[go: up one dir, main page]

WO2020116659A1 - ジスルフィドリッチペプチドライブラリの調製方法、標的ポリペプチドと結合し得る架橋ポリペプチド、及びその調製方法 - Google Patents

ジスルフィドリッチペプチドライブラリの調製方法、標的ポリペプチドと結合し得る架橋ポリペプチド、及びその調製方法 Download PDF

Info

Publication number
WO2020116659A1
WO2020116659A1 PCT/JP2019/048168 JP2019048168W WO2020116659A1 WO 2020116659 A1 WO2020116659 A1 WO 2020116659A1 JP 2019048168 W JP2019048168 W JP 2019048168W WO 2020116659 A1 WO2020116659 A1 WO 2020116659A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
peptide
polypeptide
mrna
library
Prior art date
Application number
PCT/JP2019/048168
Other languages
English (en)
French (fr)
Inventor
根本 直人
重文 熊地
亘太郎 小林
Original Assignee
国立大学法人埼玉大学
株式会社Epsilon Molecular Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人埼玉大学, 株式会社Epsilon Molecular Engineering filed Critical 国立大学法人埼玉大学
Publication of WO2020116659A1 publication Critical patent/WO2020116659A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to expanding the structural diversity of molecules used in an in vitro selection experiment by using a non-aqueous buffer solution as a chemical cross-linking agent or reaction conditions.
  • antibody drugs have been able to realize the specific and effective treatment that was a problem of small molecule drugs, they also have therapeutic problems.
  • the first problem is that antibody drugs are very expensive compared to other drugs. This is mainly because the antibody is a protein having a relatively large molecular weight (polypeptide, about 150 kDa) composed of a plurality of polypeptide chains, and the production cost is high.
  • the antibody has features such as (1) low intracellular targeting ability and tissue permeability, (2) relatively low thermal stability, and (3) difficult site-specific modification.
  • Antibodies which are giant glycoproteins, may be recognized as foreign to the living body because of their size. For this reason, it is necessary to change to a chimeric antibody or a humanized antibody so that the antibody is not recognized as a foreign substance.
  • antibody engineering techniques have been developed to solve this problem, and antibody drugs can be put to practical use.
  • the problems of low intracellular targeting ability of antibodies and low tissue permeability still remain.
  • the low intracellular targeting ability described above is directly linked to the problem that the target antigen is limited, and depletion of the target antigen can be a major obstacle to the further development of antibody drugs.
  • a peptide is a medium molecule with a molecular weight of about 10,000 to 10,000 kDa, and is larger than a small molecule and smaller than an antibody.
  • peptides Compared with low molecular weight compounds, peptides have the advantage that they can be expected to have improved target affinity and specificity due to the diversity of their amino acid sequences. It is also easy to mimic or inhibit protein-protein interactions.
  • peptide drugs Compared with antibodies, peptide drugs have the advantage of being excellent in tissue penetration due to their small molecular size and generally not antigenic.
  • peptide drugs can be produced by chemical synthesis or can be site-specific chemically modified.
  • peptides that have a three-dimensional structure with a disulfide bond and have high molecular recognition ability, high affinity, and stability.
  • peptides include ⁇ -conotoxin, which is a kind of neurotoxin produced by Conus, and peptide such as cyclotide, which is often contained in plants and has an antibacterial action. Cycloviolacin having a disulfide bond at three positions is often contained in the Rubiaceae, Violetaceae, and Cucurbitaceae plants (see FIGS. 1A and 1B).
  • Conotoxin is a protein composed of 11 to 30 amino acids, and is a neurotoxin that is used when predating small fish, which are fed by conus shells.
  • general peptides are easily degraded by proteolytic enzymes and have low stability in blood
  • conotoxins are not degraded in blood, so when they are injected into the target organism, they strongly stimulate various ion channels and acetylcholine receptors. Block and paralyze this target.
  • the reason why it is not degraded in blood is that conotoxin has multiple disulfide bonds, and the structure is restricted and stabilized by the disulfide bonds.
  • conotoxins are excellent peptide aptamers for ion channels and acetylcholine receptors.
  • conotoxins include ⁇ -conotoxins whose action points are acetylcholine receptors transmitted from nerves to muscles, ⁇ -conotoxins whose action points are voltage-dependent sodium ion channels, and ⁇ -conotoxins whose action points are potassium channels. It is known that there are five types, ⁇ -conotoxin whose action point is a voltage-dependent sodium ion channel in muscle, and ⁇ -conotoxin whose action point is an N-type calcium ion channel. Since N-type calcium ion channels in the spinal cord are involved in the transmission of pain sensation, conotoxin is administered as a powerful analgesic when administered intrathecally, and its analgesic effect is said to be two to three orders of magnitude stronger than morphine. Therefore, it is expected to be used as a therapeutic drug for pain in patients with terminal cancer who have become resistant to morphine. Furthermore, the conotoxin scaffold molecule is also used as a drug.
  • biopharmaceuticals are shifting from antibodies to peptides with smaller molecular weight in recent years. Since an antibody is composed of a plurality of polypeptide chains, it can have a higher-order structure, and it is difficult to expose the recognition site for digestive enzymes or proteolytic enzymes. Therefore, there is an advantage that it is difficult to be decomposed by such an enzyme.
  • peptides have the advantages of high intracellular targeting ability and high thermostability and easy site-specific modification, and are cheaper in production cost than antibodies.
  • peptides have the problem that they are less stable in blood than the above antibodies. This is because the peptide is a low-molecular weight compound and does not easily have a complicated structure, so that the recognition sites of digestive enzymes and proteolytic enzymes are exposed, and these enzymes are easily decomposed.
  • Some peptides have already been put to practical use as first-generation biopharmaceuticals, but due to the property that they are easily decomposed by the above-mentioned enzymes, when orally administered, they are rapidly decomposed by the above-mentioned enzymes, so that the action is sustained. It is known that there are problems that it is extremely short, it is difficult to penetrate the gastrointestinal mucosa, and side effects may occur with antibody production. For this reason, it is said that the development of peptides has been delayed even though they are expected as therapeutic agents.
  • the issue of particular concern is the stability of the peptide.
  • Peptides have low resistance to proteolysis, and are decomposed within minutes by proteases present in blood and tissues, and then excreted out of the body. Therefore, in order for the peptide to act stably as a drug in the body, it is necessary to extend the half-life of the peptide until the function of the peptide is exerted. That is, the development of peptide drugs requires a strategy to improve the stability of peptides.
  • -One of the means to improve the stability of such peptides is to make the peptides cyclic.
  • Proteases that decompose peptides are divided into exoproteases that cleave 1-2 amino acids from the end of the protein and endoproteases that cleave from the center of the protein, depending on the cleavage site. Cyclization of peptides is effective in inhibiting degradation by exoproteases, since exoproteases cannot degrade cyclic peptides.
  • a cyclic peptide in which the amino terminus and the carboxyl terminus of the peptide are linked by a peptide bond and a cyclic peptide using a chemical cross-linking agent having a thiol group of cysteine as a reactive group have been obtained by screening.
  • a chemical cross-linking agent having a thiol group of cysteine as a reactive group have been obtained by screening.
  • FIG. 2 shows the chemical structures of typical cyclic peptides, cyclosporin (A) and oxytocin (B).
  • Cyclic peptides have improved resistance to proteolysis when compared to linear peptides. Furthermore, since it is expected that a high affinity for a specific molecule or a high specificity for a target molecule can be expected, peptides are emerging as a template for developing therapeutic agents and diagnostic agents.
  • the cyclic peptide has a complicated structure and cannot be easily synthesized.
  • peptide synthesis is performed in an aqueous solvent, there is a problem that the crosslinked structure is broken by protease and other enzymes. For this reason, there has been a strong social demand for the preparation of peptides which are simple and whose structure is not easily broken by an enzyme.
  • peptides have structural diversity.
  • Structure diversity of peptides means that peptides having the same sequence have different three-dimensional structures. For example, when a peptide is cross-linked in an aqueous solvent using a known chemical cross-linking agent, the hydrophilic surface is exposed to the aqueous solvent and cross-linking is performed so as to maintain such a structure. That is, structural diversity is unlikely to occur because only normal modes of crosslinking occur. On the other hand, when the peptide is crosslinked in an organic solvent or other non-aqueous solvent, the peptide is exposed to the solvent on the hydrophobic surface, and the peptide is crosslinked so as to maintain such a state.
  • cross-linking occurs that does not occur in an aqueous solvent, and structural diversity is likely to be generated. Then, such a crosslinked peptide may have a different folding from that in the case of being crosslinked under an aqueous solvent condition (see FIG. 3 ).
  • peptides cross-linked with the hydrophobic surface exposed to the solvent cannot be synthesized in aqueous solvents. Therefore, there has been a strong social demand for synthesizing such peptides.
  • a peptide when such a peptide has a function of binding to a target protein (target polypeptide), it can be used as a drug or a diagnostic agent. For this reason, there was a strong social interest in creating a peptide library that could be used for the preparation of such peptides.
  • the present invention provides a DNA library preparation step for preparing a disulfide-rich peptide library; a transcription step for preparing and purifying mRNA from the DNA library; and a step of binding the purified mRNA obtained in the transcription step and a linker.
  • a binding step for forming an mRNA-linker conjugate a translation step for translating the mRNA-linker conjugate in a cell-free translation system to form an mRNA-peptide conjugate; a mRNA to a cDNA in the mRNA-peptide conjugate And a reverse transcription step of forming an mRNA-peptide-cDNA conjugate that binds to the mRNA-peptide conjugate.
  • the “unique structure” means that a structure cross-linked with a hydrophobic surface exposed to a solvent, a recognition site of a digestive enzyme, a protease or another enzyme that decomposes a peptide is inside the peptide.
  • the purified mRNA and the linker are preferably bound by an enzyme or photocrosslinking, and the binding of the purified mRNA and the linker is carried out by ligase when a cyanovinylcarbazole-free linker is used, and cyanovinylcarbazole is included.
  • a linker it is preferably performed by UV irradiation.
  • the time required for cross-linking is as short as 5 minutes or less, and the DNA constituting the main chain of the linker and the RNA bound to this linker can be treated without damage. Because they can be combined. In addition, the working time is higher than that in the case where ligase is used because the protein is eaten by several tenths.
  • a chelating agent is preferably used for removing the ribosome, and the chelating agent is preferably ethylenediaminetetraacetic acid or glycoldiaminetetraacetic acid.
  • the solution containing the organic solvent preferably contains 10 to 90% by volume of the organic solvent, and the organic solvent is preferably any solvent selected from the group consisting of dimethylformamide, acetonitrile, and ethanol.
  • the cross-linked polypeptide having the desired sequence preferably contains three or more cysteines and can bind to the target polypeptide.
  • the target polypeptide is preferably any polypeptide selected from the group consisting of an antigen protein, an in vivo signal transduction substance, an in vivo signal transduction receptor, and a tumor marker protein.
  • the cross-linking agent is preferably any one selected from the group consisting of bismaleimideethane, bismaleimide propane, and ⁇ , ⁇ ′-dibromo-o-xylene.
  • Yet another aspect of the present invention is a cross-linked polypeptide capable of binding the target polypeptide, prepared by the above method.
  • the cross-linking polypeptide has any polypeptide selected from the group consisting of peptides containing 3 or more cysteines, or a structure similar thereto.
  • the crosslinked polypeptide has the sequence described in any one of SEQ ID NOs: 1 and 2 in the following sequence listing from the viewpoint of stability of the crosslinked structure.
  • a crosslinked polypeptide having a specific structure capable of binding to a target polypeptide can be prepared in a solution containing an organic solvent.
  • cross-linking polypeptide capable of binding to the target polypeptide of the present invention has a fundamental difference in structure from the cross-linking polypeptide obtained in an aqueous solution containing no organic solvent, and thus has the advantage of high protease resistance. ..
  • FIG. 1 is a schematic diagram showing the structures of ⁇ -conotoxin (A) and cycloviolacin O1 (B).
  • FIG. 2 is a diagram showing the chemical structures of typical cyclic peptides, cyclosporine (A) and oxytocin (B).
  • FIG. 3 is a schematic diagram showing the difference between the structure (A) of a crosslinked peptide synthesized in an aqueous solvent and the structure (B) of the structure of a crosslinked peptide synthesized in a non-aqueous solvent when transferred to an aqueous solvent. Is.
  • FIG. 4 is a diagram showing the structure and active site of midkine.
  • FIG. 5 is a schematic diagram showing the structure of a linker that does not contain anovinylcarbazole (cnvK) for cDNA display (hereinafter sometimes referred to as “SBP-rG linker”).
  • FIG. 6 is a gel electrophoresis image showing the result of PCR amplification of the initial library.
  • FIG. 7 is a gel electrophoresis image showing the purification results of the ligation product, translation product, and reverse transcription product in which mRNA and SBP linker were linked.
  • FIG. 8 is a gel electrophoresis image showing the result of His-tag purification of the peptide translated by cell-free translation.
  • FIG. 9 is a gel electrophoresis image for confirming the immobilization of midkine on Sepharose resin.
  • FIG. 10 is a gel electrophoresis image for confirming immobilization of midkine on streptavidin magnetic beads.
  • FIG. 11 is a gel showing each washing solution and eluate from the first round to the fourth round of a system using a peptide library crosslinked with bismaleimideethane (hereinafter, sometimes referred to as “BMOE”). It is an electrophoretic image.
  • BMOE bismaleimideethane
  • FIG. 12 Gel electrophoresis showing a library (T7+) in which the T7 region promoter region was added, the DNA was restored to full construct by adopting the overlap extension method, and then the already obtained DNA was amplified by PCR using the template. It is a statue.
  • FIG. 13 is a diagram schematically showing the upshift assay.
  • Figure 14 shows that after cross-linking the clones in 20% acetonitrile (hereinafter abbreviated as "ACN") using TBMB at a final concentration of 10 ⁇ M, gel electrophoresis (8M urea denaturation 6%) was performed. It is a gel electrophoresis image showing the result of SDSPAGE, 20 mA, 2 hours).
  • ACN acetonitrile
  • Figure 15 shows the results of cross-linking clones using a final concentration of 10 mM TBMB in 80% ACN and gel electrophoresis (8 M urea denaturation 6% SDS PAGE, 20 mA, 2 hours). It is a gel electrophoresis image.
  • FIG. 16 is a gel electrophoresis image after upshift assay using TBMB (final concentration 10 mM) and clones in 80% ACN.
  • FIG. 17 is a gel electrophoresis image showing the result of an upshift assay using BMOE (final concentration 4 mM) in a phosphate buffer and S-body library.
  • FIG. 18 is a gel electrophoresis image showing that IL6R could be immobilized on Sepharose resin.
  • FIG. 19 is a gel electrophoresis image showing that IL6R could be immobilized on streptavidin magnetic beads.
  • FIG. 20 is a gel electrophoresis image showing the condition of in-vitro selection in each round.
  • FIG. 21 is a schematic diagram showing a pull-down assay scheme.
  • FIG. 22 is a gel electrophoresis image showing the result of a pull-down assay of the peptide group selected in vitro.
  • FIG. 23 is a graph showing the amount of IL6R bound to the peptide group before and after in vitro selection.
  • FIG. 24 is a diagram showing the amino acid sequence of conotoxin.
  • A shows the natural conotoxin
  • B shows the amino acid sequences of the peptides used for the analysis of peptide cross-linking under different solvent conditions, and these are modified from the sequences shown in (A) above. Is.
  • FIG. 25 is a schematic diagram showing the structure of a linker containing cyanovinylcarbazole (cnvK) for cDNA display (hereinafter sometimes referred to as “cnvK linker”).
  • FIG. 26 is a gel electrophoresis image showing the result of amplification by PCR1.
  • FIG. 27 is a gel electrophoresis image showing the result of amplification by PCR2.
  • FIG. 28 is a gel electrophoresis image showing the result of amplification by PCR3.
  • FIG. 29 is a schematic diagram (A) of the structure of the PCR3 product and a graph (B) showing the occurrence rate of amino acids in the cysteine expression region.
  • FIG. 30 is a gel electrophoresis image when the above PCR3 product is transferred.
  • FIG. 31 is a gel electrophoresis image showing that the cnvK linker and the above mRNA were crosslinked.
  • FIG. 32 is a gel electrophoresis image showing that the ligation product was translated, immobilized on the above magnetic beads, and purified by His-tag.
  • FIG. 33 is a gel electrophoresis image showing the effect of a solvent on the reverse transcription of the above product and the crosslinking of the reverse transcription product (under 90% DNF or under 4% DMF).
  • FIG. 34 is a gel electrophoretic image showing the results of examining the difference in crosslink formation due to the crosslinker.
  • FIG. 35 is a diagram showing the results of examining the resistance of streptavidin magnetic beads to organic solvents.
  • FIG. 36 is an HPLC chromatogram showing changes in the peptide structure before and after cross-linking when peptide 1 shown in FIG. 24 is cross-linked in 90% DMF or in a conjugation buffer that is an aqueous solvent containing 4% DMF. is there.
  • FIG. 37 is an HPLC chromatogram showing the structural change of the peptide before and after crosslinking when peptide 1 was replaced with peptide 2.
  • FIG. 38 is an HPLC chromatogram showing changes in the peptide structure before and after crosslinking when peptide 1 was replaced with peptide 3.
  • FIG. 39 is a HPLC chromatograph showing changes in the peptide structure before and after cross-linking when Peptide 1 shown in FIG. 24 is cross-linked in a conjugation buffer which is an aqueous solvent containing 90% ACN or 10% ACN and 4% DMF. It is gram.
  • FIG. 40 is an HPLC chromatogram showing changes in the peptide structure before and after crosslinking when peptide 1 was replaced with peptide 2.
  • FIG. 41 is an HPLC chromatogram showing changes in the peptide structure before and after crosslinking when peptide 1 was replaced by peptide 3.
  • FIG. 42 is a mass spectrogram when the peptide 1 was cleaved with trypsin.
  • A shows the results when crosslinked in 90% DMF
  • B shows the results when crosslinked in the conjugation buffer.
  • FIG. 43 is a mass spectrum gram when the above peptide 1 was replaced with peptide 2.
  • FIG. 44 is a mass spectrogram when the peptide 1 is replaced with the peptide 3.
  • the present invention comprises a target polypeptide comprising a preparation step of preparing a cross-linked polypeptide having a specific structure in a solution containing an organic solvent by carrying out a cross-linking reaction of a polypeptide having a desired sequence with a cross-linking agent.
  • the present invention includes (a1) a DNA library preparation step, (a2) a transcription step, (a3) a binding step for forming an mRNA-linker conjugate, (a4) a translation step, and (a5) reverse transcription. Step, (a6) crosslinked library preparation step, (a7) target polypeptide immobilization step, (a8) in vitro selection step, and (a9) in a solution containing an organic solvent, obtained in the above in vitro selection step And a cross-linking step of cross-linking the obtained polypeptide.
  • a cDNA display method is used to prepare a DNA library from mRNA containing a desired nucleotide sequence under normal conditions. Then, in the transcription step (a2), mRNA is prepared from the obtained DNA library according to a standard method and purified.
  • the mRNA purified in the transcription step of (a2) above is bound to a linker to form an mRNA-linker conjugate.
  • the linker used in this step preferably has at least an mRNA binding site, a reverse transcription primer binding region, and a peptide binding site.
  • a linker as shown in FIG. 4 may be used. It is preferable in terms of work efficiency after the translation process described below. If necessary, a linker as shown in FIG. 5 can be used.
  • the mRNA-linker conjugate obtained in the binding step (a3) is translated in a cell-free translation system to form an mRNA-peptide conjugate.
  • a cell-free translation system use of rabbit reticulocyte lysate (RRL), wheat germ extract, insect cells (SF9 or SF21, etc.), etc. is effective for ribosome, translation factor and tRNA synthesis. It is preferable because it contains all required cell macromolecules such as.
  • cDNA is produced from the mRNA in the mRNA-peptide conjugate using a reverse transcriptase, and the cDNA is bound to the mRNA-peptide conjugate to bind mRNA-peptide-cDNA.
  • a reverse transcriptase As the reverse transcriptase, PrimeScript series (manufactured by Takara Bio Inc.) or the like can be used.
  • the mRNA-peptide-cDNA conjugate obtained as described above is allowed to form a disulfide bond or is cross-linked using a chemical cross-linking agent to form a cross-linking library. Let it form.
  • the following target substances are immobilized on the resin in the (a7) step according to a conventional method.
  • a resin it is preferable to use various magnetic beads, since the mRNA-peptide-cDNA conjugate can be released from the resin-bound mRNA-peptide-cDNA conjugate in a lump. The mRNA, peptide, or cDNA can then be individually cleaved from the linker. Then, using the crosslinked library and the target polypeptide immobilized on the resin, for example, in vitro selection using a cDNA display method can be performed to obtain a polypeptide having the desired sequence.
  • cross-linking agent used for forming the cross-linked polypeptide having the specific structure bismaleimidoethane or bismaleimide propane can be used, and using these, a disulfide-rich peptide library can be efficiently prepared at low cost. be able to. " Subsequently, in order to examine the binding property with the crosslinked library obtained in the step (a6) of forming the crosslinked library, a target substance as described below is immobilized on the resin. Then, using the crosslinked library and the target polypeptide immobilized on the resin, in vitro selection can be performed using, for example, a cDNA display method to obtain a polypeptide having the desired sequence.
  • target substance examples include, as described above, antigen proteins and fragments thereof (eg, IgG, scV, Fab, Fc, VHH, etc.), various signal transducing substances in vivo (eg, hormone, Cyclic AMP (cAMP), second messenger such as cyclic GMP (cGMP), interleukin, midkine and other cytokines), in vivo signal receptor (cAMP receptor, cGMP receptor, interleukin receptor, etc.) , And tumor marker proteins (scc, CA-125, CEA, PSA, etc.) and the like.
  • antigen proteins and fragments thereof eg, IgG, scV, Fab, Fc, VHH, etc.
  • various signal transducing substances in vivo eg, hormone, Cyclic AMP (cAMP), second messenger such as cyclic GMP (cGMP), interleukin, midkine and other cytokines
  • cAMP receptor e.g, cyclic GMP (
  • midkine As such a target molecule, for example, midkine or interleukin 6 (IL6) can be used.
  • Midkine is a basic low-molecular-weight protein (polypeptide) that is classified into cytokines and growth factors. There are 5 pairs of disulfide bonds, 3 pairs at the N-terminal side and 2 pairs at the C-terminal side. have. It is known that the activity of midkine is at the C-terminus, and is most expressed in the metaphase embryo in humans, but it is restricted to vascular epithelium and specific mucosal epithelium after adulthood. .. FIG. 4 shows the structure and active site of midkine.
  • midkine increases in serum and/or urine of patients with various cancers (blood concentration is 0.15 ng/mL in healthy subjects and 0.5 ng/mL or more in cancer patients). It has been attracting attention as a tumor marker.
  • midkine is an esophageal cancer, gastric cancer, colon cancer, liver cancer, pancreatic cancer, thyroid cancer, lung cancer, breast cancer, bladder cancer, uterine cancer, ovarian cancer, prostate cancer, neuroblastoma. It is suitable as a target molecule because it shows an increase in blood concentration in patients with cytomas, glioblastoma, etc.
  • Interleukin 6 which is a type of cytokine, is used in various cells such as T cells, B cells, monocytes, fibroblasts, keratinocytes, endothelial cells, mesangial cells, and fat. It is known that it is produced by cells and some tumor cells, and that it is mainly expressed by T cells, monocytes, activated B cells, neutrophils and other hematopoietic cells. It is also known that an increase in the amount of IL6 produced leads to the development of various autoimmune diseases, inflammatory diseases and the like.
  • IL6R is a receptor for IL6, and they are classified into a membrane-bound type (hereinafter sometimes referred to as “mIL6R”) and a soluble type (hereinafter sometimes referred to as “sIL6R”).
  • mIL6R membrane-bound type
  • sIL6R soluble type
  • IL6 exhibits biological activity via IL6R and gp130.
  • IL6 bound to membrane-bound IL6R induces a homodimer of gp130, forming a high-affinity receptor complex consisting of IL6, IL6R, and a trimer of gp130.
  • SIL6R bound to IL6 also forms a trimer with gp130.
  • tocilizumab humanized human IL6R monoclonal antibody: TCZ
  • TCZ inhibits both mIL6R and sIL6R and blocks IL6-mediated signal transduction, and thus is used to improve symptoms such as rheumatoid arthritis, Castleman's disease, and generalized juvenile idiopathic arthritis.
  • the target polypeptide immobilization step of (a7) the target polypeptide is immobilized on the resin, and in the in vitro selection step of (a8), the crosslinked library and the immobilized target polypeptide are reacted. Then, in vitro selection is performed to obtain a polypeptide having the desired sequence. Then, mRNA may be obtained from the cDNA of the obtained polypeptide, and the steps (a3) to (a8) may be repeated a desired number of times. This repetition is called a round, and by increasing the number of rounds, it is possible to obtain a nucleotide sequence of a peptide that has converged to some extent.
  • the obtained peptide is crosslinked in a solution containing an organic solvent to prepare a crosslinked polypeptide having a unique structure.
  • an aqueous solvent containing an organic solvent is used, as shown in FIG. 3(A), even if the peptide does not change its structure in the aqueous solvent (buffer aqueous solution), it is a non-aqueous solvent. This is because the structure taken inside may change in the aqueous solvent due to the change in the polarity of the solvent (see FIG. 3(B)).
  • the cross-linked peptide obtained as described above is preferably a polypeptide containing three or more cysteines, because it has a wide range of applications as a pharmaceutical scaffold.
  • the cross-linking polypeptide contains three or more cysteines and can bind to a target polypeptide.
  • Examples of such a peptide include the above-mentioned conotoxin or its analogs. ..
  • the crosslinked polypeptide having such a structure is preferably produced in a solution containing any organic solvent selected from the group consisting of dimethylformamide, acetonitrile and ethanol. When the content of the organic solvent in the solution is 10 to 90% by volume, the cross-linked polypeptide having the unique structure can be efficiently prepared while maintaining the diversity, and thereby the desired disulfide-rich can be obtained.
  • Peptide libraries can also be prepared.
  • the formation of the cross-linked polypeptide having the above-mentioned specific structure may be formed by the cysteine contained in the desired position of the above peptide, or may be formed by using a cross-linking agent.
  • a cross-linking agent used for forming the cross-linked polypeptide, bismaleimide ethane, bismaleimide propane, ⁇ , ⁇ ′-dibromo-o-xylene and the like can be used. Use of these cross-linking agents makes it possible to efficiently prepare a disulfide-rich peptide library at low cost.
  • the conotoxin exemplified above is a peptide in which 11 to 30 amino acids are connected and a peptide having a unique structure having three SS bonds, as shown in FIG. 1(A), Not easily decomposed by enzymes. Therefore, a peptide having 3 or more cysteines is expected to be less likely to be decomposed by an enzyme, and thus can be preferably used.
  • conotoxin shall collectively include the above-mentioned ⁇ -conotoxin, ⁇ -conotoxin, ⁇ -conotoxin, ⁇ -conotoxin, and ⁇ -conotoxin.
  • analog of conotoxin refers to a compound having a cyclic cystine knot (CCK) motif. That is, it refers to a compound in which the C-terminus and the N-terminus are linked to form a ring and which has three disulfide bonds in the molecule.
  • CCK cyclic cystine knot
  • Cyclotide compounds include bracelet cyclotide, which is the most common subgroup, Mobius cyclotide containing cis-proline in loop 5 shown in Fig. 1(B), and trypsin having a sequence similar to that of an acyclic trypsin inhibitor. • Inhibitors-including Knottons.
  • the cross-linked peptide can be prepared as described above.
  • the binding between such a cross-linking peptide and the target peptide can be analyzed by using gel electrophoresis or another analysis method after reacting under desired conditions. Examples of such an analysis technique include gel electrophoresis and upshift assay. Further, the change in the structure of the crosslinked peptide prepared as described above can be confirmed to some extent by the change in the HPLC chromatogram.
  • Example 1 Screening for midkine using S-body library and cross-linking agent BMOE (1) Target polypeptide etc. Since the structural change of cross-linking peptide can be detected, midkine (ATGEN) And manufactured by IL6R (manufactured by MBL Science).
  • Gel electrophoresis was performed according to the following procedure. After the above gel hardened, the surface of the glass plate was washed with MilliQ water, and the comb and the lower member of the gasket were removed from the glass plate. The electrophoresis plate was placed on the holder and fitted into the upper tank, and the lower tank of the electrophoresis tank was filled with the buffer for electrophoresis. 0.5X TBE was prepared by diluting 10X TBE 20 times and used as a buffer for electrophoresis.
  • a solution having the composition shown in Table 6 or 7 below was prepared for polypeptide polyacrylamide gel electrophoresis (SDS-PAGE).
  • 10x SDS-running buffer was diluted 10 times to make 1xSDS-running buffer, which was used as a buffer for electrophoresis. Electrophoresis was performed at a constant voltage of 20 mA in the same manner as for nucleic acid polyacrylamide electrophoresis. After completion of electrophoresis, labeling was performed using FITC fluorescence of SBP linker, SYPRO Ruby, and Lumitein, and the band position was confirmed by observing the fluorescence.
  • 1x conjugation buffer 0.2 M sodium phosphate (pH 7.2), 0.5 M TCEP-HCl, and bismaleimideethane (BOME), Thermo Fisher Scientific
  • oxidative folding buffer 0.1 M Tris (pH 7.0), 1 mM EDTA, 2 mM GSSG, 7 mM GSH, 0.05% Tween 20
  • dimethyl sulfoxide Nacalai Tesque, Inc.
  • reduced glutathione and non-reduced glutathione Sigma-Aldrich
  • EZ-Link TM maleimide-PEG11-biotin manufactured by Thermo Fisher Scientific
  • Illustra Micro Spin Empty Column manufactured by GE Healthcare
  • Amicon Ultra-0.5 centrifugal filter device 3K manufactured by MERCKMILLIPORE
  • NHS-activated Sepharose 4 fast flow manufactured by GE Healthcare
  • EZ-Link Sulfo-NHS-SS-Biotin manufactured by Thermo Fisher Scientific
  • Ts beads FG beads
  • T7 ⁇ -Library(MGC(27AA))-HisX6-C(Ytag) having the following sequence was created.
  • X represents any nucleotide.
  • the SBP linker having the structure shown in Table 8 below and FIG. 5 was used.
  • the PCR program consisted of incubation at 98° C. for 1 minute, incubation at 98° C. for 10 seconds, followed by incubation at 68° C. for 20 seconds for 5 cycles, incubation at 68° C. for 1 minute, and cooling to 4° C.
  • the PCR product was ethanol-precipitated and concentrated, and then the primer and enzyme were removed using the PCR-Clean-up Mini Kit.
  • the PCR product was confirmed by the above-described 8 M urea-denatured nucleic acid polyacrylamide gel electrophoresis (electrophoresis performed on nucleic acids such as DNA and RNA; hereinafter also referred to as “PAGE”).
  • the library DNA prepared by PCR was confirmed by 6% PAGE so that the diversity of the initial library was not lost and subbands did not appear.
  • the DNA was stained with SYBR Gold, and the results are shown in Fig. 6.
  • Transferring reaction was performed by incubating at 37°C for 3 hours in the reaction solution with the above composition. After that, 1 ⁇ L of RQ1 RNase-Free DNase was added and further incubated at 37°C for 15 minutes. After 15 minutes, immediately after that, it was purified using the After Tri Reagent RNA Clean-up Kit according to the attached protocol. At this stage, transcripts and peptide libraries were confirmed by the above 8M urea denaturing PAGE.
  • the annealing conditions were 90°C for 2 minutes, 1 minute to 70°C, 70°C for 1 minute, 15 minutes to 25°C, and 25°C for 30 seconds.
  • 1.0 ⁇ L of T4 RNA ligase and 0.5 ⁇ L of T4 polynucleotide kinase were added to each sample and incubated at 25°C for 30 minutes.
  • the ligation product was subjected to 8M urea denaturation 6% PAGE (200V, 25 minutes) using mRNA as a control. Gel electrophoresis was stained with SYBR Gold. The results are shown in Fig. 7.
  • reaction solution having the composition shown in Table 12 25 ⁇ L was dispensed into each tube and then incubated at 30° C. for 25 minutes. Then, 12 ⁇ L of 3 M KCl and 6 ⁇ L of 1 M MgCl 2 were added, and the mixture was further incubated at 37° C. for 60 minutes.
  • the mRNA-linker conjugate to be added was 120 pmol in the first round, 24 pmol in the second round, and 18 pmol in the third and subsequent rounds.
  • the solution composition in each round was adjusted to an amount suitable for carrying out cell-free translation.
  • the ribosome bound to the post-translational mRNA-peptide conjugate was removed as follows. First, 65 ⁇ L of 0.5 M EDTA (final concentration 70 mM) was added as a chelating agent. To this, an equal amount of 2x binding buffer was added, mixed with washed Dynabeads MyOne Streptavidin C1 and incubated at room temperature for 25 minutes, and the supernatant was removed. This supernatant was subjected to 8M urea denaturation 6% SDS-PAGE (20mA, 2 hours) together with the ligation product as Sup.1 to confirm the content. The gel was stained with FITC. The results are shown in Fig. 8.
  • the supernatant was confirmed as Sup. by electrophoresis.
  • the mixed solution of cDNA display and His-mag Sepharose Ni was washed twice with His-tag washing buffer. After adding the His-tag elution buffer and stirring vigorously for 10 minutes or more with a shaker, the supernatant was collected.
  • the cDNA display was eluted.
  • the first round was as follows. First, the preselected cDNA display was added to NHS-activated Sepharose 4 Fast Flow with immobilized midkine, and incubated at 4°C for 1 hour. Then, the cells were washed with 1x selection buffer and the washing solution was collected (hereinafter, this washing solution may be referred to as "flow-through” or "F.T.”). Washing was further repeated several times by the same procedure, and the washing liquid for each time was collected (hereinafter, may be referred to as “wash 1 to 10” or “Wash 1-n”).
  • PCR was performed in a solution having the same composition as in Table 14 according to the same PCT program as in (6) above to obtain amplified DNA. 25 ⁇ L of each DNA amplified by PCR was subjected to 8M urea denaturing PAGE and confirmed.
  • Example 2 Development of screening system using high concentration organic solvent (1) Materials
  • the cross-linking reaction contains 1 x TBMB reaction buffer (20 mM ammonium hydrogen carbonate, 5 mM EDTA and 0.05% Tween 20 (pH 8.0). )), 1,3,5-tris(bromomethyl)benzene (all manufactured by Tokyo Chemical Industry Co., Ltd.), and acetonitrile (HPLC grade, manufactured by Wako Pure Chemical Industries, Ltd.) were used.
  • Streptavidin from Streptomyces avidinii Sigma-Aldrich was used for the upshift assay.
  • the following clones obtained from the S-body library obtained as described above were used as controls and samples.
  • cDNA display was obtained from the cloned DNA in the same manner as the above cDNA display preparation method, except that three types of clones were used instead of the peptide library and the crosslinking reaction conditions were excluded.
  • a reaction buffer containing 10 mM TCEP dissolved therein was added, and the mixture was incubated at 42°C for 10 minutes.
  • the TBMB concentration, the reaction time, and the acetonitrile (hereinafter, sometimes abbreviated as “ACN”) concentration settings were changed, and the crosslinking reaction was performed to obtain the crosslinking efficiency.
  • the crosslinking reaction of the S-body library by BMOE was performed under the same conditions as in Example 2 above. The results are shown in Table 15 below. It was shown that higher chemical cross-linking efficiency is advantageous in maintaining library size. In particular, it was revealed that the library size was not impaired when it was about 80% or more.
  • ND means not detectable.
  • Crosslinked cDNA display is not biotinylated, so streptavidin does not bind, and uncrosslinked cDNA display is biotinylated, so streptavidin binds.
  • an upshift assay in which a thiol group which was not bound by a cross-linking agent was biotinylated and streptavidin was bound was performed to calculate the cross-linking efficiency.
  • the upshift assay is shown schematically in FIG.
  • Figure 14 shows the results of gel electrophoresis (8M urea denaturation 6% SDSPAGE, 20mA, 2 hours) after cross-linking clones using TBMB at a final concentration of 10 ⁇ M in 20% ACN. ..
  • the gel was stained with FITC. Since the band intensity ratio of the uncrosslinked peptide and the crosslinked peptide was 8:2, the crosslinking efficiency was 20% when the reaction time was 1 hour.
  • the crosslinking efficiency was 33%. Since the cross-linked peptide had a single band, it was considered that intermolecular cross-linking was present in a very small amount or could not be confirmed by SDS polyacrylamide gel electrophoresis. In any case, the intermolecularly crosslinked molecules were not judged to be a problem amount when introduced into the screening system.
  • Example 3 Screening for IL6R using S-body library and BMOE
  • an affinity screen for IL6R was performed using an S-body library cross-linked with BMOE in 50% DMF.
  • N,N-dimethylformamide for molecular biology, manufactured by Wako Pure Chemical Industries, Ltd.
  • Recombinant human IL6R protein manufactured by ACRO Biosystems
  • Preparation of cDNA display from the peptide library was performed in the same manner as in Example 2 above except that the crosslinking reaction conditions were different, the uncrosslinked cDNA display was not purified, and the reactive group of the crosslinking agent was blocked. ..
  • PBS-T PBS containing 0.5% Tween 20
  • IL6R was added and the volume was adjusted to 100 ⁇ L with PBS-T. Then, it was incubated overnight at 4°C. After the incubation, the plate was washed 6 times with 20 mM Tris-HCl (pH 8.0) and further incubated overnight at 4°C. After this incubation, the reactive groups were blocked with 0.5 M ethanolamine and incubated overnight at 4°C. After that, the supernatant was removed, and 1 ⁇ selection buffer was added and stored.
  • the IL6R before fixation and the flow-through after fixation were subjected to 10% SDS PAGE (20 mA, 2 hours) to confirm fixation on Sepharose resin.
  • the gel was stained with SYPRO Ruby. The results are shown in Figure 18. From FIG. 18, it was confirmed that IL6R could be immobilized on Sepharose resin with sufficient efficiency.
  • Peptide-linker conjugates for pulldown assays were prepared as described above and pulldown assays were performed for the presence or absence of interaction between the library peptides obtained above and the sCD40 ligand. The reaction scheme is shown schematically in FIG.
  • FIG. 22 shows a graph of the rate of increase obtained by the following equation (1).
  • Example 4 Analysis of peptide cross-linking under different solvent conditions (1) Preparation of sample for studying peptide cross-linking (1-1) Preparation of conotoxin-based peptide fragment Comparison among known sequences of natural conotoxins The following two amino acid sequences (SEQ ID NOS: 12 and 13 in the sequence listing) were selected as those having a relatively short length and containing four cysteines (see FIG. 24). In these peptides, C1 and C3 and C2 and C4 (the numbering of cysteine is the one that appears first from the N-terminus as 1 and the order is 2, 3 and 4 below). Disulfide bridge. (SEQ ID NO: 12 in the Sequence Listing) MCPPLCKPSCTNC (Sequence ID No. 13 in the sequence listing) DCPPHPVPGMHKCVCLKTC
  • Example 5 Preparation of C-random-C library (1) Preparation of cDNA display from peptide library (1-1) Amplification by PCR 1 DNA synthesis of the disulfide-rich peptide library was commissioned to Tsukuba Oligo. PCR1 (Extension PCR 1) was performed using the solutions shown in Table 18 below so that the diversity of the initial library was not lost and subbands did not appear, and the library was purified.
  • the PCR1 program was as follows: (t1-1) 98°C for 1 minute, (t1-2) 98°C for 10 seconds, (t1-3) followed by incubation at 63°C for 5 seconds, (t1-4) After incubating at 72° C. for 10 seconds, (t1-1) to (t1-4) were carried out for 5, 7, or 9 cycles, incubated at 72° C. for 2 minutes, and then cooled to 4° C.
  • the obtained PCR product was confirmed by 8M urea-denatured nucleic acid polyacrylamide gel electrophoresis (electrophoresis performed on nucleic acids such as DNA and RNA; hereinafter also referred to as “PAGE”).
  • Figure 26 shows the results of gel electrophoresis (8M urea 6% PAGE).
  • the 6% gel for gel electrophoresis had the composition shown in Table 19 below. From FIG. 26, it was confirmed that the desired PCR product 1 was obtained using the C-random-C library and His(Ytag-cnvK). Also, the amount of PCR product 1 did not increase significantly depending on the number of cycles.
  • Extension products 1 obtained in (4-1) above were used as a template for the following PCR, and the solutions shown in Table 19 below were used.
  • PCR2 Extension PCR 2 was carried out.
  • the PCR2 program consists of (t2-1) incubation at 98°C for 1 minute, (t2-2) incubation at 98°C for 10 seconds, (t2-3) followed by incubation at 58°C for 5 seconds, (t2-4). After incubating at 72°C for 15 seconds, (t2-1) to (t2-4) were carried out for 7, 10 or 13 cycles, incubated at 72°C for 2 minutes, and then cooled to 4°C.
  • the obtained PCR product 2 (Extension product 2) was confirmed by the above-mentioned 8M urea-denatured nucleic acid PAGE. After that, the primer and the enzyme were removed using PCR-Clean-up Mini Kit to obtain Extension product 2. The results of gel electrophoresis of these are shown in FIGS. 27 and 28.
  • Extension product 1 used as a point template for PCR2 was amplified by T7 ⁇ , and the desired PCR product 2 (235 bp) was obtained. Also, the amount of PCR product 2 did not increase significantly depending on the number of cycles.
  • the PCR3 program consists of (t3-1) incubation at 98°C for 1 minute, (t3-2) incubation at 98°C for 10 seconds, (t3-3) followed by incubation at 67°C for 5 seconds, (t3-4). After incubating at 72°C for 15 seconds, 25 cycles of (t3-1) to (t3-4) were performed, and after incubating at 72°C for 2 minutes, the temperature was lowered to 4°C.
  • the obtained PCR product 3 was confirmed by the above-mentioned 8 M urea-denatured nucleic acid PAGE. After that, the primer and the enzyme were removed using PCR-Clean-up Mini Kit to obtain PCR product 3 (235 bp).
  • the purified product (25 ng/ ⁇ L) obtained by column-purifying the 10-fold to 1000-fold diluted PCR products (4 to 6 in FIG. 28) was used for transcription.
  • the resulting PCR3 product was subjected to 8 M urea-denatured nucleic acid PAGE for final confirmation (see FIG. 28).
  • a sequence analysis of this library was requested to Eurofin Genomics, Inc., and it was confirmed that the libraries shown in Table 21 below (C-random-C library) were synthesized. This library was as designed.
  • nucleotide sequence of the C-random-C library preparation construct (SEQ ID NO: 18 in the sequence listing) is shown below. (SEQ ID NO:18 in the sequence listing) 5'-GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAACAACAACAACAACAACAACAACATTTTACATTCTACAACTACAAGCCACCATGGGCTGCXYZXYZXYZXYZXYZXYZGGAZCATZCATGAGCAACATZ
  • Transferring reaction was performed by incubating at 37°C for 3 hours in the reaction solution with the above composition. After that, RQ1 RNase-Free DNase was added at 2.5 ⁇ L and further incubated at 37°C for 15 minutes. Immediately after 15 minutes, the transcript was purified using Agencourt RNA Cleane XP (Beckman Coulter, Inc.) according to the attached protocol. At this stage, the transcript and the C-random-C library were confirmed by the above 8M urea denaturing PAGE. Results are shown in FIG. By this amplification, the target product, 205 bp mRNA, was obtained. The stock solution of transcript (No. 2 in FIG. 30) was purified and used as a template for ligation below.
  • the temperature was lowered to 70°C at 0.1°C/minute. After incubating at 70°C for 1 minute, the temperature was lowered to 25°C at 0.01°C/minute, and the mixture was incubated at 25°C for 30 seconds.
  • annealing using a CL-1000 Ultraviolet Crosslinker, ultraviolet light of 365 nm was irradiated for 405 seconds (405 mJ/cm 2 ), and the above cnvK linker and the transcription product were photocrosslinked to obtain a ligation product. Then, the obtained ligation product and uncrosslinked mRNA (control) were subjected to the above 8 M urea denaturing PAGE (200 V, 25 minutes).
  • Fig. 31 After gel electrophoresis, the gel was stained with FITC or SYBR Gold. The results are shown in Fig. 31. From FIG. 31, it was confirmed that the cnvK linker and the above-mentioned mRNA were crosslinked by shifting the position of the detected band to a higher molecular side than the band of the mRNA alone.
  • the ribosome bound to the post-translational mRNA-peptide conjugate was removed as follows. First, 8 ⁇ L of 0.5 M EDTA (final concentration 70 mM) was added as a chelating agent. To this, an equal amount of 2x binding buffer was added, mixed with washed Dynabeads MyOne Streptavidin C1 and incubated at room temperature for 25 minutes to remove the supernatant. This supernatant was subjected to 8M urea denaturing PAGE (20mA, 2 hours) together with the ligation product as Sup.1 to confirm the content. The gel was stained with FITC. The results are shown in Figure 32. From FIG. 32, it was confirmed that the ligation product was translated, immobilized on the above magnetic beads, and purified by His-tag.
  • FIG. 33 shows the results obtained using the clones obtained as described above, and FIG. 33(B) shows the results obtained using the non-cloned library. It was speculated that the fact that the clone was obtained in the presence of 50% DMF might have affected the purification. As shown in FIG. 34, there was a difference in crosslinking depending on the crosslinking agent used.
  • Example 5 Examination of organic solvent resistance of streptavidin magnetic beads
  • the organic solvent it was decided to use a polar solvent while considering the effect on the peptide.
  • Dimethylsulfoxide hereinafter sometimes referred to as "DMF"
  • DMF Dimethylsulfoxide
  • acetonitrile dielectric constant of 37.5, boiling point of 82°C
  • ethanol which is a protic polar solvent (dielectric A rate of 25.8 and a boiling point of 78°C) was selected.
  • the concentration of each organic solvent was set to 50%, and the change in fluorescence intensity of fluorescent biotin (free biotin) released from streptavidin magnetic beads was examined with the reaction time.
  • TCEP-HCl tris(2-carboxyethyl)phosphine hydrochloric acid
  • DMF90 sample a 90% DMF solution
  • DMF04 sample a 90% DMF solution
  • each sample was diluted 5-fold with 0.1% TFA aqueous solution, 100 ⁇ L was taken from the diluted solution and injected into HPLC for analysis.
  • a sample containing DMF90 alone, DMF4%+crosslinking agent, peptide alone, or neither crosslinking agent nor peptide was used.
  • solution A is 0.1% TFA and solution B is 100% acetonitrile.
  • FIGS. 36(A) and 36(B) The results of HPLC analysis of cross-linked peptide 1 (SEQ ID NO: 14 in the sequence listing) are shown in FIGS. 36(A) and 36(B).
  • FIG. 36(A) shows the results when crosslinked in 4% DMF (including the conjugation buffer), and the same (B) shows the results when crosslinked in 90% DMF.
  • FIGS. 37(A) and 37(B) The solvent used in FIGS. 37(A) and 37(B) is the same as that in FIG. 37.
  • FIGS. 38(A) and 38(B) The solvent used in FIGS. 38(A) and (B) is the same as that in FIG.
  • the very large peak observed at a retention time of 17 minutes was BMOE.
  • the peak of the non-cross-linked peptide decreased after the cross-linking, and a peak was observed at a position that could not be confirmed before the cross-linking. From the retention time, the peak detected after cross-linking was considered to be a cross-linking peptide (reaction product of cross-linking agent and peptide).
  • the present invention is useful in the technical fields of protein engineering, pharmacy, medicine and diagnostics.
  • SEQ ID NO: 2 Amino acid sequence of cross-linked polypeptide (2)
  • SEQ ID NO: 3 Amino acid sequence of cross-linked polypeptide (3)
  • SEQ ID NO: 4 Base sequence of T7 promoter
  • SEQ ID NO: 5 Base sequence of ⁇ sequence
  • SEQ ID NO: 6 Base sequence of GGGS sequence
  • SEQ ID NO: 7 Base sequence of inosine primer
  • SEQ ID NO: 8 Base sequence of primer (NewYtag)
  • SEQ ID NO: 9 N-base sequence of construct for preparing S-body
  • SEQ ID NO: 10 Amino acid sequence of positive control (clone 45)
  • SEQ ID NO: 11 Amino acid sequence of sample (clone 67)
  • SEQ ID NO: 13 Base sequence 2 of natural conotoxin
  • SEQ ID NO: 14 Base sequence 1 in which a base for

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

簡便、かつ酵素によって構造が簡単には壊れないポリペプチドの調製、そうしたポリペプチドの調製に使用し得るペプチドライブラリ、及びその調製方法を提供することを目的とする。 架橋剤を用いて所望の配列を有するタンパク質の架橋反応を行うことにより、10~90%有機溶媒を含む溶液中にて特異な構造の架橋タンパク質を調製する調製工程を備える、コノトキシン及びその類縁体からなる群から選ばれるいずれかのポリペプチドに類似する構造を有する、所望の標的タンパク質と結合するジスルフィドリッチペプチドライブラリの調製方法を提供する。

Description

ジスルフィドリッチペプチドライブラリの調製方法、標的ポリペプチドと結合し得る架橋ポリペプチド、及びその調製方法
 本発明は、化学架橋剤や反応条件に非水性緩衝液を用いて試験管内淘汰実験に用いる分子の構造多様性を拡張することに関する。
 抗体医薬は低分子医薬の課題であった特異的で効果的な治療を実現できているが、一方で治療上の課題も抱えている。
 一つ目の課題として、抗体医薬は他の医薬と比べて非常に高価であるということが挙げられる。これは、主として、抗体が複数のポリペプチド鎖から成る比較的分子量の大きいタンパク質(ポリぺプチド、約150 kDa)であり、生産コストが高いことに起因する。また、抗体は、(1)細胞内標的能及び組織浸透性が低い、(2)比較的熱安定性が低い、(3)部位特異的修飾が困難である、といった特徴を持っている。
 もう一つの課題として抗原性が挙げられる。巨大な糖タンパク質である抗体は、その大きさ故に生体にとって異物と認識される可能性がある。このため、異物と認識されないように、キメラ抗体又はヒト化抗体に組み替える必要がある。現在では、この問題を解決する抗体工学技術が幾つも開発され、抗体医薬が実用化できるようになっている。
 しかし、依然として抗体の低い細胞内標的能と組織浸透性の低さという課題は残されたままである。上記の細胞内標的能が低いということは標的となる抗原が限定されるという問題に直結するものであり、標的抗原の枯渇は抗体医薬のさらなる発展にとって大きな障壁となり得る。
 こうした状況の下で、ポスト抗体医薬として注目されているのがペプチド医薬である。ペプチドは分子量1,000~1万kDa程度の中分子で、小分子より大きく抗体より小さいサイズである。低分子化合物と対比すると、ペプチドには、そのアミノ酸配列の多様性から標的に対する親和性と特異性とを向上させることが期待できるという利点がある。また、タンパク質―タンパク質相互作用の模倣や阻害も容易である。
 抗体と対比すると、ペプチド医薬は分子サイズが小さいため組織浸透性に優れ、一般的には抗原性もないという利点がある。さらに、ペプチド医薬は化学合成による作製、部位特異的な化学修飾も可能である。また、後述の各種ディスプレイ技術で扱える大きさの分子であることから迅速な研究開発が期待できるという利点を持つ。
 さらに多様な分子を標的とできるという利点もある。標的となり得るものとしては、生体分子だけでなく、無機表面(金属、半導体および金属酸化物)や有機分子(ナノカーボンおよびポリマー)等を挙げることができ、これらに対して親和性を示すペプチド又は特異的に結合する人工ペプチドが設計されている。
 ところで、天然には、ジスルフィド結合により立体構造をとり、高い分子認識能、高親和性、安定性を持つペプチドがあることが知られている。こうしたペプチドの例としては、イモ貝が産生する神経毒の一種であるωコノトキシン、植物にしばしば含まれるシクロチドという抗菌作用を持つペプチド等が挙げられる。3箇所にジスルフィド結合を有するシクロビオラシンは、アカネ科、スミレ科、及びウリ科の植物に含まれることが多い(図1(A)及び(B)参照)。
 コノトキシンは、11~30アミノ酸で構成されるタンパク質であり、イモ貝が餌となる小魚を捕食する際に使われる神経毒である。一般的なペプチドはタンパク質分解酵素による分解を受けやすく血中安定性が低いが、コノトキシンは血中でも分解されないため、対象となる生体内に注入されると様々なイオンチャネルやアセチルコリン受容体を強力にブロックし、この対象を麻痺させる。血中で分解されない理由は、コノトキシンが複数のジスルフィド結合を持ち、このジスルフィド結合によって構造が制約されるとともに、安定化されているためである。言い換えると、コノトキシンは、イオンチャネルやアセチルコリン受容体に対する優れたペプチドアプタマーである。
 また、コノトキシンには、神経から筋肉へ伝達するアセチルコリン受容体を作用点とするα-コノトキシン、電位依存的なナトリウムイオンチャネルを作用点とするδ-コノトキシン、カリウムチャネルを作用点とするκ-コノトキシン、筋肉で電位依存的なナトリウムイオンチャネルを作用点とするμ-コノトキシン、N型カルシウムイオンチャネルを作用点とするω-コノトキシンの5種類があることが知られている。
 脊髄のN型カルシウムイオンチャネルは痛覚の伝達に関連があるため、コノトキシンを脊髄膜下へ投与すると強力な鎮痛剤として作用し、その鎮痛効果はモルヒネよりも2桁~3桁強いといわれる。このため、モルヒネ耐性となった末期癌の患者等への疼痛治療薬としての使用が期待されている。さらに、コノトキシンのスキャフォールド分子は医薬品としても利用されている。
Wilson A. J. (2009) Inhibition of protein-protein interactions using designed molecules. Chem. Soc. Rev., 38, 3289-3300 Kates S. A., Sole N. A., Johnson C. R., Hudson D., Barany G., Albericio F. (1993) A novel, convenient, three-dimensional orthogonal strategy for solid-phase synthesis of cyclic peptides, Tetrahedron Lett., 34, 1549-1552.
 上述したように、近年、バイオ医薬は抗体から、より分子量の小さいペプチドへと移行しつつある。抗体は複数のポリペプチド鎖で構成されているため高次構造をとることができ、消化酵素又はタンパク質分解酵素の認識部位が露出しにくい。このため、こうした酵素によって分解されにくいという利点がある。一方で、ペプチドには、細胞内標的能及び熱安定性が高く、部位特異的修飾がしやすいという利点があり、抗体と比べて生産コストも安い。
 しかしながら、ペプチドには上記抗体に比べて血中安定性が低いという問題がある。これは、ペプチドが低分子で複雑な構造をとりにくいため、消化酵素やタンパク質分解酵素の認識部位が露出することになり、こうした酵素によって分解されやすくなっていることによる。
 既に第1世代バイオ医薬品としては実用化されているペプチドもあるが、上述した酵素によって分解されやすいという性質から、経口投与した場合に、上記のような酵素により速やかに分解されるため作用持続が極めて短い、消化管粘膜を透過しにくい、及び抗体産生に伴って副作用が起きることがあるといった問題点があることが知られている。そして、このために、ペプチドが治療薬として期待されながらも開発が遅れてきたといわれている。
 これらの中でも特に問題となるのはペプチドの安定性である。ペプチドはタンパク質分解に対する耐性が低く、血中や組織中に存在するプロテアーゼによって数分のうちに分解され、生体外に排出される。このため、ペプチドが医薬品として体内で安定して作用するには、ペプチドの機能が発揮されるまでペプチドの半減期を延長させる必要がある。すなわち、ペプチド医薬の発展にはペプチドの安定性を向上させる戦略が必要なのである。
 こうしたペプチドの安定性を向上させる手段の一つとして、ペプチドを環状にすることが挙げられる。ペプチドを分解するプロテアーゼは、分解部位によって、タンパク質の末端から1~2アミノ酸ずつ切断するエキソプロテアーゼ、タンパク質の中央から切断するエンドプロテアーゼに分けられる。エキソプロテアーゼは環状ペプチドを分解できないため、ペプチドの環状化は、エキソプロテアーゼによる分解を阻害する上で有効である。例えば、ペプチドのアミノ末端とカルボキシル末端がペプチド結合で結ばれた環状ペプチドや、システインのチオール基を反応基とした化学架橋剤による環状ペプチドがスクリーニングによって取得されている。天然にも消化耐性を有する環状ペプチドが存在するが、細胞内での環状ペプチド形成機構は明らかになっていない。
 前述の課題を解決しペプチドの安定性を向上させるために、N-メチル化(膜透過性および安定性の向上)、非天然アミノ酸の組み込み(特異性および安定性の向上)、PEGの付加(還元クリアランスの低下)、環化(安定性の向上)その他の構造的制約(例えば、ジスルフィド結合による立体構造の構築)などといった多様な化学修飾プロトコルが発展してきた。特に、環化を含む構造的制約による薬物設計アプローチが最も盛んに研究されている。実際に医薬品として実用化されているペプチドの多くは天然に存在する環状ペプチドであり、インスリン、シクロスポリンA、グラミシジンS、オキシトシン、バンコマイシンなどが挙げられる。図2に、代表的な環状ペプチドであるシクロスポリン(A)及びオキシトシン(B)の化学構造を示す。
 ペプチドの構造を安定化させるためには、ハロゲンを利用したバイサイクリックペプチドの形成、又は天然に存在するペプチドを化学合成する際にジスルフィド結合を別の結合で置換すること等が挙げられる。
 環状ペプチドは、直鎖状のペプチドと比較すると、タンパク質分解に対して耐性が向上している。さらには、特定の分子に対する高い親和性又は標的分子に対する高い特異性の獲得が期待できることから、治療薬および診断薬を開発するためのテンプレートとしてもペプチドが浮上してきている。
 しかし、環状ペプチドは構造が複雑であり、簡単には合成することができないという問題がある。また、水性溶媒中でペプチド合成を行なうと、プロテアーゼその他の酵素によって架橋構造が断裂するといった問題もある。このため、簡便かつ酵素によって構造が簡単には壊れないペプチドの調製に対する強い社会的な要請があった。
 また、ペプチドには構造多様性があることが知られている。「ペプチドの構造多様性」とは、同じ配列のペプチドが異なる立体構造を取ることをいう。例えば、公知の化学架橋剤を用いて、水性溶媒中でペプチドを架橋させると、親水性表面を水性溶媒に対して露出した状態となり、このような構造を維持するように架橋される。すなわち、通常の様式の架橋しか起こらないため、構造多様性は生まれにくい。これに対し、有機溶媒その他の非水性溶媒中でペプチドを架橋させると、ペプチドが疎水表面を溶媒に対して露出させた状態になり、このような状態を維持するように架橋される。すなわち、水性溶媒中では生じないような架橋が起こり、構造多様性が生まれやすい。そして、このような架橋がされたペプチドは、水性溶媒条件下で架橋させた場合とは異なるフォールディングになっている可能性がある(図3参照)。
 しかし、疎水表面を溶媒に対して露出させた状態で架橋されたペプチドは、水性溶媒中では合成することができない。このため、このようなペプチドを合成すること対する強い社会的な要請があった。
 また、目的とするタンパク質(標的ポリペプチド質)と結合する機能をこうしたペプチドが有する場合には、医薬又は診断薬等としても使用することができる。このため、こうしたペプチドの調製に使用し得るペプチドライブラリを作製することについても、強い社会的があった。
 本発明の発明者等は、以上のような状況の下で鋭意研究を重ね、本発明を完成したものである。
 すなわち、本発明は、ジスルフィドリッチペプチドライブラリを作製するDNAライブラリ作製工程と;前記DNAライブラリからmRNAを調製して精製する転写工程と;前記転写工程で得られた精製mRNAとリンカーとを結合させてmRNA-リンカー結合体を形成させる結合工程と;前記mRNA-リンカー結合体を無細胞翻訳系で翻訳し、mRNA-ペプチド連結体を形成させる翻訳工程と;前記mRNA-ペプチド連結体中のmRNAからcDNAを作製し、mRNA-ペプチド連結体に結合させるmRNA-ペプチド-cDNA連結体を形成させる逆転写工程と;
前記mRNA-ペプチド-cDNA連結体を化学架橋させて化学架橋ライブラリを調製する化学架橋ライブラリ調製工程と;標的ポリペプチドを樹脂粒子に固定する標的ポリペプチド固定化工程と;前記化学架橋ライブラリと樹脂に固定された前記標的ポリペプチドとを用いて試験管内淘汰を行って前記所望の配列を有するポリペプチドを得る試験管内淘汰工程と;有機溶媒を含む溶液中にてジスルフィド結合又は架橋剤を用いて、前記所望の配列を有するポリペプチドを架橋させて特異な構造の架橋ポリペプチドを形成する、架橋工程と;を備える、標的ポリペプチドと結合し得る架橋ポリペプチドの調製方法である。
 ここで、「特異な構造」とは、疎水表面を溶媒に対して露出させた状態で架橋された構造、消化酵素、プロテアーゼその他のペプチドを分解する酵素の認識部位がペプチドの内側になるようにフォールディングされた構造等をいう。
 精製mRNAとリンカーとを、酵素又は光架橋によって結合させることが好ましく、前記精製mRNAとリンカーとの結合は、シアノビニルカルバゾールを含まないリンカーを使用する場合にはリガーゼで行い、シアノビニルカルバゾールを含むリンカーを使用する場合には紫外線照射で行うことが好ましい。
 シアノビニルカルバゾールを含むリンカーを使用すると、架橋に要する時間が5分以下と短く、リンカーの主鎖を構成するDNA及びこのリンカーに結合されるRNAのいずれに対しても、ダメージを与えることなくこれらを結合できるからである。また、作業時間もリガーゼを使用する場合と比べて、数十分の一にタンパク質食されるため、作業効率も高くなる。また、前記翻訳工程では、翻訳後の前記mRNA-ペプチド連結体に結合したリボソームを除去することが好ましい。そして、前記リボソームの除去には、キレート剤を使用することが好ましく、前記キレート剤は、エチレンジアミン四酢酸又はグリコールジアミン四酢酸であることが好ましい。
 前記有機溶媒を含む溶液は、10~90容量%の有機溶媒を含み、前記有機溶媒は、ジメチルホルムアミド、アセトニトリル、及びエタノールからなる群から選ばれるいずれかの溶媒であることが好ましい。また、前記所望の配列を有する架橋ポリペプチドは、システインを3個以上含み、標的ポリペプチドと結合し得るものであることが好ましい。ここで、前記標的ポリペプチドは、抗原タンパク質、生体内のシグナル伝達物質、生体内のシグナル伝達の受容体、及び腫瘍マーカータンパク質からなる群から選ばれるいずれかのポリペプチドであることが好ましい。さらに、前記架橋剤は、ビスマレイミドエタン、ビスマレイミドプロパン、及びα,α’-ジブロモ-o-キシレンからなる群から選ばれるいずれかのものであることが好ましい。
 本発明のさらに別の態様は、上記の方法で調製された、標的ポリペプチドと結合し得る架橋ポリペプチドである。ここで、前記架橋ポリペプチドは、システインを3個以上含むペプチドからなる群から選ばれるいずれかのポリペプチド、又はそれに類似する構造を有するものであることが好ましい。また、前記架橋ポリペプチドは、下記の配列表の配列番号1又は2のいずれかに記載の配列を有するものであることが、架橋構造の安定性の面から好ましい。
Figure JPOXMLDOC01-appb-T000001
 本発明の架橋ポリペプチドの調製方法によれば、標的ポリペプチドと結合し得る特異な構造の架橋ポリペプチドを、有機溶媒を含む溶液中にて調製することができるという大きな利点がある。
 また、上記の調製方法によって作製したジスルフィドリッチペプチドライブラリを用いて試験管内淘汰を行い、前記所望の配列を有するポリペプチドを得ることによって、標的ポリペプチドと結合し得る種々の架橋ポリペプチドを得ることができるという利点もある。
 さらに、本発明の標的ポリペプチドと結合し得る架橋ポリペプチドは、有機溶媒を含まない水溶液中で得られた架橋ポリペプチドとは根本的に構造が相違するため、プロテアーゼ耐性が高いという利点を有する。
図1は、ω-コノトキシン(A)及びシクロビオラシンO1(B)の構造を示す模式図である。 図2は、代表的な環状ペプチドであるシクロスポリン(A)及びオキシトシン(B)の化学構造を示す図である。 図3は、水性溶媒中で合成した架橋ペプチドの構造(A)と、非水性溶媒中で合成した架橋ペプチドの構造を水性溶媒中に移した場合のその構造(B)の相違を示す模式図である。
図4は、ミッドカインの構造と活性部位とを示す図である。 図5は、cDNAディスプレイ用のアノビニルカルバゾール(cnvK)を含まないリンカー(以下、「SBP-rGリンカー」ということがある。)の構造を示す模式図である。 図6は、初期ライブラリをPCR増幅した結果を示すゲル電気泳動像である。
図7は、mRNAとSBPリンカーとを連結したライゲーション産物、翻訳産物及び逆転写産物の精製結果を示すゲル電気泳動像である。 図8は、無細胞翻訳によって翻訳されたペプチドをHis-tag精製した結果を示すゲル電気泳動像である。 図9は、セファロース樹脂上へのミッドカインの固定を確認するためのゲル電気泳動像である。
図10は、ストレプトアビジン磁性ビーズ上へのミッドカインの固定を確認するためのゲル電気泳動像である。 図11は、ビスマレイミドエタン(以下、「BMOE」とルアクリルすることがある。)によって架橋されたペプチドライブラリを使った系の1ラウンド目から4ラウンド目までの各洗浄液と溶出液とを示すゲル電気泳動像である。
図12は、T7領域プロモーター領域を付加し、オーバーラップエクステンション法を採用してDNAをフルコンストラクトに戻した後に、既に取得したDNAをテンプレートとしてPCRで増幅させたライブラリ(T7+)を示すゲル電気泳動像である。 図13は、アップシフトアッセイを模式的に示した図である。 図14は、20%アセトニトリル(以下、「ACN」と略すことがある。)中で、終濃度10 μMのTBMBを使ってクローンの架橋を行った後、ゲル電気泳動(8 M 尿素変性6%SDSPAGE, 20 mA, 2 時間)を行なった結果を示すゲル電気泳動像である。
図15は、80%ACN中で終濃度10 mM TBMBを使ってクローンの架橋を行い、ゲル電気泳動の供した(8 M 尿素変性6%SDSPAGE, 20 mA, 2 時間)を行なった結果を示すゲル電気泳動像である。 図16は、80%ACN中におけるTBMB(終濃度10 mM)とクローンとを使ったアップシフトアッセイ後のゲル電気泳動像である。 図17は、リン酸緩衝液中におけるBMOE(終濃度4 mM)とS-bodyライブラリとを使ったアップシフトアッセイの結果を示すゲル電気泳動像である。
図18は、IL6Rをセファロース樹脂上に固定できたことを示すゲル電気泳動像である。 図19は、IL6Rをストレプトアビジン磁性ビーズ上に固定できたことを示すゲル電気泳動像である。
図20は、各ラウンドにおける試験管内淘汰の状況を示すゲル電気泳動像である。 図21は、プルダウンアッセイのスキームを示す模式図である。 図22は、試験管内淘汰されたペプチド群のプルダウンアッセイの結果を示すゲル電気泳動像である。
図23は、試験管内淘汰前後のペプチド群に結合したIL6Rの量を示すグラフである。 図24は、コノトキシンのアミノ酸配列を示す図である。(A)は、天然コノトキシン、(B)は異なる溶媒条件下におけるペプチド架橋の分析に使用したペプチドのアミノ酸配列を示し、これらは上記(A)に示す配列を改変したものである。である。
図25は、cDNAディスプレイ用のシアノビニルカルバゾール(cnvK)を含むリンカー(以下、「cnvKリンカー」ということがある。)の構造を示す模式図である。 図26は、PCR1による増幅結果を示すゲル電気泳動像である。 図27は、PCR2による増幅結果を示すゲル電気泳動像である。 図28は、PCR3による増幅結果を示すゲル電気泳動像である。
図29は、上記PCR3産物の構造の模式図(A)及びシステイン発現領域におけるアミノ酸の出出現率を示すグラフ(B)である。 図30は、上記PCR3産物を転写したときのゲル電気泳動像である。 図31は、cnvKリンカーと上記mRNAとが架橋されたことを示すゲル電気泳動像である。 図32は、ライゲーション産物が翻訳され、上記の磁性ビーズ上に固定されたこと、及びHis-tag精製されたことを示すゲル電気泳動像である。 図33は、上記産物の逆転写、逆転写産物の架橋に対する溶媒の影響(90%DNF下又は4%DMF下)を示すゲル電気泳動像である。
図34は、架橋剤による架橋形成の相違を検討した結果を示すゲル電気泳動像である。 図35は、ストレプトアビジン磁性ビーズの有機溶媒耐性を検討した結果を示す図である。 図36は、図24に示すペプチド1を90%DMF中、又は4%DMFを含む水性溶媒であるコンジュゲーションバッファー中で架橋したときの架橋前後のペプチドの構造の変化を示すHPLCのクロマトグラムである。
図37は、上記ペプチド1をペプチド2に代えたときの架橋前後のペプチドの構造の変化を示すHPLCのクロマトグラムである。 図38は、上記ペプチド1をペプチド3に代えたときの架橋前後のペプチドの構造の変化を示すHPLCのクロマトグラムである。 図39は、図24に示すペプチド1を90%ACN又は10%ACN、4%DMFを含む水性溶媒であるコンジュゲーションバッファー中で架橋したときの架橋前後のペプチドの構造の変化を示すHPLCのクロマトグラムである。
図40は、上記ペプチド1をペプチド2に代えたときの架橋前後のペプチドの構造の変化を示すHPLCのクロマトグラムである。 図41は、上記ペプチド1をペプチド3に代えたときの架橋前後のペプチドの構造の変化を示すHPLCのクロマトグラムである。
図42は、トリプシンで上記ペプチド1を切断したときのマススペクトルグラムである。(A)は90%DMF中、(B)はコンジュゲーションバッファー中で架橋させた場合の結果である。 図43は、上記ペプチド1をペプチド2に代えたときのマススペクトルグラムである。 図44は、上記ペプチド1をペプチド3に代えたときのマススペクトルグラムである。
 以下に、必要に応じて図面を参照しつつ、本発明をさらに詳細に説明する。
 本発明は、架橋剤を用いて所望の配列を有するポリペプチドの架橋反応を行うことにより、有機溶媒を含む溶液中にて特異な構造の架橋ポリペプチドを調製する調製工程を備える、標的ポリペプチドと結合し得る架橋ポリペプチドの調製方法である。
 また、上記本発明は、(a1)DNAライブラリ作製工程と、(a2)転写工程と、(a3)mRNA-リンカー結合体を形成させる結合工程と、(a4)翻訳工程と、(a5)逆転写工程と、(a6)架橋ライブラリ調製工程と、(a7)標的ポリペプチド固定化工程と、(a8)試験管内淘汰工程と、(a9)有機溶媒を含む溶液中で、上記試験管内淘汰工程で得られたポリペプチドを架橋する架橋工程とを備えている。
 上記(a1)のDNAライブラリ作製工程では、cDNAディスプレイ法を用いて、通常の条件の下で所望のヌクレオチド配列を含むmRNAから、DNAライブラリを作製する。次いで上記(a2)の転写工程において、得られたDNAライブラリからmRNAを定法に従って調製して精製する。
 引き続き上記(a3)の結合工程において、上記(a2)の転写工程で精製されたmRNAをリンカーと結合させ、mRNA-リンカー結合体を形成させる。この工程で使用するリンカーは、少なくとも、mRNA連結部位と、逆転写用プライマー結合領域と、ペプチド結合部位とを有するものであることが好ましく、例えば、図4に示すようなリンカーを使用することが、後述する翻訳工程以下の作業効率の点から好ましい。必要に応じて、図5に示すようなリンカーを使用することもできる。
 次いで、上記(a4)の翻訳工程で、上記(a3)の結合工程で得られたmRNA-リンカー結合体を無細胞翻訳系で翻訳し、mRNA-ペプチド連結体を形成させる。上記無細胞翻訳系としては、ウサギ網状赤血球溶解物(RRL)、小麦胚芽抽出物、および昆虫細胞(SF9またはSF21など)等を使用することが、有効なペプチド合成に要するリボソーム、翻訳因子およびtRNAなどの所要細胞高分子が全て含有されていることから好ましい。
 引き続き、上記(a5)の逆転写工程で、前記mRNA-ペプチド連結体中のmRNAから、逆転写酵素を使用してcDNAを作製し、mRNA-ペプチド連結体に結合させてmRNA-ペプチド-cDNA連結体を形成させる。逆転写酵素としては、PrimeScript シリーズ(タカラバイオ(株)製)等を使用することができる。
 次いで、上記(a6)の架橋ライブラリ形成工程において、以上のようにして得られたmRNA-ペプチド-cDNA連結体を、ジスルフィド結合を形成させるか、又は化学架橋剤を用いて架橋させ、架橋ライブラリを形成させる。
 引き続き、前記(a6)の架橋ライブラリ形成工程で得られた架橋ライブラリとの結合性を検討するために、前記(a7)工程において、下記のような標的物質を常法に従って樹脂上に固定させる。こうした樹脂としては、各種磁性ビーズを使用することが、その後に、樹脂に結合したmRNA-ペプチド-cDNA連結体から、mRNA-ペプチド-cDNA連結体を一括して遊離させることができる点で好ましい。その後、mRNA、ペプチド、cDNAを個別にリンカーから切り離すこともできる。
 その後、前記架橋ライブラリと前記樹脂に固定された前記標的ポリペプチドとを用いて、例えば、cDNAディスプレイ法を用いた試験管内淘汰を行い、前記所望の配列を有するポリペプチドを得ることができる。
 前記特異な構造の架橋ポリペプチドの形成に使用する前記架橋剤は、ビスマレイミドエタン又はビスマレイミドプロパンを使用することができ、これらを使用すると、低コストで効率よく、ジスルフィドリッチペプチドライブラリを調製することができる。」
 引き続き、前記(a6)の架橋ライブラリ形成工程で得られた架橋ライブラリとの結合性を検討するために、後述するような標的物質を樹脂上に固定させる。その後、前記架橋ライブラリと前記樹脂に固定された前記標的ポリペプチドとを用いて、例えば、cDNAディスプレイ法を用いて試験管内淘汰を行い、前記所望の配列を有するポリペプチドを得ることができる。
 前記標的物質(標的ポリペプチド)としては、例えば、上述したように、抗原タンパク質及びそのフラグメント(例えば、IgG、scV、Fab、Fc、VHH等)、生体内の各種シグナル伝達物質(例えば、ホルモン、サイクリックAMP(cAMP)、サイクリックGMP(cGMP)等のセカンドメッセンジャー、インターロイキ、ミッドカインその他のサイトカイン等)、生体内シグナル伝達物質受容体(cAMP受容体、cGMP受容体、インターロイキン受容体等)、及び腫瘍マーカータンパク質(scc、CA-125、CEA、PSA等)等を挙げることができる。
 こうした標的分子として、例えば、ミッドカイン又はインターロイキン6(IL6)等を使用することができる。ミッドカインは、塩基性の低分子タンパク質(ポリペプチド)であり、サイトカインや成長因子に分類されるポリペプチドであり、N末端側に3組、C末端側に2組の計5組のジスルフィド結合を持っている。また、ミッドカインの活性は、C末端にあることが知られており、ヒトでは、中期胚で最も多く発現するが、成体になってからは血管上皮、特定の粘膜上皮に限定して発現する。図4にミッドカインの構造と活性部位とを示す。
 また、ミッドカインは、種々の癌の患者の血清中及び/又は尿中で増加する(健常人では血中濃度が0.15 ng/mL、癌患者では0.5 ng/mL以上になる)ことが知られており、腫瘍マーカーとしても注目されている。さらに、ミッドカインは、食道がん、胃がん、大腸がん、肝臓がん、膵臓がん、甲状腺がん、肺がん、乳がん、膀胱がん、子宮がん、卵巣がん、前立腺がん、神経芽細胞腫、膠芽腫等の患者では血中濃度の上昇を示すため、標的分子として適切である。
 サイトカインの一種であるインターロイキン6(以下、「IL6」ということがある。)は、種々の細胞、例えば、T細胞、B細胞、単球、線維芽細胞、ケラチノサイト、内皮細胞、メサンギウム細胞、脂肪細胞、及び一部の腫瘍細胞等、によって産生されること、並びに主としてT細胞、単球、活性化B細胞、好中球その他の造血細胞で発現していることが知られている。そして、IL6産生量の増加は、様々な自己免疫疾患、炎症性疾患等の発症につながることも知られている。IL6の受容体であるIL6Rには2種類あり、膜結合型(以下、「mIL6R」ということがある。)及び可溶型(以下、「sIL6R」ということがある。)とに分類される。IL6は、IL6Rとgp130とを介して生物学的活性を示す。膜結合型IL6Rと結合したIL6はgp130のホモ二量体を誘導し、IL6、IL6R、及びgp130の三量体からなる高親和性受容体複合体を形成する。IL6と結合したsIL6Rも同様にgp130との三量体を形成する。
 IL6Rを標的とした分子標的薬としては、トシリズマブ(ヒト化ヒトIL6Rモノクローナル抗体: TCZ)を挙げることができる。TCZはmIL6R及びsIL6Rの双方を阻害し、IL6を介したシグナル伝達を遮断するため、関節リウマチ、キャッスルマン病、全身型若年性特発性関節炎等の症状を改善するために使用されている。
 次いで、上記(a7)の標的ポリペプチド固定化工程で、標的ポリペプチドを樹脂に固定し、上記(a8)の試験管内淘汰工程において、上記架橋ライブラリと上記固定化された標的ポリペプチドとを反応させて試験管内淘汰を行い、前記所望の配列を有するポリペプチドを得る。
 そして、得られたポリペプチドのcDNAからmRNAを得て、上記(a3)~(a8)の工程を、所望の回数、繰り返してもよい。この繰り返しをラウンドといい、ラウンド数を多くすることによって、ある程度収束したペプチドのヌクレオチド配列を得ることもできる。
 次いで、得られたペプチドを、有機溶媒を含む溶液中にて架橋させ、特異な構造の架橋ポリペプチドを調製する。本発明において、有機溶媒を含む水性溶媒を使用するのは、図3(A)に示すように、水性溶媒(バッファー水溶液)中では構造の変化を起こさないペプチドであっても、非水性性溶媒中で取っていた構造が、溶媒の極性が変化することによって水性溶媒中で変化する可能性があることによる(図3(B)参照)。
 以上のようにして得られた架橋ペプチドは、システインを3個以上含むポリペプチドであることが、医薬のスキャホールドとしての応用範囲が広いために好ましい。具体的には、前記架橋ポリペプチドは、システインを3個以上含み、かつ標的ポリペプチドと結合し得るものであり、こうしたペプチドとしては、例えば、上述したコノトキシン又はその類縁体等を挙げることができる。このような構造を有する架橋ポリペプチドは、ジメチルホルムアミド、アセトニトリル、及びエタノールからなる群から選ばれるいずれかの有機溶媒を含む溶液中で生成されることが好ましい。前記溶液中の前記有機溶媒の含有量が10~90容量%であると、前記特異な構造の架橋ポリペプチドを、多様性を保ちながら効率よく調製することができ、これによって、所望のジスルフィドリッチペプチドライブラリを調製することもできる。
 前記特異な構造の架橋ポリペプチドの生成は、上記ペプチドの所望の位置に含まれるシステインによって形成してもよく、架橋剤を用いて形成してもよい。上記架橋ポリペプチドの形成に使用する前記架橋剤としては、ビスマレイミドエタン、ビスマレイミドプロパン、α,α’-ジブロモ-o-キシレン等を使用することができる。これらの架橋剤を使用すると、低コストで効率よく、ジスルフィドリッチペプチドライブラリを調製することができる。
 ここで、上述のように例示したコノトキシンは、図1(A)に示すように、11-30個のアミノ酸がつながったペプチドで、3か所のS-S結合を有する特異な構造のペプチドであり、酵素によって分解されにくい。このため、システインを3個以上有するペプチドは、酵素による分解を受けにくいことが期待されることから好適に使用することができる。
 なお、「コノトキシン」は、集合的に、上述したα-コノトキシン、δ-コノトキシン、κ-コノトキシン、μ-コノトキシン、ω-コノトキシンを含むものとする。また、「コノトキシンの類縁体」とは、環状シスチンノット(CCK)モチーフを有する化合物をいう。すなわち、C末端とN末端が結合して環状となっており、分子内に3つのジスルフィド結合を持つ化合物をいう。そして、コノトキシンには、6種のスーパーファミリーがあることが知られている。
 また、シクロチド化合物には、最も一般的なサブグループであるブレスレットシクロチド、図1(B)に示すループ5にcis-プロリンを含むメビウスシクロチド、非環状トリプシンインヒビターに類似した配列を持つ、トリプシン・インヒビター-ノッチンズが含まれる。
 前記架橋ペプチドは、上述したようにして、調製することができる。また、このような架橋ペプチドと標的ペプチドとの結合については、所望の条件の下において反応させた後にゲル電気泳動その他の分析手法を用いて分析することもできる。こうした分析手法としては、ゲル電気泳動、アップシフトアッセイ等を挙げることができる。また、HPLCのクロマトグラムの変化等によって、ある程度は、上記のようにして調製した架橋ペプチドの構造変化等も確認することができる。
(実施例1)S-bodyライブラリと架橋剤BMOEを使ったミッドカインに対するスクリーニング
(1)標的ポリペプチド等
 架橋ペプチドの構造変化等を検出することができるため、標的分子として、ミッドカイン(ATGEN社製)及びIL6R(MBLサイエンス社製)を使用した。
(2)ゲル電気泳動
(2-2)核酸ポリアクリルアミドゲル電気泳動(PAGE)
 本実施例で行ったPAGEでは、変性剤である尿素を加えるとともに、泳動中の恒温槽の温度を60℃とすることで、核酸の立体構造による影響を無視できるようにした。これによって核酸は大きさの違いによってのみ泳動速度に差を生じることになったため、核酸分子を大きさによって分画した。
(2-3)試薬の調整
 10 x TBE、2 x ゲルローディングバッファー、及び40% アクリルアミド溶液 (アクリルアミド:ビスアクリルアミド = 19 : 1)の組成は、下記表2~4に示す通りとした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(2-4)核酸ポリアクリルアミドゲルの作製
 スペーサー付きガラスプレート、コーム、及びガスケットの汚れをMilliQ水で洗い流し、プロワイプで埃をふき取った。上記3つの部材を十分に乾燥させた後、スペーサーに沿ってガスケットを設置し、その後、クリップでガラス板の両端を固定した。次に、下記表5に示す組成の核酸PAGE溶液を調製し、組み立てておいたガラスプレートの隙間に核酸PAGE溶液を注入した。ガラスプレートの隙間に注入されたゲルにすばやくコームを差し込み、固まるまで静置した。
Figure JPOXMLDOC01-appb-T000005
 ゲル電気泳動は、以下の手順で行った。上述したゲルが固まった後に、ガラスプレート表面をMilliQ水で洗浄し、このガラスプレートからコーム及びガスケットの下部の部材を外した。泳動プレートをホルダーにのせ、上部槽に合わせてはめ込み、泳動槽の下部槽を泳動用バッファーで満たした。10 X TBEを20倍希釈して0.5 X TBEを調製し、泳動用バッファーとして使用した。
 次いで、下部槽に気泡が入らないよう注意しつつ、泳動用バッファーが入った泳動槽に装着し、上部槽も泳動バッファーで満たした。この後、200 V定電圧で9分間のプレランニングを行った。プレランニング終了後、泳動サンプルをゲルにアプライし、サンプルの大きさやゲルの硬さに応じた時間電圧をかけた。なお、泳動中は恒温槽を用いて泳動槽下部槽の温度を60℃に保った。
(2-5)イメージャーによる泳動結果解析
 サンプルの核酸をFITC等の蛍光物質で標識した場合には、はじめに蛍光物質の蛍光強度を読み取り、その後、STBR-Goldによって核酸を染色して光強度を読み取った。SYBR-Gold標識には、原液を10,000倍希釈したもの使用した。
 ポリペプチドポリアクリルアミドゲル電気泳動(SDS-PAGE)用に、下記表6又は7に示す組成の溶液を調製した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 10 x SDS-ランニングバッファーを10倍希釈して1 x SDS-ランニングバッファーとし、これを泳動用バッファーとして使用した。20 mA定電圧で核酸ポリアクリルアミド電気泳動と同様に泳動を行なった。電気泳動修了後、SBPリンカーのFITC蛍光、SYPRO Ruby、ルミテイン(Lumitein)を用いて標識し、それらの蛍光を観察することによりバンド位置を確認した。
(3)スクリーニング
 化学架橋剤による架橋構造と従来のジスルフィド結合による架橋構造が分子の結合能に及ぼす影響を比較するため、ミッドカインに対する親和性スクリーニングを行った。化学架橋されたペプチド(以下、「S-body」という。)ライブラリと、ジスルフィド結合によって架橋されたS-bodyライブラリを使い、平行してミッドカインに対するスクリーニングを行った。
 架橋反応用には、1 x コンジュゲーションバッファー(0.2 M リン酸ナトリウム (pH 7.2), 0.5 M TCEP-HCl, 及びビスマレイミドエタン(BOME)を含む、Thermo Fisher Scientific社製)、酸化的フォールディングバッファー(0.1 M トリス (pH 7.0), 1mM EDTA, 2 mM GSSG, 7 mM GSH, 0.05 % Tween 20)を含む、ジメチルスルホキシド(ナカライテスク社製)、還元グルタチオン及び非還元グルタチオン(Sigma-Aldrich社製)、EZ-LinkTM マレイミド-PEG11-ビオチン(Thermo Fisher Scientific社製)を使用した。
 ミッドカインの固定には、イラストラ・マイクロスピンエンプティカラム(GE Healthcare社製)、アミコンウルトラ-0.5 遠心フィルタ装置3K (MERCK MILLIPORE社製)、NHS-活性化セファロース 4 ファストフロー (GE Healthcare社製)、EZ-Link Sulfo-NHS-SS-ビオチン (Thermo Fisher Scientific社製)、及びTs ビーズ (FG ビーズ) (多摩川精機社製)を使用した。
 また、S-bodyライブラリ用コンストラクトとして、下記の配列を有するT7Ω‐Library (MGC(27AA))‐HisX6‐C(Ytag)を作製した。下記の配列中、Xは任意のヌクレオチドを表す。ピューロマイシンリンカーとしては、下記表8及び図5に示す構造のSBPリンカーを使用した。
Figure JPOXMLDOC01-appb-T000008
(配列表の配列番号9)
GATCCCGCGA AATTAATACG ACTCACTATA GGGGAAGTAT TTTTACAACA ATTACCAACA ACAACAACAA ACAACAACAA CATTACATTT TACATTCTAC AACTACAAGC CACCATGGGC TGCNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNGGGGGA GGCAGCCATC ATCATCATCA TCACGGCGGA AGCAGGACGG GGGGCGGCGG GGAAA
(4)ペプチドライブラリからのcDNAディスプレイ調製
(4-1)PCRによる増幅
 ジスルフィドリッチペプチドライブラリのDNA合成は、ユーロフィンジェノミクス社に依頼した。初期ライブラリのダイバーシティを失わず、サブバンドが出ないよう、下記表9に示す溶液を用いてPCRを行い、ライブラリを精製した。
Figure JPOXMLDOC01-appb-T000009
 PCRプログラムは、98℃で1分インキュベートし、98℃で10秒インキュベート後引き続き68℃で20秒インキュベートというセットを5サイクル行い、68℃で1分インキュベートした後に4℃に降温した。PCR産物をエタノール沈殿させて濃縮し、その後、PCR-Clean-up Mini Kitを用いてプライマーと酵素とを除去した。この段階でPCR産物を上述した8 M 尿素変性核酸ポリアクリルアミドゲル電気泳動(DNAやRNAといった核酸に対して行う電気泳動。以下、「PAGE」ともいう。)で確認した。
 初期ライブラリのダイバーシティを失わず、かつサブバンドが出ないようPCRして調製したライブラリDNAを6%PAGEで確認した。DNAはSYBR Goldで染色した、結果を図6に示す。
(4-2)転写
 次いで、RiboMAX-Large Scale RNA production systemsを用いてDNAをRNAに転写した。チューブ1本分の反応組成と反応条件とを下記表10に示す。
Figure JPOXMLDOC01-appb-T000010
 上記組成の反応液中で、37 ℃にて3時間インキュベートし、転写反応を行なった。その後、RQ1 RNase-Free DNaseを1 μL添加し、さらに37 ℃にて15 分間インキュベートした。15分経過、後直ちに付属のプロトコルに従い、After Tri Reagent RNA Clean-up Kitを用いて精製した。この段階で、転写産物及びペプチドライブラリを、上記の8 M 尿素変性 PAGEで確認した。
(4-3)ライゲーション
 次に、精製したmRNAとSBPリンカーとを連結した。チューブ1本分のライゲーション反応溶液の組成を下記表11に示す。
Figure JPOXMLDOC01-appb-T000011
 アニーリング条件は、90℃で2分、1分間で70℃まで降温し、70℃で1分、15分間で25℃まで降温し、25℃で30秒とした。アニーリング後、各試料に1.0 μLのT4 RNA リガーゼ及び0.5 μLのT4ポリヌクレオチドキナーゼを加えて25 ℃にて30分間インキュベートした。ライゲーション産物は、対照をmRNAとし、上記の8 M 尿素変性6% PAGE(200 V, 25分間)に供した。ゲル電気泳動はSYBR Goldで染色した。結果を図7に示す。
(4-4)無細胞翻訳
 次いで、下記表12に示す組成の無細胞翻訳用溶液中にて、mRNA-リンカー連結体を無細胞翻訳系で翻訳し、mRNA-タンパク質(ポリペプチド)連結体を形成した。
Figure JPOXMLDOC01-appb-T000012
 上記表12に示す組成の反応液を25 μLずつチューブに分注し、その後、30 ℃にて25 分間インキュベートした。次いで、12μLの3 M KClと6μLの1M MgCl2とを加え、さらに37 ℃にて60 分間インキュベートした。添加するmRNA-リンカー連結体は、1ラウンド目では120 pmol、2ラウンド目は24 pmol、3ラウンド目以降は18 pmolとした。各ラウンドにおける溶液組成は、無細胞翻訳の実施に適した量になるよう調整した。
(4-5)mRNA-タンパク質(ポリペプチド)連結体(In Vitro Virus: IVV)の精製
 引き続き、ストレプトアビジン(SA) 磁性ビーズ(Dynabeads MyOne Streptavidin C1)からRNaseを除去した。300 μLのDynabeads MyOne Streptavidin C1を1.5 mLチューブにとり、磁気スタンド上に静置した。この後の上清を除去する作業は、全て磁気スタンド上で行った。上清を捨て、1 x 結合バッファーで再懸濁し、上清を再度除去した。
 次いで、残留リボソームが磁性体ビーズの固定化の際に立体障害となる可能性があるため、翻訳後のmRNA-ペプチド連結体に結合したリボソームを以下のようにして除去した。まず、キレート剤として65μLの0.5 M EDTA (終濃度70 mM)を加えた。ここに、等量の2 x 結合バッファーを加え、洗浄済みのDynabeads MyOne Streptavidin C1と混合し、室温にて25分間インキュベートし、上清を除去した。この上清はSup.1としてライゲーション産物と共に8 M 尿素変性6%SDS-PAGE(20 mA, 2時間)に供し、含有物を確認した。ゲルはFITCで染色した。結果を図8に示す。
(4-6)逆転写
 次いで、不安定なmRNAをcDNAに逆転写した。まず、上記IVVの精製で用いたDynabeads MyOne Streptavidin C1を1 x ReverTraAce bufferで洗浄した。その後、Dynabeads MyOne Streptavidin C1上で下記表13に示す組成の溶液を調製した。
Figure JPOXMLDOC01-appb-T000013
 次にこの溶液とDynabeads MyOne Streptavidin C1とを混合し、42 ℃にて45分間インキュベートし、インキュベート終了後に上清を除去し、cDNAディスプレイライブラリのペプチドを得た。得られたcDNAペプチドを含む溶液を、8 M 尿素変性6%SDS-PAGE(20 mA, 2時間)に供し、含有物を確認した。ゲルはFITCで染色した。結果を図8に示す。
(4-7)架橋反応
 次に、cDNAディスプレイライブラリのペプチドに架橋構造を形成させるため、化学架橋剤を使った架橋反応を行なった。5μLの0.5 M TCEPを含む235μLの1 X コンジュゲーションバッファーを用いて、上記のようにして得られたペプチド中のジスルフィド結合の還元反応を行った。
 上記のコンジュゲーションバッファーとDynabeads MyOne Streptavidin C1とを混合し、25 ℃にて5分間インキュベートした。その後、架橋剤であるBMOEを終濃度4 mMになるよう加えて懸濁し、25℃にて終夜インキュベートした。引き続き、ジスルフィド結合によって架橋されたS-bodyライブラリを調製するため、酸化フォールディング処理を施した。この処理によって確実にジスルフィド結合を形成させることが可能となる。逆転写終了後のDynabeads MyOne C1に、180μLの酸化フォールディングバッファーを入れ、4 ℃にて終夜インキュベートした。
(4-8)未架橋ペプチドの精製
 未架橋のcDNAディスプレイを除去するため、以下の処理を行なった。未架橋のcDNAディスプレイのビオチン化に先立って、Dynabeads MyOne Streptavidin C1上のビオチン結合サイトをブロックするため、1 mMビオチンと混合し、15 分間室温にてインキュベートした。
 次いで、上清を捨てて0.1 M マレイミド-PEG11-ビオチン(チオール基と結合する)と未架橋のcDNAディスプレイとを25 ℃にて30 分間インキュベートして結合させ、Dynabeads MyOne Streptavidin C1によって除去した。
(4-9)RNase処理
 次いで、Dynabeads MyOne Streptavidin C1からcDNA ディスプレイを切り離した。まず、酸化フォールディングバッファーを取り除き、His-tag wash bufferで洗浄し上清を捨てた。74μLのHis-タグ洗浄バッファーと1μLのRNaseT1 (1,000 U/μL)とを含む75μLのRNase処理用バッファーを、Dynabeads MyOne Streptavidin C1上で調製した。
 次にこの溶液を37 ℃にて15 分間インキュベートした後、シェイカーで10 分間激しく撹拌し、Dynabeads MyOne Streptavidin C1からcDNA ディスプレイを切り離した。
(4-10)His-tag精製
 この段階では、前の手順で回収したcDNAディスプレイのうち、ペプチドが翻訳されているものを回収した。まず、His-mag Sepharose Niを20 μL取り、His-tag 洗浄バッファーで洗浄した。洗浄したHis-mag Sepharose Niに上述した手順で取得したcDNAディスプレイを入れ、4 ℃で2時間以上インキュベートした。
 インキュベート後、上清をSup.として泳動で確認した。次に、cDNAディスプレイとHis-mag Sepharose Niの混合液をHis-tag 洗浄バッファーで2回洗浄した。His-tag 溶出バッファーを入れ、シェイカーで10分以上激しく撹拌した後、上清を回収した。
 次に、Micro BioSpin 6 Columnを用いてカラム精製した。まず保存液を取り除くため、Micro BioSpin 6 Columnを1,000 x gで2 分間遠心した。次に1 X セレクションバッファーでカラムを4回洗浄した。次にHis-tag精製済みのcDNAディスプレイをカラムに入れ、1,000 gで4 分間遠心して回収した。
(5)ミッドカインを固定化した担体の調製
(5-1)ミッドカインの固定
 ミッドカインの固定には各ラウンドで異なるビーズを用いた。固定化時の反応阻害を防ぐため、ミッドカインは2ラウンド目以降、バッファー交換してから使用した。まず、アミコンウルトラ 0.5-MWCO=3Kを超純水と各ラウンドに応じたバッファーで洗浄した。次に、ミッドカインとバッファーとを適量入れた。14,000 x gで4 ℃にて30分間遠心し、濃縮及びバッファー交換による洗浄を3~4回繰り返した。洗浄後はカラムを逆さにして新しいチューブに設置し、1,000 x gで4 ℃にて5分間遠心した。
 この時のバッファー交換の効率を算出するため、15% SDS-PAGEを行った。
(5-2)セファロース樹脂上への固定
 ミッドカインを樹脂上に固定した後、樹脂の未反応基を潰すために、1ラウンド目ではNHS-activated Sepharose 4 Fast Flowを用いた。まず、空のIllustraTM MicroSpinTM columnsに、100μLのNHS-activated Sepharose 4 Fast Flowを入れ、よく冷やした200μLの1 mM HClを加えて6 回洗浄した。次に、200μLの20 mM Tris-HCl (pH 8.0)を加えて洗浄した。引き続き、50μgのミッドカインを加えて20 mM Tris-HCl (pH 8.0)で50 μLまでメスアップした。その後、4 ℃にて一晩インキュベートした。
 インキュベート後、20 mM Tris-HCl (pH 8.0)で6回洗浄し、4 ℃にて一晩インキュベートした。インキュベート終了後、1 x セレクションバッファーで平衡化して保存した。固定前のミッドカインと固定後のフロースルーとを15% SDSPAGE(20 mA, 2 時間)に供し、セファロース樹脂上に固定されているか否かを確認した。ゲルはクマシーブリリアントブルー(CBB)で染色した。結果を図9に示す。
 図9より、対照であるミッドカインのバンド位置にF.T.以降はバンドが確認されず、十分な効率でミッドカインを固定化できたことが確認された。
(5-3)ストレプトアビジン磁性ビーズ上への固定
 2ラウンド目以降ではDynabeads MyOne Streptavidin C1を使用した。まず、ミッドカインをビオチン化するため、300 pmolのミッドカイン及び450 pmolのEZ-link Sulfo-NHS-SS-Biotinに、ビオチンバッファーを加えて60μLの反応液を調製した。
 この反応液を氷上で2時間以上インキュベートした。この反応液のインキュベート中に、Dynabeads MyOne Streptavidin C1をビオチン化バッファーで洗浄した。インキュベート後、必要量のミッドカインを取り、洗浄済みのDynabeads MyOne Streptavidin C1と混合し、4 ℃にて保存した。固定前のミッドカインと固定後の上清とを15% SDS-PAGE(20 mA, 2時間)に供し、ストレプトアビジン磁性ビーズ上へ固定されているか否かを確認した。ゲルはSYPRO Rubyで染色した。結果を図10に示す。
 図10より、対照であるミッドカインのバンド位置に、F.T.以降ではバンドが見られないため、十分な効率でミッドカインを固定化できたことが確認された。
(6)架橋ペプチドを用いたミッドカインに対する試験管内淘汰実験(セレクション)
 上記セレクションに先立ち、標的分子以外に非特異的に結合するcDNAディスプレイを除去するためのプレセレクションを行った。プレセレクションには、前述の手順で処理したミッドカイン無添加のビーズを用いた。まず、1ラウンド目ではミッドカインを固定していないNHS-activated Sepharose 4 Fast FlowとcDNAディスプレイとを混合し、1 x セレクションバッファーでcDNAディスプレイを溶出させた。溶出されたcDNAディスプレイをセレクションに用いた。2ラウンド目以降も、各固定ビーズに対して同様にプレセレクションを行った。
 このセレクションでは、ミッドカインとcDNAディスプレイとを結合させ、その後cDNAディスプレイを溶出した。1ラウンド目では以下のように行った。まず、ミッドカインを固定したNHS-activated Sepharose 4 Fast Flowに、プレセレクションしたcDNAディスプレイを加え、4℃にて1時間インキュベートした。その後、1 x セレクションバッファーで洗浄し、洗浄液を回収した(以下、この洗浄液を「フロースルー」または「F.T.」ということがある)。同様の手順でさらに洗浄を数回繰り返し、各回の洗浄液をそれぞれ回収した(以下、「ウォッシュ1~10」又は「Wash 1-n」ということがある)。
 次にジチオスレイトールを含む1%SDS又はグリシン-塩酸バッファー(pH 3.4)を用いて溶出操作を行ない、溶出液をそれぞれ回収した。各ラウンドに用いたcDNAディスプレイ及びミッドカインの量、並びにインキュベート時間及びウォッシュ回数は、下記表14に示す通りであった。また、PCRプログラムは、98℃で1分、その後98℃で10秒インキュベート後に68℃に降温して20秒インキュベートを25サイクル、68℃で1分インキュベート後、4℃に降温とした。以上のようにして、架橋ペプチドライブラリ(以下、「S-bodyライブラリ」ということがある。)を得た。
Figure JPOXMLDOC01-appb-T000014
 各ラウンドにおける試験管内淘汰実験の様子を、8 M 尿素変性6%PAGE(200 V, 25 分間)に供し、確認した。ゲルは、STBR Goldで染色した。図11より、ラウンドを重ねるにつれ、最後の洗浄レーンのバンドと最初の溶出レーンのバンドを比較すると架橋に関わらず溶出レーンの方が濃くなっていることが確認された。
 このことから、淘汰の進行度合いはジスルフィド結合や化学架橋剤によって変化しない可能性があり、淘汰後の配列の比率も同様であることが考えられた。さらに、架橋剤の価数をさらに増やすこと、又は有機溶媒等の非水性緩衝液中で架橋することによって分子の構造多様性を拡張してスクリーニングを行う可能性が考えられた。
(7)次ラウンドのライブラリ調製
 前記(6)では、転写に必要なT7プロモーター領域を含まないDNAが得られたが、次のセレクションのライブラリとするために、新たにT7領域及びプロモーター領域を付加する必要があった。このため、オーバーラップエクステンション法を採用し、DNAをフルコンストラクトに戻した。
 上記の手順で取得したDNAのうちをテンプレートとして、上記表14と同じ組成の溶液中で上記(6)と同じPCTプログラムに従ってPCRを行ない、増幅されたDNAを得た。PCRで増幅したDNAを、それぞれ25μLずつ8 M 尿素変性PAGEに供し、確認した。
(8)結果
 初期ライブラリのダイバーシティを失わず、かつサブバンドが出ないようPCRで増幅させて調製したライブラリDNAを、8 M 尿素変性6%PAGE(200 V, 25 分間)に供した。ゲルは、SYBR Goldで染色した結果を図12に示す。
 図12より、ライブラリの全長である265 bp付近にバンドが存在していることが確認された。このバンドはライブラリDNAであるため、PCRによって、問題なくDNAを増幅できたことが確認された。また、上述した手順で取得したDNAをテンプレートとして使用し、PCRによって増幅させたDNAを、25μLずつ8 M尿素変性6%ゲル電気泳動(200 V, 25 分間)に供した。ゲルはSYBR Goldで染色した。結果を図12に示す。図12より、265 bp付近にアップシフトしたバンドが検出され、T7領域がライゲーションされていることが観察された。
(実施例2)高濃度有機溶媒と使ったスクリーニング系の開発
(1)材料
 架橋反応には、1 x TBMB 反応バッファー(20 mM 炭酸水素アンモニウム、5 mM EDTA及び0.05% Tween 20を含む (pH 8.0))、1,3,5-トリス(ブロモメチル)ベンゼン(いずれも東京化成工業社製)、アセトニトリル(HPLCグレード、和光純薬工業社製)を使用した。また、アップシフトアッセイには、Streptavidin from Streptomyces avidinii (Sigma-Aldrich社製)を使用した。上記のようにして得られたS-bodyライブラリから取得した、以下のクローンを対照及び試料として使用した。
クローン No. 45 MGCRTDYRSFREYYRECWRSFRIHDWSDNF(配列番号10:陽性対照)
クローン No. 67 MGCRNSPNPRQHSYSYCPRDRGYHVFACYP(配列番号11:試料)
 また、ペプチドライブラリの代わりに3種類のクローンを用いた点、及び架橋反応条件を除いて、上記cDNAディスプレイの調製方法と同様にして、クローンDNAからcDNAディスプレイを得た。
(2)高濃度有機溶媒中におけるcDNAディスプレイの化学架橋とその効率
 TBMBによる化学架橋反応の効率を算出するため、アップシフトアッセイを行った。また、同様のアップシフトアッセイによってBMOEによるS-bodyライブラリの化学架橋反応の効率も算出した。
(2-1)化学架橋反応
 化学架橋剤によって架橋されたクローンを調製するため、ジスルフィド結合の還元反応を行った。まず、1 mM ビオチンを用いてDynabeads MyOne Streptavidin C1上のビオチン結合サイトをブロッキングし、Dynabeads MyOne Streptavidin C1上に固定されたストレプトアビジンを安定化させた。
 次に、10 mM TCEPを溶解させた反応緩衝液を加え、42 ℃にて10 分間インキュベートした。その後、TBMBの濃度、反応時間、及びアセトニトリル(以下、「ACN」と略すことがある)濃度の設定を変化させ、架橋反応を行って架橋効率を求めた。BMOEによるS-bodyライブラリの架橋反応は上記実施例2と同様の条件で行った。
 結果を下記表15に示す。化学架橋効率が高い方が、ライブラリサイズの維持の上で有利であることが示された。特に、約80%以上であるとライブラリサイズが損なわれないことが明らかになった。
Figure JPOXMLDOC01-appb-T000015
 *表中、N.D.は、検出不可を表す。
(2-2)架橋効率算出のためのアップシフトアッセイ
 上記表15に示した化学架橋の条件の下で各cDNAディスプレイを調製した。その後、クローンとTBMBとの組み合わせを用いた場合、及びペプチドライブラリとBMOEの組み合わせを用いた場合について、それぞれの架橋効率を算出した。
 架橋されたcDNAディスプレイはビオチン化されないためストレプトアビジンが結合せず、未架橋のcDNAディスプレイはビオチン化されるためストレプトアビジンが結合する。これを利用して、架橋剤が結合しなかったチオール基をビオチン化してストレプトアビジンを結合させるアップシフトアッセイを行ない、架橋効率を算出した。アップシフトアッセイを図13に模式的に示す。
 20%ACN中で、終濃度10 μMのTBMBを使ってクローンの架橋を行った後に、ゲル電気泳動(8 M 尿素変性6%SDSPAGE, 20 mA, 2 時間)を行なった結果を図14に示す。ゲルはFITCで染色した。未架橋ペプチドと架橋ペプチドのバンド強度比は8:2であることから、架橋効率は反応時間1時間のときの20%となった。
 反応時間が一晩の場合についても同様に算出すると、架橋効率は33%となった。また、架橋ペプチドのバンドが単一であることから、分子間架橋は、SDSポリアクリルアミドゲル電気泳動で確認できない程ごく微量で存在するか、又は存在しないものと考えられた。分子間架橋した分子は、いずれの場合でも、スクリーニング系に持ち込まれたときに、問題となる量ではないと判断された。
 次に、80%ACN中で終濃度10 mM TBMBを使ってクローンの架橋を行い、ゲル電気泳動の供した(8 M 尿素変性6%SDSPAGE, 20 mA, 2 時間)。ゲルはFITCで染色した。結果を図15に示す。図15より、20%ACN中の場合と同様に架橋効率を算出した。TBMBの終濃度10 μMの場合と10 mMの場合を比較した結果、架橋効率を向上させるためには、TBMBの終濃度が10 mM必要であることが明らかになった。
 一方で、TBMB 10 mMを用いて一晩反応させると、レーンのバンドが消失していた。これは、高濃度のACNに長時間さらされたために、ストレプトアビジン磁性ビーズ上のストレプトアビジンが変性したことによるものと考えられた。ビーズ上のストレプトアビジンが変性し、SBPリンカー中のビオチンとの結合がはずれてビーズから解離すると、cDNAディスプレイが磁性ビーズから剥がれ落ちるため、cDNAディスプレイの回収効率が下がる。そうなると、SDS-PAGEでcDNAディスプレイ上のペプチドを確認できなくなる。このことから、磁性体ビーズ上のストレプトアビジンを長時間80%アセトニトリルに晒すことは避けた方がよく、反応時間は可能な限り短い方が良いと考えられた。
 次に、架橋効率80%を維持する最短の反応時間を調査するため、80%アセトニトリル中での架橋実験を行った。80%ACN中におけるTBMB(終濃度10 mM)とクローンとを使ったアップシフトアッセイを行ない、8 M尿素変性6%SDSPAGE(20 mA, 2時間)に供した。ゲルはFITCで染色した。結果を図16に示す。図16より、バンド強度比を算出したところ、いずれの反応時間であっても架橋効率は80%を超えており、反応時間20分で最も高くなっていた。以上から、80%の架橋効率を維持できる最短の反応時間は10 分であることが示された。
(3)BMOEとS-bodyライブラリを用いた架橋実験
 次に、リン酸緩衝液中におけるBMOE(終濃度4 mM)とS-bodyライブラリとを使ったアップシフトアッセイを行ない、ゲル電気泳動(8 M 尿素変性6%SDS-PAGE, 20 mA, 2 時間)に供した。ゲルはFITCで染色した。結果を図17に示す。
 図17より、架橋効率は80%であること、及びペプチドライブラリにおいても分子間で架橋されずに架橋反応できることが確認された。これらの実験から、ペプチドクローンもしくはペプチドライブラリを80%有機溶媒中、又は2価もしくは3価の架橋剤によって化学架橋できること、及び有機溶媒の含有量が多い(高濃度有機溶媒)場合には、架橋反応時間を短くする必要があることが示された。
 以上から、高濃度有機溶媒中での架橋反応又は架橋剤によって、ペプチドクローンまたはペプチドライブラリの構造多様性を拡張できる可能性が示唆された。
(実施例3)S-bodyライブラリとBMOEとを用いたIL6Rに対するスクリーニング
 この実験では、50%DMF中でBMOEによって架橋されたS-bodyライブラリを使用して、IL6Rに対する親和性スクリーニングを行った。
(1)材料等
 架橋反応には、N,N-ジメチルホルムアミド(分子生物学用、和光純薬工業社製)を使用した。また、IL6Rの固定化には、組換えヒトIL6R タンパク質 (ACRO Biosystems社製)を使用した。ペプチドライブラリからのcDNAディスプレイ調製は、架橋反応条件が異なること及び未架橋cDNAディスプレイの精製を行わなかったこと、及び架橋剤の反応基をブロックしたことを除き、上記実施例2と同様に行った。
(2)化学架橋反応
 化学架橋剤によって架橋されたCys3ライブラリを調製するため、ジスルフィド結合の還元を行った。まず、1 mM ビオチンを用いてDynabeads MyOne Streptavidin C1上のビオチン結合サイトをブロッキングし、Dynabeads MyOne Streptavidin C1上に固定されたストレプトアビジンを安定化させた。次に、10 mM TCEPを溶解させた反応緩衝液を加え、42 ℃にて5 分間インキュベートした。その後、上清を除去し、下記表16に示す組成の反応溶液を加え、25 ℃にて15 分間インキュベートした。
Figure JPOXMLDOC01-appb-T000016
 インキュベート後、上清を取り除き、10 mM メルカプトエタノールを加えて25℃にて15分間インキュベートし、チオール基と結合しなかった化学架橋剤のマレイミド基をブロックした。
(3)IL6Rを固定化した担体の調製
 各ラウンドで用いるIL6Rは、1ラウンド目及び5ラウンド目ではセファロース樹脂に固定化し、2ラウンド目から4ラウンド目まではストレプト結合ビーズに固定化したものを使用した。
(3-1)セファロース樹脂上への固定
 1ラウンド目及び5ラウンド目ではNHS-activated Sepharose 4 Fast Flowを用いた。IL6Rを固定した後、樹脂の未反応基を潰した。まず、空のIllustraTM MicroSpinTM columnsに200 μLのNHS-activated Sepharose 4 Fast Flowを入れ、よく冷やした3 mLの1 mM HClを入れて洗浄した。
 次に、200 μLのPBS-T(0.5%のTween 20を含むPBS)を加えて洗浄した。次いで、IL6Rを加えてPBS-Tで100 μLまでメスアップした。その後、4 ℃にて終夜インキュベートした。インキュベート後、20 mM Tris-HCl (pH 8.0)で6回洗浄し、4 ℃にてさらに一晩インキュベートした。このインキュベート後、0.5 M エタノールアミンで反応基をブロッキングして、4 ℃にて一晩インキュベートした。その後、上清を除去し、1 x セレクションバッファーを加えて保存した。固定前のIL6R及び固定後のフロースルーを10% SDSPAGE(20 mA, 2 時間)に供し、セファロース樹脂上への固定を確認した。ゲルはSYPRO Rubyで染色した。結果を図18に示す。
 図18より、十分な効率でIL6Rをセファロース樹脂上に固定できたことが確認された。
(3-2)ストレプトアビジン磁性ビーズ上への固定
 2ラウンド目から4ラウンド目では、Dynabeads MyOne Streptavidin C1を使用した。まずIL6Rをビオチン化するため、y pmolのIL6R、1.5 y pmolのEZ-link Sulfo-NHS-SS-ビオチンをビオチン化バッファーに溶解させ、60μLの固定化溶液を調製した。
 この固定化溶液を氷上で2時間以上インキュベートし、インキュベートしている間に、Dynabeads MyOne Streptavidin C1をビオチン化バッファーで洗浄した。インキュベート後、必要量のIL6Rをとり、洗浄済みのDynabeads MyOne Streptavidin C1と混合させ、4 ℃にて保存した。固定前のIL6R及び固定後の上清、50 mM DTTによるIL6Rの溶出液を10% SDS-PAGE(10%SDS-PAGE, 20 mA, 2 時間)に供し、ストレプトアビジン磁性ビーズ上への固定を確認した。ゲルはLumiteinで染色した。結果を図19に示す。
 図19より、十分な効率でIL6Rをストレプトアビジン磁性ビーズ上に固定でき、DTTによるIL6Rの溶出も可能であることが確認された。
(4)試験管内淘汰実験
 1ラウンド目から4ラウンド目までで得られた産物については、上記実施例2と同様に親和性スクリーニングを行った。5ラウンド目で得られた産物については、IL6Rと架橋されたS-bodyライブラリとを結合させるためのインキュベートを行い、その後、14時間洗浄を続けた(図20)。洗浄終了後、1%SDSを用いてIL6Rを変性させ、カラムに残ったcDNAディスプレイを回収した。回収液を6%PAGE(200 V, 25 分間)に供し、各ラウンドでの試験管内淘汰の進行状況を確認した。ゲルはSYBR Goldで染色した結果を図20に示す。
 図20に示すように、5ラウンド目のライブラリのバンド強度を、50%DMF中での架橋とリン酸緩衝液中での架橋とで比較すると、50%DMF中のライブラリのバンドの方が9倍高くなっていた。これは、5ラウンド目においてIL6Rに結合するペプチドの分子数を反映しているものと考えられ、50%DMF中での架橋によりペプチドの構造多様性が拡張された可能性が示唆された。
(5)試験管内淘汰されたペプチド群のプルダウンアッセイ
 翻訳後の無細胞翻訳系中でRNaseH処理を行ってRNAを除去した点、及びストレプトアビジン磁性ビーズへの固定化後に逆転写を行わない点を除き、転写、ライゲーション、Dynabeads MyOne C1 Streptavidinへの固定化、及び化学架橋については実施例2と同様に行った。
 プルダウンアッセイ用のペプチド-リンカー連結体を上述したのと同様に調製し、上記のようにして得たライブラリペプチドとsCD40 リガンドとの間の相互作用の有無について、プルダウンアッセイを行った。反応スキームを図21に模式的に示す。
 50μLの0.62 μMのIL-6R(31 μM)と1μLの3.1 mM NHS-フルオレセインとを混合し(合計51μL)、この反応液を60分間室温にてインキュベートし、ここに1μLの5 mMエタノールアミンを加え、室温にて30分間インキュベートした。その後、0.6μMのフルオレセイン標識IL-6Rを加え、この溶液をゲル電気泳動(8 M 尿素変性SDS-PAGE(20 mA, 2 時間)で解析した。FITC標識を検出した結果を図22に示す。
 図22より、各条件における淘汰後、淘汰前におけるペプチド群のバンドが下方に、ペプチド群に含まれるペプチドに結合したIL6Rが上方のバンドとして確認できた。各架橋条件下における淘汰前後のペプチド群に結合したIL6Rの量を比較するため、各レーンにおけるIL6Rのバンド強度比を測定した。図23に、下記式(1)で求めた増加率を、グラフとしてまとめた。
 増加率=(淘汰後のライブラリのバンド強度比-淘汰前のライブラリのバンド強度比)/淘汰前のライブラリのバンド強度比    …(1)
 図23に示したように、各架橋条件下におけるライブラリのバンド強度を淘汰前後で比較すると、配列の収束は十分ではないものの標的分子に結合する分子の淘汰は進んでいることが示された。初期ライブラリは淘汰前のライブラリと比べて45%増加していた。このことから、50%DMF存在下で架橋する条件での試験管内淘汰実験によって、ライブラリ中に含まれるIL6R結合配列が1.5倍濃縮されたことが示された。
 これに対し、DMFなしで架橋させたライブラリも同様に比較すると-30%となり、DMFなしで架橋させると、初期ライブラリ中よりも架橋されたIL6R結合配列の割合が減少することが示された。
 以上の結果より、50%DMF存在下で架橋させ、水性緩衝液中で淘汰実験を行うことによって、従来の水性緩衝液中で架橋したペプチドライブラリと比べてライブラリの構造多様性が拡張されたことが示された。また、50%DMF中において架橋された立体構造は、従来の水性緩衝液中において架橋された立体構造とは異なる立体構造を取ることが予想された。
(実施例4)異なる溶媒条件下におけるペプチド架橋の分析
(1)ペプチド架橋検討用試料の調製
(1-1)コノトキシンベースのペプチド断片の作製
 天然コノトキシンの配列として知られているもののうち、比較的短く、かつ4つのシステインが含まれているものとして、下記の2つのアミノ酸配列(配列表の配列番号12及び13)を選択した(図24参照)。これらのペプチドでは、C1とC3及びC2とC4(システインの番号付けは、N末から見て最初に出現するものを1とし、以下、順番に2、3、4とされている。)とがジスルフィド架橋する。
(配列表の配列番号12)MCPPLCKPSCTNC
(配列表の配列番号13)DCPPHPVPGMHKCVCLKTC
 架橋後プロテアーゼで断片化し、TOF-MSで解析できる配列とするために、上記の配列中にリジン(K、プロテアーゼの基質)を組み込んだ下記の3種類のペプチドを設計し、東レリサーチセンターに合成を依頼した(図24参照)。
(配列表の配列番号14)MCPKLCKPSCKNC
(配列表の配列番号15)DCPPHPVPGMHKCKCLKTC
(配列表の配列番号16)DCPPHKPVCPGMHKCLKTC
(2)S-bodyライブラリ調製用コンストラクトの構築
 また、S-bodyライブラリ調製用コンストラクトとして、下記の配列を有するT7Ω‐Library (MGC(28AA))‐HisX6‐C(Ytag)を作製した。下記の配列中、Xは任意のヌクレオチドを表す。ピューロマイシンリンカーとしては、下記表8及び図25に示す構造のcnvKリンカーを使用した。また、下記表8中に示すライブラリのヌクレオチド配列をNで表したS-bodyライブラリ用コンストラクトのヌクレオチド配列を下記の配列番号9として示す。ここで、Nは、A、T、G、Cのいずれかの任意のヌクレオチドを表す。
Figure JPOXMLDOC01-appb-T000017
(配列表の配列番号9)
5’-GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAACAACAACAACAAACAACAACAACATTACATTTTACATTCTACAACTACAAGCCACCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGGGGAGGCAGCCATCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAAA-3’
 上記のS-bodyライブラリ用コンストラクトを用いて、上記と同様の条件で試験管内で淘汰を行ない、下記の配列を有するクローンAを得た。
(配列表の配列番号17)
5’-GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAACAACAACAACAAACAACAACAACATTACATTTTACATTCTACAACTACAAGCCACCATGGGCTGCAGCTATTATCATGGCCGTCACGGTGACCCTCCCGTTCACTGCCACCATAGTCACTGCCCCTATGGCCGCTATCACGGGGGAGGCAGCCATCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAAA-3’
(実施例5)C-ランダム-Cライブラリの調製
(1)ペプチドライブラリからのcDNAディスプレイ調製
(1-1)PCRによる増幅1
 ジスルフィドリッチペプチドライブラリのDNA合成は、つくばオリゴ社に依頼した。初期ライブラリのダイバーシティを失わず、サブバンドが出ないよう、下記表18に示す溶液を用いてPCR1(Extension PCR 1)を行い、ライブラリを精製した。
Figure JPOXMLDOC01-appb-T000018
 PCR1のプログラムは、(t1-1)98℃で1分インキュベートし、(t1-2)98℃で10秒インキュベート、(t1-3)その後引き続き63℃で5秒インキュベートし、(t1-4)72℃で10秒インキュベートし、(t1-1)~(t1-4)を、5サイクル、7サイクル、又は9サイクル行い、72℃で2分インキュベートした後に4℃に降温させた。得られたPCR産物を上述した8 M 尿素変性核酸ポリアクリルアミドゲル電気泳動(DNAやRNAといった核酸に対して行う電気泳動。以下、「PAGE」ともいう。)で確認した。
 その後、PCR-Clean-up Mini Kitを用いてプライマーと酵素とを除去してExtension産物1を得た。これらをゲル電気泳動した結果(8M尿素 6% PAGE)を図26に示す。なお、本実施例では、ゲル電気泳動用の6%ゲルは、下記表19に示す組成とした。図26より、C-ランダム-CライブラリとHis(Ytag-cnvK)とを用いて、所望のPCR産物1が得られたことが確認された。また、PCR産物1の量は、サイクル数に依存して大幅に増加してはいなかった。
(1-2)PCRによる増幅2
 上記(4-1)で得られたExtension産物1(PCR産物1の5~9サイクルで得られた産物をまとめたもの)を以下のPCRのテンプレートとして使用し、下記の表19に示す溶液を用いてPCR2(Extension PCR 2)を行った。
Figure JPOXMLDOC01-appb-T000019
 PCR2のプログラムは、(t2-1)98℃で1分インキュベートし、(t2-2)98℃で10秒インキュベート、(t2-3)その後引き続き58℃で5秒インキュベートし、(t2-4)72℃で15秒インキュベートし、(t2-1)~(t2-4)を、7サイクル、10サイクル、又は13サイクル行い、72℃で2分インキュベートした後に4℃に降温させた。得られたPCR産物2(Extension産物2)を上述した8 M 尿素変性核酸PAGEで確認した。その後、PCR-Clean-up Mini Kitを用いてプライマーと酵素とを除去してExtension産物2を得た。これらをゲル電気泳動した結果を図27及び図28に示す。
 図27より、PCR2の点テンプレートして使用したExtension産物1はT7Ωで増幅され、所望のPCR産物2(235bp)が得られたことが確認された。また、PCR産物2の量は、サイクル数に依存して大幅に増加してはいなかった。
(1-3)PCRによる増幅3
 上記(4-2)で得られたExtension産物2(PCR産物2の7~13サイクルで得られた産物をまとめたもの)を以下のPCRのテンプレートとして使用し、下記の表20に示す組成の溶液を用いてPCR3を行った。
Figure JPOXMLDOC01-appb-T000020
 PCR3のプログラムは、(t3-1)98℃で1分インキュベートし、(t3-2)98℃で10秒インキュベート、(t3-3)その後引き続き67℃で5秒インキュベートし、(t3-4)72℃で15秒インキュベートし、(t3-1)~(t3-4)を25サイクル行い、72℃で2分インキュベートした後に4℃に降温させた。得られたPCR産物3を上述した8 M 尿素変性核酸PAGEで確認した。その後、PCR-Clean-up Mini Kitを用いてプライマーと酵素とを除去してPCR産物3(235bp)を得た。PCR3産物の10倍希釈物~1,000倍希釈物(図28の4~6)をまとめてカラム精製して得られた精製物(25ng/μL)を転写に使用した。得られたPCR3産物を8 M 尿素変性核酸PAGEに供して最終確認を行なった(図28参照)。
 このライブラリのシーケンス解析をユーロフィンジェノミクス社に依頼し、下記表21に示すライブラリ(C-ランダム-C ライブラリ)が合成されたことが確認された。このライブラリは設計通りのものであった。
Figure JPOXMLDOC01-appb-T000021
 以下に、上記C-ランダム-C ライブラリ調製用コンストラクトのヌクレオチド配列(配列表の配列番号18)を示す。
(配列表の配列番号18)
 5’-GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAACAACAACAACAAACAACAACAACATTACATTTTACATTCTACAACTACAAGCCACCATGGGCTGCXYZXYZXYZXYZXYZXYZXYZXYZXYZXYZXYZXYZXYZXYZXYZXYZTGCGGGGGAGGCAGCCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAAA -3’
 上記C-ランダム-C ライブラリ調製用コンストラクトでは、(a)極力アミノ酸の偏りがない、(b)終止コドンの出現頻度を抑える、(c)上記ランダム領域の16残基中に、約2残基のシステインが出現する、という要件を満たすようにランダム領域のヌクレオチド配列を調整した。ここで、上記配列番号18中のXYZは、上記表21中の開始コドン~ランダム領域に対応する、A、T、G、Cのいずれかのヌクレオチドが、下記表22に示す頻度で出現することを示す。
Figure JPOXMLDOC01-appb-T000022
 上記ランダム領域中にシステインが出現する頻度を12.4%とすると、0.124×16=1.984となり、確率的には上記ランダム領域中に約2個のシステインが出現することになった。そして、上述するように翻訳された際には、1分子中に約4残基のシステインが出現するようになった。
 以上のようにランダム領域のヌクレオチド配列を調製した結果、ランダム領域のアミノ酸の出現率は、疎水性アミノ酸が30.5%、極性(無電荷)アミノ酸が35.4%、親水性(塩基性)アミノ酸が10.5%、親水性(酸性)アミノ酸が5.1%となった。各アミノ酸の出現率を図29に、本発明のペプチドの模式図とともに示す。
(1-4)転写
 次いで、RiboMAX-Large Scale RNA production systemsを用いて、上記(4-3)で得られたDNA(PCR産物3(C-ランダム-Cライブラリ))を鋳型として使用し、これらを転写して転写産物(RNA)を得た。チューブ1本分の反応組成と反応条件とを下記表23に示す。
Figure JPOXMLDOC01-appb-T000023
 上記組成の反応液中で、37 ℃にて3時間インキュベートし、転写反応を行なった。その後、RQ1 RNase-Free DNaseを2.5 μL添加し、さらに37 ℃にて15 分間インキュベートした。15分経過後直ちに、付属のプロトコルに従って、Agencourt RNA Cleane XP(ベックマン・コールター(株))を用いて転写産物を精製した。この段階で、上記転写産物及び上記C-ランダム-Cライブラリを、上記の8 M 尿素変性PAGEで確認した。結果を図30に示す。この増幅によって、目的産物である205 bpのmRNAが得られた。転写産物(図30の2番)の原液を精製し、下記のライゲーションのテンプレートとして使用した。
(1-5)ライゲーション
 次に、上記(1-4)で得られた精製したmRNAとcnvKリンカーとを連結した。チューブ1本分のライゲーション反応溶液の組成を下記表24に示す。
Figure JPOXMLDOC01-appb-T000024
 アニーリング条件は、90℃で2分間インキュベート後、0.1℃/分で70℃まで降温した。70℃で1分間インキュベート後、0.01℃/分で25℃まで降温し、25℃で30秒間インキュベートした。アニーリング後、CL-1000 Ultraviolet Crosslinkerを用いて、365 nmの紫外光を  秒間照射し (405 mJ/cm2)、上記cnvKリンカーと転写産物とを光架橋させてライゲーション産物を得た。その後、得られたライゲーション産物と未架橋のmRNA(対照)とを上記の8 M 尿素変性PAGE(200 V, 25分間)に供した。
 ゲル電気泳動後、ゲルをFITC又はSYBR Goldで染色した。結果を図31に示す。図31より、cnvKリンカーと上記mRNAとが架橋されていることが、検出されたバンドの位置がmRNA単独のバンドよりも高分子側にシフトしていることによって確認された。
(1-6)無細胞翻訳
 次いで、下記表25に示す組成の無細胞翻訳用溶液中にて、mRNA-リンカー連結体を無細胞翻訳系で翻訳し、mRNA-タンパク質(ポリペプチド)連結体を形成した。
Figure JPOXMLDOC01-appb-T000025
 上記表26に示す組成の反応液を25 μLずつチューブに分注し、その後、30 ℃にて40 分間インキュベートした。その後、24μLの3 M KClと6μLの1M MgCl2とを加え、さらに37 ℃にて80 分間インキュベートした。この後、上記表26に示すように、スタート時点でのmRNA-cnvK リンカーの量(6 pmol)からの無細胞翻訳を行なって最終的に得られたcDNAディスプレイの形成効率及び架橋効率を検討した。
(1-7)mRNA-タンパク質(ペプチド)連結体(In Vitro Virus: IVV)の精製
 引き続き、ストレプトアビジン(SA) 磁性ビーズ(Dynabeads MyOne Streptavidin C1)からRNaseを除去した。60 μLのDynabeads MyOne Streptavidin C1を1.5 mLチューブにとり、磁気スタンド上に静置した。この後の上清を除去する作業は、全て磁気スタンド上で行った。上清を捨て、1.5 x 結合バッファーで再懸濁し、上清を再度除去した。
 次いで、残留リボソームが磁性体ビーズの固定化の際に立体障害となる可能性があるため、翻訳後のmRNA-ペプチド連結体に結合したリボソームを以下のようにして除去した。まず、キレート剤として8μLの0.5 M EDTA (終濃度70 mM)を加えた。ここに、等量の2 x 結合バッファーを加え、洗浄済みのDynabeads MyOne Streptavidin C1と混合し、室温にて25分間インキュベートして上清を除去した。この上清はSup.1としてライゲーション産物と共に8 M 尿素変性PAGE(20 mA, 2時間)に供し、含有物を確認した。ゲルはFITCで染色した。結果を図32に示す。図32より、ライゲーション産物が翻訳され上記の磁性ビーズ上に固定されたこと、及びHis-tag精製されたことが確認された。
(1-9)逆転写
 次いで、不安定なmRNAをcDNAに逆転写した。まず、上記IVVの精製で用いたDynabeads MyOne Streptavidin C1を1 x ReverTraAce バッファーで洗浄した。その後、下記表26に示す組成の溶液を調製した。
Figure JPOXMLDOC01-appb-T000026
 次にこの溶液中にDynabeads MyOne Streptavidin C1を加えて混合し、42 ℃にて45分間インキュベートし、インキュベート終了後に上清を除去し、cDNAディスプレイライブラリからcDNAを得た。得られたcDNAペプチドを含む溶液を、8 M 尿素変性PAGE(20 mA, 2時間)に供し、含有物を確認した。ゲルはFITCで染色した。結果を図33に示す。
(1-9)RNase処理
 次いで、Dynabeads MyOne Streptavidin C1からcDNA ディスプレイを切り離した。まず、逆転写バッファーを除去し、His-tag 洗浄バッファーで洗浄し上清を捨てた。チューブ1本当たり、19.8μLのHis-タグ洗浄バッファーと0.2μLのRNaseT1 (1,000 U/μL)とを含む20μLのRNase処理用バッファーとを加え、Dynabeads MyOne Streptavidin C1上でRNase処理溶液を調製した。
 次にこのRNase処理溶液を37 ℃にて20 分間インキュベートした、その後、チューブを磁性スタンド上にセットし、cDNAディスプレイを含む溶液を回収した。
(1-10)His-tag精製
 上記手順で回収したcDNAディスプレイのうち、ペプチドが翻訳されているものを、His-tagを用いて回収した。まず、His-mag Sepharose Niを20 μL取ってチューブに入れ、His-tag 結合バッファーで洗浄した。洗浄したHis-mag Sepharose Niに上記cDNAディスプレイを加え、4 ℃で1時間以上インキュベートした。
 インキュベート後、上清をSup.としてPAGEで確認した。次に、cDNAディスプレイとHis-mag Sepharose Niとの混合液が入ったチューブにHis-tag 洗浄バッファーを加え、2回洗浄した。His-tag 溶出バッファーを入れ、シェイカーで20分間撹拌した後、上清を回収した。以上のようにして、C-ランダム-C ライブラリを構成する、精製されたcDNAディスプレイを得た。結果を図33に示す。図33(A)は上記のようにして得られたクローン、同(B)はクローニングしていないライブラリを用いた場合の結果を示す。
 クローンは、50%DMFの存在下で得られたものであることが精製に影響した可能性が推測された。図34に示すように、使用した架橋剤によって、架橋に相違が見られた。
(実施例5)
(1)ストレプトアビジン磁性ビーズの有機溶媒耐性の検討
 まず、ストレプトアビジン磁性ビーズの有機溶媒耐性を検討した。有機溶媒としては、ペプチドに対する影響を勘案しつつ、極性溶媒を使用することとした。非プロトン性極性溶媒であるジメチルスルホキシド(以下、「DMF」ということがある。誘電率36.7、沸点153℃)及びアセトニトリル(誘電率37.5、沸点82℃)、並びにプロトン性極性溶媒であるエタノール(誘電率25.8、沸点78℃)を選択した。各有機溶媒の濃度を50%とし、反応時間によるストレプトアビジン磁性ビーズから遊離された蛍光ビオチン(遊離ビオチン)の蛍光強度の変化を調べた。
 結果を図35に示す。図35に示されるように、上記遊離ビオチンの蛍光強度は、50%アセトニトリル中では時間の経過につれて大きく上昇しており、溶媒によってストレプトアビジン磁性ビーズの溶媒耐性に問題があると判断された。また、上昇幅は小さいものの、エタノールでも同様の傾向が見られた。一方、DNFでは遊離ビオチンの蛍光強度には大きな変化は見られなかった。このため、上記磁性ビーズの溶媒耐性の点から、DMFを架橋構造の検討用溶媒として選択した。反応時間は、図35の結果から、30分とした。
(3)有機溶媒中における架橋構造の変化の検討
(3-1)DMF中における架橋構造の変化の検討
 上記の配列番号14~16で示されるペプチドを、それぞれ、0.1%酢酸水溶液及び100%DMFに、1mg/mLの濃度で溶解させ、下記表27に示す組成の溶媒中で、室温にて1時間インキュベートし、架橋させた。架橋剤として、ビスマレイミドエタン(BOME)をDMFに溶解して使用した。また、タンパク質内やタンパク質間のジスルフィド結合を切断するための還元剤としてトリス(2-カルボキシエチル)ホスフィン塩酸(TCEP-HCl)を超純水に溶解して使用した。
Figure JPOXMLDOC01-appb-T000027
 1時間のインキュベート終了後、90%DMF溶液中で反応させた試料(以下、「DMF90サンプル」という。)については、真空遠心(40℃にて2時間)に供して溶媒を除去し、100μLの1 x コンジュゲーションバッファーを加えた。4%DMF溶液中で反応させた試料(以下、「DMF04サンプル」という。)については、上記の真空遠心は行わなかった。
 次いで、各サンプルを0.1%TFA水溶液で5倍希釈し、希釈した溶液から100μLを取ってHPLCに注入し、分析を行った。対照として、DMF90のみ、DMF4%+架橋剤、ペプチドのみ、架橋剤及びペプチドの双方を含まないサンプルを使用した。
 HPLCには、1260 Hip ALS Agilent 1260、Degasser Agilent 1200、Quat Pump Agilent 1200、DAD Agilent 1200及びTCC Agilent 1200(以上はすべてAgilent Technology社製)、及び分析カラムとしてShiseido C18 (4.6 mm i. d. × 250 mm)(資生堂製)又はInert sustain c18(GLサイエンス社製)を使用した。
 溶離液は、トリフロロ酢酸(以下、「TFA」と略すことがある。)、アセトニトリル及びメタノール(いずれも、富士フィルム和光純薬工業(株)製)を、下記表28に示す割合になるようにしたグラジエント溶出を行なった。これら試薬のグレードは、TFAを除いてHPLC用とした。ストップ時間は36分、溶離液の流量は1mL/分で固定した。測定は、λ=220nmで行った。
Figure JPOXMLDOC01-appb-T000028
 上記表中、A液は0.1%TFA、B液は100%アセトニトリルである。
 架橋ペプチド1(配列表の配列番号14)のHPLCによる分析結果を図36(A)及び同(B)に示す。図36(A)は4%DMF中(コンジュゲーションバッファーを含む)、同(B)は90%DMF中で架橋させた場合の結果である。また、架橋ペプチド2(配列表の配列番号15)のHPLCによる分析結果を図37(A)及び同(B)に示す。図37(A)及び(B)で使用した溶媒は、図37と同じである。さらに、架橋ペプチド3(配列表の配列番号16)のHPLCによる分析結果を図38(A)及び同(B)に示す。図38(A)及び(B)で使用した溶媒は、図36と同じである。
 図36~38に示すクロマトグラムでは、保持時間17分に認められる非常に大きなピークはBMOEであった。上記架橋ペプチド1~3では、いずれも、未架橋のペプチドのピークが架橋後には低下しており、架橋前には確認できなかった位置にピークが認められた。保持時間から見て、架橋後に検出されたピークは架橋ペプチド(架橋剤とペプチドとの反応産物)と考えられた。
 しかしコンジュゲーションバッファー(HEPESバッファー、4%DMF)中での架橋産物と90%DMF中での架橋産物を含むサンプルのクロマトグラムで検出されたピークの相違は、上記架橋ペプチド1~3では確認できなかった。このことから、架橋する位置が変更されているかどうかについては確認できなかった。
(3-2)アセトニトリル中における架橋構造の変化の検討
 有機溶媒をアセトニトリル(以下、「ACN」と略すことがある。)に、また、架橋剤をα,α’-ジブロモ-o-キシレン(以下、「DBX」と略すことがある。)に、それぞれ変更した溶液を調製し(下記表29参照)、上記(3-1)と同様にインキュベートした。
Figure JPOXMLDOC01-appb-T000029
 90%CAN中で架橋させたサンプル(ACN90サンプル)については、室温にて20分間真空遠心を行なって溶媒を除去し、150μLの20 mM NH4HCO3 バッファー(pH 8.2)を加えた。この溶解液から100μLを取ってHPLCに注入し、分析を行った。HPLC条件は、溶離液を下記表30に示すグラジエントした点及びストップ時間を63分とした以外は、上記(3-1)と同じとした。
Figure JPOXMLDOC01-appb-T000030
 結果を図39~42に示す。上記架橋ペプチド1を、アセトニトリル及びDBXを用いて架橋した結果、架橋ペプチド1のみのサンプルでは、保持時間21分過ぎに単一ピークが検出された。一方、10%ACNを含む溶媒中で架橋させた場合には、同15分過ぎにシャープな単一ピークが、また、同20分過ぎ非常に大きなピークがそれぞれ検出された。さらに、同25分~27分にブロードな低いピークが検出された。90%ACN溶媒中で架橋させた場合には、保持時間15分過ぎ及び同20分過ぎのピークが低くなり、DBXが架橋に使用されたことが示唆された。また、同23分~27分に4本のピークが出現し、特に、同25分~27分の以降ピークが高くシャープになってペプチドが架橋されたことが示唆された。
 上記架橋ペプチド2を、上記架橋ペプチド1と同じ条件で架橋した結果、上記架橋ペプチド2のみのサンプルでは、保持時間23分の直前に小さな単一ピークが検出された。一方、10%ACNを含む溶媒中で架橋させた場合には、同15分過ぎにシャープな単一ピークが、また、同21分過ぎ非常に大きなピークがそれぞれ検出された。さらに、同25分~26分に小さな2つのピークが検出された。90%ACN溶媒中で架橋させた場合には、保持時間15分過ぎ及び同21分過ぎのピークが低くなり、DBXが架橋に使用されたことが示唆された。また、同25分~26分に出現したピークは、10%ACNを含む溶媒中で架橋させた場合よりも高くなっていた。なお、これまで検出されていなかった同27分過ぎにピークが検出された。
 上記架橋ペプチド3を、上記架橋ペプチド1と同じ条件で架橋した結果、上記架橋ペプチド3のみのサンプルでは、保持時間23分の直前に単一ピークが検出された。一方、10%ACNを含む溶媒中で架橋させた場合には、同15分過ぎにシャープな単一ピークが、また、同20分過ぎ非常に大きなピークがそれぞれ検出された。さらに、同25分~26分に2つのピークが検出された。90%ACN溶媒中で架橋させた場合には、保持時間15分過ぎ及び同20分過ぎのピークが低くなり、DBXが架橋に使用されたことが示唆された。また、同25分~26分に出現したピークは、10%ACNを含む溶媒中で架橋させた場合よりも高くなっていた。なお、このサンプルでも、これまで検出されていなかった同27分過ぎにピークが出現したことから、このピークはDBX由来と推定された。
(3-3)TOF/MSを用いたペプチドの架橋構造の解析
 上記(3-1)において、BMOEを用いて架橋させた上記ペプチド1~3を、トリプシン/Lys-C Mixを用いて消化し、MALDI/TOF-MSに供して解析した。各ペプチドでピークが出現すると考えられる組み合わせリストアップし、得られたマススペクトラムと照合し、断片が得られたかを確認した。マススペクトラムで確認された断片のみを表31に示す。マススペクトラムは、図42~44に示す。
Figure JPOXMLDOC01-appb-T000031
 上記表25中、[ ]が付されている数値は90%DMF中で架橋を行ったサンプルのマススペクトラムで確認されたものを示す。また、( )が付されている数値は、コンジュゲーションバッファー中で架橋させたサンプルのマススペクトラムで確認されたものを示す。
 照合した結果、上記の架橋ペプチド1~3では、架橋剤が反応した最小の断片、架橋されていない最小の断片がいくつか確認された。しかしながら、分子内架橋由来のピークはほとんど確認できなかった。また、1,000~1,600[m/z]付近に等間隔の44個のピークが認められるが、バッファーに含まれる界面活性剤(Tween20由来)のピークであると考えられた。以上より、有機溶媒中で架橋するペプチドが得られた。
 本発明は、タンパク質工学、薬学、医薬及び診断薬の技術分野において有用である。
配列番号1:架橋ポリペプチドのアミノ酸配列(1)
配列番号2:架橋ポリペプチドのアミノ酸配列(2)
配列番号3:架橋ポリペプチドのアミノ酸配列(3)
配列番号4:T7プロモーターの塩基配列
配列番号5:Ω配列の塩基配列
配列番号6:GGGS配列の塩基配列
配列番号7:イノシンプライマーの塩基配列
配列番号8:プライマー(NewYtag)の塩基配列
配列番号9:S-ボディ調製用コンストラクトの塩基配列
配列番号10:陽性対照(クローン45)のアミノ酸配列
配列番号11:試料(クローン67)のアミノ酸配列
配列番号12:天然コノトキシンの塩基配列1
配列番号13:天然コノトキシンの塩基配列2
配列番号14:上記天然コノトキシンにプロテアーゼ消化用の塩基を組み込んだ塩基配列1
配列番号15:上記天然コノトキシンにプロテアーゼ消化用の塩基を組み込んだ塩基配列2
配列番号16:上記天然コノトキシンにプロテアーゼ消化用の塩基を組み込んだ塩基配列3
配列番号17:S-ボディライブラリから得られたクローンNo. 25の塩基配列
配列番号18:C-ランダム-Cライブラリ調製用コンストラクトの塩基配列

Claims (12)

  1.  ジスルフィドリッチペプチドライブラリを作製するDNAライブラリ作製工程と;
     前記DNAライブラリからmRNAを調製して精製する転写工程と;
     前記転写工程で得られた精製mRNAとリンカーとを結合させてmRNA-リンカ-結合体を形成させる結合工程と;
     前記mRNA-リンカ-結合体を無細胞翻訳系で翻訳し、mRNA-ペプチド連結体を形成させる翻訳工程と;
     前記mRNA-ペプチド連結体中のmRNAからcDNAを作製し、mRNA-ペプチド連結体に結合させるmRNA-ペプチド-cDNA連結体を形成させる逆転写工程と;
     前記mRNA-ペプチド-cDNA連結体を化学架橋させて化学架橋ライブラリを調製する化学架橋ライブラリ調製工程と;
     標的ポリペプチドを樹脂に固定する標的ポリペプチド固定化工程と;
     前記化学架橋ライブラリと樹脂に固定された前記標的ポリペプチドとを用いて試験管内淘汰を行って前記所望の配列を有するポリペプチドを得る試験管内淘汰工程と;
     有機溶媒を含む溶液中にてジスルフィド結合又は架橋剤を用いて、前記所望の配列を有するポリペプチドを架橋させて特異な構造の架橋ポリペプチドを形成する、架橋工程と;
     を備える、標的ポリペプチドと結合し得る架橋ポリペプチドの調製方法。
  2.  前記結合工程では、精製mRNAとリンカーとを、酵素又は光架橋によって結合させることを特徴とする、請求項1に記載の架橋タンパクの調製方法。
  3.  前記精製mRNAとリンカーとの結合は、シアノビニルカルバゾールを含まないリンカーを使用する場合にはリガーゼで行い、シアノビニルカルバゾールを含むリンカーを使用する場合には紫外線照射で行うことを特徴とする、請求項1又は2に記載の架橋タンパクの調製方法。
  4.  前記翻訳工程では、翻訳後の前記mRNA-ペプチド連結体に結合したリボソームを除去することを特徴とする、請求項1に記載の架橋タンパクの調製方法。
  5.  前記リボソームの除去にはキレート剤を使用することを特徴とする、請求項4に記載の架橋ポリペプチドの調製方法。
  6.  前記キレート剤は、エチレンジアミン四酢酸又はグリコールジアミン四酢酸であることを特徴とする、請求項5に記載の架橋ポリペプチドの調製方法。
  7.  前記有機溶媒を含む溶液は10~90容量%の有機溶媒を含み、前記有機溶媒は、ジメチルホルムアミド、アセトニトリル、及びエタノールからなる群から選ばれるいずれかの溶媒であることを特徴とする、請求項1に記載の架橋ポリペプチドの調製方法。
  8.  前記所望の配列を有する架橋ポリペプチドは、システインを3個以上含み、標的ポリペプチドと結合し得るものであることを特徴とする、請求項1に記載の架橋ポリペプチドの調製方法。
  9.  前記架橋剤は、ビスマレイミドエタン、ビスマレイミドプロパン、及びα,α’-ジブロモ-o-キシレンからなる群から選ばれるいずれかのものであることを特徴とする、請求項1に記載の架橋ポリペプチドの調製方法。
  10.  請求項1~9のいずれかに記載の方法で調製された、標的ポリペプチドと結合し得る架橋ポリペプチド。
  11.  前記架橋ポリペプチドは、システインを3個以上含むペプチドからなる群から選ばれることを特徴とする、請求項10に記載の架橋ポリペプチド。
  12.  前記架橋ポリペプチドは、下記の配列表の配列番号1~3のいずれかの配列を有するものである、ことを特徴とする、請求項10に記載の架橋ポリペプチド。
    [配列番号1]
      MGCSYYHGRHGDPPVHCHHSHCPYGRYH
    [配列番号2]
      MGCHSCNPSNSTDVWSNAYYPLSHSSCRNP
PCT/JP2019/048168 2018-12-07 2019-12-09 ジスルフィドリッチペプチドライブラリの調製方法、標的ポリペプチドと結合し得る架橋ポリペプチド、及びその調製方法 WO2020116659A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-230011 2018-12-07
JP2018230011 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020116659A1 true WO2020116659A1 (ja) 2020-06-11

Family

ID=70973941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048168 WO2020116659A1 (ja) 2018-12-07 2019-12-09 ジスルフィドリッチペプチドライブラリの調製方法、標的ポリペプチドと結合し得る架橋ポリペプチド、及びその調製方法

Country Status (1)

Country Link
WO (1) WO2020116659A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085980A (ja) * 2015-11-11 2017-05-25 国立大学法人埼玉大学 架橋ペプチドの作製方法、及びその方法を用いて作製した架橋ペプチド

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085980A (ja) * 2015-11-11 2017-05-25 国立大学法人埼玉大学 架橋ペプチドの作製方法、及びその方法を用いて作製した架橋ペプチド

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG, JUI-YOA ET AL.: "The Structure of Denatured a-Lactalbumin Elucidated by the Technique of Disulfide Scrambling", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 13, 30 March 2001 (2001-03-30), pages 9705 - 9712, XP055716681 *
POSTMA, TOBIAS M. ET AL.: "N-Chlorosuccinimide, an Efficient Reagent for On- Resin Disulfide Formation in Solid-Phase Peptide Synthesis", ORGANIC LETTERS, vol. 15, no. 3, February 2013 (2013-02-01), pages 616 - 619, XP055716682 *

Similar Documents

Publication Publication Date Title
JP6591511B2 (ja) スプリットインテイン、複合体およびそれらの使用
CN110709412B (zh) 自发性异肽键形成速率提高的蛋白质和肽标签及其用途
US11319345B2 (en) Peptide library and use thereof
KR101151805B1 (ko) 바이포달 펩타이드 바인더
KR20140002657A (ko) 혈청 알부민에 결합하는 설계된 반복 단백질
KR870700100A (ko) 최소한 일부분이 알려진 뉴클레오티드 암호서열 또는 아미노산 서열을 갖는 프로테인 또는 펩티드에 상보적인 폴리펩티드와 이것의 디자인 방법
KR20120125455A (ko) 세포내 타겟 결합용 바이포달 펩타이드 바인더
KR20240170809A (ko) 캐스케이드 효소 반응에 의한 pal-촉매화된 단백질 라이게이션 효율 개선
KR102243870B1 (ko) 환상 펩타이드, 어피니티 크로마토그래피 담체, 표지화 항체, 항체 약물 복합체 및 의약 제제
EP2990484B1 (en) Peptide-presenting protein and peptide library using same
WO2020116659A1 (ja) ジスルフィドリッチペプチドライブラリの調製方法、標的ポリペプチドと結合し得る架橋ポリペプチド、及びその調製方法
JP2006507477A (ja) タンパク質分析
Thapa et al. t‐boc synthesis of huwentoxin‐i through native chemical ligation incorporating a trifluoromethanesulfonic acid cleavage strategy
JP6057297B2 (ja) 核酸構築物、核酸−蛋白質複合体、及びその利用
US20230176069A1 (en) Mitigating concentration effects of antibody digestion for complete sequence coverage
JP6622079B2 (ja) マクロ環分子およびそのスクリーニング方法
JP4238557B2 (ja) ハイモビリティーグループタンパクと親和性を有するペプチド
JP2023020736A (ja) 特定受容体結合性ペプチドアプタマー及びそのペプチドアプタマーの作製方法
CN112898399A (zh) 源自于afp抗原的短肽
KR20190076022A (ko) 결합 펩타이드
JP2003070482A (ja) ペプチド又はタンパク質を提示するための支持体タンパク質
JP2001517201A (ja) 溶解性ペプチド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP