[go: up one dir, main page]

WO2020100563A1 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
WO2020100563A1
WO2020100563A1 PCT/JP2019/042115 JP2019042115W WO2020100563A1 WO 2020100563 A1 WO2020100563 A1 WO 2020100563A1 JP 2019042115 W JP2019042115 W JP 2019042115W WO 2020100563 A1 WO2020100563 A1 WO 2020100563A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
acid
polishing composition
weight
less
Prior art date
Application number
PCT/JP2019/042115
Other languages
French (fr)
Japanese (ja)
Inventor
恵 谷口
貴俊 向井
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2020555972A priority Critical patent/JP7440423B2/en
Publication of WO2020100563A1 publication Critical patent/WO2020100563A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition. Specifically, it relates to a composition for preliminarily polishing a silicon wafer.
  • This application claims priority based on Japanese Patent Application No. 2018-212314 filed on November 12, 2018, the entire content of which is incorporated herein by reference.
  • the polishing step typically includes a preliminary polishing step (preliminary polishing step) and a final polishing step (final polishing step).
  • the preliminary polishing step typically includes a rough polishing step (primary polishing step) and an intermediate polishing step (secondary polishing step).
  • Patent Document 1 can be cited.
  • a silicon wafer is irradiated with a laser beam on the front surface or the back surface of the silicon wafer for the purpose of identification or the like, so that a mark such as a bar code, a number or a symbol (hard laser mark; hereinafter referred to as “HLM”).
  • HLM hard laser mark
  • Irradiation of a laser beam for attaching the HLM usually causes an altered layer on the surface of the silicon wafer around the HLM.
  • the silicon wafer pre-polishing composition for flattening the protrusion (hereinafter, also simply referred to as “protrusion”) at the periphery of the HLM may have a composition suitable for eliminating the protrusion.
  • a swelling elimination property is examined with a specific composition containing silica particles as abrasive grains, potassium carbonate as a weak acid salt, and a quaternary ammonium compound as a basic compound.
  • polishing vibration the polishing device vibrates during polishing (hereinafter referred to as “polishing vibration”) depending on the polishing conditions.
  • the polishing vibration may impose a load on the apparatus and cause deterioration of components, which may adversely affect the life of the apparatus. It would be beneficial to provide a polishing composition capable of preventing or suppressing polishing vibration while ensuring the ability to eliminate ridges on the periphery of the HLM.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composition for preliminarily polishing a silicon wafer, which is excellent in eliminating protrusions on the periphery of the HLM and which can prevent or suppress polishing vibration. ..
  • a silicon wafer pre-polishing composition contains abrasive grains, a basic compound, a water-soluble polymer and water, and further contains an organic acid or a salt thereof.
  • the polishing composition is excellent in eliminating ridges on the periphery of the HLM. Further, in the polishing using the polishing composition, polishing vibration is not generated or the vibration is suppressed.
  • eliminating the ridge on the periphery of the HLM means reducing the height from the reference plane (reference plane) around the HLM of the silicon wafer to the highest point of the ridge.
  • the height from the reference surface around the HLM of the silicon wafer to the highest point of the ridge can be measured, for example, by the method described in Examples below.
  • the organic acid is a polycarboxylic acid.
  • the organic acid may be a hydroxy acid.
  • As an organic acid by using a polyvalent carboxylic acid, a hydroxy acid, or both of them, it is preferable to realize the effect of the technology disclosed herein, that is, the compatibility between the protrusion elimination property and the polishing vibration prevention or suppression. can do.
  • the abrasive grains are silica particles.
  • the bump elimination effect can be more effectively exhibited in polishing using silica particles as the abrasive grains.
  • the polishing composition according to a preferred embodiment contains quaternary ammonium hydroxide or a salt thereof as the basic compound.
  • quaternary ammonium hydroxide compound By using a quaternary ammonium hydroxide compound as the basic compound, the elimination of the ridge on the periphery of the HLM is preferably realized.
  • the polishing composition having the above composition is also preferable from the viewpoint of improving the polishing rate.
  • the ratio (A OA / A HM ) of the content (A OA ) of the organic acid and its salt to the content (A HM ) of the water-soluble polymer is 1 or more 100. It is below.
  • Value (m 2 / g)) is the particle size calculated by the formula.
  • the specific surface area can be measured, for example, by using a surface area measuring device manufactured by Micromeritex Co., Ltd. under the trade name “Flow Sorb II 2300”.
  • the aspect ratio of each particle constituting the abrasive grain is the length of the short side of the same rectangle that is the minimum long side of the rectangle circumscribing the image of the particle by a scanning electron microscope (SEM). It can be obtained by dividing by.
  • the average aspect ratio of the abrasive grains and the standard deviation of the aspect ratio are the average value and the standard deviation of the aspect ratio of a plurality of particles within the field of view of the scanning electron microscope. Can be asked.
  • the equivalent circle diameter of a particle means the value obtained by measuring the area of the image of the particle with a scanning electron microscope and determining the diameter of the circle of the same area.
  • the average circle equivalent diameter of particles constituting the abrasive grains and the standard deviation of the circle equivalent diameter are the average value and the standard deviation of the circle equivalent diameters of a plurality of particles within the visual field range of the scanning electron microscope, and these are also common. It can be determined using various image analysis software.
  • the polishing composition disclosed herein contains abrasive grains.
  • the abrasive grains function to mechanically polish the surface of the object to be polished.
  • the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the purpose of use and the mode of use.
  • the abrasive grains may be used alone or in combination of two or more.
  • examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silicon compound particles such as silica particles, silicon nitride particles, and silicon carbide particles, and diamond particles.
  • Specific examples of the organic particles include polymethylmethacrylate (PMMA) particles and polyacrylonitrile particles. Of these, inorganic particles are preferable.
  • Silica particles are mentioned as particularly preferable abrasive grains in the technology disclosed herein.
  • the technique disclosed herein can be preferably carried out, for example, in a mode in which the abrasive grains are substantially silica particles.
  • substantially means 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, and even 100% by weight) of the particles constituting the abrasive grains. It is a silica particle.
  • silica particles include colloidal silica, fumed silica, and precipitated silica.
  • the silica particles may be used alone or in combination of two or more.
  • Colloidal silica is particularly preferable because it is unlikely to cause scratches on the surface of the object to be polished and can exhibit good polishing performance (performance to reduce surface roughness, swelling elimination property, etc.).
  • colloidal silica for example, colloidal silica prepared from water glass (Na silicate) as a raw material by an ion exchange method or alkoxide method colloidal silica can be preferably used.
  • the alkoxide method colloidal silica is colloidal silica produced by a hydrolysis condensation reaction of an alkoxysilane.
  • Colloidal silica can be used individually by 1 type or in combination of 2 or more types.
  • the true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and further preferably 1.7 or more.
  • the polishing rate tends to increase due to an increase in the true specific gravity of silica.
  • silica particles having a true specific gravity of 2.0 or more are particularly preferable.
  • the upper limit of the true specific gravity of silica is not particularly limited, but it is typically 2.3 or less, for example 2.2 or less.
  • a value measured by a liquid replacement method using ethanol as a replacement liquid can be adopted.
  • the average primary particle size of the abrasive grains is not particularly limited, and can be appropriately selected from the range of about 10 nm to 200 nm, for example.
  • the average primary particle diameter is preferably 20 nm or more, and more preferably 30 nm or more.
  • the average primary particle size can be, for example, greater than 40 nm, greater than 45 nm, and greater than 50 nm.
  • the average primary particle size is usually advantageously 150 nm or less, preferably 120 nm or less, and more preferably 100 nm or less. In some embodiments, the average primary particle size can be 75 nm or less, or 60 nm or less.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • specific examples of the non-spherical particles include peanut shape (that is, peanut shell shape), cocoon shape, konpeito sugar shape, rugby ball shape and the like.
  • the average aspect ratio of the abrasive grains is not particularly limited.
  • the average aspect ratio of the abrasive grains is 1.0 or more in principle, and can be 1.05 or more and 1.1 or more.
  • the increase in average aspect ratio tends to generally improve ridge relief.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, from the viewpoints of scratch reduction and polishing stability improvement.
  • the average aspect ratio of the abrasive grains can be, for example, 1.5 or less, 1.4 or less, or 1.3 or less.
  • the abrasive grains in some embodiments, it is possible to employ, as the abrasive grains, grains having a circle equivalent diameter of 50 nm or more and an aspect ratio of 1.2 or more and a volume ratio of 50% or more.
  • the volume ratio may be 60% or more.
  • the value of the volume ratio is 50% or more, more specifically 60% or more, since the abrasive grains contain a relatively large amount of particles having a size and aspect ratio that are particularly effective for eliminating the ridge, It is possible to further improve the swelling elimination property due to the mechanical action of the abrasive grains.
  • the average circle conversion diameter of the abrasive grains may be, for example, 25 nm or more, 40 nm or more, 55 nm or more, and 70 nm or more.
  • the average circle conversion diameter of the abrasive grains may be, for example, 300 nm or less, 200 nm or less, 150 nm or less, or 100 nm or less.
  • the polishing composition disclosed herein can be preferably carried out using abrasive grains having such an average circle conversion diameter.
  • the content of the abrasive grains is not particularly limited and can be appropriately set according to the purpose.
  • the content of the abrasive grains with respect to the total weight of the polishing composition may be, for example, 0.01% by weight or more, may be 0.05% by weight or more, and may be 0.1% by weight or more.
  • Increasing the content of abrasive grains generally tends to improve the swelling elimination property.
  • the content of abrasive grains may be 0.2 wt% or more, 0.5 wt% or more, and 0.6 wt% or more.
  • the content of abrasive grains may be, for example, 10 wt% or less, 5 wt% or less, or 3 wt% or less. It may be 2% by weight or less, 1.5% by weight or less, 1.2% by weight or less, or 1.0% by weight or less. These contents can be preferably applied to the contents in the polishing liquid (working slurry) supplied to the object to be polished, for example.
  • the content of the abrasive grains is usually 50% by weight or less from the viewpoint of storage stability, filterability, and the like. It is suitable and more preferably 40% by weight or less.
  • the content of the abrasive grains is preferably 1% by weight or more, and more preferably 5% by weight or more, from the viewpoint of utilizing the advantages of the concentrated liquid.
  • the polishing composition disclosed herein contains a basic compound.
  • the basic compound refers to a compound having a function of increasing the pH of the composition by being added to the polishing composition.
  • the basic compound serves to chemically polish the surface to be polished, and can contribute to the improvement of the polishing rate.
  • an organic or inorganic basic compound containing nitrogen, an alkali metal or alkaline earth metal hydroxide, or the like can be used.
  • alkali metal hydroxides include alkali metal hydroxides, quaternary ammoniums such as quaternary ammonium hydroxide, ammonia, amines and the like.
  • alkali metal hydroxide include potassium hydroxide and sodium hydroxide.
  • quaternary ammoniums include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide and the like.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine.
  • Quaternary ammonium hydroxides are mentioned as preferable basic compounds from the viewpoint of improving the ability to eliminate bumps. Particularly preferably used is tetramethylammonium hydroxide.
  • the above basic compounds may be used alone or in combination of two or more.
  • the content of the basic compound relative to the total amount of the polishing composition is preferably 0.01% by weight or more, more preferably 0.02% by weight or more, and further preferably 0.03% by weight, from the viewpoint of the polishing rate and the swelling elimination property. % Or more. Stability can also be improved by increasing the content of the basic compound.
  • the upper limit of the content of the basic compound is appropriately 1% by weight or less, preferably 0.5% by weight or less, and more preferably 0.1% by weight or less from the viewpoint of surface quality and the like. , And more preferably 0.06% by weight or less.
  • the above content refers to the total content of two or more basic compounds. These contents can be preferably applied to the contents in the polishing liquid (working slurry) supplied to the object to be polished, for example.
  • the content of the basic compound is usually 10% by weight or less from the viewpoint of storage stability, filterability, and the like. It is suitable and more preferably 5% by weight or less. Further, from the viewpoint of utilizing the advantages of the concentrated liquid, the content of the basic compound is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and further preferably 0.9% by weight or more. Is.
  • the polishing composition disclosed herein contains a water-soluble polymer. According to the polishing composition containing the water-soluble polymer, the performance of eliminating the bulge at the periphery of the HLM is likely to be improved. In carrying out the technique disclosed herein, it is not necessary to elucidate the mechanism by which the water-soluble polymer contributes to the improvement of the bulge elimination at the periphery of the HLM, but HLM is not provided on the surface of the object to be polished. It is considered that the region is selectively protected by the water-soluble polymer as compared with the peripheral edge of the HLM, and the polishing of the region is suppressed. However, it is not limited to this mechanism.
  • water-soluble polymer examples include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, vinyl alcohol polymers and the like. Specific examples thereof include hydroxyethyl cellulose, pullulan, random copolymers and block copolymers of ethylene oxide and propylene oxide, polyvinyl alcohol, polyisoprene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyisoamylene sulfonic acid.
  • the water-soluble polymer may be used alone or in combination of two or more.
  • the molecular weight of the water-soluble polymer is not particularly limited.
