[go: up one dir, main page]

WO2020080260A1 - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
WO2020080260A1
WO2020080260A1 PCT/JP2019/040101 JP2019040101W WO2020080260A1 WO 2020080260 A1 WO2020080260 A1 WO 2020080260A1 JP 2019040101 W JP2019040101 W JP 2019040101W WO 2020080260 A1 WO2020080260 A1 WO 2020080260A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal fan
construction machine
hub
shroud
edge
Prior art date
Application number
PCT/JP2019/040101
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 大和
和也 草野
仁視 西口
邦彦 池田
健一 羽野
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US17/284,507 priority Critical patent/US11680583B2/en
Priority to CN201980065819.7A priority patent/CN112805474B/en
Priority to EP19874021.9A priority patent/EP3869044B1/en
Publication of WO2020080260A1 publication Critical patent/WO2020080260A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0866Engine compartment, e.g. heat exchangers, exhaust filters, cooling devices, silencers, mufflers, position of hydraulic pumps in the engine compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/711Shape curved convex

Definitions

  • the present invention relates to a construction machine, and more particularly, to a construction machine equipped with a centrifugal fan.
  • the centrifugal fan is a disk-shaped hub (main plate) attached to a rotary drive shaft, a plurality of blades whose one end side is fixed to the outer peripheral portion of the hub at intervals in the circumferential direction, and the above-mentioned blades of the plurality of blades.
  • a ring-shaped shroud (side plate) that is attached to the other end opposite to the hub and that forms an air suction port is provided on one side.
  • the shroud is configured to have an arcuate cross-section that is inclined from the central air suction port toward the outer peripheral centrifugal direction with a predetermined curvature, and the shroud-side end portion between the hub of the blade and the shroud is formed. It is curved in the direction opposite to the rotation side.
  • a bell mouth is installed on the suction side of the centrifugal fan in order to smoothly guide air to the air suction port of the centrifugal fan.
  • the bell mouth is arranged with the end portion of the air outlet on the downstream side loosely fitted inside the air inlet of the shroud.
  • the centrifugal fan pressurizes the air by sucking it in from the axial direction and discharging it to the outside in the radial direction, so the flow of air inside the fan is suddenly diverted.
  • the airflow is pushed toward the hub side by inertia when it is turned radially outward from the axial direction.
  • the airflow on the shroud side needs to be turned with a larger curvature than the airflow on the hub side, but it is pressed against the hub side without being able to follow the wall shape of the shroud.
  • the velocity of the airflow on the hub side becomes larger than that on the shroud side. Distribution occurs. If the flow velocity difference between the hub side and the shroud side becomes large, the airflow will separate from the shroud. In this case, since the effective flow passage area inside the centrifugal fan is reduced, the performance of the centrifugal fan is deteriorated.
  • One way to make the flow velocity distribution in the span direction of the blades uniform is to reduce the curvature of the shroud of the centrifugal fan so that the air flow follows the inner wall surface of the shroud.
  • various devices and parts other than the engine and the heat exchanger are housed inside, and the installation space of the centrifugal fan is limited. Therefore, there is a demand for a centrifugal fan that is as thin as possible (short in the axial direction), and it is difficult to use a shroud that has a small curvature and is gently curved because it leads to an increase in size of the centrifugal fan.
  • a bell mouth is installed on the suction side of the centrifugal fan, and the air outlet of the bell mouth is connected to the shroud of the centrifugal fan. Some are located on the inner peripheral side of the air inlet. In a bell mouth whose diameter is reduced toward the centrifugal fan side, the velocity of the air flowing out from the air outlet is higher on the wall surface side (radial outer side) than on the center side (radial inner side) of the bell mouth.
  • a gap is provided between the rotating centrifugal fan and the stationary bell mouth so that they do not come into contact with each other. A part of the air discharged from the centrifugal fan flows into the centrifugal fan again as a leak flow through the gap.
  • the centrifugal fan mounted on the construction machine has a centrifugal fan and a bell mouth compared to the centrifugal fan applied to the ceiling-embedded air conditioner as disclosed in Patent Document 1 in consideration of vehicle body vibration during operation. It is necessary to increase the gap. The larger the gap, the more leakage flow into the centrifugal fan.
  • a flow velocity distribution in the span direction is generated at a position where the airflow direction is radially diverted to some extent, in which the speed difference between the hub-side airflow and the shroud-side airflow is further increased. .
  • the air flow is easily separated from the shroud.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a flow velocity distribution in the span direction of a blade with a bias such that the velocity of the air flow on the hub side in a centrifugal fan becomes larger than that on the shroud side. It is to provide construction machinery that can be mitigated.
  • the present application includes a plurality of means for solving the above problems, and one example thereof is a centrifugal fan housed inside a vehicle body, and a bell mouth arranged on the suction side of the centrifugal fan and having an outlet.
  • the centrifugal fan is rotatable about an axis of rotation and a hub that is disposed so as to face the hub to form a flow path between the hub and an annular shroud that has a suction port.
  • a plurality of blades provided at intervals in the circumferential direction between the hub and the shroud, and each of the plurality of blades has a front edge on the side where air flows in and a side where air flows out.
  • the outflow port of the bell mouth is arranged radially inward of the suction port of the shroud, each of the plurality of blades, the front edge is the With respect to a line segment that connects a connecting portion of the front edge with the hub and a connecting portion of the front edge with the shroud, the convex portion of the front edge is formed so as to have a convex shape on the suction surface side.
  • the apex of the shape is formed so as to be located radially inward of the wall surface of the outlet of the bell mouth when the suction side of the centrifugal fan is viewed in the axial direction.
  • the blade is configured so as to be positioned radially inward of the wall surface of the outlet of the bell mouth when the apex of the convex shape on the suction side at the front edge of the blade of the centrifugal fan is viewed from the axial direction. Therefore, it is possible to suppress the movement of the air flowing into the centrifugal fan from the vicinity of the wall surface of the bell mouth toward the hub side due to the inertia when the flow is outwardly in the radial direction. As a result, in the centrifugal fan mounted on the construction machine, it is possible to reduce the flow velocity distribution in the span direction of the blades in which the velocity of the air flow on the hub side tends to be higher than that on the shroud side. Problems, configurations, and effects other than the above will be clarified by the following description of the embodiments.
  • FIG. 2 is a partial cross-sectional view of the hydraulic excavator shown in FIG. 1 as viewed from the direction of arrow II-II, showing a state in which a part of the machine chamber of the hydraulic excavator is omitted. It is the figure which looked at the suction side of the centrifugal fan which constitutes a part of 1st Embodiment of the construction machine of this invention from the axial direction. It is a figure which shows the centrifugal fan shown in FIG. 3 in the state which removed the shroud. It is an enlarged view of the area
  • FIG. 3 is a figure which shows the front edge of the blade of a centrifugal fan, and the vicinity of a front edge.
  • FIG. 6 is a perspective view of the centrifugal fan shown in FIG. 4 as viewed from the direction of arrows VI-VI, showing a blade shape of the centrifugal fan.
  • FIG. 7 is a cross-sectional view of the centrifugal fan shown in FIG. 3 as viewed from the arrow VII-VII (a cross-sectional view taken along a cylindrical surface around the rotation axis at the position of the connecting portion between the front edge of the blade and the shroud).
  • FIG. 8 is a cross-sectional view of the centrifugal fan shown in FIG.
  • FIG. 4 is a cross-sectional view of the centrifugal fan shown in FIG. 3 viewed from the arrow IX-IX (a cross-sectional view taken along a cylindrical surface centering on the rotation axis at a position near the trailing edge of the blade).
  • IX-IX a cross-sectional view taken along a cylindrical surface centering on the rotation axis at a position near the trailing edge of the blade.
  • FIG. 10 shows the speed triangle in the position (position M shown in FIG. 10) near the span direction center of the blade leading edge of the centrifugal fan in 1st Embodiment of the construction machine of this invention. It is explanatory drawing which shows the speed triangle in the shroud side position (position S shown in FIG. 10) of the blade leading edge of the centrifugal fan in 1st Embodiment of the construction machine of this invention.
  • FIG. 10 shows the speed triangle in the position (position M shown in FIG. 10) near the span direction center of the blade leading edge of the centrifugal fan in 1st Embodiment of the construction machine of this invention.
  • FIG. 10 shows the speed triangle in the shroud side position (position S shown in FIG. 10) of the blade leading edge of the centrifugal fan in 1st Embodiment of the construction machine of this invention.
  • FIG. 4 is an explanatory view showing a structure of a conventional centrifugal fan and an air flow of the conventional centrifugal fan, and is a perspective view seen from an arrow similar to arrow XVI-XVI shown in FIG. 3. It is explanatory drawing which shows the flow velocity distribution of the span direction in the front edge of the blade of a conventional centrifugal fan, the vicinity of the chord direction center, and the rear edge.
  • FIG. 4 is an explanatory view showing the flow from the leading edge of the blade to the vicinity of the center in the chord direction in the centrifugal fan of the first embodiment of the construction machine of the invention, and is a perspective view seen from the arrow XVI-XVI shown in FIG. 3. is there.
  • FIGS. 1 and 2 are side views showing a hydraulic excavator as a first embodiment of a construction machine of the present invention
  • FIG. 2 is a partial sectional view of the hydraulic excavator shown in FIG. It is a figure which shows in the state which abbreviate
  • the description will be given using the direction viewed from the operator seated in the driver's seat.
  • thick arrows indicate the flow of air.
  • the hydraulic excavator 1 is provided with a crawler-type lower traveling body 2 that can be self-propelled, and an upper revolving body 3 that is rotatably mounted on the lower traveling body 2.
  • the undercarriage 2 and the upper revolving superstructure 3 form a vehicle body.
  • a work front 4 is provided at the front end of the upper swing body 3 so that the work front 4 can be lifted and lowered.
  • the work front 4 is a multi-joint type actuating device for performing excavation work and the like, and includes, for example, a boom 6, an arm 7, and a bucket 8.
  • the base end side of the boom 6 is rotatably connected to the front end of the upper swing body 3.
  • the base end of the arm 7 is rotatably connected to the tip of the boom 6.
  • the base end of the bucket 8 is rotatably connected to the tip of the arm 7.
  • the boom 6, the arm 7, and the bucket 8 are driven by a boom cylinder 6a, an arm cylinder 7a, and a bucket cylinder 8a, which are hydraulic drive devices, respectively.
  • the upper revolving structure 3 includes a revolving frame 11 which is a support structure mounted on the lower traveling structure 2 so as to be revolvable, a cab 12 installed on the left front side of the revolving frame 11, and a rear end portion of the revolving frame 11.
  • the counter weight 13 is provided at the right end in FIG. 1, and the machine room 14 is disposed between the cab 12 and the counter weight 13.
  • the cab 12 is provided with an operating device for instructing operations of the lower traveling body 2, the work front 4, and the like, a driver's seat on which an operator is seated, and the like (both not shown).
  • the counter weight 13 is for balancing the weight with the work front 4.
  • the machine room 14 accommodates a large number of devices including an engine 20 as a prime mover, a hydraulic pump (not shown) driven by the engine 20, and a cooling device 30 for cooling the engine 20.
  • An outer shell of the machine room 14 is formed by a building cover 16.
  • the building cover 16 is provided with a suction port (not shown) that takes in outside air into the machine room 14 and a discharge port (not shown) that discharges air from the machine room 14.
  • the cooling device 30 is provided with a centrifugal fan 31 that produces cooling air, a bell mouth 32 that is disposed on the suction side of the centrifugal fan 31, and that rectifies air and guides it to the centrifugal fan 31, and cooling air produced by the centrifugal fan 31. And a heat exchange device 33 configured to operate.
  • the centrifugal fan 31 is attached to the rotating shaft 23.
  • the rotating shaft 23 is rotatably supported by the engine 20 above the drive shaft 20a of the engine 20.
  • the drive shaft 20a and the rotary shaft 23 of the engine 20 are provided with a first pulley 24 and a second pulley 25, respectively.
  • a belt 26 is stretched around the first pulley 24 and the second pulley 25. With such a configuration, the centrifugal fan 31 is rotationally driven by the engine 20 about the rotation axis A.
  • the bell mouth 32 has a shape in which the cross section of the flow passage is reduced toward the centrifugal fan 31 side.
  • the upstream (left side in FIG. 2) end of the bell mouth 32 is attached to, for example, a device inside the machine room 14 or a building cover 16.
  • the opening at the end of the bell mouth 32 on the side of the centrifugal fan 31 (on the right side in FIG. 2) constitutes an outlet 32a for the flow of air.
  • the outlet 32a of the bell mouth 32 is arranged inside the suction port 31a of the centrifugal fan 31 in the radial direction with a gap D therebetween.
  • the heat exchange device 33 is arranged, for example, on the upstream side (left side in FIG. 2) of the bell mouth 32.
  • the heat exchange device 33 is composed of, for example, a heat exchanger such as a radiator or an oil cooler.
  • the radiator cools the cooling water of the engine 20, and the oil cooler cools the hydraulic oil supplied to the hydraulic drive system including the hydraulic cylinders 6a, 7a, 8a (see FIG. 1) of the work front 4. .
  • a rectifying member 35 is arranged on the opposite side of the bell mouth 32 with the centrifugal fan 31 interposed therebetween. That is, the rectifying member 35 is arranged on the opposite side of the suction port 31a of the centrifugal fan 31 to the back side of the hub 41 described later.
  • the rectifying member 35 suppresses the rapid expansion of the airflow Fd discharged from the centrifugal fan 31 into the machine chamber 14, and is a member that extends at least radially outward from the outer peripheral edge of the centrifugal fan 31.
  • the rectifying member 35 is, for example, an annular flat plate member having an outer peripheral edge of a circular shape, an elliptic shape, a polygonal shape, or the like, and is fixed to the engine 20 via a stay 36.
  • the rectifying member 35 also forms an air guide path for the air flow Fd discharged from the centrifugal fan 31 together with the bell mouth 32.
  • the rectifying member 35 reduces a turning speed component by friction with the air flow Fd discharged from the centrifugal fan 31 to convert a part of kinetic energy of the air flow Fd into static pressure, though there is a loss due to the friction. It is possible to reduce the loss.
  • FIGS. 3 is a view of the suction side of a centrifugal fan that constitutes a part of the first embodiment of the construction machine of the present invention as seen from the axial direction
  • FIG. 4 shows the centrifugal fan shown in FIG. 3 with the shroud removed.
  • the centrifugal fan 31 is attached to the rotary shaft 23, and is a disk-shaped hub 41 that is rotatable around the rotary axis A, and one side in the axial direction of the hub 41 (left side in FIG. 2).
  • An annular shroud 42 that is arranged to face each other and is coaxial with the hub 41 and forms a flow path between the hub 41 and the hub 41 is provided at a predetermined interval in the circumferential direction between the hub 41 and the shroud 42.
  • a plurality of blades 43 As shown in FIGS. 2 and 3, the shroud 42 is formed such that the axial one side (left side in FIG. 2) has a smaller diameter than the other side (right side in FIG. 2).
  • an opening having a small diameter located at the center on one axial side constitutes the suction port 31 a of the centrifugal fan 31.
  • FIG. 5 is an enlarged view of a region indicated by reference symbol L in FIG. 3, showing the leading edge and the vicinity of the leading edge of the blade of the centrifugal fan
  • FIG. 6 is a perspective view of the centrifugal fan shown in FIG.
  • FIG. 7 is a perspective view showing the blade shape of the centrifugal fan
  • FIG. 7 is a cross-sectional view of the centrifugal fan shown in FIG. 3 as seen from the arrow VII-VII (rotating at the position of the connecting portion between the front edge of the blade and the shroud).
  • FIG. 8 is a sectional view of the centrifugal fan shown in FIG.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of the centrifugal fan shown in FIG. 3 (a cross-sectional view taken along the line IX-IX of the centrifugal fan shown in FIG. 3).
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of the centrifugal fan shown in FIG. 3 (a cross-sectional view taken along the line IX-IX of the centrifugal fan shown in FIG. 3).
  • each blade 43 extends between a front edge 44 on the air inflow side, a rear edge 45 on the air outflow side, and between the front edge 44 and the rear edge 45. And a blade on the other side (a back surface side of the pressure surface 46) extending between the front edge 44 and the trailing edge 45, which is the blade surface on one side and faces the front side with respect to the rotation direction R. And a negative pressure surface 47 facing the rear side with respect to the rotation direction R.
  • the direction in which the blade 43 extends from the connection portion with the hub 41 to the connection portion with the shroud 42 is defined as the span direction of the blade 43. Further, the direction of the blade 43 extending from the leading edge 44 to the trailing edge 45 is defined as the chord direction of the blade 43.
  • each blade 43 has a convex vertex 44v of the front edge 44 when the suction side of the centrifugal fan 31 is viewed in the axial direction thereof, and the outlet 32a of the bell mouth 32. It is configured so as to be located on the inner side in the radial direction (on the side of the rotation axis A) than the wall surface.
  • the blade 43 is configured such that the convex shape of the leading edge 44 curved toward the suction surface 47 extends in the chord direction to reach the trailing edge 45. That is, as shown in FIGS. 7 to 9, the blade 43 has a cross section from a front edge 44 to a rear edge 45, which is cut along a cylindrical surface centering on the rotation axis A, at a connecting portion with the hub 41 of the blade 43 ( With respect to the line segment S connecting the root part) 43h and the connecting part (tip part) 43s of the blade 43 to the shroud 42, the negative pressure surface 47 side (rear side with respect to the rotation direction R) should be convex. It is curved.
  • the blade 43 has a curvature of the apex 43v in the above-mentioned convex shape at a position near the center in the chord direction from the leading edge 44 (a position midway between the leading edge 44 and the trailing edge 45). It is configured to gradually increase toward the end.
  • the curvature of the apex 43v in the convex shape is from the position near the center in the chord direction (the middle position between the leading edge 44 and the trailing edge 45) to the rear. It is configured to gradually decrease toward the edge 45.
  • the blade 43 is located on the leading edge 44 side, and the first curved blade portion whose curvature of the apex 43v in the convex shape of the blade 43 is gradually increased from the leading edge 44 is located on the trailing edge 45 side.
  • the curvature of the apex 43v gradually decreases toward the trailing edge 45.
  • the blades 43 are arranged in the circumferential direction of the connecting portion 43s with the shroud 42 with respect to the connecting portion 43h with the hub 41 in the blade cross section cut along the cylindrical surface with the rotation axis A as the center.
  • the relative position is configured to be gradually displaced rearward with respect to the rotation direction R from the front edge 44 toward the rear edge 45. More specifically, in the blade cross section near the front edge 44 of the blade 43, as shown in FIG. 7, the circumferential position of the connecting portion 43s with the shroud 42 is greater than the circumferential position of the connecting portion 43h with the hub 41. Is also displaced forward with respect to the rotation direction R.
  • the circumferential position of the connecting portion 43s with the shroud 42 is substantially the same as the circumferential position of the connecting portion 43h with the hub 41. Is.
  • the circumferential position of the connecting portion 43s with the shroud 42 is in the rotational direction R rather than the circumferential position of the connecting portion 43h with the hub 41. On the other hand, it is displaced to the rear side.
  • FIG. 10 is an explanatory view showing the radial velocity distribution of the air flow passing through the centrifugal fan suction port in the first embodiment of the construction machine of the present invention
  • FIG. 11 is the first embodiment of the construction machine of the present invention
  • 12 is an explanatory view showing a speed triangle at a hub side position (position H shown in FIG. 10) of the blade leading edge of the centrifugal fan in FIG. 12, and
  • FIG. 12 is a blade front of the centrifugal fan in the first embodiment of the construction machine of the present invention.
  • Explanatory drawing showing a speed triangle at a position near the center of the edge in the span direction position M shown in FIG.
  • FIG. 11 is an explanatory diagram showing a velocity triangle at the position (position S shown in FIG. 10).
  • a bell mouth 32 is installed on the suction side of the centrifugal fan 31, and there is a gap between the suction port 31a of the centrifugal fan 31 and the outflow port 32a of the bell mouth 32. D is provided. In this case, a part of the air discharged from the centrifugal fan 31 passes through the gap D between the centrifugal fan and the bellmouth and again flows into the centrifugal fan as a leakage flow FL.
  • the velocity of the air flowing out from the outflow port 32a of the bell mouth 32 is closer to the wall surface side than the center side (radially inner side) of the bell mouth 32 ( It becomes larger in the radial direction) (see the flow velocity distribution shown in FIG. 10). That is, the velocity locally increases in the region near the wall surface of the outlet 32a of the bell mouth 32. Due to the influence of the bell mouth 32, in the suction port 31a of the centrifugal fan 31, a flow having a higher velocity flows into the vicinity of the wall surface of the shroud 42 than in the central portion.
  • the inlet angle of the blades 43 of the centrifugal fan 31 is set in consideration of the influence of the bell mouth 32 described above.
  • the blade 43 is configured such that its inlet angle matches the inflow angle of air to the blade 43. In this case, since the flow of air flowing into the centrifugal fan 31 is a collision-free inflow condition, it is possible to reduce the collision loss of the flow.
  • the inlet angle of the blades 43 is centered on the tangent line Ct at the front edge 44 of the warp line C of the sectional shape of the blades 43 shown in FIG. 11 and the rotation axis A (see FIG. 10) of the centrifugal fan 31.
  • the warp line is a curve obtained by sequentially connecting the midpoints of the positive pressure surface 46 and the negative pressure surface 47 of the blade 43.
  • the inflow angle is an angle formed by the relative inflow velocity vector of the airflow and the rotation direction R of the centrifugal fan 31.
  • the inlet angle kh of the blade 43 at the position H is set to match the inflow angle ⁇ h obtained by the relative inflow velocity Wh determined by the peripheral velocity Uh and the meridional direction velocity Cmh.
  • the peripheral speed Um is determined from the rated rotation speed of the centrifugal fan 31 and the radial distance from the rotation axis A to the position M.
  • the peripheral speed Um at the position M is higher than the peripheral speed Uh at the position H because the position M is located radially outside the position H (see FIG. 10).
  • the meridional surface speed Cmm is larger than the meridional surface speed Cmh (see FIG.
  • the blade entrance angle km at the position M is set so as to match the inflow angle ⁇ m obtained by the relative inflow velocity Wm determined by the peripheral velocity Um and the meridional direction velocity Cmm.
  • the leakage flow FL flows from the gap D between the bell mouth 32 and the shroud 42 into the suction port 31a of the centrifugal fan 31. Since this leak flow FL is the air flow discharged from the centrifugal fan 31, it has a swirl velocity component. Therefore, there is a pre-turn in the flow of air flowing into the position S. That is, as shown in FIG. 13, the absolute velocity Cas of the airflow is not equal to the meridional velocity Cms, and the absolute velocity Cas includes the turning velocity Cus. Therefore, at the position S (see FIG.
  • the peripheral speed Us is determined from the rated rotation speed of the centrifugal fan 31 and the radial distance from the rotation axis A to the position S.
  • the peripheral speed Us at the position S is higher than the peripheral speed Um at the position M because the position S is located radially outside the position M (see FIG. 10).
  • the absolute velocity Cas is obtained from the meridional velocity Cms and the turning velocity Cus.
  • the meridional surface speed Cms is higher than the meridional surface speed Cmh at the position H (see FIG.
  • the inlet angle ks at the position S is set so as to match the inflow angle ⁇ s obtained by the inflow relative velocity Ws determined by the peripheral velocity Us and the absolute velocity Cas.
  • FIG. 14 is an explanatory view showing the structure of a conventional centrifugal fan and the air flow of the conventional centrifugal fan.
  • FIG. 14 is a perspective view seen from an arrow similar to arrow XVI-XVI shown in FIG. 3, and FIG. It is explanatory drawing which shows the flow velocity distribution of the span direction in the front edge of the blade of a centrifugal fan, the center of a chord direction, and a rear edge.
  • thick arrows indicate the flow of air.
  • the flow velocity distribution is indicated by a plurality of arrows. Note that, in FIGS. 14 and 15, the same reference numerals as those shown in FIGS. 1 to 14 denote the same parts, and thus detailed description thereof will be omitted.
  • the end of the blade 143 on the shroud 42 side in the span direction is curved rearward with respect to the rotation direction R. That is, the front edge 144 of the blade 143 is located on the suction surface 147 side (rear side with respect to the rotation direction R) with respect to the line segment SL connecting the connection portion 144h with the hub 41 and the connection portion 144s with the shroud 42. It is curved so as to have a convex shape.
  • the blade 143 is configured such that the position of the convex-shaped apex 144v of the front edge 144 is near the shroud 42 side.
  • the centrifugal fan 131 sucks air from the axial direction (upward direction in FIG. 14) and discharges it to the outside in the radial direction, the air flow inside the fan is suddenly turned. This airflow is pushed toward the hub 41 side by inertia when it is turned radially outward from the axial direction. Further, the airflow on the shroud 42 side needs to be turned with a larger curvature than the airflow on the hub 41 side, but the airflow on the side of the shroud 42 is pressed against the hub 41 side without being able to follow the wall shape of the shroud 42.
  • the influence of the pressing of the air flow on the hub 41 side depends on the blade surface shape of the blade 143. Will be alleviated. However, since the position of the apex 144v in the convex shape of the blade 143 is near the shroud 42 side, the influence of pressing on the hub 41 side is mitigated only for the airflow near the shroud 42 side.
  • the influence of pressing the air flow on the hub 41 side cannot be sufficiently mitigated, and at the radial position where the direction of the air flow is radially displaced to some extent, in the span direction of the blades 143, the flow velocity on the hub 41 side is shroud 42. There is a biased flow velocity distribution that is larger than on the side.
  • the flow velocity distribution is as follows.
  • a conventional centrifugal fan 131 has a bell mouth 32 arranged on the suction side, as in the present embodiment.
  • the flow velocity distribution in the meridional cross section of the outlet 32a of the bell mouth 32 is larger than the center side (rotation axis A side) of the flow velocity near the wall surface of the bell mouth 32 (see the flow velocity distribution shown in FIG. 10). . Therefore, even in the suction port 131a of the conventional centrifugal fan 131, the flow velocity distribution on the shroud 42 side is higher than that on the hub 41 side.
  • the air flow is pressed against the hub 41 side, so that the velocity difference between the shroud 42 side and the hub 41 side is reduced, resulting in a flow velocity distribution. That is, the flow velocity distribution in the span direction at the front edge 144 is made more uniform than the flow velocity distribution in the radial direction at the suction port 131a.
  • the trailing edge 145 of the blade 143 has substantially the same flow velocity distribution in the span direction near the center of the chord direction. That is, the flow velocity distribution in the span direction at the trailing edge 145 is a distribution that gradually decreases from the hub 41 side toward the shroud 42 side.
  • the conventional centrifugal fan 131 cannot effectively reduce the speed difference between the hub 41 side and the shroud 42 side. That is, it is difficult to improve the fan characteristic in which the flow rate is biased toward the hub 41 side at the trailing edge 145 of the blade 143.
  • FIG. 16 is an explanatory diagram showing a flow from the leading edge of the blade to the vicinity of the center in the chord direction in the centrifugal fan according to the first embodiment of the construction machine of the invention, which is viewed from the arrow XVI-XVI shown in FIG. 17 is a perspective view
  • FIG. 17 is an explanatory view showing the air flow from the vicinity of the center of the blade chord direction to the trailing edge in the centrifugal fan of the first embodiment of the construction machine of the invention
  • FIG. 18 is the construction machine of the invention.
  • FIG. 19 is the figure which shows the air flow inside the centrifugal fan in 1st Embodiment of the construction machine of this invention.
  • Is. 16 and 17, thick arrows indicate the flow.
  • white arrows indicate the direction of flow.
  • a black dot indicates a position where the curvature of the apex of the curved convex shape of the blade is maximum.
  • the front edge 44 of the blade 43 is curved so as to be convex toward the suction surface 47 side (rear side with respect to the rotation direction R). Furthermore, when the suction side of the centrifugal fan 31 is viewed from the axial direction, the blades are arranged so that the position of the convex vertex 44v of the front edge 44 is located radially inward of the wall surface of the outlet 32a of the bell mouth 32. 43 is configured. That is, the position of the convex vertex 44v of the front edge 44 is closer to the hub 41 side than the position of the convex vertex 144v of the front edge 144 in the blade 143 of the conventional centrifugal fan 131 shown in FIG.
  • the convex shape of the leading edge 44 extends in the chord direction, and the curvature of the apex in the convex shape is located at a position near the center of the chord direction from the leading edge 44.
  • the blades 43 are configured so as to gradually increase toward. Due to the curved shape of the blades 43 as described above, compared to the conventional centrifugal fan 131 (see FIG. 14), the movement of the air flow on the hub 41 side to the hub 41 side due to the turning outward from the axial direction in the radial direction is suppressed. Therefore, the airflow can be collected near the apex of the convex shape near the center of the chord direction.
  • the convex shape of the leading edge 44 extends in the chord direction to the trailing edge 45, and the curvature of the apex of the convex shape is near the center of the chord direction.
  • the blades 43 are configured so as to become gradually smaller from the position toward the trailing edge 45. Due to the curved shape of the blades 43, the airflow collected near the apex of the convex shape near the center of the chord direction can be diffused in the span direction on the trailing edge 45 side.
  • the relative position in the circumferential direction of the connecting portion 43s with the shroud 42 with respect to the connecting portion 43h with the hub 41 in the cross section of the blade 43 cut along the cylindrical surface centering on the rotation axis A is set to the front.
  • the edge 44 is gradually displaced rearward with respect to the rotation direction R from the edge 45 to the trailing edge 45 (see FIGS. 7 to 9), and as shown in FIG.
  • the blades 43 are configured such that the circumferential position of 43s is displaced rearward with respect to the rotation direction R with respect to the circumferential position of the connecting portion 43h with the hub 41. With such a shape of the blades 43, the airflow that tends to be biased toward the hub 41 side can be guided to the shroud 42 side and diffused in the span direction at the trailing edge 45.
  • the curvature of the apex of the convex shape on the suction surface 47 side extending from the leading edge 44 to the trailing edge 45 of the blade 43 is directed from the leading edge 44 to a position near the center in the chord direction.
  • the curved shape of the blades 43 is defined so that the blades 43 gradually increase in size toward the trailing edge 45 from a position near the center of the chord direction, and that the blades 43 are connected to the connecting portion 43h with the hub 41.
  • the relative position in the circumferential direction of the connecting portion 43s with the shroud 42 is gradually displaced toward the rear side in the rotational direction R from the front edge 44 toward the trailing edge 45, and the connecting portion with the shroud 42 at the trailing edge 45 of the blade 43 is formed.
  • the air flowing in from the vicinity of the apex 44v of the convex shape is collected on the side of the apex 43v of the convex shape in the process from the leading edge 44 to the vicinity of the center in the chord direction, and then guided to the shroud 42 side in the process of proceeding to the trailing edge 45.
  • the airflow can be diffused in the span direction.
  • the flow velocity distribution in the span direction from the hub 41 side to the shroud 42 side at the trailing edge 45 can be made uniform. That is, it is possible to improve the fan characteristic (see FIG. 15) in which the flow rate is biased toward the hub 41 side at the discharge port of the conventional centrifugal fan 131.
  • the convex vertex 44v when the convex vertex 44v is seen from the axial direction on the suction surface 47 side of the front edge 44 of the blade 43 of the centrifugal fan 31, Since the blades 43 are arranged so as to be located radially inward of the wall surface of the outlet 32a of the bell mouth 32, the flow of the air flowing into the centrifugal fan 31 from the vicinity of the wall surface of the bell mouth 32 is diverted radially outward. Movement toward the hub 41 side due to inertia at the time can be suppressed.
  • FIG. 20 is a diagram showing an air flow inside the centrifugal fan in the first modification of the first embodiment of the construction machine of the invention
  • FIG. 21 is a second modification of the first embodiment of the construction machine of the invention.
  • 6 is a diagram showing the flow of air inside the centrifugal fan in FIG. 20 and 21, a black dot indicates a position where the curvature of the apex of the curved convex shape of the blade is maximum.
  • the same reference numerals as those shown in FIGS. 1 to 19 denote the same parts, and thus detailed description thereof will be omitted.
  • the difference between the first modification of the first embodiment of the construction machine of the present invention shown in FIG. 20 and the first embodiment is that the curvature of the apex 43v in the curved convex shape of the blade 43 is maximum. Is not the position near the center of the chord direction (see FIG. 19) as in the first embodiment, but is near the trailing edge 45.
  • the blade 43 is configured such that the curvature of the apex of the convex shape gradually increases from the leading edge 44 to the vicinity of the trailing edge 45 (the position of the black dot).
  • the blade 43 is configured such that the curvature of the apex of the convex shape gradually decreases from the vicinity of the trailing edge 45 (the position of the black dot) toward the trailing edge 45.
  • the blade 43 includes the leading edge 44 to the vicinity of the trailing edge 45 (the position of the black dot), and the curvature of the apex of the convex shape of the blade 43 gradually increases from the leading edge 44 to the leading edge 44 side first curved blade.
  • Portion and the vicinity of the trailing edge 45 (the position of the black dot) to the trailing edge 45, and the curvature of the apex of the convex shape of the blade 43 gradually decreases toward the trailing edge 45. It consists of and.
  • the air that has flowed into the centrifugal fan 31 is collected on the apex side of the convex shape of the blade 43 in the process of reaching from the leading edge 44 to the vicinity of the trailing edge 45 (the position of the black dot), while at the trailing edge 45. In the process of reaching, it is guided to the shroud 42 side.
  • the flow rate of the air flow moving to the hub 41 side can be reduced, and the air flow can be diffused in the span direction near the trailing edge 45. Therefore, it is possible to improve the fan characteristic (see FIG. 15) in which the flow rate is biased toward the hub 41 side at the discharge port of the conventional centrifugal fan 131.
  • the maximum position of the curvature of the apex of the convex shape of the blade 43 is shifted to the trailing edge 45 side as compared with the first embodiment, so that diffusion in the span direction at the trailing edge 45 is caused. This is insufficient as compared with the first embodiment. Therefore, the trailing edge 45 has a flow velocity distribution in which the flow velocity near the central portion in the span direction is higher than that on the hub 41 side and the shroud 42 side.
  • the difference between the second modification of the first embodiment of the construction machine of the present invention shown in FIG. 21 and the first embodiment is that the curvature of the apex 43v in the curved convex shape of the blade 43 is different. Is not the position near the center of the chord direction (see FIG. 19) as in the first embodiment, but is near the leading edge 44.
  • the blade 43 is configured such that the curvature of the apex of the convex shape gradually increases from the front edge 44 toward the vicinity of the front edge 44 (the position of the black dot).
  • the blade 43 is configured so that the curvature of the apex of the convex shape gradually decreases from the vicinity of the leading edge 44 (the position of the black dot) toward the trailing edge 45.
  • the blade 43 includes the leading edge 44 to the vicinity of the leading edge 44 (the position of the black dot), and the curvature of the apex of the convex shape of the blade 43 gradually increases from the leading edge 44 to the leading edge 44 side first curved blade.
  • the air that has flowed into the centrifugal fan 31 can be collected on the apex side of the convex shape of the blades 43 in the process from the leading edge 44 to the vicinity of the leading edge 44 (the position of the black dot).
  • the flow rate of the airflow moving toward the hub 41 side due to the turning outward from the axial direction can be reduced. Therefore, it is possible to improve the fan characteristic (see FIG. 15) in which the flow rate is biased toward the hub 41 side at the discharge port of the conventional centrifugal fan 131.
  • the maximum position of the curvature of the apex of the convex shape of the blade 43 is shifted to the front edge 44 side as compared with the first embodiment, and is moved to the hub 41 side at the time of turning.
  • the effect of reducing the flow rate of the air flow is smaller than that in the first embodiment. Therefore, at the trailing edge 45, the flow velocity on the hub 41 side becomes larger than that on the shroud 42 side.
  • the flow velocity difference between the hub 41 side and the shroud 42 side is reduced.
  • the same effect as that of the first embodiment described above can be obtained. It is possible to suppress the movement of the air flowing into the edge 44 toward the hub 41 side due to the inertia when the flow is turned. As a result, the flow velocity distribution in the span direction of the blades 43 of the centrifugal fan 31 can be relaxed.
  • FIG. 22 is a cross-sectional view showing the second embodiment of the construction machine of the present invention with a part of the machine chamber being omitted. Note that, in FIG. 22, the same reference numerals as those shown in FIGS. 1 to 21 denote the same parts, and thus detailed description thereof will be omitted.
  • the rectifying member 35 of the first embodiment is an annular flat plate member (see FIG. 2).
  • the rectifying member 35A of the present embodiment is configured such that the portion radially outside the outer peripheral edge of the centrifugal fan 31 is inclined in the direction away from the centrifugal fan 31 with respect to the radial direction of the centrifugal fan 31. ing.
  • the rectifying member 35A has an annular flat plate portion 35b that extends radially inward of the outer peripheral edge of the centrifugal fan 31, and an annular flat plate portion 35b that is inclined from the outer peripheral edge of the flat plate portion 35b in a direction away from the centrifugal fan 31. It is composed of an inclined portion 35c.
  • the portion of the flow regulating member 35A radially outside the outer peripheral edge of the centrifugal fan 31 is separated from the centrifugal fan 31 in the radial direction of the centrifugal fan 31. Since the air flow Fd is inclined in the direction, a part of the air flow Fd discharged from the centrifugal fan 31 can be diverted from the radial direction to the axial direction side, and the collision of the air flow Fd with the building cover 16 can be mitigated.
  • FIG. 23 is a cross-sectional view showing a state in which a part of a machine chamber in the third embodiment of the construction machine of the invention is omitted. Note that, in FIG. 23, the same reference numerals as those shown in FIGS. 1 to 22 denote the same parts, and thus detailed description thereof will be omitted.
  • the difference between the third embodiment of the construction machine of the present invention shown in FIG. 23 and the second embodiment is that the second rectifying member 38 is provided on the shroud 42 side so as to newly face the rectifying member 35A. It has been placed in.
  • the second rectifying member 38 extends outward in the radial direction from the outer peripheral edge of the centrifugal fan 31, and is configured such that the radially outer end portion is located closer to the rectifying member 35A side than the radially inner end portion. .
  • the second rectifying member 38 is attached to, for example, the building cover 16 located radially outside the centrifugal fan 31.
  • the second rectifying member 38 forms an air guide path together with the rectifying member 35A, and turns the airflow Fd radially discharged from the centrifugal fan 31 in the axial direction to guide the airflow Fd along the building cover 16.
  • the air guide passage may be formed as a diffuser for pressure recovery, for example.
  • the second rectifying member 38 is opposed to the rectifying member 35A, and the second rectifying member 38 is extended radially outward of the outer peripheral edge of the centrifugal fan 31. Since the air flow Fd discharged from the centrifugal fan 31 can be diverted in the axial direction because the radial outer end is located closer to the rectifying member 35A side than the radial inner end while being made to exist. The collision loss of Fd with the building cover 16 can be further reduced.
  • the present invention is not limited to this embodiment, and various modifications are included.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • the present invention is applicable to various construction machines such as a hydraulic crane and a wheel loader. It can be widely applied.
  • the curvature of the apex 43v in the convex shape of the blade 43 gradually increases from the leading edge 44 toward the position near the center of the chord direction, while An example is shown in which the blade 43 is configured so as to gradually decrease from the position toward the trailing edge 45.
  • the blade while maintaining the curvature of the apex 43v in the convex shape of the blade 43 from the leading edge 44 to the position near the center of the chord direction, the blade gradually decreases from the position near the center of the chord direction toward the trailing edge 45.
  • the blade has a first curved blade portion on the leading edge 44 side where the curvature of the apex 43v in the convex shape of the blade 43 is kept the same from the leading edge 44, and a curvature of the apex 43v in the convex shape of the blade 43 is a trailing edge. It is also possible to configure with the second curved blade portion on the trailing edge 45 side that gradually decreases toward 45.
  • the curvature of the convex vertex 43v of the blade 43 is changed from the leading edge 44 to the vicinity of the trailing edge 45 or the vicinity of the leading edge 44.
  • the blades 43 are configured such that the blades 43 gradually increase in size while gradually decreasing from the vicinity of the trailing edge 45 or the vicinity of the leading edge 44 toward the trailing edge 45.
  • the curvature of the apex 43v in the convex shape of the blade 43 is maintained from the leading edge 44 to the vicinity of the trailing edge 45 or to the vicinity of the leading edge 44, while the curvature from the vicinity of the trailing edge 45 or the vicinity of the leading edge 44 toward the trailing edge 45. It is also possible to configure the blade 43 so that it gradually becomes smaller.
  • the rectifying members 35 and 35A are fixed to the engine 20 via the stay 36
  • the rectifying member may be part of the engine 20. Is.
  • fixing the rectifying members 35 and 35A to the engine 20 using the stay 36 requires a smaller installation space and is advantageous in terms of cost reduction and weight reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

A construction machine equipped with a centrifugal fan and a bell mouth arranged on the suction side of the centrifugal fan. The centrifugal fan has a rotatable hub, an annular shroud having a suction opening arranged so as to face the hub, and a plurality of blades provided between the hub and the shroud. An outflow opening of the bell mouth is arranged farther radially inward than the suction opening of the shroud. The blades are formed such that the front edge has a convex shape on a negative-pressure-surface side relative to a line segment connecting a portion of the front edge connected to the hub and a portion of the front edge connected to the shroud, and when the suction side of the centrifugal fan is viewed from the axial direction, the apex of the convex shape of the front edge is located farther radially inward than a wall surface of the outflow opening of the bell mouth.

