WO2020082299A1 - 具有单孔及多孔微创手术功能的手术机器人机构 - Google Patents
具有单孔及多孔微创手术功能的手术机器人机构 Download PDFInfo
- Publication number
- WO2020082299A1 WO2020082299A1 PCT/CN2018/111897 CN2018111897W WO2020082299A1 WO 2020082299 A1 WO2020082299 A1 WO 2020082299A1 CN 2018111897 W CN2018111897 W CN 2018111897W WO 2020082299 A1 WO2020082299 A1 WO 2020082299A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arm
- axis
- surgical
- minimally invasive
- cantilever
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 39
- 230000000712 assembly Effects 0.000 claims abstract description 7
- 238000000429 assembly Methods 0.000 claims abstract description 7
- 238000002324 minimally invasive surgery Methods 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 230000036544 posture Effects 0.000 description 12
- 206010052428 Wound Diseases 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 7
- 230000003902 lesion Effects 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Leader-follower robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J18/00—Arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3462—Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
- A61B2017/3466—Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals for simultaneous sealing of multiple instruments
Definitions
- the present disclosure relates to the field of minimally invasive surgical robots, and in particular to a surgical robot mechanism with single-hole and porous minimally invasive surgical functions.
- Minimally invasive surgical tools have many advantages such as small hand wounds, less bleeding, fast recovery time and good cosmetic effects.
- Traditional minimally invasive surgical tools are mostly long straight rods, which are held by doctors and placed through small wounds in the chest cavity, abdominal cavity or other parts.
- the operation is completed under the display screen.
- the chief surgeon, the doctor holding the mirror and other auxiliary doctors must cooperate with each other to perform the operation.
- problems such as interference of surgical tools appear, which affect the smooth operation of the surgery.
- the minimally invasive surgical robot is a surgical robot developed for minimally invasive surgery.
- the operating principle of surgical instruments is similar to traditional minimally invasive surgical instruments. Long straight rod-type surgical instruments are placed into the patient's body cavity through a small wound, but the doctor is not directly Operate robotic surgical instruments, but control the movement of surgical instruments through the operating platform of the robot.
- Minimally invasive surgical robots mostly use master-slave control systems, through kinematics, dynamics, control system principles, robotics, machine vision, etc. This principle enables the movement of surgical instruments to accurately simulate the movement of the doctor's hand, thereby achieving more efficient and safe operation.
- Minimally invasive surgical robots can be roughly divided into three categories: porous minimally invasive surgical robots, single-hole minimally invasive surgical robots, and natural cavity minimally invasive surgical robots. These three types of surgical robots are operated according to the different environments according to the characteristics and constraints of different types of surgery. Therefore, a certain type of surgical robot can only be applied to one type of surgery, that is: porous minimally invasive surgical robot can only be used for porous minimally invasive surgery
- the single-hole minimally invasive surgical robot can only be used for single-hole minimally invasive surgery
- the natural cavity surgical robot can only be used for natural cavity surgery.
- the present disclosure provides a surgical robot mechanism with single-hole and porous minimally invasive surgery functions, including: a bracket; a slave mechanism connected to the bracket, the slave mechanism supported by the bracket; the slave mechanism Including: a support arm, which can move along the bracket; a function conversion frame, fixed on the support arm, for the surgical robot mechanism to switch between a single-hole minimally invasive surgery mode and a porous minimally invasive surgery mode; multiple postures
- the adjustment arm assembly is connected to the function conversion frame and is used to adjust the position and posture of the surgical tool; a plurality of surgical tools are respectively connected to the plurality of attitude adjustment arm assemblies and are used to perform surgical operations.
- a function conversion frame is provided, and the function conversion frame is adjusted to realize the switching between the single-hole minimally invasive surgical function and the porous minimally invasive surgical function;
- the structural composition of the posture adjustment arm assembly enables the surgical tools carried at the end to be carried out in space Freedom movement makes it easy to adjust according to the specific lesion environment;
- the present disclosure has the functions of porous minimally invasive surgery and single-hole minimally invasive surgery, and the application environment can be flexibly changed by reorganizing the robot structure and selecting the surgical tools carried.