  • the weight average molecular weight (Mw) of the water-soluble polymer can be about 200 ⁇ 10 4 or less, and 150 ⁇ 10 4 or less is suitable. From the viewpoint of suppressing polishing vibration and surface defects, the Mw may be approximately 100 ⁇ 10 4 or less, or approximately 50 ⁇ 10 4 or less. Further, from the viewpoint of the protective property of the surface of the silicon wafer, the Mw is usually about 0.2 ⁇ 10 4 or more, about 0.5 ⁇ 10 4 or more, and about 0.8 ⁇ . It may be 10 4 or more.
  • the Mw of the water-soluble polymer a value based on water-based gel permeation chromatography (GPC) (water-based, converted to polyethylene oxide) can be adopted.
  • GPC gel permeation chromatography
  • the content of the water-soluble polymer in the polishing composition disclosed herein is not particularly limited, and is about 1 ⁇ 10 ⁇ 5 % by weight or more (eg, about 1 ⁇ 10 -4 % by weight or more), and preferably about 5 ⁇ 10 -4 % by weight or more.
  • the upper limit of the content of the water-soluble polymer in the polishing composition can be, for example, about 1% by weight or less. From the viewpoint of polishing effect, detergency, etc., the content of the water-soluble polymer is preferably about 0.1% by weight or less, more preferably about 0.05% by weight or less, further preferably about 0.01% by weight or less. (For example, about 0.005% by weight or less).
  • the content of the water-soluble polymer in the polishing composition disclosed herein can also be specified by the relative relationship with the abrasive grains contained in the polishing composition. Specifically, it is appropriate that the content of the water-soluble polymer in the polishing composition is about 0.001 part by weight or more based on 100 parts by weight of the abrasive grains, and the content other than the HLM peripheral edge on the surface of the silicon wafer is appropriate. From the viewpoint of protecting the region, it is preferably about 0.01 parts by weight or more, more preferably about 0.05 parts by weight or more (for example, about 0.1 parts by weight or more).
  • the content of the water-soluble polymer is appropriately about 10 parts by weight or less, preferably about 1 part by weight or less, and more preferably about 100 parts by weight of the abrasive grains. It is about 0.5 parts by weight or less (for example, about 0.3 parts by weight or less).
  • the polishing composition disclosed herein is characterized by containing an organic acid or a salt thereof.
  • an organic acid or a salt thereof By using an organic acid or a salt thereof, it is possible to prevent or suppress polishing vibration while realizing excellent swelling elimination property.
  • an organic acid or a salt thereof is compared with an inorganic acid or a salt thereof. Therefore, it is considered that it contributes to the improvement of the uniformity of the abrasive grains on the wafer surface, whereby the mechanical polishing action becomes smooth and polishing vibration does not occur.
  • it is not limited to this mechanism.
  • the organic acid or its salt is not particularly limited, and typically a carboxylic acid or its salt can be used.
  • polyvalent acids such as polyvalent carboxylic acids are preferably used as the organic acid.
  • the number of acid groups (number of carboxyl groups in the case of polyvalent carboxylic acid) per molecule of polyvalent acid is 2 to 5, and more preferably 2, 3 or 4 (typically 2 or 3).
  • the organic acid may be a monovalent acid such as a monocarboxylic acid.
  • the organic acid according to a preferred embodiment may be a hydroxy acid (typically a hydroxycarboxylic acid) having one or more hydroxyl groups in one molecule.
  • the polyvalent carboxylic acid having a hydroxyl group or a salt thereof it is possible to preferably achieve both the bulge elimination property and the prevention of polishing vibration by the technique disclosed herein.
  • the organic acids and salts thereof in the present specification are different from aminocarboxylic acid compounds and organic phosphonic acid compounds used as chelating agents and therefore have amine structures such as secondary amines and tertiary amines. It may not be.
  • the organic acid or salt thereof can exhibit a buffering action in combination with a basic compound. Since the polishing composition configured to exhibit such a buffering action has little pH fluctuation of the polishing composition during polishing and can be excellent in maintaining polishing efficiency, it is possible to improve swelling elimination property. The improvement and the maintenance of the polishing rate can be more suitably made compatible with each other.
  • Organic acids include acetic acid, itaconic acid, succinic acid, tartaric acid, citric acid, maleic acid, glycolic acid, malonic acid, methanesulfonic acid, formic acid, malic acid, gluconic acid, alanine, glycine, lactic acid, tartronic acid, glyceric acid. , Hydroxybutyric acid, isocitric acid, hydroxyethylidene diphosphonic acid (HEDP), nitrilotris [methylene phosphonic acid] (NTMP), phosphonobutane tricarboxylic acid (PBTC) and the like.
  • the acid may be used in the form of a salt of the acid.
  • the acid salt may be, for example, an alkali metal salt such as sodium salt or potassium salt, or an ammonium salt.
  • citric acid or a salt thereof is preferable.
  • an ammonium salt is preferable from the viewpoint of suppressing metal contamination, and examples thereof include diammonium hydrogen citrate and triammonium citrate.
  • the organic acids or salts thereof can be used alone or in combination of two or more. From the standpoint of preventing polishing vibration, it is preferable to use only one type selected from organic acids and salts thereof.
  • the content of the organic acid and its salt is not particularly limited, and may be, for example, 0.001% by weight or more, and 0.002% by weight, based on the total weight of the polishing composition, from the viewpoint of swelling elimination property. It may be more than 0.005% by weight. From the viewpoint of dispersion stability of the polishing composition and the like, in some embodiments, the total content is, for example, 5% by weight or less, 1% by weight or less, or 0.3% by weight or less. It may be 0.1% by weight or less, or 0.05% by weight or less (for example, 0.02% by weight or less). These contents can be preferably applied to the contents in the polishing liquid (working slurry) supplied to the object to be polished, for example.
  • the content of the organic acid and its salt in the polishing composition disclosed herein can also be specified by the relative relationship with the abrasive grains contained in the polishing composition.
  • the content of the organic acid and its salt in the polishing composition is appropriately about 0.01 parts by weight or more with respect to 100 parts by weight of the abrasive grains, and from the viewpoint of swelling elimination property, It is preferably about 0.1 part by weight or more, more preferably about 0.5 part by weight or more (for example, about 1 part by weight or more).
  • the content of the organic acid and its salt is appropriately about 50 parts by weight or less, and preferably about 10 parts by weight or less, based on 100 parts by weight of the abrasive grains. It is preferably about 5 parts by weight or less (for example, about 3 parts by weight or less).
  • the content of the organic acid and its salt in the polishing composition disclosed herein can also be specified by the relative relationship with the content of the water-soluble polymer contained in the polishing composition. Specifically, the ratio of the content (A OA ) (unit: wt%) of the organic acid and its salt (unit: wt%) to the content (A HM ) of the water-soluble polymer (unit: wt%) in the polishing composition.
  • OA / A HM ) is appropriately about 0.1 or more, and is preferably about 1 or more, and more preferably about 5 or more from the viewpoint of preventing polishing vibration. From the viewpoint of dispersion stability and the like, the ratio ( AOA / AHM ) is appropriately about 500 or less, preferably about 100 or less, more preferably about 50 or less (for example, about 30 or less). Is.
  • the content of the organic acid and its salt is usually 10% by weight or less from the viewpoint of storage stability and filterability. It is suitable to be 5% by weight or less, more preferably 3% by weight or less (for example, 1% by weight or less). Further, from the viewpoint of utilizing the advantages of the concentrated liquid, the content of the organic acid and its salt is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.3% by weight. % Or more.
  • the polishing composition disclosed herein comprises water.
  • the water ion-exchanged water (deionized water), pure water, ultrapure water, distilled water or the like can be preferably used.
  • the water used preferably has a total content of transition metal ions of 100 ppb or less, for example, in order to prevent the functions of other components contained in the polishing composition from being hindered.
  • the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign substances with a filter, and distillation.
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary.
  • 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
  • the polishing composition disclosed herein is a polishing composition such as an inorganic acid or a salt thereof, a surfactant, a chelating agent, an antiseptic agent, an antifungal agent, etc. within the range that the effect of the present invention is not significantly impaired.
  • a known additive that can be used in the polishing composition used in the polishing step of a silicon wafer may be further contained, if necessary.
  • the inorganic acid examples include hydrochloric acid, phosphoric acid, sulfuric acid, phosphonic acid, nitric acid, phosphinic acid, boric acid and the like.
  • the acid may be used in the form of a salt of the acid.
  • the acid salt may be, for example, an alkali metal salt such as sodium salt or potassium salt, or an ammonium salt.
  • Other examples of the inorganic acid salt include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium orthosilicate, potassium orthosilicate, calcium carbonate, calcium hydrogen carbonate and the like.
  • the polishing composition disclosed herein can be preferably carried out in a manner substantially free of an inorganic acid salt, that is, at least intentionally free of an inorganic acid salt.
  • any kind of surfactant such as amphoteric surfactant, cationic surfactant, anionic surfactant and nonionic surfactant can be used.
  • the molecular weight of the surfactant is typically less than 2000, preferably 1500 or less. Further, the lower limit of the molecular weight of the surfactant is not limited to a particular range and may be, for example, 200 or more. As the molecular weight of the surfactant, a value calculated from a chemical formula can be adopted.
  • the polishing composition disclosed herein can be preferably carried out in a mode that is substantially free of a surfactant, that is, a mode that is at least intentionally free of a surfactant.
  • Examples of the above chelating agents include aminocarboxylic acid type chelating agents and organic phosphonic acid type chelating agents.
  • Examples of aminocarboxylic acid type chelating agents include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, diethylenetriaminepentaacetic acid. , Sodium diethylenetriaminepentaacetate, triethylenetetraminehexaacetic acid and sodium triethylenetetraminehexaacetate.
  • organic phosphonic acid type chelating agent examples include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid).
  • ethane-1,1-diphosphonic acid ethane-1,1,2-triphosphonic acid
  • ethane-1-hydroxy-1,1-diphosphonic acid ethane-1-hydroxy-1,1,2-triphosphonic acid
  • Ethane-1,2-dicarboxy-1,2-diphosphonic acid methanehydroxyphosphonic acid
  • 2-phosphonobutane-1,2-dicarboxylic acid 1-phosphonobutane-2,3,4-tricarboxylic acid and ⁇ -methylphosphonic acid
  • nosuccinic acid Of these, organic phosphonic acid-based chelating agents are more preferable.
  • ethylenediaminetetrakis methylenephosphonic acid
  • diethylenetriaminepenta methylenephosphonic acid
  • diethylenetriaminepentaacetic acid preferred are ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and diethylenetriaminepentaacetic acid.
  • Particularly preferred chelating agents include ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid).
  • the chelating agents may be used alone or in combination of two or more.
  • Examples of the above preservatives and fungicides include isothiazoline compounds, paraoxybenzoic acid esters, phenoxyethanol and the like.
  • the polishing composition disclosed herein preferably contains substantially no oxidizing agent.
  • the polishing composition contains an oxidizing agent, the silicon wafer surface is oxidized by the supply of the composition to form an oxide film, which may reduce the polishing rate.
  • that the polishing composition does not substantially contain an oxidizing agent means that at least the oxidizing agent is not intentionally blended, and a trace amount of the oxidizing agent is inevitably included due to the raw material, the manufacturing method, or the like. Can be allowed.
  • the above-mentioned minute amount means that the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less (preferably 0.0001 mol / L or less, more preferably 0.00001 mol / L or less, particularly preferably 0. 000001 mol / L or less).
  • the polishing composition according to a preferred embodiment does not contain an oxidizing agent.
  • the polishing composition disclosed herein can be preferably carried out, for example, in a mode containing neither hydrogen peroxide, sodium persulfate, ammonium persulfate nor sodium dichloroisocyanurate.
  • the polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid (working slurry) containing the polishing composition and used for polishing the polishing object.
  • the polishing composition disclosed herein may be, for example, one diluted (typically diluted with water) to be used as a polishing liquid, or one used as it is as a polishing liquid.
  • the concept of the polishing composition in the technology disclosed herein includes both a working slurry that is supplied to a polishing object and is used for polishing the polishing object, and a concentrated solution (stock solution) of the working slurry. Is included.
  • the concentration ratio of the concentrated liquid may be, for example, about 2 to 100 times on a volume basis, and normally about 5 to 70 times is appropriate.
  • the pH of the polishing composition is typically 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher, still more preferably 9.5 or higher, for example 10.0 or higher.
  • the pH of the polishing liquid is usually 12.0 or less. , 11.8 or less, and more preferably 11.5 or less.
  • pH of the polishing composition For the pH of the polishing composition, use a pH meter (eg, glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba Ltd.) and use a standard buffer solution (phthalate pH buffer solution pH: After three-point calibration using 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C, carbonate pH buffer pH: 10.01 (25 ° C)) It can be grasped by putting the glass electrode in the polishing composition and measuring the value after the glass electrode has become stable for 2 minutes or more.
  • a pH meter eg, glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba Ltd.
  • standard buffer solution phthalate pH buffer solution pH: After three-point calibration using 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C, carbonate pH buffer pH: 10.01 (25 ° C)
  • the polishing composition disclosed herein may be a one-component type or a multi-component type including a two-component type.
  • the polishing liquid may be prepared by mixing Part A containing at least abrasive grains and Part B containing the remaining components, and diluting the mixture at a suitable timing as needed.
