WO2020084867A1 - Concentration sensor - Google Patents
Concentration sensor Download PDFInfo
- Publication number
- WO2020084867A1 WO2020084867A1 PCT/JP2019/030928 JP2019030928W WO2020084867A1 WO 2020084867 A1 WO2020084867 A1 WO 2020084867A1 JP 2019030928 W JP2019030928 W JP 2019030928W WO 2020084867 A1 WO2020084867 A1 WO 2020084867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- lens
- concave
- measurement light
- light
- Prior art date
Links
- 238000005259 measurement Methods 0.000 claims abstract description 80
- 239000012530 fluid Substances 0.000 claims abstract description 54
- 230000007246 mechanism Effects 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 6
- 238000009434 installation Methods 0.000 abstract description 3
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000012780 transparent material Substances 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 17
- 230000009471 action Effects 0.000 description 15
- 239000000126 substance Substances 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000001739 density measurement Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
Definitions
- the present invention relates to a concentration sensor used for contactlessly measuring the concentration of a fluid flowing in a light-transmitting pipe.
- the fluid flowing in a transparent pipe is irradiated with measuring light, and the concentration of the fluid is measured based on its absorbance.
- a non-contact type concentration sensor is used.
- Such a concentration sensor is configured so that a casing can be attached later to a resin-made pipe having a light-transmitting property through which a fluid flows as shown in Patent Document 1.
- an optical device such as a collimating lens that collimates the light emitted from the light source and a condensing lens that condenses the measurement light that has passed through the fluid in the pipe and guides it to the photodetector is installed in the housing. It is provided.
- the pipe itself through which the fluid flows acts as a cylindrical biconvex lens and is diverged. Therefore, there is a problem that the measurement light passing through the fluid detected by the photodetector does not have a sufficient amount of light and the measurement accuracy is inferior to that of the concentration measurement method using electrodes.
- the present invention has been made in view of the above-described problems, and a concentration sensor capable of improving the measurement accuracy of concentration while facilitating installation and reducing the possibility of contaminating a fluid to be measured.
- the purpose is to provide.
- the concentration sensor according to the present invention is a concentration sensor that measures the concentration of a fluid flowing in a pipe formed of a translucent material, and includes a light source that emits measurement light and a light source that emits the measurement light.
- a collimating lens for collimating the measurement light a condenser lens for condensing the measurement light passing through the pipe, a light detection mechanism for detecting the measurement light condensed by the condenser lens, One or a plurality of concave lenses provided between the corresponding lens and the pipe or between the pipe and the condenser lens, and the pipe based on the intensity of the measurement light detected by the photodetection mechanism.
- a concentration calculator for calculating the concentration of the fluid flowing therein, wherein one or a plurality of the concave lenses are arranged so as to form a gap with respect to the outer surface of the pipe.
- the condensing action of the cylindrical convex lens made of the pipe and the fluid can be canceled by the one or more concave lenses.
- the concave lens is arranged so as to form a space with respect to the outer surface of the pipe and is not in close contact with each other, for example, a minute gap is generated from the state where the concave lens and the pipe are in close contact with each other. It can be prevented from being formed and causing optical interference. Therefore, it is possible to prevent the optical interference from affecting the concentration measurement.
- the minute gap in this case refers to a small distance of about several tens mm or less.
- the radius of curvature of the concave surface of the concave lens may be larger than the radius of curvature of the pipe.
- the concave surface of the concave lens may have a radius of curvature smaller than that of the pipe.
- the collimating lens and the light condensing lens are spherical lenses. It is sufficient that the first concave lens and the second concave lens are cylindrical lenses.
- a plurality of the concave lenses are provided between the collimating lens and the pipe.
- a second concave lens provided between the pipe and the condenser lens, and the concave surface of the first concave lens is formed on the measurement light incident side of the pipe.
- the concave surface of the second concave lens is formed on the incident side of the measurement light facing the outer surface of the pipe.
- a plurality of the concave lenses are a first concave lens provided between the collimating lens and the pipe, the pipe and the condensing lens. And a second concave lens provided between the first concave lens and the second concave lens, the concave surface of the first concave lens is formed on the emission side of the measurement light facing the outer surface of the pipe, and the concave surface of the second concave lens is The one formed on the incident side of the measurement light facing the outer surface of the pipe can be mentioned.
- the first concave lens has a convex surface formed on the measurement light incident side, and the second concave lens is formed on the measurement light emission side. It is sufficient that the convex surface is formed.
- the concave lens is provided between the collimating lens and the pipe, or It should be provided only on one of the pipe and the condenser lens, and concave surfaces may be formed on both the incident side and the reflection side of the measurement light of the concave lens.
- the light source, the collimating lens, the one or more concave lenses, and the light condensing lens are provided so that the pipe can be easily retrofitted to an existing pipe formed of a translucent material.
- a lens and a housing for holding the photodetection mechanism at a predetermined position are further provided, and the housing is detachable from the pipe, and the first housing is attached to the pipe. It suffices that a gap be formed between the concave lens and the second concave lens and the outer surface of the pipe.
- the concentration sensor As described above, in the concentration sensor according to the present invention, one or a plurality of the concave lenses provided in the vicinity of the pipe cancels the light condensing function as the cylindrical biconvex lens composed of the pipe and the fluid, and the concentration is detected by the light detection mechanism. It is possible to improve the quantity of the measuring light to be used. Further, since the concave lens is arranged so that a gap is formed with respect to the pipe, it is possible to prevent optical interference from occurring. Further, since the concentration of the fluid can be measured based on the measurement light that passes through the fluid, the concentration sensor itself can be easily installed on the pipe, and the possibility of contamination of the fluid can be reduced.
- FIG. 6 is a schematic optical path diagram of a concentration sensor according to a second embodiment of the present invention.
- FIG. 6 is a schematic optical path diagram of a concentration sensor according to a third embodiment of the present invention.
- the concentration sensor 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
- various mirrors shown in FIG. 1 are omitted.
- the cross section of the pipe P is defined as the XY plane, and the axial direction of the pipe P is defined as the Z axis.
- the concentration sensor 100 shown in FIG. 1 is used to measure the concentration of a liquid such as a chemical liquid supplied to a chamber or the like in a semiconductor manufacturing process, for example.
- the concentration sensor 100 is retrofitted to a pipe P formed of a translucent material through which a fluid F to be measured flows. That is, the concentration sensor 100 is configured to measure the concentration of the fluid F flowing in the pipe P based on the absorbance while using the pipe P as a part of the optical system.
- the concentration sensor 100 has a plurality of optical devices arranged and housed in a casing 1 attached to the pipe P, and the casing 1 is configured to be attachable to and detachable from the pipe P. There is.
- the housing 1 has a light source 2, a collimating lens 3, an entrance-side mirror 4, and a plurality of concave lenses, which are formed on the optical path for measurement, which is formed in a substantially U-shape.
- the concave lens 5, the second concave lens 6, the exit side mirror 7, the condenser lens 8, and the light detection mechanism 9 are arranged.
- a pipe P through which the fluid F to be measured flows is arranged between the first concave lens 5 and the second concave lens 6.
- the positions of the entrance side mirror 4 and the exit side mirror 7 are between a sample position S where a measurement optical path is formed and a reference position R where a reference optical path is formed. It is configured to be modifiable.
- the entrance side mirror 4 and the exit side mirror 7 are arranged at the reference position R, the measurement light emitted from the light source 2 enters the photodetection mechanism 9 through the reference RF instead of the pipe P.
- the positions of the light source 2, the collimating lens 3, the first concave lens 5, the second concave lens 6, the condensing lens 8 and the light detection mechanism 9 with respect to the pipe P are predetermined. Fixed in place.
- the light source 2 is, for example, an LED, and emits measurement light composed of light in a predetermined wavelength range. Further, the lamp box accommodating the LEDs is fixed to the housing 1.
- the collimating lens 3 is a biconvex spherical lens that collimates the light emitted from the light source 2 as shown in FIG.
- the first concave lens 5 receives the collimated measurement light emitted from the collimating lens 3 and emits the measurement light to the pipe P.
- the surface of the first concave lens 5 on the measurement light incident side is formed as a partially cylindrical concave surface, and the surface facing the pipe P on the measurement light emission side is formed as a flat surface.