Description

建設機械Construction machinery
 本発明は、建設機械に係り、更に詳しくは、遠心ファンを搭載した建設機械に関する。 The present invention relates to a construction machine, and more particularly, to a construction machine equipped with a centrifugal fan.
 油圧ショベルやダンプトラック等の建設機械では、エンジンや熱交換器等の各種機器を冷却ファンが生起した冷却風によって冷却している。建設機械の内部には、多数の機器や部品が密集した状態で配置されている。このような領域に冷却風を供給する場合、冷却風の圧力損失が大きくなるので、冷却ファンとして遠心ファンを採用することがある。遠心ファンは、一般に、軸流ファンと比べて同一回転数においてより高い圧力上昇が得られる。 In construction machines such as hydraulic excavators and dump trucks, various equipment such as engines and heat exchangers are cooled by cooling air generated by a cooling fan. Inside the construction machine, a large number of devices and parts are arranged densely. When the cooling air is supplied to such an area, the pressure loss of the cooling air becomes large, so a centrifugal fan may be adopted as the cooling fan. Centrifugal fans generally provide a higher pressure rise at the same speed than axial fans.
 遠心ファンは、回転駆動軸に取り付けられる円板状のハブ(主板)と、ハブの外周部に周方向に間隔をおいて一端側が固定された複数枚の羽根と、これら複数枚の羽根における上記ハブと反対側の他端側に取り付けられ、一方側に空気吸込口を形成するリング状のシュラウド(側板)とを備えている。このような遠心ファンの中には、羽根の両面にスムーズな流れを形成して有効な羽根性能を発揮させることを意図したものがある(例えば、特許文献1を参照)。 The centrifugal fan is a disk-shaped hub (main plate) attached to a rotary drive shaft, a plurality of blades whose one end side is fixed to the outer peripheral portion of the hub at intervals in the circumferential direction, and the above-mentioned blades of the plurality of blades. A ring-shaped shroud (side plate) that is attached to the other end opposite to the hub and that forms an air suction port is provided on one side. Some of such centrifugal fans are intended to form a smooth flow on both sides of the blade to exert effective blade performance (for example, refer to Patent Document 1).
 特許文献1に記載の遠心ファンでは、シュラウドが中央側空気吸込口から外周側遠心方向へ所定の曲率で傾斜する断面円弧形状に構成されており、羽根のハブとシュラウド間におけるシュラウド側端部を反回転側方向へ湾曲させている。上記の構成によって、羽根がハブからシュラウドへ略直線状に延びて接続される場合よりも、シュラウド内側の気流ガイド面と羽根の正圧面との間に形成されるコーナー部の断面積が拡大し、死水域低減空間が形成される。また、特許文献1に記載の遠心ファンでは、遠心ファンの空気吸込口に空気をスムーズに案内するために、遠心ファンの吸込側にベルマウスを設置している。ベルマウスは、下流側の空気流出口の端部がシュラウドの空気吸込口の内部に遊嵌された状態で配置されている。 In the centrifugal fan described in Patent Document 1, the shroud is configured to have an arcuate cross-section that is inclined from the central air suction port toward the outer peripheral centrifugal direction with a predetermined curvature, and the shroud-side end portion between the hub of the blade and the shroud is formed. It is curved in the direction opposite to the rotation side. With the above configuration, the cross-sectional area of the corner portion formed between the airflow guide surface inside the shroud and the pressure surface of the blade is expanded more than when the blade is connected to the shroud by extending in a substantially straight line. , Dead water area reduction space is formed. Further, in the centrifugal fan described in Patent Document 1, a bell mouth is installed on the suction side of the centrifugal fan in order to smoothly guide air to the air suction port of the centrifugal fan. The bell mouth is arranged with the end portion of the air outlet on the downstream side loosely fitted inside the air inlet of the shroud.
特開2009-174541号公報JP, 2009-174541, A
 遠心ファンは空気を軸方向から吸い込んで径方向外側へ吐出することで空気を加圧するものなので、ファン内部の空気の流れは急激に転向されることになる。その気流は、軸方向から径方向外側へ転向される際に、慣性によってハブ側へ押し付けられる。また、シュラウド側の気流は、ハブ側の気流よりも大きな曲率で転向する必要があるが、シュラウドの壁面形状に沿いきれずにハブ側へ押し付けられる。そのため、気流の向きがある程度径方向に転向した位置では、羽根のスパン方向(羽根のハブ側からシュラウド側に向かう方向)において、ハブ側の気流の速度がシュラウド側よりも大きくなる偏りのある流速分布が生じる。このハブ側とシュラウド側の流速差が大きくなると、気流がシュラウドから剥離してしまう。この場合、遠心ファン内部の有効流路面積が縮小するので、遠心ファンの性能が低下する。 The centrifugal fan pressurizes the air by sucking it in from the axial direction and discharging it to the outside in the radial direction, so the flow of air inside the fan is suddenly diverted. The airflow is pushed toward the hub side by inertia when it is turned radially outward from the axial direction. Further, the airflow on the shroud side needs to be turned with a larger curvature than the airflow on the hub side, but it is pressed against the hub side without being able to follow the wall shape of the shroud. Therefore, at a position where the direction of the airflow is changed to the radial direction to some extent, in the span direction of the blade (direction from the hub side of the blade toward the shroud side), the velocity of the airflow on the hub side becomes larger than that on the shroud side. Distribution occurs. If the flow velocity difference between the hub side and the shroud side becomes large, the airflow will separate from the shroud. In this case, since the effective flow passage area inside the centrifugal fan is reduced, the performance of the centrifugal fan is deteriorated.
 羽根のスパン方向における流速分布を均一化させる1つの方法として、遠心ファンのシュラウドの曲率を小さくすることで気流をシュラウドの内壁面に沿わせる構成が挙げられる。しかし、建設機械においては、エンジンや熱交換器以外にも様々な機器や部品が内部に収容されており、遠心ファンの設置スペースが限られている。そのため、可能な限り薄型の(軸方向が短い)遠心ファンが求められており、曲率が小さく緩やかに湾曲するシュラウドを用いることは遠心ファンの大型化に繋がるので難しい。 One way to make the flow velocity distribution in the span direction of the blades uniform is to reduce the curvature of the shroud of the centrifugal fan so that the air flow follows the inner wall surface of the shroud. However, in the construction machine, various devices and parts other than the engine and the heat exchanger are housed inside, and the installation space of the centrifugal fan is limited. Therefore, there is a demand for a centrifugal fan that is as thin as possible (short in the axial direction), and it is difficult to use a shroud that has a small curvature and is gently curved because it leads to an increase in size of the centrifugal fan.
 また、羽根のスパン方向における流速分布を均一化させる別の方法として、遠心ファンの径方向の流路長を長くする構成が挙げられる。しかし、建設機械では、一般に、遠心ファンの上流側に熱交換器が設置されており、熱交換器を効率良く冷却するためには、遠心ファンの吸込口の面積を可能な限り大きくする必要がある。さらに、建設機械では、前述したように、遠心ファンの設置スペースが限られているので、遠心ファンの外径も設置スペースに応じて制限される。遠心ファンの吸込口の面積を大きくすると、その分、遠心ファンの吸込口の開口縁から吐出側の外周縁までの距離が短くなるので、外径が制限された遠心ファンでは、径方向の流路長を伸長することは難しい。 Also, as another method for making the flow velocity distribution in the span direction of the blades uniform, there is a configuration in which the flow path length in the radial direction of the centrifugal fan is lengthened. However, in a construction machine, a heat exchanger is generally installed on the upstream side of the centrifugal fan, and in order to cool the heat exchanger efficiently, it is necessary to make the suction fan area of the centrifugal fan as large as possible. is there. Further, in the construction machine, as described above, since the installation space of the centrifugal fan is limited, the outer diameter of the centrifugal fan is also limited according to the installation space. If the area of the suction port of the centrifugal fan is increased, the distance from the opening edge of the suction port of the centrifugal fan to the outer peripheral edge of the discharge side will be shortened accordingly. It is difficult to extend the road length.
 ところで、遠心ファンを搭載した建設機械の中には、特許文献1に記載の遠心ファンと同様に、遠心ファンの吸込側にベルマウスを設置し、ベルマウスの空気流出口を遠心ファンのシュラウドの空気吸込口の内周側に配置したものがある。遠心ファン側へ向かって縮径するベルマウスでは、その空気流出口から流出する空気の速度がベルマウスの中心側(径方向内側)よりも壁面側(径方向外側)の方が大きくなる。 By the way, in a construction machine equipped with a centrifugal fan, as in the centrifugal fan described in Patent Document 1, a bell mouth is installed on the suction side of the centrifugal fan, and the air outlet of the bell mouth is connected to the shroud of the centrifugal fan. Some are located on the inner peripheral side of the air inlet. In a bell mouth whose diameter is reduced toward the centrifugal fan side, the velocity of the air flowing out from the air outlet is higher on the wall surface side (radial outer side) than on the center side (radial inner side) of the bell mouth.
 また、回転する遠心ファンと静止するベルマウスとが接触しないように、両者間に隙間を設けている。遠心ファンから吐出された空気の一部は、当該隙間を通って再び遠心ファンへ漏れ流れとして流入する。建設機械に搭載された遠心ファンでは、運転時の車体振動などを考慮して、特許文献1のような天井埋込型空気調和機に適用される遠心ファンと比べて、遠心ファンとベルマウスとの隙間を大きくする必要がある。当該隙間が大きい程、遠心ファンに流入する漏れ流れが増加する。 Also, a gap is provided between the rotating centrifugal fan and the stationary bell mouth so that they do not come into contact with each other. A part of the air discharged from the centrifugal fan flows into the centrifugal fan again as a leak flow through the gap. The centrifugal fan mounted on the construction machine has a centrifugal fan and a bell mouth compared to the centrifugal fan applied to the ceiling-embedded air conditioner as disclosed in Patent Document 1 in consideration of vehicle body vibration during operation. It is necessary to increase the gap. The larger the gap, the more leakage flow into the centrifugal fan.
 このようなベルマウスの壁面形状の影響や漏れ流れの影響によって、遠心ファンの空気吸込口では、シュラウドの壁面近傍の方が空気吸込口中心部よりも速度の大きな空気の流れが流入する。すなわち、空気吸込口に流入する空気は、シュラウドの壁面近傍で局所的に増速している。そのため、シュラウドの壁面近傍の空気の流れは、軸方向から径方向外側へ転向される際に、速度の増速分慣性が大きくなるので、よりハブ側へ押し付けられる。したがって、吸込側にベルマウスを設置した遠心ファンでは、気流の向きがある程度径方向に転向した位置において、ハブ側の気流のシュラウド側の気流に対する速度差が更に大きくなるスパン方向の流速分布が生じる。このような流速分布では、気流がシュラウドからはく離しやすくなる。 Due to the influence of the wall shape of the bell mouth and the influence of the leakage flow, an air flow having a higher velocity flows into the air inlet of the centrifugal fan near the wall of the shroud than at the center of the air inlet. That is, the air flowing into the air suction port is locally accelerated near the wall surface of the shroud. Therefore, when the airflow near the wall surface of the shroud is turned radially outward from the axial direction, the inertia increases due to the increased speed, so that the airflow is pressed further toward the hub side. Therefore, in a centrifugal fan with a bell mouth installed on the suction side, a flow velocity distribution in the span direction is generated at a position where the airflow direction is radially diverted to some extent, in which the speed difference between the hub-side airflow and the shroud-side airflow is further increased. . With such a flow velocity distribution, the air flow is easily separated from the shroud.
 以上のことから、建設機械に搭載する遠心ファンの性能を向上させるためには、ハブ側の気流の速度がシュラウド側よりも大きくなる偏りのある羽根のスパン方向の流速分布を緩和する必要がある。 From the above, in order to improve the performance of the centrifugal fan mounted on the construction machine, it is necessary to mitigate the flow velocity distribution in the span direction of the biased blades where the air flow velocity on the hub side becomes larger than that on the shroud side. .
 特許文献1に記載の遠心ファンにおいては、羽根のシュラウド側端部を反回転側方向へ湾曲させることで、シュラウド内面の気流ガイド面と羽根の正圧面との間に形成されるコーナー部の断面積を拡大させている。しかし、当該コーナー部のようなシュラウド側の局所的な領域の断面積を拡大させる構成では、軸方向から径方向へ転向する際に生じる気流のシュラウド側からハブ側への偏りを局所的にしか抑制できないと考えられる。 In the centrifugal fan described in Patent Document 1, the end portion of the blade on the shroud side is curved in the direction opposite to the rotation direction, so that the corner portion formed between the airflow guide surface on the inner surface of the shroud and the positive pressure surface of the blade is disconnected. The area is expanding. However, in the configuration in which the cross-sectional area of the local region on the shroud side such as the corner portion is enlarged, only the deviation of the air flow generated from the axial direction from the shroud side to the hub side is locally generated. It seems that it cannot be suppressed.
 本発明は、上記の問題点を解消するためになされたものであり、その目的は、遠心ファンにおけるハブ側の気流の速度がシュラウド側よりも大きくなる偏りのある羽根のスパン方向の流速分布を緩和することができる建設機械を提供することである。 The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a flow velocity distribution in the span direction of a blade with a bias such that the velocity of the air flow on the hub side in a centrifugal fan becomes larger than that on the shroud side. It is to provide construction machinery that can be mitigated.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、車体の内部に収容された遠心ファンと、前記遠心ファンの吸込み側に配置され、流出口を有するベルマウスとを備え、前記遠心ファンは、回転軸線を中心に回転可能なハブと、前記ハブに対向するように配置されて前記ハブとの間に流路を形成し、吸込口を有する環状のシュラウドと、前記ハブと前記シュラウドとの間に周方向に間隔をあけて設けられた複数の羽根とを有し、前記複数の羽根の各々は、空気が流入する側の前縁と、空気が流出する側の後縁と、前記前縁と前記後縁との間に延在する一方側の翼面であって回転方向に対して前方側を向く正圧面と、前記前縁と前記後縁との間に延在する他方側の翼面であって前記回転方向に対して後方側を向く負圧面とを含んで構成されており、前記ベルマウスの前記流出口が前記シュラウドの前記吸込口よりも径方向内側に配置された建設機械において、前記複数の羽根の各々は、前記前縁が前記前縁における前記ハブとの接続部と前記前縁における前記シュラウドとの接続部とを結ぶ線分に対して、前記負圧面側に凸形状となるように形成されると共に、前記前縁の凸形状における頂点が、前記遠心ファンの吸込み側を軸方向から見たときに、前記ベルマウスの前記流出口の壁面よりも径方向内側に位置するよう形成されていることを特徴とする。 The present application includes a plurality of means for solving the above problems, and one example thereof is a centrifugal fan housed inside a vehicle body, and a bell mouth arranged on the suction side of the centrifugal fan and having an outlet. Wherein the centrifugal fan is rotatable about an axis of rotation and a hub that is disposed so as to face the hub to form a flow path between the hub and an annular shroud that has a suction port. A plurality of blades provided at intervals in the circumferential direction between the hub and the shroud, and each of the plurality of blades has a front edge on the side where air flows in and a side where air flows out. A trailing edge, a wing surface on one side extending between the leading edge and the trailing edge, and a pressure surface facing forward with respect to a rotation direction, and between the leading edge and the trailing edge. The other side of the wing extending toward the rear side with respect to the rotation direction In the construction machine including the pressure surface, the outflow port of the bell mouth is arranged radially inward of the suction port of the shroud, each of the plurality of blades, the front edge is the With respect to a line segment that connects a connecting portion of the front edge with the hub and a connecting portion of the front edge with the shroud, the convex portion of the front edge is formed so as to have a convex shape on the suction surface side. The apex of the shape is formed so as to be located radially inward of the wall surface of the outlet of the bell mouth when the suction side of the centrifugal fan is viewed in the axial direction.
 本発明によれば、遠心ファンの羽根の前縁における負圧面側に凸形状の頂点を軸方向から見たときにベルマウスの流出口の壁面よりも径方向内側に位置するように羽根を構成したので、ベルマウスの壁面近傍から遠心ファンへ流入した空気の流れの径方向外側への転向の際の慣性によるハブ側への移動を抑制することができる。その結果、建設機械に搭載された遠心ファンにおいて、ハブ側の気流の速度がシュラウド側よりも大きくなる傾向にある羽根のスパン方向の流速分布を緩和することができる。
  上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the blade is configured so as to be positioned radially inward of the wall surface of the outlet of the bell mouth when the apex of the convex shape on the suction side at the front edge of the blade of the centrifugal fan is viewed from the axial direction. Therefore, it is possible to suppress the movement of the air flowing into the centrifugal fan from the vicinity of the wall surface of the bell mouth toward the hub side due to the inertia when the flow is outwardly in the radial direction. As a result, in the centrifugal fan mounted on the construction machine, it is possible to reduce the flow velocity distribution in the span direction of the blades in which the velocity of the air flow on the hub side tends to be higher than that on the shroud side.
Problems, configurations, and effects other than the above will be clarified by the following description of the embodiments.
本発明の建設機械の第1の実施の形態としての油圧ショベルを示す側面図である。It is a side view showing a hydraulic excavator as a first embodiment of a construction machine of the present invention. 図1に示す油圧ショベルをII-II矢視から見た部分断面図であり、油圧ショベルの機械室内部を一部省略した状態で示す図である。FIG. 2 is a partial cross-sectional view of the hydraulic excavator shown in FIG. 1 as viewed from the direction of arrow II-II, showing a state in which a part of the machine chamber of the hydraulic excavator is omitted. 本発明の建設機械の第1の実施の形態の一部を構成する遠心ファンの吸込側を軸方向から見た図である。It is the figure which looked at the suction side of the centrifugal fan which constitutes a part of 1st Embodiment of the construction machine of this invention from the axial direction. 図3に示す遠心ファンをシュラウドを取り除いた状態で示す図である。It is a figure which shows the centrifugal fan shown in FIG. 3 in the state which removed the shroud. 図3の符号Lで示す領域の拡大図であり、遠心ファンの羽根の前縁及び前縁の近傍を示す図である。It is an enlarged view of the area | region shown by the code | symbol L of FIG. 3, and is a figure which shows the front edge of the blade of a centrifugal fan, and the vicinity of a front edge. 図4に示す遠心ファンをVI-VI矢視から見た斜視図であり、遠心ファンの羽根形状を示す図である。FIG. 6 is a perspective view of the centrifugal fan shown in FIG. 4 as viewed from the direction of arrows VI-VI, showing a blade shape of the centrifugal fan. 図3に示す遠心ファンをVII-VII矢視から見た断面図(羽根の前縁とシュラウドとの接続部の位置において回転軸線を中心とした円筒面で切断した断面図)である。FIG. 7 is a cross-sectional view of the centrifugal fan shown in FIG. 3 as viewed from the arrow VII-VII (a cross-sectional view taken along a cylindrical surface around the rotation axis at the position of the connecting portion between the front edge of the blade and the shroud). 図3に示す遠心ファンをVIII-VIII矢視から見た断面図(羽根の翼弦方向中央付近の位置において回転軸線を中心とした円筒面で切断した断面図)である。FIG. 8 is a cross-sectional view of the centrifugal fan shown in FIG. 3 as viewed from the direction of arrows VIII-VIII (cross-sectional view cut along a cylindrical surface around the rotation axis at a position near the center of the blade in the chord direction). 図3に示す遠心ファンをIX-IX矢視から見た断面図(羽根の後縁近傍の位置において回転軸線を中心とした円筒面で切断した断面図)である。FIG. 4 is a cross-sectional view of the centrifugal fan shown in FIG. 3 viewed from the arrow IX-IX (a cross-sectional view taken along a cylindrical surface centering on the rotation axis at a position near the trailing edge of the blade). 本発明の建設機械の第1の実施の形態における遠心ファン吸込口を通過する気流の径方向の流速分布を示す説明図である。It is explanatory drawing which shows the radial velocity distribution of the airflow which passes the centrifugal fan suction opening in 1st Embodiment of the construction machine of this invention. 本発明の建設機械の第1の実施の形態における遠心ファンの羽根前縁のハブ側の位置(図10に示す位置H)での速度三角形を示す説明図である。It is explanatory drawing which shows the speed triangle in the hub side position (position H shown in FIG. 10) of the blade leading edge of the centrifugal fan in 1st Embodiment of the construction machine of this invention. 本発明の建設機械の第1の実施の形態における遠心ファンの羽根前縁のスパン方向中央付近の位置(図10に示す位置M)での速度三角形を示す説明図である。It is explanatory drawing which shows the speed triangle in the position (position M shown in FIG. 10) near the span direction center of the blade leading edge of the centrifugal fan in 1st Embodiment of the construction machine of this invention. 本発明の建設機械の第1の実施の形態における遠心ファンの羽根前縁のシュラウド側の位置(図10に示す位置S)での速度三角形を示す説明図である。It is explanatory drawing which shows the speed triangle in the shroud side position (position S shown in FIG. 10) of the blade leading edge of the centrifugal fan in 1st Embodiment of the construction machine of this invention. 従来の遠心ファンの構造及び従来の遠心ファンの空気の流れを示す説明図であり、図3に示す矢視XVI-XVIと同様な矢視から見た斜視図である。FIG. 4 is an explanatory view showing a structure of a conventional centrifugal fan and an air flow of the conventional centrifugal fan, and is a perspective view seen from an arrow similar to arrow XVI-XVI shown in FIG. 3. 従来の遠心ファンの羽根の前縁、翼弦方向中央付近、及び後縁におけるスパン方向の流速分布を示す説明図である。It is explanatory drawing which shows the flow velocity distribution of the span direction in the front edge of the blade of a conventional centrifugal fan, the vicinity of the chord direction center, and the rear edge. 発明の建設機械の第1の実施の形態の遠心ファンにおける羽根の前縁から翼弦方向中央付近までの流れを示す説明図であり、図3に示す矢視XVI-XVIから見た斜視図である。FIG. 4 is an explanatory view showing the flow from the leading edge of the blade to the vicinity of the center in the chord direction in the centrifugal fan of the first embodiment of the construction machine of the invention, and is a perspective view seen from the arrow XVI-XVI shown in FIG. 3. is there. 発明の建設機械の第1の実施の形態の遠心ファンにおける羽根の翼弦方向中央付近から後縁までの空気の流れを示す説明図である。It is explanatory drawing which shows the flow of the air from the chord direction center vicinity of a blade | wing to the trailing edge in the centrifugal fan of 1st Embodiment of the construction machine of this invention. 発明の建設機械の第1の実施の形態における遠心ファンの羽根の正圧面に沿った流れ場の解析結果を示す図である。It is a figure which shows the analysis result of the flow field along the positive pressure surface of the blade of the centrifugal fan in 1st Embodiment of the construction machine of invention. 発明の建設機械の第1の実施の形態における遠心ファン内部の空気の流れを示す図である。It is a figure which shows the flow of the air inside the centrifugal fan in 1st Embodiment of the construction machine of invention. 発明の建設機械の第1の実施の形態の第1変形例における遠心ファン内部の空気の流れを示す図である。It is a figure which shows the flow of the air inside the centrifugal fan in the 1st modification of 1st Embodiment of the construction machine of invention. 発明の建設機械の第1の実施の形態の第2変形例における遠心ファン内部の空気の流れを示す図である。It is a figure which shows the flow of the air inside the centrifugal fan in the 2nd modification of 1st Embodiment of the construction machine of invention. 発明の建設機械の第2の実施の形態における機械室内部を一部省略した状態で示す断面図である。It is sectional drawing shown in the state which abbreviate | omitted a part of the machine chamber in 2nd Embodiment of the construction machine of invention. 発明の建設機械の第3の実施の形態における機械室内部を一部省略した状態で示す断面図である。It is sectional drawing shown in the state which abbreviate | omitted a part of the machine chamber in 3rd Embodiment of the construction machine of invention.
 以下、本発明の建設機械の実施の形態について図面を用いて説明する。本実施の形態においては、建設機械の一例として油圧ショベルを例に挙げて説明する。 Hereinafter, an embodiment of the construction machine of the present invention will be described with reference to the drawings. In the present embodiment, a hydraulic excavator will be described as an example of a construction machine.
 まず、本発明の建設機械の第1の実施の形態としての油圧ショベルの構成を図1及び図2を用いて説明する。図1は本発明の建設機械の第1の実施の形態としての油圧ショベルを示す側面図、図2は図1に示す油圧ショベルをII-II矢視から見た部分断面図であり、油圧ショベルの機械室内部を一部省略した状態で示す図である。ここでは、運転席に着座したオペレータから見た方向を用いて説明する。図2中、太い矢印は空気の流れを示している。 First, the configuration of a hydraulic excavator as a first embodiment of the construction machine of the present invention will be described with reference to FIGS. 1 and 2. 1 is a side view showing a hydraulic excavator as a first embodiment of a construction machine of the present invention, and FIG. 2 is a partial sectional view of the hydraulic excavator shown in FIG. It is a figure which shows in the state which abbreviate | omitted a part of machine room of. Here, the description will be given using the direction viewed from the operator seated in the driver's seat. In FIG. 2, thick arrows indicate the flow of air.
 図1において、油圧ショベル1は、自走可能なクローラ式の下部走行体2と、下部走行体2上に旋回可能に搭載された上部旋回体3とを備えている。下部走行体2と上部旋回体3とで車体を構成している。上部旋回体3の前端部には、作業フロント4が俯仰動可能に設けられている。作業フロント4は、掘削作業等を行うための多関節型の作動装置であり、例えば、ブーム6、アーム7、バケット8を備えている。ブーム6の基端側は、上部旋回体3の前端部に回動可能に連結されている。ブーム6の先端部には、アーム7の基端部が回動可能に連結されている。アーム7の先端部には、バケット8の基端部が回動可能に連結されている。ブーム6、アーム7、及びバケット8はそれぞれ、油圧駆動装置としてのブームシリンダ6a、アームシリンダ7a、バケットシリンダ8aによって駆動される。 In FIG. 1, the hydraulic excavator 1 is provided with a crawler-type lower traveling body 2 that can be self-propelled, and an upper revolving body 3 that is rotatably mounted on the lower traveling body 2. The undercarriage 2 and the upper revolving superstructure 3 form a vehicle body. A work front 4 is provided at the front end of the upper swing body 3 so that the work front 4 can be lifted and lowered. The work front 4 is a multi-joint type actuating device for performing excavation work and the like, and includes, for example, a boom 6, an arm 7, and a bucket 8. The base end side of the boom 6 is rotatably connected to the front end of the upper swing body 3. The base end of the arm 7 is rotatably connected to the tip of the boom 6. The base end of the bucket 8 is rotatably connected to the tip of the arm 7. The boom 6, the arm 7, and the bucket 8 are driven by a boom cylinder 6a, an arm cylinder 7a, and a bucket cylinder 8a, which are hydraulic drive devices, respectively.
 上部旋回体3は、下部走行体2上に旋回可能に搭載された支持構造体である旋回フレーム11と、旋回フレーム11上の左前側に設置されたキャブ12と、旋回フレーム11の後端部(図1中、右端部)に設けられたカウンタウェイト13と、キャブ12とカウンタウェイト13の間に配置された機械室14とを含んで構成されている。キャブ12には、下部走行体2や作業フロント4等の動作を指示する操作装置やオペレータが着座する運転席等(ともに図示せず)が配置されている。カウンタウェイト13は、作業フロント4との重量バランスをとるためのものである。 The upper revolving structure 3 includes a revolving frame 11 which is a support structure mounted on the lower traveling structure 2 so as to be revolvable, a cab 12 installed on the left front side of the revolving frame 11, and a rear end portion of the revolving frame 11. The counter weight 13 is provided at the right end in FIG. 1, and the machine room 14 is disposed between the cab 12 and the counter weight 13. The cab 12 is provided with an operating device for instructing operations of the lower traveling body 2, the work front 4, and the like, a driver's seat on which an operator is seated, and the like (both not shown). The counter weight 13 is for balancing the weight with the work front 4.
 機械室14には、例えば図2に示すように、原動機としてのエンジン20、エンジン20に駆動される油圧ポンプ(図示せず)、エンジン20等を冷却する冷却装置30を含む多数の機器が収容されている。機械室14は、建屋カバー16によって外郭が形成されている。建屋カバー16には、機械室14内に外気を取り込む吸込口(図示せず)及び機械室14内から空気を排出する排出口(図示せず)が設けられている。 As shown in FIG. 2, for example, the machine room 14 accommodates a large number of devices including an engine 20 as a prime mover, a hydraulic pump (not shown) driven by the engine 20, and a cooling device 30 for cooling the engine 20. Has been done. An outer shell of the machine room 14 is formed by a building cover 16. The building cover 16 is provided with a suction port (not shown) that takes in outside air into the machine room 14 and a discharge port (not shown) that discharges air from the machine room 14.
 冷却装置30は、冷却風を生起する遠心ファン31と、遠心ファン31の吸込側に配置され、空気を整流して遠心ファン31へ導くベルマウス32と、遠心ファン31の生起した冷却風により冷却される熱交換装置33とを含んで構成されている。遠心ファン31は、回転軸23に取り付けられている。回転軸23は、エンジン20の駆動軸20aより上方でエンジン20に回転可能に支持されている。エンジン20の駆動軸20a及び回転軸23にはそれぞれ、第1プーリ24及び第2プーリ25が設けられている。第1プーリ24と第2プーリ25に対してベルト26が掛け渡されている。このような構成により、遠心ファン31はエンジン20によって回転軸線Aを中心に回転駆動される。 The cooling device 30 is provided with a centrifugal fan 31 that produces cooling air, a bell mouth 32 that is disposed on the suction side of the centrifugal fan 31, and that rectifies air and guides it to the centrifugal fan 31, and cooling air produced by the centrifugal fan 31. And a heat exchange device 33 configured to operate. The centrifugal fan 31 is attached to the rotating shaft 23. The rotating shaft 23 is rotatably supported by the engine 20 above the drive shaft 20a of the engine 20. The drive shaft 20a and the rotary shaft 23 of the engine 20 are provided with a first pulley 24 and a second pulley 25, respectively. A belt 26 is stretched around the first pulley 24 and the second pulley 25. With such a configuration, the centrifugal fan 31 is rotationally driven by the engine 20 about the rotation axis A.
 ベルマウス32は、流路断面が遠心ファン31側へ向かって縮小する形状を有している。ベルマウス32の上流側(図2中、左側)の端部は、例えば、機械室14内の機器又は建屋カバー16に取り付けられている。ベルマウス32の遠心ファン31側(図2中、右側)端部の開口部は、空気の流れの流出口32aを構成している。ベルマウス32の流出口32aは、遠心ファン31の吸込口31aの径方向内側に隙間Dをあけて配置されている。 The bell mouth 32 has a shape in which the cross section of the flow passage is reduced toward the centrifugal fan 31 side. The upstream (left side in FIG. 2) end of the bell mouth 32 is attached to, for example, a device inside the machine room 14 or a building cover 16. The opening at the end of the bell mouth 32 on the side of the centrifugal fan 31 (on the right side in FIG. 2) constitutes an outlet 32a for the flow of air. The outlet 32a of the bell mouth 32 is arranged inside the suction port 31a of the centrifugal fan 31 in the radial direction with a gap D therebetween.
 熱交換装置33は、例えば、ベルマウス32の上流側(図2中、左側)に配置されている。熱交換装置33は、例えば、ラジエータやオイルクーラ等の熱交換器により構成されている。ラジエータはエンジン20の冷却水を冷却するものであり、オイルクーラは作業フロント4の油圧シリンダ6a、7a、8a(図1参照)を含む油圧駆動装置に供給される作動油を冷却するものである。 The heat exchange device 33 is arranged, for example, on the upstream side (left side in FIG. 2) of the bell mouth 32. The heat exchange device 33 is composed of, for example, a heat exchanger such as a radiator or an oil cooler. The radiator cools the cooling water of the engine 20, and the oil cooler cools the hydraulic oil supplied to the hydraulic drive system including the hydraulic cylinders 6a, 7a, 8a (see FIG. 1) of the work front 4. .
 また、遠心ファン31を挟んでベルマウス32の反対側には、整流部材35が配置されている。つまり、整流部材35は、遠心ファン31における吸込口31aの反対側である後述のハブ41の背面側に配置されている。整流部材35は、遠心ファン31から機械室14内へ吐出される気流Fdの急拡大を抑制するものであり、少なくとも遠心ファン31の外周縁から径方向外側に延在する部材である。整流部材35は、例えば、外周縁が円形、楕円、又は多角形等を成す環状の平板部材であり、ステー36を介してエンジン20に固定されている。整流部材35は、また、遠心ファン31から吐出される気流Fdの導風路をベルマウス32と共に形成している。整流部材35は、遠心ファン31から吐出した気流Fdとの摩擦によって旋回速度成分を減速させることで、摩擦による損失があるものの、気流Fdの運動エネルギーの一部を静圧へと変換し、エネルギー損失を低減することが可能である。 A rectifying member 35 is arranged on the opposite side of the bell mouth 32 with the centrifugal fan 31 interposed therebetween. That is, the rectifying member 35 is arranged on the opposite side of the suction port 31a of the centrifugal fan 31 to the back side of the hub 41 described later. The rectifying member 35 suppresses the rapid expansion of the airflow Fd discharged from the centrifugal fan 31 into the machine chamber 14, and is a member that extends at least radially outward from the outer peripheral edge of the centrifugal fan 31. The rectifying member 35 is, for example, an annular flat plate member having an outer peripheral edge of a circular shape, an elliptic shape, a polygonal shape, or the like, and is fixed to the engine 20 via a stay 36. The rectifying member 35 also forms an air guide path for the air flow Fd discharged from the centrifugal fan 31 together with the bell mouth 32. The rectifying member 35 reduces a turning speed component by friction with the air flow Fd discharged from the centrifugal fan 31 to convert a part of kinetic energy of the air flow Fd into static pressure, though there is a loss due to the friction. It is possible to reduce the loss.
 次に、本発明の建設機械の第1の実施の形態における遠心ファンの構成について図面を用いて説明する。先ず、遠心ファンの全体構成を図2~図4を用いて説明する。図3は本発明の建設機械の第1の実施の形態の一部を構成する遠心ファンの吸込側を軸方向から見た図、図4は図3に示す遠心ファンをシュラウドを取り除いた状態で示す図である。 Next, the configuration of the centrifugal fan according to the first embodiment of the construction machine of the present invention will be described with reference to the drawings. First, the overall configuration of the centrifugal fan will be described with reference to FIGS. 3 is a view of the suction side of a centrifugal fan that constitutes a part of the first embodiment of the construction machine of the present invention as seen from the axial direction, and FIG. 4 shows the centrifugal fan shown in FIG. 3 with the shroud removed. FIG.
 図2~図4において、遠心ファン31は、回転軸23に取り付けられ、回転軸線Aを中心に回転可能な円盤状のハブ41と、ハブ41の軸方向一方側(図2中、左側)に対向してハブ41と同軸上に配置され、ハブ41との間に流路を形成する環状のシュラウド42と、ハブ41とシュラウド42の間において周方向に互いに所定の間隔をあけて設けられた複数の羽根43とを備えている。シュラウド42は、図2及び図3に示すように、軸方向一方側(図2中、左側)の方が他方側(図2中、右側)よりも径が小さくなるように形成されている。シュラウド42は、軸方向一方側の中心部に位置する径の小さい開口が遠心ファン31の吸込口31aを構成している。 2 to 4, the centrifugal fan 31 is attached to the rotary shaft 23, and is a disk-shaped hub 41 that is rotatable around the rotary axis A, and one side in the axial direction of the hub 41 (left side in FIG. 2). An annular shroud 42 that is arranged to face each other and is coaxial with the hub 41 and forms a flow path between the hub 41 and the hub 41 is provided at a predetermined interval in the circumferential direction between the hub 41 and the shroud 42. And a plurality of blades 43. As shown in FIGS. 2 and 3, the shroud 42 is formed such that the axial one side (left side in FIG. 2) has a smaller diameter than the other side (right side in FIG. 2). In the shroud 42, an opening having a small diameter located at the center on one axial side constitutes the suction port 31 a of the centrifugal fan 31.
 次に、遠心ファンの羽根の形状を図2~図9を用いて説明する。図5は図3の符号Lで示す領域の拡大図であり、遠心ファンの羽根の前縁及び前縁の近傍を示す図、図6は図4に示す遠心ファンをVI-VI矢視から見た斜視図であり、遠心ファンの羽根形状を示す図、図7は図3に示す遠心ファンをVII-VII矢視から見た断面図(羽根の前縁とシュラウドとの接続部の位置において回転軸線を中心とした円筒面で切断した断面図)、図8は図3に示す遠心ファンをVIII-VIII矢視から見た断面図(羽根の翼弦方向中央付近の位置において回転軸線を中心とした円筒面で切断した断面図)、図9は図3に示す遠心ファンをIX-IX矢視から見た断面図(羽根の後縁近傍の位置において回転軸線を中心とした円筒面で切断した断面図)である。 Next, the shape of the centrifugal fan blades will be described with reference to FIGS. 2 to 9. 5 is an enlarged view of a region indicated by reference symbol L in FIG. 3, showing the leading edge and the vicinity of the leading edge of the blade of the centrifugal fan, and FIG. 6 is a perspective view of the centrifugal fan shown in FIG. FIG. 7 is a perspective view showing the blade shape of the centrifugal fan, and FIG. 7 is a cross-sectional view of the centrifugal fan shown in FIG. 3 as seen from the arrow VII-VII (rotating at the position of the connecting portion between the front edge of the blade and the shroud). FIG. 8 is a sectional view of the centrifugal fan shown in FIG. 3 as viewed from the direction of arrows VIII-VIII (centering around the rotation axis at a position near the blade chord direction center). 9 is a cross-sectional view taken along the line IX-IX of the centrifugal fan shown in FIG. 3 (a cross-sectional view taken along the line IX-IX of the centrifugal fan shown in FIG. 3). FIG.
 各羽根43は、図2及び図4に示すように、空気が流入する側の前縁44と、空気が流出する側の後縁45と、前縁44と後縁45との間に延在する一方側の翼面であって回転方向Rに対して前方側を向く正圧面46と、前縁44と後縁45との間に延在する他方側(正圧面46の裏面側)の翼面であって回転方向Rに対して後方側を向く負圧面47とを含んでいる。羽根43におけるハブ41との接続部からシュラウド42との接続部へ延在する方向を羽根43のスパン方向と規定する。また、羽根43における前縁44から後縁45へ延在する方向を羽根43の翼弦方向と規定する。 As shown in FIGS. 2 and 4, each blade 43 extends between a front edge 44 on the air inflow side, a rear edge 45 on the air outflow side, and between the front edge 44 and the rear edge 45. And a blade on the other side (a back surface side of the pressure surface 46) extending between the front edge 44 and the trailing edge 45, which is the blade surface on one side and faces the front side with respect to the rotation direction R. And a negative pressure surface 47 facing the rear side with respect to the rotation direction R. The direction in which the blade 43 extends from the connection portion with the hub 41 to the connection portion with the shroud 42 is defined as the span direction of the blade 43. Further, the direction of the blade 43 extending from the leading edge 44 to the trailing edge 45 is defined as the chord direction of the blade 43.
 各羽根43の前縁44は、図3~図5に示すように、ハブ41との接続部44hがシュラウド42との接続部44sよりも径方向内側に位置している。また、前縁44は、図5及び図6に示すように、ハブ41との接続部44hとシュラウド42との接続部44sとを結ぶ線分SLに対して、負圧面47側(回転方向Rに対して後方側)に凸形状となるように湾曲している。さらに、各羽根43は、図3及び図5に示すように、遠心ファン31の吸込側をその軸方向から見たときに、前縁44の凸形状の頂点44vがベルマウス32の流出口32aの壁面よりも径方向内側(回転軸線A側)に位置するように構成されている。 As shown in FIGS. 3 to 5, at the front edge 44 of each blade 43, the connecting portion 44h with the hub 41 is located radially inward of the connecting portion 44s with the shroud 42. In addition, as shown in FIGS. 5 and 6, the front edge 44 is located on the negative pressure surface 47 side (in the rotation direction R) with respect to the line segment SL connecting the connection portion 44h with the hub 41 and the connection portion 44s with the shroud 42. It is curved so as to be convex toward the rear side). Furthermore, as shown in FIGS. 3 and 5, each blade 43 has a convex vertex 44v of the front edge 44 when the suction side of the centrifugal fan 31 is viewed in the axial direction thereof, and the outlet 32a of the bell mouth 32. It is configured so as to be located on the inner side in the radial direction (on the side of the rotation axis A) than the wall surface.
 羽根43は、図4及び図6に示すように、前縁44における負圧面47側へ湾曲した凸形状が翼弦方向に延在して後縁45にまで至るように構成されている。すなわち、羽根43は、図7~図9に示すように、回転軸線Aを中心とする円筒面で切断した前縁44から後縁45までの各断面が羽根43のハブ41との接続部(根元部)43hと羽根43のシュラウド42との接続部(先端部)43sとを結ぶ線分Sに対して、負圧面47側(回転方向Rに対して後方側)に凸形状となるように湾曲している。 As shown in FIGS. 4 and 6, the blade 43 is configured such that the convex shape of the leading edge 44 curved toward the suction surface 47 extends in the chord direction to reach the trailing edge 45. That is, as shown in FIGS. 7 to 9, the blade 43 has a cross section from a front edge 44 to a rear edge 45, which is cut along a cylindrical surface centering on the rotation axis A, at a connecting portion with the hub 41 of the blade 43 ( With respect to the line segment S connecting the root part) 43h and the connecting part (tip part) 43s of the blade 43 to the shroud 42, the negative pressure surface 47 side (rear side with respect to the rotation direction R) should be convex. It is curved.
 羽根43は、図7及び図8に示すように、上記凸形状における頂点43vの曲率が前縁44から翼弦方向中央付近の位置(前縁44と後縁45との間の途中位置)に向かって徐々に大きくなるように構成されている。加えて、羽根43は、図8及び図9に示すように、上記凸形状における頂点43vの曲率が翼弦方向中央付近の位置(前縁44と後縁45との間の途中位置)から後縁45に向かって徐々に小さくなるように構成されている。すなわち、羽根43は、前縁44側に位置し、羽根43の凸形状における頂点43vの曲率が前縁44から徐々に大きくなる第1湾曲羽根部と、後縁45側に位置し、羽根43の凸形状における頂点43vの曲率が後縁45に向かって徐々に小さくなる第2湾曲羽根部とで構成されている。 As shown in FIGS. 7 and 8, the blade 43 has a curvature of the apex 43v in the above-mentioned convex shape at a position near the center in the chord direction from the leading edge 44 (a position midway between the leading edge 44 and the trailing edge 45). It is configured to gradually increase toward the end. In addition, as shown in FIGS. 8 and 9, in the blade 43, the curvature of the apex 43v in the convex shape is from the position near the center in the chord direction (the middle position between the leading edge 44 and the trailing edge 45) to the rear. It is configured to gradually decrease toward the edge 45. That is, the blade 43 is located on the leading edge 44 side, and the first curved blade portion whose curvature of the apex 43v in the convex shape of the blade 43 is gradually increased from the leading edge 44 is located on the trailing edge 45 side. In the convex shape of the second curved blade portion, the curvature of the apex 43v gradually decreases toward the trailing edge 45.
 また、羽根43は、図7~図9に示すように、回転軸線Aを中心とした円筒面で切断した羽根断面におけるハブ41との接続部43hに対するシュラウド42との接続部43sの周方向の相対位置が、前縁44から後縁45に向かって徐々に回転方向Rに対して後方側へ変位するように構成されている。より詳細には、羽根43の前縁44近傍における羽根断面では、図7に示すように、シュラウド42との接続部43sの周方向の位置がハブ41との接続部43hの周方向の位置よりも回転方向Rに対して前方側にずれている。羽根43の翼弦方向中央付近の位置における羽根断面では、図8に示すように、シュラウド42との接続部43sの周方向の位置がハブ41との接続部43hの周方向の位置と略同じである。羽根43の後縁45近傍における羽根断面では、図9に示すように、シュラウド42との接続部43sの周方向の位置がハブ41との接続部43hの周方向の位置よりも回転方向Rに対して後方側にずれている。このように、前縁44近傍から翼弦方向中央付近の位置までは、ハブ41との接続部43hに対するシュラウド42との接続部43sの周方向の相対位置が回転方向Rに対して前方側にずれている。一方、翼弦方向中央付近の位置から後縁45までは、ハブ41との接続部43hに対するシュラウド42との接続部43sの周方向の相対位置が回転方向Rに対して後方側にずれている。 Further, as shown in FIGS. 7 to 9, the blades 43 are arranged in the circumferential direction of the connecting portion 43s with the shroud 42 with respect to the connecting portion 43h with the hub 41 in the blade cross section cut along the cylindrical surface with the rotation axis A as the center. The relative position is configured to be gradually displaced rearward with respect to the rotation direction R from the front edge 44 toward the rear edge 45. More specifically, in the blade cross section near the front edge 44 of the blade 43, as shown in FIG. 7, the circumferential position of the connecting portion 43s with the shroud 42 is greater than the circumferential position of the connecting portion 43h with the hub 41. Is also displaced forward with respect to the rotation direction R. In the blade cross section near the center of the chord direction of the blade 43, as shown in FIG. 8, the circumferential position of the connecting portion 43s with the shroud 42 is substantially the same as the circumferential position of the connecting portion 43h with the hub 41. Is. In the blade cross section near the trailing edge 45 of the blade 43, as shown in FIG. 9, the circumferential position of the connecting portion 43s with the shroud 42 is in the rotational direction R rather than the circumferential position of the connecting portion 43h with the hub 41. On the other hand, it is displaced to the rear side. As described above, from the vicinity of the front edge 44 to the position near the center of the chord direction, the circumferential relative position of the connection portion 43s with the shroud 42 with respect to the connection portion 43h with the hub 41 is forward with respect to the rotation direction R. Deviated. On the other hand, from the position near the center in the chord direction to the trailing edge 45, the relative position in the circumferential direction of the connecting portion 43s with the shroud 42 with respect to the connecting portion 43h with the hub 41 is displaced rearward with respect to the rotation direction R. .
 次に、遠心ファンにおける羽根の入口角の設定を図10~図13を用いて説明する。図10は本発明の建設機械の第1の実施の形態における遠心ファン吸込口を通過する気流の径方向の流速分布を示す説明図、図11は本発明の建設機械の第1の実施の形態における遠心ファンの羽根前縁のハブ側の位置(図10に示す位置H)での速度三角形を示す説明図、図12は本発明の建設機械の第1の実施の形態における遠心ファンの羽根前縁のスパン方向中央付近の位置(図10に示す位置M)での速度三角形を示す説明図、図13は本発明の建設機械の第1の実施の形態における遠心ファンの羽根前縁のシュラウド側の位置(図10に示す位置S)での速度三角形を示す説明図である。 Next, the setting of the blade inlet angle in the centrifugal fan will be described with reference to FIGS. 10 to 13. FIG. 10 is an explanatory view showing the radial velocity distribution of the air flow passing through the centrifugal fan suction port in the first embodiment of the construction machine of the present invention, and FIG. 11 is the first embodiment of the construction machine of the present invention. 12 is an explanatory view showing a speed triangle at a hub side position (position H shown in FIG. 10) of the blade leading edge of the centrifugal fan in FIG. 12, and FIG. 12 is a blade front of the centrifugal fan in the first embodiment of the construction machine of the present invention. Explanatory drawing showing a speed triangle at a position near the center of the edge in the span direction (position M shown in FIG. 10), and FIG. 13 is a shroud side of the blade leading edge of the centrifugal fan in the first embodiment of the construction machine of the present invention. FIG. 11 is an explanatory diagram showing a velocity triangle at the position (position S shown in FIG. 10).
 本実施の形態においては、図10に示すように、遠心ファン31の吸込側にベルマウス32を設置しており、遠心ファン31の吸込口31aとベルマウス32の流出口32aとの間に隙間Dを設けている。この場合、遠心ファン31から吐出された空気の一部は、遠心ファンとベルマウスの隙間Dを通って再び遠心ファンに漏れ流れFLとして流入する。また、ベルマウス32は流出口32a側へ向かって縮径しているので、ベルマウス32の流出口32aから流出する空気の速度はベルマウス32の中心側(径方向内側)よりも壁面側(径方向外側)の方が大きくなる(図10中に示す流速分布を参照)。つまり、ベルマウス32の流出口32aの壁面近傍の領域では、局所的に速度が増加する。このベルマウス32の影響により、遠心ファン31の吸込口31aでは、シュラウド42の壁面近傍の方が中心部よりも速度の大きな流れが流入する。 In the present embodiment, as shown in FIG. 10, a bell mouth 32 is installed on the suction side of the centrifugal fan 31, and there is a gap between the suction port 31a of the centrifugal fan 31 and the outflow port 32a of the bell mouth 32. D is provided. In this case, a part of the air discharged from the centrifugal fan 31 passes through the gap D between the centrifugal fan and the bellmouth and again flows into the centrifugal fan as a leakage flow FL. Further, since the bell mouth 32 is reduced in diameter toward the outflow port 32a side, the velocity of the air flowing out from the outflow port 32a of the bell mouth 32 is closer to the wall surface side than the center side (radially inner side) of the bell mouth 32 ( It becomes larger in the radial direction) (see the flow velocity distribution shown in FIG. 10). That is, the velocity locally increases in the region near the wall surface of the outlet 32a of the bell mouth 32. Due to the influence of the bell mouth 32, in the suction port 31a of the centrifugal fan 31, a flow having a higher velocity flows into the vicinity of the wall surface of the shroud 42 than in the central portion.
 本実施の形態においては、遠心ファン31の羽根43の入口角が上記のベルマウス32の影響を考慮して設定される。羽根43は、その入口角が羽根43に対する空気の流入角と一致するように構成されている。この場合、遠心ファン31に流入する空気の流れが無衝突流入条件となるので、流れの衝突損失を低減することができる。なお、羽根43の入口角とは、図11に示す羽根43の断面形状の反り線Cの前縁44における接線Ctと遠心ファン31の回転軸線A(図10を参照)を中心として各羽根43の前縁44に接する仮想の内接円Iにおける前縁44での接線Itとの成す角である。反り線とは、羽根43の正圧面46と負圧面47との中点を順々に結んで得られる曲線である。流入角は、気流の相対流入速度ベクトルと遠心ファン31の回転方向Rとのなす角度である。 In the present embodiment, the inlet angle of the blades 43 of the centrifugal fan 31 is set in consideration of the influence of the bell mouth 32 described above. The blade 43 is configured such that its inlet angle matches the inflow angle of air to the blade 43. In this case, since the flow of air flowing into the centrifugal fan 31 is a collision-free inflow condition, it is possible to reduce the collision loss of the flow. The inlet angle of the blades 43 is centered on the tangent line Ct at the front edge 44 of the warp line C of the sectional shape of the blades 43 shown in FIG. 11 and the rotation axis A (see FIG. 10) of the centrifugal fan 31. Is an angle formed with a tangent line It at the front edge 44 in an imaginary inscribed circle I that is in contact with the front edge 44 of the. The warp line is a curve obtained by sequentially connecting the midpoints of the positive pressure surface 46 and the negative pressure surface 47 of the blade 43. The inflow angle is an angle formed by the relative inflow velocity vector of the airflow and the rotation direction R of the centrifugal fan 31.
 具体的には、羽根43の前縁44におけるハブ41側の位置H(図10を参照)には、図11に示すように、羽根43の周速Uhと気流の絶対速度Cahとから求められる相対流入速度Whの気流が流入する。周速Uhは、遠心ファン31の定格回転数と回転軸線Aから位置Hまでの径方向の距離(図10に示す両矢印を参照)とから定められる。子午面方向速度Cmhは、ベルマウス32の内部から遠心ファン31の吸込口31aに流入する気流に予旋回がないと仮定しているので、絶対速度Cahと等しい。したがって、位置Hにおける羽根43の入口角khは、周速Uhと子午面方向速度Cmhとから定まる相対流入速度Whによって得られる流入角βhと一致するように設定される。 Specifically, at the position H (see FIG. 10) on the hub 41 side at the front edge 44 of the blade 43, as shown in FIG. 11, it is obtained from the peripheral speed Uh of the blade 43 and the absolute speed Cah of the air flow. The airflow having the relative inflow speed Wh flows in. The peripheral speed Uh is determined from the rated rotation speed of the centrifugal fan 31 and the radial distance from the rotation axis A to the position H (see the double-headed arrow shown in FIG. 10). The meridional velocity Cmh is equal to the absolute velocity Cah because it is assumed that the airflow flowing from the inside of the bell mouth 32 into the suction port 31a of the centrifugal fan 31 has no pre-turning. Therefore, the inlet angle kh of the blade 43 at the position H is set to match the inflow angle βh obtained by the relative inflow velocity Wh determined by the peripheral velocity Uh and the meridional direction velocity Cmh.
 羽根43の前縁44におけるスパン方向中央付近の位置M(図10を参照)では、図12に示すように、羽根43の周速Umと気流の絶対速度Camとから定まる相対流入速度Wmの気流が流入する。周速Umは、遠心ファン31の定格回転数と回転軸線Aから位置Mまでの径方向の距離とから定められる。位置Mにおける周速Umは、位置Mが位置Hよりも径方向外側に位置しているので(図10を参照)、位置Hにおける周速Uhよりも大きくなる。子午面速度Cmmは、ベルマウス32の壁面での増速の影響により(図10に示す流速分布を参照)、位置Hにおける子午面速度Cmh(図11を参照)よりも大きくなる。子午面方向速度Cmmは、位置Hの場合と同様に予旋回がなく、絶対速度Camと等しい。したがって、位置Mにおける翼入口角kmは、周速Umと子午面方向速度Cmmとから定まる相対流入速度Wmによって得られる流入角βmと一致するように設定される。 At a position M (see FIG. 10) near the center in the span direction at the leading edge 44 of the blade 43, as shown in FIG. 12, an airflow having a relative inflow speed Wm determined by the peripheral speed Um of the blade 43 and the absolute speed Cam of the airflow. Flows in. The peripheral speed Um is determined from the rated rotation speed of the centrifugal fan 31 and the radial distance from the rotation axis A to the position M. The peripheral speed Um at the position M is higher than the peripheral speed Uh at the position H because the position M is located radially outside the position H (see FIG. 10). The meridional surface speed Cmm is larger than the meridional surface speed Cmh (see FIG. 11) at the position H due to the influence of the acceleration on the wall surface of the bell mouth 32 (see the flow velocity distribution shown in FIG. 10). The meridional plane velocity Cmm is equal to the absolute velocity Cam without the pre-turning as in the case of the position H. Therefore, the blade entrance angle km at the position M is set so as to match the inflow angle βm obtained by the relative inflow velocity Wm determined by the peripheral velocity Um and the meridional direction velocity Cmm.
 羽根43の前縁44におけるシュラウド42側の位置Sでは、図10に示すように、ベルマウス32とシュラウド42の隙間Dから遠心ファン31の吸込口31aに漏れ流れFLが流入する。この漏れ流れFLは、遠心ファン31から吐出された気流なので、旋回速度成分を有している。したがって、位置Sに流入する空気の流れには予旋回が存在する。つまり、図13に示すように、気流の絶対速度Cas≠子午面速度Cmsであり、絶対速度Casには旋回速度Cusが含まれる。したがって、羽根43の前縁44におけるシュラウド42側の位置S(図10を参照)では、旋回速度Cusを含む絶対速度Casと羽根43の周速Usとから定まる相対流入速度Wsの流れが流入する。周速Usは、遠心ファン31の定格回転数と回転軸線Aから位置Sまでの径方向の距離とから定められる。位置Sにおける周速Usは、位置Sが位置Mよりも径方向外側に位置しているので(図10を参照)、位置Mにおける周速Umよりも大きくなる。絶対速度Casは、子午面速度Cmsと旋回速度Cusとから求められる。子午面速度Cmsは、ベルマウス32の壁面での増速の影響により(図10に示す流速分布を参照)、位置Hにおける子午面速度Cmh(図11を参照)よりも大きくなる。位置Sにおける入口角ksは、周速Usと絶対速度Casとから定まる流入相対速度Wsによって得られる流入角度βsと一致するように設定される。 At the position S on the shroud 42 side of the front edge 44 of the blade 43, as shown in FIG. 10, the leakage flow FL flows from the gap D between the bell mouth 32 and the shroud 42 into the suction port 31a of the centrifugal fan 31. Since this leak flow FL is the air flow discharged from the centrifugal fan 31, it has a swirl velocity component. Therefore, there is a pre-turn in the flow of air flowing into the position S. That is, as shown in FIG. 13, the absolute velocity Cas of the airflow is not equal to the meridional velocity Cms, and the absolute velocity Cas includes the turning velocity Cus. Therefore, at the position S (see FIG. 10) on the shroud 42 side of the front edge 44 of the blade 43, the flow having the relative inflow speed Ws determined by the absolute speed Cas including the turning speed Cus and the peripheral speed Us of the blade 43 flows in. . The peripheral speed Us is determined from the rated rotation speed of the centrifugal fan 31 and the radial distance from the rotation axis A to the position S. The peripheral speed Us at the position S is higher than the peripheral speed Um at the position M because the position S is located radially outside the position M (see FIG. 10). The absolute velocity Cas is obtained from the meridional velocity Cms and the turning velocity Cus. The meridional surface speed Cms is higher than the meridional surface speed Cmh at the position H (see FIG. 11) due to the influence of the acceleration on the wall surface of the bell mouth 32 (see the flow velocity distribution shown in FIG. 10). The inlet angle ks at the position S is set so as to match the inflow angle βs obtained by the inflow relative velocity Ws determined by the peripheral velocity Us and the absolute velocity Cas.
 次に、本発明の建設機械の第1の実施の形態における遠心ファン内部の空気の流れ及び効果を従来の遠心ファンと比較しつつ説明する。先ず、従来の遠心ファンの構造及び内部の空気の流れを図10、図14、及び図15を用いて説明する。図14は従来の遠心ファンの構造及び従来の遠心ファンの空気の流れを示す説明図であり、図3に示す矢視XVI-XVIと同様な矢視から見た斜視図、図15は従来の遠心ファンの羽根の前縁、翼弦方向中央付近、及び後縁におけるスパン方向の流速分布を示す説明図である。図14中、太い矢印は空気の流れを示している。図15中、流速分布を複数の矢印で示している。なお、図14及び図15において、図1~図14に示す符号と同符号のものは、同様な部分であるので、その詳細な説明は省略する。 Next, the flow and effect of the air inside the centrifugal fan in the first embodiment of the construction machine of the present invention will be described while comparing with the conventional centrifugal fan. First, the structure of a conventional centrifugal fan and the internal air flow will be described with reference to FIGS. 10, 14 and 15. 14 is an explanatory view showing the structure of a conventional centrifugal fan and the air flow of the conventional centrifugal fan. FIG. 14 is a perspective view seen from an arrow similar to arrow XVI-XVI shown in FIG. 3, and FIG. It is explanatory drawing which shows the flow velocity distribution of the span direction in the front edge of the blade of a centrifugal fan, the center of a chord direction, and a rear edge. In FIG. 14, thick arrows indicate the flow of air. In FIG. 15, the flow velocity distribution is indicated by a plurality of arrows. Note that, in FIGS. 14 and 15, the same reference numerals as those shown in FIGS. 1 to 14 denote the same parts, and thus detailed description thereof will be omitted.
 従来の遠心ファン131では、図14に示すように、羽根143のスパン方向のシュラウド42側の端部を回転方向Rに対して後方側へ湾曲させている。すなわち、羽根143の前縁144は、ハブ41との接続部144hとシュラウド42との接続部144sとを結ぶ線分SLに対して、負圧面147側(回転方向Rに対して後方側)に凸形状となるように湾曲している。羽根143は、前縁144の凸形状の頂点144vの位置がシュラウド42側の近傍にあるように構成されている。 In the conventional centrifugal fan 131, as shown in FIG. 14, the end of the blade 143 on the shroud 42 side in the span direction is curved rearward with respect to the rotation direction R. That is, the front edge 144 of the blade 143 is located on the suction surface 147 side (rear side with respect to the rotation direction R) with respect to the line segment SL connecting the connection portion 144h with the hub 41 and the connection portion 144s with the shroud 42. It is curved so as to have a convex shape. The blade 143 is configured such that the position of the convex-shaped apex 144v of the front edge 144 is near the shroud 42 side.
 遠心ファン131は空気を軸方向(図14中、上方向)から吸い込んで径方向外側へ吐出するものなので、ファン内部の空気の流れは急激に転向されることになる。この気流は、軸方向から径方向外側へ転向される際に、慣性によってハブ41側へ押し付けられる。また、シュラウド42側の気流は、ハブ41側の気流よりも大きな曲率で転向する必要があるが、シュラウド42の壁面形状に沿いきれずにハブ41側へ押し付けられる。 Since the centrifugal fan 131 sucks air from the axial direction (upward direction in FIG. 14) and discharges it to the outside in the radial direction, the air flow inside the fan is suddenly turned. This airflow is pushed toward the hub 41 side by inertia when it is turned radially outward from the axial direction. Further, the airflow on the shroud 42 side needs to be turned with a larger curvature than the airflow on the hub 41 side, but the airflow on the side of the shroud 42 is pressed against the hub 41 side without being able to follow the wall shape of the shroud 42.
 上記した従来の遠心ファン131の羽根143では、羽根143が負圧面147側に凸形状となるように湾曲しているので、羽根143の翼面形状によって気流のハブ41側への押付けの影響が緩和される。しかし、羽根143の凸形状における頂点144vの位置がシュラウド42側近傍にあるので、シュラウド42側近傍の気流に対してのみハブ41側への押付けの影響が緩和される。そのため、気流のハブ41側への押付けの影響を十分に緩和できず、気流の向きがある程度径方向に転向した径方向の位置では、羽根143のスパン方向において、ハブ41側の流速がシュラウド42側よりも大きくなる偏りある流速分布が生じる。 In the blade 143 of the conventional centrifugal fan 131 described above, since the blade 143 is curved so as to have a convex shape on the negative pressure surface 147 side, the influence of the pressing of the air flow on the hub 41 side depends on the blade surface shape of the blade 143. Will be alleviated. However, since the position of the apex 144v in the convex shape of the blade 143 is near the shroud 42 side, the influence of pressing on the hub 41 side is mitigated only for the airflow near the shroud 42 side. Therefore, the influence of pressing the air flow on the hub 41 side cannot be sufficiently mitigated, and at the radial position where the direction of the air flow is radially displaced to some extent, in the span direction of the blades 143, the flow velocity on the hub 41 side is shroud 42. There is a biased flow velocity distribution that is larger than on the side.
 具体的には、次のような流速分布となる。従来の遠心ファン131は、図15に示すように、本実施の形態と同様に、吸込側にベルマウス32が配置されている。ベルマウス32の流出口32aの子午面断面における流速分布は、ベルマウス32の壁面付近の流速が中心側(回転軸線A側)よりも大きくなっている(図10中に示す流速分布を参照)。そのため、従来の遠心ファン131の吸込口131aでも、シュラウド42側の流速がハブ41側よりも大きい流速分布となる。 Specifically, the flow velocity distribution is as follows. As shown in FIG. 15, a conventional centrifugal fan 131 has a bell mouth 32 arranged on the suction side, as in the present embodiment. The flow velocity distribution in the meridional cross section of the outlet 32a of the bell mouth 32 is larger than the center side (rotation axis A side) of the flow velocity near the wall surface of the bell mouth 32 (see the flow velocity distribution shown in FIG. 10). . Therefore, even in the suction port 131a of the conventional centrifugal fan 131, the flow velocity distribution on the shroud 42 side is higher than that on the hub 41 side.
 従来の羽根143の前縁144では、図15に示すように、気流がハブ41側へ押し付けられることにより、シュラウド42側とハブ41側との速度差が低減された流速分布となる。つまり、前縁144におけるスパン方向の流速分布は、吸込口131aにおける径方向の流速分布よりも均一化される。 At the front edge 144 of the conventional blade 143, as shown in FIG. 15, the air flow is pressed against the hub 41 side, so that the velocity difference between the shroud 42 side and the hub 41 side is reduced, resulting in a flow velocity distribution. That is, the flow velocity distribution in the span direction at the front edge 144 is made more uniform than the flow velocity distribution in the radial direction at the suction port 131a.
 一方、前縁144から翼弦方向中央付近までの流路の前半部では、軸方向から径方向外側への気流の転向による気流のハブ41側への押付けが継続する。そのため、当該中央付近の位置(図15中、二点鎖線で示した位置)において、ハブ41側からシュラウド42側へ向かって徐々に低下するスパン方向の流速分布が生じる。ハブ41側とシュラウド42側の速度差が急激に変化するような流速分布が生じた場合、気流がシュラウド42に沿いきれず、シュラウド42から剥離した流れFsとなる。 On the other hand, in the first half of the flow path from the front edge 144 to the vicinity of the center of the chord direction, the air flow continues to be pressed to the hub 41 side by the turning of the air flow from the axial direction to the radially outer side. Therefore, at the position near the center (the position indicated by the chain double-dashed line in FIG. 15), a flow velocity distribution in the span direction gradually decreases from the hub 41 side toward the shroud 42 side. When a flow velocity distribution in which the speed difference between the hub 41 side and the shroud 42 side is abruptly changed is generated, the air flow cannot be along the shroud 42 and becomes the flow Fs separated from the shroud 42.
 また、翼弦方向中央付近から後縁145までの流路の後半部では、気流の転向が終了しているので、気流がハブ41側へ押し付けられることはない。したがって、羽根143の後縁145では、翼弦方向中央付近でのスパン方向の流速分布とほぼ同じ流速分布となる。すなわち、後縁145におけるスパン方向の流速分布はハブ41側からシュラウド42側向かって徐々に低下する分布となる。 Also, in the latter half of the flow path from the vicinity of the center of the chord direction to the trailing edge 145, the turning of the air flow has ended, so the air flow is not pressed toward the hub 41 side. Therefore, the trailing edge 145 of the blade 143 has substantially the same flow velocity distribution in the span direction near the center of the chord direction. That is, the flow velocity distribution in the span direction at the trailing edge 145 is a distribution that gradually decreases from the hub 41 side toward the shroud 42 side.
 このように、従来の遠心ファン131では、ハブ41側とシュラウド42側の速度差を効果的に低減することができない。すなわち、羽根143の後縁145においてハブ41側に流量が偏るファン特性を改善することは難しい。 Thus, the conventional centrifugal fan 131 cannot effectively reduce the speed difference between the hub 41 side and the shroud 42 side. That is, it is difficult to improve the fan characteristic in which the flow rate is biased toward the hub 41 side at the trailing edge 145 of the blade 143.
 次に、本発明の建設機械の第1の実施の形態における遠心ファンの空気の流れ及び効果を図5、及び図16~図19を用いて説明する。図16は発明の建設機械の第1の実施の形態の遠心ファンにおける羽根の前縁から翼弦方向中央付近までの流れを示す説明図であり、図3に示す矢視XVI-XVIから見た斜視図、図17は発明の建設機械の第1の実施の形態の遠心ファンにおける羽根の翼弦方向中央付近から後縁までの空気の流れを示す説明図、図18は発明の建設機械の第1の実施の形態における遠心ファンの羽根の正圧面に沿った流れ場の解析結果を示す図、図19は発明の建設機械の第1の実施の形態における遠心ファン内部の空気の流れを示す図である。図16及び図17中、太い矢印は流れを示している。図18中、白抜き矢印は流れの向きを示している。図19中、黒点は羽根の湾曲した凸形状における頂点の曲率が最大である位置を示している。 Next, the air flow and effect of the centrifugal fan in the first embodiment of the construction machine of the present invention will be described with reference to FIGS. 5 and 16 to 19. FIG. 16 is an explanatory diagram showing a flow from the leading edge of the blade to the vicinity of the center in the chord direction in the centrifugal fan according to the first embodiment of the construction machine of the invention, which is viewed from the arrow XVI-XVI shown in FIG. 17 is a perspective view, FIG. 17 is an explanatory view showing the air flow from the vicinity of the center of the blade chord direction to the trailing edge in the centrifugal fan of the first embodiment of the construction machine of the invention, and FIG. 18 is the construction machine of the invention. The figure which shows the analysis result of the flow field along the positive pressure surface of the blade of the centrifugal fan in 1st Embodiment, FIG. 19 is the figure which shows the air flow inside the centrifugal fan in 1st Embodiment of the construction machine of this invention. Is. 16 and 17, thick arrows indicate the flow. In FIG. 18, white arrows indicate the direction of flow. In FIG. 19, a black dot indicates a position where the curvature of the apex of the curved convex shape of the blade is maximum.
 本実施の形態においては、図5及び図16に示すように、羽根43の前縁44を負圧面47側(回転方向Rに対して後方側)に凸形状となるように湾曲させている。さらに、遠心ファン31の吸込側をその軸方向から見たときに、前縁44の凸形状の頂点44vの位置がベルマウス32の流出口32aの壁面よりも径方向内側に存在するように羽根43を構成している。つまり、前縁44の凸形状の頂点44vの位置は、図14に示す従来の遠心ファン131の羽根143における前縁144の凸形状の頂点144vの位置よりもハブ41側に寄っている。この前縁44の形状によって、遠心ファン31の吸込口31aへ流入した空気の流れにおいて、軸方向から径方向外側への転向によりハブ41側へ移動する流量を減少させることができる。特に、従来の遠心ファン131と比較すると(図14を参照)、図16に示すように、スパン方向中央付近の気流のハブ41側への移動を抑制することができると共に、ハブ41側の気流の一部をスパン方向中央付近に寄せることができる。 In the present embodiment, as shown in FIGS. 5 and 16, the front edge 44 of the blade 43 is curved so as to be convex toward the suction surface 47 side (rear side with respect to the rotation direction R). Furthermore, when the suction side of the centrifugal fan 31 is viewed from the axial direction, the blades are arranged so that the position of the convex vertex 44v of the front edge 44 is located radially inward of the wall surface of the outlet 32a of the bell mouth 32. 43 is configured. That is, the position of the convex vertex 44v of the front edge 44 is closer to the hub 41 side than the position of the convex vertex 144v of the front edge 144 in the blade 143 of the conventional centrifugal fan 131 shown in FIG. Due to the shape of the front edge 44, in the flow of air that has flowed into the suction port 31a of the centrifugal fan 31, it is possible to reduce the flow rate that moves toward the hub 41 side by turning outward from the axial direction in the radial direction. In particular, as compared with the conventional centrifugal fan 131 (see FIG. 14), as shown in FIG. 16, it is possible to suppress the movement of the air flow near the center in the span direction to the hub 41 side, and at the same time, to reduce the air flow on the hub 41 side. It is possible to move a part of the area near the center in the span direction.
 さらに、本実施の形態においては、図16に示すように、前縁44の凸形状を翼弦方向に延在させ、上記凸形状における頂点の曲率が前縁44から翼弦方向中央付近の位置に向かって徐々に大きくなるように羽根43を構成している。このような羽根43の湾曲形状によって、従来の遠心ファン131と比較すると(図14を参照)、軸方向から径方向外側への転向によるハブ41側の気流のハブ41側への移動を抑制することができ、翼弦方向中央付近において凸形状の頂点付近に気流を集めることができる。 Furthermore, in the present embodiment, as shown in FIG. 16, the convex shape of the leading edge 44 extends in the chord direction, and the curvature of the apex in the convex shape is located at a position near the center of the chord direction from the leading edge 44. The blades 43 are configured so as to gradually increase toward. Due to the curved shape of the blades 43 as described above, compared to the conventional centrifugal fan 131 (see FIG. 14), the movement of the air flow on the hub 41 side to the hub 41 side due to the turning outward from the axial direction in the radial direction is suppressed. Therefore, the airflow can be collected near the apex of the convex shape near the center of the chord direction.
 加えて、本実施の形態においては、図17に示すように、前縁44の凸形状を翼弦方向に後縁45まで延在させ、上記凸形状における頂点の曲率が翼弦方向中央付近の位置から後縁45に向かって徐々に小さくなるように羽根43を構成している。このような羽根43の湾曲形状によって、翼弦方向中央付近において凸形状の頂点付近に集めた気流を後縁45側でスパン方向に拡散することができる。 In addition, in the present embodiment, as shown in FIG. 17, the convex shape of the leading edge 44 extends in the chord direction to the trailing edge 45, and the curvature of the apex of the convex shape is near the center of the chord direction. The blades 43 are configured so as to become gradually smaller from the position toward the trailing edge 45. Due to the curved shape of the blades 43, the airflow collected near the apex of the convex shape near the center of the chord direction can be diffused in the span direction on the trailing edge 45 side.
 さらにまた、本実施の形態においては、回転軸線Aを中心とした円筒面で切断した羽根43の断面におけるハブ41との接続部43hに対するシュラウド42との接続部43sの周方向の相対位置を前縁44から後縁45に向かって徐々に回転方向Rに対して後方側へ変位させると共に(図7~図9を参照)、図17に示すように、後縁45においてシュラウド42との接続部43sの周方向の位置がハブ41との接続部43hの周方向の位置よりも回転方向Rに対して後方側にずれるように羽根43を構成している。このような羽根43の形状によって、ハブ41側に偏る傾向にある気流をシュラウド42側へ誘導して後縁45においてスパン方向に拡散することができる。 Furthermore, in the present embodiment, the relative position in the circumferential direction of the connecting portion 43s with the shroud 42 with respect to the connecting portion 43h with the hub 41 in the cross section of the blade 43 cut along the cylindrical surface centering on the rotation axis A is set to the front. The edge 44 is gradually displaced rearward with respect to the rotation direction R from the edge 45 to the trailing edge 45 (see FIGS. 7 to 9), and as shown in FIG. The blades 43 are configured such that the circumferential position of 43s is displaced rearward with respect to the rotation direction R with respect to the circumferential position of the connecting portion 43h with the hub 41. With such a shape of the blades 43, the airflow that tends to be biased toward the hub 41 side can be guided to the shroud 42 side and diffused in the span direction at the trailing edge 45.
 このように、本実施の形態においては、羽根43の前縁44から後縁45まで延在する負圧面47側に凸形状の頂点の曲率が前縁44から翼弦方向中央付近の位置に向かって徐々に大きくなる一方、翼弦方向中央付近の位置から後縁45に向かって徐々に小さくなるように羽根43の湾曲形状を規定すること、及び、羽根43のハブ41との接続部43hに対するシュラウド42との接続部43sの周方向の相対位置が前縁44から後縁45に向かって徐々に回転方向Rの後方側へ変位すると共に、羽根43の後縁45におけるシュラウド42との接続部43sがハブ41との接続部43hよりも回転方向Rの後方側にずれるように羽根43のハブ41及びシュラウド42に対する接続位置を規定することで、図18に示すように、前縁44の凸形状の頂点44v付近から流入した空気を、前縁44から翼弦方向中央付近に至る過程において凸形状の頂点43v側に集め、その後、後縁45へ向かう過程においてシュラウド42側へ導くことができる。これにより、図19に示すように、遠心ファン31の流路の前半部において軸方向から径方向外側への転向によりハブ41側へ移動する気流の流量を減少させると共に、流路の後半部において気流をスパン方向に拡散させることができる。したがって、後縁45におけるハブ41側からシュラウド42側までのスパン方向の流速分布を均一化することができる。すなわち、従来の遠心ファン131の吐出口におけるハブ41側に流量が偏るファン特性(図15を参照)を改善することができる。 As described above, in the present embodiment, the curvature of the apex of the convex shape on the suction surface 47 side extending from the leading edge 44 to the trailing edge 45 of the blade 43 is directed from the leading edge 44 to a position near the center in the chord direction. The curved shape of the blades 43 is defined so that the blades 43 gradually increase in size toward the trailing edge 45 from a position near the center of the chord direction, and that the blades 43 are connected to the connecting portion 43h with the hub 41. The relative position in the circumferential direction of the connecting portion 43s with the shroud 42 is gradually displaced toward the rear side in the rotational direction R from the front edge 44 toward the trailing edge 45, and the connecting portion with the shroud 42 at the trailing edge 45 of the blade 43 is formed. By defining the connection position of the blades 43 with respect to the hub 41 and the shroud 42 so that 43s is displaced rearward in the rotational direction R with respect to the connection portion 43h with the hub 41, as shown in FIG. The air flowing in from the vicinity of the apex 44v of the convex shape is collected on the side of the apex 43v of the convex shape in the process from the leading edge 44 to the vicinity of the center in the chord direction, and then guided to the shroud 42 side in the process of proceeding to the trailing edge 45. You can As a result, as shown in FIG. 19, in the first half of the flow path of the centrifugal fan 31, the flow rate of the air flow moving to the hub 41 side due to the turning outward from the axial direction in the first half of the flow path is reduced, and in the second half of the flow path. The airflow can be diffused in the span direction. Therefore, the flow velocity distribution in the span direction from the hub 41 side to the shroud 42 side at the trailing edge 45 can be made uniform. That is, it is possible to improve the fan characteristic (see FIG. 15) in which the flow rate is biased toward the hub 41 side at the discharge port of the conventional centrifugal fan 131.
 上述したように、本発明の建設機械の第1の実施の形態によれば、遠心ファン31の羽根43の前縁44における負圧面47側に凸形状の頂点44vを軸方向から見たときにベルマウス32の流出口32aの壁面よりも径方向内側に位置するように羽根43を構成したので、ベルマウス32の壁面近傍から遠心ファン31へ流入した空気の流れの径方向外側への転向の際の慣性によるハブ41側への移動を抑制することができる。その結果、油圧ショベル(建設機械)1に搭載された遠心ファン31において、ハブ41側の気流の速度がシュラウド42側よりも大きくなる傾向にある羽根43のスパン方向の流速分布を緩和することができる。 As described above, according to the first embodiment of the construction machine of the present invention, when the convex vertex 44v is seen from the axial direction on the suction surface 47 side of the front edge 44 of the blade 43 of the centrifugal fan 31, Since the blades 43 are arranged so as to be located radially inward of the wall surface of the outlet 32a of the bell mouth 32, the flow of the air flowing into the centrifugal fan 31 from the vicinity of the wall surface of the bell mouth 32 is diverted radially outward. Movement toward the hub 41 side due to inertia at the time can be suppressed. As a result, in the centrifugal fan 31 mounted on the hydraulic excavator (construction machine) 1, the flow velocity distribution in the span direction of the blades 43 in which the velocity of the air flow on the hub 41 side tends to be higher than that on the shroud 42 side can be relaxed. it can.
 次に、本発明の建設機械の第1の実施の形態の第1変形例及び第2変形例を図20及び図21を用いて説明する。図20は発明の建設機械の第1の実施の形態の第1変形例における遠心ファン内部の空気の流れを示す図、図21は発明の建設機械の第1の実施の形態の第2変形例における遠心ファン内部の空気の流れを示す図である。図20及び図21中、黒点は羽根の湾曲した凸形状における頂点の曲率が最大である位置を示している。なお、図20及び図21において、図1~図19に示す符号と同符号のものは、同様な部分であるので、その詳細な説明は省略する。 Next, a first modified example and a second modified example of the first embodiment of the construction machine of the present invention will be described with reference to FIGS. 20 and 21. FIG. 20 is a diagram showing an air flow inside the centrifugal fan in the first modification of the first embodiment of the construction machine of the invention, and FIG. 21 is a second modification of the first embodiment of the construction machine of the invention. 6 is a diagram showing the flow of air inside the centrifugal fan in FIG. 20 and 21, a black dot indicates a position where the curvature of the apex of the curved convex shape of the blade is maximum. 20 and 21, the same reference numerals as those shown in FIGS. 1 to 19 denote the same parts, and thus detailed description thereof will be omitted.
 図20に示す本発明の建設機械の第1の実施の形態の第1変形例が第1の実施の形態に対して相違する点は、羽根43の湾曲した凸形状における頂点43vの曲率が最大である位置が、第1の実施の形態のような翼弦方向中央付近の位置(図19を参照)ではなく、後縁45の近傍にあることである。具体的には、羽根43は、上記凸形状における頂点の曲率が前縁44から後縁45の近傍(黒点の位置)に向かって徐々に大きくなるように構成されている。加えて、羽根43は、上記凸形状における頂点の曲率が後縁45の近傍(黒点の位置)から後縁45に向かって徐々に小さくなるように構成されている。すなわち、羽根43は、前縁44から後縁45近傍(黒点の位置)までを含み、羽根43の凸形状における頂点の曲率が前縁44から徐々に大きくなる前縁44側の第1湾曲羽根部と、後縁45近傍(黒点の位置)から後縁45までを含み、羽根43の凸形状における頂点の曲率が後縁45に向かって徐々に小さくなる後縁45側の第2湾曲羽根部とで構成されている。 The difference between the first modification of the first embodiment of the construction machine of the present invention shown in FIG. 20 and the first embodiment is that the curvature of the apex 43v in the curved convex shape of the blade 43 is maximum. Is not the position near the center of the chord direction (see FIG. 19) as in the first embodiment, but is near the trailing edge 45. Specifically, the blade 43 is configured such that the curvature of the apex of the convex shape gradually increases from the leading edge 44 to the vicinity of the trailing edge 45 (the position of the black dot). In addition, the blade 43 is configured such that the curvature of the apex of the convex shape gradually decreases from the vicinity of the trailing edge 45 (the position of the black dot) toward the trailing edge 45. In other words, the blade 43 includes the leading edge 44 to the vicinity of the trailing edge 45 (the position of the black dot), and the curvature of the apex of the convex shape of the blade 43 gradually increases from the leading edge 44 to the leading edge 44 side first curved blade. Portion and the vicinity of the trailing edge 45 (the position of the black dot) to the trailing edge 45, and the curvature of the apex of the convex shape of the blade 43 gradually decreases toward the trailing edge 45. It consists of and.
 本変形例においては、遠心ファン31の内部に流入した空気を前縁44から後縁45の近傍(黒点の位置)に至る過程において羽根43の凸形状の頂点側に集める一方、後縁45に至る過程においてシュラウド42側へ導く。これにより、ハブ41側へ移動する気流の流量を減少させると共に、後縁45の近傍において気流をスパン方向に拡散させることができる。したがって、従来の遠心ファン131の吐出口におけるハブ41側に流量が偏るファン特性(図15を参照)を改善することができる。 In this modification, the air that has flowed into the centrifugal fan 31 is collected on the apex side of the convex shape of the blade 43 in the process of reaching from the leading edge 44 to the vicinity of the trailing edge 45 (the position of the black dot), while at the trailing edge 45. In the process of reaching, it is guided to the shroud 42 side. As a result, the flow rate of the air flow moving to the hub 41 side can be reduced, and the air flow can be diffused in the span direction near the trailing edge 45. Therefore, it is possible to improve the fan characteristic (see FIG. 15) in which the flow rate is biased toward the hub 41 side at the discharge port of the conventional centrifugal fan 131.
 ただし、本変形例においては、羽根43の凸形状における頂点の曲率の最大位置が第1の実施の形態と比較して後縁45側にずれた分、後縁45におけるスパン方向への拡散が第1の実施の形態と比較して不十分となる。それ故、後縁45では、スパン方向の中央部付近の流速がハブ41側及びシュラウド42側よりも大きくなる流速分布となる。 However, in this modified example, the maximum position of the curvature of the apex of the convex shape of the blade 43 is shifted to the trailing edge 45 side as compared with the first embodiment, so that diffusion in the span direction at the trailing edge 45 is caused. This is insufficient as compared with the first embodiment. Therefore, the trailing edge 45 has a flow velocity distribution in which the flow velocity near the central portion in the span direction is higher than that on the hub 41 side and the shroud 42 side.
 また、図21に示す本発明の建設機械の第1の実施の形態の第2変形例が第1の実施の形態に対して相違する点は、羽根43の湾曲した凸形状における頂点43vの曲率が最大である位置が、第1の実施の形態のような翼弦方向中央付近の位置(図19を参照)ではなく、前縁44の近傍にあることである。具体的には、羽根43は、上記凸形状における頂点の曲率が前縁44から前縁44の近傍(黒点の位置)に向かって徐々に大きくなるように構成されている。加えて、羽根43は、上記凸形状における頂点の曲率が前縁44の近傍(黒点の位置)から後縁45に向かって徐々に小さくなるように構成されている。すなわち、羽根43は、前縁44から前縁44近傍(黒点の位置)までを含み、羽根43の凸形状における頂点の曲率が前縁44から徐々に大きくなる前縁44側の第1湾曲羽根部と、前縁44近傍(黒点の位置)から後縁45までを含み、羽根43の凸形状における頂点の曲率が後縁45に向かって徐々に小さくなる後縁45側の第2湾曲羽根部とで構成されている。 Further, the difference between the second modification of the first embodiment of the construction machine of the present invention shown in FIG. 21 and the first embodiment is that the curvature of the apex 43v in the curved convex shape of the blade 43 is different. Is not the position near the center of the chord direction (see FIG. 19) as in the first embodiment, but is near the leading edge 44. Specifically, the blade 43 is configured such that the curvature of the apex of the convex shape gradually increases from the front edge 44 toward the vicinity of the front edge 44 (the position of the black dot). In addition, the blade 43 is configured so that the curvature of the apex of the convex shape gradually decreases from the vicinity of the leading edge 44 (the position of the black dot) toward the trailing edge 45. In other words, the blade 43 includes the leading edge 44 to the vicinity of the leading edge 44 (the position of the black dot), and the curvature of the apex of the convex shape of the blade 43 gradually increases from the leading edge 44 to the leading edge 44 side first curved blade. Second curved blade portion on the trailing edge 45 side including the portion and the vicinity of the leading edge 44 (the position of the black dot) to the trailing edge 45, and the curvature of the apex of the convex shape of the blade 43 gradually decreases toward the trailing edge 45. It consists of and.
 本変形例においては、遠心ファン31の内部に流入した空気を前縁44から前縁44の近傍(黒点の位置)に至る過程において羽根43の凸形状の頂点側に集めることができる。これにより、軸方向から径方向外側への転向によりハブ41側へ移動する気流の流量を低減させることができる。したがって、従来の遠心ファン131の吐出口におけるハブ41側に流量が偏るファン特性(図15を参照)を改善することができる。 In this modification, the air that has flowed into the centrifugal fan 31 can be collected on the apex side of the convex shape of the blades 43 in the process from the leading edge 44 to the vicinity of the leading edge 44 (the position of the black dot). As a result, the flow rate of the airflow moving toward the hub 41 side due to the turning outward from the axial direction can be reduced. Therefore, it is possible to improve the fan characteristic (see FIG. 15) in which the flow rate is biased toward the hub 41 side at the discharge port of the conventional centrifugal fan 131.
 ただし、本変形例においては、羽根43の凸形状における頂点の曲率の最大位置が第1の実施の形態と比較して前縁44側にずれた分、転向する際のハブ41側へ移動する気流の流量を低減させる効果が第1の実施の形態と比較して小さくなる。それ故、後縁45では、ハブ41側の流速がシュラウド42側よりも大きな流速分布となる。しかし、従来の遠心ファン131と比較すると、ハブ41側とシュラウド42側の流速差が緩和されている。 However, in this modified example, the maximum position of the curvature of the apex of the convex shape of the blade 43 is shifted to the front edge 44 side as compared with the first embodiment, and is moved to the hub 41 side at the time of turning. The effect of reducing the flow rate of the air flow is smaller than that in the first embodiment. Therefore, at the trailing edge 45, the flow velocity on the hub 41 side becomes larger than that on the shroud 42 side. However, compared to the conventional centrifugal fan 131, the flow velocity difference between the hub 41 side and the shroud 42 side is reduced.
 上述した本発明の建設機械の第1の実施の形態の第1変形例及び第2変形例によれば、前述した第1の実施の形態と同様の効果に、遠心ファン31の羽根43の前縁44に流入した空気の流れの転向の際の慣性によるハブ41側への移動を抑制することができる。その結果、遠心ファン31における羽根43のスパン方向の流速分布を緩和することができる。 According to the first modified example and the second modified example of the first embodiment of the construction machine of the present invention described above, in front of the blades 43 of the centrifugal fan 31, the same effect as that of the first embodiment described above can be obtained. It is possible to suppress the movement of the air flowing into the edge 44 toward the hub 41 side due to the inertia when the flow is turned. As a result, the flow velocity distribution in the span direction of the blades 43 of the centrifugal fan 31 can be relaxed.
 次に、本発明の建設機械の第2の実施の形態について図22を用いて説明する。図22は発明の建設機械の第2の実施の形態における機械室内部を一部省略した状態で示す断面図である。なお、図22において、図1~図21に示す符号と同符号のものは、同様な部分であるので、その詳細な説明は省略する。 Next, a second embodiment of the construction machine of the present invention will be described with reference to FIG. FIG. 22 is a cross-sectional view showing the second embodiment of the construction machine of the present invention with a part of the machine chamber being omitted. Note that, in FIG. 22, the same reference numerals as those shown in FIGS. 1 to 21 denote the same parts, and thus detailed description thereof will be omitted.
 図22に示す本発明の建設機械の第2の実施の形態が第1の実施の形態に対して相違する点は、整流部材の形状が異なることである。具体的には、第1の実施の形態の整流部材35は環状の平板部材である(図2参照)。それに対して、本実施の形態の整流部材35Aは、遠心ファン31の外周縁よりも径方向外側の部分が遠心ファン31の径方向に対して遠心ファン31から離れる方向へ傾斜するように構成されている。すなわち、整流部材35Aは、遠心ファン31の外周縁よりも径方向内側において径方向に延在する環状の平板部35bと、平板部35bの外周縁から遠心ファン31から離れる方向へ傾斜する環状の傾斜部35cとで構成されている。 The difference between the second embodiment of the construction machine of the present invention shown in FIG. 22 and the first embodiment is that the shape of the rectifying member is different. Specifically, the rectifying member 35 of the first embodiment is an annular flat plate member (see FIG. 2). On the other hand, the rectifying member 35A of the present embodiment is configured such that the portion radially outside the outer peripheral edge of the centrifugal fan 31 is inclined in the direction away from the centrifugal fan 31 with respect to the radial direction of the centrifugal fan 31. ing. That is, the rectifying member 35A has an annular flat plate portion 35b that extends radially inward of the outer peripheral edge of the centrifugal fan 31, and an annular flat plate portion 35b that is inclined from the outer peripheral edge of the flat plate portion 35b in a direction away from the centrifugal fan 31. It is composed of an inclined portion 35c.
 上述した本発明の建設機械の第2の実施の形態によれば、整流部材35Aにおける遠心ファン31の外周縁よりも径方向外側の部分が遠心ファン31の径方向に対して遠心ファン31から離れる方向へ傾斜しているので、遠心ファン31から吐出された気流Fdの一部を径方向から軸方向側へ転向させることができ、気流Fdの建屋カバー16との衝突を緩和することができる。 According to the second embodiment of the construction machine of the present invention described above, the portion of the flow regulating member 35A radially outside the outer peripheral edge of the centrifugal fan 31 is separated from the centrifugal fan 31 in the radial direction of the centrifugal fan 31. Since the air flow Fd is inclined in the direction, a part of the air flow Fd discharged from the centrifugal fan 31 can be diverted from the radial direction to the axial direction side, and the collision of the air flow Fd with the building cover 16 can be mitigated.
 次に、本発明の建設機械の第3の実施の形態について図23を用いて説明する。図23は発明の建設機械の第3の実施の形態における機械室内部を一部省略した状態で示す断面図である。なお、図23において、図1~図22に示す符号と同符号のものは、同様な部分であるので、その詳細な説明は省略する。 Next, a third embodiment of the construction machine of the present invention will be described with reference to FIG. FIG. 23 is a cross-sectional view showing a state in which a part of a machine chamber in the third embodiment of the construction machine of the invention is omitted. Note that, in FIG. 23, the same reference numerals as those shown in FIGS. 1 to 22 denote the same parts, and thus detailed description thereof will be omitted.
 図23に示す本発明の建設機械の第3の実施の形態が第2の実施の形態に対して相違する点は、第2整流部材38を新たに整流部材35Aに対向するようにシュラウド42側に配置したことである。第2整流部材38は、遠心ファン31の外周縁よりも径方向外側に延在すると共に、径方向外側端部が径方向内側端部よりも整流部材35A側に位置するように構成されている。第2整流部材38は、例えば、遠心ファン31の径方向外側に位置する建屋カバー16に取り付けられている。第2整流部材38は、整流部材35Aと共に導風路を形成し、遠心ファン31から径方向へ吐出された気流Fdを軸方向へ転向させて建屋カバー16に沿うように導くものである。導風路は、例えば、圧力回復を図るディフーザーとして形成することも可能である。 The difference between the third embodiment of the construction machine of the present invention shown in FIG. 23 and the second embodiment is that the second rectifying member 38 is provided on the shroud 42 side so as to newly face the rectifying member 35A. It has been placed in. The second rectifying member 38 extends outward in the radial direction from the outer peripheral edge of the centrifugal fan 31, and is configured such that the radially outer end portion is located closer to the rectifying member 35A side than the radially inner end portion. . The second rectifying member 38 is attached to, for example, the building cover 16 located radially outside the centrifugal fan 31. The second rectifying member 38 forms an air guide path together with the rectifying member 35A, and turns the airflow Fd radially discharged from the centrifugal fan 31 in the axial direction to guide the airflow Fd along the building cover 16. The air guide passage may be formed as a diffuser for pressure recovery, for example.
 上述した本発明の建設機械の第3の実施の形態によれば、第2整流部材38を整流部材35Aに対向させ、第2整流部材38を、遠心ファン31の外周縁の径方向外側に延在させると共に、径方向外側端部が径方向内側端部よりも整流部材35A側に位置するように構成したので、遠心ファン31から吐出された気流Fdを軸方向へ転向させることができ、気流Fdの建屋カバー16との衝突損失を更に低減することができる。 According to the third embodiment of the construction machine of the present invention described above, the second rectifying member 38 is opposed to the rectifying member 35A, and the second rectifying member 38 is extended radially outward of the outer peripheral edge of the centrifugal fan 31. Since the air flow Fd discharged from the centrifugal fan 31 can be diverted in the axial direction because the radial outer end is located closer to the rectifying member 35A side than the radial inner end while being made to exist. The collision loss of Fd with the building cover 16 can be further reduced.
 なお、本発明は本実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。 The present invention is not limited to this embodiment, and various modifications are included. The above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. A part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. In addition, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 例えば、上述した本発明の建設機械の実施の形態においては、本発明の建設機械を油圧ショベル1に適用した例を示したが、本発明は、油圧クレーンやホイールローダ等の各種の建設機械に広く適用することができる。 For example, in the above-described embodiment of the construction machine of the present invention, an example in which the construction machine of the present invention is applied to the hydraulic excavator 1 has been shown, but the present invention is applicable to various construction machines such as a hydraulic crane and a wheel loader. It can be widely applied.
 また、上述した第1の実施の形態においては、羽根43の凸形状における頂点43vの曲率が前縁44から翼弦方向中央付近の位置に向かって徐々に大きくなる一方、翼弦方向中央付近の位置から後縁45に向かって徐々に小さくなるように羽根43を構成した例を示した。しかし、羽根43の凸形状における頂点43vの曲率を前縁44から翼弦方向中央付近の位置まで維持する一方、翼弦方向中央付近の位置から後縁45に向かって徐々に小さくなるように羽根を構成することも可能である。すなわち、羽根は、羽根43の凸形状における頂点43vの曲率が前縁44から同じに維持される前縁44側の第1湾曲羽根部と、羽根43の凸形状における頂点43vの曲率が後縁45に向かって徐々に小さくなる後縁45側の第2湾曲羽根部とで構成することも可能である。 In the first embodiment described above, the curvature of the apex 43v in the convex shape of the blade 43 gradually increases from the leading edge 44 toward the position near the center of the chord direction, while An example is shown in which the blade 43 is configured so as to gradually decrease from the position toward the trailing edge 45. However, while maintaining the curvature of the apex 43v in the convex shape of the blade 43 from the leading edge 44 to the position near the center of the chord direction, the blade gradually decreases from the position near the center of the chord direction toward the trailing edge 45. Can also be configured. That is, the blade has a first curved blade portion on the leading edge 44 side where the curvature of the apex 43v in the convex shape of the blade 43 is kept the same from the leading edge 44, and a curvature of the apex 43v in the convex shape of the blade 43 is a trailing edge. It is also possible to configure with the second curved blade portion on the trailing edge 45 side that gradually decreases toward 45.
 また、上述した第1の実施の形態の第1及び第2変形例においては、羽根43の凸形状の頂点43vの曲率を前縁44から後縁45の近傍又は前縁44の近傍に向かって徐々に大きくする一方、後縁45の近傍又は前縁44の近傍から後縁45に向かって徐々に小さくなるように羽根43を構成した例を示した。しかし、羽根43の凸形状における頂点43vの曲率を前縁44から後縁45の近傍又は前縁44の近傍まで維持する一方、後縁45の近傍又は前縁44の近傍から後縁45に向かって徐々に小さくなるように羽根43を構成することも可能である。 In the first and second modified examples of the first embodiment described above, the curvature of the convex vertex 43v of the blade 43 is changed from the leading edge 44 to the vicinity of the trailing edge 45 or the vicinity of the leading edge 44. An example is shown in which the blades 43 are configured such that the blades 43 gradually increase in size while gradually decreasing from the vicinity of the trailing edge 45 or the vicinity of the leading edge 44 toward the trailing edge 45. However, the curvature of the apex 43v in the convex shape of the blade 43 is maintained from the leading edge 44 to the vicinity of the trailing edge 45 or to the vicinity of the leading edge 44, while the curvature from the vicinity of the trailing edge 45 or the vicinity of the leading edge 44 toward the trailing edge 45. It is also possible to configure the blade 43 so that it gradually becomes smaller.
 また、上述した実施の形態においては、整流部材35、35A及び第2整流部材38を遠心ファン31の全周に配置するような構成(環状部材)の例を示したが、整流部材35、35A及び第2整流部材38の設置スペースや製造コスト、取付の容易性等を考慮して、遠心ファン31の外周側の一部分のみに配置する構成の整流部材及び第2整流部材を用いることも可能である。 Further, in the above-described embodiment, an example of the configuration (annular member) in which the flow regulating members 35, 35A and the second flow regulating member 38 are arranged around the entire circumference of the centrifugal fan 31 is shown, but the flow regulating members 35, 35A are shown. It is also possible to use the rectifying member and the second rectifying member that are arranged only on a part of the outer peripheral side of the centrifugal fan 31 in consideration of the installation space of the second rectifying member 38, the manufacturing cost, the ease of attachment, and the like. is there.
 また、上述した第1及び第2実施の形態においては、整流部材35、35Aをエンジン20にステー36を介して固定した例を示したが、整流部材をエンジン20の一部とする構成も可能である。ただし、整流部材35、35Aをエンジン20にステー36を用いて固定する方が、設置スペースが小さくて済み、コスト低減や軽量化といった面で有利となる。 Further, in the above-described first and second embodiments, the example in which the rectifying members 35 and 35A are fixed to the engine 20 via the stay 36 is shown, but the rectifying member may be part of the engine 20. Is. However, fixing the rectifying members 35 and 35A to the engine 20 using the stay 36 requires a smaller installation space and is advantageous in terms of cost reduction and weight reduction.
 また、上述した実施の形態においては、遠心ファン31の駆動装置としてエンジン20を用いた例を示したが、電動モータや油圧モータ等を遠心ファン31の駆動装置として用いることも可能である。 Further, in the above-described embodiment, the example in which the engine 20 is used as the drive device of the centrifugal fan 31 is shown, but an electric motor, a hydraulic motor, or the like can be used as the drive device of the centrifugal fan 31.
 1…油圧ショベル(建設機械)、 3…上部旋回体(車体)、 31…遠心ファン、 31a…吸込口、 32…ベルマウス、 32a…流出口、 35、35A…整流部材(第1整流部材)、 38…第2整流部材、 41…ハブ、 42…シュラウド、 43…羽根、 43h…ハブとの接続部、 43s…シュラウドとの接続部、 43v…頂点、 44…前縁、 44h…ハブとの接続部、 44s…シュラウドとの接続部、 44v…頂点、 45…後縁、 46…正圧面、 47…負圧面、 A…回転軸線、 R…回転方向 1 ... Hydraulic excavator (construction machine), 3 ... Upper swing body (car body), 31 ... Centrifugal fan, 31a ... Suction port, 32 ... Bell mouth, 32a ... Outflow port, 35, 35A ... Rectifying member (first rectifying member) , 38 ... Second rectifying member, 41 ... Hub, 42 ... Shroud, 43 ... Blade, 43h ... Connection part with hub, 43s ... Connection part with shroud, 43v ... Apex, 44 ... Front edge, 44h ... With hub Connection part, 44s ... Connection part with shroud, 44v ... Apex, 45 ... Trailing edge, 46 ... Positive pressure surface, 47 ... Negative pressure surface, A ... Rotation axis line, R ... Rotation direction

Claims (7)

  1.  車体の内部に収容された遠心ファンと、
     前記遠心ファンの吸込み側に配置され、流出口を有するベルマウスとを備え、
     前記遠心ファンは、
     回転軸線を中心に回転可能なハブと、
     前記ハブに対向するように配置されて前記ハブとの間に流路を形成し、吸込口を有する環状のシュラウドと、
     前記ハブと前記シュラウドとの間に周方向に間隔をあけて設けられた複数の羽根とを有し、
     前記複数の羽根の各々は、
     空気が流入する側の前縁と、
     空気が流出する側の後縁と、
     前記前縁と前記後縁との間に延在する一方側の翼面であって回転方向に対して前方側を向く正圧面と、
     前記前縁と前記後縁との間に延在する他方側の翼面であって前記回転方向に対して後方側を向く負圧面とを含んで構成されており、
     前記ベルマウスの前記流出口が前記シュラウドの前記吸込口よりも径方向内側に配置された建設機械において、
     前記複数の羽根の各々は、前記前縁が前記前縁における前記ハブとの接続部と前記前縁における前記シュラウドとの接続部とを結ぶ線分に対して、前記負圧面側に凸形状となるように形成されると共に、前記前縁の凸形状における頂点が、前記遠心ファンの吸込み側を軸方向から見たときに、前記ベルマウスの前記流出口の壁面よりも径方向内側に位置するよう形成されている
     ことを特徴とする建設機械。
    A centrifugal fan housed inside the vehicle body,
    A bell mouth having an outlet is disposed on the suction side of the centrifugal fan,
    The centrifugal fan is
    With a hub that can rotate around the axis of rotation,
    An annular shroud that is disposed so as to face the hub and forms a flow path between the hub and the suction port,
    A plurality of blades provided at intervals in the circumferential direction between the hub and the shroud,
    Each of the plurality of blades is
    The front edge on the side where air flows in,
    The trailing edge on the air outflow side,
    A positive pressure surface which is a blade surface on one side extending between the leading edge and the trailing edge and faces the front side with respect to the rotation direction,
    It is configured to include a negative pressure surface facing the rear side with respect to the rotation direction, which is the other side blade surface extending between the leading edge and the trailing edge,
    In a construction machine in which the outlet of the bell mouth is arranged radially inward of the suction port of the shroud,
    In each of the plurality of blades, the front edge has a convex shape on the suction surface side with respect to a line segment that connects a connection portion of the front edge with the hub and a connection portion of the front edge with the shroud. And the apex of the convex shape of the front edge is located radially inward of the wall surface of the outlet of the bell mouth when the suction side of the centrifugal fan is viewed from the axial direction. A construction machine characterized by being formed like this.
  2.  請求項1に記載の建設機械において、
     前記複数の羽根の各々は、前記前縁の凸形状が前記後縁まで延在するように構成され、
     前記複数の羽根の各々は、前記複数の羽根の各々の凸形状における頂点の曲率が、前記前縁から前記前縁と前記後縁との間の中途位置へ向かって徐々に大きくなる一方、前記中途位置から前記後縁に向かって徐々に小さくなるように構成されている
     ことを特徴とする建設機械。
    The construction machine according to claim 1,
    Each of the plurality of blades is configured such that the convex shape of the leading edge extends to the trailing edge,
    In each of the plurality of blades, the curvature of the apex in the convex shape of each of the plurality of blades gradually increases from the leading edge toward a middle position between the leading edge and the trailing edge. A construction machine, wherein the construction machine is configured to gradually decrease from a midway position toward the trailing edge.
  3.  請求項1に記載の建設機械において、
     前記複数の羽根の各々は、前記前縁の凸形状が前記後縁まで延在するように構成され、
     前記複数の羽根の各々は、前記複数の羽根の各々の凸形状における頂点の曲率が、前記前縁から前記前縁と前記後縁との間の中途位置まで維持される一方、前記中途位置から前記後縁に向かって徐々に小さくなるように構成されている
     ことを特徴とする建設機械。
    The construction machine according to claim 1,
    Each of the plurality of blades is configured such that the convex shape of the leading edge extends to the trailing edge,
    In each of the plurality of blades, the curvature of the apex in the convex shape of each of the plurality of blades is maintained from the leading edge to an intermediate position between the leading edge and the trailing edge, while from the intermediate position. A construction machine, wherein the construction machine is configured to be gradually smaller toward the trailing edge.
  4.  請求項1に記載の建設機械において、
     前記複数の羽根の各々は、前記回転軸線を中心とした円筒面で切断した断面における前記ハブとの接続部に対する前記シュラウドとの接続部の周方向の相対位置が前記前縁から前記後縁に向かって徐々に前記回転方向に対して後方側へ変位すると共に、前記後縁における前記シュラウドとの接続部の周方向の位置が前記後縁における前記ハブとの接続部の周方向の位置よりも前記回転方向に対して後方側にずれるように構成されている
     ことを特徴とする建設機械。
    The construction machine according to claim 1,
    In each of the plurality of blades, the relative position in the circumferential direction of the connection portion with the shroud with respect to the connection portion with the hub in the cross section cut along the cylindrical surface around the rotation axis is from the front edge to the rear edge. Gradually toward the rear side with respect to the rotation direction, the circumferential position of the connecting portion of the trailing edge with the shroud is greater than the circumferential position of the connecting portion of the trailing edge with the hub. A construction machine, wherein the construction machine is configured to be displaced rearward with respect to the rotation direction.
  5.  請求項1に記載の建設機械の冷却ファンにおいて、
     前記遠心ファンを挟んで前記ベルマウスの反対側に配置された第1整流部材を更に備え、
     前記第1整流部材は、少なくとも前記遠心ファンの外周縁から径方向外側に延在する部材である
     ことを特徴とする建設機械。
    The cooling fan for a construction machine according to claim 1,
    Further comprising a first straightening member arranged on the opposite side of the bell mouth with the centrifugal fan interposed therebetween,
    The construction machine, wherein the first rectifying member is a member that extends radially outward from at least an outer peripheral edge of the centrifugal fan.
  6.  請求項5に記載の建設機械において、
     前記第1整流部材は、前記遠心ファンの外周縁よりも径方向外側の部分が径方向に対して前記遠心ファンから離れる方向へ傾斜するように構成されている
     ことを特徴とする建設機械。
    The construction machine according to claim 5,
    The construction machine, wherein the first rectifying member is configured such that a portion radially outside the outer peripheral edge of the centrifugal fan is inclined in a direction away from the centrifugal fan with respect to the radial direction.
  7.  請求項5に記載の建設機械において、
     前記第1整流部材に対向するように配置された第2整流部材を更に備え、
     前記第2整流部材は、前記遠心ファンの外周縁の径方向外側に延在すると共に、径方向外側端部が径方向内側端部よりも前記第1整流部材側に位置するように構成され、
     前記第2整流部材は、前記遠心ファンから吐出された気流を導く導風路を前記第1整流部材と共に形成する
     ことを特徴とする建設機械。
    The construction machine according to claim 5,
    Further comprising a second straightening member arranged to face the first straightening member,
    The second rectifying member is configured to extend radially outward of an outer peripheral edge of the centrifugal fan, and have a radially outer end portion located closer to the first rectifying member side than a radially inner end portion,
    The construction machine, wherein the second rectifying member forms, together with the first rectifying member, an air guide path that guides an airflow discharged from the centrifugal fan.
PCT/JP2019/040101 2018-10-15 2019-10-10 Construction machine WO2020080260A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/284,507 US11680583B2 (en) 2018-10-15 2019-10-10 Construction machine
CN201980065819.7A CN112805474B (en) 2018-10-15 2019-10-10 Engineering machinery
EP19874021.9A EP3869044B1 (en) 2018-10-15 2019-10-10 Construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018194562A JP7207933B2 (en) 2018-10-15 2018-10-15 construction machinery
JP2018-194562 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020080260A1 true WO2020080260A1 (en) 2020-04-23

Family

ID=70284593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040101 WO2020080260A1 (en) 2018-10-15 2019-10-10 Construction machine

Country Status (5)

Country Link
US (1) US11680583B2 (en)
EP (1) EP3869044B1 (en)
JP (1) JP7207933B2 (en)
CN (1) CN112805474B (en)
WO (1) WO2020080260A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230332615A1 (en) * 2020-11-25 2023-10-19 Mitsubishi Electric Corporation Turbofan and air-conditioning apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198324B (en) * 2021-12-10 2022-10-25 西安交通大学 A kind of multi-coupling centrifugal fan collector, centrifugal fan and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112268A (en) * 1995-10-19 1997-04-28 Hitachi Constr Mach Co Ltd Engine cooling equipment and construction machinery
WO2006006668A1 (en) * 2004-07-14 2006-01-19 Daikin Industries, Ltd. Centrifugal blower and air conditionaer with centrifugal blower
JP2009174541A (en) 2007-11-26 2009-08-06 Daikin Ind Ltd Centrifugal fan
WO2009139422A1 (en) * 2008-05-14 2009-11-19 ダイキン工業株式会社 Centrifugal fan
US20130149157A1 (en) * 2011-12-13 2013-06-13 Minebea Co., Ltd. Boundary layer controlled logarithmic spiral blade

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303241A (en) * 1995-05-08 1996-11-19 Hitachi Constr Mach Co Ltd Engine cooling system and construction machinery
JP4919554B2 (en) 2001-08-29 2012-04-18 日立建機株式会社 Engine cooling system for civil engineering and construction machinery
US8191323B2 (en) 2006-03-16 2012-06-05 Turner Bruce H Cable protection sleeve for building framing
JP5164932B2 (en) * 2009-06-11 2013-03-21 三菱電機株式会社 Turbofan and air conditioner
JP5143173B2 (en) * 2010-03-29 2013-02-13 三菱電機株式会社 Turbo fan and air conditioner indoor unit equipped with the same
KR101761311B1 (en) * 2010-09-02 2017-07-25 엘지전자 주식회사 A turbo fan for air conditioner
JP5730649B2 (en) * 2011-04-13 2015-06-10 株式会社日立製作所 Impeller and turbomachine having the same
WO2014061094A1 (en) * 2012-10-16 2014-04-24 三菱電機株式会社 Turbo fan and air conditioner
KR102403728B1 (en) * 2015-10-07 2022-06-02 삼성전자주식회사 Turbofan for air conditioning apparatus
ITUA20163576A1 (en) 2016-05-18 2017-11-18 De Longhi Appliances Srl FAN

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112268A (en) * 1995-10-19 1997-04-28 Hitachi Constr Mach Co Ltd Engine cooling equipment and construction machinery
WO2006006668A1 (en) * 2004-07-14 2006-01-19 Daikin Industries, Ltd. Centrifugal blower and air conditionaer with centrifugal blower
JP2009174541A (en) 2007-11-26 2009-08-06 Daikin Ind Ltd Centrifugal fan
WO2009139422A1 (en) * 2008-05-14 2009-11-19 ダイキン工業株式会社 Centrifugal fan
US20130149157A1 (en) * 2011-12-13 2013-06-13 Minebea Co., Ltd. Boundary layer controlled logarithmic spiral blade

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869044A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230332615A1 (en) * 2020-11-25 2023-10-19 Mitsubishi Electric Corporation Turbofan and air-conditioning apparatus

Also Published As

Publication number Publication date
US20210372431A1 (en) 2021-12-02
JP2020063683A (en) 2020-04-23
EP3869044B1 (en) 2024-08-07
JP7207933B2 (en) 2023-01-18
CN112805474B (en) 2024-03-05
CN112805474A (en) 2021-05-14
US11680583B2 (en) 2023-06-20
EP3869044A4 (en) 2022-07-13
EP3869044A1 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
JP5422336B2 (en) Vehicle heat exchange module
CN102221016A (en) Compressor gas flow deflector and compressor incorporating the same
GB1592719A (en) Shrouded axial flow fan with auxiliary blades
US20040258530A1 (en) Radiator fan and engine cooling device using the radiator fan
JP4094495B2 (en) Francis-type runner
CN209781249U (en) Diagonal fan
WO2020080260A1 (en) Construction machine
WO2014203372A1 (en) Radial-inflow type axial turbine and turbocharger
JP2012246931A (en) Centrifugal compressor
JPWO2018116394A1 (en) Turbocharger and turbocharger nozzle vanes and turbines
US10731503B2 (en) Turbocharger
JP4013356B2 (en) Water wheel
US20180142569A1 (en) Inlet guide wheel for a turbo engine
JP5883278B2 (en) Construction machinery
JP2022523037A (en) Car fan wheel
JP2003090279A (en) Hydraulic rotating machine vane
JP2002201940A (en) Heat exchanger of construction machinery
US11808174B2 (en) Turbine and turbocharger including the turbine
KR100648089B1 (en) Axial blower
JP6331518B2 (en) Centrifugal compressor
JP2016061151A (en) Guide vane for hydraulic machine and repairing method thereof
JP6829672B2 (en) Construction machinery cooling fan
JP5287329B2 (en) Pump impeller
KR102692976B1 (en) hydrodynamic transducer
JP2012177320A (en) Rotary machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019874021

Country of ref document: EP

Effective date: 20210517