- FIG. 1 is a schematic diagram of the overall structure of a surgical robot mechanism with single-hole and multi-hole minimally invasive surgical functions according to an embodiment of the present disclosure.
- FIG. 2 is a schematic structural view of a functional conversion rack of a surgical robot mechanism with single-hole and porous minimally invasive surgical functions according to an embodiment of the present disclosure.
- FIG. 3 is a schematic structural view of a porous minimally invasive surgery mode of a surgical robot mechanism with single hole and porous minimally invasive surgery functions according to an embodiment of the present disclosure.
- FIG. 4 is a schematic structural view of a posture adjustment arm assembly of a surgical robot mechanism with single-hole and porous minimally invasive surgery functions according to an embodiment of the present disclosure.
- FIG. 5 is a schematic structural diagram of a single-hole minimally invasive surgery mode of a surgical robot mechanism with single-hole and porous minimally-invasive surgery functions according to an embodiment of the present disclosure.
- FIG. 6 is a partial structural diagram of FIG. 5.
- FIG. 7 is a schematic diagram of the structure of the surgical tool in FIG. 6.
- the present disclosure provides a surgical robot mechanism with single hole and porous minimally invasive surgery functions, which has both porous minimally invasive surgery and single hole minimally invasive surgery functions.
- the surgical robot mechanism includes: a bracket 200 and a slave mechanism 100; the slave mechanism 100 is connected to the bracket 200, the slave mechanism 100 is supported by the bracket 200, and the slave mechanism 100 moves up and down along the bracket 200 .
- the bracket 200 includes: an I-shaped base 201 and a supporting column 202, and the supporting column 202 is fixed on the I-shaped base 201.
- the slave mechanism 100 includes a support arm 140, a function conversion frame 110, an attitude adjustment arm assembly 120, and a surgical tool 130.
- the support arm 140 includes: a first arm 141 and a second arm 142.
- the first arm 141 is fixed on the support column 202, and the second arm 142 is rotatably connected to the first arm 141.
- the function conversion frame 110 is rotatably connected with the second arm 142 of the support arm 140, and is used to switch the structure of a surgical robot between a single-hole minimally invasive surgical function and a porous minimally invasive surgical function.
- the function conversion rack 110 is specifically shown in FIG. 2 and includes a base 111, a first cantilever 112 and a second cantilever 113.
- the base 111 is rotatably connected to the second arm 142 of the support arm 140, and one end thereof is connected to the first cantilever 112 passive rotation pair, and the other end is connected to the second cantilever 113 passive rotation pair.
- the first cantilever 112 and the second cantilever 113 can rotate relative to the base 111 about the first axis R1 and the second axis R2, respectively.
- a plurality of posture adjustment arm assemblies 120 are connected to the function conversion frame 110 for adjusting the position and posture of the surgical tool 130. 1 and 3 include three posture adjustment arm assemblies 120, which are fixed to the base 111, the first cantilever 112, and the second cantilever 113, respectively.
- the base 111, the first cantilever 112 and the second cantilever 113 are located on the same plane, and the function conversion frame 110 is in the shape of a flat plate.
- the surgical tools 130 enter the human body through the wounds respectively, and then perform surgical operations after reaching the lesion site.
- the posture adjustment arm assembly 120 includes a first active arm 121, an active arm joint 122, a second active arm 123, a passive arm joint 124, and a passive arm 125.
- the first end of the first driving arm 121 is rotatably connected to the function conversion frame 110 (the base 111, the first cantilever 112, or the second cantilever 113).
- the first driving arm 121 can rotate around the third axis R3.
- the plane where a cantilever 112 is located is vertical, and the first driving arm 121 can drive the posture adjusting arm assembly 120 to rotate about the third axis R3.
- the first end of the active arm joint 122 is rotatably connected to the second end of the first active arm 121, and the active arm joint 122 can rotate around the fourth axis R4, which is parallel to the third axis R3.
