage due to excessively compressed air.
  • the intake bypass passage 103 that releases the compressed air to the upstream side of the turbocharger 101 and the solenoid valve 1 that is used as an air bypass valve that opens and closes the intake bypass passage 103 are configured.
  • a waste gate valve 106 is provided on the exhaust side to control the flow rate of the exhaust gas flowing through the exhaust passage 104 that drives the turbocharger 101 to the downstream side of the turbocharger 101.
  • the air compressed by the turbocharger 101 is circulated to the engine when the throttle valve 105 is open. In this state, the solenoid valve 1 is closed.
  • the solenoid valve 1 is opened when the throttle valve 105 is closed. As a result, the excessively compressed air staying in the intake passage 102 is released to the upstream side of the turbocharger 101 by the intake bypass passage 103.
  • the solenoid valve 1 is provided with a substantially cylindrical coil 2 and is provided inside the coil 2 and is excited by the coil 2 to generate a magnetic attraction force.
  • the substantially cylindrical core 3 and the substantially cylindrical plunger 5 which is projected by receiving the urging force of the first spring 4 and which is pulled in by the magnetic attraction force of the core 3 and which are provided at the tip of the plunger 5 on the protruding side.
  • a valve 6 having a substantially cylindrical shape.
  • the solenoid valve 1 is attached to the housing 7 of the intake bypass passage 103 by a bolt 8.
  • a power supply for driving the solenoid valve 1 is connected to the connector 9 provided on the solenoid valve 1.
  • a pressure balancing chamber 11 communicating with the intake bypass passage 103 is provided on the downstream side of the valve 6 through a communication hole 10 provided in the valve 6.
  • the plunger 5 of the solenoid valve 1 is projected by the urging force of the first spring 4 when the power is off.
  • the valve 6 provided at the protruding end of the plunger 5 contacts the valve seat 12 provided on the housing 7, and the intake bypass passage 103 is closed.
  • an insulated electric wire is wound around a bobbin (not shown) made of a substantially cylindrical resin.
  • the coil 2 is electrically connected to a terminal (not shown) of the connector 9.
  • the core 3 has a substantially cylindrical shape made of an iron material, has a flange on the protruding side of the plunger 5, and the opposite side of the flange is arranged inside the coil 2.
  • the first spring 4 is a compression coil spring and is loosely fitted on the plunger 5. Further, the first spring 4 has one end fixed to the core 3 and the other end fixed to the valve 6, and urges the valve 6 and the plunger 5 to which the valve 6 is fixed toward the protruding side. .. As a result, the valve 6 is seated on the valve seat 12, and the solenoid valve 1 is closed.
  • the plunger 5 has an axial shape made of a magnetic material and is slidably arranged inside the core 3. Further, the plunger 5 is formed with a step portion 51 having an outer diameter dimension D2 having a small diameter toward the tip on the protruding side, and a step portion 52 having a diameter smaller than the step portion 51.
  • the valve 6 has a substantially cylindrical shape made of resin, and a wall portion 61 that partitions the inside is formed in the radial direction. Further, the valve 6 is inserted into the step portion 52 through a hole provided in the center of the wall portion 61, and the plate 14 on the step portion 51 side biased by the second spring and the tip of the plunger 5 on the protruding side. It is sandwiched between the washer 15 and the washer 15. The valve 6 has a play and is attached to the plunger 5.
  • the second spring 13 is a compression coil spring in which the wire cross section is circular, and is loosely fitted in the step portion 51. Further, the second spring 13 has one end housed in the plunger 5 and the other end housed in the annular groove 16 of the plate 14 to urge the plunger 5. As a result, the valve 6 is pressed and fixed to the washer 15. The coil diameter of the second spring 13 is set to be equal to the center diameter of the annular groove 16 of the plate 14.
  • the plate 14 is disc-shaped, and has an annular groove 16 having a V-shaped cross section for accommodating the end portion of the second spring 13. Further, the plate 14 is inserted into the step portion 52 through a hole provided at the center, and the valve 6 is sandwiched between the plate 6 and the washer 15 by the urging force of the second spring 13. Further, the diameter dimension D1 on the inner peripheral side of the groove 16 is larger than the outer diameter dimension D2 of the step portion 51 of the plunger 5, and the outer diameter dimension D2 of the step portion 51 of the plunger 5 and the strand of the second spring. It is configured to be smaller than the combination of the wire diameter dimension D3. That is, the following relational expressions are satisfied. D2 ⁇ D1 ⁇ D2+D3
  • the washer 15 has a disk shape and is fixed to the tip of the plunger 5 on the protruding side by caulking or the like. Further, the washer 15 sandwiches the valve 6 with the plate 14 by the urging force of the second spring 13.
  • the operation of the solenoid valve thus configured will be described with reference to FIGS.
  • the excessively compressed intake air flowing through the intake passage 102 flows into the intake bypass passage 103 branching from the intake passage 102, and the upstream side of the turbocharger 101 is opened and closed by opening and closing the solenoid valve 1.
  • the solenoid valve 1 As shown in FIG. 2A, in the electromagnetic valve 1, when the power is off, the valve 6 is applied to the valve seat 12 provided in the housing 7 of the intake bypass passage 103 by the urging force of the first spring 4. In contact with each other, the intake bypass passage 103 is closed. At this time, the inflowing inflow flows into the pressure balancing chamber 11 through the communication hole 10 and is balanced.
  • the pressure difference between the inflow side and the pressure balance chamber 11 side is canceled.
  • the load on the first spring 4 is reduced.
  • the electromagnetic valve 1 pulls the plunger 5 against the urging force of the first spring 4 by the electromagnetic attraction force of the coil 2 and the core 3 in the state where the power is ON, and the valve 6 is turned on.
  • the intake bypass passage 103 is opened apart from the valve seat 12. As a result, the inflowing intake air flows through the intake bypass passage 103 as bypass air and is escaped to the upstream side of the turbocharger 101.
  • the valve 6 is attached to the plunger 5 with play and is biased by the second spring 13 via the plate 14 to the washer 15. .. Therefore, even if the valve 6 is seated on the valve seat 12 with an inclination with respect to the axis of the plunger 5, the play is corrected by the elastic force of the spring.