- the first concave lens 5 is a cylindrical lens having a concave surface on one surface.
- the concave surface is formed so as to have a curvature in the circumferential direction of the pipe P on the XY plane, and is arranged so as to have an equal cross-sectional shape in the Z-axis direction which is the axial direction of the pipe P.
- the first concave lens 5 is arranged, for example, so that all the luminous fluxes of the measurement light collimated by the collimating lens 3 enter.
- the second concave lens 6 is arranged so as to sandwich the pipe P in the radial direction together with the first concave lens 5.
- the measurement light emitted from the inside of the pipe P to the outside enters the second concave lens 6.
- the second concave lens 6 has a partially cylindrical concave surface formed on the surface facing the pipe P that is the measurement light incident side, and the measurement light emission side surface is formed as a flat surface.
- the second concave lens 6 is a cylindrical lens having a concave surface on one surface.
- the concave surface is formed so as to have a curvature in the circumferential direction of the pipe P on the XY plane, and is arranged so as to have an equal cross-sectional shape in the Z-axis direction which is the axial direction of the pipe P.
- a gap is formed between each of the first concave lens 5 and the second concave lens 6 and the outer surface of the pipe P, and the first concave lens 5 and the second concave lens with respect to the pipe P are formed. 6 is configured not to contact. If the refractive index of the chemical liquid that is the fluid flowing in the pipe P is smaller than the refractive index of the material forming the first concave lens 5 and the second concave lens 6, the concave surfaces of the first concave lens 5 and the second concave lens 6 The radius of curvature is formed larger than the radius of curvature of the outer surface of the pipe P.
- the concave surfaces of the first concave lens 5 and the second concave lens 6 are The radius of curvature is formed smaller than the radius of curvature of the outer surface of the pipe P.
- the term "void" means a predetermined gap and means that no other substance such as an adhesive agent is present. For example, it is a concept including that only air, gas, or vacuum exists in the void.
- the collimated measurement light that enters the first concave lens 5 is slightly diverged to the outside and enters the pipe P. Due to the converging action of the biconvex cylindrical lens composed of the pipe P and the fluid F, the measurement light travels in the pipe P in a substantially parallel state.
- the measurement light is slightly condensed to the inside due to the condensing action of the pipe P, but is diverged to the outside again by the second concave lens 6 and becomes substantially parallel.
- the measured light thus emitted is emitted from the second concave lens 6.
- the condenser lens 8 is a biconvex spherical lens, and the collimated measurement light emitted from the second concave lens 6 is incident and condensed on, for example, a slit formed in the photodetection mechanism 9.
- the light detection mechanism 9 is provided at a position where a spectroscope (not shown) that disperses the measurement light incident from the slit and a light in the absorption wavelength band of the fluid F to be measured is irradiated from the dispersed measurement light. And a photodetector (not shown). The photodetector outputs a voltage according to the intensity of incident light.
- the light detection mechanism 9 is also fixed to the housing 1.
- a concentration calculation unit 10 that calculates the concentration of the fluid F based on the output of the light detection mechanism 9 is provided outside the housing 1.
- the function of the density calculator 10 is realized by a so-called computer including input / output devices such as a CPU, a memory, an A / D converter, and a D / A converter. That is, the program stored in the memory is executed, and the various devices cooperate to realize the function as the concentration calculation unit 10.
- the density value calculated by the density calculation unit 10 is transmitted to and used by another device other than the density sensor 100, such as a density control device.
- the concentration calculation unit 10 calculates the absorbance based on the ratio of the intensity of the measurement light that has passed through the optical path for measurement and the intensity of the light that has passed through the optical path for reference RF, and then calculates the logarithm of the absorbance.
- the concentration of the target fluid F is calculated.
- the pipe P and the fluid F to be measured exert a condensing action as a biconvex cylindrical lens, and are provided in the vicinity of the pipe P.
- the action can be canceled by the concave lens 5 and the second concave lens 6. Therefore, most of the measurement light emitted from the light source 2 can be detected by the light detection mechanism 9.
- the first concave lens 5 diffuses the light so that the light condensing action on the incident surface of the fluid F is canceled and the light in the fluid F becomes parallel, and the light is emitted to the fluid F, and the fluid F is ejected.
- the light condensed and emitted from the fluid F by the condensing action on the surface is made parallel by the second concave lens 6.
- the intensity of the light detected by the light detection mechanism 9 can be increased, even a slight change in concentration can be detected, and the concentration measurement accuracy can be improved.
- first concave lens 5 and the second concave lens 6 are not in contact with the pipe P and a gap is formed, light is emitted between the pipe P and each of the first concave lens 5 and the second concave lens 6. It is possible to prevent interference and influence on the concentration measurement.
- the concentration sensor 100 of the first embodiment can be retrofitted to the existing pipe P, and the concentration can be measured in a non-contact manner with respect to the fluid F that is the measurement target. Therefore, the installation is easy, and the possibility of contamination of the fluid F flowing in the pipe P due to the concentration measurement can be eliminated.
- the concentration sensor 100 according to the second embodiment of the present invention will be described with reference to FIG.
- the members corresponding to the members described in the first embodiment are designated by the same reference numerals.
- the direction of the first concave lens 5 is opposite to that of the first embodiment. That is, in the first concave lens 5, the surface on the side where the measurement light is incident is formed into a flat surface, and the surface on the side where the measurement light is emitted is formed into a concave surface.
- the concentration sensor 100 of the third embodiment as described above can achieve the same effect as that of the above-described embodiment.
- a third embodiment of the present invention will be described with reference to FIG.
- the members corresponding to the members described in the first embodiment are designated by the same reference numerals.
- the density sensor 100 of the third embodiment is different from that of the first embodiment in that the first concave lens 5 and the second concave lens 6 are meniscus concave lenses having not only concave surfaces but also convex surfaces.
- the first concave lens 5 has a convex surface on the measurement light incident side and a concave surface on the measurement light emission side.
- the second concave lens 6 has a concave surface on the measurement light incident side and a convex surface on the measurement light emission side.
- the refracting action of the measurement light can be generated on the respective surfaces of the first concave lens 5 and the second concave lens 6, and the light condensing that occurs in the pipe P and the fluid F.
- the effect can be canceled more precisely. Therefore, the light amount of the measurement light detected by the light detection mechanism 9 can be increased, and the density measurement accuracy can be improved.
- a fourth embodiment of the present invention will be described with reference to FIG.
- the members corresponding to the members described in the first embodiment are designated by the same reference numerals.
- the density sensor 100 of the fourth embodiment is different from that of the first embodiment in that only the first concave lens 5 is provided between the collimating lens 3 and the pipe P as a concave lens. Further, the first concave lens 5 is formed such that both the surface on the side where the measurement light enters and the surface on the side where the measurement light exits are concave.
- the condensing action of the biconvex cylindrical lens composed of the fluid and the pipe P is canceled and the concentration measurement accuracy is improved while minimizing the number of arranged lenses. It is possible to raise it. More specifically, the light condensing action on the incident surface and the exit surface of the fluid F is canceled, and the light emitted from the fluid F is diffused by the first lens 5 and incident on the fluid F.
- a fifth embodiment of the present invention will be described with reference to FIG.
- the members corresponding to the members described in the first embodiment are designated by the same reference numerals.
- the density sensor 100 of the fifth embodiment is different from that of the first embodiment in that only the second concave lens 6 is provided between the pipe P and the condenser lens 8 as the concave lens. Further, the surface of the second concave lens 6 on the side where the measurement light enters and the surface on the side where the measurement light exits are formed as concave surfaces.
- the concentration sensor 100 of the fifth embodiment With the concentration sensor 100 of the fifth embodiment, the same effect as the concentration sensor 100 of the fourth embodiment can be obtained. More specifically, the light condensed and emitted from the fluid F can be made parallel by the second concave lens 6 by the condensing action on the incident surface and the emission surface of the fluid F.
- each optical element is not limited to the one in which the optical path has a substantially U-shape as shown in FIG. 1, and each optical element may be arranged in a straight line, for example.
- the case itself can be made compact and the concentration sensor itself can be made smaller by arranging it in a U-shape.
- the surfaces of the first concave lens and the second concave lens on which the concave surface and the convex surface are formed are not limited to those shown in each embodiment.
- the first concave lens and the second concave lens may be formed as biconcave lenses, or the convex surfaces may be arranged so as to face the pipe.
- the photodetection mechanism is not limited to one equipped with a spectroscope and a photodetector.
- the photodetection mechanism may include only the photodetector.
- the pipe to which the concentration sensor is attached is not limited to a straight pipe, but may be a curved pipe.
- the concentration of the fluid can be measured based on the measurement light that passes through the fluid, the concentration sensor itself can be easily installed on the pipe, and the concentration that can eliminate the possibility of contamination of the fluid.
- a sensor can be provided.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
To provide a concentration sensor that makes installation easy and is capable of enhancing concentration measurement accuracy while reducing the chance of contaminating a fluid under measurement, in this invention, a concentration sensor 100 for measuring the concentration of a fluid flowing within a pipe P formed from a transparent material is made to comprise: a light source 2 for emitting measurement light; a collimation lens 3 for collimating the measurement light emitted from the light source 2; a converging lens 8 for converging the measurement light that has passed through the pipe P; a light detection mechanism 9 for detecting the measurement light that has been converged by the converging lens 8; and one or more concave lenses 5, 6 that are each provided between the collimation lens 3 and pipe P or between the pipe P and converging lens 8 and are disposed such that there are gaps between the same and the outside surface of the pipe P.
Description
本発明は、透光性を有するパイプ内を流れる流体の濃度を非接触で測定するために用いられる濃度センサに関するものである。
The present invention relates to a concentration sensor used for contactlessly measuring the concentration of a fluid flowing in a light-transmitting pipe.
例えば半導体製造プロセスでは使用される薬液等の流体に対してコンタミネーションを防ぐために、透光性を有するパイプ内に流れる流体に対して測定光を照射し、その吸光度に基づいて流体の濃度を測定する非接触式の濃度センサが用いられることがある。
For example, in the semiconductor manufacturing process, in order to prevent contamination with fluids such as chemicals used, the fluid flowing in a transparent pipe is irradiated with measuring light, and the concentration of the fluid is measured based on its absorbance. In some cases, a non-contact type concentration sensor is used.
このような濃度センサは、特許文献1に示されるように流体が流れる透光性を有する樹脂製のパイプに対して筐体を後付できるように構成されている。また、筐体内には光源から射出された光を平行化する視準用レンズや、パイプ内の流体を通過した測定光を集光して光検出器へと導く集光用レンズ等の光学機器が設けられている。
Such a concentration sensor is configured so that a casing can be attached later to a resin-made pipe having a light-transmitting property through which a fluid flows as shown in Patent Document 1. In addition, an optical device such as a collimating lens that collimates the light emitted from the light source and a condensing lens that condenses the measurement light that has passed through the fluid in the pipe and guides it to the photodetector is installed in the housing. It is provided.
しかしながら、上記のような濃度センサでは視準用レンズにより平行化された測定光をパイプに照射しても、流体が流れるパイプ自体が円筒両凸レンズとして作用してしまい、発散されてしまう。このため、光検出器で検出される流体を通過した測定光が十分な光量とならず、電極を用いた濃度測定方法に対して測定精度が劣ってしまうという問題がある。
However, in the above-mentioned concentration sensor, even if the pipe is irradiated with the measuring light collimated by the collimating lens, the pipe itself through which the fluid flows acts as a cylindrical biconvex lens and is diverged. Therefore, there is a problem that the measurement light passing through the fluid detected by the photodetector does not have a sufficient amount of light and the measurement accuracy is inferior to that of the concentration measurement method using electrodes.
本発明は上述したような問題を鑑みてなされたものであり、据え付けを容易にし、測定対象となる流体を汚染する可能性を低減しながら、濃度の測定精度を向上させることができる濃度センサを提供することを目的とする。
The present invention has been made in view of the above-described problems, and a concentration sensor capable of improving the measurement accuracy of concentration while facilitating installation and reducing the possibility of contaminating a fluid to be measured. The purpose is to provide.
すなわち、本発明に係る濃度センサは、透光性を有する材料で形成されたパイプ内を流れる流体の濃度を測定する濃度センサであって、測定光を射出する光源と、前記光源から射出された測定光を平行化する視準用レンズと、前記パイプを通過した測定光を集光する集光用レンズと、前記集光用レンズで集光された測定光を検出する光検出機構と、前記視準用レンズと前記パイプとの間、又は、前記パイプと前記集光用レンズとの間に設けられた1又は複数の凹レンズと、前記光検出機構で検出された測定光の強度に基づいて前記パイプ内を流れる流体の濃度を算出する濃度算出部と、を備え、1又は複数の前記凹レンズが、前記パイプの外側面に対して空隙が形成されるように配置されていることを特徴とする。
That is, the concentration sensor according to the present invention is a concentration sensor that measures the concentration of a fluid flowing in a pipe formed of a translucent material, and includes a light source that emits measurement light and a light source that emits the measurement light. A collimating lens for collimating the measurement light, a condenser lens for condensing the measurement light passing through the pipe, a light detection mechanism for detecting the measurement light condensed by the condenser lens, One or a plurality of concave lenses provided between the corresponding lens and the pipe or between the pipe and the condenser lens, and the pipe based on the intensity of the measurement light detected by the photodetection mechanism. And a concentration calculator for calculating the concentration of the fluid flowing therein, wherein one or a plurality of the concave lenses are arranged so as to form a gap with respect to the outer surface of the pipe.
このようなものであれば、1又は複数の前記凹レンズによって前記パイプ及び流体からなる円筒凸レンズの集光作用を打ち消すことができる。
With such a configuration, the condensing action of the cylindrical convex lens made of the pipe and the fluid can be canceled by the one or more concave lenses.
したがって、従来、前記パイプと流体からなる円筒凸レンズの作用で散逸していた測定光を前記光検出機構まで到達させることができ、検出される光量を大きくして濃度の測定精度を向上させることができる。
Therefore, it is possible to reach the photodetection mechanism with the measurement light that has been conventionally dissipated by the action of the cylindrical convex lens made of the pipe and the fluid, and to increase the amount of detected light to improve the concentration measurement accuracy. it can.
さらに、前記凹レンズは前記パイプの外側面に対してそれぞれ空隙が形成されるように配置されており、密着していないので、例えば前記凹レンズと前記パイプとが密着している状態から微小な隙間が形成されて光干渉が生じるのを防ぐことができる。このため、光干渉によって濃度測定に対して影響が発生するのを防ぐことができる。この場合の微小な隙間とは数10mm程度以下の小さな距離を指すものである。
Furthermore, since the concave lens is arranged so as to form a space with respect to the outer surface of the pipe and is not in close contact with each other, for example, a minute gap is generated from the state where the concave lens and the pipe are in close contact with each other. It can be prevented from being formed and causing optical interference. Therefore, it is possible to prevent the optical interference from affecting the concentration measurement. The minute gap in this case refers to a small distance of about several tens mm or less.
流体の屈折率が前記凹レンズの屈折率よりも小さい場合には、前記凹レンズの凹面の曲率半径が、前記パイプの曲率半径よりも大きいものであればよい。逆に流体の屈折率が前記凹レンズよりも大きい場合には、前記凹レンズの凹面の曲率半径が、前記パイプの曲率半径よりも小さいものであればよい。
If the refractive index of the fluid is smaller than the refractive index of the concave lens, the radius of curvature of the concave surface of the concave lens may be larger than the radius of curvature of the pipe. On the contrary, when the refractive index of the fluid is larger than that of the concave lens, the concave surface of the concave lens may have a radius of curvature smaller than that of the pipe.
前記パイプ及び流体からなる円筒両凸レンズにおいて集光作用の発揮される半径方向のみ前記凹レンズでその集光作用を打ち消せるようにするには、前記視準用レンズ及び前記集光用レンズが、球面レンズであり、前記第1凹レンズ及び前記第2凹レンズが、シリンドリカルレンズであればよい。
In order to make the concave lens cancel the light condensing action only in the radial direction where the light condensing action is exhibited in the cylindrical biconvex lens made of the pipe and the fluid, the collimating lens and the light condensing lens are spherical lenses. It is sufficient that the first concave lens and the second concave lens are cylindrical lenses.