- the first end of the second active arm 123 is rotatably connected to the second end of the active arm joint 122.
- the second active arm 123 can rotate around the fifth axis R5, which is perpendicular to the fourth axis R4.
- the first end of the passive arm joint 124 is connected with the passive rotation pair of the second end of the second active arm 123.
- the passive arm joint 124 can rotate around the sixth axis R6, which is parallel to the fifth axis R5.
- the first end of the passive arm 125 is connected to the passive rotation pair of the second end of the passive arm joint 124.
- the passive arm 125 can rotate around the seventh axis R7, which coincides with the extending direction of the passive arm 125.
- the second end of the passive arm 125 is connected to the passive rotation pair of the surgical tool 130.
- the surgical tool 130 can rotate around the eighth axis R8, which is perpendicular to the seventh axis.
- the function, mechanism, and number of surgical tools 130 are not limited to a single form.
- the function conversion frame 110 is provided with a motor for driving the first driving arm 121 to rotate around the third axis R3.
- the first driving arm 121 is also provided with a motor for driving the driving arm joint 122 to rotate about the fourth axis R4.
- the active arm joint 122 is also provided with a motor for driving the second active arm 123 to rotate around the fifth axis R5.
- the first cantilever 112 rotates around the first axis R1
- the second cantilever 113 rotates around the second axis R2
- the base 111 and the first cantilever 112 and The second cantilever 113 forms an angle.
- the included angle is -90 ° ⁇ 90 °.
- the combined surgical tool 130 enters the human body through the same wound and reaches the lesion site for surgical operation.
- the porous minimally invasive surgery mode a plurality of surgical tools 130 are separated from each other, and each surgical tool 130 respectively corresponds to a wound to enter the human body to reach the lesion site for surgical operation. There is no need to combine the surgical tools 130 to enter the human body through the same wound.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Robotics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pathology (AREA)
- Manipulator (AREA)
Abstract
一种具有单孔及多孔微创手术功能的手术机器人机构,包括:支架(200);从手机构(100),与支架(200)相连,从手机构(100)由支架(200)支撑;从手机构(100)包括:支撑臂(140),可沿支架(200)移动;功能转换架(110),固定于支撑臂(140)上,用于手术机器人机构在单孔微创手术模式和多孔微创手术模式间切换;多个姿态调整臂组件(120),与功能转换架(110)相连,用于调整手术工具的位置和姿态;多个手术工具(130),分别与多个姿态调整臂组件(120)相连,用于进行手术操作。
Description
本公开涉及微创手术机器人领域,尤其涉及一种具有单孔及多孔微创手术功能的手术机器人机构。
微创手术具手创口小,出血量少,恢复时间快及美容效果好等诸多优点,传统微创手术工具多为长直杆状,由医生手持,经由胸腔、腹腔或其它部位的微小创口置入,配合医用内窥镜,在显示器画面下完成手术操作,在此种操作模式中,需由主刀医生、持镜医生及其他辅助医生多人配合下进行手术操作,手术过程中,常因相互配合不协调或显示器画面中视野不合理以及手术器械运动不符合直觉操作规律等多种原因,出现手术工具干涉等问题,进而影响手术的顺利进行。
微创手术机器人是针对微创手术所研发的外科手术机器人,其手术器械工作原理与传统微创手术器械相似,将长直杆型手术器械通过微小创口置入患者体腔内,但医生并不直接操作机器人手术器械,而是通过操作机器人的操纵平台对手术器械进行运动控制,微创手术机器人多采用主-从控制系统,通过运动学、动力学、控制系统原理、机器人学、机器视觉等多种原理,使手术器械的运动能够精准模拟医生手部动作,从而达到更加高效安全地实施手术。
微创手术机器人可大致分为三类:多孔微创手术机器人、单孔微创手术机器人及自然腔道微创手术机器人。此三类手术机器人依据不同手术类型特点与约束,各自针对适应的环境进行手术,因此,某一类手术机器人只能适用于一类手术,即:多孔微创手术机器人只能用于多孔微创手术,单孔微创手术机器人只能用于单孔微创手术,自然腔道手术机器人只能用于自然腔道手术。
鉴于微创手术种类繁多,病灶部件各不相同,环境需求迥异,体内操作空间约束繁杂,某一类微创手术机器人亦不能完全适应其所针对的手术领域,医院需要配备多种类型手术机器人才能满足不同患者的手术需求。
公开内容
本公开提供了一种具有单孔及多孔微创手术功能的手术机器人机构,包括:支架;从手机构,与所述支架相连,所述从手机构由所述支架支撑;所述从手机构包括:支撑臂,可沿所述支架移动;功能转换架,固定于所述支撑臂上,用于所述手术机器人机构在单孔微创手术模式和多孔微创手术模式间切换;多个姿态调整臂组件,与所述功能转换架相连,用于调整手术工具的位置和姿态;多个手术工具,分别与所述多个姿态调整臂组件相连,用于进行手术操作。
从上述技术方案可以看出,本公开实施例至少具有以下有益效果:
设置了功能转换架,通过调整功能转换架以实现手术机器人机构在单孔微创手术功能和多孔微创手术功能间切换;姿态调整臂组件结构组成能够使末端携带的手术工具可在空间进行多自由度运动,便于根据具体病灶环境进行调整;本公开兼具多孔微创手术与单孔微创手术功能,通过对机器人结构的重组与携带的手术工具的选择,即可灵活改变其适用环境。
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开实施例具有单孔及多孔微创手术功能的手术机器人机构整体结构示意图。
图2为本公开实施例具有单孔及多孔微创手术功能的手术机器人机构功能转换架结构示意图。
图3为本公开实施例具有单孔及多孔微创手术功能的手术机器人机构多孔微创手术模式结构示意图。
图4为本公开实施例具有单孔及多孔微创手术功能的手术机器人机构姿态调整臂组件结构示意图。
图5为本公开实施例具有单孔及多孔微创手术功能的手术机器人机构单孔微创手术模式结构示意图。
图6为图5的局部结构示意图。
图7为图6中的手术工具结构示意图。
【符号说明】
100-从手机构;
110-功能转换架;
111-基座; 112-第一悬臂;
113-第二悬臂;
120-姿态调整臂组件;
121-第一主动臂; 122-主动臂关节;
123-第二主动臂; 124-被动臂关节;
125-被动臂;
130-手术工具;
140-支撑臂;
141-第一臂;
142-第二臂;
200-支架;
201-工字型底座;
202-支撑柱;
R1、R2、R3、R4、R5、R6、R7、R8-第一轴线、第二轴线、第三轴线、第四轴线、第五轴线、第六轴线、第七轴线、第八轴线。
本公开提供了一种具有单孔及多孔微创手术功能的手术机器人机构,兼具多孔微创手术与单孔微创手术功能,通过对机器人结构的重组与携带的手术工具的选择,即可灵活改变其适用环境。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
本公开一实施例提供了一种具有单孔及多孔微创手术功能的手术机器人机构。如图1至图4所示,手术机器人机构包括:支架200和从手机构100;从手机构100与支架200相连,从手机构100由支架200支撑且从手机构100沿支架200做上下运动。
支架200包括:工字型底座201和支撑柱202,支撑柱202固定于工字型底座201上。
从手机构100包括:支撑臂140、功能转换架110、姿态调整臂组件 120和手术工具130。
支撑臂140包括:第一臂141和第二臂142。第一臂141固定于支撑柱202上,第二臂142与第一臂141转动连接。
功能转换架110与支撑臂140的第二臂142转动连接,用于手术机器人结构在单孔微创手术功能和多孔微创手术功能间切换。
功能转换架110具体如图2所示,包括:基座111、第一悬臂112和第二悬臂113。基座111与支撑臂140的第二臂142转动连接,并且其一端与第一悬臂112被动转动副连接,另一端与第二悬臂113被动转动副连接。第一悬臂112、第二悬臂113可相对基座111分别绕第一轴线R1、第二轴线R2旋转。
多个姿态调整臂组件120与功能转换架110相连,用于调整手术工具130的位置和姿态。图1和图3包括三个姿态调整臂组件120,分别固定于基座111、第一悬臂112和第二悬臂113。
如图3和图4所示,在多孔微创手术模式下,基座111、第一悬臂112和第二悬臂113位于同一平面,功能转换架110呈平板状。手术工具130分别通过创口进入人体,到达病灶部位后进行手术操作。
具体的,姿态调整臂组件120包括:第一主动臂121、主动臂关节122、第二主动臂123、被动臂关节124和被动臂125。
第一主动臂121第一端与功能转换架110(基座111、第一悬臂112或第二悬臂113)转动连接,第一主动臂121可绕第三轴线R3旋转,第三轴线R3与第一悬臂112所在平面垂直,第一主动臂121可带动姿态调整臂组件120绕第三轴线R3转动。
主动臂关节122第一端与第一主动臂121第二端转动连接,主动臂关节122可绕第四轴线R4旋转,第四轴线R4平行于第三轴线R3。
第二主动臂123第一端与主动臂关节122第二端转动连接,第二主动臂123可绕第五轴线R5转动,第五轴线R5与第四轴线R4垂直。
被动臂关节124第一端与第二主动臂123第二端被动转动副连接,被动臂关节124可绕第六轴线R6转动,第六轴线R6与第五轴线R5平行。
被动臂125第一端与被动臂关节124第二端被动转动副连接,被动臂125可绕第七轴线R7转动,第七轴线R7与被动臂125的延伸方向相重合。 被动臂125第二端与手术工具130被动转动副连接,手术工具130可绕第八轴线R8转动,第八轴线R8与第七轴线相垂直。
手术工具130的功能及机构及数量不限于单一形式。功能转换架110上设置有电机,用于驱动第一主动臂121绕第三轴线R3旋转。第一主动臂121也设置有电机,用于驱动主动臂关节122绕第四轴线R4旋转。主动臂关节122也设置有电机,用于驱动第二主动臂123绕第五轴线R5转动。
在单孔微创手术模式下,如图5和图6所示,第一悬臂112绕第一轴线R1转动,第二悬臂113绕第二轴线R2转动,基座111分别与第一悬臂112和第二悬臂113形成一夹角。夹角为-90°~90°。通过多个姿态调整臂组件120姿态,多个手术工具130组合在一起,组合后的手术工具130可进行单孔手术操作,并能实现其末端的空间多自由度运动。单孔微创手术模式下,组合后的手术工具130通过同一个创口进入人体,到达病灶部位后进行手术操作。多孔微创手术模式下,多个手术工具130相互分离,每个手术工具130分别对应一个创口进入人体,到达病灶部位进行手术操作,并不需要对手术工具130进行组合以通过同一创口进入人体。
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本发明实施例中的特征可以任意组合;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
Claims (7)
- 一种具有单孔及多孔微创手术功能的手术机器人机构,其中,包括:支架;从手机构,与所述支架相连,所述从手机构由所述支架支撑;所述从手机构包括:支撑臂,可沿所述支架移动;功能转换架,固定于所述支撑臂上,用于所述手术机器人机构在单孔微创手术模式和多孔微创手术模式间切换;多个姿态调整臂组件,与所述功能转换架相连,用于调整手术工具的位置和姿态;多个手术工具,分别与所述多个姿态调整臂组件相连,用于进行手术操作。
- 根据权利要求1所述的手术机器人机构,其中,所述功能转换架包括:基座,与所述支架相连;第一悬臂,与所述基座第一端转动连接;第二悬臂,与所述基座第二端转动连接;所述多个姿态调整臂组件分别与所述基座、第一悬臂和第二悬臂相连。
- [根据细则91更正 18.01.2019]
根据权利要求1所述的手术机器人机构,其中,所述姿态调整臂组件包括:第一主动臂,第一端与所述功能转换架转动连接;主动臂关节,第一端与所述第一主动臂转动连接;第二主动臂,第一端与所述主动臂关节第二端转动连接;被动臂关节,第一端与所述第二主动臂第二端转动连接;被动臂,第一端与所述被动臂关节第二端转动连接,所述被动臂第二端与手术工具转动连接。 - [根据细则91更正 18.01.2019]
根据权利要求4所述的手术机器人机构,其中,所述第一主动臂可相对所述功能转换架绕第三轴线旋转,所述第三轴线与所述第一悬臂的表面相垂直;所述主动臂关节可相对所述第一主动臂绕第四轴线旋转,所述第四轴 与所述第三轴线相平行;所述第二主动臂可相对所述主动臂关节绕第五轴线旋转,所述第五轴线与所述第四轴线相垂直;所述被动臂关节可相对所述第二主动臂绕第六轴线旋转,所述第六轴线与所述第四轴线;所述被动臂可相对所述被动臂关节绕第七轴线旋转,所述第七轴线与所述被动臂的延伸方向相重合;所述手术工具可相对所述被动臂绕第八轴旋转,所述第八轴线与所述第七轴线相垂直。 - [根据细则91更正 18.01.2019]
根据权利要求2所述的手术机器人机构,其中,在多孔微创手术模式下,所述基座、第一悬臂和第二悬臂位于同一平面,所述多个手术工具相互分离。 - [根据细则91更正 18.01.2019]
根据权利要求2所述的手术机器人机构,其中,在单孔微创手术模式下,所述基座分别与所述第一悬臂和所述第二悬臂各呈一夹角,所述多个手术工具合并在一起。 - [根据细则91更正 18.01.2019]
根据权利要求7所述的手术机器人机构,其中,所述夹角大于0度小于180度。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18938213.8A EP3756606B1 (en) | 2018-10-25 | 2018-10-25 | Surgical robot mechanism with single-port and multi-port minimally invasive operation functions |
US16/981,094 US12011245B2 (en) | 2018-10-25 | 2018-10-25 | Surgical robot mechanism with single-port and multi-port minimally invasive surgery functions |
PCT/CN2018/111897 WO2020082299A1 (zh) | 2018-10-25 | 2018-10-25 | 具有单孔及多孔微创手术功能的手术机器人机构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/111897 WO2020082299A1 (zh) | 2018-10-25 | 2018-10-25 | 具有单孔及多孔微创手术功能的手术机器人机构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020082299A1 true WO2020082299A1 (zh) | 2020-04-30 |
Family
ID=70331863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/111897 WO2020082299A1 (zh) | 2018-10-25 | 2018-10-25 | 具有单孔及多孔微创手术功能的手术机器人机构 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12011245B2 (zh) |
EP (1) | EP3756606B1 (zh) |
WO (1) | WO2020082299A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI4286609T3 (en) * | 2022-06-01 | 2025-04-05 | Contelec Ag | MULTIPLE INERTIA MEASUREMENT UNITS SYSTEM |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170000572A1 (en) * | 2015-07-01 | 2017-01-05 | Mako Surgical Corp. | Robotic Systems And Methods For Controlling A Tool Removing Material From A Workpiece |
CN106361440A (zh) * | 2016-08-31 | 2017-02-01 | 北京术锐技术有限公司 | 一种柔性手术工具系统及其在运动约束下的控制方法 |
CN106691591A (zh) * | 2016-11-23 | 2017-05-24 | 深圳市罗伯医疗科技有限公司 | 一种单孔微创手术用机器臂 |
CN206836961U (zh) * | 2016-11-23 | 2018-01-05 | 深圳市罗伯医疗科技有限公司 | 一种单孔腹腔微创手术用机器臂 |
CN108433811A (zh) * | 2018-03-09 | 2018-08-24 | 山东大学齐鲁医院 | 一种具有自转定位关节的单孔手术机器人的整体布局结构 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8620473B2 (en) * | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
KR101181569B1 (ko) * | 2010-05-25 | 2012-09-10 | 정창욱 | 단일 통로 수술 모드와 다통로 수술 모드를 실현할 수 있는 수술용 로봇 시스템 및 그 제어 방법 |
CN106037937B (zh) * | 2016-07-08 | 2018-06-22 | 天津大学 | 一种具有自适应能力的手术机器人操作臂 |
CN106236276B (zh) | 2016-09-28 | 2019-09-17 | 微创(上海)医疗机器人有限公司 | 手术机器人系统 |
-
2018
- 2018-10-25 WO PCT/CN2018/111897 patent/WO2020082299A1/zh unknown
- 2018-10-25 US US16/981,094 patent/US12011245B2/en active Active