  • the plate 14 is formed with an annular groove 16 having a V-shaped cross section, in which one end of the second spring 13 abuts and is housed. As a result, the pressure of the intake air flowing through the intake bypass passage 103 suppresses the movement of the second spring 13 by the groove 16 even when the valve 6 is opened and closed while being tilted or rotated in the circumferential direction.
  • the inner peripheral diameter dimension D1 of the groove 16 is larger than the outer diameter dimension D2 of the step portion 51 of the plunger 5, and the outer diameter dimension D2 of the step portion 51 of the plunger 5 and the strand of the second spring are equal to each other. It is configured to be smaller than the combination of the wire diameter dimension D3.
  • the plate 14 has an annular groove having a V-shaped cross section in which one end of the second spring 13 abuts and is housed.
  • the inner diameter of the groove 16 on the inner peripheral side is larger than the outer diameter dimension D2 of the step portion 51 of the plunger 5, and the outer diameter dimension D2 of the step portion 51 of the plunger 5 and the second spring It was made smaller than a combination of the wire diameter dimension D3 of the strand.
  • the movement of the second spring 13 is suppressed, and at the same time, the movement of the second spring 13 is restricted by staying in the inclined portion of the groove 16.
  • the groove 16 is formed in a V shape in cross section, the strand of the second spring is centered because the cross section of the wire is circular. As a result, the position of the second spring can be stabilized, and the performance can be stabilized.
  • the groove 16 is formed in a V-shaped cross section, it has an effect that it can be easily processed.
  • the groove 16 has a V-shaped cross section, but as shown in FIG. 6, the groove 16b formed in the plate 14b may have an arc-shaped cross section.
  • the groove 16b configured in this manner, the movement of the second spring 13 is suppressed, and the movement is restricted by staying in the arc portion of the groove 16. As a result, it is possible to prevent the second spring 13 from coming into contact with the plunger 5 and being worn, and it is possible to stabilize the performance and improve the durability. Further, since the groove 16b has an arc-shaped cross section, the strand of the second spring is centered because the wire has a circular cross section. As a result, the position of the second spring can be stabilized, and the performance can be stabilized. Further, in the groove 16b, since the cross section is continuously formed in an arc shape, the dimensional error in the radial direction is absorbed. As a result, it is possible to reduce the processing accuracy of the components that form the solenoid valve 1 and to perform the processing easily.
  • the solenoid valve shown in the above-described embodiment is described as an air bypass valve for adjusting the flow rate of the intake bypass passage, which is provided for adjusting the supercharging pressure of the intake passage in the engine equipped with the turbocharger.
  • the flow rate is not limited to the air bypass valve, and the flow rate of the fluid different from the intake air may be adjusted.
  • the solenoid valve of the present invention can be used as an air bypass valve that controls the flow rate of the intake bypass passage of the turbocharger system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Provided is an electromagnetic valve which has stable performance, and with which durability can be improved. This electromagnetic valve is provided with a cylindrical core (3) which generates a magnetic force of attraction by means of magnetic excitation resulting from energization of a coil (2), a first spring (4) for generating an urging force in the opposite direction to the magnetic force of attraction, a column-shaped plunger (5) which moves in the axial direction of the core (3) by means of the magnetic force of attraction and the urging force, a cylindrical valve (6) which is provided at one end of the plunger (5), on a projecting side thereof, and which opens and closes a fluid passage by means of the movement of the plunger (5), a disk-shaped plate (14) sandwiched between the valve (6) and the plunger (5), and a second spring (13) formed from a coil spring which urges the plate (14) and the plunger (5), wherein: the plate (14) has a groove (16) accommodating the second spring (13); and the groove (16) is formed in such a way that an inner circumferential side diameter (D1) of the groove (16) is greater than an outer diameter (D2) of a part of the plunger (5) onto which the second spring (13) fits loosely, and is less than the sum of the outer diameter (D2) of the plunger (5) and a wire diameter (D3) of the second spring (13).

Description

電磁弁solenoid valve
 この発明は、ターボチャージャシステムの吸気バイパス通路の流量を制御するエアバイパスバルブに用いられる電磁弁に関する。 The present invention relates to a solenoid valve used for an air bypass valve that controls the flow rate of an intake bypass passage of a turbocharger system.
 ターボチャージャを搭載するエンジンは、吸気通路のスロットルバルブに流通する空気をターボチャージャへ還流する吸気バイパス通路と電磁弁を設けて、過給圧を調整している。この電磁弁は、吸気バイパス通路に形成された弁座に弁部材に当接させて、吸気バイパス通路を開閉している。また、閉弁時に流通する空気に抗して弁部材を弁座に着座させるため、弁部材より下流側に圧力平衡室を設けて必要な駆動力を軽減している。 An engine equipped with a turbocharger has an intake bypass passage that recirculates the air flowing through the throttle valve in the intake passage to the turbocharger and a solenoid valve to adjust the boost pressure. This electromagnetic valve opens and closes the intake bypass passage by bringing a valve seat formed in the intake bypass passage into contact with the valve member. Further, since the valve member is seated on the valve seat against the air flowing when the valve is closed, a pressure balance chamber is provided on the downstream side of the valve member to reduce the necessary driving force.
 そこで、従来のエアバイパスバルブは、パイロット弁部の非励磁時に、ばね部材の弾性力により押圧されたピストンのシール要素がバルブ本体の過給機吐出側の開口部に接触して該過給機吐出側の過給機吸込側との連通を遮断している。他方、パイロット弁部の通電時には、可動鉄心が電磁力によってばね部材の弾性力に打ち勝って、ピストンがストロークして開弁している。(例えば特許文献1) Therefore, in the conventional air bypass valve, when the pilot valve portion is de-excited, the seal element of the piston pressed by the elastic force of the spring member comes into contact with the opening on the discharge side of the supercharger of the valve body and the supercharger. The communication between the discharge side and the suction side of the turbocharger is blocked. On the other hand, when the pilot valve portion is energized, the movable iron core overcomes the elastic force of the spring member by the electromagnetic force, and the piston strokes to open the valve. (For example, Patent Document 1)
特開2016-14414号公報JP, 2016-14414, A
 上記した従来のエアバイパスバルブに用いられる電磁弁は、ばね部材の両端がピストンの内径穴の底面とケーシングの大径部の端面に支持され、かつ大径部の外周部に装着されており、ばね部材の弾性力により、ピストンのシール要素をバルブ本体に接触させている。したがって、ばね部材がピストンとケーシングに当接した状態で圧縮と伸張を繰り返しているため、ピストンとケーシング、及び、ばね部材が摩耗する。その結果、ばね部材の付勢力が低下して電磁弁の性能が低下するとともに、ばね部材が破損して電磁弁の寿命が低下するという問題があった。 The solenoid valve used in the conventional air bypass valve described above has both ends of the spring member supported on the bottom surface of the inner diameter hole of the piston and the end surface of the large diameter portion of the casing, and is mounted on the outer peripheral portion of the large diameter portion, The elastic force of the spring member causes the sealing element of the piston to contact the valve body. Therefore, since the compression and extension are repeated with the spring member in contact with the piston and the casing, the piston, the casing, and the spring member are worn. As a result, there is a problem that the urging force of the spring member is reduced and the performance of the solenoid valve is reduced, and the spring member is damaged to shorten the life of the solenoid valve.
 また、ピストン及びケーシングと、ばね部材との間に隙間を設けた電磁弁では、ピストンが流体の圧力や振動によって傾いた場合、ばね部材もピストンとともに傾いた状態でケーシングに当接される。また、ピストンが流体の圧力や振動によって周方向に回転した場合、ばね部材のねじれにより、ばね部材が傾いた状態でケーシングに当接する。したがって、ばね部材の圧縮と伸張の繰り返しによって、ケーシングとばね部材が偏摩耗する。その結果、ばね部材の付勢力が不足して電磁弁の性能が低下するとともに、ばね部材が破損して電磁弁の寿命が低下するという問題があった。 Also, in the solenoid valve in which a gap is provided between the piston and the casing and the spring member, when the piston tilts due to the pressure or vibration of the fluid, the spring member also contacts the casing in a tilted state together with the piston. Further, when the piston rotates in the circumferential direction due to the pressure or vibration of the fluid, the torsion of the spring member causes the spring member to contact the casing in a tilted state. Therefore, the casing and the spring member are partially worn by repeated compression and expansion of the spring member. As a result, there is a problem in that the spring member is insufficient in urging force to reduce the performance of the solenoid valve, and the spring member is damaged to shorten the life of the solenoid valve.
 この発明は、上記した問題点を解決するためになされたものであり、性能が安定するとともに、耐久性を向上することができる電磁弁を得ることを目的とするものである。 The present invention has been made to solve the above-mentioned problems, and an object thereof is to obtain a solenoid valve that has stable performance and improved durability.
 この発明に係わる電磁弁は、コイルへの通電により励磁されて磁気吸引力を生じる円筒形状のコアと、磁気吸引力の反対方向に付勢力を生じる第1スプリングと、磁気吸引力及び付勢力によりコアの軸方向へ移動する円柱形状のプランジャと、プランジャの突出側の一端に設けられて、プランジャの移動により流体通路を開閉する円筒形状のバルブと、バルブとプランジャとの間に挟着される円板形状のプレートと、プレートとプランジャを付勢するコイルばねで形成された第2スプリングとを備え、プレートは第2スプリングを収容する環状の溝を有し、溝の内周側の径は、第2スプリングが緩嵌された部分のプランジャの外径より大きく、プランジャの外径と第2スプリングの線径とを合わせたものより小さく形成した溝を設けたものである。 The solenoid valve according to the present invention includes a cylindrical core that is excited by energization of a coil to generate a magnetic attraction force, a first spring that generates a biasing force in a direction opposite to the magnetic attraction force, and a magnetic attraction force and a biasing force. A cylindrical plunger that moves in the axial direction of the core, a cylindrical valve that is provided at one end on the protruding side of the plunger and that opens and closes the fluid passage by the movement of the plunger, and is sandwiched between the valve and the plunger. A disk-shaped plate and a second spring formed of a coil spring that urges the plate and the plunger are provided, and the plate has an annular groove that accommodates the second spring, and the diameter of the groove on the inner peripheral side is A groove is formed that is larger than the outer diameter of the plunger in the portion where the second spring is loosely fitted and smaller than the sum of the outer diameter of the plunger and the wire diameter of the second spring.
 上記のように構成された電磁弁は、バルブとプランジャとの間に挟着される円板形状のプレートを有し、プレートとプランジャを付勢するコイルばねで形成された第2スプリングとを備え、プレートは第2スプリングを収容する環状の溝を有し、溝の内周側の径は、第2スプリングが緩嵌された部分のプランジャの外径より大きく、プランジャの外径と第2スプリングの線径とを合わせたものより小さく形成した環状の溝を設けた。これにより、第2スプリングの移動を抑制するとともに規制をして、第2スプリングがプランジャと接触して摩耗することを回避することによって、性能が安定するとともに、耐久性を向上することができる電磁弁を得ることができるという効果を有する。 The solenoid valve configured as described above has a disc-shaped plate sandwiched between the valve and the plunger, and includes the plate and the second spring formed of a coil spring for urging the plunger. The plate has an annular groove for accommodating the second spring, and the diameter of the inner peripheral side of the groove is larger than the outer diameter of the plunger at the portion where the second spring is loosely fitted, and the outer diameter of the plunger and the second spring An annular groove formed to be smaller than the combined wire diameter was provided. As a result, the movement of the second spring is restrained and regulated, and the second spring is prevented from coming into contact with the plunger to be worn, thereby stabilizing the performance and improving the durability. It has the effect that a valve can be obtained.
この発明の実施の形態1に係わる電磁弁を、ターボチャージャシステムのエアバイパスバルブに使用した例を示す構成図であり、図1(a)は電磁弁の閉弁状態を示し、図1(b)は電磁弁の開弁状態を示す。It is a block diagram which shows the example which used the solenoid valve concerning Embodiment 1 of this invention for the air bypass valve of a turbocharger system, and FIG.1(a) shows the closed state of a solenoid valve, FIG. ) Indicates the open state of the solenoid valve. この発明の実施の形態1に係わる電磁弁を、ターボチャージャシステムのエアバイパスバルブに使用した例において、電子弁が開閉される構造を示す断面図であり、図2(a)は電磁弁の閉弁状態を示し、図2(b)は電磁弁の開弁状態を示す。FIG. 2A is a cross-sectional view showing a structure in which an electronic valve is opened and closed in an example in which the solenoid valve according to Embodiment 1 of the present invention is used as an air bypass valve of a turbocharger system, and FIG. 2B shows the valve state, and FIG. 2B shows the open state of the solenoid valve. この発明の実施の形態1に係わる電磁弁のバルブ部を示す拡大断面図である。It is an expanded sectional view showing the valve part of the solenoid valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる電磁弁のプレートを示す斜視図である。It is a perspective view which shows the plate of the solenoid valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる電磁弁の要部断面図であり、図5(a)はスプリングがプレートの溝に収容された状態を示し、図5(b)はスプリングがプランジャ側へ寄った状態を示す。[Fig. 5] Fig. 5 is a cross-sectional view of a main part of the solenoid valve according to the first embodiment of the present invention. Fig. 5(a) shows a state where the spring is housed in the groove of the plate, and Fig. 5(b) shows that the spring is close to the plunger side. Shows the state of この発明の実施の形態1に係わる電磁弁の変形例を示す要部断面図である。It is a principal part sectional view which shows the modification of the solenoid valve concerning Embodiment 1 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1
 この発明の実施の形態1における電磁弁について図1~6を用いて説明する。図1は、この発明の実施の形態1に係わる電磁弁を、ターボチャージャシステムのエアバイパスバルブに使用した例を示す構成図であり、図1(a)は電磁弁の閉弁状態を示し、図1(b)は電磁弁の開弁状態を示す。図2は、この発明の実施の形態1に係わる電磁弁を、ターボチャージャシステムのエアバイパスバルブに使用した例において、電子弁が開閉される構造を示す断面図であり、図2(a)は電磁弁の閉弁状態を示し、図2(b)は電磁弁の開弁状態を示す。図3は、この発明の実施の形態1に係わる電磁弁のバルブ部を示す拡大断面図である。図4は、この発明の実施の形態1に係わる電磁弁のプレートを示す斜視図である。図5は、この発明の実施の形態1に係わる電磁弁の要部断面図であり、図5(a)はスプリングがプレートの環状溝に収容された状態を示し、図5(b)はスプリングがプランジャ側へ寄った状態を示す。図6は、この発明の実施の形態1に係わる電磁弁の変形例を示す要部断面図である。
Embodiment 1
A solenoid valve according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a configuration diagram showing an example in which the solenoid valve according to Embodiment 1 of the present invention is used as an air bypass valve of a turbocharger system, and FIG. 1(a) shows a closed state of the solenoid valve, FIG. 1B shows the open state of the solenoid valve. FIG. 2 is a cross-sectional view showing a structure in which an electronic valve is opened and closed in an example in which the solenoid valve according to the first embodiment of the present invention is used as an air bypass valve of a turbocharger system, and FIG. The closed state of the solenoid valve is shown, and FIG. 2B shows the opened state of the solenoid valve. FIG. 3 is an enlarged sectional view showing a valve portion of the solenoid valve according to the first embodiment of the present invention. FIG. 4 is a perspective view showing a plate of the solenoid valve according to the first embodiment of the present invention. FIG. 5 is a cross-sectional view of a main part of the solenoid valve according to the first embodiment of the present invention. FIG. 5(a) shows a state where the spring is housed in the annular groove of the plate, and FIG. 5(b) shows the spring. Shows the state of being closer to the plunger side. FIG. 6 is a cross-sectional view of essential parts showing a modified example of the solenoid valve according to the first embodiment of the present invention.
 図1(a)、及び、図1(b)に示すように、ターボチャージャシステム100において、電磁弁1は、ターボチャージャ101を搭載するエンジンにおける吸気通路102の過給圧を調整するために設けられた吸気バイパス通路103の流量を調整するエアバイパスバルブとして使用される。
 ターボチャージャシステム100は、ターボ―チャージャ101を駆動するための排気ガスを流通させる排気通路104と、ターボチャージャ101で圧縮される吸入した空気を、インタクーラを介してエンジンへ流通させる吸気通路102と、吸気通路102の内部に配置されてエンジンへの圧縮された空気の供給を制御するスロットルバルブ105と、過剰に圧縮された空気によるターボチャージャ101、吸気通路102、スロットルバルブ105、及び、エンジンの破損を防止するためにターボチャージャ101の上流側へ圧縮された空気を逃す吸気バイパス通路103と、吸気バイパス通路103の開閉を行うエアバイパスバルブとして使用される電磁弁1とで構成されている。
 なお、排気側には、ターボチャージャ101を駆動する排気通路104を流通する排気ガスを、ターボチャージャ101の下流側へ逃す流量の制御を行うウェイストゲートバルブ106が設けられている。
As shown in FIGS. 1A and 1B, in the turbocharger system 100, the solenoid valve 1 is provided to adjust the supercharging pressure of the intake passage 102 in the engine in which the turbocharger 101 is mounted. The air bypass valve 103 is used as an air bypass valve for adjusting the flow rate of the intake bypass passage 103.
The turbocharger system 100 includes an exhaust passage 104 for circulating exhaust gas for driving the turbo-charger 101, and an intake passage 102 for circulating intake air compressed by the turbocharger 101 to an engine via an intercooler. A throttle valve 105 arranged inside the intake passage 102 for controlling the supply of compressed air to the engine, and a turbocharger 101, an intake passage 102, a throttle valve 105, and engine damage due to excessively compressed air. In order to prevent the above, the intake bypass passage 103 that releases the compressed air to the upstream side of the turbocharger 101 and the solenoid valve 1 that is used as an air bypass valve that opens and closes the intake bypass passage 103 are configured.
A waste gate valve 106 is provided on the exhaust side to control the flow rate of the exhaust gas flowing through the exhaust passage 104 that drives the turbocharger 101 to the downstream side of the turbocharger 101.
 図1(a)に示すように、スロットルバルブ105が開いた状態において、ターボチャージャ101で圧縮された空気はエンジンへ流通される。この状態では、電磁弁1は閉弁されている。 As shown in FIG. 1A, the air compressed by the turbocharger 101 is circulated to the engine when the throttle valve 105 is open. In this state, the solenoid valve 1 is closed.
 図1(b)に示すように、スロットルバルブ105が閉じた状態において、電磁弁1が開弁される。これにより、吸気通路102に滞留する過剰に圧縮された空気が、吸気バイパス通路103によってターボチャージャ101の上流側へ逃される。 As shown in FIG. 1(b), the solenoid valve 1 is opened when the throttle valve 105 is closed. As a result, the excessively compressed air staying in the intake passage 102 is released to the upstream side of the turbocharger 101 by the intake bypass passage 103.
 図2(a)、及び、図2(b)に示すように、電磁弁1は、略円筒形状のコイル2と、コイル2の内側に設けられてコイル2により励磁されて磁気吸引力を発生する略円筒形状のコア3と、第1スプリング4による付勢力を受けて突出され、また、コア3の磁気吸引力によって引き込まれる略円柱形状のプランジャ5と、プランジャ5の突出側の先端に設けられた略円筒形状のバルブ6とで構成される。電磁弁1は、吸気バイパス通路103のハウジング7にボルト8によって取り付けられている。なお、電磁弁1に設けられたコネクタ9には、電磁弁1を駆動する電源が接続されている。また、バルブ6に設けられた連通穴10によって、吸気バイパス通路103と連通する圧力平衡室11がバルブ6の下流側に設けられている。これにより、バルブ6の上流側の吸気バイパス通路103と圧力平衡室11との間の差圧がキャンセルされて、プランジャ5への第1スプリング4の付勢力、及び、コイル2とコア3による電磁吸引力が軽減されている。 As shown in FIGS. 2A and 2B, the solenoid valve 1 is provided with a substantially cylindrical coil 2 and is provided inside the coil 2 and is excited by the coil 2 to generate a magnetic attraction force. The substantially cylindrical core 3 and the substantially cylindrical plunger 5 which is projected by receiving the urging force of the first spring 4 and which is pulled in by the magnetic attraction force of the core 3 and which are provided at the tip of the plunger 5 on the protruding side. And a valve 6 having a substantially cylindrical shape. The solenoid valve 1 is attached to the housing 7 of the intake bypass passage 103 by a bolt 8. A power supply for driving the solenoid valve 1 is connected to the connector 9 provided on the solenoid valve 1. Further, a pressure balancing chamber 11 communicating with the intake bypass passage 103 is provided on the downstream side of the valve 6 through a communication hole 10 provided in the valve 6. As a result, the differential pressure between the intake bypass passage 103 on the upstream side of the valve 6 and the pressure balancing chamber 11 is canceled, and the urging force of the first spring 4 to the plunger 5 and the electromagnetic force generated by the coil 2 and the core 3 are canceled. The suction power is reduced.
 図2(a)に示すように、電源OFFの状態において、電磁弁1は、第1スプリング4の付勢力によってプランジャ5が突き出される。これにより、プランジャ5の突出側の先端に設けられたバルブ6が、ハウジング7に設けられた弁座12に当接して、吸気バイパス通路103が閉塞される。 As shown in FIG. 2( a ), the plunger 5 of the solenoid valve 1 is projected by the urging force of the first spring 4 when the power is off. As a result, the valve 6 provided at the protruding end of the plunger 5 contacts the valve seat 12 provided on the housing 7, and the intake bypass passage 103 is closed.
 図2(b)に示すように、電源ONの状態において、電磁弁1は、コイル2とコア3による電磁吸引力によってプランジャ5が引き込まれる。これにより、バルブ6が、弁座12から離間して、吸気バイパス通路103が開弁される。 As shown in FIG. 2( b ), when the power is on, the solenoid valve 1 has the plunger 5 retracted by the electromagnetic attraction force of the coil 2 and the core 3. As a result, the valve 6 is separated from the valve seat 12, and the intake bypass passage 103 is opened.
 コイル2は、略円筒形状の樹脂で形成されたボビン(図示せず)に絶縁電線が巻き付けられている。また、コイル2はコネクタ9の端子(図示せず)に電気的に接続されている。 In the coil 2, an insulated electric wire is wound around a bobbin (not shown) made of a substantially cylindrical resin. The coil 2 is electrically connected to a terminal (not shown) of the connector 9.
 コア3は、鉄材から成る略円筒形状で、プランジャ5の突出側に鍔を有しており、鍔の反対側はコイル2の内側に配設されている。 The core 3 has a substantially cylindrical shape made of an iron material, has a flange on the protruding side of the plunger 5, and the opposite side of the flange is arranged inside the coil 2.
 第1スプリング4は、圧縮コイルばねで、プランジャ5に緩嵌されている。また、第1スプリング4は、一端がコア3に固定されて、他端がバルブ6に固定されており、バルブ6と、バルブ6が固定されているプランジャ5を突出側へ付勢している。これにより、バルブ6が弁座12に着座されて、電磁弁1が閉弁される。 The first spring 4 is a compression coil spring and is loosely fitted on the plunger 5. Further, the first spring 4 has one end fixed to the core 3 and the other end fixed to the valve 6, and urges the valve 6 and the plunger 5 to which the valve 6 is fixed toward the protruding side. .. As a result, the valve 6 is seated on the valve seat 12, and the solenoid valve 1 is closed.
 図3、及び、図4に示すように、プランジャ5は、磁性材料から成る軸形状で、コア3の内側に摺動可能に配置されている。また、プランジャ5は、突出側の先端に向かって小径の外径寸法D2である段差部51、及び、段差部51より小径の段差部52が形成されている。 As shown in FIGS. 3 and 4, the plunger 5 has an axial shape made of a magnetic material and is slidably arranged inside the core 3. Further, the plunger 5 is formed with a step portion 51 having an outer diameter dimension D2 having a small diameter toward the tip on the protruding side, and a step portion 52 having a diameter smaller than the step portion 51.
 バルブ6は、樹脂で形成された略円筒形状で、内部を仕切る壁部61が径方向に形成されている。また、バルブ6は、壁部61の中心に設けられた孔により段差部52に挿通されて、第2スプリングで付勢された段差部51の側のプレート14と、プランジャ5の突出側の先端に固定されたワッシャ15とで挟着されている。なお、バルブ6は、遊びを有してプランジャ5に取り付けられている。 The valve 6 has a substantially cylindrical shape made of resin, and a wall portion 61 that partitions the inside is formed in the radial direction. Further, the valve 6 is inserted into the step portion 52 through a hole provided in the center of the wall portion 61, and the plate 14 on the step portion 51 side biased by the second spring and the tip of the plunger 5 on the protruding side. It is sandwiched between the washer 15 and the washer 15. The valve 6 has a play and is attached to the plunger 5.
 第2スプリング13は、素線の断面が円形の圧縮コイルばねで、段差部51に緩嵌されている。また、第2スプリング13は、一端がプランジャ5を、他端がプレート14の環状の溝16に収容されて付勢している。これにより、バルブ6が、ワッシャ15に押し付けられて固定されている。また、第2スプリング13のコイル径寸法は、プレート14の環状の溝16の中心径寸法と同等に構成されている。 The second spring 13 is a compression coil spring in which the wire cross section is circular, and is loosely fitted in the step portion 51. Further, the second spring 13 has one end housed in the plunger 5 and the other end housed in the annular groove 16 of the plate 14 to urge the plunger 5. As a result, the valve 6 is pressed and fixed to the washer 15. The coil diameter of the second spring 13 is set to be equal to the center diameter of the annular groove 16 of the plate 14.
 プレート14は、円板形状で、第2スプリング13の端部を収容する断面がV字形状の環状の溝16が形成されている。また、プレート14は、中心に設けられた孔により段差部52に挿通されて、バルブ6を第2スプリング13の付勢力によってワッシャ15とで挟着している。また、溝16の内周側の径寸法D1は、プランジャ5の段差部51の外径寸法D2よりも大きく、且つ、プランジャ5の段差部51の外径寸法D2と第2スプリングの素線の線径寸法D3とを合わせたものより小さく構成されている。すなわち、以下の関係式を満たして構成されている。
 D2<D1<D2+D3
The plate 14 is disc-shaped, and has an annular groove 16 having a V-shaped cross section for accommodating the end portion of the second spring 13. Further, the plate 14 is inserted into the step portion 52 through a hole provided at the center, and the valve 6 is sandwiched between the plate 6 and the washer 15 by the urging force of the second spring 13. Further, the diameter dimension D1 on the inner peripheral side of the groove 16 is larger than the outer diameter dimension D2 of the step portion 51 of the plunger 5, and the outer diameter dimension D2 of the step portion 51 of the plunger 5 and the strand of the second spring. It is configured to be smaller than the combination of the wire diameter dimension D3. That is, the following relational expressions are satisfied.
D2<D1<D2+D3
 ワッシャ15は、円板形状で、プランジャ5の突出側の先端にコーキングなどによって固定されている。また、ワッシャ15は、バルブ6を第2スプリング13の付勢力によってプレート14とで挟着している。 The washer 15 has a disk shape and is fixed to the tip of the plunger 5 on the protruding side by caulking or the like. Further, the washer 15 sandwiches the valve 6 with the plate 14 by the urging force of the second spring 13.
 次に、このように構成された電磁弁における作用について図1~5を用いて説明する。
 図1(b)が示すように、吸気通路102を流通する過剰に圧縮された吸気は、吸気通路102から分岐する吸気バイパス通路103に流入し、電磁弁1の開閉によりターボチャージャ101の上流側へ逃される。図2(a)が示すように、電磁弁1は、電源OFFの状態において、バルブ6を、吸気バイパス通路103のハウジング7に設けられた弁座12に、第1スプリング4の付勢力によって当接して、吸気バイパス通路103を閉塞する。このとき、流入する吸気は、連通穴10により圧力平衡室11へ流入して平衡化される。すなわち、流入する吸気側と圧力平衡室11の側との間の差圧がキャンセルされる。これにより、第1スプリング4の荷重が軽減される。図2(b)が示すように、電磁弁1は、電源ONの状態において、コイル2とコア3の電磁吸引力によって第1スプリング4の付勢力に抗してプランジャ5を引き込み、バルブ6を弁座12から離間させて、吸気バイパス通路103を開弁する。その結果、流入する吸気は、バイパスエアとして、吸気バイパス通路103を流通して、ターボチャージャ101の上流側へ逃される。
Next, the operation of the solenoid valve thus configured will be described with reference to FIGS.
As shown in FIG. 1B, the excessively compressed intake air flowing through the intake passage 102 flows into the intake bypass passage 103 branching from the intake passage 102, and the upstream side of the turbocharger 101 is opened and closed by opening and closing the solenoid valve 1. To be missed. As shown in FIG. 2A, in the electromagnetic valve 1, when the power is off, the valve 6 is applied to the valve seat 12 provided in the housing 7 of the intake bypass passage 103 by the urging force of the first spring 4. In contact with each other, the intake bypass passage 103 is closed. At this time, the inflowing inflow flows into the pressure balancing chamber 11 through the communication hole 10 and is balanced. That is, the pressure difference between the inflow side and the pressure balance chamber 11 side is canceled. As a result, the load on the first spring 4 is reduced. As shown in FIG. 2B, the electromagnetic valve 1 pulls the plunger 5 against the urging force of the first spring 4 by the electromagnetic attraction force of the coil 2 and the core 3 in the state where the power is ON, and the valve 6 is turned on. The intake bypass passage 103 is opened apart from the valve seat 12. As a result, the inflowing intake air flows through the intake bypass passage 103 as bypass air and is escaped to the upstream side of the turbocharger 101.
 図3、図4、及び、図5が示すように、バルブ6は、遊びを有してプランジャ5に取り付けられており、プレート14を介して第2スプリング13でワッシャ15に付勢されている。よって、バルブ6が、プランジャ5の軸心と傾きを有して弁座12に着座しても遊びとばねの弾性力で補正される。
 また、プレート14には、第2スプリング13の一端が当接して収容される、断面がV字形状の環状の溝16が形成されている。これにより、吸気バイパス通路103を流通する吸気の圧力によって、バルブ6が傾きながら開閉した場合や周方向に回転した場合においても、溝16により第2スプリング13の移動が抑制される。
 更に、溝16の内周側の径寸法D1は、プランジャ5の段差部51の外径寸法D2よりも大きく、且つ、プランジャ5の段差部51の外径寸法D2と第2スプリングの素線の線径寸法D3とを合わせたものより小さく構成されている。これにより、第2スプリング13が移動した場合においても、第2スプリング13は溝16の傾斜部に留まり、第2スプリング13の移動が規制される。したがって、第2スプリング13とプランジャ5との接触が回避される。
As shown in FIGS. 3, 4 and 5, the valve 6 is attached to the plunger 5 with play and is biased by the second spring 13 via the plate 14 to the washer 15. .. Therefore, even if the valve 6 is seated on the valve seat 12 with an inclination with respect to the axis of the plunger 5, the play is corrected by the elastic force of the spring.
Further, the plate 14 is formed with an annular groove 16 having a V-shaped cross section, in which one end of the second spring 13 abuts and is housed. As a result, the pressure of the intake air flowing through the intake bypass passage 103 suppresses the movement of the second spring 13 by the groove 16 even when the valve 6 is opened and closed while being tilted or rotated in the circumferential direction.
Further, the inner peripheral diameter dimension D1 of the groove 16 is larger than the outer diameter dimension D2 of the step portion 51 of the plunger 5, and the outer diameter dimension D2 of the step portion 51 of the plunger 5 and the strand of the second spring are equal to each other. It is configured to be smaller than the combination of the wire diameter dimension D3. As a result, even when the second spring 13 moves, the second spring 13 remains in the inclined portion of the groove 16 and the movement of the second spring 13 is restricted. Therefore, contact between the second spring 13 and the plunger 5 is avoided.
 以上述べたように、この実施の形態1にて示した電磁弁にあっては、プレート14には、第2スプリング13の一端が当接して収容される、断面がV字形状の環状の溝16を設けるとともに、溝16の内周側の径寸法D1は、プランジャ5の段差部51の外径寸法D2よりも大きく、且つ、プランジャ5の段差部51の外径寸法D2と第2スプリングの素線の線径寸法D3とを合わせたものより小さく構成した。これにより、第2スプリング13の移動が抑制されるととともに、溝16の傾斜部に留まり移動が規制される。その結果、第2スプリング13がプランジャ5と接触して摩耗するのを防止することが出来、性能の安定化と耐久性を向上することができるという効果を奏する。 As described above, in the solenoid valve shown in the first embodiment, the plate 14 has an annular groove having a V-shaped cross section in which one end of the second spring 13 abuts and is housed. 16, the inner diameter of the groove 16 on the inner peripheral side is larger than the outer diameter dimension D2 of the step portion 51 of the plunger 5, and the outer diameter dimension D2 of the step portion 51 of the plunger 5 and the second spring It was made smaller than a combination of the wire diameter dimension D3 of the strand. As a result, the movement of the second spring 13 is suppressed, and at the same time, the movement of the second spring 13 is restricted by staying in the inclined portion of the groove 16. As a result, it is possible to prevent the second spring 13 from coming into contact with the plunger 5 and being worn, and it is possible to stabilize the performance and improve the durability.
 また、溝16は、断面がV字形状に形成されているので、第2スプリングの素線の断面が円形状であることからセンタリングされる。その結果、第2スプリングの位置を安定することが出来、性能を安定化することができるという効果を奏する。 Further, since the groove 16 is formed in a V shape in cross section, the strand of the second spring is centered because the cross section of the wire is circular. As a result, the position of the second spring can be stabilized, and the performance can be stabilized.
 さらに、溝16は、断面がV字形状で形成されるので、容易に加工することができるという効果を奏する。 Further, since the groove 16 is formed in a V-shaped cross section, it has an effect that it can be easily processed.
 なお、上記した実施の形態1では、溝16は断面がV字形状としたが、図6が示すように、プレート14bに形成された溝16bの断面が円弧形状であっても良い。 In the first embodiment described above, the groove 16 has a V-shaped cross section, but as shown in FIG. 6, the groove 16b formed in the plate 14b may have an arc-shaped cross section.
 このように構成された溝16bにあっても、第2スプリング13の移動が抑制されるととともに、溝16の円弧部に留まり移動が規制される。その結果、第2スプリング13がプランジャ5と接触して摩耗するのを防止することが出来、性能の安定化と耐久性を向上することができる効果を奏する。
 また、溝16bは、断面が円弧形状に形成されているので、第2スプリングの素線の断面が円形状であることからセンタリングされる。その結果、第2スプリングの位置を安定することが出来、性能を安定化することができる効果を奏する。
 さらに、溝16bにあっては、断面が円弧形状で連続的に形成されているので、径方向の寸法誤差が吸収される。その結果、電磁弁1を構成する部品の加工精度を下げることが出来、容易に加工することができるという効果を奏する。
Even in the groove 16b configured in this manner, the movement of the second spring 13 is suppressed, and the movement is restricted by staying in the arc portion of the groove 16. As a result, it is possible to prevent the second spring 13 from coming into contact with the plunger 5 and being worn, and it is possible to stabilize the performance and improve the durability.
Further, since the groove 16b has an arc-shaped cross section, the strand of the second spring is centered because the wire has a circular cross section. As a result, the position of the second spring can be stabilized, and the performance can be stabilized.
Further, in the groove 16b, since the cross section is continuously formed in an arc shape, the dimensional error in the radial direction is absorbed. As a result, it is possible to reduce the processing accuracy of the components that form the solenoid valve 1 and to perform the processing easily.
 ところで、上記した実施の形態に示した電磁弁は、ターボチャージャを搭載するエンジンにおける、吸気通路の過給圧を調整するために設けられた、吸気バイパス通路の流量を調整するエアバイパスバルブとして説明したが、エアバイパスバルブに限られるものではなく、吸気とは異なる流体の流量を調整するものであっても良いことは言うまでもない。 By the way, the solenoid valve shown in the above-described embodiment is described as an air bypass valve for adjusting the flow rate of the intake bypass passage, which is provided for adjusting the supercharging pressure of the intake passage in the engine equipped with the turbocharger. However, it is needless to say that the flow rate is not limited to the air bypass valve, and the flow rate of the fluid different from the intake air may be adjusted.
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Further, in the present invention, within the scope of the invention, it is possible to freely combine the respective embodiments, modify any of the constituent elements of each of the embodiments, or omit any constituent element of each of the embodiments. ..
 本発明の電磁弁は、ターボチャージャシステムの吸気バイパス通路の流量を制御するエアバイパスバルブに用いることができる。 The solenoid valve of the present invention can be used as an air bypass valve that controls the flow rate of the intake bypass passage of the turbocharger system.
 1 電磁弁、 2 コイル、 3 コア、 4 第1スプリング、 5 プランジャ、 6 バルブ、 7 ハウジング、 8 ボルト、 9 コネクタ、 10 連通穴、 11 圧力平衡室、 12 弁座、 13 第2スプリング、 14、14b プレート、 15 ワッシャ、 16、16b 溝、 51、52 段差部、 61 壁部、 100 ターボチャージャシステム、 101 ターボチャージャ、 102 吸気通路、 103 吸気バイパス通路、 104 排気通路、 105 スロットルバルブ、 106 ウェイストゲートバルブ、 D1 溝の内周側の径寸法、 D2 プランジャの段差部の外径寸法、 D3 第2スプリングの線径寸法 1 solenoid valve, 2 coils, 3 cores, 4 first springs, 5 plungers, 6 valves, 7 housings, 8 bolts, 9 connectors, 10 communication holes, 11 pressure balancing chambers, 12 valve seats, 13 second springs, 14, 14b plate, 15 washer, 16, 16b groove, 51, 52 step portion, 61 wall portion, 100 turbocharger system, 101 turbocharger, 102 intake passage, 103 intake bypass passage, 104 exhaust passage, 105 throttle valve, 106 wastegate Valve, D1 groove inner diameter side, D2 plunger step outside diameter, D3 second spring wire diameter

Claims (4)

  1.  コイルへの通電により励磁されて磁気吸引力を生じる円筒形状のコアと、
     前記磁気吸引力の反対方向に付勢力を生じる第1スプリングと、
     前記磁気吸引力及び前記付勢力により前記コアの軸方向へ移動する円柱形状のプランジャと、
     前記プランジャの突出側の一端に設けられて、前記プランジャの移動により流体通路を開閉する円筒形状のバルブと、
     前記バルブと前記プランジャとの間に挟着される円板形状のプレートと、
     前記プレートと前記プランジャを付勢するコイルばねで形成された第2スプリングとを備え、
     前記プレートは前記第2スプリングを収容する溝を有し、前記溝の内周側の径は、前記第2スプリングが緩嵌された部分の前記プランジャの外径より大きく、前記プランジャの前記外径と前記第2スプリングの線径とを合わせたものより小さく形成したこと
     を特徴とする電磁弁。
    A cylindrical core that is excited by energizing the coil to generate a magnetic attraction force,
    A first spring that produces a biasing force in a direction opposite to the magnetic attraction force;
    A cylindrical plunger that moves in the axial direction of the core by the magnetic attraction force and the biasing force,
    A cylindrical valve provided at one end on the protruding side of the plunger, which opens and closes a fluid passage by the movement of the plunger,
    A disc-shaped plate sandwiched between the valve and the plunger,
    A second spring formed of a coil spring that biases the plate and the plunger;
    The plate has a groove for accommodating the second spring, and an inner diameter of the groove is larger than an outer diameter of the plunger in a portion where the second spring is loosely fitted, and the outer diameter of the plunger is larger than the outer diameter of the plunger. And a wire diameter of the second spring, which is smaller than a combination thereof.
  2.  前記溝は断面がV字形状で形成されたこと
     を特徴とする請求項1に記載の電磁弁。
    The solenoid valve according to claim 1, wherein the groove has a V-shaped cross section.
  3.  前記溝は断面が円弧形状で形成されたこと
     を特徴とする請求項1に記載の電磁弁。
    The solenoid valve according to claim 1, wherein the groove has an arc-shaped cross section.
  4.  請求項1から請求項3のいずれか1項に記載の電磁弁はターボチャージャを搭載するエンジンの吸気バイパス通路の流量を制御するエアバイパスバルブであること
     を特徴とする電磁弁。
    The solenoid valve according to any one of claims 1 to 3 is an air bypass valve that controls a flow rate of an intake bypass passage of an engine equipped with a turbocharger.
PCT/JP2018/047232 2018-12-21 2018-12-21 Electromagnetic valve WO2020129236A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/047232 WO2020129236A1 (en) 2018-12-21 2018-12-21 Electromagnetic valve
JP2020561115A JP6843316B2 (en) 2018-12-21 2018-12-21 solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047232 WO2020129236A1 (en) 2018-12-21 2018-12-21 Electromagnetic valve

Publications (1)

Publication Number Publication Date
WO2020129236A1 true WO2020129236A1 (en) 2020-06-25

Family

ID=71102695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047232 WO2020129236A1 (en) 2018-12-21 2018-12-21 Electromagnetic valve

Country Status (2)

Country Link
JP (1) JP6843316B2 (en)
WO (1) WO2020129236A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956270U (en) * 1982-10-02 1984-04-12 有山 勲 Branch stopper
JP2008157352A (en) * 2006-12-22 2008-07-10 Smc Corp solenoid valve
JP2015081632A (en) * 2013-10-22 2015-04-27 株式会社不二工機 Pilot type control valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956270U (en) * 1982-10-02 1984-04-12 有山 勲 Branch stopper
JP2008157352A (en) * 2006-12-22 2008-07-10 Smc Corp solenoid valve
JP2015081632A (en) * 2013-10-22 2015-04-27 株式会社不二工機 Pilot type control valve

Also Published As

Publication number Publication date
JP6843316B2 (en) 2021-03-17
JPWO2020129236A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP4203906B2 (en) Solenoid valve and evaporative fuel processing system using the same
US4442998A (en) Electromagnetic valve unit
JP5752244B2 (en) Blow-off valve for internal combustion engines
US4361309A (en) Electromagnetic actuator
US8973894B2 (en) Solenoid and solenoid valve
US6546945B2 (en) Electromagnetic valve
US6864771B2 (en) Electromagnetic actuator
KR100301880B1 (en) Electric drive valve of internal combustion engine
CN103003607A (en) Pressure regulating valve for gas
JPS6315828B2 (en)
JP2021527187A (en) Blow-off valve with dual shaft internal seal ring
WO2020129236A1 (en) Electromagnetic valve
JP4492649B2 (en) Bleed valve device
US7717400B2 (en) Fluid pressure regulating device
JP2009091934A (en) Negative pressure responding valve
WO2017216957A1 (en) Air bypass valve
US6787946B2 (en) Actuator having a permanent magnet
US20220003332A1 (en) Electromechanical valve and method of assembly
JP4144015B2 (en) Manufacturing method of electromagnetic actuator
JP2020153403A (en) Electromagnetic actuator
JP2007100829A (en) Valve device
US11028790B2 (en) Purge control valve device
JP2007040423A (en) Valve device
WO2019097566A1 (en) Electromagnetic valve
JPH0337487A (en) Electromagnetic proportion control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944080

Country of ref document: EP

Kind code of ref document: A1