  • each component contained in the polishing composition may be mixed using a known mixing device such as a blade stirrer, an ultrasonic disperser, or a homomixer.
  • the mode of mixing these components is not particularly limited, and for example, all components may be mixed at once, or may be mixed in an appropriately set order.
  • the polishing composition disclosed herein can be used for polishing an object to be polished in a mode including the following operations, for example. That is, a working slurry containing any of the polishing compositions disclosed herein is prepared. Then, the polishing composition is supplied to an object to be polished and polished by a conventional method.
  • the object to be polished is set in a general polishing apparatus, and the polishing composition is supplied to the surface (surface to be polished) of the object to be polished through the polishing pad of the polishing apparatus.
  • the polishing pad is pressed against the surface of the object to be polished to relatively move (for example, rotationally move) the both. The polishing of the object to be polished is completed through such a polishing process.
  • the polishing pad used in the above polishing process is not particularly limited.
  • any of a polyurethane foam type, a non-woven fabric type, a suede type, one containing abrasive grains, one containing no abrasive grains, etc. may be used.
  • As the polishing device a double-sided polishing device that simultaneously polishes both sides of an object to be polished may be used, or a single-sided polishing device that polishes only one side of the object to be polished may be used.
  • the above polishing composition may be used in a form of being disposable once used for polishing (so-called “flowing over”), or may be repeatedly used by circulating.
  • a method of circulating and using the polishing composition there is a method of collecting the used polishing composition discharged from the polishing apparatus in a tank and supplying the recovered polishing composition to the polishing apparatus again. ..
  • the polishing composition disclosed herein is suitable for polishing a semiconductor substrate such as a silicon wafer. Since the above polishing composition is excellent in the ability to eliminate the protrusions on the periphery of the HLM (protrusion elimination property), it can be preferably applied to the polishing of the surface to be polished including the surface with the HLM.
  • the polishing composition disclosed herein includes a preliminary polishing step, more specifically, a rough polishing step (primary polishing step) which is the first polishing step in the polishing step, and an intermediate polishing step (secondary polishing step) subsequent thereto. Particularly preferably used in).
  • the silicon wafer Prior to the polishing step using the polishing composition disclosed herein, the silicon wafer has been subjected to general treatment that can be applied to the silicon wafer, such as lapping, etching, and application of the above-described HLM. Good.
  • the silicon wafer typically has a surface made of silicon.
  • Such a silicon wafer is typically a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
  • the polishing composition disclosed herein is suitable for use in polishing a silicon single crystal wafer provided with HLM. Further, the polishing composition disclosed herein can be suitably used for polishing an object to be polished having no HLM.
  • polishing composition ⁇ Preparation of polishing composition> (Example 1) Colloidal silica as abrasive grains, tetramethylammonium hydroxide (TMAH) as a basic compound, triammonium citrate, polyvinylpyrrolidone (PVP) as a water-soluble polymer, and ion-exchanged water at room temperature 25 A polishing composition was prepared by stirring and mixing at about C for about 30 minutes. The obtained polishing composition was diluted 50 times with ion-exchanged water to obtain a polishing liquid containing each component in the concentration shown in Table 1. The wt% in the table is% by weight.
  • TMAH tetramethylammonium hydroxide
  • PVP polyvinylpyrrolidone
  • the above colloidal silica has an average primary particle diameter of 55 nm, an average circle equivalent diameter by SEM observation of 93 nm, a standard deviation of circle equivalent diameter of 38.5, an average aspect ratio of 1.3, and an aspect ratio.
  • the standard deviation of the ratio is 0.320, the volume ratio of particles having a circle equivalent diameter of 50 nm or more and an aspect ratio of 1.2 or more is 77%, and the volume content of particles having a circle equivalent diameter of 1 to 300 nm is 100. %Met.
  • the pH of the polishing composition according to this example was 10.2.
  • Example 1 A polishing liquid according to this example was prepared in the same manner as in Example 1 except that potassium ammonium (K 2 CO 3 ) was used instead of triammonium citrate and the concentrations were changed to those shown in Table 1.
  • Polishing device One-side polishing device manufactured by Nippon Engis Co., Ltd., model "EJ-380IN” Polishing pressure: 12kPa Plate rotation speed: 50 rpm Head rotation speed: 40 rpm Polishing pad: Nitta Haas, product name "SUBA800” Polishing liquid supply rate: 100 mL / min (use overflow) Holding temperature of polishing environment: 25 °C Polishing time: 20 minutes
  • test piece The polishing liquid according to each example was used as it was as a working slurry, and the surface of the object to be polished (test piece) was polished under the following conditions.
  • test piece a commercially available silicon wafer having a diameter of 300 mm after lapping and etching (thickness: 775 ⁇ m, conductivity type: P type, crystal orientation: ⁇ 100>, resistivity: 0.1 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm) was used. used.
  • Polishing machine Double-sided polishing machine manufactured by Speedfam, model “20B” Polishing pad: Nitta Haas, product name “SUBA800” Polishing pressure: 15kPa Slurry flow rate: 4.5 L / min Upper surface plate rotation speed: -13.4 rpm Lower surface plate rotation speed: +35.0 rpm (rotational direction opposite to the upper surface plate) Revolution speed of carrier: 11.2 rpm Holding temperature of polishing environment: 25 °C Polishing time: 5 minutes
  • Comparative Example 1 in which the polishing composition containing the abrasive grains, the basic compound, the water-soluble polymer and water and containing no organic acid or salt thereof was used, the swelling elimination property was excellent. However, polishing vibration occurred. On the other hand, in Example 1 using the organic acid or the salt thereof, the swelling eliminating property equivalent to that of Comparative Example 1 was exhibited, and polishing vibration did not occur. In Comparative Example 2 in which the water-soluble polymer was not used, the swelling elimination property was poor and polishing vibration was generated. Also in Comparative Example 3 in which an acid or a salt thereof was not used, good swelling eliminating property was not obtained, and polishing vibration was also generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Provided is a silicon wafer pre-polishing composition that has an exceptional ability to eliminate bulging of an HLM margin and is capable of preventing or suppressing polishing vibration. The polishing composition provided by the present invention includes abrasive grains, a basic compound, a water-soluble polymer, and water, and furthermore includes an organic acid or a salt thereof.

Description

研磨用組成物Polishing composition
 本発明は、研磨用組成物に関する。詳しくはシリコンウェーハ予備研磨用組成物に関する。本出願は、2018年11月12日に出願された日本国特許出願2018-212314号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to a polishing composition. Specifically, it relates to a composition for preliminarily polishing a silicon wafer. This application claims priority based on Japanese Patent Application No. 2018-212314 filed on November 12, 2018, the entire content of which is incorporated herein by reference.
 従来、金属や半金属、非金属、その酸化物等の材料表面に対して研磨用組成物を用いた精密研磨が行われている。例えば、半導体製品の構成要素等として用いられるシリコン基板の表面は、一般的にラッピング工程やポリシング工程を経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。上記予備ポリシング工程は、典型的には粗研磨工程(一次研磨工程)および中間研磨工程(二次研磨工程)を含んでいる。上記予備研磨用組成物に関する技術文献としては、例えば特許文献1が挙げられる。 Conventionally, precision polishing using a polishing composition has been performed on the surface of materials such as metals, semimetals, nonmetals, and their oxides. For example, the surface of a silicon substrate used as a component of a semiconductor product or the like is generally finished to a high quality mirror surface through a lapping process and a polishing process. The polishing step typically includes a preliminary polishing step (preliminary polishing step) and a final polishing step (final polishing step). The preliminary polishing step typically includes a rough polishing step (primary polishing step) and an intermediate polishing step (secondary polishing step). As a technical document relating to the above-mentioned composition for preliminary polishing, for example, Patent Document 1 can be cited.
日本国特許出願公開2015-233031号公報Japanese Patent Application Publication No. 2015-233031
 例えば、シリコンウェーハには、識別等の目的で、該シリコンウェーハの表面や裏面にレーザー光を照射することによって、バーコード、数字、記号等のマーク(ハードレーザーマーク;以下「HLM」と表記することがある。)が付されることがある。HLMの付与は、一般に、シリコンウェーハのラッピング工程を終えた後、ポリシング工程を開始する前に行われる。通常、HLMを付すためのレーザー光の照射によって、HLM周縁のシリコンウェーハ表面には変質層が生じる。シリコンウェーハのうちHLMの部分自体は最終製品には用いられないが、HLM付与後のポリシング工程において上記変質層が適切に研磨されないと、隆起となって必要以上に歩留まりが低下することがあり得る。しかし、上記変質層はレーザー光のエネルギーによりポリシリコン等に変質して研磨されにくくなっている。そのため、HLM周縁の隆起(以下、単に「隆起」ともいう。)を平坦化するシリコンウェーハ予備研磨用組成物は、上記隆起解消に適した組成とされ得る。例えば特許文献1では、砥粒としてシリカ粒子を、弱酸塩として炭酸カリウムを、塩基性化合物として第四級アンモニウム化合物を含む特定の組成で、隆起解消性の検討を行っている。 For example, a silicon wafer is irradiated with a laser beam on the front surface or the back surface of the silicon wafer for the purpose of identification or the like, so that a mark such as a bar code, a number or a symbol (hard laser mark; hereinafter referred to as “HLM”). Sometimes) is attached. Application of the HLM is generally performed after the lapping process of the silicon wafer is completed and before the polishing process is started. Irradiation of a laser beam for attaching the HLM usually causes an altered layer on the surface of the silicon wafer around the HLM. The HLM part itself of the silicon wafer is not used for the final product, but if the above-mentioned deteriorated layer is not properly polished in the polishing step after HLM application, it may become a bulge and the yield may be reduced more than necessary. . However, the altered layer is transformed into polysilicon or the like by the energy of the laser beam and is difficult to be polished. Therefore, the silicon wafer pre-polishing composition for flattening the protrusion (hereinafter, also simply referred to as “protrusion”) at the periphery of the HLM may have a composition suitable for eliminating the protrusion. For example, in Patent Document 1, a swelling elimination property is examined with a specific composition containing silica particles as abrasive grains, potassium carbonate as a weak acid salt, and a quaternary ammonium compound as a basic compound.
 一方で、従来、研磨条件によっては、研磨時に研磨装置が振動(以下「研磨振動」という。)することが知られている。研磨振動は、装置の負荷となって構成部材の劣化を引き起こすおそれがあり、装置寿命に悪影響を及ぼし得る。HLM周縁の隆起解消性を確保しつつ、研磨振動の防止または抑制が可能な研磨用組成物が提供されれば有益である。 On the other hand, conventionally, it is known that the polishing device vibrates during polishing (hereinafter referred to as “polishing vibration”) depending on the polishing conditions. The polishing vibration may impose a load on the apparatus and cause deterioration of components, which may adversely affect the life of the apparatus. It would be beneficial to provide a polishing composition capable of preventing or suppressing polishing vibration while ensuring the ability to eliminate ridges on the periphery of the HLM.
 本発明は、上記の事情に鑑みてなされたものであり、HLM周縁の隆起解消性に優れ、かつ研磨振動の防止または抑制が可能なシリコンウェーハ予備研磨用組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composition for preliminarily polishing a silicon wafer, which is excellent in eliminating protrusions on the periphery of the HLM and which can prevent or suppress polishing vibration. ..
 本明細書によるとシリコンウェーハ予備研磨用組成物が提供される。この研磨用組成物は、砥粒、塩基性化合物、水溶性高分子および水を含み、さらに有機酸またはその塩を含む。上記研磨用組成物は、HLM周縁の隆起解消性に優れる。また、上記研磨用組成物を用いた研磨では、研磨振動が生じないか、当該振動が抑制される。 According to the present specification, a silicon wafer pre-polishing composition is provided. This polishing composition contains abrasive grains, a basic compound, a water-soluble polymer and water, and further contains an organic acid or a salt thereof. The polishing composition is excellent in eliminating ridges on the periphery of the HLM. Further, in the polishing using the polishing composition, polishing vibration is not generated or the vibration is suppressed.
 なお、本明細書においてHLM周縁の隆起を解消するとは、シリコンウェーハのHLM周辺の基準面(基準平面)から上記隆起の最高点までの高さを小さくすることをいう。シリコンウェーハのHLM周辺の基準面から上記隆起の最高点までの高さは、例えば、後述する実施例に記載の方法により測定することができる。 Note that, in this specification, eliminating the ridge on the periphery of the HLM means reducing the height from the reference plane (reference plane) around the HLM of the silicon wafer to the highest point of the ridge. The height from the reference surface around the HLM of the silicon wafer to the highest point of the ridge can be measured, for example, by the method described in Examples below.
 好ましい一態様では、前記有機酸は多価カルボン酸である。また、前記有機酸はヒドロキシ酸であり得る。有機酸として、多価カルボン酸やヒドロキシ酸、あるいはその両方に該当するものを用いることによって、ここに開示される技術による効果、すなわち隆起解消性と研磨振動防止または抑制との両立、を好ましく実現することができる。 In a preferred aspect, the organic acid is a polycarboxylic acid. Also, the organic acid may be a hydroxy acid. As an organic acid, by using a polyvalent carboxylic acid, a hydroxy acid, or both of them, it is preferable to realize the effect of the technology disclosed herein, that is, the compatibility between the protrusion elimination property and the polishing vibration prevention or suppression. can do.
 好ましい一態様では、前記砥粒はシリカ粒子である。砥粒としてシリカ粒子を用いる研磨において隆起解消効果がより効果的に発揮され得る。 In a preferred aspect, the abrasive grains are silica particles. The bump elimination effect can be more effectively exhibited in polishing using silica particles as the abrasive grains.
 好ましい一態様に係る研磨用組成物は、前記塩基性化合物として、水酸化第四級アンモニウムまたはその塩を含む。塩基性化合物として水酸化第四級アンモニウム化合物を用いることで、HLM周縁の隆起解消が好ましく実現される。上記組成の研磨用組成物は研磨レート向上の点でも好ましい。 The polishing composition according to a preferred embodiment contains quaternary ammonium hydroxide or a salt thereof as the basic compound. By using a quaternary ammonium hydroxide compound as the basic compound, the elimination of the ridge on the periphery of the HLM is preferably realized. The polishing composition having the above composition is also preferable from the viewpoint of improving the polishing rate.
 好ましい一態様に係る研磨用組成物は、前記水溶性高分子の含有量(AHM)に対する前記有機酸およびその塩の含有量(AOA)の比(AOA/AHM)が1以上100以下である。研磨用組成物中の水溶性高分子の含有量と有機酸およびその塩の含有量との比を上記のような範囲に設定することで、HLM周縁の隆起解消がより好ましく実現される。 In the polishing composition according to a preferred embodiment, the ratio (A OA / A HM ) of the content (A OA ) of the organic acid and its salt to the content (A HM ) of the water-soluble polymer is 1 or more 100. It is below. By setting the ratio of the content of the water-soluble polymer in the polishing composition to the content of the organic acid and its salt in the above range, elimination of the bulge at the periphery of the HLM is more preferably realized.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。
Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters particularly referred to in the present specification and matters necessary for carrying out the present invention can be understood as design matters for a person skilled in the art based on conventional technology in the field. The present invention can be carried out based on the contents disclosed in this specification and the common general technical knowledge in the field.
In the present specification, “X to Y” indicating a range means “X or more and Y or less”.
 この明細書において、砥粒の平均一次粒子径とは、BET法により測定される比表面積(BET値)から、平均一次粒子径(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出される粒子径をいう。例えばシリカ粒子の場合、平均一次粒子径(nm)=2727/BET値(m/g)により平均一次粒子径を算出することができる。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。 In this specification, the average primary particle diameter of the abrasive grains means the average primary particle diameter (nm) = 6000 / (true density (g / cm 3 ) × BET from the specific surface area (BET value) measured by the BET method. Value (m 2 / g)) is the particle size calculated by the formula. For example, in the case of silica particles, the average primary particle diameter can be calculated from the average primary particle diameter (nm) = 2727 / BET value (m 2 / g). The specific surface area can be measured, for example, by using a surface area measuring device manufactured by Micromeritex Co., Ltd. under the trade name “Flow Sorb II 2300”.
 この明細書において、砥粒を構成する各粒子のアスペクト比は、走査型電子顕微鏡(SEM)による当該粒子の画像に外接する最小の長方形の長辺の長さを同じ長方形の短辺の長さで除することにより求めることができる。砥粒の平均アスペクト比およびアスペクト比の標準偏差は、走査型電子顕微鏡の視野範囲内にある複数の粒子のアスペクト比の平均値および標準偏差であり、これらは一般的な画像解析ソフトウエアを用いて求めることができる。 In this specification, the aspect ratio of each particle constituting the abrasive grain is the length of the short side of the same rectangle that is the minimum long side of the rectangle circumscribing the image of the particle by a scanning electron microscope (SEM). It can be obtained by dividing by. The average aspect ratio of the abrasive grains and the standard deviation of the aspect ratio are the average value and the standard deviation of the aspect ratio of a plurality of particles within the field of view of the scanning electron microscope. Can be asked.
 この明細書において、粒子の円換算径とは、走査型電子顕微鏡による当該粒子の画像の面積を計測し、それと同じ面積の円の直径を求めることにより得られる値をいう。砥粒を構成する粒子の平均円換算径および円換算径の標準偏差は、走査型電子顕微鏡の視野範囲内にある複数の粒子の円換算径の平均値および標準偏差であり、これらも一般的な画像解析ソフトウエアを用いて求めることができる。 In this specification, the equivalent circle diameter of a particle means the value obtained by measuring the area of the image of the particle with a scanning electron microscope and determining the diameter of the circle of the same area. The average circle equivalent diameter of particles constituting the abrasive grains and the standard deviation of the circle equivalent diameter are the average value and the standard deviation of the circle equivalent diameters of a plurality of particles within the visual field range of the scanning electron microscope, and these are also common. It can be determined using various image analysis software.
 <砥粒>
 ここに開示される研磨用組成物は砥粒を含有する。砥粒は、研磨対象物の表面を機械的に研磨する働きをする。
<Abrasive grains>
The polishing composition disclosed herein contains abrasive grains. The abrasive grains function to mechanically polish the surface of the object to be polished.
 砥粒の材質や性状は特に制限されず、使用目的や使用態様等に応じて適宜選択することができる。砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、窒化ケイ素粒子、炭化ケイ素粒子等のシリコン化合物粒子や、ダイヤモンド粒子等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子、ポリアクリロニトリル粒子等が挙げられる。なかでも無機粒子が好ましい。 The material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the purpose of use and the mode of use. The abrasive grains may be used alone or in combination of two or more. Examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include silicon compound particles such as silica particles, silicon nitride particles, and silicon carbide particles, and diamond particles. Specific examples of the organic particles include polymethylmethacrylate (PMMA) particles and polyacrylonitrile particles. Of these, inorganic particles are preferable.
 ここに開示される技術において特に好ましい砥粒として、シリカ粒子が挙げられる。ここに開示される技術は、例えば、上記砥粒が実質的にシリカ粒子からなる態様で好ましく実施され得る。ここで「実質的に」とは、砥粒を構成する粒子の95重量%以上(好ましくは98重量%以上、より好ましくは99重量%以上であり、100重量%であってもよい。)がシリカ粒子であることをいう。 Silica particles are mentioned as particularly preferable abrasive grains in the technology disclosed herein. The technique disclosed herein can be preferably carried out, for example, in a mode in which the abrasive grains are substantially silica particles. Here, “substantially” means 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, and even 100% by weight) of the particles constituting the abrasive grains. It is a silica particle.
 シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。シリカ粒子は、1種を単独でまたは2種以上を組み合わせて用いることができる。研磨対象物表面にスクラッチを生じにくく、かつ良好な研磨性能(表面粗さを低下させる性能や隆起解消性等)を発揮し得ることから、コロイダルシリカが特に好ましい。コロイダルシリカとしては、例えば、イオン交換法により水ガラス(珪酸Na)を原料として作製されたコロイダルシリカや、アルコキシド法コロイダルシリカを好ましく採用することができる。ここでアルコキシド法コロイダルシリカとは、アルコキシシランの加水分解縮合反応により製造されたコロイダルシリカである。コロイダルシリカは、1種を単独でまたは2種以上を組み合わせて用いることができる。 Specific examples of silica particles include colloidal silica, fumed silica, and precipitated silica. The silica particles may be used alone or in combination of two or more. Colloidal silica is particularly preferable because it is unlikely to cause scratches on the surface of the object to be polished and can exhibit good polishing performance (performance to reduce surface roughness, swelling elimination property, etc.). As the colloidal silica, for example, colloidal silica prepared from water glass (Na silicate) as a raw material by an ion exchange method or alkoxide method colloidal silica can be preferably used. Here, the alkoxide method colloidal silica is colloidal silica produced by a hydrolysis condensation reaction of an alkoxysilane. Colloidal silica can be used individually by 1 type or in combination of 2 or more types.
 シリカ粒子を構成するシリカの真比重は1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大により、研磨レートは高くなる傾向にある。かかる観点から、真比重が2.0以上(例えば2.1以上)のシリカ粒子が特に好ましい。シリカの真比重の上限は特に限定されないが、典型的には2.3以下、例えば2.2以下である。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and further preferably 1.7 or more. The polishing rate tends to increase due to an increase in the true specific gravity of silica. From this viewpoint, silica particles having a true specific gravity of 2.0 or more (for example, 2.1 or more) are particularly preferable. The upper limit of the true specific gravity of silica is not particularly limited, but it is typically 2.3 or less, for example 2.2 or less. As the true specific gravity of silica, a value measured by a liquid replacement method using ethanol as a replacement liquid can be adopted.
 砥粒の平均一次粒子径は特に限定されず、例えば10nm~200nm程度の範囲から適宜選択し得る。隆起解消性向上の観点から、平均一次粒子径は20nm以上であることが好ましく、30nm以上であることがより好ましい。いくつかの態様において、平均一次粒子径は、例えば40nm超であってよく、45nm超でもよく、50nm超でもよい。また、スクラッチの発生防止の観点から、平均一次粒子径は、通常、150nm以下であることが有利であり、120nm以下であることが好ましく、100nm以下であることがより好ましい。いくつかの態様において、平均一次粒子径は75nm以下でもよく、60nm以下でもよい。 The average primary particle size of the abrasive grains is not particularly limited, and can be appropriately selected from the range of about 10 nm to 200 nm, for example. From the viewpoint of improving the swelling elimination property, the average primary particle diameter is preferably 20 nm or more, and more preferably 30 nm or more. In some embodiments, the average primary particle size can be, for example, greater than 40 nm, greater than 45 nm, and greater than 50 nm. Further, from the viewpoint of preventing the occurrence of scratches, the average primary particle size is usually advantageously 150 nm or less, preferably 120 nm or less, and more preferably 100 nm or less. In some embodiments, the average primary particle size can be 75 nm or less, or 60 nm or less.
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす粒子の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。 The shape (outer shape) of the abrasive grains may be spherical or non-spherical. Specific examples of the non-spherical particles include peanut shape (that is, peanut shell shape), cocoon shape, konpeito sugar shape, rugby ball shape and the like.
 砥粒の平均アスペクト比は特に限定されない。砥粒の平均アスペクト比は、原理的に1.0以上であり、1.05以上、1.1以上とすることができる。平均アスペクト比の増大により、隆起解消性は概して向上する傾向にある。また、砥粒の平均アスペクト比は、スクラッチ低減や研磨の安定性向上等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下である。いくつかの態様において、砥粒の平均アスペクト比は、例えば1.5以下であってよく、1.4以下でもよく、1.3以下でもよい。 The average aspect ratio of the abrasive grains is not particularly limited. The average aspect ratio of the abrasive grains is 1.0 or more in principle, and can be 1.05 or more and 1.1 or more. The increase in average aspect ratio tends to generally improve ridge relief. The average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, from the viewpoints of scratch reduction and polishing stability improvement. In some embodiments, the average aspect ratio of the abrasive grains can be, for example, 1.5 or less, 1.4 or less, or 1.3 or less.
 いくつかの態様において、砥粒としては、円換算径が50nm以上でかつアスペクト比が1.2以上である粒子の体積割合が50%以上であるものを採用することができる。上記体積割合を60%以上とすることもできる。上記体積割合の値が50%以上である場合、さらに言えば60%以上である場合には、隆起の解消に特に有効なサイズおよびアスペクト比の粒子が砥粒中に比較的多く含まれるので、砥粒の機械的作用による隆起解消性をより向上させることができる。 In some embodiments, it is possible to employ, as the abrasive grains, grains having a circle equivalent diameter of 50 nm or more and an aspect ratio of 1.2 or more and a volume ratio of 50% or more. The volume ratio may be 60% or more. When the value of the volume ratio is 50% or more, more specifically 60% or more, since the abrasive grains contain a relatively large amount of particles having a size and aspect ratio that are particularly effective for eliminating the ridge, It is possible to further improve the swelling elimination property due to the mechanical action of the abrasive grains.
 いくつかの態様において、砥粒の平均円換算径は、例えば25nm以上であってよく、40nm以上でもよく、55nm以上でもよく、70nm以上でもよい。また、砥粒の平均円換算径は、例えば300nm以下であってよく、200nm以下でもよく、150nm以下でもよく、100nm以下でもよい。ここに開示される研磨用組成物は、このような平均円換算径を有する砥粒を用いて好適に実施され得る。 In some embodiments, the average circle conversion diameter of the abrasive grains may be, for example, 25 nm or more, 40 nm or more, 55 nm or more, and 70 nm or more. The average circle conversion diameter of the abrasive grains may be, for example, 300 nm or less, 200 nm or less, 150 nm or less, or 100 nm or less. The polishing composition disclosed herein can be preferably carried out using abrasive grains having such an average circle conversion diameter.