- 2018-10-25 EP EP18938213.8A patent/EP3756606B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170000572A1 (en) * | 2015-07-01 | 2017-01-05 | Mako Surgical Corp. | Robotic Systems And Methods For Controlling A Tool Removing Material From A Workpiece |
CN106361440A (zh) * | 2016-08-31 | 2017-02-01 | 北京术锐技术有限公司 | 一种柔性手术工具系统及其在运动约束下的控制方法 |
CN106691591A (zh) * | 2016-11-23 | 2017-05-24 | 深圳市罗伯医疗科技有限公司 | 一种单孔微创手术用机器臂 |
CN206836961U (zh) * | 2016-11-23 | 2018-01-05 | 深圳市罗伯医疗科技有限公司 | 一种单孔腹腔微创手术用机器臂 |
CN108433811A (zh) * | 2018-03-09 | 2018-08-24 | 山东大学齐鲁医院 | 一种具有自转定位关节的单孔手术机器人的整体布局结构 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3756606A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3756606A4 (en) | 2021-10-13 |
EP3756606B1 (en) | 2022-11-30 |
US20210251708A1 (en) | 2021-08-19 |
US12011245B2 (en) | 2024-06-18 |
EP3756606A1 (en) | 2020-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106037937B (zh) | 一种具有自适应能力的手术机器人操作臂 | |
US20160374771A1 (en) | Robotic system for tele-surgery | |
EP3733110A1 (en) | Surgical robot terminal | |
US12167897B2 (en) | Robot arm structure and surgical robot manipulator including same | |
CN106214257B (zh) | 一种微创手术机器人用主操作平台 | |
US20130190774A1 (en) | Mechanical positioning system for surgical instruments | |
CN109009443A (zh) | 腹腔微创外科手术机器人 | |
JP2021507783A (ja) | 手術用ロボット端末 | |
BR112019005920B1 (pt) | Sistema robótico cirúrgico | |
CN104622585A (zh) | 一种腹腔镜微创手术机器人主从同构式遥操作主手 | |
CN104717935A (zh) | 利用零空间取消关节运动的系统和方法 | |
RU135957U1 (ru) | Робот-манипулятор | |
US12096998B2 (en) | Reducing energy buildup in servo-controlled mechanisms | |
CN109350243B (zh) | 具有单孔及多孔微创手术功能的手术机器人机构 | |
CN104644267B (zh) | 混联五自由度微创外科手术机械臂 | |
WO2019200773A1 (zh) | 一种腹腔镜手术持镜机器人系统 | |
CN112716606A (zh) | 一种三自由度微创手术机械臂远端运动中心机构 | |
US11844584B2 (en) | Robotic system for tele-surgery | |
CN114129266A (zh) | 保持rc点不变的方法、机械臂、设备、机器人和介质 | |
JP2008272887A (ja) | 低侵襲手術ロボット | |
CN114098954A (zh) | 机械臂、从操作设备、手术机器人 | |
WO2020082299A1 (zh) | 具有单孔及多孔微创手术功能的手术机器人机构 | |
CN204484326U (zh) | 一种腹腔镜微创手术机器人主从同构式遥操作主手 | |
Beira et al. | Dionis: A Novel Remote‐Center‐of‐Motion Parallel Manipulator for Minimally Invasive Surgery | |
CN107049495B (zh) | 一种用于微创手术的三自由度机器人 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18938213 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018938213 Country of ref document: EP Effective date: 20200925 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |