WO2020098399A1 - 一种不间断电源的输入掉零线故障的检测方法及装置 - Google Patents
一种不间断电源的输入掉零线故障的检测方法及装置 Download PDFInfo
- Publication number
- WO2020098399A1 WO2020098399A1 PCT/CN2019/108612 CN2019108612W WO2020098399A1 WO 2020098399 A1 WO2020098399 A1 WO 2020098399A1 CN 2019108612 W CN2019108612 W CN 2019108612W WO 2020098399 A1 WO2020098399 A1 WO 2020098399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bus voltage
- power supply
- uninterruptible power
- zero line
- line fault
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000007935 neutral effect Effects 0.000 title abstract description 10
- 238000001514 detection method Methods 0.000 claims abstract description 32
- 238000004590 computer program Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/40—Testing power supplies
Definitions
- the present application relates to the technical field of uninterruptible power supply, in particular to a method, device, equipment and computer-readable storage medium for detecting an input zero line fault of an uninterruptible power supply.
- UPS Uninterruptible Power System / Uninterruptible Power Supply (Uninterruptible Power Supply) is a power supply device with uninterruptible power supply capability for providing a stable uninterruptible power supply to electrical equipment such as computers.
- FIG. 1 is a typical structural diagram of a three-phase four-wire UPS rectifier.
- the UPS controller can reasonably control the work of the power electronic switch in the PWM converter, which can output stable positive and negative bus voltages and realize grid-side power factor correction.
- UPS is likely to be because of ATS (Automatic The transfer switching equipment (automatic transfer switch electrical equipment) switch action and the rectifier input zero line fault occurs.
- ATS Automatic The transfer switching equipment (automatic transfer switch electrical equipment) switch action and the rectifier input zero line fault occurs.
- the bypass voltage will also be shifted when the neutral fault occurs, threatening the power safety of the load equipment. In severe cases, it may even cause the equipment to burn out and endanger the safety of personnel.
- the purpose of the present application is to provide an uninterruptible power supply input zero line fault detection method, device, equipment and computer-readable storage medium, so as to effectively improve the detection accuracy and reduce equipment costs.
- the first aspect of the embodiments of the present application provides a method for detecting an input zero line fault of an uninterruptible power supply, including:
- the judging whether the magnitude of the positive bus voltage and the negative bus voltage change in reverse includes:
- the calculating the integral amount of the difference includes:
- the difference value is input to the controller of the uninterruptible power supply, so as to obtain the integral amount of the difference value calculated by the bus unbalanced loop in the controller.
- the judging whether the magnitude of the positive bus voltage and the negative bus voltage change in reverse includes:
- the method further includes:
- the preset duration is 20ms.
- the method further includes:
- the second aspect of the embodiments of the present application provides a device for detecting an input zero line fault of an uninterruptible power supply, including:
- An acquisition module for acquiring the positive bus voltage and the negative bus voltage of the rectifier of the uninterruptible power supply
- the judging module is used to judge whether the magnitudes of the positive bus voltage and the negative bus voltage change in reverse; if so, it is judged that the uninterruptible power supply has an input zero line fault.
- the third aspect of the embodiments of the present application further provides a device for detecting an input zero line fault of an uninterruptible power supply, including:
- a voltage sensor used to detect the positive bus voltage and the negative bus voltage of the rectifier of the uninterruptible power supply, and send it to the data processor;
- the data processor is configured to implement any of the steps of the method for detecting an input zero line fault of an uninterruptible power supply as described above.
- the fourth aspect of the embodiments of the present application also provides a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and the computer program is used for implementation when executed by a processor As described above, the steps of a method for detecting an input zero line fault of an uninterruptible power supply.
- This application obtains the positive bus voltage and the negative bus voltage of the rectifier of the uninterruptible power supply; judges whether the magnitudes of the positive bus voltage and the negative bus voltage change in the reverse direction; It can be seen that this application does not need to introduce a hardware detection circuit, and only needs to analyze the change in the size of the positive bus voltage and negative bus voltage of the rectifier to obtain the detection result of the input zero line fault, which not only reduces the equipment cost It also avoids the introduction of new fault points, improves the accuracy of the detection results, and is more convenient and efficient.
- FIG. 1 is a typical structural diagram of a three-phase four-wire UPS rectifier provided by an embodiment of the present application
- FIG. 2 is a flowchart of a specific implementation manner of a method for detecting an input zero line fault of an uninterruptible power supply according to an embodiment of the present application
- FIG. 3 is a flowchart of a method for determining whether the magnitude of the positive bus voltage and the negative bus voltage change in reverse according to an embodiment of the present application
- FIG. 4 is a typical control structure diagram of an uninterruptible power supply controller provided by an embodiment of the present application.
- FIG. 5 is a flowchart of another method for determining whether the magnitudes of the positive bus voltage and the negative bus voltage change in reverse according to the embodiment of the present application;
- FIG. 6 is a schematic structural diagram of a device for detecting an input zero line fault of an uninterruptible power supply according to an embodiment of the present application
- FIG. 7 is a schematic structural diagram of a device for detecting an input zero line fault of an uninterruptible power supply according to an embodiment of the present application.
- the core of the present application is to provide an uninterruptible power supply input zero line fault detection method, device, equipment and computer-readable storage medium, so as to effectively improve the detection accuracy and reduce equipment costs.
- the zero line input terminal of the rectifier is connected to the neutral line of the commercial power, that is, point N in Figure 1 is a reference point for stable potential.
- the commercial power is input to the rectifier It is three-phase symmetrical alternating current.
- the potential at point N is no longer stable.
- the current flowing from the PFC to the midpoint of the bus in the UPS is not zero, that is, a zero sequence current is generated, and a current is formed between points O and N In the circuit, the potential at point N shifts. With the offset of the potential at point N, the potential at the midpoint of the bus is also in an unstable state, resulting in the bus being out of control and unbalanced.
- the embodiments of the present application disclose a method for detecting an input zero line fault of an uninterruptible power supply.
- the method disclosed in the present application can be specifically implemented by using control devices such as a single chip microcomputer and a CPLD, and belongs to a software detection method. Referring to Figure 2, the method mainly includes the following steps:
- the input zero line fault occurs by determining whether the positive bus voltage BusP and the negative bus voltage BusN change in reverse.
- the potential at point N shifts, and the potential at the midpoint of the bus also shifts, thereby changing the magnitude of the positive bus voltage BusP and the negative bus voltage BusN. Since the voltage difference between the positive bus and the negative bus is kept constant, the shift of the midpoint potential of the bus will cause the positive bus voltage BusP and the negative bus voltage BusN to change in reverse, that is, one increases and the other decreases , Which can be used as the basis for determining the occurrence of input zero line fault.
- the positive bus voltage BusP is the potential difference of the positive bus relative to the midpoint of the bus
- the negative bus voltage BusN is the potential difference of the midpoint of the bus relative to the negative bus, which can be specifically detected by the relevant voltage sensor.
- S2 Determine whether the magnitude of the positive bus voltage BusP and the negative bus voltage BusN change in reverse; if so, go to S3.
- This application obtains the positive bus voltage and the negative bus voltage of the rectifier of the uninterruptible power supply; judges whether the magnitudes of the positive bus voltage and the negative bus voltage change in the reverse direction; It can be seen that this application does not need to introduce a hardware detection circuit, and only needs to analyze the change in the size of the positive bus voltage and negative bus voltage of the rectifier to obtain the detection result of the input zero line fault, which not only reduces the equipment cost, but also It also avoids the introduction of new fault points, improves the accuracy of the detection results, and is more convenient and efficient.
- FIG. 3 is a flowchart of a method disclosed in the present application for determining whether the magnitude of the positive bus voltage and the negative bus voltage change in reverse.
- determining whether the magnitudes of the positive bus voltage BusP and the negative bus voltage BusN change in reverse includes:
- S34 Determine that the magnitude of the positive bus voltage BusP and the negative bus voltage BusN change in reverse.
- this embodiment provides a specific solution for judging whether the magnitudes of the positive bus voltage BusP and the negative bus voltage BusN change in reverse, that is, judging according to the change of the integral of the difference between the two: if the integral of the difference Monotonously increasing or decreasing monotonously means that the positive bus voltage BusP and the negative bus voltage BusN are changing in the reverse direction, so that the input zero line can be judged to be disconnected.
- the calculation of the integral of the difference includes: inputting the difference to the controller of the uninterruptible power supply, so as to obtain the integral of the difference calculated by the bus imbalance loop in the controller.
- the controller of the uninterruptible power supply will use the integral value of the positive bus voltage BusP and the negative bus voltage difference BusN when performing the bus balance control. Therefore, in the detection method provided in this application, the uninterruptible power supply can be used directly The calculation result in the controller of the power supply.
- FIG. 4 is a typical control structure diagram of an uninterruptible power supply controller disclosed in this application.
- the difference between the positive bus voltage BusP and the negative bus voltage BusN is input to the PI controller, the proportional integral controller, and the output PI control quantity is I0_ref, which includes the proportional control quantity and the integral control quantity.
- the integral control amount mentioned is the integral amount of the difference between the positive bus voltage BusP and the negative bus voltage BusN needed in this application. Therefore, in this embodiment, the intermediate calculation result of the uninterruptible power supply controller in the prior art can be directly used to judge the zero line fault, which further simplifies the calculation process.
- Ubus_ref and Ubus_fdb are the given amount and feedback of the positive and negative bus voltage difference input to the dq control loop
- Id_fdb and Iq_fdb are the feedback of the d-axis current and q-axis current
- I0_fdb is the zero-sequence current Amount of feedback.
- FIG. 5 is a flowchart of another method for determining whether the magnitudes of the positive bus voltage and the negative bus voltage change in reverse, including the following steps:
- S51 Calculate the first change in the positive bus voltage BusP and the second change in the negative bus voltage BusN per unit time.
- S52 Determine whether the first change and the second change are positive or negative.
- the unit time may be set to a relatively small time period, and those skilled in the art may choose to set it by themselves, which is not limited in this application.
- the detection method of the input zero line fault of the uninterruptible power supply provided by this application, as a specific embodiment, after determining that the magnitude of the positive bus voltage and the negative bus voltage change in reverse, it also includes : Determine whether the duration of the case where the magnitude of the positive bus voltage BusP and the negative bus voltage BusN reversely changes reaches the preset duration; if so, it is determined that the uninterruptible power supply has an input zero line fault.
- the duration of the reverse change of the positive and negative bus voltages can also be considered, that is, when This situation continues for a period of time before it is determined that the input zero line fault occurs.
- the preset duration is 20ms. Since the mains frequency is 50 Hz, 20 ms is a mains cycle, so the preset duration can be preferably set to 20 ms.
- the detection method of the input zero line fault of the uninterruptible power supply after determining that the input zero line fault of the uninterruptible power supply occurs, further includes: generating the input zero line fault Alarm signal to prompt the user.
- an indicator can be used for alarming, and those skilled in the art can select and set it by themselves, and this application does not limit it.
- the following describes an input zero-line fault detection device for an uninterruptible power supply provided by an embodiment of the present application.
- the fault detection methods can be referred to each other.
- the device for detecting an input zero line fault of an uninterruptible power supply may include:
- the obtaining module 61 is used to obtain the positive bus voltage and the negative bus voltage of the rectifier of the uninterruptible power supply;
- the judging module 62 is used to judge whether the magnitude of the positive bus voltage and the negative bus voltage change in reverse; if it is, it is judged that the uninterruptible power supply has an input zero line fault.
- This application obtains the positive bus voltage and the negative bus voltage of the rectifier of the uninterruptible power supply; judges whether the magnitudes of the positive bus voltage and the negative bus voltage change in the reverse direction; It can be seen that this application does not need to introduce a hardware detection circuit, and only needs to analyze the change in the size of the positive bus voltage and negative bus voltage of the rectifier to obtain the detection result of the input zero line fault, which not only reduces the equipment cost, but also It also avoids the introduction of new fault points, improves the accuracy of the detection results, and is more convenient and efficient.
- the judgment module 52 is specifically used to: calculate the difference between the magnitude of the positive bus voltage and the negative bus voltage; calculate the integral of the difference; determine whether the integral changes monotonously; if so, determine the positive bus voltage The magnitude of the negative bus voltage changes in reverse.
- the judgment module 52 is specifically configured to: input the difference value to the controller of the uninterruptible power supply, so as to obtain the integral value of the difference value calculated by the bus imbalance loop in the controller.
- the judgment module 52 is specifically configured to: calculate the first change in the positive bus voltage and the second change in the negative bus voltage per unit time; determine whether the first change and the second change are positive or negative Different sign; if it is, it is determined that the magnitude of the positive bus voltage and the negative bus voltage change in reverse.
- the determination module 52 is further configured to: determine whether the duration of the case where the magnitude of the positive bus voltage and the negative bus voltage change in reverse reaches the preset duration; if so, determine that the input of the uninterruptible power supply has dropped to zero Line failure.
- the preset duration is 20 ms.
- it further includes an alarm module, which is used to generate a fault alarm signal for inputting the zero-line fault after the input of the zero-line fault is determined to prompt the user.
- an alarm module which is used to generate a fault alarm signal for inputting the zero-line fault after the input of the zero-line fault is determined to prompt the user.
- an embodiment of the present application also discloses a device for detecting an input zero line fault of an uninterruptible power supply.
- the device for detecting an input zero line fault of an uninterruptible power supply includes:
- the voltage sensor 71 is used to detect the positive bus voltage and the negative bus voltage of the rectifier of the uninterruptible power supply and send it to the data processor;
- the data processor 72 is used to implement the steps of any one of the methods for detecting the input zero line fault of the uninterruptible power supply as described above.
- an embodiment of the present application further discloses a computer-readable storage medium for storing a computer program, where the computer program is executed by a processor to implement the following steps:
- any method for detecting an input uninterruptible power supply input zero line fault as described above may be specifically implemented step.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
一种不间断电源的输入掉零线故障的检测方法、检测装置、设备及计算机可读存储介质,方法包括:获取不间断电源的整流器的正母线电压与负母线电压(S1);判断正母线电压与负母线电压的大小是否反向变化(S2);若是,则判定不间断电源发生输入掉零线故障(S3)。本方法无需引入硬件检测电路,只需对整流器的正母线电压和负母线电压的大小变化情况进行分析,即可得到输入掉零线故障的检测结果,不仅降低了设备成本,而且还避免引入了新的故障点,提高了检测结果的精确度,较为方便高效。
Description
本申请要求于2018年11月14日提交中国专利局、申请号为201811354208.8、发明名称为“一种不间断电源的输入掉零线故障的检测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及不间断电源技术领域,特别是涉及一种不间断电源的输入掉零线故障的检测方法、装置、设备及计算机可读存储介质。
UPS(Uninterruptible Power
System/Uninterruptible Power Supply,不间断电源)是一种具备不间断供电能力、用于向计算机等用电设备提供稳定不间断电力供应的电源设备。
请参考图1,图1为一种三相四线制的UPS整流器的典型结构图。通过UPS的控制器合理控制PWM变换器中电力电子开关的工作,可输出稳定的正、负母线电压,并实现网侧功率因素校正。然而,在实际使用过程中,UPS很可能会因为ATS(Automatic
transferswitching equipment,自动转换开关电器)的开关动作而出现整流器输入掉零线故障。一旦整流器的输入零线断开,将会导致电网电压偏移,影响整流器的正常运行,继而会影响后续的逆变器和用电负载的正常运行,并且,由于UPS的旁路与整流器共用中线,因此,旁路电压同样会在零线故障时发生偏移,威胁到负载设备的用电安全,严重时甚至会引起设备烧毁,危害人员安全。
现有技术中,一般是利用相关的硬件检测回路来进行零线故障检测,这样不仅增加了设备成本,还同时增加了系统中可能出现的故障点,影响检测精度。鉴于此,提供一种解决上述问题的方法是本领域技术人员所亟需关注的。
有鉴于此,本申请的目的在于提供一种不间断电源的输入掉零线故障的检测方法、装置、设备及计算机可读存储介质,以便有效提高检测精度并降低设备成本。
为解决上述技术问题,本申请实施例的第一方面提供了不间断电源的输入掉零线故障的检测方法,包括:
获取所述不间断电源的整流器的正母线电压与负母线电压;
判断所述正母线电压与所述负母线电压的大小是否反向变化;
若是,则判定所述不间断电源发生输入掉零线故障。
可选地,所述判断所述正母线电压与所述负母线电压的大小是否反向变化包括:
计算所述正母线电压和所述负母线电压的大小的差值;
计算所述差值的积分量;
判断所述积分量是否单调变化;
若是,则判定所述正母线电压与所述负母线电压的大小反向变化。
可选地,所述计算所述差值的积分量包括:
将所述差值输入至所述不间断电源的控制器,以便获取所述控制器中的母线不平衡环计算的所述差值的积分量。
可选地,所述判断所述正母线电压与所述负母线电压的大小是否反向变化包括:
计算单位时间内所述正母线电压的第一变化量和所述负母线电压的第二变化量;
判断所述第一变化量与所述第二变化量是否正负异号;
若是,则判定所述正母线电压与所述负母线电压的大小反向变化。
可选地,在判定所述正母线电压与所述负母线电压的大小反向变化之后,还包括:
判断所述正母线电压与所述负母线电压的大小反向变化的情况的持续时间是否达到预设时长;
若是,则判定所述不间断电源发生输入掉零线故障。
可选地,所述预设时长为20ms。
可选地,在所述判定所述不间断电源发生输入掉零线故障之后,还包括:
生成输入掉零线的故障告警信号以便提示用户。。
为解决上述技术问题,本申请实施例的第二方面提供了一种不间断电源的输入掉零线故障的检测装置,包括:
获取模块,用于获取所述不间断电源的整流器的正母线电压与负母线电压;
判断模块,用于判断所述正母线电压与所述负母线电压的大小是否反向变化;若是,则判定所述不间断电源发生输入掉零线故障。
为解决上述技术问题,本申请实施例的第三方面还提供了一种不间断电源的输入掉零线故障的检测设备,包括:
电压传感器,用于检测所述不间断电源的整流器的正母线电压与负母线电压,并发送至数据处理器;
所述数据处理器,用于实现如上所述的任一种不间断电源的输入掉零线故障的检测方法的步骤。
为解决上述技术问题,本申请实施例的第四方面还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时用于实现如上所述的任一种不间断电源的输入掉零线故障的检测方法的步骤。
本申请通过获取不间断电源的整流器的正母线电压与负母线电压;判断正母线电压与负母线电压的大小是否反向变化;若是,则判定不间断电源发生输入掉零线故障。由此可见,本申请无需引入硬件检测电路,只需对整流器的正母线电压和负母线电压的大小变化情况进行分析,即可得到输入掉零线故障的检测结果,不仅降低了设备成本,而且还避免引入了新的故障点,提高了检测结果的精确度,并且较为方便高效。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本申请实施例提供的一种三相四线制的UPS整流器的典型结构图;
图2是本申请实施例提供的不间断电源的输入掉零线故障的检测方法中一种具体实施方式的流程图;
图3是本申请实施例提供的一种判断正母线电压与负母线电压的大小是否反向变化的方法的流程图;
图4是本申请实施例提供的一种不间断电源的控制器的典型控制结构图;
图5是本申请实施例提供的另一种判断正母线电压与负母线电压的大小是否反向变化的方法的流程图;
图6是本申请实施例提供的不间断电源的输入掉零线故障的检测装置的一种结构示意图;
图7是本申请实施例提供的不间断电源的输入掉零线故障的检测设备的一种结构示意图。
本申请的实施方式
本申请的核心在于提供一种不间断电源的输入掉零线故障的检测方法、装置、设备及计算机可读存储介质,以便有效提高检测精度并降低设备成本。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,在正常情况下,整流器的零线输入端与市电的零线连接,即图1中的N点,是一个电位稳定的参考点,此时,由市电输入至整流器的是三相对称交流电。而一旦整流器的输入零线断开,N点的电位便不再稳定。出于控制母线中点(即图1中的O点)平衡的目的,UPS中由PFC流向母线中点的电流不为零,即产生了零序电流,O点和N点之间形成了电流回路,N点电位发生偏移。而随着N点电位的偏移,母线中点的电位也同样处于不稳定状态,导致母线失控不平衡。
为了对上述现象进行检测,本申请实施例公开了一种不间断电源的输入掉零线故障的检测方法。相比于现有技术中的硬件检测电路,本申请所公开的方法具体可利用单片机、CPLD等控制器件实现,属于软件检测方法。参照图2所示,该方法主要包括以下步骤:
S1:获取不间断电源的整流器的正母线电压BusP与负母线电压BusN。
具体地,本申请中是通过判断正母线电压BusP和负母线电压BusN是否反向变化而对输入掉零线故障是否发生进行判断的。如上所述,当整流器的输入零线断开后,N点电位偏移,并令母线中点的电位也发生偏移,进而使得正母线电压BusP和负母线电压BusN的大小发生变化。由于正母线和负母线之间的电压差是维持恒定的,因此,母线中点电位的偏移必将导致正母线电压BusP和负母线电压BusN反向变化,即一个增大而另一个减小,由此即可作为判定输入掉零线故障发生的依据。
其中,正母线电压BusP即正母线相对于母线中点的电位差,负母线电压BusN即母线中点相对于负母线的电位差,均具体可由相关电压传感器进行检测。
S2:判断正母线电压BusP与负母线电压BusN的大小是否反向变化;若是,则进入S3。
当判定正母线电压BusP与负母线电压BusN反向变化之后,即可判定输入零线断开。
S3:判定不间断电源发生输入掉零线故障。
本申请通过获取不间断电源的整流器的正母线电压与负母线电压;判断正母线电压与负母线电压的大小是否反向变化;若是,则判定不间断电源发生输入掉零线故障。由此可见,本申请无需引入硬件检测电路,只需对整流器的正母线电压和负母线电压的大小变化情况进行分析,即可得到输入掉零线故障的检测结果,不仅降低了设备成本,而且还避免引入了新的故障点,提高了检测结果的精确度,并且较为方便高效。
请参考图3,图3为本申请公开的一种判断正母线电压与负母线电压的大小是否反向变化的方法的流程图。
在上述内容的基础上,本申请所提供的不间断电源的输入掉零线故障的检测方法,作为一种具体实施例,判断正母线电压BusP与负母线电压BusN的大小是否反向变化包括:
S31:计算正母线电压BusP和负母线电压BusN的大小的差值。
S32:计算差值的积分量。
S33:判断积分量是否单调变化;若是,则进入S34。
S34:判定正母线电压BusP与负母线电压BusN的大小反向变化。
具体地,本实施例提供了一种判断正母线电压BusP与负母线电压BusN的大小是否反向变化的具体方案,即根据两者差值的积分量的变化情况进行判断:若差值的积分量单调递增或者单调递减,都说明正母线电压BusP和负母线电压BusN在反向变化,由此即可判定输入零线断开。
在此基础上,优选地,所说的计算差值的积分量包括:将差值输入至不间断电源的控制器,以便获取控制器中的母线不平衡环计算的差值的积分量。
一般地,不间断电源的控制器在进行母线平衡控制时,都会使用到正母线电压BusP与负母线电压差值BusN的积分量,因此,本申请所提供的检测方法中,可直接使用不间断电源的控制器中的计算结果。具体地,请参考图4,图4为本申请公开的一种不间断电源的控制器的典型控制结构图。
如图4所示,正母线电压BusP和负母线电压BusN的差值输入到PI控制器即比例积分控制器中,输出的PI控制量为I0_ref,它包含了比例控制量和积分控制量,所说的积分控制量即为本申请中所需要用到的正母线电压BusP和负母线电压BusN差值的积分量。由此,在本实施例中,可直接利用现有技术中不间断电源控制器的中间计算结果对零线故障进行判断,进一步简化了计算过程。
图4中,Ubus_ref和Ubus_fdb分别是输入至dq控制环的正、负母线电压差值的给定量和反馈量,Id_fdb和Iq_fdb分别是d轴电流和q轴电流的反馈量,I0_fdb是零序电流的反馈量。
请参考图5,图5为本申请公开的另一种判断正母线电压与负母线电压的大小是否反向变化的方法的流程图,包括以下步骤:
S51:计算单位时间内正母线电压BusP的第一变化量和负母线电压BusN的第二变化量。
S52:判断第一变化量与第二变化量是否正负异号。
S53:若是,则判定正母线电压BusP与负母线电压BusN的大小反向变化。
在本实施例中,可根据正母线电压BusP与负母线电压BusN的变化量是否异号而直观地进行判断。所说的单位时间,具体可以设置一个较小的时长,本领域技术人员可自行选择设置,本申请对此并不限定。
在上述内容的基础上,本申请所提供的不间断电源的输入掉零线故障的检测方法,作为一种具体实施例,在判定正母线电压与负母线电压的大小反向变化之后,还包括:判断正母线电压BusP与负母线电压BusN的大小反向变化的情况的持续时间是否达到预设时长;若是,则判定不间断电源发生输入掉零线故障。
具体地,为了进一步提高检测结果的准确性,避免某些时刻的坏数据引起误检,在本实施例中,还可以对正、负母线电压反向变化情况的持续时长进行考量,即,当该情况连续持续了一定时长之后才判定输入掉零线故障发生。
其中,优选地,所述预设时长为20ms。由于市电频率为50Hz,因此20ms为一个市电周期,由此可优选将预设时长设置为20ms。
此外,在上述内容的基础上,本申请所提供的不间断电源的输入掉零线故障的检测方法,在判定不间断电源发生输入掉零线故障之后,还包括:生成输入掉零线的故障告警信号以便提示用户。
其中,具体可采用指示灯、蜂鸣器等装置进行告警,本领域技术人员可以自行选择并设置,本申请对此并不进行限定。
下面对本申请实施例提供的不间断电源的输入掉零线故障的检测装置进行介绍,下文描述的不间断电源的输入掉零线故障的检测装置与上文描述的不间断电源的输入掉零线故障的检测方法可相互对应参照。
图6为本申请实施例所提供的不间断电源的输入掉零线故障的检测装置的结构示意图,参照图6所示,不间断电源的输入掉零线故障的检测装置可以包括:
获取模块61,用于获取不间断电源的整流器的正母线电压与负母线电压;
判断模块62,用于判断正母线电压与负母线电压的大小是否反向变化;若是,则判定不间断电源发生输入掉零线故障。
本申请通过获取不间断电源的整流器的正母线电压与负母线电压;判断正母线电压与负母线电压的大小是否反向变化;若是,则判定不间断电源发生输入掉零线故障。由此可见,本申请无需引入硬件检测电路,只需对整流器的正母线电压和负母线电压的大小变化情况进行分析,即可得到输入掉零线故障的检测结果,不仅降低了设备成本,而且还避免引入了新的故障点,提高了检测结果的精确度,并且较为方便高效。
在一些具体的实施例中,判断模块52具体用于:计算正母线电压和负母线电压的大小的差值;计算差值的积分量;判断积分量是否单调变化;若是,则判定正母线电压与负母线电压的大小反向变化。
在一些具体的实施例中,判断模块52具体用于:将差值输入至不间断电源的控制器,以便获取控制器中的母线不平衡环计算的差值的积分量。
在一些具体的实施例中,判断模块52具体用于:计算单位时间内正母线电压的第一变化量和负母线电压的第二变化量;判断第一变化量与第二变化量是否正负异号;若是,则判定正母线电压与负母线电压的大小反向变化。
在一些具体的实施例中,判断模块52还用于:判断正母线电压与负母线电压的大小反向变化的情况的持续时间是否达到预设时长;若是,则判定不间断电源发生输入掉零线故障。
在一些具体的实施例中,预设时长为20ms。
在一些具体的实施例中,还包括告警模块,用于在判定不间断电源发生输入掉零线故障之后,生成输入掉零线的故障告警信号以便提示用户。
进一步地,本申请实施例还公开了一种不间断电源的输入掉零线故障的检测设备,参照图7所示,所述不间断电源的输入掉零线故障的检测设备包括:
电压传感器71,用于检测不间断电源的整流器的正母线电压与负母线电压,并发送至数据处理器;
数据处理器72,用于实现如上所介绍的任一种不间断电源的输入掉零线故障的检测方法的步骤。
进一步的,本申请实施例还公开了一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序被处理器执行时实现以下步骤:
在一些具体的实施例中,所述计算机可读存储介质中保存的计算机子程序被处理器执行时,可以具体实现如上所介绍的任一种不间断电源的输入掉零线故障的检测方法的步骤。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请的内容进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
Claims (10)
- 一种不间断电源的输入掉零线故障的检测方法,其特征在于,所述检测方法包括:获取所述不间断电源的整流器的正母线电压与负母线电压;判断所述正母线电压与所述负母线电压的大小是否反向变化;若是,则判定所述不间断电源发生输入掉零线故障。
- 根据权利要求1所述的不间断电源的输入掉零线故障的检测方法,其特征在于,所述判断所述正母线电压与所述负母线电压的大小是否反向变化包括:计算所述正母线电压和所述负母线电压的大小的差值;计算所述差值的积分量;判断所述积分量是否单调变化;若是,则判定所述正母线电压与所述负母线电压的大小反向变化。
- 根据权利要求2所述的不间断电源的输入掉零线故障的检测方法,其特征在于,所述计算所述差值的积分量包括:将所述差值输入至所述不间断电源的控制器,以便获取所述控制器中的母线不平衡环计算的所述差值的积分量。
- 根据权利要求1所述的不间断电源的输入掉零线故障的检测方法,其特征在于,所述判断所述正母线电压与所述负母线电压的大小是否反向变化包括:计算单位时间内所述正母线电压的第一变化量和所述负母线电压的第二变化量;判断所述第一变化量与所述第二变化量是否正负异号;若是,则判定所述正母线电压与所述负母线电压的大小反向变化。
- 根据权利要求1至4任一项所述的不间断电源的输入掉零线故障的检测方法,其特征在于,在判定所述正母线电压与所述负母线电压的大小反向变化之后,还包括:判断所述正母线电压与所述负母线电压的大小反向变化的情况的持续时间是否达到预设时长;若是,则判定所述不间断电源发生输入掉零线故障。
- 根据权利要求5所述的不间断电源的输入掉零线故障的检测方法,其特征在于,所述预设时长为20ms。
- 根据权利要求6所述的不间断电源的输入掉零线故障的检测方法,其特征在于,在所述判定所述不间断电源发生输入掉零线故障之后,还包括:生成输入掉零线的故障告警信号以便提示用户。
- 一种不间断电源的输入掉零线故障的检测装置,其特征在于,所述检测装置包括:获取模块,用于获取所述不间断电源的整流器的正母线电压与负母线电压;判断模块,用于判断所述正母线电压与所述负母线电压的大小是否反向变化;若是,则判定所述不间断电源发生输入掉零线故障。
- 一种不间断电源的输入掉零线故障的检测设备,其特征在于,包括:电压传感器,用于检测所述不间断电源的整流器的正母线电压与负母线电压,并发送至数据处理器;所述数据处理器,用于实现如权利要求1至7任一项所述的不间断电源的输入掉零线故障的检测方法的步骤。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用以实现如权利要求1至7任一项所述的不间断电源的输入掉零线故障的检测方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811354208.8A CN109298354B (zh) | 2018-11-14 | 2018-11-14 | 一种不间断电源的输入掉零线故障的检测方法及装置 |
CN201811354208.8 | 2018-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020098399A1 true WO2020098399A1 (zh) | 2020-05-22 |
Family
ID=65143216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/108612 WO2020098399A1 (zh) | 2018-11-14 | 2019-09-27 | 一种不间断电源的输入掉零线故障的检测方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109298354B (zh) |
WO (1) | WO2020098399A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112834977A (zh) * | 2020-12-31 | 2021-05-25 | 宁波三星医疗电气股份有限公司 | 基于电能表的中性线断线故障点检测定位方法 |
CN114019417A (zh) * | 2021-11-09 | 2022-02-08 | 国家电网有限公司西北分部 | 线路保护电流回路中性线开路检测方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109298354B (zh) * | 2018-11-14 | 2020-08-11 | 科华恒盛股份有限公司 | 一种不间断电源的输入掉零线故障的检测方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1664605A (zh) * | 2004-03-05 | 2005-09-07 | 力博特公司 | 检测不间断电源的整流器零线与电网零线之间的断线故障的方法 |
CN104065276A (zh) * | 2014-06-27 | 2014-09-24 | 华为技术有限公司 | 一种三相不间断电源的控制方法、装置和三相不间断电源 |
CN204925363U (zh) * | 2015-09-25 | 2015-12-30 | 厦门科华恒盛股份有限公司 | 一种三相不间断电源输入零线缺失的检测电路 |
CN105486936A (zh) * | 2015-12-04 | 2016-04-13 | 易事特集团股份有限公司 | 具有缺零线检测电路的不间断电源 |
US9404947B2 (en) * | 2012-08-31 | 2016-08-02 | General Electric Company | Systems and methods for detecting power quality of uninterrupible power supplies |
CN108562818A (zh) * | 2017-12-21 | 2018-09-21 | 厦门科华恒盛股份有限公司 | 一种ups的零线断路检测方法、装置及ups |
CN109298354A (zh) * | 2018-11-14 | 2019-02-01 | 厦门科华恒盛股份有限公司 | 一种不间断电源的输入掉零线故障的检测方法及装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100388608C (zh) * | 2003-12-09 | 2008-05-14 | 力博特公司 | 一种在不间断电源断中线后控制其整流器零线电压差的方法 |
US7352083B2 (en) * | 2005-09-16 | 2008-04-01 | American Power Conversion Corporation | Apparatus for and method of UPS operation |
CN101976967B (zh) * | 2010-10-26 | 2013-01-02 | 深圳市盛弘电气有限公司 | 一种三电平逆变器及其直流母线电压的平衡控制方法 |
CN102222976A (zh) * | 2011-06-27 | 2011-10-19 | 深圳市英威腾电源有限公司 | 一种电源系统的辅助电源和供电系统 |
JP6016836B2 (ja) * | 2014-03-20 | 2016-10-26 | 三菱電機株式会社 | 電力変換装置、および電力変換制御方法 |
CN104052020A (zh) * | 2014-06-12 | 2014-09-17 | 王新强 | 低压供电系统中缺相、缺零、零线断线及短路保护装置 |
CN107425710B (zh) * | 2017-09-02 | 2019-07-09 | 深圳点亮新能源技术有限公司 | 基于负载电流前馈的pfc电路控制方法及装置 |
-
2018
- 2018-11-14 CN CN201811354208.8A patent/CN109298354B/zh active Active
-
2019
- 2019-09-27 WO PCT/CN2019/108612 patent/WO2020098399A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1664605A (zh) * | 2004-03-05 | 2005-09-07 | 力博特公司 | 检测不间断电源的整流器零线与电网零线之间的断线故障的方法 |
US9404947B2 (en) * | 2012-08-31 | 2016-08-02 | General Electric Company | Systems and methods for detecting power quality of uninterrupible power supplies |
CN104065276A (zh) * | 2014-06-27 | 2014-09-24 | 华为技术有限公司 | 一种三相不间断电源的控制方法、装置和三相不间断电源 |
CN204925363U (zh) * | 2015-09-25 | 2015-12-30 | 厦门科华恒盛股份有限公司 | 一种三相不间断电源输入零线缺失的检测电路 |
CN105486936A (zh) * | 2015-12-04 | 2016-04-13 | 易事特集团股份有限公司 | 具有缺零线检测电路的不间断电源 |
CN108562818A (zh) * | 2017-12-21 | 2018-09-21 | 厦门科华恒盛股份有限公司 | 一种ups的零线断路检测方法、装置及ups |
CN109298354A (zh) * | 2018-11-14 | 2019-02-01 | 厦门科华恒盛股份有限公司 | 一种不间断电源的输入掉零线故障的检测方法及装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112834977A (zh) * | 2020-12-31 | 2021-05-25 | 宁波三星医疗电气股份有限公司 | 基于电能表的中性线断线故障点检测定位方法 |
CN112834977B (zh) * | 2020-12-31 | 2022-04-26 | 宁波三星医疗电气股份有限公司 | 基于电能表的中性线断线故障点检测定位方法 |
CN114019417A (zh) * | 2021-11-09 | 2022-02-08 | 国家电网有限公司西北分部 | 线路保护电流回路中性线开路检测方法 |
CN114019417B (zh) * | 2021-11-09 | 2022-05-31 | 国家电网有限公司西北分部 | 线路保护电流回路中性线开路检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109298354B (zh) | 2020-08-11 |
CN109298354A (zh) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020098399A1 (zh) | 一种不间断电源的输入掉零线故障的检测方法及装置 | |
JP5544517B2 (ja) | 電気機器おける漏洩電流測定装置及び測定方法 | |
US8203813B2 (en) | Distributed power supply system | |
JP2015133785A (ja) | 単独運転検出装置及び単独運転検出方法 | |
CN113075534B (zh) | 电源芯片检测电路、电源芯片检测方法、装置和电子设备 | |
AU2021389718A1 (en) | Method, apparatus, and energy-storage air conditioning system for on-grid and off-grid dispatch | |
EP3208624A1 (en) | Fault detector for anti-parallel thyristors | |
JP7176384B2 (ja) | 蓄電システム及び、電流センサの異常判定方法 | |
CN108562818B (zh) | 一种ups的零线断路检测方法、装置及ups | |
JP3353658B2 (ja) | 静止形無効電力補償装置 | |
JP2011153913A (ja) | 電気機器おける漏洩電流測定装置及び測定方法 | |
CN103063978A (zh) | 一种短路检测方法及装置 | |
JP2001320882A (ja) | 電源装置と、インバータ装置および空気調和機 | |
CN107294108A (zh) | 一种具有故障电弧检测功能的有源电力滤波器及方法 | |
JP2015033163A (ja) | パワーコンディショナ | |
CN107147138B (zh) | 三相四线配电网补偿设备直流电容检测方法、装置及系统 | |
CN102608470B (zh) | 判断有源电力滤波器系统稳定性的方法及系统 | |
JP5036850B2 (ja) | 事故方向表示装置 | |
WO2023000297A1 (zh) | 不间断电源系统的母线电压控制方法、系统及相关组件 | |
JP5621210B2 (ja) | インバータの保護方法及び保護装置 | |
CN206878468U (zh) | 一种具有故障电弧检测功能的无功补偿装置 | |
WO2021186540A1 (ja) | 制御装置 | |
JP5188536B2 (ja) | 電源検査装置、電源検査方法、電源装置 | |
TWI794926B (zh) | 接地故障偵測裝置及其接地故障偵測方法 | |
CN218727918U (zh) | 断线检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19885914 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/05/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19885914 Country of ref document: EP Kind code of ref document: A1 |