[go: up one dir, main page]

WO2020087538A1 - 同步信号发送方法及装置 - Google Patents

同步信号发送方法及装置 Download PDF

Info

Publication number
WO2020087538A1
WO2020087538A1 PCT/CN2018/113822 CN2018113822W WO2020087538A1 WO 2020087538 A1 WO2020087538 A1 WO 2020087538A1 CN 2018113822 W CN2018113822 W CN 2018113822W WO 2020087538 A1 WO2020087538 A1 WO 2020087538A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal strength
configuration parameter
ssb
communication signal
Prior art date
Application number
PCT/CN2018/113822
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201880002470.8A priority Critical patent/CN109565648B/zh
Priority to PCT/CN2018/113822 priority patent/WO2020087538A1/zh
Priority to US17/290,984 priority patent/US12082130B2/en
Publication of WO2020087538A1 publication Critical patent/WO2020087538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to the field of communication technology, and in particular, to a method and device for sending a synchronization signal.
  • V2x Vehicle to Everything
  • 3GPP third-generation mobile communication partner
  • V2x communication supports direct link (SL, Sidelink) communication between in-vehicle devices and other devices.
  • the situation to be considered is that when the user equipment (UE) is located in the Global Navigation Satellite System (GNSS, Global Navigation Satellite System) signal and When there is no coverage of the base station signal, the UE needs to acquire synchronization of other UEs within the coverage of the GNSS signal and / or base station signal, that is, the UE within the coverage of the GNSS signal and / or base station signal passes
  • the direct link transmits synchronization signals, so that UEs in a place where GNSS signals and / or base station signals are not covered by the synchronization communication needs.
  • the synchronization technology of 5G V2X direct link communication follows the synchronization technology of 5G NR communication, which mainly considers the continuity of 5G V2X technology and 5G NR technology.
  • the synchronization signal is composed of multiple consecutive orthogonal frequency division multiplexing (OFDM, Orthogonal Frequency Division Multiplexing) symbols; in a cycle, the maximum number of simultaneous broadcast blocks (SSB, SS / PBCH Block)
  • OFDM Orthogonal Frequency Division Multiplexing
  • SSB simultaneous broadcast blocks
  • SS / PBCH Block the maximum number of simultaneous broadcast blocks
  • L can be 4, 8 or 64, and each SSB can correspond to a beam.
  • the beam may not be full, that is, the actual number of SSBs sent is less than L; the period of SSB is 5ms, 10ms, 20ms ... By 160ms; the base station generally chooses a configuration, such as the default configuration of the UE based on 20ms for initial access.
  • the related technology does not take into account the special requirements of the V2X service, resulting in poor synchronization and low utilization of wireless resources, which affects the user experience.
  • Embodiments of the present invention provide a method and device for sending a synchronization signal.
  • the technical solution is as follows:
  • a method for transmitting a synchronization signal is provided, which is applied to user equipment supporting direct-to-vehicle direct link communication.
  • the method includes:
  • the synchronization signal is sent.
  • the technical solution provided by the embodiments of the present invention may include the following beneficial effects:
  • the technical solution automatically determines the target configuration parameters for transmitting the synchronization signal by analyzing the signal strength of the received communication signal, thereby achieving coverage signal strength
  • Different scenarios provide differentiated synchronization signal transmission resources, which can improve the synchronization effect of user equipment in the weak coverage area, improve the utilization rate of wireless resources, and improve the user experience.
  • the target configuration parameters include any one of the following parameters or combinations:
  • the determining the target configuration parameter for sending the synchronization signal according to the signal strength of the communication signal includes:
  • the target configuration parameters include: the transmission direction of the transmit beam;
  • the determining the target configuration parameters for sending the synchronization signal according to the signal strength of the communication signal includes:
  • the weak coverage direction is determined as the transmission direction of the transmit beam.
  • the determining the target configuration parameter for sending the synchronization signal according to the signal strength of the communication signal includes:
  • the target configuration parameter corresponding to the signal strength of the communication signal is determined according to the preset correspondence between the signal strength and the configuration parameter.
  • the communication signal includes: a signal of a network side device of a wireless communication network, or a satellite positioning signal.
  • a synchronization signal sending apparatus including:
  • the measurement module is used to measure the signal strength of the received communication signal
  • a determining module configured to determine a target configuration parameter for sending a synchronization signal according to the signal strength of the communication signal
  • a sending module configured to send the synchronization signal using the target configuration parameter.
  • the target configuration parameters include any one of the following parameters or combinations:
  • the determination module includes:
  • An execution submodule is configured to perform any one of the following operations or combinations on the current configuration parameter to obtain the target configuration parameter when the signal strength of the communication signal is less than a preset signal strength threshold:
  • the target configuration parameters include: the transmission direction of the transmit beam;
  • the determination module includes:
  • a first determining submodule configured to determine the weak coverage direction of the communication signal according to the receiving direction of the communication signal when the signal strength of the communication signal is less than a preset signal strength threshold
  • the second determination submodule is used to determine the weak coverage direction as the transmission direction of the transmit beam.
  • the determining module determines the signal strength corresponding to the communication signal according to a preset correspondence between signal strength and configuration parameters Target configuration parameters.
  • the communication signal includes: a signal of a network side device of a wireless communication network, or a satellite positioning signal.
  • a synchronization signal sending apparatus including:
  • Memory for storing processor executable instructions
  • the processor is configured to:
  • the synchronization signal is sent.
  • a computer-readable storage medium on which computer instructions are stored, which when executed by a processor implements the steps of the method described in the first aspect above.
  • Fig. 1a is a flowchart of a method for sending a synchronization signal according to an exemplary embodiment.
  • FIG. 1b is a schematic diagram of the transmission direction of the transmission beam in the related art.
  • Fig. 1c is a schematic diagram showing a transmission direction of a transmission beam according to an exemplary embodiment.
  • Fig. 1d is a schematic diagram showing a transmission direction of a transmission beam according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a method for sending a synchronization signal according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for transmitting a synchronization signal according to an exemplary embodiment.
  • Fig. 4 is a block diagram of a synchronization signal sending device according to an exemplary embodiment.
  • Fig. 5 is a block diagram of a synchronization signal sending device according to an exemplary embodiment.
  • Fig. 6 is a block diagram of a synchronization signal sending device according to an exemplary embodiment.
  • Fig. 7 is a block diagram of a synchronization signal sending device according to an exemplary embodiment.
  • Fig. 8 is a block diagram of a synchronization signal sending device according to an exemplary embodiment.
  • An embodiment of the present invention provides a method for transmitting a synchronous signal, which is applied to user equipment supporting direct-to-vehicle direct link communication.
  • the method includes: measuring the signal strength of a received communication signal; determining the signal strength according to the signal strength of the communication signal Target configuration parameters for sending synchronization signals; use target configuration parameters to send synchronization signals.
  • the synchronization signal transmission method provided by the embodiment of the present invention automatically determines the target configuration parameters for transmitting the synchronization signal by analyzing the signal strength of the received communication signal, so as to provide differentiated coverage for different signal strength scenarios
  • Synchronization signal transmission resources can improve the synchronization effect of user equipment in the weak coverage area, meet the special needs of V2X services, such as directionality, cycle characteristics and repetitive requirements, etc., improve the utilization of wireless resources and improve the user experience.
  • user equipment may include in-vehicle devices, handheld devices, and roadside devices that support IoV direct link communication; handheld devices, for example, may include smartphones, tablet computers, and desktop computers. , Laptops or wearable devices (such as bracelets, smart glasses, etc.) and other electronic devices.
  • Fig. 1a is a flowchart of a method for transmitting a synchronization signal according to an exemplary embodiment; the method can be applied to user equipment supporting direct-to-vehicle direct link communication; as shown in Fig. 1a, the method includes the following steps 101 -103:
  • step 101 the signal strength of the received communication signal is measured.
  • the communication signal includes: a signal of a network side device of a wireless communication network, or a satellite positioning signal; and a network side device, for example, includes a base station, a relay station, or a wireless access point (AP).
  • the user equipment measures the signal strength of the received communication signal in real time.
  • step 102 the target configuration parameter for transmitting the synchronization signal is determined according to the signal strength of the communication signal.
  • the target configuration parameters may include any one of the following parameters or combinations: the number of repeated SSB transmissions in each SSB transmission cycle, the number of SSB transmissions in each SSB transmission cycle, the size of the SSB transmission cycle, or the transmission of the transmission beam direction.
  • the implementation manner of determining the target configuration parameter for transmitting the synchronization signal may include any one of the following ways or combinations:
  • Implementation method 1 Obtain the current configuration parameters used to send the synchronization signal; determine whether the signal strength of the communication signal is less than the preset signal strength threshold, which includes at least the following three situations:
  • Case 1 The communication signal coverage is normal: when the signal strength of the communication signal is not less than the preset signal strength threshold, continue to use the current configuration parameters to send the synchronization signal, and the process ends.
  • Operation 2 Increase the number of SSB transmissions in each SSB transmission cycle in the current configuration parameters
  • Operation 3 reduce the size of the SSB transmission cycle in the current configuration parameters
  • Operation 4 Determine the weak coverage direction of the communication signal according to the reception direction of the communication signal, and determine the weak coverage direction as the transmission direction of the transmission beam.
  • the transmission direction of the transmission beam determined in operation 4) may be determined as the transmission direction of the transmission beam corresponding to the added repetitively transmitted SSB in operation 1), to increase the direction of weak coverage of the communication signal.
  • the number of SSB retransmissions in an SSB transmission cycle increases the SSB transmission density and improves the synchronization effect of user equipment in weak coverage areas.
  • the number of SSB transmissions increases the transmission density of SSB and improves the synchronization effect of user equipment in the weak coverage area.
  • the SSB is transmitted only in the direction of weak coverage of the communication signal, saving wireless resources, and improving the synchronization effect of the user equipment in the weak coverage area.
  • Case 3 No communication signal coverage: The user equipment will continuously measure the signal strength of the communication signal. If the signal strength of the communication signal is detected to be weaker than the preset no signal threshold, the user equipment is determined to be in the area with no communication signal coverage At this time, any one of the operations 1) to 3) above is performed for the current configuration parameter to obtain the target configuration parameter. For example, reduce the size of the SSB transmission cycle in the current configuration parameter, increase the number of repeated SSB transmissions in each SSB transmission cycle in the current configuration parameter, and increase the number of SSB transmissions in each SSB transmission cycle in the current configuration parameter.
  • FIG. 1b is a schematic diagram of the transmission direction of the transmit beam in the related art.
  • the direction of the user equipment 12 facing away from the base station 11 that is, the direction of the dotted frame in FIG. 1b
  • the user equipment 13 is in a weak coverage area; and based on the related technology, the transmission directions of the transmit beam 121, the transmit beam 122, the transmit beam 123, and the transmit beam 124 in FIG.
  • the transmission directions of the transmit beam 121, the transmit beam 122, the transmit beam 123, and the transmit beam 124 in FIG.
  • FIG. 1c is a schematic diagram showing the transmission direction of the transmit beam according to an exemplary embodiment. Referring to FIG. 1c, it is assumed that the direction of the user equipment 12 facing away from the base station 11 (that is, the direction of the dotted frame in FIG.
  • the weak coverage direction is determined as the transmission directions of the transmission beam 125 and the transmission beam 126 corresponding to the SSBs added in each SSB transmission period, and is reduced The coverage of the transmit beam 123 and the transmit beam 124, thereby increasing the number of SSB transmissions in each SSB transmission cycle in the weak coverage direction of the base station, and improving the synchronization effect of the user equipment in the weak coverage area.
  • FIG. 1d is a schematic diagram showing the transmission direction of the transmit beam according to an exemplary embodiment. Referring to FIG. 1d, it is assumed that the direction of the user equipment 12 facing away from the base station 11 (that is, the direction of the dotted frame in FIG.
  • the weak coverage direction is determined as the transmission directions of the transmission beam 125 and the transmission beam 126 corresponding to the SSBs added in each SSB transmission period, and is reduced
  • the coverage of the transmission beam 123 and the transmission beam 124 can improve the synchronization effect of the user equipment in the weak coverage area, and does not send the SSB in directions other than the weak coverage direction of the communication signal, which can save wireless resources.
  • Implementation method 2 When the signal strength of the communication signal is less than the preset signal strength threshold, determine the target configuration parameter corresponding to the signal strength of the communication signal according to the preset correspondence between the signal strength and the configuration parameter. For example, multiple sets of configuration parameters are set in advance, and each set of configuration parameters is associated with a signal strength value or signal strength range, thereby setting the correspondence between signal strength and configuration parameters; when the signal strength of a communication signal is measured, query the signal The corresponding relationship between the strength and the configuration parameter determines the target configuration parameter corresponding to the signal strength of the communication signal.
  • step 103 using the target configuration parameters, a synchronization signal is sent.
  • the user equipment uses the target configuration parameter to send the synchronization signal.
  • the target configuration parameters for transmitting the synchronization signal are automatically determined, thereby providing differentiated synchronization for scenarios covering different signal strengths
  • Signal transmission resources can improve the synchronization effect of user equipment in the weak coverage area, increase the utilization rate of wireless resources, and improve the user experience.
  • Fig. 2 is a flowchart of a method for sending a synchronization signal according to an exemplary embodiment. As shown in Fig. 2, on the basis of the embodiment shown in Fig. 1a, the method for sending a synchronization signal according to the present invention may include the following steps 201-204:
  • step 201 the signal strength of the received communication signal is measured.
  • step 202 the current configuration parameters used to send the synchronization signal are obtained.
  • step 203 when the signal strength of the communication signal is less than the preset signal strength threshold, perform any one of the following operations or combinations on the current configuration parameter to obtain the target configuration parameter: increase the SSB in each SSB transmission cycle in the current configuration parameter The number of repeated transmissions; or, increase the number of SSB transmissions in each SSB transmission cycle in the current configuration parameter; or, reduce the size of the SSB transmission cycle in the current configuration parameter.
  • step 204 using the target configuration parameters, a synchronization signal is sent.
  • the SSB transmission cycle size in the parameters improves the synchronization effect of user equipment in the weak coverage area, improves the utilization rate of wireless resources, and improves the user experience.
  • Fig. 3 is a flowchart of a method for sending a synchronization signal according to an exemplary embodiment. As shown in Fig. 3, on the basis of the embodiment shown in Fig. 1a, the method for sending a synchronization signal according to the present invention may include the following steps 301-305:
  • step 301 the signal strength of the received communication signal is measured.
  • step 302 the current configuration parameters used to send the synchronization signal are obtained.
  • step 303 when the signal strength of the communication signal is less than the preset signal strength threshold, the number of SSB transmissions in each SSB transmission cycle in the current configuration parameter is increased to obtain the SSB transmission in each SSB transmission cycle in the target configuration parameter Number.
  • step 304 the weak coverage direction of the communication signal is determined according to the reception direction of the communication signal, and the weak coverage direction is determined as the transmission direction of the transmit beam corresponding to the above-mentioned added SSB in the target configuration parameter.
  • step 305 using the target configuration parameters, a synchronization signal is sent.
  • the synchronization effect of user equipment in the weak coverage area can be improved, and the utilization of wireless resources Rate and improve user experience.
  • the following is an embodiment of the device of the present invention, which can be used to execute the method embodiment of the present invention.
  • Fig. 4 is a block diagram of an apparatus for transmitting a synchronization signal according to an exemplary embodiment.
  • the apparatus may be implemented as part or all of user equipment through software, hardware, or a combination of the two.
  • the synchronization signal sending device includes: a measuring module 401, a determining module 402, and a sending module 403; where:
  • the measurement module 401 is configured to measure the signal strength of the received communication signal
  • the determination module 402 is configured to determine the target configuration parameter for sending the synchronization signal according to the signal strength of the communication signal;
  • the sending module 403 is configured to use the target configuration parameters to send a synchronization signal.
  • the target configuration parameters for transmitting the synchronization signal are automatically determined, thereby providing differentiated synchronization signals for scenarios covering different signal strengths
  • Sending resources can improve the synchronization effect of user equipment in the weak coverage area, increase the utilization rate of wireless resources, and improve the user experience.
  • the target configuration parameters include any one of the following parameters or combinations: the number of repeated SSB transmissions in each SSB transmission cycle, the number of SSB transmissions in each SSB transmission cycle, or the size of the SSB transmission cycle.
  • the synchronization signal sending apparatus shown in FIG. 4 may further include configuring the determination module 402 to include: an acquisition sub-module 501 and an execution sub-module 502, where:
  • the obtaining submodule 501 is configured to obtain the current configuration parameters used to send the synchronization signal
  • the execution submodule 502 is configured to perform any one of the following operations or combinations on the current configuration parameter to obtain the target configuration parameter when the signal strength of the communication signal is less than the preset signal strength threshold:
  • the target configuration parameter includes the transmission direction of the transmit beam; as shown in FIG. 6, the synchronization signal sending apparatus shown in FIG. 4 may further include configuring the determination module 402 to include: a first determination sub-module 601 and a first Two determining sub-module 602, in which:
  • the first determination submodule 601 is configured to determine the weak coverage direction of the communication signal according to the reception direction of the communication signal when the signal strength of the communication signal is less than the preset signal strength threshold;
  • the second determination submodule 602 is configured to determine the weak coverage direction as the transmission direction of the transmit beam.
  • the determination module determines a target configuration parameter corresponding to the signal strength of the communication signal according to a preset correspondence between the signal strength and the configuration parameter.
  • the communication signal includes: a signal of a network side device of a wireless communication network, or a satellite positioning signal.
  • a synchronization signal transmission apparatus including:
  • Memory for storing processor executable instructions
  • the processor is configured as:
  • the target configuration parameters include any one of the following parameters or combinations:
  • the number of repeated SSB transmissions in each SSB transmission cycle the number of SSB transmissions in each SSB transmission cycle, or the size of the SSB transmission cycle.
  • the above processor may be further configured to:
  • the target configuration parameters include: the transmission direction of the transmit beam;
  • the above processor may also be configured as:
  • the weak coverage direction of the communication signal is determined according to the receiving direction of the communication signal
  • the weak coverage direction is determined as the transmission direction of the transmit beam.
  • the above processor may be further configured to:
  • the target configuration parameter corresponding to the signal strength of the communication signal is determined according to the preset correspondence between the signal strength and the configuration parameter.
  • the communication signal includes: a signal of a network side device of a wireless communication network, or a satellite positioning signal.
  • Fig. 7 is a block diagram of a synchronization signal transmission device according to an exemplary embodiment; the synchronization signal transmission device 700 is suitable for user equipment supporting direct-to-vehicle communication; the synchronization signal transmission device 700 may include one or more of the following Components: processing component 702, memory 704, power component 706, multimedia component 708, audio component 710, input / output (I / O) interface 712, sensor component 714, and communication component 716.
  • the processing component 702 generally controls the overall operation of the synchronization signal transmitting apparatus 700, such as operations associated with display, telephone call, data communication, camera operation, and recording operation.
  • the processing component 702 may include one or more processors 720 to execute instructions to complete all or part of the steps in the above method.
  • the processing component 702 may include one or more modules to facilitate interaction between the processing component 702 and other components.
  • the processing component 702 may include a multimedia module to facilitate interaction between the multimedia component 708 and the processing component 702.
  • the memory 704 is configured to store various types of data to support the operation of the synchronization signal transmitting apparatus 700. Examples of these data include instructions for any application or method operating on the synchronization signal transmission device 700, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 704 may be implemented by any type of volatile or nonvolatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable and removable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable and removable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 706 provides power to various components of the synchronization signal transmission device 700.
  • the power supply component 706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the synchronization signal transmission device 700.
  • the multimedia component 708 includes a screen that provides an output interface between the synchronization signal transmission device 700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding action, but also detect the duration and pressure related to the touch or sliding operation.
  • the multimedia component 708 includes a front camera and / or a rear camera.
  • the front camera and / or the rear camera can receive external multimedia data.
  • Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 710 is configured to output and / or input audio signals.
  • the audio component 710 includes a microphone (MIC), and the microphone is configured to receive an external audio signal when the synchronization signal sending device 700 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 704 or sent via the communication component 716.
  • the audio component 710 further includes a speaker for outputting audio signals.
  • the I / O interface 712 provides an interface between the processing component 702 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, or a button. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 714 includes one or more sensors, which are used to provide various aspects of status evaluation for the synchronization signal transmission device 700.
  • the sensor component 714 can detect the on / off state of the synchronization signal transmission device 700, and the relative positioning of the components.
  • the components are the display and the keypad of the synchronization signal transmission device 700.
  • the position of one component of the synchronization signal transmission device 700 changes, the presence or absence of user contact with the synchronization signal transmission device 700, the orientation or acceleration / deceleration of the synchronization signal transmission device 700, and the temperature change of the synchronization signal transmission device 700.
  • the sensor assembly 714 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 may further include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 716 is configured to facilitate wired or wireless communication between the synchronization signal transmitting apparatus 700 and other devices.
  • the synchronization signal sending device 700 can access a wireless network based on a communication standard, such as WiFi, 2G / 3G / 4G / 5G, or a combination thereof.
  • the communication component 716 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 716 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the synchronization signal transmitting apparatus 700 may be used by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), Field programmable gate arrays (FPGA), controllers, microcontrollers, microprocessors or other electronic components are implemented to perform the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA Field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components are implemented to perform the above methods.
  • a non-transitory computer-readable storage medium including instructions, for example, a memory 704 including instructions, which can be executed by the processor 720 of the synchronization signal sending apparatus 700 to complete the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, or the like.
  • Fig. 8 is a block diagram of a synchronization signal sending device according to an exemplary embodiment.
  • the synchronization signal transmission device 800 may be provided as a server.
  • the synchronization signal sending apparatus 800 includes a processing component 802, which further includes one or more processors, and memory resources represented by the memory 803, for storing instructions executable by the processing component 802, such as application programs.
  • the application program stored in the memory 803 may include one or more modules each corresponding to a set of instructions.
  • the processing component 802 is configured to execute instructions to perform the above method.
  • the synchronization signal transmission device 800 may further include a power component 806 configured to perform power management of the synchronization signal transmission device 800, a wired or wireless network interface 805 configured to connect the synchronization signal transmission device 800 to the network, and an input output ( I / O) interface 808.
  • the synchronization signal transmission device 800 can operate an operating system based on the memory 803, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a non-transitory computer-readable storage medium When instructions in the storage medium are executed by the processor of the synchronization signal transmission device 700 or the synchronization signal transmission device 800, the synchronization signal transmission device 700 or the synchronization signal transmission device 800 can be executed as follows Synchronous signal transmission method.
  • the method is applied to user equipment supporting direct link communication of Internet of Vehicles. The method includes:
  • the target configuration parameters include any one of the following parameters or combinations:
  • the number of repeated SSB transmissions in each SSB transmission cycle the number of SSB transmissions in each SSB transmission cycle, or the size of the SSB transmission cycle.
  • determining the target configuration parameter for transmitting the synchronization signal according to the signal strength of the communication signal includes:
  • the target configuration parameters include: the transmission direction of the transmit beam;
  • determine the target configuration parameters for sending the synchronization signal including:
  • the weak coverage direction of the communication signal is determined according to the receiving direction of the communication signal
  • the weak coverage direction is determined as the transmission direction of the transmit beam.
  • determining the target configuration parameter for transmitting the synchronization signal according to the signal strength of the communication signal includes:
  • the target configuration parameter corresponding to the signal strength of the communication signal is determined according to the preset correspondence between the signal strength and the configuration parameter.
  • the communication signal includes: a signal of a network side device of a wireless communication network, or a satellite positioning signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明是关于一种同步信号发送方法及装置。该方法包括:测量接收到的通信信号的信号强度;根据通信信号的信号强度,确定用于发送同步信号的目标配置参数;使用目标配置参数,发送同步信号。该技术方案,通过对接收到的通信信号的信号强度进行分析,自动确定用于发送同步信号的目标配置参数,从而实现为覆盖信号强弱不同的场景提供差异化的同步信号发送资源,能够改善弱覆盖区域内用户设备的同步效果,提高无线资源的利用率,提高用户体验。

Description

同步信号发送方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种同步信号发送方法及装置。
背景技术
随着自动驾驶等技术的发展,利用5G新无线(NR,New Radio)技术支持车联网(V2x,Vehicle to Everything)通信服务和场景已经被第三代移动通信伙伴(3GPP)计划为Rel16的一项重要内容。V2x通信支持车载设备和其他设备之间的直连链路(SL,Sidelink)通信,同时要考虑的情况是,当用户设备(UE)位于全球导航卫星系统(GNSS,Global Navigation Satellite System)信号和基站信号都没有覆盖到的地方时,UE需要获取处于GNSS信号和/或基站信号的覆盖范围内的其他UE的同步,也就是说,处于GNSS信号和/或基站信号的覆盖范围内的UE通过直连链路发送同步信号,以便处于GNSS信号和/或基站信号未覆盖到地方的UE同步通信需要。
相关技术中,5G V2X直连链路通信的同步技术沿用5G NR通信的同步技术,这主要是考虑到5G V2X技术和5G NR技术的延续性。例如,在5G NR中,同步信号由多个连续正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号组成;在一个周期内,同步广播块(SSB,SS/PBCH Block)的数量最大值L根据频段不同,可以为4、8或64个,每个SSB可以对应一个波束,当然波束也可以不发满,即实际发送的SSB数量小于L;SSB的周期为5ms,10ms,20ms……到160ms;基站一般选一种配置,比如UE基于20ms为初始接入的默认配置。但是,相关技术并没有考虑到V2X业务的特殊需求,导致同步效果较差,并且无线资源的利用率低,影响用户体验。
发明内容
本发明实施例提供一种同步信号发送方法及装置。所述技术方案如下:
根据本发明实施例的第一方面,提供一种同步信号发送方法,应用于支持车联网直连链路通信的用户设备,所述方法包括:
测量接收到的通信信号的信号强度;
根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数;
使用所述目标配置参数,发送所述同步信号。
本发明的实施例提供的技术方案可以包括以下有益效果:该技术方案通过对接收到的通信信号的信号强度进行分析,自动确定用于发送同步信号的目标配置参数,从而实现为覆盖信号强弱不同的场景提供差异化的同步信号发送资源,能够改善弱覆盖区域内用户设备的同步效果,提高无线资源的利用率,提高用户体验。
在一个实施例中,所述目标配置参数包括以下任一种参数或组合:
每个同步广播块SSB发送周期内的SSB重复发送次数、每个SSB发送周期内的SSB发送 个数、或者SSB发送周期大小。
在一个实施例中,所述根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数,包括:
获取用于发送同步信号的当前配置参数;
当所述通信信号的信号强度小于预设信号强度阈值时,针对所述当前配置参数执行以下任一种操作或组合以得到所述目标配置参数:
增加所述当前配置参数中每个SSB发送周期内的SSB重复发送次数;
增加所述当前配置参数中每个SSB发送周期内的SSB发送个数;
减小所述当前配置参数中SSB发送周期大小。
在一个实施例中,所述目标配置参数包括:发射波束的发送方向;
所述根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数,包括:
当所述通信信号的信号强度小于预设信号强度阈值时,根据所述通信信号的接收方向,确定所述通信信号的弱覆盖方向;
将所述弱覆盖方向确定为所述发射波束的发送方向。
在一个实施例中,所述根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数,包括:
当所述通信信号的信号强度小于预设信号强度阈值时,根据预先设定的信号强度与配置参数的对应关系,确定与所述通信信号的信号强度对应的目标配置参数。
在一个实施例中,所述通信信号包括:无线通信网络的网络侧设备的信号、或卫星定位信号。
根据本发明实施例的第二方面,提供一种同步信号发送装置,包括:
测量模块,用于测量接收到的通信信号的信号强度;
确定模块,用于根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数;
发送模块,用于使用所述目标配置参数,发送所述同步信号。
在一个实施例中,所述目标配置参数包括以下任一种参数或组合:
每个同步广播块SSB发送周期内的SSB重复发送次数、每个SSB发送周期内的SSB发送个数、或者SSB发送周期大小。
在一个实施例中,所述确定模块,包括:
获取子模块,用于获取用于发送同步信号的当前配置参数;
执行子模块,用于当所述通信信号的信号强度小于预设信号强度阈值时,针对所述当前配置参数执行以下任一种操作或组合以得到所述目标配置参数:
增加所述当前配置参数中每个SSB发送周期内的SSB重复发送次数;
增加所述当前配置参数中每个SSB发送周期内的SSB发送个数;
减小所述当前配置参数中SSB发送周期大小。
在一个实施例中,所述目标配置参数包括:发射波束的发送方向;
所述确定模块,包括:
第一确定子模块,用于当所述通信信号的信号强度小于预设信号强度阈值时,根据所述通信信号的接收方向,确定所述通信信号的弱覆盖方向;
第二确定子模块,用于将所述弱覆盖方向确定为所述发射波束的发送方向。
在一个实施例中,所述确定模块当所述通信信号的信号强度小于预设信号强度阈值时,根据预先设定的信号强度与配置参数的对应关系,确定与所述通信信号的信号强度对应的目标配置参数。
在一个实施例中,所述通信信号包括:无线通信网络的网络侧设备的信号、或卫星定位信号。
根据本发明实施例的第三方面,提供一种同步信号发送装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
测量接收到的通信信号的信号强度;
根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数;
使用所述目标配置参数,发送所述同步信号。
根据本发明实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第一方面所述方法的步骤。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1a是根据一示例性实施例示出的一种同步信号发送方法的流程图。
图1b是相关技术中发射波束的发送方向的示意图。
图1c是根据一示例性实施例示出的发射波束的发送方向的示意图。
图1d是根据一示例性实施例示出的发射波束的发送方向的示意图。
图2是根据一示例性实施例示出的一种同步信号发送方法的流程图。
图3是根据一示例性实施例示出的一种同步信号发送方法的流程图。
图4是根据一示例性实施例示出的一种同步信号发送装置的框图。
图5是根据一示例性实施例示出的一种同步信号发送装置的框图。
图6是根据一示例性实施例示出的一种同步信号发送装置的框图。
图7是根据一示例性实施例示出的一种同步信号发送装置的框图。
图8是根据一示例性实施例示出的一种同步信号发送装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本发明实施例提供了一种同步信号发送方法,应用于支持车联网直连链路通信的用户设备,方法包括:测量接收到的通信信号的信号强度;根据通信信号的信号强度,确定用于发送同步信号的目标配置参数;使用目标配置参数,发送同步信号。本发明实施例提供的同步信号发送方法,通过对接收到的通信信号的信号强度进行分析,自动确定用于发送同步信号的目标配置参数,从而实现为覆盖信号强弱不同的场景提供差异化的同步信号发送资源,能够改善弱覆盖区域内用户设备的同步效果,满足V2X业务的特殊需求,比如方向性,周期特点和重复需求等,提高无线资源的利用率,提高用户体验。需要指出的是,本公开实施例中,用户设备,例如可以包括支持车联网直连链路通信的车载设备、手持设备及路边设备;手持设备,例如可以包括智能手机、平板电脑、台式机、笔记本电脑或穿戴式设备(如手环、智能眼镜等)等电子设备。
基于上述分析,提出以下各具体实施例。
图1a是根据一示例性实施例示出的一种同步信号发送方法的流程图;该方法可以应用于支持车联网直连链路通信的用户设备;如图1a所示,该方法包括以下步骤101-103:
在步骤101中,测量接收到的通信信号的信号强度。
示例的,通信信号包括:无线通信网络的网络侧设备的信号、或卫星定位信号;网络侧设备,例如包括基站、中继站或无线接入点(AP)。用户设备实时测量接收到的通信信号的信号强度。
在步骤102中,根据通信信号的信号强度,确定用于发送同步信号的目标配置参数。
示例的,目标配置参数可以包括以下任一种参数或组合:每个SSB发送周期内的SSB重复发送次数、每个SSB发送周期内的SSB发送个数、SSB发送周期大小、或者发射波束的发送方向。
示例的,根据通信信号的信号强度,确定用于发送同步信号的目标配置参数的实现方式可以包括以下任意一种方式或组合:
实现方式1、获取用于发送同步信号的当前配置参数;判断通信信号的信号强度是否小于预设信号强度阈值,这至少包括以下三种情况:
情况1、通信信号覆盖正常:当通信信号的信号强度不小于预设信号强度阈值时,继续使用当前配置参数发送同步信号,流程结束。
情况2、弱覆盖:当通信信号的信号强度小于预设信号强度阈值时,判定用户设备处于通信信号的弱覆盖区域,此时针对当前配置参数执行以下操作1)至操作4)中的任一种操作或组合以得到目标配置参数:
操作1)、增加当前配置参数中每个SSB发送周期内的SSB重复发送次数;
操作2)、增加当前配置参数中每个SSB发送周期内的SSB发送个数;
操作3)、减小当前配置参数中SSB发送周期大小;
操作4)、根据通信信号的接收方向确定通信信号的弱覆盖方向,将弱覆盖方向确定为发射波束的发送方向。
可选的,可以将操作4)所确定的发射波束的发送方向,确定为操作1)所增加的重复发送的SSB所对应的发射波束的发送方向,实现在通信信号的弱覆盖方向上增加每个SSB发送周期内的SSB重复发送次数,加大SSB的发送密度,改善弱覆盖区域内用户设备的同步效果。
也可以将操作4)所确定的发射波束的发送方向,确定为操作2)所增加的SSB所对应的发射波束的发送方向,实现在通信信号的弱覆盖方向上增加每个SSB发送周期内的SSB发送个数,加大SSB的发送密度,改善弱覆盖区域内用户设备的同步效果。
还可以将操作4)所确定的发射波束的发送方向,确定为操作2)所增加的SSB所对应的发射波束的发送方向,并且不在除了通信信号的弱覆盖方向以外的其他方向上发送SSB,实现只在通信信号的弱覆盖方向上发送SSB,节省无线资源,改善弱覆盖区域内用户设备的同步效果。
情况3、无通信信号覆盖:用户设备会持续不间断测量通信信号的信号强度,若检测到通信信号的信号强度变弱至小于预设无信号阈值时,则判定用户设备处于无通信信号覆盖区域,此时针对当前配置参数执行上述操作1)至操作3)中的任一种操作或组合以得到目标配置参数。例如,减小当前配置参数中SSB发送周期大小,增加当前配置参数中每个SSB发送周期内的SSB重复发送次数,增加当前配置参数中每个SSB发送周期内的SSB发送个数等。
举例说明,图1b是相关技术中发射波束的发送方向的示意图,参见图1b,假设用户设备12背向基站11的方向(即图1b中的虚线框所在方向)为基站11的弱覆盖方向,且用户设备13处于弱覆盖区域;而基于相关技术,图1b中发射波束121、发射波束122、发射波束123及发射波束124的发送方向是以用户设备12为中心分别向四周发送的方向,无法保证弱覆盖区域内的用户设备13的同步效果,存在无线资源浪费的问题。
图1c是根据一示例性实施例示出的发射波束的发送方向的示意图,参见图1c,假设用户设备12背向基站11的方向(即图1c中的虚线框所在方向)为基站11的弱覆盖方向,且用户设备13处于弱覆盖区域;根据上述操作4),将弱覆盖方向确定为每个SSB发送周期内所增加发送的SSB所对应的发射波束125及发射波束126的发送方向,并缩小发射波束123及发射波束124的覆盖范围,从而实现在基站的弱覆盖方向上增加每个SSB发送周期内的SSB发送个数,改善弱覆盖区域内用户设备的同步效果。
图1d是根据一示例性实施例示出的发射波束的发送方向的示意图,参见图1d,假设用户设备12背向基站11的方向(即图1d中的虚线框所在方向)为基站11的弱覆盖方向,且用户设备13处于弱覆盖区域;根据上述操作4),将弱覆盖方向确定为每个SSB发送周期内所增加发送的SSB所对应的发射波束125及发射波束126的发送方向,并缩小发射波束123及发射波束124的覆盖范围,可以改善弱覆盖区域内用户设备的同步效果,并且不在除了通 信信号的弱覆盖方向以外的其他方向上发送SSB,能够节省无线资源。
实现方式2、当通信信号的信号强度小于预设信号强度阈值时,根据预先设定的信号强度与配置参数的对应关系,确定与通信信号的信号强度对应的目标配置参数。例如,预先设置多套配置参数,并为每套配置参数关联一个信号强度值或信号强度范围,从而设定信号强度与配置参数的对应关系;当测量到通信信号的信号强度时,通过查询信号强度与配置参数的对应关系,确定与通信信号的信号强度对应的目标配置参数。
在步骤103中,使用目标配置参数,发送同步信号。
示例的,用户设备在确定用于发送同步信号的目标配置参数之后,使用目标配置参数,发送同步信号。
采用本发明实施例提供的技术方案,通过对接收到的通信信号的信号强度进行分析,自动确定用于发送同步信号的目标配置参数,从而实现为覆盖信号强弱不同的场景提供差异化的同步信号发送资源,能够改善弱覆盖区域内用户设备的同步效果,提高无线资源的利用率,提高用户体验。
图2是根据一示例性实施例示出的一种同步信号发送方法的流程图,如图2所示,在图1a所示实施例的基础上,本发明涉及的同步信号发送方法可以包括以下步骤201-204:
在步骤201中,测量接收到的通信信号的信号强度。
在步骤202中,获取用于发送同步信号的当前配置参数。
在步骤203中,当通信信号的信号强度小于预设信号强度阈值时,针对当前配置参数执行以下任一种操作或组合以得到目标配置参数:增加当前配置参数中每个SSB发送周期内的SSB重复发送次数;或者,增加当前配置参数中每个SSB发送周期内的SSB发送个数;或者,减小当前配置参数中SSB发送周期大小。
在步骤204中,使用目标配置参数,发送同步信号。
采用本发明实施例提供的技术方案中,通过增加当前配置参数中每个SSB发送周期内的SSB重复发送次数、增加当前配置参数中每个SSB发送周期内的SSB发送个数及减小当前配置参数中SSB发送周期大小的方式,改善弱覆盖区域内用户设备的同步效果,提高无线资源的利用率,提高用户体验。
图3是根据一示例性实施例示出的一种同步信号发送方法的流程图,如图3所示,在图1a所示实施例的基础上,本发明涉及的同步信号发送方法可以包括以下步骤301-305:
在步骤301中,测量接收到的通信信号的信号强度。
在步骤302中,获取用于发送同步信号的当前配置参数。
在步骤303中,当通信信号的信号强度小于预设信号强度阈值时,增加当前配置参数中每个SSB发送周期内的SSB发送个数,得到目标配置参数中每个SSB发送周期内的SSB发送个数。
在步骤304中,根据通信信号的接收方向确定通信信号的弱覆盖方向,将弱覆盖方向确定为目标配置参数中上述所增加的SSB所对应的发射波束的发送方向。
在步骤305中,使用目标配置参数,发送同步信号。
采用本发明实施例提供的技术方案中,通过在通信信号的弱覆盖方向上增加每个SSB发送周期内的SSB发送个数,能够改善弱覆盖区域内用户设备的同步效果,提高无线资源的利用率,提高用户体验。
下述为本发明装置实施例,可以用于执行本发明方法实施例。
图4是根据一示例性实施例示出的一种同步信号发送装置的框图,该装置可以通过软件、硬件或者两者的结合实现成为用户设备的部分或者全部。参照图4,该同步信号发送装置包括:测量模块401、确定模块402及发送模块403;其中:
测量模块401被配置为测量接收到的通信信号的信号强度;
确定模块402被配置为根据通信信号的信号强度,确定用于发送同步信号的目标配置参数;
发送模块403被配置为使用目标配置参数,发送同步信号。
采用本发明实施例提供的装置,通过对接收到的通信信号的信号强度进行分析,自动确定用于发送同步信号的目标配置参数,从而实现为覆盖信号强弱不同的场景提供差异化的同步信号发送资源,能够改善弱覆盖区域内用户设备的同步效果,提高无线资源的利用率,提高用户体验。
在一个实施例中,目标配置参数包括以下任一种参数或组合:每个SSB发送周期内的SSB重复发送次数、每个SSB发送周期内的SSB发送个数、或者SSB发送周期大小。
在一个实施例中,如图5所示,图4示出的同步信号发送装置还可以包括把确定模块402配置成包括:获取子模块501及执行子模块502,其中:
获取子模块501被配置为获取用于发送同步信号的当前配置参数;
执行子模块502被配置为当通信信号的信号强度小于预设信号强度阈值时,针对当前配置参数执行以下任一种操作或组合以得到目标配置参数:
增加当前配置参数中每个SSB发送周期内的SSB重复发送次数;
增加当前配置参数中每个SSB发送周期内的SSB发送个数;
减小当前配置参数中SSB发送周期大小。
在一个实施例中,目标配置参数包括发射波束的发送方向;如图6所示,图4示出的同步信号发送装置还可以包括把确定模块402配置成包括:第一确定子模块601及第二确定子模块602,其中:
第一确定子模块601被配置为当通信信号的信号强度小于预设信号强度阈值时,根据通信信号的接收方向,确定通信信号的弱覆盖方向;
第二确定子模块602被配置为将弱覆盖方向确定为发射波束的发送方向。
在一个实施例中,确定模块当通信信号的信号强度小于预设信号强度阈值时,根据预先设定的信号强度与配置参数的对应关系,确定与通信信号的信号强度对应的目标配置参数。
在一个实施例中,通信信号包括:无线通信网络的网络侧设备的信号、或卫星定位信号。
在示例性实施例中,提供一种同步信号发送装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
测量接收到的通信信号的信号强度;
根据通信信号的信号强度,确定用于发送同步信号的目标配置参数;
使用目标配置参数,发送同步信号。
在一个实施例中,目标配置参数包括以下任一种参数或组合:
每个SSB发送周期内的SSB重复发送次数、每个SSB发送周期内的SSB发送个数、或者SSB发送周期大小。
在一个实施例中,上述处理器还可被配置为:
获取用于发送同步信号的当前配置参数;
当通信信号的信号强度小于预设信号强度阈值时,针对当前配置参数执行以下任一种操作或组合以得到目标配置参数:
增加当前配置参数中每个SSB发送周期内的SSB重复发送次数;
增加当前配置参数中每个SSB发送周期内的SSB发送个数;
减小当前配置参数中SSB发送周期大小。
在一个实施例中,目标配置参数包括:发射波束的发送方向;
上述处理器还可被配置为:
当通信信号的信号强度小于预设信号强度阈值时,根据通信信号的接收方向,确定通信信号的弱覆盖方向;
将弱覆盖方向确定为发射波束的发送方向。
在一个实施例中,上述处理器还可被配置为:
当通信信号的信号强度小于预设信号强度阈值时,根据预先设定的信号强度与配置参数的对应关系,确定与通信信号的信号强度对应的目标配置参数。
在一个实施例中,通信信号包括:无线通信网络的网络侧设备的信号、或卫星定位信号。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种同步信号发送装置的框图;同步信号发送装置700适用于支持车联网直连链路通信的用户设备;同步信号发送装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制同步信号发送装置700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件702可以包括一个或多 个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在同步信号发送装置700的操作。这些数据的示例包括用于在同步信号发送装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为同步信号发送装置700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为同步信号发送装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在同步信号发送装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当同步信号发送装置700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当同步信号发送装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为同步信号发送装置700提供各个方面的状态评估。例如,传感器组件714可以检测到同步信号发送装置700的打开/关闭状态,组件的相对定位,例如组件为同步信号发送装置700的显示器和小键盘,传感器组件714还可以检测同步信号发送装置700或同步信号发送装置700一个组件的位置改变,用户与同步信号发送装置700接触的存在或不存在,同步信号发送装置700方位或加速/减速和同步信号发送装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器, 陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于同步信号发送装置700和其他设备之间有线或无线方式的通信。同步信号发送装置700可以接入基于通信标准的无线网络,如WiFi,2G/3G/4G/5G,或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,同步信号发送装置700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子组件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由同步信号发送装置700的处理器720执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图8是根据一示例性实施例示出的一种同步信号发送装置的框图。例如,同步信号发送装置800可以被提供为一服务器。同步信号发送装置800包括处理组件802,其进一步包括一个或多个处理器,以及由存储器803所代表的存储器资源,用于存储可由处理组件802的执行的指令,例如应用程序。存储器803中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件802被配置为执行指令,以执行上述方法。
同步信号发送装置800还可以包括一个电源组件806被配置为执行同步信号发送装置800的电源管理,一个有线或无线网络接口805被配置为将同步信号发送装置800连接到网络,和一个输入输出(I/O)接口808。同步信号发送装置800可以操作基于存储在存储器803的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
一种非临时性计算机可读存储介质,当存储介质中的指令由同步信号发送装置700或同步信号发送装置800的处理器执行时,使得同步信号发送装置700或同步信号发送装置800能够执行如下同步信号发送方法,该方法应用于支持车联网直连链路通信的用户设备,方法包括:
测量接收到的通信信号的信号强度;
根据通信信号的信号强度,确定用于发送同步信号的目标配置参数;
使用目标配置参数,发送同步信号。
在一个实施例中,目标配置参数包括以下任一种参数或组合:
每个SSB发送周期内的SSB重复发送次数、每个SSB发送周期内的SSB发送个数、或者SSB发送周期大小。
在一个实施例中,根据通信信号的信号强度,确定用于发送同步信号的目标配置参数,包括:
获取用于发送同步信号的当前配置参数;
当通信信号的信号强度小于预设信号强度阈值时,针对当前配置参数执行以下任一种操作或组合以得到目标配置参数:
增加当前配置参数中每个SSB发送周期内的SSB重复发送次数;
增加当前配置参数中每个SSB发送周期内的SSB发送个数;
减小当前配置参数中SSB发送周期大小。
在一个实施例中,目标配置参数包括:发射波束的发送方向;
根据通信信号的信号强度,确定用于发送同步信号的目标配置参数,包括:
当通信信号的信号强度小于预设信号强度阈值时,根据通信信号的接收方向,确定通信信号的弱覆盖方向;
将弱覆盖方向确定为发射波束的发送方向。
在一个实施例中,根据通信信号的信号强度,确定用于发送同步信号的目标配置参数,包括:
当通信信号的信号强度小于预设信号强度阈值时,根据预先设定的信号强度与配置参数的对应关系,确定与通信信号的信号强度对应的目标配置参数。
在一个实施例中,通信信号包括:无线通信网络的网络侧设备的信号、或卫星定位信号。
本领域技术人员在考虑说明书及实践这里的公开后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种同步信号发送方法,应用于支持车联网直连链路通信的用户设备,其特征在于,所述方法包括:
    测量接收到的通信信号的信号强度;
    根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数;
    使用所述目标配置参数,发送所述同步信号。
  2. 如权利要求1所述的方法,其特征在于,所述目标配置参数包括以下任一种参数或组合:
    每个同步广播块SSB发送周期内的SSB重复发送次数、每个SSB发送周期内的SSB发送个数、或者SSB发送周期大小。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数,包括:
    获取用于发送同步信号的当前配置参数;
    当所述通信信号的信号强度小于预设信号强度阈值时,针对所述当前配置参数执行以下任一种操作或组合以得到所述目标配置参数:
    增加所述当前配置参数中每个SSB发送周期内的SSB重复发送次数;
    增加所述当前配置参数中每个SSB发送周期内的SSB发送个数;
    减小所述当前配置参数中SSB发送周期大小。
  4. 如权利要求1所述的方法,其特征在于,所述目标配置参数包括:发射波束的发送方向;
    所述根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数,包括:
    当所述通信信号的信号强度小于预设信号强度阈值时,根据所述通信信号的接收方向,确定所述通信信号的弱覆盖方向;
    将所述弱覆盖方向确定为所述发射波束的发送方向。
  5. 如权利要求1所述的方法,其特征在于,所述根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数,包括:
    当所述通信信号的信号强度小于预设信号强度阈值时,根据预先设定的信号强度与配置参数的对应关系,确定与所述通信信号的信号强度对应的目标配置参数。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述通信信号包括:无线通信网络的网络侧设备的信号、或卫星定位信号。
  7. 一种同步信号发送装置,其特征在于,包括:
    测量模块,用于测量接收到的通信信号的信号强度;
    确定模块,用于根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数;
    发送模块,用于使用所述目标配置参数,发送所述同步信号。
  8. 如权利要求7所述的装置,其特征在于,所述目标配置参数包括以下任一种参数或组合:
    每个同步广播块SSB发送周期内的SSB重复发送次数、每个SSB发送周期内的SSB发送个数、或者SSB发送周期大小。
  9. 如权利要求8所述的装置,其特征在于,所述确定模块,包括:
    获取子模块,用于获取用于发送同步信号的当前配置参数;
    执行子模块,用于当所述通信信号的信号强度小于预设信号强度阈值时,针对所述当前配置参数执行以下任一种操作或组合以得到所述目标配置参数:
    增加所述当前配置参数中每个SSB发送周期内的SSB重复发送次数;
    增加所述当前配置参数中每个SSB发送周期内的SSB发送个数;
    减小所述当前配置参数中SSB发送周期大小。
  10. 如权利要求7所述的装置,其特征在于,所述目标配置参数包括:发射波束的发送方向;
    所述确定模块,包括:
    第一确定子模块,用于当所述通信信号的信号强度小于预设信号强度阈值时,根据所述通信信号的接收方向,确定所述通信信号的弱覆盖方向;
    第二确定子模块,用于将所述弱覆盖方向确定为所述发射波束的发送方向。
  11. 如权利要求7所述的装置,其特征在于,所述确定模块当所述通信信号的信号强度小于预设信号强度阈值时,根据预先设定的信号强度与配置参数的对应关系,确定与所述通信信号的信号强度对应的目标配置参数。
  12. 如权利要求7至11中任一项所述的装置,其特征在于,所述通信信号包括:无线通信网络的网络侧设备的信号、或卫星定位信号。
  13. 一种同步信号发送装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    测量接收到的通信信号的信号强度;
    根据所述通信信号的信号强度,确定用于发送同步信号的目标配置参数;
    使用所述目标配置参数,发送所述同步信号。
  14. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1-6中任一项所述方法的步骤。
PCT/CN2018/113822 2018-11-02 2018-11-02 同步信号发送方法及装置 WO2020087538A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880002470.8A CN109565648B (zh) 2018-11-02 2018-11-02 同步信号发送方法及装置
PCT/CN2018/113822 WO2020087538A1 (zh) 2018-11-02 2018-11-02 同步信号发送方法及装置
US17/290,984 US12082130B2 (en) 2018-11-02 2018-11-02 Method and apparatus for sending synchronization signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113822 WO2020087538A1 (zh) 2018-11-02 2018-11-02 同步信号发送方法及装置

Publications (1)

Publication Number Publication Date
WO2020087538A1 true WO2020087538A1 (zh) 2020-05-07

Family

ID=65872613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113822 WO2020087538A1 (zh) 2018-11-02 2018-11-02 同步信号发送方法及装置

Country Status (3)

Country Link
US (1) US12082130B2 (zh)
CN (1) CN109565648B (zh)
WO (1) WO2020087538A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113647136A (zh) * 2019-04-04 2021-11-12 Oppo广东移动通信有限公司 接收信息、发送信息的方法和设备
WO2021016940A1 (zh) * 2019-07-31 2021-02-04 北京小米移动软件有限公司 V2x通信的同步信号配置方法、装置及存储介质
KR102510753B1 (ko) * 2019-08-15 2023-03-16 엘지전자 주식회사 Nr v2x에서 s-ssb를 전송하는 방법 및 장치
CN112584537B (zh) * 2019-09-30 2023-08-01 中国移动通信有限公司研究院 Prach资源的配置方法及设备
CN110719625B (zh) * 2019-10-18 2024-02-02 海能达通信股份有限公司 一种ssb的发送方法及装置、基站、系统
EP4210356A4 (en) * 2020-09-03 2024-05-22 Beijing Xiaomi Mobile Software Co., Ltd. DISTANCE MEASUREMENT METHOD, COMMUNICATION NODE, COMMUNICATION DEVICE AND STORAGE MEDIUM
CN114390534B (zh) * 2020-10-16 2024-03-12 中国移动通信集团设计院有限公司 波束模式确定方法、装置、电子设备及存储介质
US20230254786A1 (en) * 2022-02-09 2023-08-10 Qualcomm Incorporated Method and apparatus for c-v2x synchronization
WO2024234149A1 (en) * 2023-05-12 2024-11-21 Mediatek Singapore Pte. Ltd. Methods for synchronization signal transmission on unlicensed spectrum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602194A (zh) * 2013-10-31 2015-05-06 国际商业机器公司 车联网中的数据传输方法及设备
CN104735765A (zh) * 2015-03-06 2015-06-24 上海无线通信研究中心 基于连接概率的车联网基站功率控制方法及车联网基站

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924830B1 (ko) * 2012-06-19 2019-02-27 삼성전자주식회사 무선 통신 네트워크에서 단말의 동기화 방법 및 장치
CN104812029A (zh) * 2014-01-24 2015-07-29 北京三星通信技术研究有限公司 Lte系统中的功率控制方法及用户设备ue
KR102560675B1 (ko) * 2014-09-02 2023-07-28 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 동기 신호 전송 방법 및 장치
EP3322234B1 (en) * 2015-07-08 2020-03-18 LG Electronics Inc. Method and device for transmitting/receiving sync signal of device-to-device communication terminal in wireless communication system
RU2690023C1 (ru) * 2015-08-10 2019-05-30 Хуавэй Текнолоджиз Ко., Лтд. Способ синхронизации d2d, пользовательское оборудование и обслуживающая сота
KR102147713B1 (ko) 2015-09-24 2020-08-25 후아웨이 테크놀러지 컴퍼니 리미티드 동기화 방법, 사용자 기기 및 기지국
US10517055B2 (en) * 2015-11-06 2019-12-24 Sony Corporation Communication device and communication method
CN106998575B (zh) * 2016-01-22 2020-09-29 株式会社Kt 用于执行v2x通信的用户设备的移动性的控制方法及其装置
CN108476484A (zh) * 2016-02-04 2018-08-31 株式会社Ntt都科摩 用户装置、同步信号发送方法
US20170289870A1 (en) * 2016-03-31 2017-10-05 Futurewei Technologies, Inc. System and Method for Supporting Synchronization in Sidelink Communications
KR102467752B1 (ko) * 2016-04-01 2022-11-16 주식회사 아이티엘 V2x 통신에서 동기화 방법 및 장치
CN107770781B (zh) * 2016-08-15 2021-08-27 华为技术有限公司 一种d2d同步信号发送方法及装置
WO2018062850A1 (ko) * 2016-09-27 2018-04-05 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신 단말의 동기 신호 송수신 방법 및 장치
EP3614575B1 (en) * 2017-05-12 2021-09-22 Huawei Technologies Co., Ltd. Method and apparatus for determining broadcast beam weight in wireless communication system
WO2020037688A1 (en) * 2018-08-24 2020-02-27 Nec Corporation A method, device and computer readable media for sidelink configuration transmission and reception
EP3855773B1 (en) * 2018-09-20 2023-08-09 Beijing Xiaomi Mobile Software Co., Ltd. Vehicle-to-everything synchronization method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602194A (zh) * 2013-10-31 2015-05-06 国际商业机器公司 车联网中的数据传输方法及设备
CN104735765A (zh) * 2015-03-06 2015-06-24 上海无线通信研究中心 基于连接概率的车联网基站功率控制方法及车联网基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on SS Periodicity", 3GPP DRAFT; R1-1702436, 17 February 2017 (2017-02-17), Athens, Greece, pages 1 - 5, XP051221296 *
SONY: "NR Synchronization Signal Burst Set Periodicity", 3GPP DRAFT; R1-1700666, 20 January 2017 (2017-01-20), Spokane, USA, pages 1 - 3, XP051202559 *

Also Published As

Publication number Publication date
CN109565648B (zh) 2022-01-18
US12082130B2 (en) 2024-09-03
US20220124646A1 (en) 2022-04-21
CN109565648A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2020087538A1 (zh) 同步信号发送方法及装置
US20210243694A1 (en) Channel monitoring method and device
US12052732B2 (en) Parameter set acquisition method and device
WO2020163985A1 (zh) 信道监听方法及装置
WO2019183854A1 (zh) 寻呼同步指示方法及装置、寻呼同步方法及装置和基站
US20230413234A1 (en) Method and device for resource selection, and storage medium
US11284398B2 (en) Communication link configuration method and device
US20200186238A1 (en) Unmanned aerial vehicle control method and device, unmanned aerial vehicle and remote control device
WO2022016468A1 (zh) 定位测量方法、定位测量装置及存储介质
WO2018086067A1 (zh) 通信方法及装置
WO2020132874A1 (zh) 数据传输方法及装置
CN109314845B (zh) 车联网同步方法、装置以及计算机可读存储介质
US11956755B2 (en) Method and apparatus for transmitting paging signaling
WO2020191633A1 (zh) 数据传输方法及装置
US11218940B2 (en) Cell reselection method and device, and storage medium
US11304067B2 (en) Methods and devices for reporting and determining optimal beam, user equipment, and base station
US20240125917A1 (en) Ranging method and apparatus, and user equipment and storage medium
US11496281B2 (en) Method and device for indicating transmission direction
WO2022016465A1 (zh) 定位测量方法、定位测量装置及存储介质
WO2020164052A1 (zh) 资源确定方法及装置
WO2018112751A1 (zh) 系统信息的传输方法及装置
US12096466B2 (en) Method and device for determining PUCCH to be transmitted
US20230422291A1 (en) Method for wireless transmission, communication device and non-transitory computer storage medium
WO2020191676A1 (zh) 信道指示方法及装置
WO2020097904A1 (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938701

Country of ref document: EP

Kind code of ref document: A1