前記光源から射出された測定光が前記光検出機構に到達する量をできる限り大きくするのに適した具体的な構成例としては、複数の前記凹レンズが、前記視準用レンズと前記パイプとの間に設けられた第1凹レンズと、前記パイプと前記集光用レンズとの間に設けられた第2凹レンズと、からなり、前記第1凹レンズの凹面が、前記パイプの測定光の入射側に形成されており、前記第2凹レンズの凹面が、前記パイプの外表面に対向する測定光の入射側に形成されているものが挙げられる。
As a specific configuration example suitable for increasing the amount of the measurement light emitted from the light source reaching the photodetection mechanism as much as possible, a plurality of the concave lenses are provided between the collimating lens and the pipe. And a second concave lens provided between the pipe and the condenser lens, and the concave surface of the first concave lens is formed on the measurement light incident side of the pipe. The concave surface of the second concave lens is formed on the incident side of the measurement light facing the outer surface of the pipe.
濃度の測定精度を向上させるための別の構成例としては、複数の前記凹レンズが、前記視準用レンズと前記パイプとの間に設けられた第1凹レンズと、前記パイプと前記集光用レンズとの間に設けられた第2凹レンズと、からなり、前記第1凹レンズの凹面が、前記パイプの外表面に対向する測定光の射出側に形成されており、前記第2凹レンズの凹面が、前記パイプの外表面に対向する測定光の入射側に形成されているものが挙げられる。
As another configuration example for improving the density measurement accuracy, a plurality of the concave lenses are a first concave lens provided between the collimating lens and the pipe, the pipe and the condensing lens. And a second concave lens provided between the first concave lens and the second concave lens, the concave surface of the first concave lens is formed on the emission side of the measurement light facing the outer surface of the pipe, and the concave surface of the second concave lens is The one formed on the incident side of the measurement light facing the outer surface of the pipe can be mentioned.
さらに前記光検出機構において検出される光量を大きくできるようにするには、前記第1凹レンズが、測定光の入射側に凸面が形成されており、前記第2凹レンズが、測定光の射出側に凸面が形成されていればよい。
Furthermore, in order to increase the amount of light detected by the light detection mechanism, the first concave lens has a convex surface formed on the measurement light incident side, and the second concave lens is formed on the measurement light emission side. It is sufficient that the convex surface is formed.
必要となるレンズの枚数を最小化しながら、前記パイプと流体からなる両凸レンズの集光作用を十分に打ち消せるようにするには、前記凹レンズが、前記視準用レンズと前記パイプとの間、又は、前記パイプと前記集光用レンズとの間のいずれか一方にのみ設けられており、前記凹レンズの測定光の入射側と反射側の双方に凹面が形成されていればよい。
In order to sufficiently cancel the light condensing action of the biconvex lens composed of the pipe and the fluid while minimizing the number of lenses required, the concave lens is provided between the collimating lens and the pipe, or It should be provided only on one of the pipe and the condenser lens, and concave surfaces may be formed on both the incident side and the reflection side of the measurement light of the concave lens.
既存の透光性を有する材料で形成されたパイプに対して簡単に後付で据え付けすることができるようにするには、前記光源、前記視準用レンズ、1又は複数の凹レンズ、前記集光用レンズ、及び、前記光検出機構を所定の位置に保持する筐体をさらに備え、前記筐体が、前記パイプに対して着脱可能であるとともに、当該パイプに対して取り付けられた状態において前記第1凹レンズ及び前記第2凹レンズと前記パイプの外表面との間に空隙が形成されるように構成されていればよい。
The light source, the collimating lens, the one or more concave lenses, and the light condensing lens are provided so that the pipe can be easily retrofitted to an existing pipe formed of a translucent material. A lens and a housing for holding the photodetection mechanism at a predetermined position are further provided, and the housing is detachable from the pipe, and the first housing is attached to the pipe. It suffices that a gap be formed between the concave lens and the second concave lens and the outer surface of the pipe.
このように本発明に係る濃度センサは、前記パイプの近傍に設けられた1又は複数の前記凹レンズによって、前記パイプと流体からなる円筒両凸レンズとしての集光作用を打ち消し、前記光検出機構で検出される測定光の光量を向上させることができる。また、前記凹レンズは前記パイプに対して空隙が形成されるように配置されているので、光干渉が生じにくくすることができる。また、流体を透過する測定光に基づいて流体の濃度が測定できるので、濃度センサ自体をパイプに対して据え付けしやすく、また流体に対してコンタミネーションが発生する可能性を低減できる。
As described above, in the concentration sensor according to the present invention, one or a plurality of the concave lenses provided in the vicinity of the pipe cancels the light condensing function as the cylindrical biconvex lens composed of the pipe and the fluid, and the concentration is detected by the light detection mechanism. It is possible to improve the quantity of the measuring light to be used. Further, since the concave lens is arranged so that a gap is formed with respect to the pipe, it is possible to prevent optical interference from occurring. Further, since the concentration of the fluid can be measured based on the measurement light that passes through the fluid, the concentration sensor itself can be easily installed on the pipe, and the possibility of contamination of the fluid can be reduced.
100・・・濃度センサ
1 ・・・筐体
2 ・・・光源
3 ・・・視準用レンズ
5 ・・・第1凹レンズ
6 ・・・第2凹レンズ
8 ・・・集光用レンズ
9 ・・・光検出機構
10 ・・・濃度算出部
P ・・・パイプ
F ・・・流体 100 ... Density sensor 1 ...Housing 2 ... Light source 3 ... Collimation lens 5 ... First concave lens 6 ... Second concave lens 8 ... Condensing lens 9 ... Light detection mechanism 10 ... Concentration calculation unit P ... Pipe F ... Fluid
1 ・・・筐体
2 ・・・光源
3 ・・・視準用レンズ
5 ・・・第1凹レンズ
6 ・・・第2凹レンズ
8 ・・・集光用レンズ
9 ・・・光検出機構
10 ・・・濃度算出部
P ・・・パイプ
F ・・・流体 100 ... Density sensor 1 ...
本発明の第1実施形態に係る濃度センサ100について図1乃至図3を参照しながら説明する。なお、図3は図1に記載されている各種ミラーについては省略して表示している。また、分かりやすさのため、パイプPの横断面をXY平面、パイプPの軸方向をZ軸として定義する。
The concentration sensor 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3. In FIG. 3, various mirrors shown in FIG. 1 are omitted. For the sake of clarity, the cross section of the pipe P is defined as the XY plane, and the axial direction of the pipe P is defined as the Z axis.
図1に示される濃度センサ100は、例えば半導体製造プロセスにおいてチャンバ等に供給される薬液等の液体の濃度を測定するために用いられるものである。この濃度センサ100は、測定対象となる流体Fが流れる透光性を有する材料で形成されたパイプPに対して後付で取り付けられる。すなわち、濃度センサ100は、パイプPを光学系の一部として使用しながら、パイプP内を流れる流体Fの濃度を吸光度に基づいて測定するように構成されている。
The concentration sensor 100 shown in FIG. 1 is used to measure the concentration of a liquid such as a chemical liquid supplied to a chamber or the like in a semiconductor manufacturing process, for example. The concentration sensor 100 is retrofitted to a pipe P formed of a translucent material through which a fluid F to be measured flows. That is, the concentration sensor 100 is configured to measure the concentration of the fluid F flowing in the pipe P based on the absorbance while using the pipe P as a part of the optical system.
具体的には濃度センサ100は、パイプPに対して取り付けられる筐体1内に複数の光学機器が配置、収容されたものであり、筐体1をパイプPに対して着脱可能に構成されている。
Specifically, the concentration sensor 100 has a plurality of optical devices arranged and housed in a casing 1 attached to the pipe P, and the casing 1 is configured to be attachable to and detachable from the pipe P. There is.
この筐体1には、図1に示すように概略コの字状に形成される測定用の光路上には、光源2、視準用レンズ3、入射側ミラー4、複数の凹レンズである第1凹レンズ5及び第2凹レンズ6、射出側ミラー7、集光用レンズ8、光検出機構9が配置されている。測定用の光路上では図1及び図2に示すように第1凹レンズ5と第2凹レンズ6の間に測定対象の流体Fが流れるパイプPが配置される。
As shown in FIG. 1, the housing 1 has a light source 2, a collimating lens 3, an entrance-side mirror 4, and a plurality of concave lenses, which are formed on the optical path for measurement, which is formed in a substantially U-shape. The concave lens 5, the second concave lens 6, the exit side mirror 7, the condenser lens 8, and the light detection mechanism 9 are arranged. On the optical path for measurement, as shown in FIGS. 1 and 2, a pipe P through which the fluid F to be measured flows is arranged between the first concave lens 5 and the second concave lens 6.
また、図1に示すように入射側ミラー4、及び、射出側ミラー7の位置は測定用の光路が形成されるサンプル位置Sと、リファレンス用の光路が形成されるリファレンス位置Rとの間で変更可能に構成されている。リファレンス位置Rに入射側ミラー4及び射出側ミラー7が配置されている場合には、光源2から射出される測定光は、パイプPの代わりにリファレンスRFを通って光検出機構9に入射する。
Further, as shown in FIG. 1, the positions of the entrance side mirror 4 and the exit side mirror 7 are between a sample position S where a measurement optical path is formed and a reference position R where a reference optical path is formed. It is configured to be modifiable. When the entrance side mirror 4 and the exit side mirror 7 are arranged at the reference position R, the measurement light emitted from the light source 2 enters the photodetection mechanism 9 through the reference RF instead of the pipe P.
この筐体1は、パイプPに取り付けられることによって光源2、視準用レンズ3、第1凹レンズ5、第2凹レンズ6、集光用レンズ8、光検出機構9はパイプPに対する位置が予め定められた所定位置に固定される。
By mounting the casing 1 on the pipe P, the positions of the light source 2, the collimating lens 3, the first concave lens 5, the second concave lens 6, the condensing lens 8 and the light detection mechanism 9 with respect to the pipe P are predetermined. Fixed in place.
各部について詳述する。
Detailed description of each part.
光源2は例えばLEDであり、所定の波長域の光からなる測定光を射出するものである。また、LEDが収容されたランプボックスは筐体1に対して固定されている。
The light source 2 is, for example, an LED, and emits measurement light composed of light in a predetermined wavelength range. Further, the lamp box accommodating the LEDs is fixed to the housing 1.
視準用レンズ3は、両凸の球面レンズであり、図3に示すように光源2から射出された光を平行化するものである。
The collimating lens 3 is a biconvex spherical lens that collimates the light emitted from the light source 2 as shown in FIG.
第1凹レンズ5は、視準用レンズ3から射出される平行化された測定光が入射し、パイプPに対して測定光を射出するものである。この第1凹レンズ5は、測定光の入射側の面が部分円筒状の凹面として形成され、測定光の射出される側であるパイプPに対して対向する面が平面として形成されている。図2に示すように、第1凹レンズ5は片面に凹面が形成されたシリンドリカルレンズである。凹面はXY平面においてパイプPの周方向に対して曲率を有するように形成されており、パイプPの軸方向であるZ軸方向に対して等断面形状となるように配置されている。第1凹レンズ5は、例えば視準用レンズ3によって平行化された測定光の光束がすべて入るように配置されている。
The first concave lens 5 receives the collimated measurement light emitted from the collimating lens 3 and emits the measurement light to the pipe P. The surface of the first concave lens 5 on the measurement light incident side is formed as a partially cylindrical concave surface, and the surface facing the pipe P on the measurement light emission side is formed as a flat surface. As shown in FIG. 2, the first concave lens 5 is a cylindrical lens having a concave surface on one surface. The concave surface is formed so as to have a curvature in the circumferential direction of the pipe P on the XY plane, and is arranged so as to have an equal cross-sectional shape in the Z-axis direction which is the axial direction of the pipe P. The first concave lens 5 is arranged, for example, so that all the luminous fluxes of the measurement light collimated by the collimating lens 3 enter.
第2凹レンズ6は、第1凹レンズ5とともにパイプPを半径方向に挟み込むように配置される。この第2凹レンズ6には、パイプPの内部から外部へと射出される測定光が入射する。第2凹レンズ6は、測定光の入射側の面であるパイプPに対して対向する面に部分円筒状の凹面が形成され、測定光の射出側の面は平面として形成されている。図2に示すように、第2凹レンズ6は片面に凹面が形成されたシリンドリカルレンズである。凹面はXY平面においてパイプPの周方向に対して曲率を有するように形成されており、パイプPの軸方向であるZ軸方向に対して等断面形状となるように配置されている。
The second concave lens 6 is arranged so as to sandwich the pipe P in the radial direction together with the first concave lens 5. The measurement light emitted from the inside of the pipe P to the outside enters the second concave lens 6. The second concave lens 6 has a partially cylindrical concave surface formed on the surface facing the pipe P that is the measurement light incident side, and the measurement light emission side surface is formed as a flat surface. As shown in FIG. 2, the second concave lens 6 is a cylindrical lens having a concave surface on one surface. The concave surface is formed so as to have a curvature in the circumferential direction of the pipe P on the XY plane, and is arranged so as to have an equal cross-sectional shape in the Z-axis direction which is the axial direction of the pipe P.
図2及び図3に示すように第1凹レンズ5及び第2凹レンズ6のそれぞれとパイプPの外表面と間には空隙が形成されており、パイプPに対して第1凹レンズ5及び第2凹レンズ6は接触しないように構成されている。また、パイプP内を流れる流体である薬液の屈折率が第1凹レンズ5及び第2凹レンズ6を形成する材料の屈折率よりも小さい場合には、第1凹レンズ5及び第2凹レンズ6の凹面の曲率半径は、パイプPの外表面の曲率半径よりも大きく形成される。逆にパイプP内を流れる流体である薬液の屈折率が第1凹レンズ5及び第2凹レンズ6を形成する材料の屈折率よりも大きい場合には、第1凹レンズ5及び第2凹レンズ6の凹面の曲率半径は、パイプPの外表面の曲率半径よりも小さく形成される。ここで、空隙とは所定の隙間であるとともに、接着剤等の他の物質が介在しないことを意味する。例えば空隙には空気、気体、又は、真空のみが存在することを含む概念である。
As shown in FIGS. 2 and 3, a gap is formed between each of the first concave lens 5 and the second concave lens 6 and the outer surface of the pipe P, and the first concave lens 5 and the second concave lens with respect to the pipe P are formed. 6 is configured not to contact. If the refractive index of the chemical liquid that is the fluid flowing in the pipe P is smaller than the refractive index of the material forming the first concave lens 5 and the second concave lens 6, the concave surfaces of the first concave lens 5 and the second concave lens 6 The radius of curvature is formed larger than the radius of curvature of the outer surface of the pipe P. On the contrary, when the refractive index of the chemical liquid which is the fluid flowing in the pipe P is larger than the refractive index of the material forming the first concave lens 5 and the second concave lens 6, the concave surfaces of the first concave lens 5 and the second concave lens 6 are The radius of curvature is formed smaller than the radius of curvature of the outer surface of the pipe P. Here, the term "void" means a predetermined gap and means that no other substance such as an adhesive agent is present. For example, it is a concept including that only air, gas, or vacuum exists in the void.
第1凹レンズ5に入射する平行化された測定光は、若干外側へ発散されてパイプPに対して入射する。パイプP及び流体Fからなる両凸円筒レンズによる集光作用によってパイプP内において測定光はほぼ平行化された状態で進行する。パイプP内から外側へと測定光が射出される際にパイプPによる集光作用によって測定光は若干内側へと集光されるが、第2凹レンズ6によって再び外側へと発散されてほぼ平行化された測定光として第2凹レンズ6から射出される。
The collimated measurement light that enters the first concave lens 5 is slightly diverged to the outside and enters the pipe P. Due to the converging action of the biconvex cylindrical lens composed of the pipe P and the fluid F, the measurement light travels in the pipe P in a substantially parallel state. When the measurement light is emitted from the inside of the pipe P to the outside, the measurement light is slightly condensed to the inside due to the condensing action of the pipe P, but is diverged to the outside again by the second concave lens 6 and becomes substantially parallel. The measured light thus emitted is emitted from the second concave lens 6.
集光用レンズ8は、両凸の球面レンズであり、第2凹レンズ6から射出される平行化された測定光が入射し、例えば光検出機構9に形成されたスリットに集光する。
The condenser lens 8 is a biconvex spherical lens, and the collimated measurement light emitted from the second concave lens 6 is incident and condensed on, for example, a slit formed in the photodetection mechanism 9.
光検出機構9は、スリットから入射した測定光を分光する分光器(図示しない)と分光された測定光のうち、測定対象となる流体Fの吸収波長帯の光が照射される位置に設けられた光検出器(図示しない)とを備えたものである。光検出器は入射する光の強度に応じた電圧を出力する。この光検出機構9も筐体1に対して固定されている。
The light detection mechanism 9 is provided at a position where a spectroscope (not shown) that disperses the measurement light incident from the slit and a light in the absorption wavelength band of the fluid F to be measured is irradiated from the dispersed measurement light. And a photodetector (not shown). The photodetector outputs a voltage according to the intensity of incident light. The light detection mechanism 9 is also fixed to the housing 1.
筐体1の外側には、光検出機構9の出力に基づいて流体Fの濃度を算出する濃度算出部10が設けられる。この濃度算出部10は、CPU、メモリ、A/Dコンバータ、D/Aコンバータ等の入出力機器を備えたいわゆるコンピュータによってその機能が実現される。すなわちメモリに格納されているプログラムが実行され、各種機器が協業することにより濃度算出部10としての機能が実現される。濃度算出部10で算出された濃度値は、濃度センサ100以外の例えば濃度制御装置等の他機器に送信され使用される。
A concentration calculation unit 10 that calculates the concentration of the fluid F based on the output of the light detection mechanism 9 is provided outside the housing 1. The function of the density calculator 10 is realized by a so-called computer including input / output devices such as a CPU, a memory, an A / D converter, and a D / A converter. That is, the program stored in the memory is executed, and the various devices cooperate to realize the function as the concentration calculation unit 10. The density value calculated by the density calculation unit 10 is transmitted to and used by another device other than the density sensor 100, such as a density control device.
濃度算出部10は、測定用の光路を通過した測定光の強度と、リファレンスRF用の光路を通過した光の強度の比に基づいて、吸光度を算出し、吸光度の対数を算出することで測定対象となる流体Fの濃度を算出する。
The concentration calculation unit 10 calculates the absorbance based on the ratio of the intensity of the measurement light that has passed through the optical path for measurement and the intensity of the light that has passed through the optical path for reference RF, and then calculates the logarithm of the absorbance. The concentration of the target fluid F is calculated.
このように構成された第1実施形態の濃度センサ100によれば、パイプP及び測定対象である流体Fが両凸円筒レンズとして集光作用を発揮して、パイプPの近傍に設けられる第1凹レンズ5及び第2凹レンズ6によって、その作用を打ち消すことができる。したがって、光源2から射出された測定光の大部分を光検出機構9で検出することができる。より具体的には、流体Fの入射面での集光作用を打ち消して流体F内での光が平行になるよう第1凹レンズ5で光を拡散して流体Fに入射させ、流体Fの射出面での集光作用により流体Fから集光されて射出される光を第2凹レンズ6で平行にする。
According to the concentration sensor 100 of the first embodiment configured in this way, the pipe P and the fluid F to be measured exert a condensing action as a biconvex cylindrical lens, and are provided in the vicinity of the pipe P. The action can be canceled by the concave lens 5 and the second concave lens 6. Therefore, most of the measurement light emitted from the light source 2 can be detected by the light detection mechanism 9. More specifically, the first concave lens 5 diffuses the light so that the light condensing action on the incident surface of the fluid F is canceled and the light in the fluid F becomes parallel, and the light is emitted to the fluid F, and the fluid F is ejected. The light condensed and emitted from the fluid F by the condensing action on the surface is made parallel by the second concave lens 6.
このため、光検出機構9において検出される光の強度を大きくすることができるので、わずかな濃度変化であっても検出することが可能となり、濃度測定精度を向上させることができる。
Therefore, since the intensity of the light detected by the light detection mechanism 9 can be increased, even a slight change in concentration can be detected, and the concentration measurement accuracy can be improved.
さらに、第1凹レンズ5及び第2凹レンズ6はパイプPに対して接触しておらず、空隙が形成されているので、第1凹レンズ5及び第2凹レンズ6のそれぞれとパイプPとの間で光干渉が生じ、濃度測定に対して影響が発生するのも防ぐことができる。
Further, since the first concave lens 5 and the second concave lens 6 are not in contact with the pipe P and a gap is formed, light is emitted between the pipe P and each of the first concave lens 5 and the second concave lens 6. It is possible to prevent interference and influence on the concentration measurement.
加えて、第1実施形態の濃度センサ100は既存のパイプPに対して後付することができ、測定対象である流体Fに対して非接触で濃度を測定することができる。このため、据え付けが容易であるとともに、濃度測定によってパイプP内を流れる流体Fにコンタミネーションが発生する可能性を排除することが可能となる。
In addition, the concentration sensor 100 of the first embodiment can be retrofitted to the existing pipe P, and the concentration can be measured in a non-contact manner with respect to the fluid F that is the measurement target. Therefore, the installation is easy, and the possibility of contamination of the fluid F flowing in the pipe P due to the concentration measurement can be eliminated.
次に本発明の第2実施形態に係る濃度センサ100について図4を参照しながら説明する。なお、第1実施形態において説明した部材と対応する部材には同じ符号を付すこととする。
Next, the concentration sensor 100 according to the second embodiment of the present invention will be described with reference to FIG. The members corresponding to the members described in the first embodiment are designated by the same reference numerals.
第2実施形態の濃度センサ100では、第1凹レンズ5の向きが第1実施形態とは逆向きになっている。すなわち、第1凹レンズ5において測定光が入射する側の面が平面に形成されており、測定光が射出される側の面が凹面に形成されている。
In the density sensor 100 of the second embodiment, the direction of the first concave lens 5 is opposite to that of the first embodiment. That is, in the first concave lens 5, the surface on the side where the measurement light is incident is formed into a flat surface, and the surface on the side where the measurement light is emitted is formed into a concave surface.
このような第3実施形態の濃度センサ100であっても、前述した実施形態と同等の効果を奏し得る。
Even the concentration sensor 100 of the third embodiment as described above can achieve the same effect as that of the above-described embodiment.
本発明の第3実施形態について図5を参照しながら説明する。なお、第1実施形態において説明した部材に対応する部材には同じ符号を付すこととする。
A third embodiment of the present invention will be described with reference to FIG. The members corresponding to the members described in the first embodiment are designated by the same reference numerals.
第3実施形態の濃度センサ100は、第1実施形態と比較して第1凹レンズ5及び第2凹レンズ6が凹面だけでなく凸面も形成されたメニスカス凹レンズである点で異なっている。
The density sensor 100 of the third embodiment is different from that of the first embodiment in that the first concave lens 5 and the second concave lens 6 are meniscus concave lenses having not only concave surfaces but also convex surfaces.
具体的には、第1凹レンズ5は測定光の入射側の面に凸面が形成されており、測定光の射出側の面に凹面が形成されている。
Specifically, the first concave lens 5 has a convex surface on the measurement light incident side and a concave surface on the measurement light emission side.
一方、第2凹レンズ6は測定光の入射側の面に凹面が形成されており、測定光の射出側の面に凸面が形成されている。
On the other hand, the second concave lens 6 has a concave surface on the measurement light incident side and a convex surface on the measurement light emission side.
このような第2実施形態の濃度センサ100であれば、第1凹レンズ5及び第2凹レンズ6のそれぞれの面で測定光の屈折作用を生じさせることができ、パイプP及び流体Fにおいて生じる集光作用をより精密に打ち消すことができる。このため、光検出機構9において検出される測定光の光量を増加させることができ、濃度の測定精度を高めることが可能となる。
According to the concentration sensor 100 of the second embodiment as described above, the refracting action of the measurement light can be generated on the respective surfaces of the first concave lens 5 and the second concave lens 6, and the light condensing that occurs in the pipe P and the fluid F. The effect can be canceled more precisely. Therefore, the light amount of the measurement light detected by the light detection mechanism 9 can be increased, and the density measurement accuracy can be improved.
本発明の第4実施形態について図6を参照しながら説明する。なお、第1実施形態において説明した部材に対応する部材には同じ符号を付すこととする。
A fourth embodiment of the present invention will be described with reference to FIG. The members corresponding to the members described in the first embodiment are designated by the same reference numerals.
第4実施形態の濃度センサ100は、第1実施形態と比較して、凹レンズとして視準用レンズ3とパイプPとの間に第1凹レンズ5のみが設けられている点で異なっている。また、第1凹レンズ5は測定光が入射する側の面と、測定光が射出される側の面の両方が凹面に形成されている。
The density sensor 100 of the fourth embodiment is different from that of the first embodiment in that only the first concave lens 5 is provided between the collimating lens 3 and the pipe P as a concave lens. Further, the first concave lens 5 is formed such that both the surface on the side where the measurement light enters and the surface on the side where the measurement light exits are concave.
このような第4実施形態の濃度センサ100によれば、配置されるレンズの枚数を必要最小限としながら、流体とパイプPからなる両凸円筒レンズの集光作用を打ち消して濃度の測定精度を高める事が可能となる。より具体的には、流体Fの入射面と射出面での集光作用を打ち消して、流体Fから射出される光が平行になるように第1レンズ5で光を拡散して流体Fに入射させる。
According to the concentration sensor 100 of the fourth embodiment as described above, the condensing action of the biconvex cylindrical lens composed of the fluid and the pipe P is canceled and the concentration measurement accuracy is improved while minimizing the number of arranged lenses. It is possible to raise it. More specifically, the light condensing action on the incident surface and the exit surface of the fluid F is canceled, and the light emitted from the fluid F is diffused by the first lens 5 and incident on the fluid F. Let
本発明の第5実施形態について図7を参照しながら説明する。なお、第1実施形態において説明した部材に対応する部材には同じ符号を付すこととする。
A fifth embodiment of the present invention will be described with reference to FIG. The members corresponding to the members described in the first embodiment are designated by the same reference numerals.
第5実施形態の濃度センサ100は、第1実施形態と比較して、凹レンズとしてパイプPと集光用レンズ8との間に第2凹レンズ6のみが設けられている点で異なっている。また、第2凹レンズ6の測定光が入射する側の面と測定光が射出される側の面が凹面として形成されている。
The density sensor 100 of the fifth embodiment is different from that of the first embodiment in that only the second concave lens 6 is provided between the pipe P and the condenser lens 8 as the concave lens. Further, the surface of the second concave lens 6 on the side where the measurement light enters and the surface on the side where the measurement light exits are formed as concave surfaces.
このような第5実施形態の濃度センサ100であれば、第4実施形態の濃度センサ100と同様の効果を奏し得る。より具体的には、流体Fの入射面と射出面での集光作用により流体Fから集光されて射出される光を第2凹レンズ6で平行にできる。
With the concentration sensor 100 of the fifth embodiment, the same effect as the concentration sensor 100 of the fourth embodiment can be obtained. More specifically, the light condensed and emitted from the fluid F can be made parallel by the second concave lens 6 by the condensing action on the incident surface and the emission surface of the fluid F.
その他の実施形態について説明する。
Describe other embodiments.
各光学素子の配列については図1に示したように光路が概略コの字状になるようにしたものに限られず、例えば各光学素子が一直線上に並ぶように配置しても構わない。ただし、各実施形態において記載したようにコの字状に配置したほうが筐体自体をコンパクト化して濃度センサ自体を小さく構成することができる。
The arrangement of each optical element is not limited to the one in which the optical path has a substantially U-shape as shown in FIG. 1, and each optical element may be arranged in a straight line, for example. However, as described in each embodiment, the case itself can be made compact and the concentration sensor itself can be made smaller by arranging it in a U-shape.
第1凹レンズ及び第2凹レンズの凹面が形成される面や凸面が形成される面は各実施形態に示したものに限られない。第1凹レンズ及び第2凹レンズを両凹レンズとして形成してもよいし、凸面がパイプに対して対向するように配置しても構わない。
The surfaces of the first concave lens and the second concave lens on which the concave surface and the convex surface are formed are not limited to those shown in each embodiment. The first concave lens and the second concave lens may be formed as biconcave lenses, or the convex surfaces may be arranged so as to face the pipe.
光検出機構については分光器と光検出器を備えたものに限られない。例えば光検出機構が光検出器のみを備えたものであっても構わない。この場合には光源から射出される光の波長がほぼ測定対象の流体の吸収波長帯のみを含むものであることが好ましい。
-The photodetection mechanism is not limited to one equipped with a spectroscope and a photodetector. For example, the photodetection mechanism may include only the photodetector. In this case, it is preferable that the wavelength of the light emitted from the light source substantially includes only the absorption wavelength band of the fluid to be measured.
濃度センサが取り付けられるパイプは直管に限られず、曲管であっても構わない。
The pipe to which the concentration sensor is attached is not limited to a straight pipe, but may be a curved pipe.
その他、本発明の趣旨に反しない限りにおいて実施形態の一部を変形したり、各実施形態同士の一部を組み合わせたりしても構わない。
Other than that, a part of the embodiments may be modified or a part of the embodiments may be combined without departing from the spirit of the present invention.
本発明によれば、流体を透過する測定光に基づいて流体の濃度が測定でき、濃度センサ自体をパイプに対して据え付けしやすく、流体に対してコンタミネーションが発生する可能性を排除可能な濃度センサを提供できる。
According to the present invention, the concentration of the fluid can be measured based on the measurement light that passes through the fluid, the concentration sensor itself can be easily installed on the pipe, and the concentration that can eliminate the possibility of contamination of the fluid. A sensor can be provided.
According to the present invention, the concentration of the fluid can be measured based on the measurement light that passes through the fluid, the concentration sensor itself can be easily installed on the pipe, and the concentration that can eliminate the possibility of contamination of the fluid. A sensor can be provided.
Claims (8)
- 透光性を有する材料で形成されたパイプ内を流れる流体の濃度を測定する濃度センサであって、
測定光を射出する光源と、
前記光源から射出された測定光を平行化する視準用レンズと、
前記パイプを通過した測定光を集光する集光用レンズと、
前記集光用レンズで集光された測定光を検出する光検出機構と、
前記視準用レンズと前記パイプとの間、又は、前記パイプと前記集光用レンズとの間に設けられた1又は複数の凹レンズと、
前記光検出機構で検出された測定光の強度に基づいて前記パイプ内を流れる流体の濃度を算出する濃度算出部と、を備え、
1又は複数の前記凹レンズが、前記パイプの外側面に対して空隙が形成されるように配置されていることを特徴とする濃度センサ。 A concentration sensor for measuring the concentration of a fluid flowing in a pipe formed of a translucent material,
A light source that emits measurement light,
A collimating lens for collimating the measurement light emitted from the light source,
A condenser lens for condensing the measurement light passing through the pipe,
A light detection mechanism for detecting the measurement light condensed by the condenser lens,
One or a plurality of concave lenses provided between the collimating lens and the pipe, or between the pipe and the condenser lens;
A concentration calculation unit that calculates the concentration of the fluid flowing in the pipe based on the intensity of the measurement light detected by the light detection mechanism,
A concentration sensor, wherein one or a plurality of the concave lenses are arranged so as to form a gap with respect to an outer surface of the pipe. - 前記凹レンズの凹面の曲率半径が、前記パイプの曲率半径よりも大きい請求項1記載の濃度センサ。 The density sensor according to claim 1, wherein a radius of curvature of the concave surface of the concave lens is larger than a radius of curvature of the pipe.
- 前記視準用レンズ及び前記集光用レンズが、球面レンズであり、
前記凹レンズが、シリンドリカルレンズである請求項1記載の濃度センサ。 The collimating lens and the condenser lens are spherical lenses,
The density sensor according to claim 1, wherein the concave lens is a cylindrical lens. - 複数の前記凹レンズが、
前記視準用レンズと前記パイプとの間に設けられた第1凹レンズと、
前記パイプと前記集光用レンズとの間に設けられた第2凹レンズと、からなり、
前記第1凹レンズの凹面が、測定光の入射側に形成されており、
前記第2凹レンズの凹面が、前記パイプの外表面に対向する測定光の入射側に形成されている請求項1記載の濃度センサ。 A plurality of the concave lenses,
A first concave lens provided between the collimating lens and the pipe;
A second concave lens provided between the pipe and the condenser lens,
The concave surface of the first concave lens is formed on the measurement light incident side,
The concentration sensor according to claim 1, wherein a concave surface of the second concave lens is formed on an incident side of the measurement light which faces the outer surface of the pipe. - 複数の前記凹レンズが、
前記視準用レンズと前記パイプとの間に設けられた第1凹レンズと、
前記パイプと前記集光用レンズとの間に設けられた第2凹レンズと、からなり、
前記第1凹レンズの凹面が、前記パイプの外表面に対向する測定光の射出側に形成されており、
前記第2凹レンズの凹面が、前記パイプの外表面に対向する測定光の入射側に形成されている請求項1記載の濃度センサ。 A plurality of the concave lenses,
A first concave lens provided between the collimating lens and the pipe;
A second concave lens provided between the pipe and the condenser lens,
The concave surface of the first concave lens is formed on the measurement light emission side facing the outer surface of the pipe,
The concentration sensor according to claim 1, wherein a concave surface of the second concave lens is formed on an incident side of the measurement light which faces the outer surface of the pipe. - 前記第1凹レンズが、測定光の入射側に凸面が形成されており、
前記第2凹レンズが、測定光の射出側に凸面が形成されている請求項5記載の濃度センサ。 The first concave lens, a convex surface is formed on the incident side of the measurement light,
The density sensor according to claim 5, wherein the second concave lens has a convex surface formed on the measurement light emission side. - 前記凹レンズが、前記視準用レンズと前記パイプとの間、又は、前記パイプと前記集光用レンズとの間のいずれか一方にのみ設けられており、
前記凹レンズの測定光の入射側と反射側の双方に凹面が形成されている請求項1記載の濃度センサ。 The concave lens is provided only between the collimating lens and the pipe, or between the pipe and the condenser lens,
The density sensor according to claim 1, wherein concave surfaces are formed on both the incident side and the reflective side of the measuring light of the concave lens. - 前記光源、前記視準用レンズ、1又は複数の前記凹レンズ、前記集光用レンズ、及び、前記光検出機構を所定の位置に保持する筐体をさらに備え、
前記筐体が、前記パイプに対して着脱可能であるとともに、当該パイプに対して取り付けられた状態において前記凹レンズと前記パイプの外表面との間に空隙が形成されるように構成されている請求項1記載の濃度センサ。 Further comprising a housing that holds the light source, the collimating lens, the one or more concave lenses, the condensing lens, and the light detection mechanism at a predetermined position,
The housing is detachable from the pipe, and a gap is formed between the concave lens and the outer surface of the pipe when attached to the pipe. Item 2. The concentration sensor according to item 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-201148 | 2018-10-25 | ||
JP2018201148A JP2022017606A (en) | 2018-10-25 | 2018-10-25 | Concentration sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020084867A1 true WO2020084867A1 (en) | 2020-04-30 |
Family
ID=70331514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/030928 WO2020084867A1 (en) | 2018-10-25 | 2019-08-06 | Concentration sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022017606A (en) |
WO (1) | WO2020084867A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023138053A (en) * | 2022-03-18 | 2023-09-29 | アズビル株式会社 | Concentration measurement device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5143176U (en) * | 1974-09-26 | 1976-03-30 | ||
JPH0175851U (en) * | 1987-11-11 | 1989-05-23 | ||
JPH01253633A (en) * | 1988-04-01 | 1989-10-09 | Hitachi Ltd | Absorbance detector |
JPH05196602A (en) * | 1992-01-20 | 1993-08-06 | Hitachi Ltd | Column for capillary electrophoresis |
JPH0743524U (en) * | 1993-12-28 | 1995-08-22 | 東亜医用電子株式会社 | Liquid analyzer |
JP2005514591A (en) * | 2001-12-19 | 2005-05-19 | スリーエム イノベイティブ プロパティズ カンパニー | Analytical device with light-guided irradiation of an array of capillaries and microgrooves |
JP2006234663A (en) * | 2005-02-25 | 2006-09-07 | Kurabo Ind Ltd | Flow cell, flow cell manufacturing method, and fluid concentration measuring apparatus |
JP2013148518A (en) * | 2012-01-20 | 2013-08-01 | Toshiba Corp | Automatic analyzer |
JP2014215041A (en) * | 2013-04-22 | 2014-11-17 | 株式会社堀場製作所 | Particle counter and manufacturing method for the same |
JP2017020903A (en) * | 2015-07-10 | 2017-01-26 | 協和メデックス株式会社 | Detection device and analysis device |
-
2018
- 2018-10-25 JP JP2018201148A patent/JP2022017606A/en active Pending
-
2019
- 2019-08-06 WO PCT/JP2019/030928 patent/WO2020084867A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5143176U (en) * | 1974-09-26 | 1976-03-30 | ||
JPH0175851U (en) * | 1987-11-11 | 1989-05-23 | ||
JPH01253633A (en) * | 1988-04-01 | 1989-10-09 | Hitachi Ltd | Absorbance detector |
JPH05196602A (en) * | 1992-01-20 | 1993-08-06 | Hitachi Ltd | Column for capillary electrophoresis |
JPH0743524U (en) * | 1993-12-28 | 1995-08-22 | 東亜医用電子株式会社 | Liquid analyzer |
JP2005514591A (en) * | 2001-12-19 | 2005-05-19 | スリーエム イノベイティブ プロパティズ カンパニー | Analytical device with light-guided irradiation of an array of capillaries and microgrooves |
JP2006234663A (en) * | 2005-02-25 | 2006-09-07 | Kurabo Ind Ltd | Flow cell, flow cell manufacturing method, and fluid concentration measuring apparatus |
JP2013148518A (en) * | 2012-01-20 | 2013-08-01 | Toshiba Corp | Automatic analyzer |
JP2014215041A (en) * | 2013-04-22 | 2014-11-17 | 株式会社堀場製作所 | Particle counter and manufacturing method for the same |
JP2017020903A (en) * | 2015-07-10 | 2017-01-26 | 協和メデックス株式会社 | Detection device and analysis device |
Also Published As
Publication number | Publication date |
---|---|
JP2022017606A (en) | 2022-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102246478B1 (en) | Concentration measuring device | |
US20080308733A1 (en) | Optical gas sensor | |
CN107991250B (en) | Measurement cell and gas analysis device | |
JP2899651B2 (en) | Light transmission type spectrometer | |
US6801317B2 (en) | Plasmon resonance sensor | |
US4475813A (en) | Divergent light optical systems for liquid chromatography | |
JPH07286957A (en) | Refractometer | |
WO2020084867A1 (en) | Concentration sensor | |
KR102454649B1 (en) | concentration measuring device | |
CN110637225A (en) | Optical sensor | |
CN113508287A (en) | Concentration measuring device | |
CN111103247A (en) | Ultraviolet-visible spectrophotometer | |
WO2011040588A1 (en) | Temperature sensitive body, optical temperature sensor, temperature measuring device, and heat flux measuring device | |
JP7492269B2 (en) | Concentration Measuring Device | |
US20130100450A1 (en) | Apparatus for determining optical density of liquid sample and optical waveguide thereof | |
JP4538364B2 (en) | Refractive index measuring tool, refractive index measuring apparatus and refractive index measuring method | |
JP6750734B2 (en) | Flow cell and detector equipped with the flow cell | |
WO2019038818A1 (en) | Flow cell | |
KR102223821B1 (en) | Multi gas sensing apparatus | |
JP7364293B2 (en) | Optical detector for detecting gases and suspended solids | |
WO2024116593A1 (en) | Concentration measurement device | |
US12281979B2 (en) | High-speed tunable chemical composition detecting components and apparatuses | |
US20230324282A1 (en) | Optical measuring cell | |
JP2023105732A (en) | Concentration measuring device | |
US20140240709A1 (en) | Advanced mass gauge sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19877044 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19877044 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |