WO2020109741A1 - Protéine de légumineuse soluble - Google Patents
Protéine de légumineuse soluble Download PDFInfo
- Publication number
- WO2020109741A1 WO2020109741A1 PCT/FR2019/052843 FR2019052843W WO2020109741A1 WO 2020109741 A1 WO2020109741 A1 WO 2020109741A1 FR 2019052843 W FR2019052843 W FR 2019052843W WO 2020109741 A1 WO2020109741 A1 WO 2020109741A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- hydrolysis
- legume protein
- weight
- legume
- Prior art date
Links
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 94
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 94
- 235000021374 legumes Nutrition 0.000 title claims abstract description 55
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 39
- 230000007062 hydrolysis Effects 0.000 claims abstract description 37
- 235000013305 food Nutrition 0.000 claims abstract description 15
- 239000002537 cosmetic Substances 0.000 claims abstract description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 6
- 235000018102 proteins Nutrition 0.000 claims description 91
- 239000000203 mixture Substances 0.000 claims description 23
- 102000004190 Enzymes Human genes 0.000 claims description 22
- 108090000790 Enzymes Proteins 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 108010084695 Pea Proteins Proteins 0.000 claims description 17
- 235000019702 pea protein Nutrition 0.000 claims description 17
- 102000006395 Globulins Human genes 0.000 claims description 13
- 108010044091 Globulins Proteins 0.000 claims description 13
- 241001465754 Metazoa Species 0.000 claims description 9
- 101000856199 Homo sapiens Chymotrypsin-like protease CTRL-1 Proteins 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 6
- 240000006677 Vicia faba Species 0.000 claims description 4
- 235000010749 Vicia faba Nutrition 0.000 claims description 4
- 235000002098 Vicia faba var. major Nutrition 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 230000005764 inhibitory process Effects 0.000 claims description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 2
- 230000002378 acidificating effect Effects 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 235000010582 Pisum sativum Nutrition 0.000 description 21
- 241000219843 Pisum Species 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 239000000243 solution Substances 0.000 description 15
- 238000012360 testing method Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 102000009027 Albumins Human genes 0.000 description 6
- 108010088751 Albumins Proteins 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 108010022999 Serine Proteases Proteins 0.000 description 5
- 102000012479 Serine Proteases Human genes 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 4
- 125000000904 isoindolyl group Chemical class C=1(NC=C2C=CC=CC12)* 0.000 description 4
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 240000004713 Pisum sativum Species 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 235000019728 animal nutrition Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 102100025566 Chymotrypsin-like protease CTRL-1 Human genes 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 238000011481 absorbance measurement Methods 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 235000021120 animal protein Nutrition 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 241000208838 Asteraceae Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- 235000010523 Cicer arietinum Nutrition 0.000 description 1
- 244000045195 Cicer arietinum Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 244000024675 Eruca sativa Species 0.000 description 1
- 235000014755 Eruca sativa Nutrition 0.000 description 1
- 241001247262 Fabales Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 240000004670 Glycyrrhiza echinata Species 0.000 description 1
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 1
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 1
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- 244000043158 Lens esculenta Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000233855 Orchidaceae Species 0.000 description 1
- 102220502954 Polyhomeotic-like protein 1_S85F_mutation Human genes 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009309 intensive farming Methods 0.000 description 1
- 229940010454 licorice Drugs 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 235000021075 protein intake Nutrition 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 108010021648 semen liquefaction factor Proteins 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
- A23L2/66—Proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J1/00—Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
- A23J1/14—Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seeds; from press-cake or oil-bearing seeds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/14—Vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/30—Working-up of proteins for foodstuffs by hydrolysis
- A23J3/32—Working-up of proteins for foodstuffs by hydrolysis using chemical agents
- A23J3/34—Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
- A23J3/346—Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L11/00—Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
- A23L11/60—Drinks from legumes, e.g. lupine drinks
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/18—Peptides; Protein hydrolysates
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/185—Vegetable proteins
Definitions
- the present invention relates to a legume protein having a low degree of hydrolysis and excellent solubility at acidic pH, its preparation process and the use of this protein, in particular in a food, cosmetic or pharmaceutical composition.
- animal proteins have many disadvantages, both in terms of their allergenicity, in particular concerning proteins from milk or eggs, and in environmental terms in relation to the harmful effects of intensive farming.
- peas have been the most developed legume in Europe, mainly in France, as an alternative protein resource to animal proteins intended for animal and human food.
- the pea contains about 27% by weight of matter protein.
- the term “pea” is considered here in its broadest sense and includes in particular all wild varieties of "smooth pea”, and all mutant varieties of “smooth pea” and “wrinkled pea” (“Wrinkled pea”), regardless of the uses for which these varieties are generally intended (human food, animal nutrition and / or other uses).
- Pea protein mainly pea globulin
- Pea protein extraction process mention may be made of patent EP1400537.
- the seed is ground in the absence of water (a process known as "dry grinding") in order to obtain a flour.
- This flour will then be suspended in water to extract the protein.
- the hydrolysis, acidic and / or enzymatic, of proteins is a well-known process aimed at hydrolyzing peptide bonds and therefore reducing the degree of polymerization of proteins. It is well known to those skilled in the art that the smaller the average size of the proteins, the more their solubility increases. The hydrolysis of a protein therefore makes it possible to increase its solubility. However, with hydrolysis, the protein will also lose other functionalities such as its viscosity or its emulsifying power.
- a legume protein isolate in particular a pea protein, the degree of hydrolysis of which is low, for example less than 15% , but whose solubility at acidic pH, for example at pH 5, is greater than 80%.
- the present invention relates firstly to a legume protein containing more than 90% by weight of globulins relative to the total weight of proteins, said legume protein having:
- solubility at pH 5 greater than 80%, preferably greater than 85%, even more preferably greater than 90%;
- the present invention secondly relates to a process for preparing the legume protein according to the invention comprising the following steps:
- the present invention also relates to the use of the legume protein according to the invention for the preparation of a human or animal food composition, a cosmetic composition or a pharmaceutical composition.
- the legume protein of the present invention may in particular be a composition comprising a mixture of proteins extracted from a legume.
- the legume protein according to the invention contains more than 90% by weight of globulins relative to the total weight of proteins.
- protein should be understood in the present application as the macromolecules formed from one or more polypeptide chains consisting of the chain of amino acid residues linked together by peptide bonds.
- the present invention relates more particularly to globulins (approximately 50-60% of pea proteins) and albumins (20-25%).
- Pea globulins are mainly divided into three subfamilies: legumes, vicilins and convicilins.
- legume in the present application will be understood the family of dicotyledonous plants of the order Fabales. It is one of the most important families of flowering plants, the third after Orchidaceae and Asteraceae by the number of species. It has about 765 genera comprising more than 19,500 species.
- Several legumes are important cultivated plants including soybeans, beans, peas, chickpeas, faba beans, peanuts, lentils, alfalfa, various clovers, beans, carob, licorice.
- the proteins extracted from these legumes belong mainly to the subgroups of globulins and albumin.
- the legume protein is mainly made up of globulins, in particular it contains more than 90% by weight of globulins relative to the total weight of proteins.
- Globulins can be distinguished from albumin by various methods well known to those skilled in the art, in particular by their solubility in water, the albumin being soluble in pure water whereas the globulin is only soluble in salt water. It is also possible to identify the albumin and globulin present in a mixture by electrophoresis or chromatography. A preferred method is described in the article "Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer System without urea. Fling SP, Gregerson DS, Anal. Biochem. 1986; 155: 83-88.
- the legume protein according to the invention contains more than 90% by weight of globulins relative to the total weight of the proteins.
- the legume protein according to the invention has a solubility at pH 5 greater than 80%, preferably greater than 85%, even more preferably greater than 90%.
- the legume protein according to the invention may also have a solubility at pH 7 greater than 80%, preferably greater than 85%, even more preferably greater than 90%.
- the solubility can be measured by diluting the legume protein in distilled water, centrifuging the mixture and analyzing the supernatant, according to Test A of solubility described below.
- the legume protein according to the invention has a degree of hydrolysis of less than 15%, preferably less than 12%.
- the degree of hydrolysis can be determined by measuring the content of free amino nitrogen relative to the total nitrogen according to Test B of degree of hydrolysis (Test called OPA) described below.
- the legume protein is a faba bean protein or a pea protein. Pea protein is particularly preferred.
- pea being here considered in its widest sense and including in particular all varieties of “smooth pea” (“smooth pea”) and “wrinkled pea” (“wrinkled pea”), and all mutant varieties of “smooth pea” and “wrinkled pea”, regardless of the uses for which these varieties are generally intended (human food, animal nutrition and / or other uses).
- pea in the present application includes varieties of peas belonging to the genus Pisum and more particularly to the sativum and aestivum species. Said mutant varieties are in particular those called “mutants r”, “mutants rb”, “mutants rug 3”, “mutants rug 4”, “mutants rug 5” and “mutants lam” as described in the article by CL HEYDLEY and al. entitled “Developing novel pea starches” Proceedings of the Symposium of the Industrial Biochemistry and Biotechnology Group of the Biochemical Society, 1996, pp. 77-87.
- the legume protein according to the invention is an isolate whose protein content is greater than 80% by weight relative to the weight of dry matter.
- isolated in the present application a composition comprising a protein content greater than 80%, preferably greater than 90%, by weight relative to the weight of dry matter of the composition.
- the protein content is measured by any technique well known to those skilled in the art. Preferably, a total nitrogen dosage is carried out (in% / gross) and the result is multiplied by the coefficient 6.25.
- This well-known methodology in the field of vegetable proteins is based on the observation that proteins contain an average of 16% nitrogen. Any method of assaying dry matter well known to those skilled in the art can also be used.
- the legume protein of the present invention can in particular be obtained by a process comprising the following steps: - implementation of a legume protein isolate in aqueous solution;
- the legume protein isolate is chosen from a faba bean protein isolate or a pea protein isolate.
- the pea protein isolate is particularly preferred.
- the legume protein isolate used can come from several sources, whether commercial or custom, but the isolate must not have undergone prior hydrolysis, having reduced the size of its protein molecules constitutive.
- the isolate will be obtained by carrying out the methods described in patents EP1400537 or EP1909593 of the Applicant.
- the aqueous legume protein solution comprises from 5% to 20%, preferably from 8% to 12% by weight of dry matter relative to the weight of the aqueous solution.
- proteases By “protease” is meant in the present application an enzyme capable of cleaving proteins or peptides by hydrolyzing their peptide bonds.
- serine protease By “serine protease” is meant in the present application the proteases having an active site containing a serine residue which plays an essential role in catalysis. The different serine proteases are gathered in the international classification in the family EC 3.4.21
- the serine protease used in the present invention is chymotrypsin-like.
- chymotrypsin-like is meant a serine protease having a mode of action characterized in that the cleavage of the peptide bonds is located specifically after aromatic and hydrophobic amino acids such as tyrosine, phenylalanine or even leucine.
- the amount by weight of enzyme necessary to add to obtain the desired degree of hydrolysis is quantified relative to the weight of proteins in the isolate used in the process according to the invention.
- the amount of enzyme added is greater than 0.2%, preferably from 0.25% to 0.50%, by weight of enzyme relative to the weight of proteins in the isolate. It is also possible to add an amount of enzyme greater than 0.5%. We will then obtain an identical result but in a shorter time. Those skilled in the art will be able to adjust the amount of enzyme to achieve a desired reaction time.
- the hydrolysis reaction can be carried out with stirring.
- the hydrolysis is carried out for a period of 30 min to 2 hours, preferably about one hour. As described above, this time can be reduced by increasing the amount of enzyme. This adjustment will be readily apparent to those skilled in the art.
- the hydrolysis is carried out at a temperature of 45 to 65 ° C, preferably from 50 to 60 ° C, more preferably around 55 ° C.
- the heating can be carried out using any installation well known to those skilled in the art such as a submerged heat exchanger.
- the temperature is adjusted from 45 to 65 ° C before the addition of the enzyme and is then regulated at +/- 2 ° C for the duration of the hydrolysis.
- the hydrolysis is carried out at a pH of 8 to 10, preferably around 9.
- the pH can be adjusted by adding acid and / or base, for example sodium hydroxide or hydrochloric acid.
- acid and / or base for example sodium hydroxide or hydrochloric acid.
- a buffer solution although not necessary, is possible.
- the pH is adjusted from 8 to 10 before adding the enzyme and is then regulated to +/- 0.5 pH units during the duration of the hydrolysis.
- the enzyme can be inhibited.
- the reaction medium can be adjusted to pH 7 and 90 ° C for 5 min.
- the hydrolyzed legume protein can be dried by any well-known drying process such as atomization (single or multiple effects) or lyophilization. This drying can optionally be preceded by a filtration step making it possible to remove undesirable solid particles.
- the legume protein of the invention can be used for the preparation of a human or animal food composition, a cosmetic composition or a pharmaceutical composition.
- the legume protein according to the invention is used for the preparation of an acidic drink, for example a soda.
- the incorporation of the protein according to the invention in an acidic drink is particularly advantageous. Indeed, unlike a standard protein, it will remain solubilized and will not tend to precipitate during storage time. Thus the use of the protein according to the invention makes it possible to obtain an acidic drink which is stable on storage.
- food composition means a composition intended for human or animal consumption.
- food composition includes food products, food supplements and beverages.
- cosmetic composition is meant a composition intended for cosmetic use.
- pharmaceutical composition is meant a composition intended for therapeutic use.
- Solubility test A In a 400 ml_ beaker, 150 g of distilled water are introduced at a temperature of 20 ° C +/- 2 ° C with stirring with a magnetic bar and precisely 5 g of sample of legume protein are added. to test. If necessary, the pH is adjusted to the desired value with 0.1 N NaOH. The water content is completed to reach 200 g of water. Mix for 30 minutes at 1000 rpm and centrifuge for 15 minutes at 3000 g. 25 g of the supernatant are collected and introduced into a previously dried and tared crystallizer. The crystallizer is placed in an oven at 103 ° C +/- 2 ° C for 1 hour. It is then placed in a desiccator (with dehydrating agent) to cool to room temperature and weighed.
- a desiccator with dehydrating agent
- solubility corresponds to the content of soluble dry matter, expressed in% by weight relative to the weight of the sample.
- the solubility is calculated with the following formula:
- m1 weight, in g, of the crystallizer after drying
- Test B of degree of hydrolysis (Test called OPA)
- the amino nitrogen content (free NH2) on the protein sample according to the invention is determined with the MEGAZYME kit (reference K-PANOPA).
- the protein nitrogen content (total nitrogen) of the sample is also determined. We can then calculate the degree of hydrolysis.
- amino nitrogen groups of the free amino acids in the sample react with N-acetyl-L-cysteine and OPhthaldialdehyde (OPA) to form isoindole derivatives.
- the amount of isoindole derivative formed during this reaction is stoichiometric with the amount of free amino nitrogen. It is the isoindole derivative which is measured by the increase in absorbance at 340 nm.
- a P * test portion In a 100 mL beaker, a P * test portion, exactly weighed, is introduced of the sample to be analyzed. This test portion will be 0.5 to 5.0 g depending on the amino nitrogen content of the sample. About 50 ml of distilled water are added, the mixture is homogenized and transferred to a 100 ml volumetric flask. 5 ml of 20% sodium dodecyl sulfate (SDS) are added and the mixture is made up with distilled water to reach a volume of 100 ml. The mixture is stirred for 15 minutes with a magnetic stirrer at 1000 rpm. A solution No. 1 is prepared by dissolving a tablet from the vial 1 of the Megazyme kit in 3 ml of distilled water and the mixture is stirred until complete dissolution. One tablet should be used per test. Solution No. 1 is prepared immediately.
- SDS sodium dodecyl sulfate
- a blank, a standard and a sample are prepared directly in the spectrophotometer tanks under the following conditions:
- each cell The contents of each cell are mixed and the absorbance measurement (A1) of the solutions is read after approximately 2 minutes with a spectrophotometer at 340 nm (spectrophotometer equipped with cells with 1.0 cm optical path, capable of measuring at a 340 nm wavelength, and verified according to the procedure described in the relevant manufacturer's technical manual).
- the reactions are then started immediately by adding 100 mI of solution No. 2 which corresponds to the OPA solution from bottle 2 of the Megazyme kit in each spectrophotometer tank.
- each tank The contents of each tank are mixed and placed for about 20 minutes in the dark. We then read the absorbance measurement A2 of the blank, the standard and the sample using a spectrophotometer at 340 nm.
- AAblc Ablc2 - Ablc1
- Aech2 absorbance of the sample after addition of solution 2
- the protein nitrogen content is determined according to the DUMAS method according to ISO 16634 (2016). It is expressed as a percentage by weight relative to the weight of the product.
- the degree of hydrolysis (DH) is calculated with the following formula:
- Example 1 Production of a protein isolate according to the invention
- 150 g of this isolate are introduced with 1290 g of drinking water at 20 ° C. into a stirred reactor with a volume of 1.5 liters. Its temperature is adjusted to 55 ° C using a system of internal plunging tubes, connected to a temperature regulation system. The pH is adjusted to 9 using 1 M HCl and NaOH solutions and a suitably calibrated pH meter.
- Formea® CTL600 enzyme chymotrypsin-like serine protease
- the reaction is thus controlled for 1 hour, with continuous stirring.
- the pH is then regulated at 7 and the temperature at 90 ° C for 5 minutes in order to inhibit the enzyme.
- the product is dried by lyophilization and corresponds to "Product according to the invention No. 1".
- Example 2 Production of a second protein isolate according to the invention
- Example 3 Production of protein isolate outside the invention for comparative purposes
- Example 1 The hydrolysis protocols of this example are derived from Example 1 above. The modifications compared to the example are detailed in the table below. The amount of enzyme is expressed as a percentage by weight relative to the weight of proteins in the isolate. [Table 1]
- enzymes used in this comparative example are not chymotrypsin-like serine proteases.
- the degree of hydrolysis (DH), the solubility at pH 5 and the solubility at pH 7 are measured according to the tests described above.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Biochemistry (AREA)
- Mycology (AREA)
- Agronomy & Crop Science (AREA)
- Botany (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Cosmetics (AREA)
- Non-Alcoholic Beverages (AREA)
- Fodder In General (AREA)
- Beans For Foods Or Fodder (AREA)
- Peptides Or Proteins (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3120956A CA3120956A1 (fr) | 2018-11-30 | 2019-11-29 | Proteine de legumineuse soluble |
US17/296,077 US20220007678A1 (en) | 2018-11-30 | 2019-11-29 | Soluble legume protein |
CN201980075680.4A CN113163816A (zh) | 2018-11-30 | 2019-11-29 | 可溶性豆类蛋白质 |
JP2021527955A JP7510929B2 (ja) | 2018-11-30 | 2019-11-29 | 可溶性マメ科植物タンパク質の加水分解物 |
EP19835703.0A EP3886599A1 (fr) | 2018-11-30 | 2019-11-29 | Protéine de légumineuse soluble |
AU2019389833A AU2019389833A1 (en) | 2018-11-30 | 2019-11-29 | Soluble legume protein |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1872157A FR3089094B1 (fr) | 2018-11-30 | 2018-11-30 | Protéine de légumineuse soluble |
FR1872157 | 2018-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020109741A1 true WO2020109741A1 (fr) | 2020-06-04 |
Family
ID=65951773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2019/052843 WO2020109741A1 (fr) | 2018-11-30 | 2019-11-29 | Protéine de légumineuse soluble |
Country Status (8)
Country | Link |
---|---|
US (1) | US20220007678A1 (fr) |
EP (1) | EP3886599A1 (fr) |
JP (1) | JP7510929B2 (fr) |
CN (1) | CN113163816A (fr) |
AU (1) | AU2019389833A1 (fr) |
CA (1) | CA3120956A1 (fr) |
FR (1) | FR3089094B1 (fr) |
WO (1) | WO2020109741A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3089094B1 (fr) | 2018-11-30 | 2022-04-15 | Roquette Freres | Protéine de légumineuse soluble |
FR3125410B1 (fr) * | 2021-07-26 | 2023-12-29 | Roquette Freres | Methode d’activation de la synthese du fgf19 |
EP4215053A1 (fr) | 2022-01-24 | 2023-07-26 | Lovely Day Foods GmbH | Substitut comprenant de l'isolat de protéine de féverole |
CN119923197A (zh) * | 2022-09-30 | 2025-05-02 | 诺维信公司 | 产生植物蛋白提取物的酶促方法 |
EP4494477A1 (fr) | 2023-07-21 | 2025-01-22 | Lovely Day Foods GmbH | Substitut d'oeuf |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2133985A1 (en) * | 1971-04-23 | 1972-12-01 | Miles Lab | Water-soluble proteins - from proteins heated with alkali then protease |
US3876806A (en) * | 1971-10-14 | 1975-04-08 | Quaker Oats Co | Process for the preparation of acid soluble polypeptides and carbonated beverages containing same |
EP1400537A1 (fr) | 2002-09-18 | 2004-03-24 | Roquette FrÀ¨res | Procédé d'extraction des composants de la farine de pois |
US20070014896A1 (en) * | 2005-07-18 | 2007-01-18 | Wong Theodore M | Calcium containing soy protein isolate composition |
EP1909593A1 (fr) | 2005-08-05 | 2008-04-16 | Roquette Frˬres | Composition de proteines de pois |
WO2009155557A2 (fr) * | 2008-06-20 | 2009-12-23 | Solae, Llc | Compositions d'hydrolysats de protéines stables dans des conditions acides |
WO2010112546A1 (fr) | 2009-04-02 | 2010-10-07 | Novozymes A/S | Procédé de fabrication d'un hydrolysat protéique lacté |
WO2011124862A1 (fr) | 2010-04-09 | 2011-10-13 | Roquette Freres | Procede de fabrication de proteines vegetales solubles et fonctionnelles, produits obtenus et utilisations |
WO2018157262A1 (fr) * | 2017-03-03 | 2018-09-07 | Burcon Nutrascience (Mb) Corp. | Préparation d'hydrolysats de protéines de légumineuse à graines ayant peu ou pas d'astringence et d'hydrolysats de protéines de légumineuses à graines ayant un indice d'acides aminés amélioré |
EP3886599A1 (fr) | 2018-11-30 | 2021-10-06 | Roquette Freres | Protéine de légumineuse soluble |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2502531B2 (ja) * | 1986-07-31 | 1996-05-29 | 不二製油株式会社 | 改質蛋白の製造法 |
JPH06197788A (ja) * | 1993-01-06 | 1994-07-19 | Fuji Oil Co Ltd | 蛋白質の製造法 |
DE60239669D1 (de) * | 2001-02-28 | 2011-05-19 | Fuji Oil Co Ltd | Sojabohnenprotein, verfahren zu seiner herstellung sowie dessen säure enthaltende proteinnahrungsmittel |
JPWO2012014783A1 (ja) | 2010-07-28 | 2013-09-12 | 不二製油株式会社 | 酸性可溶大豆たん白素材およびその製造方法 |
JP2015059088A (ja) | 2013-09-17 | 2015-03-30 | 不二製油株式会社 | インスリン抵抗性改善作用を有する食品及びインスリン抵抗性改善剤 |
-
2018
- 2018-11-30 FR FR1872157A patent/FR3089094B1/fr active Active
-
2019
- 2019-11-29 US US17/296,077 patent/US20220007678A1/en active Pending
- 2019-11-29 EP EP19835703.0A patent/EP3886599A1/fr active Pending
- 2019-11-29 CA CA3120956A patent/CA3120956A1/fr active Pending
- 2019-11-29 JP JP2021527955A patent/JP7510929B2/ja active Active
- 2019-11-29 WO PCT/FR2019/052843 patent/WO2020109741A1/fr unknown
- 2019-11-29 AU AU2019389833A patent/AU2019389833A1/en active Pending
- 2019-11-29 CN CN201980075680.4A patent/CN113163816A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2133985A1 (en) * | 1971-04-23 | 1972-12-01 | Miles Lab | Water-soluble proteins - from proteins heated with alkali then protease |
US3876806A (en) * | 1971-10-14 | 1975-04-08 | Quaker Oats Co | Process for the preparation of acid soluble polypeptides and carbonated beverages containing same |
EP1400537A1 (fr) | 2002-09-18 | 2004-03-24 | Roquette FrÀ¨res | Procédé d'extraction des composants de la farine de pois |
US20070014896A1 (en) * | 2005-07-18 | 2007-01-18 | Wong Theodore M | Calcium containing soy protein isolate composition |
EP1909593A1 (fr) | 2005-08-05 | 2008-04-16 | Roquette Frˬres | Composition de proteines de pois |
WO2009155557A2 (fr) * | 2008-06-20 | 2009-12-23 | Solae, Llc | Compositions d'hydrolysats de protéines stables dans des conditions acides |
WO2010112546A1 (fr) | 2009-04-02 | 2010-10-07 | Novozymes A/S | Procédé de fabrication d'un hydrolysat protéique lacté |
WO2011124862A1 (fr) | 2010-04-09 | 2011-10-13 | Roquette Freres | Procede de fabrication de proteines vegetales solubles et fonctionnelles, produits obtenus et utilisations |
WO2018157262A1 (fr) * | 2017-03-03 | 2018-09-07 | Burcon Nutrascience (Mb) Corp. | Préparation d'hydrolysats de protéines de légumineuse à graines ayant peu ou pas d'astringence et d'hydrolysats de protéines de légumineuses à graines ayant un indice d'acides aminés amélioré |
EP3886599A1 (fr) | 2018-11-30 | 2021-10-06 | Roquette Freres | Protéine de légumineuse soluble |
Non-Patent Citations (6)
Title |
---|
A. C. Y. LAM ET AL: "Pea protein isolates: Structure, extraction, and functionality", FOOD REVIEWS INTERNATIONAL, vol. 34, no. 2, 18 December 2016 (2016-12-18), Philadelphia, USA, pages 126 - 147, XP055573546, ISSN: 8755-9129, DOI: 10.1080/87559129.2016.1242135 * |
A. C. Y. LAMA. CAN KARACAR. T. TYLERM. T. NICKERSON: "Pea protein isolâtes: Structure, extraction, and functionality", FOOD REVIEWS INTERNATIONAL, vol. 34, no. 2, 2018, pages 126 - 147, XP055573546, DOI: 10.1080/87559129.2016.1242135 |
C-L HEYDLEY ET AL.: "Developing novel pea starches", PROCEEDINGS OF THE SYMPOSIUM OF THE INDUSTRIAL BIOCHEMISTRY AND BIOTECHNOLOGY GROUP OF THE BIOCHEMICAL SOCIETY, 1996, pages 77 - 87, XP008089423 |
FLING SPGREGERSON DS, ANAL. BIOCHEM., vol. 155, 1986, pages 83 - 88 |
HUMISKI AND R E ALUKO L M: "Physicochemical and Bitterness Propertiesof Enzymatic Pea Protein Hydrolysates", JOURNAL OF FOOD SCIENCE, WILEY-BLACKWELL PUBLISHING, INC, US, vol. 72, no. 8, 1 October 2007 (2007-10-01), pages 605 - 611, XP002664213, ISSN: 0022-1147, [retrieved on 20070906], DOI: 10.1111/J.1750-3841.2007.00475.X * |
POONAM R. BAJAJKANISHKA BHUNIALESLIE KLEINERHELEN S. JOYNER (MELITODENISE SMITHGIRISH GANJYALSHYAM S. SABLANI: "Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil", JOURNAL OF MICROENCAPSULATION, vol. 34, no. 2, 2017, pages 218 - 230 |
Also Published As
Publication number | Publication date |
---|---|
CN113163816A (zh) | 2021-07-23 |
CA3120956A1 (fr) | 2020-06-04 |
JP7510929B2 (ja) | 2024-07-04 |
FR3089094A1 (fr) | 2020-06-05 |
AU2019389833A1 (en) | 2021-06-03 |
EP3886599A1 (fr) | 2021-10-06 |
FR3089094B1 (fr) | 2022-04-15 |
JP2022513613A (ja) | 2022-02-09 |
US20220007678A1 (en) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020109741A1 (fr) | Protéine de légumineuse soluble | |
CA2617698C (fr) | Composition de proteines de pois | |
EP4142514B1 (fr) | Alternative vegetale a l'oeuf | |
EP3784047B1 (fr) | Proteines de levures | |
EP3691472A1 (fr) | Composition de protéines de pois a qualité nutritionnelle améliorée | |
CA2491241A1 (fr) | Procede de reticulation de proteines par un cetose de 3 a 5 atomes de carbone | |
EP3962288A1 (fr) | Proteine de legumineuse gelifiante | |
CN115298320A (zh) | 蛋白质的交联方法 | |
CA3077637A1 (fr) | Composition de proteines de pois a qualite nutritionnelle amelioree | |
WO1993018180A1 (fr) | Procede de synthese enzymatique d'esters alkyliques de peptides, produits ainsi obtenus et utilisation desdits produits | |
EP4081044A1 (fr) | Isolat de proteine de pois a faible teneur en lipides | |
EP1121863A1 (fr) | Composition azotée résultant de l'hydrolyse du gluten de mais et son procédé de fabrication | |
EP4076006A1 (fr) | Solubles de pois fermentes | |
CA3122610A1 (fr) | Produit sec base pois pour alimentation des animaux | |
Siswoyo et al. | Synthesis of Antioxidant Peptides from Melinjo (Gnetum gnemon) Seed Protein Isolated Using Sol-Gel Immobilized Alcalase | |
CA3085477A1 (fr) | Utilisation d'une combinaison des exoproteases tets obtenus des micro-organismes extremophiles pour hydrolyser des polypeptides | |
EP1123661A1 (fr) | Composition azotée à base de gluten de blé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19835703 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021527955 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3120956 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019389833 Country of ref document: AU Date of ref document: 20191129 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019835703 Country of ref document: EP Effective date: 20210630 |