 砥粒の含有量は特に限定されず、目的に応じて適宜設定し得る。研磨用組成物の全重量に対する砥粒の含有量は、例えば0.01重量%以上であってよく、0.05重量%以上でもよく、0.1重量%以上でもよい。砥粒の含有量の増大により、隆起解消性は概して向上する傾向にある。いくつかの態様において、砥粒の含有量は、0.2重量%以上でもよく、0.5重量%以上でもよく、0.6重量%以上でもよい。また、スクラッチ防止や砥粒の使用量節約の観点から、いくつかの態様において、砥粒の含有量は、例えば10重量%以下であってよく、5重量%以下でもよく、3重量%以下でもよく、2重量%以下でもよく、1.5重量%以下でもよく、1.2重量%以下でもよく、1.0重量%以下でもよい。これらの含有量は、例えば、研磨対象物に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。 The content of the abrasive grains is not particularly limited and can be appropriately set according to the purpose. The content of the abrasive grains with respect to the total weight of the polishing composition may be, for example, 0.01% by weight or more, may be 0.05% by weight or more, and may be 0.1% by weight or more. Increasing the content of abrasive grains generally tends to improve the swelling elimination property. In some embodiments, the content of abrasive grains may be 0.2 wt% or more, 0.5 wt% or more, and 0.6 wt% or more. From the viewpoint of preventing scratches and saving the amount of abrasive grains used, in some embodiments, the content of abrasive grains may be, for example, 10 wt% or less, 5 wt% or less, or 3 wt% or less. It may be 2% by weight or less, 1.5% by weight or less, 1.2% by weight or less, or 1.0% by weight or less. These contents can be preferably applied to the contents in the polishing liquid (working slurry) supplied to the object to be polished, for example.
 また、希釈して研磨に用いられる研磨用組成物(すなわち濃縮液)の場合、砥粒の含有量は、保存安定性や濾過性等の観点から、通常は、50重量%以下であることが適当であり、40重量%以下であることがより好ましい。また、濃縮液とすることの利点を活かす観点から、砥粒の含有量は、好ましくは1重量%以上、より好ましくは5重量%以上である。 In the case of a polishing composition that is diluted and used for polishing (that is, a concentrated solution), the content of the abrasive grains is usually 50% by weight or less from the viewpoint of storage stability, filterability, and the like. It is suitable and more preferably 40% by weight or less. In addition, the content of the abrasive grains is preferably 1% by weight or more, and more preferably 5% by weight or more, from the viewpoint of utilizing the advantages of the concentrated liquid.
 <塩基性化合物>
 ここに開示される研磨用組成物は塩基性化合物を含む。ここで塩基性化合物とは、研磨用組成物に添加されることによって該組成物のpHを上昇させる機能を有する化合物を指す。塩基性化合物は、研磨対象となる面を化学的に研磨する働きをし、研磨レートの向上に寄与し得る。
<Basic compound>
The polishing composition disclosed herein contains a basic compound. Here, the basic compound refers to a compound having a function of increasing the pH of the composition by being added to the polishing composition. The basic compound serves to chemically polish the surface to be polished, and can contribute to the improvement of the polishing rate.
 塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、アルカリ金属またはアルカリ土類金属の水酸化物等を用いることができる。例えば、アルカリ金属の水酸化物、水酸化第四級アンモニウム等の第四級アンモニウム類、アンモニア、アミン等が挙げられる。アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。第四級アンモニウム類の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。 As the basic compound, an organic or inorganic basic compound containing nitrogen, an alkali metal or alkaline earth metal hydroxide, or the like can be used. Examples thereof include alkali metal hydroxides, quaternary ammoniums such as quaternary ammonium hydroxide, ammonia, amines and the like. Specific examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide. Specific examples of the quaternary ammoniums include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide and the like. Specific examples of amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- (β-aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine. , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like.
 隆起解消性向上等の観点から好ましい塩基性化合物として、水酸化第四級アンモニウム類が挙げられる。特に好ましく用いられるものとして水酸化テトラメチルアンモニウムが挙げられる。上記塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。 Quaternary ammonium hydroxides are mentioned as preferable basic compounds from the viewpoint of improving the ability to eliminate bumps. Particularly preferably used is tetramethylammonium hydroxide. The above basic compounds may be used alone or in combination of two or more.
 研磨用組成物全量に対する塩基性化合物の含有量は、研磨レートおよび隆起解消性の観点から、好ましくは0.01重量%以上、より好ましくは0.02重量%以上、さらに好ましくは0.03重量%以上である。塩基性化合物の含有量の増加によって、安定性も向上し得る。上記塩基性化合物の含有量の上限は、1重量%以下とすることが適当であり、表面品質等の観点から、好ましくは0.5重量%以下であり、より好ましくは0.1重量%以下、さらに好ましくは0.06重量%以下である。なお、2種以上を組み合わせて用いる場合は、上記含有量は2種以上の塩基性化合物の合計含有量を指す。これらの含有量は、例えば、研磨対象物に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。 The content of the basic compound relative to the total amount of the polishing composition is preferably 0.01% by weight or more, more preferably 0.02% by weight or more, and further preferably 0.03% by weight, from the viewpoint of the polishing rate and the swelling elimination property. % Or more. Stability can also be improved by increasing the content of the basic compound. The upper limit of the content of the basic compound is appropriately 1% by weight or less, preferably 0.5% by weight or less, and more preferably 0.1% by weight or less from the viewpoint of surface quality and the like. , And more preferably 0.06% by weight or less. When two or more kinds are used in combination, the above content refers to the total content of two or more basic compounds. These contents can be preferably applied to the contents in the polishing liquid (working slurry) supplied to the object to be polished, for example.
 また、希釈して研磨に用いられる研磨用組成物(すなわち濃縮液)の場合、塩基性化合物の含有量は、保存安定性や濾過性等の観点から、通常は10重量%以下であることが適当であり、5重量%以下であることがより好ましい。また、濃縮液とすることの利点を活かす観点から、塩基性化合物の含有量は、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、さらに好ましくは0.9重量%以上である。 In the case of a polishing composition that is diluted and used for polishing (that is, a concentrated solution), the content of the basic compound is usually 10% by weight or less from the viewpoint of storage stability, filterability, and the like. It is suitable and more preferably 5% by weight or less. Further, from the viewpoint of utilizing the advantages of the concentrated liquid, the content of the basic compound is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and further preferably 0.9% by weight or more. Is.
 <水溶性高分子>
 ここに開示される研磨用組成物は水溶性高分子を含む。水溶性高分子を含む研磨用組成物によると、HLM周縁の隆起を解消する性能が向上しやすい。ここに開示される技術を実施するにあたり、水溶性高分子がHLM周縁の隆起解消性向上に寄与するメカニズムを解明することは必要とされないが、研磨対象物の表面において、HLMが付与されていない領域がHLM周縁に比べて選択的に水溶性高分子で保護されて、かかる領域の研磨が抑制されることが考えられる。ただし、このメカニズムのみに限定解釈されるものではない。
<Water-soluble polymer>
The polishing composition disclosed herein contains a water-soluble polymer. According to the polishing composition containing the water-soluble polymer, the performance of eliminating the bulge at the periphery of the HLM is likely to be improved. In carrying out the technique disclosed herein, it is not necessary to elucidate the mechanism by which the water-soluble polymer contributes to the improvement of the bulge elimination at the periphery of the HLM, but HLM is not provided on the surface of the object to be polished. It is considered that the region is selectively protected by the water-soluble polymer as compared with the peripheral edge of the HLM, and the polishing of the region is suppressed. However, it is not limited to this mechanism.
 上記水溶性高分子の例としては、セルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ビニルアルコール系ポリマー等が挙げられる。具体例としては、ヒドロキシエチルセルロース、プルラン、エチレンオキサイドとプロピレンオキサイドとのランダム共重合体やブロック共重合体、ポリビニルアルコール、ポリイソプレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリイソアミレンスルホン酸、ポリスチレンスルホン酸塩、スチレン-マレイン酸共重合体、ポリアクリル酸塩、ポリ酢酸ビニル、ポリエチレングリコール、ポリビニルイミダゾール、ポリビニルカルバゾール、ポリビニルピロリドン、ポリアクリロイルモルホリン、ポリビニルカプロラクタム、ポリビニルピペリジン等が挙げられる。水溶性高分子は、1種を単独でまたは2種以上を組み合わせて用いることができる。 Examples of the water-soluble polymer include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, vinyl alcohol polymers and the like. Specific examples thereof include hydroxyethyl cellulose, pullulan, random copolymers and block copolymers of ethylene oxide and propylene oxide, polyvinyl alcohol, polyisoprene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyisoamylene sulfonic acid. , Polystyrene sulfonate, styrene-maleic acid copolymer, polyacrylate, polyvinyl acetate, polyethylene glycol, polyvinyl imidazole, polyvinyl carbazole, polyvinyl pyrrolidone, polyacryloyl morpholine, polyvinyl caprolactam, polyvinyl piperidine and the like. The water-soluble polymer may be used alone or in combination of two or more.
 ここに開示される技術において水溶性高分子の分子量は特に限定されない。例えば、水溶性高分子の重量平均分子量(Mw)は、凡そ200×10以下とすることができ、150×10以下が適当である。研磨振動や表面欠陥を抑制する観点から、上記Mwは、凡そ100×10以下であってもよく、凡そ50×10以下であってもよい。また、シリコンウェーハ表面の保護性の観点から、上記Mwは、通常、凡そ0.2×10以上であり、凡そ0.5×10以上であることが適当であり、凡そ0.8×10以上であってもよい。 In the technique disclosed herein, the molecular weight of the water-soluble polymer is not particularly limited. For example, the weight average molecular weight (Mw) of the water-soluble polymer can be about 200 × 10 4 or less, and 150 × 10 4 or less is suitable. From the viewpoint of suppressing polishing vibration and surface defects, the Mw may be approximately 100 × 10 4 or less, or approximately 50 × 10 4 or less. Further, from the viewpoint of the protective property of the surface of the silicon wafer, the Mw is usually about 0.2 × 10 4 or more, about 0.5 × 10 4 or more, and about 0.8 ×. It may be 10 4 or more.
 なお、水溶性高分子のMwとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。 Note that, as the Mw of the water-soluble polymer, a value based on water-based gel permeation chromatography (GPC) (water-based, converted to polyethylene oxide) can be adopted.
 ここに開示される研磨用組成物における水溶性高分子の含有量は、特に限定されず、隆起解消性や表面品質向上等の観点から、凡そ1×10-5重量%以上(例えば凡そ1×10-4重量%以上)とすることが適当であり、好ましくは凡そ5×10-4重量%以上である。上記研磨用組成物における水溶性高分子の含有量の上限は、例えば凡そ1重量%以下とすることができる。研磨効果や洗浄性等の観点から、水溶性高分子の含有量は、好ましくは凡そ0.1重量%以下、より好ましくは凡そ0.05重量%以下、さらに好ましくは凡そ0.01重量%以下(例えば凡そ0.005重量%以下)である。 The content of the water-soluble polymer in the polishing composition disclosed herein is not particularly limited, and is about 1 × 10 −5 % by weight or more (eg, about 1 × 10 -4 % by weight or more), and preferably about 5 × 10 -4 % by weight or more. The upper limit of the content of the water-soluble polymer in the polishing composition can be, for example, about 1% by weight or less. From the viewpoint of polishing effect, detergency, etc., the content of the water-soluble polymer is preferably about 0.1% by weight or less, more preferably about 0.05% by weight or less, further preferably about 0.01% by weight or less. (For example, about 0.005% by weight or less).
 また、ここに開示される研磨用組成物における水溶性高分子の含有量は、研磨用組成物に含まれる砥粒との相対的関係によっても特定され得る。具体的には、研磨用組成物における水溶性高分子の含有量は、砥粒100重量部に対して凡そ0.001重量部以上とすることが適当であり、シリコンウェーハ表面におけるHLM周縁以外の領域の保護の観点から、好ましくは凡そ0.01重量部以上、より好ましくは凡そ0.05重量部以上(例えば凡そ0.1重量部以上)である。また、研磨効果等の観点から、水溶性高分子の含有量は、砥粒100重量部に対して凡そ10重量部以下とすることが適当であり、好ましくは凡そ1重量部以下、より好ましくは凡そ0.5重量部以下(例えば凡そ0.3重量部以下)である。 The content of the water-soluble polymer in the polishing composition disclosed herein can also be specified by the relative relationship with the abrasive grains contained in the polishing composition. Specifically, it is appropriate that the content of the water-soluble polymer in the polishing composition is about 0.001 part by weight or more based on 100 parts by weight of the abrasive grains, and the content other than the HLM peripheral edge on the surface of the silicon wafer is appropriate. From the viewpoint of protecting the region, it is preferably about 0.01 parts by weight or more, more preferably about 0.05 parts by weight or more (for example, about 0.1 parts by weight or more). From the viewpoint of polishing effect and the like, the content of the water-soluble polymer is appropriately about 10 parts by weight or less, preferably about 1 part by weight or less, and more preferably about 100 parts by weight of the abrasive grains. It is about 0.5 parts by weight or less (for example, about 0.3 parts by weight or less).
 <有機酸またはその塩>
 ここに開示される研磨用組成物は、有機酸またはその塩を含むことによって特徴づけられる。有機酸またはその塩を用いることによって、優れた隆起解消性を実現しつつ、研磨振動を防止または抑制することができる。ここに開示される技術を実施するにあたり、有機酸またはその塩が研磨振動の防止等に寄与するメカニズムを解明することは必要とされないが、有機酸またはその塩は、無機酸またはその塩と比べて、砥粒のウェーハ表面に対する均一性向上に寄与し、これによってメカニカル研磨作用が円滑となり、研磨振動が生じないと考えられる。ただし、このメカニズムのみに限定解釈されるものではない。
<Organic acid or its salt>
The polishing composition disclosed herein is characterized by containing an organic acid or a salt thereof. By using an organic acid or a salt thereof, it is possible to prevent or suppress polishing vibration while realizing excellent swelling elimination property. In carrying out the technology disclosed herein, it is not necessary to elucidate the mechanism by which an organic acid or a salt thereof contributes to prevention of polishing vibration, etc., but an organic acid or a salt thereof is compared with an inorganic acid or a salt thereof. Therefore, it is considered that it contributes to the improvement of the uniformity of the abrasive grains on the wafer surface, whereby the mechanical polishing action becomes smooth and polishing vibration does not occur. However, it is not limited to this mechanism.
 有機酸またはその塩としては、特に限定されず、典型的にはカルボン酸またはその塩を使用することができる。特に限定されるものではないが、上記有機酸としては、多価カルボン酸等の多価酸が好ましく用いられる。多価酸一分子当たりの酸基の数(多価カルボン酸の場合、カルボキシル基数)は2~5であり、より好ましくは2、3または4(典型的には2または3)である。有機酸は、モノカルボン酸等の一価の酸であってもよい。また、好ましい一態様に係る有機酸は、一分子中に1以上の水酸基を有するヒドロキシ酸(典型的にはヒドロキシカルボン酸)であり得る。水酸基を有する多価カルボン酸またはその塩によると、ここに開示される技術による隆起解消性と研磨振動防止等との両立が好適に実現され得る。なお、本明細書における有機酸およびその塩は、キレート剤として用いられるアミノカルボン酸系化合物や有機ホスホン酸系化合物とは異なり、したがって、第二級アミンや第三級アミン等のアミン構造を有しないものであり得る。 The organic acid or its salt is not particularly limited, and typically a carboxylic acid or its salt can be used. Although not particularly limited, polyvalent acids such as polyvalent carboxylic acids are preferably used as the organic acid. The number of acid groups (number of carboxyl groups in the case of polyvalent carboxylic acid) per molecule of polyvalent acid is 2 to 5, and more preferably 2, 3 or 4 (typically 2 or 3). The organic acid may be a monovalent acid such as a monocarboxylic acid. Moreover, the organic acid according to a preferred embodiment may be a hydroxy acid (typically a hydroxycarboxylic acid) having one or more hydroxyl groups in one molecule. According to the polyvalent carboxylic acid having a hydroxyl group or a salt thereof, it is possible to preferably achieve both the bulge elimination property and the prevention of polishing vibration by the technique disclosed herein. It should be noted that the organic acids and salts thereof in the present specification are different from aminocarboxylic acid compounds and organic phosphonic acid compounds used as chelating agents and therefore have amine structures such as secondary amines and tertiary amines. It may not be.
 また、有機酸またはその塩は、塩基性化合物との組合せで、緩衝作用を発揮し得るものが好ましい。このような緩衝作用が発揮されるように構成された研磨用組成物は、研磨中における研磨用組成物のpH変動が少なく、研磨能率の維持性に優れたものとなり得るため、隆起解消性の向上と研磨レートの維持とをより好適に両立することができる。 Also, it is preferable that the organic acid or salt thereof can exhibit a buffering action in combination with a basic compound. Since the polishing composition configured to exhibit such a buffering action has little pH fluctuation of the polishing composition during polishing and can be excellent in maintaining polishing efficiency, it is possible to improve swelling elimination property. The improvement and the maintenance of the polishing rate can be more suitably made compatible with each other.
 有機酸としては、酢酸、イタコン酸、コハク酸、酒石酸、クエン酸、マレイン酸、グリコール酸、マロン酸、メタンスルホン酸、ギ酸、リンゴ酸、グルコン酸、アラニン、グリシン、乳酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、イソクエン酸、hydroxyethylidene diphosphonic acid(HEDP)、nitrilotris[methylene phosphonic acid](NTMP)、phosphonobutane tricarboxylic acid(PBTC)等が挙げられる。酸は、該酸の塩の形態で用いられてもよい。上記酸の塩は、例えば、ナトリウム塩やカリウム塩等のアルカリ金属塩や、アンモニウム塩等であり得る。なかでも、クエン酸またはその塩が好ましい。クエン酸の塩としては、金属汚染を抑制できる観点からアンモニウム塩が好ましく、クエン酸水素二アンモニウムやクエン酸三アンモニウム等が挙げられる。有機酸またはその塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。研磨振動防止性の点からは、有機酸およびその塩のなかから1種のみを選択して用いることが好ましい。 Organic acids include acetic acid, itaconic acid, succinic acid, tartaric acid, citric acid, maleic acid, glycolic acid, malonic acid, methanesulfonic acid, formic acid, malic acid, gluconic acid, alanine, glycine, lactic acid, tartronic acid, glyceric acid. , Hydroxybutyric acid, isocitric acid, hydroxyethylidene diphosphonic acid (HEDP), nitrilotris [methylene phosphonic acid] (NTMP), phosphonobutane tricarboxylic acid (PBTC) and the like. The acid may be used in the form of a salt of the acid. The acid salt may be, for example, an alkali metal salt such as sodium salt or potassium salt, or an ammonium salt. Of these, citric acid or a salt thereof is preferable. As the salt of citric acid, an ammonium salt is preferable from the viewpoint of suppressing metal contamination, and examples thereof include diammonium hydrogen citrate and triammonium citrate. The organic acids or salts thereof can be used alone or in combination of two or more. From the standpoint of preventing polishing vibration, it is preferable to use only one type selected from organic acids and salts thereof.
 有機酸およびその塩の含有量は、特に限定されず、隆起解消性の観点から、研磨用組成物の全重量に対して、例えば0.001重量%以上であってよく、0.002重量%以上でもよく、0.005重量%以上でもよい。また、研磨用組成物の分散安定性等の観点から、いくつかの態様において、上記合計含有量は、例えば5重量%以下であってよく、1重量%以下でもよく、0.3重量%以下でもよく、0.1重量%以下でもよく、0.05重量%以下(例えば0.02重量%以下)でもよい。これらの含有量は、例えば、研磨対象物に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。 The content of the organic acid and its salt is not particularly limited, and may be, for example, 0.001% by weight or more, and 0.002% by weight, based on the total weight of the polishing composition, from the viewpoint of swelling elimination property. It may be more than 0.005% by weight. From the viewpoint of dispersion stability of the polishing composition and the like, in some embodiments, the total content is, for example, 5% by weight or less, 1% by weight or less, or 0.3% by weight or less. It may be 0.1% by weight or less, or 0.05% by weight or less (for example, 0.02% by weight or less). These contents can be preferably applied to the contents in the polishing liquid (working slurry) supplied to the object to be polished, for example.
 また、ここに開示される研磨用組成物における有機酸およびその塩の含有量は、研磨用組成物に含まれる砥粒との相対的関係によっても特定され得る。具体的には、研磨用組成物における有機酸およびその塩の含有量は、砥粒100重量部に対して凡そ0.01重量部以上とすることが適当であり、隆起解消性の観点から、好ましくは凡そ0.1重量部以上、より好ましくは凡そ0.5重量部以上(例えば凡そ1重量部以上)である。また、分散安定性等の観点から、有機酸およびその塩の含有量は、砥粒100重量部に対して凡そ50重量部以下とすることが適当であり、好ましくは凡そ10重量部以下、より好ましくは凡そ5重量部以下(例えば凡そ3重量部以下)である。 The content of the organic acid and its salt in the polishing composition disclosed herein can also be specified by the relative relationship with the abrasive grains contained in the polishing composition. Specifically, the content of the organic acid and its salt in the polishing composition is appropriately about 0.01 parts by weight or more with respect to 100 parts by weight of the abrasive grains, and from the viewpoint of swelling elimination property, It is preferably about 0.1 part by weight or more, more preferably about 0.5 part by weight or more (for example, about 1 part by weight or more). From the viewpoint of dispersion stability and the like, the content of the organic acid and its salt is appropriately about 50 parts by weight or less, and preferably about 10 parts by weight or less, based on 100 parts by weight of the abrasive grains. It is preferably about 5 parts by weight or less (for example, about 3 parts by weight or less).
 また、ここに開示される研磨用組成物における有機酸およびその塩の含有量は、研磨用組成物に含まれる水溶性高分子の含有量との相対的関係によっても特定され得る。具体的には、研磨用組成物における水溶性高分子の含有量(AHM)(単位:重量%)に対する有機酸およびその塩の含有量(AOA)(単位:重量%)の比(AOA/AHM)は、凡そ0.1以上とすることが適当であり、研磨振動防止等の観点から、好ましくは凡そ1以上、より好ましくは凡そ5以上である。また、分散安定性等の観点から、上記比(AOA/AHM)は、凡そ500以下とすることが適当であり、好ましくは凡そ100以下、より好ましくは凡そ50以下(例えば凡そ30以下)である。 The content of the organic acid and its salt in the polishing composition disclosed herein can also be specified by the relative relationship with the content of the water-soluble polymer contained in the polishing composition. Specifically, the ratio of the content (A OA ) (unit: wt%) of the organic acid and its salt (unit: wt%) to the content (A HM ) of the water-soluble polymer (unit: wt%) in the polishing composition. OA / A HM ) is appropriately about 0.1 or more, and is preferably about 1 or more, and more preferably about 5 or more from the viewpoint of preventing polishing vibration. From the viewpoint of dispersion stability and the like, the ratio ( AOA / AHM ) is appropriately about 500 or less, preferably about 100 or less, more preferably about 50 or less (for example, about 30 or less). Is.
 また、希釈して研磨に用いられる研磨用組成物(すなわち濃縮液)の場合、有機酸およびその塩の含有量は、保存安定性や濾過性等の観点から、通常は、10重量%以下であることが適当であり、好ましくは5重量%以下、より好ましくは3重量%以下(例えば1重量%以下)である。また、濃縮液とすることの利点を活かす観点から、有機酸およびその塩の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.3重量%以上である。 In the case of a polishing composition used for polishing after dilution (that is, a concentrated solution), the content of the organic acid and its salt is usually 10% by weight or less from the viewpoint of storage stability and filterability. It is suitable to be 5% by weight or less, more preferably 3% by weight or less (for example, 1% by weight or less). Further, from the viewpoint of utilizing the advantages of the concentrated liquid, the content of the organic acid and its salt is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.3% by weight. % Or more.
 <水>
 ここに開示される研磨用組成物は水を含む。水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
 ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。
<Water>
The polishing composition disclosed herein comprises water. As the water, ion-exchanged water (deionized water), pure water, ultrapure water, distilled water or the like can be preferably used. The water used preferably has a total content of transition metal ions of 100 ppb or less, for example, in order to prevent the functions of other components contained in the polishing composition from being hindered. For example, the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign substances with a filter, and distillation.
The polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. Usually, 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
 <その他の成分>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、無機酸やその塩、界面活性剤、キレート剤、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコンウェーハのポリシング工程に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
<Other ingredients>
The polishing composition disclosed herein is a polishing composition such as an inorganic acid or a salt thereof, a surfactant, a chelating agent, an antiseptic agent, an antifungal agent, etc. within the range that the effect of the present invention is not significantly impaired. Typically, a known additive that can be used in the polishing composition used in the polishing step of a silicon wafer) may be further contained, if necessary.
 上記無機酸の例としては、塩酸、リン酸、硫酸、ホスホン酸、硝酸、ホスフィン酸、ホウ酸等が挙げられる。酸は、該酸の塩の形態で用いられてもよい。上記酸の塩は、例えば、ナトリウム塩やカリウム塩等のアルカリ金属塩や、アンモニウム塩等であり得る。また、上記無機酸塩の他の例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、オルト珪酸ナトリウム、オルト珪酸カリウム、炭酸カルシウム、炭酸水素カルシウム等が挙げられる。ここに開示される研磨用組成物は、無機酸塩を実質的に含まない態様、すなわち、少なくとも意図的には無機酸塩を含有させない態様で好ましく実施され得る。 Examples of the inorganic acid include hydrochloric acid, phosphoric acid, sulfuric acid, phosphonic acid, nitric acid, phosphinic acid, boric acid and the like. The acid may be used in the form of a salt of the acid. The acid salt may be, for example, an alkali metal salt such as sodium salt or potassium salt, or an ammonium salt. Other examples of the inorganic acid salt include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium orthosilicate, potassium orthosilicate, calcium carbonate, calcium hydrogen carbonate and the like. The polishing composition disclosed herein can be preferably carried out in a manner substantially free of an inorganic acid salt, that is, at least intentionally free of an inorganic acid salt.
 上記界面活性剤としては、両性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤のいずれの種類の界面活性剤も用いることができる。界面活性剤の分子量は、典型的には2000未満であり、1500以下が好ましい。また、界面活性剤の分子量の下限値は特定の範囲に限定されず、例えば200以上であり得る。界面活性剤の分子量は化学式から算出される値を採用することができる。ここに開示される研磨用組成物は、界面活性剤を実質的に含まない態様、すなわち、少なくとも意図的には界面活性剤を含有させない態様で好ましく実施され得る。 As the above-mentioned surfactant, any kind of surfactant such as amphoteric surfactant, cationic surfactant, anionic surfactant and nonionic surfactant can be used. The molecular weight of the surfactant is typically less than 2000, preferably 1500 or less. Further, the lower limit of the molecular weight of the surfactant is not limited to a particular range and may be, for example, 200 or more. As the molecular weight of the surfactant, a value calculated from a chemical formula can be adopted. The polishing composition disclosed herein can be preferably carried out in a mode that is substantially free of a surfactant, that is, a mode that is at least intentionally free of a surfactant.
 上記キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましい。なかでも好ましいものとして、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)およびジエチレントリアミン五酢酸が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。キレート剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。 Examples of the above chelating agents include aminocarboxylic acid type chelating agents and organic phosphonic acid type chelating agents. Examples of aminocarboxylic acid type chelating agents include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, diethylenetriaminepentaacetic acid. , Sodium diethylenetriaminepentaacetate, triethylenetetraminehexaacetic acid and sodium triethylenetetraminehexaacetate. Examples of the organic phosphonic acid type chelating agent are 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid). Acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid , Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and α-methylphosphonic acid Includes nosuccinic acid. Of these, organic phosphonic acid-based chelating agents are more preferable. Of these, preferred are ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and diethylenetriaminepentaacetic acid. Particularly preferred chelating agents include ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid). The chelating agents may be used alone or in combination of two or more.
 上記防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。 Examples of the above preservatives and fungicides include isothiazoline compounds, paraoxybenzoic acid esters, phenoxyethanol and the like.
 ここに開示される研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該組成物が供給されることでシリコンウェーハ表面が酸化されて酸化膜が生じ、これにより研磨レートが低下してしまうことがあり得るためである。ここで、研磨用組成物が酸化剤を実質的に含有しないとは、少なくとも意図的には酸化剤を配合しないことをいい、原料や製法等に由来して微量の酸化剤が不可避的に含まれることは許容され得る。上記微量とは、研磨用組成物における酸化剤のモル濃度が0.0005モル/L以下(好ましくは0.0001モル/L以下、より好ましくは0.00001モル/L以下、特に好ましくは0.000001モル/L以下)であることをいう。好ましい一態様に係る研磨用組成物は酸化剤を含有しない。ここに開示される研磨用組成物は、例えば、過酸化水素、過硫酸ナトリウム、過硫酸アンモニウムおよびジクロロイソシアヌル酸ナトリウムをいずれも含有しない態様で好ましく実施され得る。 The polishing composition disclosed herein preferably contains substantially no oxidizing agent. When the polishing composition contains an oxidizing agent, the silicon wafer surface is oxidized by the supply of the composition to form an oxide film, which may reduce the polishing rate. Is. Here, that the polishing composition does not substantially contain an oxidizing agent means that at least the oxidizing agent is not intentionally blended, and a trace amount of the oxidizing agent is inevitably included due to the raw material, the manufacturing method, or the like. Can be allowed. The above-mentioned minute amount means that the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less (preferably 0.0001 mol / L or less, more preferably 0.00001 mol / L or less, particularly preferably 0. 000001 mol / L or less). The polishing composition according to a preferred embodiment does not contain an oxidizing agent. The polishing composition disclosed herein can be preferably carried out, for example, in a mode containing neither hydrogen peroxide, sodium persulfate, ammonium persulfate nor sodium dichloroisocyanurate.
 <研磨用組成物>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液(ワーキングスラリー)の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。ここに開示される研磨用組成物は、例えば、希釈(典型的には、水により希釈)して研磨液として使用されるものであってもよく、そのまま研磨液として使用されるものであってもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられるワーキングスラリーと、かかるワーキングスラリーの濃縮液(原液)との双方が包含される。上記濃縮液の濃縮倍率は、例えば、体積基準で2倍~100倍程度であってよく、通常は5倍~70倍程度が適当である。
<Polishing composition>
The polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid (working slurry) containing the polishing composition and used for polishing the polishing object. The polishing composition disclosed herein may be, for example, one diluted (typically diluted with water) to be used as a polishing liquid, or one used as it is as a polishing liquid. Good. That is, the concept of the polishing composition in the technology disclosed herein includes both a working slurry that is supplied to a polishing object and is used for polishing the polishing object, and a concentrated solution (stock solution) of the working slurry. Is included. The concentration ratio of the concentrated liquid may be, for example, about 2 to 100 times on a volume basis, and normally about 5 to 70 times is appropriate.
 研磨用組成物のpHは、典型的には8.0以上であり、好ましくは8.5以上、より好ましくは9.0以上、さらに好ましくは9.5以上、例えば10.0以上である。pHが高くなると、研磨レートや隆起解消性が向上する傾向にある。一方、砥粒(例えばシリカ粒子)の溶解を防ぎ、該砥粒による機械的な研磨作用の低下を抑制する観点から、研磨液のpHは、通常、12.0以下であることが適当であり、11.8以下であることが好ましく、11.5以下であることがより好ましい。これらのpHは、研磨対象物に供給される研磨液(ワーキングスラリー)およびその濃縮液のpHのいずれにも好ましく適用され得る。 The pH of the polishing composition is typically 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher, still more preferably 9.5 or higher, for example 10.0 or higher. When the pH is high, the polishing rate and the swelling elimination property tend to be improved. On the other hand, from the viewpoint of preventing dissolution of abrasive grains (for example, silica particles) and suppressing a decrease in mechanical polishing action due to the abrasive grains, the pH of the polishing liquid is usually 12.0 or less. , 11.8 or less, and more preferably 11.5 or less. These pHs can be preferably applied to both the pH of the polishing liquid (working slurry) supplied to the object to be polished and its concentrated liquid.
 なお、研磨用組成物のpHは、pHメーター(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-23))を使用し、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を研磨用組成物に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。 For the pH of the polishing composition, use a pH meter (eg, glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba Ltd.) and use a standard buffer solution (phthalate pH buffer solution pH: After three-point calibration using 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C, carbonate pH buffer pH: 10.01 (25 ° C)) It can be grasped by putting the glass electrode in the polishing composition and measuring the value after the glass electrode has become stable for 2 minutes or more.
 ここに開示される研磨用組成物は、一剤型であってもよく、二剤型を始めとする多剤型であってもよい。例えば、少なくとも砥粒を含むパートAと、残りの成分を含むパートBとを混合し、必要に応じて適切なタイミングで希釈することによって研磨液が調製されるように構成されていてもよい。 The polishing composition disclosed herein may be a one-component type or a multi-component type including a two-component type. For example, the polishing liquid may be prepared by mixing Part A containing at least abrasive grains and Part B containing the remaining components, and diluting the mixture at a suitable timing as needed.
 ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。 The method for producing the polishing composition disclosed herein is not particularly limited. For example, each component contained in the polishing composition may be mixed using a known mixing device such as a blade stirrer, an ultrasonic disperser, or a homomixer. The mode of mixing these components is not particularly limited, and for example, all components may be mixed at once, or may be mixed in an appropriately set order.
 <研磨>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、研磨対象物の研磨に使用することができる。
 すなわち、ここに開示されるいずれかの研磨用組成物を含むワーキングスラリーを用意する。次いで、その研磨用組成物を研磨対象物に供給し、常法により研磨する。例えば、一般的な研磨装置に研磨対象物をセットし、該研磨装置の研磨パッドを通じて該研磨対象物の表面(研磨対象面)に研磨用組成物を供給する。典型的には、上記研磨用組成物を連続的に供給しつつ、研磨対象物の表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て研磨対象物の研磨が完了する。
<Polishing>
The polishing composition disclosed herein can be used for polishing an object to be polished in a mode including the following operations, for example.
That is, a working slurry containing any of the polishing compositions disclosed herein is prepared. Then, the polishing composition is supplied to an object to be polished and polished by a conventional method. For example, the object to be polished is set in a general polishing apparatus, and the polishing composition is supplied to the surface (surface to be polished) of the object to be polished through the polishing pad of the polishing apparatus. Typically, while continuously supplying the polishing composition, the polishing pad is pressed against the surface of the object to be polished to relatively move (for example, rotationally move) the both. The polishing of the object to be polished is completed through such a polishing process.
 上記研磨工程で使用される研磨パッドは特に限定されない。例えば、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。また、上記研磨装置としては、研磨対象物の両面を同時に研磨する両面研磨装置を用いてもよく、研磨対象物の片面のみを研磨する片面研磨装置を用いてもよい。 The polishing pad used in the above polishing process is not particularly limited. For example, any of a polyurethane foam type, a non-woven fabric type, a suede type, one containing abrasive grains, one containing no abrasive grains, etc. may be used. As the polishing device, a double-sided polishing device that simultaneously polishes both sides of an object to be polished may be used, or a single-sided polishing device that polishes only one side of the object to be polished may be used.
 上記研磨用組成物は、いったん研磨に使用したら使い捨てにする態様(いわゆる「かけ流し」)で使用されてもよいし、循環して繰り返し使用されてもよい。研磨用組成物を循環使用する方法の一例として、研磨装置から排出される使用済みの研磨用組成物をタンク内に回収し、回収した研磨用組成物を再度研磨装置に供給する方法が挙げられる。 The above polishing composition may be used in a form of being disposable once used for polishing (so-called “flowing over”), or may be repeatedly used by circulating. As an example of a method of circulating and using the polishing composition, there is a method of collecting the used polishing composition discharged from the polishing apparatus in a tank and supplying the recovered polishing composition to the polishing apparatus again. ..
 <用途>
 ここに開示される研磨用組成物は、シリコンウェーハ等の半導体基板の研磨に好適である。上記研磨用組成物は、HLM周縁の隆起を解消する性能(隆起解消性)に優れるので、HLMの付された表面を含む研磨対象面の研磨に好ましく適用することができる。ここに開示される研磨用組成物は、予備研磨工程、より具体的には、ポリシング工程における最初の研磨工程である粗研磨工程(一次研磨工程)や、それに続く中間研磨工程(二次研磨工程)において特に好ましく使用され得る。
<Use>
The polishing composition disclosed herein is suitable for polishing a semiconductor substrate such as a silicon wafer. Since the above polishing composition is excellent in the ability to eliminate the protrusions on the periphery of the HLM (protrusion elimination property), it can be preferably applied to the polishing of the surface to be polished including the surface with the HLM. The polishing composition disclosed herein includes a preliminary polishing step, more specifically, a rough polishing step (primary polishing step) which is the first polishing step in the polishing step, and an intermediate polishing step (secondary polishing step) subsequent thereto. Particularly preferably used in).
 上記シリコンウェーハには、ここに開示される研磨用組成物を用いる研磨工程の前に、ラッピングやエッチング、上述したHLMの付与等の、シリコンウェーハに適用され得る一般的な処理が施されていてもよい。
 上記シリコンウェーハは、典型的には、シリコンからなる表面を有する。このようなシリコンウェーハは、典型的にはシリコン単結晶ウェーハであり、例えば、シリコン単結晶インゴットをスライスして得られたシリコン単結晶ウェーハである。ここに開示される研磨用組成物は、HLMが付されたシリコン単結晶ウェーハを研磨する用途に好適である。
 また、ここに開示される研磨用組成物は、HLMを有しない研磨対象物の研磨にも好適に使用することができる。
Prior to the polishing step using the polishing composition disclosed herein, the silicon wafer has been subjected to general treatment that can be applied to the silicon wafer, such as lapping, etching, and application of the above-described HLM. Good.
The silicon wafer typically has a surface made of silicon. Such a silicon wafer is typically a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot. The polishing composition disclosed herein is suitable for use in polishing a silicon single crystal wafer provided with HLM.
Further, the polishing composition disclosed herein can be suitably used for polishing an object to be polished having no HLM.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 Hereinafter, some examples of the present invention will be described, but the present invention is not intended to be limited to those shown in the examples.
 <研磨用組成物の調製>
  (実施例1)
 砥粒としてのコロイダルシリカと、塩基性化合物としての水酸化テトラメチルアンモニウム(TMAH)と、クエン酸三アンモニウムと、水溶性高分子としてのポリビニルピロリドン(PVP)と、イオン交換水とを、室温25℃程度で約30分間攪拌混合することにより、研磨用組成物を調製した。得られた研磨用組成物をイオン交換水で50倍に希釈することにより、各成分を表1に示す濃度で含む研磨液を得た。表中のwt%は重量%である。上記コロイダルシリカは、平均一次粒子径が55nmであり、SEM観察による平均円換算径が93nmであり、円換算径の標準偏差が38.5であり、平均アスペクト比が1.3であり、アスペクト比の標準偏差が0.320であり、円換算径50nm以上かつアスペクト比1.2以上の粒子の体積割合が77%であり、円換算径が1~300nmである粒子の体積含有率が100%であった。また、本例に係る研磨用組成物のpHは10.2であった。
<Preparation of polishing composition>
(Example 1)
Colloidal silica as abrasive grains, tetramethylammonium hydroxide (TMAH) as a basic compound, triammonium citrate, polyvinylpyrrolidone (PVP) as a water-soluble polymer, and ion-exchanged water at room temperature 25 A polishing composition was prepared by stirring and mixing at about C for about 30 minutes. The obtained polishing composition was diluted 50 times with ion-exchanged water to obtain a polishing liquid containing each component in the concentration shown in Table 1. The wt% in the table is% by weight. The above colloidal silica has an average primary particle diameter of 55 nm, an average circle equivalent diameter by SEM observation of 93 nm, a standard deviation of circle equivalent diameter of 38.5, an average aspect ratio of 1.3, and an aspect ratio. The standard deviation of the ratio is 0.320, the volume ratio of particles having a circle equivalent diameter of 50 nm or more and an aspect ratio of 1.2 or more is 77%, and the volume content of particles having a circle equivalent diameter of 1 to 300 nm is 100. %Met. The pH of the polishing composition according to this example was 10.2.
 (比較例1)
 クエン酸三アンモニウムを炭酸カリウム(KCO)に変更し、表1に示す濃度とした他は実施例1と同様にして本例に係る研磨液を調製した。
(Comparative Example 1)
A polishing liquid according to this example was prepared in the same manner as in Example 1 except that potassium ammonium (K 2 CO 3 ) was used instead of triammonium citrate and the concentrations were changed to those shown in Table 1.
 (比較例2~4)
 比較例1の研磨液につき、比較例2では水溶性高分子を不使用とし、比較例3では炭酸カリウムを不使用とし、比較例4では砥粒を不使用として、各例に係る研磨液を調製した。
(Comparative Examples 2 to 4)
Regarding the polishing liquid of Comparative Example 1, the water-soluble polymer was not used in Comparative Example 2, potassium carbonate was not used in Comparative Example 3, and the abrasive grains were not used in Comparative Example 4, and the polishing liquid according to each example was used. Prepared.
 [隆起高さ]
 (シリコンウェーハの研磨)
 各例に係る研磨液をそのままワーキングスラリーとして使用して、研磨対象物(試験片)の表面を下記の条件で研磨した。試験片としては、ラッピングおよびエッチングを終えた直径100mmの市販シリコン単結晶ウェーハ(厚さ:525μm、伝導型:P型、結晶方位:<100>、抵抗率:0.1Ω・cm以上100Ω・cm未満)を使用した。上記ウェーハにはHLMが付されている。
 (研磨条件)
 研磨装置:日本エンギス株式会社製の片面研磨装置、型式「EJ-380IN」
 研磨圧力:12kPa
 定盤回転数:50rpm
 ヘッド回転数:40rpm
 研磨パッド:ニッタハース社製、商品名「SUBA800」
 研磨液供給レート:100mL/分(かけ流し使用)
 研磨環境の保持温度:25℃
 研磨時間:20分
[Rise height]
(Silicon wafer polishing)
The polishing liquid according to each example was used as it was as a working slurry, and the surface of a polishing target (test piece) was polished under the following conditions. As a test piece, a commercially available silicon single crystal wafer having a diameter of 100 mm after lapping and etching (thickness: 525 μm, conductivity type: P type, crystal orientation: <100>, resistivity: 0.1 Ω · cm or more 100 Ω · cm Less than) was used. An HLM is attached to the wafer.
(Polishing conditions)
Polishing device: One-side polishing device manufactured by Nippon Engis Co., Ltd., model "EJ-380IN"
Polishing pressure: 12kPa
Plate rotation speed: 50 rpm
Head rotation speed: 40 rpm
Polishing pad: Nitta Haas, product name "SUBA800"
Polishing liquid supply rate: 100 mL / min (use overflow)
Holding temperature of polishing environment: 25 ℃
Polishing time: 20 minutes
 (評価)
 研磨後のシリコンウェーハについて、触針式表面粗さ形状測定機(SURFCOM 1500DX、株式会社東京精密製)を使用してHLMを含むサイトの表面形状を測定し、HLM周辺の基準面から隆起の最高点までの高さ[μm]を計測した。隆起高さが大きいほど、隆起解消性が悪いとの評価結果になる。得られた結果を表1の「隆起高さ」の欄に示す。
(Evaluation)
For the silicon wafer after polishing, the surface shape of the site including the HLM was measured using a stylus type surface roughness profiler (SURFCOM 1500DX, manufactured by Tokyo Seimitsu Co., Ltd.), and the highest protrusion from the reference plane around the HLM. The height [μm] to the point was measured. The larger the ridge height, the poorer the bulge elimination property is. The obtained results are shown in the column of "protrusion height" in Table 1.
 [研磨振動]
 (シリコンウェーハの研磨)
 各例に係る研磨液をそのままワーキングスラリーとして使用して、研磨対象物(試験片)の表面を下記の条件で研磨した。試験片としては、ラッピングおよびエッチングを終えた直径300mmの市販シリコンウェーハ(厚み:775μm、伝導型:P型、結晶方位:<100>、抵抗率:0.1Ω・cm以上100Ω・cm未満)を使用した。
 (研磨条件)
 研磨装置:スピードファム社製の両面研磨装置、型式「20B」
 研磨パッド:ニッタハース社製、商品名「SUBA800」
 研磨圧力:15kPa
 スラリー流量:4.5L/分
 上定盤回転数:-13.4rpm
 下定盤回転数:+35.0rpm(上定盤とは逆の回転方向)
 キャリアの公転回転数:11.2rpm
 研磨環境の保持温度:25℃
 研磨時間:5分
[Polishing vibration]
(Silicon wafer polishing)
The polishing liquid according to each example was used as it was as a working slurry, and the surface of the object to be polished (test piece) was polished under the following conditions. As the test piece, a commercially available silicon wafer having a diameter of 300 mm after lapping and etching (thickness: 775 μm, conductivity type: P type, crystal orientation: <100>, resistivity: 0.1 Ω · cm or more and less than 100 Ω · cm) was used. used.
(Polishing conditions)
Polishing machine: Double-sided polishing machine manufactured by Speedfam, model "20B"
Polishing pad: Nitta Haas, product name "SUBA800"
Polishing pressure: 15kPa
Slurry flow rate: 4.5 L / min Upper surface plate rotation speed: -13.4 rpm
Lower surface plate rotation speed: +35.0 rpm (rotational direction opposite to the upper surface plate)
Revolution speed of carrier: 11.2 rpm
Holding temperature of polishing environment: 25 ℃
Polishing time: 5 minutes
 (評価)
 上記研磨中、研磨振動が認められた場合は「有」、研磨振動が認められなかった場合は「無」とした。得られた結果を表1の「研磨振動」の欄に示す。
(Evaluation)
During the above-mentioned polishing, "absent" was indicated when polishing vibration was observed, and "absent" when polishing vibration was not observed. The obtained results are shown in the column of "polishing vibration" in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、砥粒、塩基性化合物、水溶性高分子および水を含み、有機酸またはその塩を含まない研磨用組成物を用いた比較例1では、隆起解消性は優れていたものの研磨振動が生じた。これに対し、有機酸またはその塩を用いた実施例1では、比較例1と同等の隆起解消性を示し、かつ研磨振動が生じなかった。水溶性高分子を用いなかった比較例2では、隆起解消性が劣り、また研磨振動も発生した。酸またはその塩を使用しなかった比較例3についても、良好な隆起解消性は得られず、研磨振動も生じた。砥粒を使用しなかった比較例4では、研磨振動は生じなかったものの隆起解消性が劣っていた。これらの結果から、砥粒、塩基性化合物、水溶性高分子および水を含み、さらに有機酸またはその塩を含む研磨用組成物によると、優れた隆起解消性と研磨振動防止性とを実現し得ることがわかる。 As shown in Table 1, in Comparative Example 1 in which the polishing composition containing the abrasive grains, the basic compound, the water-soluble polymer and water and containing no organic acid or salt thereof was used, the swelling elimination property was excellent. However, polishing vibration occurred. On the other hand, in Example 1 using the organic acid or the salt thereof, the swelling eliminating property equivalent to that of Comparative Example 1 was exhibited, and polishing vibration did not occur. In Comparative Example 2 in which the water-soluble polymer was not used, the swelling elimination property was poor and polishing vibration was generated. Also in Comparative Example 3 in which an acid or a salt thereof was not used, good swelling eliminating property was not obtained, and polishing vibration was also generated. In Comparative Example 4 in which abrasive grains were not used, polishing vibration did not occur, but the swelling elimination property was poor. From these results, according to the polishing composition containing the abrasive grains, the basic compound, the water-soluble polymer and water, and further containing the organic acid or the salt thereof, excellent swelling eliminating property and polishing vibration preventing property are realized. You know you will get.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 The specific examples of the present invention have been described above in detail, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (6)

  1.  砥粒、塩基性化合物、水溶性高分子および水を含み、
     さらに有機酸またはその塩を含む、シリコンウェーハ予備研磨用組成物。
    Contains abrasives, basic compounds, water-soluble polymers and water,
    A composition for preliminarily polishing a silicon wafer, which further contains an organic acid or a salt thereof.
  2.  前記有機酸は多価カルボン酸である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the organic acid is a polycarboxylic acid.
  3.  前記有機酸はヒドロキシ酸である、請求項1または2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, wherein the organic acid is a hydroxy acid.
  4.  前記砥粒はシリカ粒子である、請求項1~3のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 3, wherein the abrasive grains are silica particles.
  5.  前記塩基性化合物として、水酸化第四級アンモニウムまたはその塩を含む、請求項1~4のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 4, which contains quaternary ammonium hydroxide or a salt thereof as the basic compound.
  6.  前記水溶性高分子の含有量(AHM)に対する前記有機酸およびその塩の含有量(AOA)の比(AOA/AHM)が1以上100以下である、請求項1~5のいずれか一項に記載の研磨用組成物。 6. The ratio (A OA / A HM ) of the content (A OA ) of the organic acid and its salt to the content (A HM ) of the water-soluble polymer is 1 or more and 100 or less. The polishing composition as described in 1 above.
PCT/JP2019/042115 2018-11-12 2019-10-28 Polishing composition WO2020100563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020555972A JP7440423B2 (en) 2018-11-12 2019-10-28 polishing composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-212314 2018-11-12
JP2018212314 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020100563A1 true WO2020100563A1 (en) 2020-05-22

Family

ID=70730783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042115 WO2020100563A1 (en) 2018-11-12 2019-10-28 Polishing composition

Country Status (3)

Country Link
JP (1) JP7440423B2 (en)
TW (1) TW202024259A (en)
WO (1) WO2020100563A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154015A1 (en) * 2021-01-18 2022-07-21 株式会社フジミインコーポレーテッド Polishing composition
WO2022154016A1 (en) * 2021-01-18 2022-07-21 株式会社フジミインコーポレーテッド Polishing composition
WO2024195575A1 (en) * 2023-03-20 2024-09-26 株式会社フジミインコーポレーテッド Polishing composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108770A1 (en) * 2012-01-16 2013-07-25 株式会社 フジミインコーポレーテッド Polishing composition, manufacturing process therefor, undiluted liquid, process for producing silicon substrate, and silicon substrate
JP2014049633A (en) * 2012-08-31 2014-03-17 Fujimi Inc Polishing composition and manufacturing method for substrate
JP2017183359A (en) * 2016-03-28 2017-10-05 株式会社フジミインコーポレーテッド Method of polishing silicon substrate and composition set for polishing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6360311B2 (en) 2014-01-21 2018-07-18 株式会社フジミインコーポレーテッド Polishing composition and method for producing the same
WO2018088370A1 (en) 2016-11-09 2018-05-17 株式会社フジミインコーポレーテッド Polishing composition and silicon wafer polishing method
CN110312776B (en) 2017-02-17 2021-11-30 福吉米株式会社 Polishing composition, method for producing same, and polishing method using polishing composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108770A1 (en) * 2012-01-16 2013-07-25 株式会社 フジミインコーポレーテッド Polishing composition, manufacturing process therefor, undiluted liquid, process for producing silicon substrate, and silicon substrate
JP2014049633A (en) * 2012-08-31 2014-03-17 Fujimi Inc Polishing composition and manufacturing method for substrate
JP2017183359A (en) * 2016-03-28 2017-10-05 株式会社フジミインコーポレーテッド Method of polishing silicon substrate and composition set for polishing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154015A1 (en) * 2021-01-18 2022-07-21 株式会社フジミインコーポレーテッド Polishing composition
WO2022154016A1 (en) * 2021-01-18 2022-07-21 株式会社フジミインコーポレーテッド Polishing composition
WO2024195575A1 (en) * 2023-03-20 2024-09-26 株式会社フジミインコーポレーテッド Polishing composition

Also Published As

Publication number Publication date
JPWO2020100563A1 (en) 2021-09-30
JP7440423B2 (en) 2024-02-28
TW202024259A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
US10344185B2 (en) Composition for polishing silicon wafers
JP6357356B2 (en) Polishing composition
JP6279593B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
KR102575250B1 (en) Polishing composition, manufacturing method thereof, and polishing method using the polishing composition
JP7440423B2 (en) polishing composition
JP7253335B2 (en) Polishing composition, method for producing same, and polishing method using polishing composition
JP7677898B2 (en) polishing composition
JP7319190B2 (en) Polishing composition
JP7237933B2 (en) Polishing composition
JP2020035870A (en) Polishing composition
JP7550771B2 (en) Polishing composition
JP7666930B2 (en) Polishing composition
WO2023032715A1 (en) Polishing composition
WO2023032714A1 (en) Polishing composition
WO2025037542A1 (en) Polishing composition
WO2023032716A1 (en) Polishing composition
WO2025070129A1 (en) Polishing composition and polishing method
TW201610123A (en) Silicon wafer polishing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885725

Country of ref document: EP

Kind code of ref document: A1