WO2020103320A1 - 一种wlan系统动态信道分配方法及系统 - Google Patents
一种wlan系统动态信道分配方法及系统Info
- Publication number
- WO2020103320A1 WO2020103320A1 PCT/CN2019/070921 CN2019070921W WO2020103320A1 WO 2020103320 A1 WO2020103320 A1 WO 2020103320A1 CN 2019070921 W CN2019070921 W CN 2019070921W WO 2020103320 A1 WO2020103320 A1 WO 2020103320A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency point
- value
- frequency
- measurement
- detected
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
Definitions
- the invention relates to the technical field of wireless communication, in particular to a method and system for dynamic channel allocation of a WLAN system.
- WLAN Wireless Local Area Networks
- It is a system that uses wireless technology for data transmission.
- the emergence of this technology can make up for the shortage of wired local area networks to achieve the purpose of network extension.
- It uses radio waves as a transmission medium, which reduces the deployment and construction costs of local area networks, and has been widely used in various industries.
- Existing WLAN channel interference measurement methods generally use an AP or a monitoring module to measure the existing wireless environment, and the measurement results include the neighbor cell SSID and related wireless signal parameters. Then select the frequency point with the least interference as the candidate frequency point through the correlation algorithm.
- the embodiment of the present invention provides a method and system for dynamic channel allocation of a WLAN system, which can measure without using any parameters related to the signal of the WLAN access point, thereby effectively improving the measurement efficiency, and thereby facilitating the accurate selection of the most Optimize the frequency point for dynamic channel allocation.
- an embodiment of the present invention provides a WLAN system dynamic channel allocation method, including the following steps:
- the frequency point value to be detected is the starting point value of the frequency point in the target area
- the frequency point value to be detected is shifted forward by a preset frequency point interval of one unit, and the frequency point value after the offset is used as the frequency point value to be detected, and the procedure returns to the step "Yes Measure the channel interference at the frequency value to be detected "; if the measurement is completed, then select the optimal frequency point based on multiple average level measurements corresponding to all the frequency values to be detected;
- performing channel interference measurement on the frequency point value to be detected, and calculating the average level measurement value of the frequency point value to be detected specifically:
- an average algorithm is used to obtain the average level measurement value; or based on the forgetting factor and the average power value, the forgetting factor algorithm is used to obtain the average level measurement value.
- the comparison between the frequency point value to be measured and the end point value of the frequency point in the target area to determine whether the measurement is completed is specifically as follows:
- the value of the frequency point to be measured is greater than or equal to the end value of the frequency point in the target area, it is determined that the measurement has been completed.
- the selection of the optimal frequency point according to the average level measurement value of all the frequency point values to be detected specifically includes:
- an embodiment of the present invention also provides a dynamic channel allocation system for a WLAN system.
- the system includes a frequency point selection module, a level measurement module, a time accumulation average module, a measurement judgment module, an optimal frequency point selection module, and Dynamic channel allocation module;
- the frequency point selection module is used to select a frequency point value to be detected in the frequency point range in the target area; wherein, the frequency point value to be detected is a starting point value of the frequency point in the target area;
- the level measuring module is used to calculate the average power value of all signals at the frequency value to be detected according to the sampling value within the preset time and the frequency value to be detected;
- the time cumulative averaging module is used to obtain an average level measurement value using an averaging algorithm based on the smoothing length and the average power value; or using an forgetting factor algorithm to obtain an average level measurement value based on the forgetting factor and the average power value.
- the measurement judgment module is used to judge whether the measurement is completed by comparing the frequency point value to be detected and the end point value of the frequency point in the target area;
- the optimal frequency point selection module is used to select an optimal frequency point based on a plurality of average level measurement values corresponding to all frequency point values to be detected;
- the dynamic channel allocation module is used to perform dynamic channel allocation of the WLAN system according to the optimal frequency point.
- the measurement judgment module is specifically configured to compare the frequency point value to be measured with the end point value of the frequency point in the target area, if the frequency point value to be measured is less than the end point value of the frequency point in the target area, It is judged that the measurement is not completed;
- the value of the frequency point to be measured is greater than or equal to the end value of the frequency point in the target area, it is determined that the measurement has been completed.
- the optimal frequency point selection module is specifically configured to calculate the number of frequency points required by the access point based on the round-up operator and the actual signal bandwidths of all access points; and calculate all based on the average level measurement value A plurality of interference power sums in frequency points adjacent to the number of frequency points, and comparing the plurality of interference power sums to obtain a minimum interference power sum, the minimum interference power sum corresponding frequency point is Optimal frequency.
- the embodiment of the present invention provides a method and system for dynamic channel allocation of a WLAN system, which can measure without using any parameters related to the signal of the WLAN access point, thereby effectively improving the measurement efficiency, and thereby facilitating the accurate selection of the most Optimize the frequency point for dynamic channel allocation.
- FIG. 1 is a schematic flowchart of a method for dynamic channel allocation in a WLAN system provided by the present invention
- FIG. 2 is a schematic structural diagram of a WLAN system dynamic channel allocation system provided by the present invention.
- an embodiment of the present invention provides a dynamic channel allocation method for a WLAN system, including the following steps:
- S102 Perform channel interference measurement on the frequency value to be detected, and calculate an average level measurement value of the frequency value to be detected;
- the frequency point value to be detected is shifted forward by a preset frequency point interval of 1 unit, and the frequency point value after the offset is used as the frequency point value to be detected, and the procedure returns to the step "Treat Channel interference measurement at the detected frequency point value; if the measurement is completed, the optimal frequency point is selected according to the multiple average level measurement values corresponding to all the frequency point values to be detected;
- the channel interference measurement of the frequency value to be detected is performed, and the average level measurement value of the frequency value to be detected is calculated, specifically:
- the average level measurement value is obtained by using an average algorithm; or based on the forgetting factor and the average power value, the average level measurement value is obtained by using the forgetting factor algorithm.
- the expression of the average power value is:
- d (k) represents the kth sample value within the preset time
- K represents the total number of samples.
- the preset time can be selected as 5ms, 10ms or other suitable values.
- N is the smooth length
- N can be selected as 8, 16, 32 and other values
- P is the average level measurement value output
- the value of the frequency point to be measured is greater than or equal to the end value of the frequency point in the target area, it is determined that the measurement has been completed.
- the step of stopping the measurement is performed, and the next step can be used to make
- the method performs effective measurement at the frequency point in the area, avoids the measurement at the frequency point in the non-target area and reduces the measurement efficiency, and can effectively improve the measurement efficiency.
- the optimal frequency point is selected according to the average level measurement value of all the frequency point values to be detected, specifically:
- the number of frequency points required for calculating the access point is:
- the frequency point corresponding to the minimum value among the above interference power sums is the optimal frequency point, and dynamic channel allocation of the WLAN system is performed according to the optimal frequency point and used by the newly deployed access point.
- an embodiment of the present invention provides a WLAN system dynamic channel allocation system.
- the system includes a frequency point selection module 201, a level measurement module 202, a time accumulation average module 203, a measurement judgment module 204, and an optimal frequency point selection Module 205 and dynamic channel allocation module 206;
- the frequency point selection module 201 is used to select the frequency point value to be detected in the frequency point range in the target area; wherein, the frequency point value to be detected is the starting point value of the frequency point in the target area;
- the level measurement module 202 is used to calculate the average power value of all signals at the frequency value to be detected according to the sampling value within the preset time and the frequency value to be detected;
- the time cumulative averaging module 203 is used to obtain an average level measurement value using an averaging algorithm according to the smoothing length and average power value; or to obtain an average level measurement value using a forgetting factor algorithm according to the forgetting factor and average power value.
- the measurement judgment module 204 is used to judge whether the measurement is completed by comparing the frequency point value to be detected with the end point value of the frequency point in the target area;
- the optimal frequency point selection module 205 is used to select the optimal frequency point according to a plurality of average level measurement values corresponding to all the frequency point values to be detected;
- the dynamic channel allocation module 206 is used to perform dynamic channel allocation of the WLAN system according to the optimal frequency point.
- the measurement and judgment module 204 is specifically used to compare the frequency point value to be measured with the end point value of the frequency point in the target area, if the frequency point value to be measured is less than the frequency point in the target area , The end value of it is judged as not completed;
- the value of the frequency point to be measured is greater than or equal to the end value of the frequency point in the target area, it is determined that the measurement has been completed.
- the optimal frequency point selection module 205 is specifically configured to calculate the number of frequency points required by the access point based on the round-up operator and the actual signal bandwidth of all access points; according to the average
- the level measurement value calculates the sum of multiple interference powers in all adjacent frequency points, and compares the multiple interference power sums to obtain the minimum interference power sum.
- the minimum interference power and the corresponding frequency point are Optimal frequency.
- the number of frequency points required for calculating the access point is:
- the frequency point corresponding to the minimum value among the above interference power sums is the optimal frequency point, and dynamic channel allocation of the WLAN system is performed according to the optimal frequency point and used by the newly deployed access point.
- Embodiments of the present invention provide a method and system for dynamic channel allocation of a WLAN system.
- the WLAN channel interference level in the target area can be accurately measured;
- the channel interference level is accumulated to calculate the sum of the interference power in the total bandwidth.
- the optimal candidate frequency point with the smallest interference power is selected for dynamic channel allocation and for the newly deployed access point, it can be used without connecting to the WLAN. Any parameter related to the in-point signal is measured, which effectively improves the efficiency and accuracy of the measurement, and thus facilitates the accurate selection of the optimal frequency point for dynamic channel allocation.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种WLAN系统动态信道分配方法,包括以下步骤:在目标区域内的频点范围中选择待检测的频点值;对所述待检测的频点值进行信道干扰测量,计算所述待检测的频点值的平均电平测量值;通过比较所述待检测的频点值和所述目标区域内频点的终点值,判断是否测量完毕;若测量完毕,则根据所有待检测的频点值对应的多个平均电平测量值,选择最优频点;根据所述最优频点进行WLAN系统动态信道分配。本发明实施例提供了一种WLAN系统动态信道分配方法及系统,能够不使用与WLAN接入点信号有关的任何参数进行测量,从而有效地提高了测量的效率,进而有利于准确地选择出最优频点以进行动态信道分配。
Description
本发明涉及无线通信技术领域,尤其涉及一种WLAN系统动态信道分配方法及系统。
WLAN是无线局域网络的简称,全称为Wireless Local Area Networks,是一种利用无线技术进行数据传输的系统,该技术的出现能够弥补有线局域网络之不足,以达到网络延伸之目的。它使用无线电波作为传输介质,使得局域网的部署与建设成本降低,目前已经被各行业广泛应用。
现有的WLAN信道干扰测量方法一般采用AP或者监控模块对现有无线环境进行测量,测量结果包括邻区SSID以及相关无线信号参数。再通过相关算法选择出干扰最小的频点作为候选频点使用。
现有技术的缺点:当该区域内相关AP关闭SSID广播功能时,上述算法均不能正常测量出信号电平,从而使得干扰测量失效,信道选择算法不能正常工作,进而无法有效进行动态信道分配。
发明内容
本发明实施例提供了一种WLAN系统动态信道分配方法及系统,能够不使用与WLAN接入点信号有关的任何参数进行测量,从而有效地提高了测量的效率,进而有利于准确地选择出最优频点以进行动态信道分配。
为解决上述问题,一方面,本发明实施例提供了一种WLAN系统动态信道分配方法,包括以下步骤:
在目标区域内的频点范围中选择待检测的频点值;其中,所述待检测的频点 值为所述目标区域内频点的起点值;
对所述待检测的频点值进行信道干扰测量,计算所述待检测的频点值的平均电平测量值;
通过比较所述待检测的频点值和所述目标区域内频点的终点值,判断是否测量完毕;
若没有测量完毕,则将所述待检测的频点值向前偏移1个单位的预设频点间隔,将偏移后的频点值作为待检测的频点值,并返回步骤“对所述待检测的频点值进行信道干扰测量”;若测量完毕,则根据所有待检测的频点值对应的多个平均电平测量值,选择最优频点;
根据所述最优频点进行WLAN系统动态信道分配;
其中,对所述待检测的频点值进行信道干扰测量,计算所述待检测的频点值的平均电平测量值,具体为:
根据预设时间内的采样值和所述待检测的频点值,计算所述待检测的频点值下所有信号的平均功率值;
根据平滑长度和所述平均功率值,采用平均算法得到平均电平测量值;或根据遗忘因子和所述平均功率值,采用遗忘因子算法得到平均电平测量值。
进一步地,所述通过比较所述待测的频点值和目标区域内频点的终点值,判断是否测量完毕,具体为:
比较所述待测的频点值和目标区域内频点的终点值,若所述待测的频点值小于目标区域内频点的终点值,则判断为未测量完毕;
若所述待测的频点值大于或等于所述目标区域内频点的终点值,则判断为已测量完毕。
进一步地,所述根据所有待检测频点值的平均电平测量值选择最优频点,具体为:
根据向上取整算子和所有接入点实际信号带宽,计算接入点所需要的频点数 目;根据所述平均电平测量值计算所有相邻所述频点数目数量的频点内的多个干扰功率和,将所述多个干扰功率和进行一一对比得到最小值干扰功率和,所述最小值干扰功率和对应的频点为最优频点。
另一方面,本发明实施例还提供了一种WLAN系统动态信道分配系统,所述系统包括频点选择模块、电平测量模块、时间累积平均模块、测量判断模块、最优频点选择模块和动态信道分配模块;
所述频点选择模块用于在目标区域内的频点范围中选择待检测的频点值;其中,所述待检测的频点值为所述目标区域内频点的起点值;
所述电平测量模块用于根据预设时间内的采样值和所述待检测的频点值,计算所述待检测的频点值下所有信号的平均功率值;
所述时间累积平均模块用于根据平滑长度和所述平均功率值,采用平均算法得到平均电平测量值;或根据遗忘因子和所述平均功率值,采用遗忘因子算法得到平均电平测量值。
所述测量判断模块用于通过比较所述待检测的频点值和所述目标区域内频点的终点值,判断是否测量完毕;
所述最优频点选择模块用于根据所有待检测的频点值对应的多个平均电平测量值,选择最优频点;
所述动态信道分配模块用于根据所述最优频点进行WLAN系统动态信道分配。
进一步地,所述测量判断模块具体用于:比较所述待测的频点值和目标区域内频点的终点值,若所述待测的频点值小于目标区域内频点的终点值,则判断为未测量完毕;
若所述待测的频点值大于或等于所述目标区域内频点的终点值,则判断为已测量完毕。
进一步地,所述最优频点选择模块具体用于根据向上取整算子和所有接入点 实际信号带宽,计算接入点所需要的频点数目;根据所述平均电平测量值计算所有相邻所述频点数目数量的频点内的多个干扰功率和,将所述多个干扰功率和进行一一对比得到最小值干扰功率和,所述最小值干扰功率和对应的频点为最优频点。
本发明实施例提供了一种WLAN系统动态信道分配方法及系统,能够不使用与WLAN接入点信号有关的任何参数进行测量,从而有效地提高了测量的效率,进而有利于准确地选择出最优频点以进行动态信道分配。
图1是本发明提供的一种WLAN系统动态信道分配方法的流程示意图;
图2是本发明提供的一种WLAN系统动态信道分配系统的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例提供了一种WLAN系统动态信道分配方法,包括以下步骤:
S101、在目标区域内的频点范围中选择待检测的频点值;其中,待检测的频点值为目标区域内频点的起点值;
S102、对待检测的频点值进行信道干扰测量,计算待检测的频点值的平均电平测量值;
S103、通过比较待检测的频点值和目标区域内频点的终点值,判断是否测量完毕;
S104、若没有测量完毕,则将待检测的频点值向前偏移1个单位的预设频点 间隔,将偏移后的频点值作为待检测的频点值,并返回步骤“对待检测的频点值进行信道干扰测量”;若测量完毕,则根据所有待检测的频点值对应的多个平均电平测量值,选择最优频点;
S105、根据最优频点进行WLAN系统动态信道分配;
其中,对待检测的频点值进行信道干扰测量,计算待检测的频点值的平均电平测量值,具体为:
根据预设时间内的采样值和待检测的频点值,计算待检测的频点值下所有信号的平均功率值;
根据平滑长度和平均功率值,采用平均算法得到平均电平测量值;或根据遗忘因子和平均功率值,采用遗忘因子算法得到平均电平测量值。
在本发明实施例中,平均功率值的表达式为:
其中,d(k)表示预设时间内第k个采样值,K表示总采样数目。一般地,预设时间可选择为5ms、10ms或者其他适合值。当采用算术平均时,其公式:
其中N为平滑长度,N可选择值为8、16、32等值,P为平均电平测量值输出;当采用遗忘因子算法时,计算公式为:
作为本实施例的一种具体实施方式,通过比较待测的频点值和目标区域内频点的终点值,判断是否测量完毕,具体为:
比较待测的频点值和目标区域内频点的终点值,若待测的频点值小于目标区 域内频点的终点值,则判断为未测量完毕;
若待测的频点值大于或等于目标区域内频点的终点值,则判断为已测量完毕。
在本发明实施例中,通过比较待检测的频点值和目标区域内频点的终点值,以判断是否测量完毕,当判断到测量完毕时停止测量的步骤,进行下一步骤,能够使该方法在区域内频点进行有效测量,避免了在非目标区域内频点进行测量而降低测量效率,从而能够有效地提高测量的效率。
作为本实施例的一种具体实施方式,,根据所有待检测频点值的平均电平测量值选择最优频点,具体为:
根据向上取整算子和所有接入点实际信号带宽,计算接入点所需要的频点数目;根据平均电平测量值计算所有相邻频点数目数量的频点内的多个干扰功率和,将多个干扰功率和进行一一对比得到最小值干扰功率和,最小值干扰功率和对应的频点为最优频点。
在本发明实施例中,计算接入点所需要的频点数目为:
之后在上述干扰功率和之中选择最小值所对应的频点即为最优频点,根据最优频点进行WLAN系统动态信道分配以及供新部署的接入点使用。
本发明的第二实施例:
请参阅图2,本发明实施例提供了一种WLAN系统动态信道分配系统,系统 包括频点选择模块201、电平测量模块202、时间累积平均模块203、测量判断模块204、最优频点选择模块205和动态信道分配模块206;
频点选择模块201用于在目标区域内的频点范围中选择待检测的频点值;其中,待检测的频点值为目标区域内频点的起点值;
电平测量模块202用于根据预设时间内的采样值和待检测的频点值,计算待检测的频点值下所有信号的平均功率值;
时间累积平均模块203用于根据平滑长度和平均功率值,采用平均算法得到平均电平测量值;或根据遗忘因子和平均功率值,采用遗忘因子算法得到平均电平测量值。
测量判断模块204用于通过比较待检测的频点值和目标区域内频点的终点值,判断是否测量完毕;
最优频点选择模块205用于根据所有待检测的频点值对应的多个平均电平测量值,选择最优频点;
动态信道分配模块206用于根据最优频点进行WLAN系统动态信道分配。
作为本发明实施例的一种具体实施方式,测量判断模块204具体用于:比较待测的频点值和目标区域内频点的终点值,若待测的频点值小于目标区域内频点的终点值,则判断为未测量完毕;
若待测的频点值大于或等于目标区域内频点的终点值,则判断为已测量完毕。
作为本发明实施例的一种具体实施方式,最优频点选择模块205具体用于根据向上取整算子和所有接入点实际信号带宽,计算接入点所需要的频点数目;根据平均电平测量值计算所有相邻频点数目数量的频点内的多个干扰功率和,将多个干扰功率和进行一一对比得到最小值干扰功率和,最小值干扰功率和对应的频点为最优频点。
在本发明实施例中,在本发明实施例中,计算接入点所需要的频点数目为:
之后在上述干扰功率和之中选择最小值所对应的频点即为最优频点,根据最优频点进行WLAN系统动态信道分配以及供新部署的接入点使用。
实施本发明实施例,具有如下有益效果:
本发明实施例提供了一种WLAN系统动态信道分配方法及系统,通过在固定频段中一定时间的连续的信号进行电平测量,能准确测量出目标区域WLAN信道干扰水平;再根据若干个相邻信道干扰水平累加计算出总带宽下干扰功率和,基于上述干扰功率和再挑选出干扰功率最小的最优候选频点进行动态信道分配以及供新部署的接入点使用,能够不使用与WLAN接入点信号有关的任何参数进行测量,从而有效地提高了测量的效率和准确性,进而有利于准确地选择出最优频点以进行动态信道分配。
以上是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
Claims (6)
- 一种WLAN系统动态信道分配方法,其特征在于,包括以下步骤:在目标区域内的频点范围中选择待检测的频点值;其中,所述待检测的频点值为所述目标区域内频点的起点值;对所述待检测的频点值进行信道干扰测量,计算所述待检测的频点值的平均电平测量值;通过比较所述待检测的频点值和所述目标区域内频点的终点值,判断是否测量完毕;若没有测量完毕,则将所述待检测的频点值向前偏移1个单位的预设频点间隔,将偏移后的频点值作为待检测的频点值,并返回步骤“对所述待检测的频点值进行信道干扰测量”;若测量完毕,则根据所有待检测的频点值对应的多个平均电平测量值,选择最优频点;根据所述最优频点进行WLAN系统动态信道分配;其中,对所述待检测的频点值进行信道干扰测量,计算所述待检测的频点值的平均电平测量值,具体为:根据预设时间内的采样值和所述待检测的频点值,计算所述待检测的频点值下所有信号的平均功率值;根据平滑长度和所述平均功率值,采用平均算法得到平均电平测量值;或根据遗忘因子和所述平均功率值,采用遗忘因子算法得到平均电平测量值。
- 如权利要求1所述的WLAN系统动态信道分配方法,其特征在,所述通过比较所述待测的频点值和目标区域内频点的终点值,判断是否测量完毕,具体为:比较所述待测的频点值和目标区域内频点的终点值,若所述待测的频点值小于目标区域内频点的终点值,则判断为未测量完毕;若所述待测的频点值大于或等于所述目标区域内频点的终点值,则判断为已测量完毕。
- 如权力要求1所述的WLAN系统动态信道分配方法,其特征在于,所述根据所有待检测频点值的平均电平测量值选择最优频点,具体为:根据向上取整算子和所有接入点实际信号带宽,计算接入点所需要的频点数目;根据所述平均电平测量值计算所有相邻所述频点数目数量的频点内的多个干扰功率和,将所述多个干扰功率和进行一一对比得到最小值干扰功率和,所述最小值干扰功率和对应的频点为最优频点。
- 一种WLAN系统动态信道分配系统,其特征在于,所述系统包括频点选择模块、电平测量模块、时间累积平均模块、测量判断模块、最优频点选择模块和动态信道分配模块;所述频点选择模块用于在目标区域内的频点范围中选择待检测的频点值;其中,所述待检测的频点值为所述目标区域内频点的起点值;所述电平测量模块用于根据预设时间内的采样值和所述待检测的频点值,计算所述待检测的频点值下所有信号的平均功率值;所述时间累积平均模块用于根据平滑长度和所述平均功率值,采用平均算法得到平均电平测量值;或根据遗忘因子和所述平均功率值,采用遗忘因子算法得到平均电平测量值;所述测量判断模块用于通过比较所述待检测的频点值和所述目标区域内频点的终点值,判断是否测量完毕;所述最优频点选择模块用于根据所有待检测的频点值对应的多个平均电平测量值,选择最优频点;所述动态信道分配模块用于根据所述最优频点进行WLAN系统动态信道分配。
- 如权利要求4所述的WLAN系统动态信道分配系统,其特征在于,所述测量判断模块具体用于:比较所述待测的频点值和目标区域内频点的终点值,若所述待测的频点值小于目标区域内频点的终点值,则判断为未测量完毕;若所述待测的频点值大于或等于所述目标区域内频点的终点值,则判断为已测量完毕。
- 如权利要求4所述的WLAN系统动态信道分配系统,其特征在于,所述最优频点选择模块具体用于根据向上取整算子和所有接入点实际信号带宽,计算接入点所需要的频点数目;根据所述平均电平测量值计算所有相邻所述频点数目数量的频点内的多个干扰功率和,将所述多个干扰功率和进行一一对比得到最小值干扰功率和,所述最小值干扰功率和对应的频点为最优频点。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811380122.2 | 2018-11-20 | ||
CN201811380122.2A CN109347582B (zh) | 2018-11-20 | 2018-11-20 | 一种wlan系统动态信道分配方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020103320A1 true WO2020103320A1 (zh) | 2020-05-28 |
Family
ID=65316189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/070921 WO2020103320A1 (zh) | 2018-11-20 | 2019-01-09 | 一种wlan系统动态信道分配方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109347582B (zh) |
WO (1) | WO2020103320A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1859666A (zh) * | 2005-04-30 | 2006-11-08 | 大唐移动通信设备有限公司 | 一种移动通信终端的小区搜索方法及其装置 |
CN102076095A (zh) * | 2010-12-02 | 2011-05-25 | 上海大唐移动通信设备有限公司 | 一种频点选择方法及家庭式基站、设备 |
US20120302176A1 (en) * | 2010-05-19 | 2012-11-29 | Zte Corporation | Method and apparatus for implementing fast frequency sweeping of mobile terminal, and mobile terminal |
CN104581813A (zh) * | 2015-01-28 | 2015-04-29 | 山东建筑大学 | 一种wlan系统动态信道分配方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8190167B2 (en) * | 2008-09-29 | 2012-05-29 | Intel Corporation | Wireless device channel selection using dynamic channel allocation |
US8830976B2 (en) * | 2012-07-25 | 2014-09-09 | The Boeing Company | WLAN channel allocation |
CN104811943A (zh) * | 2014-01-24 | 2015-07-29 | 中兴通讯股份有限公司 | 认知无线电系统频谱资源配置方法和装置 |
CN103974264A (zh) * | 2014-05-27 | 2014-08-06 | 北京格林耐特通信技术有限责任公司 | 一种频点优选方法 |
ES2645948T3 (es) * | 2014-07-01 | 2017-12-11 | Huawei Technologies Co., Ltd. | Asignación dinámica avanzada de canales |
US9681307B2 (en) * | 2014-09-22 | 2017-06-13 | Illinois Institute Of Technology | System and method for determining and sharing spectrum availability |
WO2016137365A1 (en) * | 2015-02-24 | 2016-09-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio network node and method performed therein |
CN105120492A (zh) * | 2015-07-30 | 2015-12-02 | 中国普天信息产业北京通信规划设计院 | 基于测量报告数据优化csfb频点优化配置的方法 |
-
2018
- 2018-11-20 CN CN201811380122.2A patent/CN109347582B/zh active Active
-
2019
- 2019-01-09 WO PCT/CN2019/070921 patent/WO2020103320A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1859666A (zh) * | 2005-04-30 | 2006-11-08 | 大唐移动通信设备有限公司 | 一种移动通信终端的小区搜索方法及其装置 |
US20120302176A1 (en) * | 2010-05-19 | 2012-11-29 | Zte Corporation | Method and apparatus for implementing fast frequency sweeping of mobile terminal, and mobile terminal |
CN102076095A (zh) * | 2010-12-02 | 2011-05-25 | 上海大唐移动通信设备有限公司 | 一种频点选择方法及家庭式基站、设备 |
CN104581813A (zh) * | 2015-01-28 | 2015-04-29 | 山东建筑大学 | 一种wlan系统动态信道分配方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109347582B (zh) | 2020-09-15 |
CN109347582A (zh) | 2019-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6760567B1 (en) | Apparatus and method for measuring quality of a reverse link in a CDMA system | |
WO2009005420A1 (en) | Method for noise floor and interference estimation | |
US9800279B2 (en) | Method and apparatus for automatic gain control in wireless receiver | |
CN110636540B (zh) | 一种网络上行干扰预评估方法及装置 | |
CN107801242A (zh) | 一种基于自适应卡尔曼滤波的室内定位方法 | |
CN118488520A (zh) | 基于多链路状态智能分析的船舶通信链路智能切换方法 | |
CN106413042A (zh) | 用户终端及其频点搜索方法 | |
WO2020103320A1 (zh) | 一种wlan系统动态信道分配方法及系统 | |
US11677425B2 (en) | Systems and methods for decentralized link performance | |
CN103501205B (zh) | 基于模糊综合评判的目标跳频信号识别方法 | |
CN108847910A (zh) | 频谱感知方法和装置、频谱感知设备 | |
US9203530B2 (en) | Method and apparatus for determining statistics for direction of departure | |
CN114355097A (zh) | 一种综合能源配电网的故障定位方法及装置 | |
CN113960523A (zh) | 基于fpga的通用超宽带校正测向方法及系统 | |
CN111683377A (zh) | 一种面向配电网的实时可靠中继部署方法 | |
JP6812989B2 (ja) | 通信負荷推定システム、情報処理装置、方法およびプログラム | |
CN101404546B (zh) | 基于信号矩特征的频谱占用度测量方法 | |
CN109245839A (zh) | 一种检测窄带干扰的方法及其通信芯片、通信装置 | |
TWI798691B (zh) | 通訊裝置及相關的控制方法 | |
CN116465489A (zh) | 一种基于曲率的日盲紫外光电探测器信号分割方法 | |
CN107576848A (zh) | 一种基于频谱分析的模板设定与模板检测方法 | |
RU2608363C1 (ru) | Способ оценки параметров модели замирания огибающей сигнала по закону накагами по информационному многочастотному сигналу | |
CN108363036A (zh) | Wsn中基于误差补偿策略的节点分布式定位系统与方法 | |
CN105744538A (zh) | 下行同步扫频过程中功率谱的修正方法及系统 | |
CN105897357B (zh) | 一种基于减少采样点数的快速两步能量检测算法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19887921 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19887921 Country of ref document: EP Kind code of ref document: A1 |