WO2020080245A1 - Negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents
Negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDFInfo
- Publication number
- WO2020080245A1 WO2020080245A1 PCT/JP2019/039972 JP2019039972W WO2020080245A1 WO 2020080245 A1 WO2020080245 A1 WO 2020080245A1 JP 2019039972 W JP2019039972 W JP 2019039972W WO 2020080245 A1 WO2020080245 A1 WO 2020080245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- electrode active
- secondary battery
- ion secondary
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 122
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 122
- 239000002245 particle Substances 0.000 claims abstract description 143
- 239000007773 negative electrode material Substances 0.000 claims abstract description 140
- 239000011148 porous material Substances 0.000 claims abstract description 70
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 51
- 150000002500 ions Chemical class 0.000 claims abstract description 48
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 48
- 239000010703 silicon Substances 0.000 claims abstract description 48
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 46
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 41
- 150000001875 compounds Chemical class 0.000 claims description 48
- 239000008151 electrolyte solution Substances 0.000 claims description 42
- 239000004020 conductor Substances 0.000 claims description 30
- 229920001940 conductive polymer Polymers 0.000 claims description 13
- 230000008595 infiltration Effects 0.000 claims description 9
- 238000001764 infiltration Methods 0.000 claims description 9
- 239000007784 solid electrolyte Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 14
- 239000011244 liquid electrolyte Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 100
- 239000000203 mixture Substances 0.000 description 37
- 239000003792 electrolyte Substances 0.000 description 33
- -1 polyphenylene Polymers 0.000 description 28
- 238000000034 method Methods 0.000 description 25
- 229920000642 polymer Polymers 0.000 description 25
- 229910052744 lithium Inorganic materials 0.000 description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 22
- 230000000694 effects Effects 0.000 description 22
- 239000002904 solvent Substances 0.000 description 20
- 239000007774 positive electrode material Substances 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 17
- 239000000470 constituent Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000002002 slurry Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000006258 conductive agent Substances 0.000 description 11
- 239000011883 electrode binding agent Substances 0.000 description 10
- 239000007769 metal material Substances 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- 235000002639 sodium chloride Nutrition 0.000 description 10
- 239000003125 aqueous solvent Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000007600 charging Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 229910052718 tin Inorganic materials 0.000 description 8
- 239000011135 tin Substances 0.000 description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 229910000676 Si alloy Inorganic materials 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 150000004651 carbonic acid esters Chemical class 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000005001 laminate film Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920000570 polyether Polymers 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- 229910001128 Sn alloy Inorganic materials 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 229910052752 metalloid Inorganic materials 0.000 description 4
- 238000007500 overflow downdraw method Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 150000002642 lithium compounds Chemical class 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 150000003606 tin compounds Chemical class 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 241000047703 Nonion Species 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 229910001386 lithium phosphate Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003459 sulfonic acid esters Chemical class 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- HXVLHRZXXJQUDW-UHFFFAOYSA-N 1,2,3,4,5,6-hexafluoropyrene Chemical compound C1=CC(F)=C2C(F)=C(F)C3=C(F)C(F)=C(F)C4=CC=C1C2=C43 HXVLHRZXXJQUDW-UHFFFAOYSA-N 0.000 description 1
- OQHXCCQBSGTCGM-UHFFFAOYSA-N 1,2,5-oxadithiolane 2,2,5,5-tetraoxide Chemical compound O=S1(=O)CCS(=O)(=O)O1 OQHXCCQBSGTCGM-UHFFFAOYSA-N 0.000 description 1
- AVPYLKIIPLFMHQ-UHFFFAOYSA-N 1,2,6-oxadithiane 2,2,6,6-tetraoxide Chemical compound O=S1(=O)CCCS(=O)(=O)O1 AVPYLKIIPLFMHQ-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- HFJAOKGFVIVALF-UHFFFAOYSA-N 1-oxo-1-(2-sulfobutanoyloxy)butane-2-sulfonic acid Chemical compound CCC(S(O)(=O)=O)C(=O)OC(=O)C(CC)S(O)(=O)=O HFJAOKGFVIVALF-UHFFFAOYSA-N 0.000 description 1
- RVLHNHNPUBWSEE-UHFFFAOYSA-N 2,2-dioxooxathiolan-5-one Chemical compound O=C1CCS(=O)(=O)O1 RVLHNHNPUBWSEE-UHFFFAOYSA-N 0.000 description 1
- VTULJCFJIIAAIS-UHFFFAOYSA-N 2-(2-sulfobenzoyl)oxycarbonylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C(=O)OC(=O)C1=CC=CC=C1S(O)(=O)=O VTULJCFJIIAAIS-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- IFDLFCDWOFLKEB-UHFFFAOYSA-N 2-methylbutylbenzene Chemical compound CCC(C)CC1=CC=CC=C1 IFDLFCDWOFLKEB-UHFFFAOYSA-N 0.000 description 1
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910004706 CaSi2 Inorganic materials 0.000 description 1
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 229910019974 CrSi Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 229910005329 FeSi 2 Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 229910004190 Li1.15(Mn0.65Ni0.22Co0.13)O2 Inorganic materials 0.000 description 1
- 229910008744 Li1.2Mn0.52Co0.175Ni0.1O2 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910012278 LiCo0.98Al0.01Mg0.01O2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910016096 LiMn0.5Fe0.5PO4 Inorganic materials 0.000 description 1
- 229910015862 LiMn0.75Fe0.25PO4 Inorganic materials 0.000 description 1
- 229910015855 LiMn0.7Fe0.3PO4 Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910019021 Mg 2 Sn Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- 229910016006 MoSi Inorganic materials 0.000 description 1
- 229910005881 NiSi 2 Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910005790 SnSiO Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- SVTMLGIQJHGGFK-UHFFFAOYSA-N carbonic acid;propa-1,2-diene Chemical compound C=C=C.OC(O)=O SVTMLGIQJHGGFK-UHFFFAOYSA-N 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SXWUDUINABFBMK-UHFFFAOYSA-L dilithium;fluoro-dioxido-oxo-$l^{5}-phosphane Chemical compound [Li+].[Li+].[O-]P([O-])(F)=O SXWUDUINABFBMK-UHFFFAOYSA-L 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- PIQRQRGUYXRTJJ-UHFFFAOYSA-N fluoromethyl methyl carbonate Chemical compound COC(=O)OCF PIQRQRGUYXRTJJ-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011809 glassy carbon fiber Substances 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- KTQDYGVEEFGIIL-UHFFFAOYSA-N n-fluorosulfonylsulfamoyl fluoride Chemical compound FS(=O)(=O)NS(F)(=O)=O KTQDYGVEEFGIIL-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 description 1
- 229920006391 phthalonitrile polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003214 poly(methacrylonitrile) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present technology relates to a negative electrode used in a lithium ion secondary battery and a lithium ion secondary battery using the negative electrode.
- This lithium-ion secondary battery is equipped with an electrolyte solution as well as a positive electrode and a negative electrode. Since the configuration of the negative electrode has a great influence on the battery characteristics, various studies have been made on the configuration of the negative electrode. Specifically, in order to obtain excellent cycle characteristics and the like, a binder that is a fluororesin is used together with the negative electrode active material. In this negative electrode active material, a polymer compound having a carboxyl group and metal oxide particles are attached to the surface of a composite material (carbon material, graphite material and metal material) (for example, see Patent Document 1).
- the present technology has been made in view of such problems, and an object thereof is to provide a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery that can obtain excellent battery characteristics.
- a negative electrode for a lithium-ion secondary battery includes a positive electrode and a negative electrode active material layer having a plurality of pores, and the negative electrode active material layer has a plurality of first negative electrode active material particles and a plurality of first negative electrode active material particles.
- a negative electrode that contains a carbon-containing material and has a pore diameter range in which the volume fraction of mercury intrusion into a plurality of pores shows a peak is 1 ⁇ m or more and 3 ⁇ m or less, and an electrolyte solution.
- a lithium ion secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution, and the negative electrode has the same configuration as the above-described negative electrode for a lithium ion secondary battery according to an embodiment of the present technology. I have.
- volume fraction of the amount of mercury infiltrating into a plurality of pores is measured using the mercury porosimetry (mercury porosimeter).
- the range of the pore diameter at which the volume fraction of the amount of infiltration of mercury into a plurality of pores shows a peak is 1 ⁇ m or more and 3 ⁇ m or less
- the horizontal axis indicates the pore diameter ( ⁇ m)
- the vertical axis of the volume fraction of mercury intrusion (%) when focusing on the range of the pore diameter on the horizontal axis of 1 ⁇ m to 3 ⁇ m, the volume fraction of mercury intrusion is an upward convex curve ( It means that the peaks are distributed so as to draw a peak, and the apex of the peak is located within the range where the pore diameter is 1 ⁇ m to 3 ⁇ m.
- the plurality of first negative electrode active material particles and the plurality of second negative electrode active material particles in which the negative electrode active material layer having a plurality of pores is described above. And satisfying the above-mentioned conditions regarding the range of the pore diameter at which the volume fraction of the amount of mercury infiltrated into the plurality of pores shows a peak, excellent battery characteristics can be obtained.
- the effect of the present technology is not necessarily limited to the effect described here, and may be any one of a series of effects related to the present technology described later.
- FIG. 7 is a cross-sectional view showing an enlarged configuration of a main part of the lithium-ion secondary battery shown in FIG. 6.
- Negative electrode for lithium-ion secondary battery First, a negative electrode for a lithium ion secondary battery (hereinafter, simply referred to as “negative electrode”) according to an embodiment of the present technology will be described.
- the lithium-ion secondary battery in which the negative electrode described here is used is a secondary battery in which the battery capacity can be obtained by utilizing the occlusion / release of lithium, as described below.
- FIG. 1 shows a cross-sectional structure of a negative electrode 10, which is an example of the negative electrode.
- FIG. 2 schematically shows respective cross-sectional configurations of the first negative electrode active material particles 100 and the second negative electrode active material particles 200.
- FIG. 3 shows an example of the measurement result of the mercury porosimeter.
- the horizontal axis represents the hole diameter (%)
- the vertical axis represents the volume fraction (%) of the amount of infiltration of mercury.
- the negative electrode 10 includes the negative electrode active material layer 2 as shown in FIG. More specifically, the negative electrode 10 includes, for example, the negative electrode current collector 1, and the above-described negative electrode active material layer 2 is provided on the negative electrode current collector 1. However, the negative electrode active material layer 2 may be provided on only one surface of the negative electrode current collector 1, or may be provided on both surfaces of the negative electrode current collector 1. In FIG. 1, for example, the case where the negative electrode active material layers 2 are provided on both surfaces of the negative electrode current collector 1 is shown.
- the negative electrode current collector 1 contains a conductive material such as copper.
- the surface of the negative electrode current collector 1 is preferably roughened by an electrolytic method or the like. This is because the adhesion of the negative electrode active material layer 2 to the negative electrode current collector 1 is improved by utilizing the anchor effect.
- the negative electrode active material layer 2 contains two types of particulate negative electrode active materials (a plurality of first negative electrode active material particles 100 and a plurality of second negative electrode active material particles 200). Therefore, the negative electrode active material layer 2 has a plurality of pores (voids). In FIG. 2, only one first negative electrode active material particle 100 is shown, and only one second negative electrode active material particle 200 is shown. However, the negative electrode active material layer 2 may further include any one kind or two or more kinds of other materials such as a negative electrode binder and a negative electrode conductive agent.
- the first negative electrode active material particles 100 include, in the ion conductive material 101, a plurality of carbon-containing particles 102 that occlude and release lithium and a plurality of silicon-containing particles 103 that occlude and release lithium. Is included.
- the first negative electrode active material particles 100 are composite particles in which a plurality of carbon-containing particles 102 and a plurality of silicon-containing particles 103 are contained (embedded) in the ion conductive material 101. However, some of the plurality of carbon-containing particles 102 may be partially exposed from the ion conductive material 101. The fact that the ion-conductive substance 101 may be partially exposed in this way is the same for some of the plurality of silicon-containing particles 103.
- the average particle diameter (median diameter D50) of the plurality of first negative electrode active material particles 100 is not particularly limited, but is preferably 3.5 ⁇ m to 13.0 ⁇ m among them. This is because the average particle diameter of the plurality of first negative electrode active material particles 100 is optimized in relation to the average particle diameter (median diameter D50) of the plurality of second negative electrode active material particles 200. This facilitates controlling the distribution of the plurality of pores so that a predetermined condition, which will be described later, is satisfied with respect to the volume fraction of the infiltration amount of mercury with respect to the plurality of pores in the negative electrode active material layer 2.
- the ion conductive material 101 is a material that improves the conductivity of lithium ions to facilitate the input and output of lithium ions in each of the carbon-containing particles 102 and the silicon-containing particles 103.
- the ion conductive material 101 contains, for example, one kind or two or more kinds of an ion conductive polymer compound and a solid electrolyte. This is because sufficient ionic conductivity can be obtained inside the first negative electrode active material particles 100.
- the ion conductive polymer compound is, for example, polyether, polyacrylonitrile, polyvinylidene fluoride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polyacrylonitrile, polymethacrylonitrile, Polyvinylacetate, polyvinylpyrrolidone, polyethyleneimine, polybutadiene, polystyrene, polyisoprene, polyaniline, polypyrrole, polythiophene, polyacetylene, polyphenylene, polyparaphenylene, polyphenylenevinylene, polyoxadiazole, polyhexafluoropropylene and polyethylene carbonate, and the like.
- Polyethers are, for
- the ion-conductive polymer compound may be, for example, a derivative such as the above-mentioned polyether. Further, the ion-conductive polymer compound may be, for example, a homopolymer such as the above-mentioned polyether, or may be a copolymer of any two or more kinds of the polyether and the like. Among them, the ion conductive polymer compound is preferably polyethylene oxide. This is because high ionic conductivity can be obtained.
- the ionic conductivity of the ionic conductive material 101 is not particularly limited, but is preferably 10 ⁇ 6 S / cm to 10 ⁇ 1 S / cm. This is because it becomes easy for lithium ions to smoothly and stably input and output in each of the carbon-containing particles 102 and the silicon-containing particles 103.
- the content of the ion conductive material 101 in the first negative electrode active material particles 100 is not particularly limited. Above all, the ratio of the weight of the ion conductive material 101 to the weight of the first negative electrode active material particles 100 (weight ratio R1) is preferably 1.0% by weight to 2.5% by weight. Since the amount of the ion conductive material 101 is optimized with respect to the respective amounts of the plurality of carbon-containing particles 102 and the plurality of silicon-containing particles 103, excellent ion conductivity can be obtained while ensuring a high energy density. Is.
- the carbon-containing particles 102 include any one kind or two or more kinds of carbon-containing materials as a negative electrode material that absorbs and releases lithium.
- the carbon-containing material is a general term for materials containing carbon as a constituent element. This is because the crystal structure of the carbon-containing material hardly changes during occlusion / release of lithium, so that a high energy density can be stably obtained. Further, the carbon-containing material also functions as a negative electrode conductive agent, so that the conductivity of the first negative electrode active material particles 100 is improved.
- the carbon-containing material is, for example, graphitizable carbon, non-graphitizable carbon and graphite.
- the interplanar spacing of the (002) plane for non-graphitizable carbon is, for example, 0.37 nm or more
- the interplanar spacing of the (002) plane for graphite is, for example, 0.34 nm or less.
- the carbon-containing material is, for example, pyrolytic carbon, coke, glassy carbon fiber, organic polymer compound fired body, activated carbon and carbon black.
- the cokes include, for example, pitch cokes, needle cokes and petroleum cokes.
- the organic polymer compound fired body is a fired product obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an arbitrary temperature.
- the carbon-containing material may be, for example, low crystalline carbon heat-treated at a temperature of about 1000 ° C. or lower, or amorphous carbon.
- the shape of the carbon material is, for example, fibrous, spherical, granular or scaly.
- the silicon-containing particles 103 contain any one kind or two or more kinds of silicon-containing materials as a negative electrode material that absorbs and releases lithium.
- This silicon-containing material is a general term for materials containing silicon as a constituent element. This is because a high energy density can be obtained due to the excellent ability to store and release lithium.
- This silicon-containing material is capable of forming an alloy with lithium, and may be a simple substance of silicon, an alloy of silicon, a compound of silicon, a mixture of two or more thereof, or one of them.
- a material containing one kind or two or more kinds of phases may be used.
- the simple substance described here means a general simple substance, it may contain a trace amount of impurities. That is, the purity of the simple substance is not necessarily 100%.
- the alloy of silicon is, for example, as a constituent element other than silicon, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium, or Contains two or more types.
- the compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon.
- the silicon compound may include, for example, as a constituent element other than silicon, any one kind or two kinds or more of the series of constituent elements described for the alloy of silicon.
- silicon alloys and silicon compounds include, for example, SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O and SiO v (0 ⁇ v ⁇ 2).
- the range of v may be 0.2 ⁇ v ⁇ 1.4, for example.
- the mixing ratio (weight ratio) of the plurality of carbon-containing particles 102 and the plurality of silicon-containing particles 103 is not particularly limited. Above all, the ratio (weight ratio R2) of the weight of the plurality of silicon-containing particles 103 to the total weight of the plurality of carbon-containing particles 102 and the weight of the plurality of silicon-containing particles 103 is 60.6% by weight to 85%. It is preferably 1.9% by weight. Since the amount of the plurality of silicon-containing particles 103 is optimized with respect to the amount of the plurality of carbon-containing particles 102, the expansion and contraction of the negative electrode active material layer 2 due to the presence of the silicon-containing material is suppressed, and the high energy density is achieved. Is obtained, and also excellent ion conductivity is obtained. The value of the weight ratio R2 is a value rounded off to the second decimal place.
- the second negative electrode active material particles 200 include any one kind or two or more kinds of carbon-containing materials. Details regarding the carbon-containing material are as described above.
- the kind of carbon-containing material contained in the second negative electrode active material particles 200 may be the same as the kind of carbon-containing material contained in the carbon-containing particles 102, or the kind of carbon-containing material contained in the carbon-containing particles 102. May be different.
- the average particle diameter (median diameter D50) of the plurality of second negative electrode active material particles 200 is not particularly limited, but is preferably 7.0 ⁇ m to 20.0 ⁇ m among them. This is because the average particle diameter of the plurality of second negative electrode active material particles 200 is optimized in relation to the average particle diameter (median diameter D50) of the plurality of first negative electrode active material particles 100. Thereby, as described above, it becomes easy to control the distribution of the plurality of pores so that a predetermined condition is satisfied with respect to the volume fraction of the infiltration amount of mercury with respect to the plurality of pores in the negative electrode active material layer 2. .
- the mixing ratio (weight ratio) of the plurality of first negative electrode active material particles 100 and the plurality of second negative electrode active material particles 200 is not particularly limited. Among them, the ratio of the weight of the plurality of first negative electrode active material particles 100 to the total weight of the plurality of first negative electrode active material particles 100 and the weight of the plurality of second negative electrode active material particles 200 (weight ratio R3) Is preferably 10.5% to 42.1% by weight. Since the amount of the plurality of first negative electrode active material particles 100 is optimized with respect to the amount of the plurality of second negative electrode active material particles 200, expansion and contraction of the negative electrode active material layer 2 due to the presence of the silicon-containing material is suppressed. This is because while high energy density is obtained, excellent ion conductivity is also obtained. The value of the weight ratio R3 is a value rounded off to the second decimal place.
- the plurality of pores included in the negative electrode active material layer 2 are distributed so as to satisfy a predetermined condition. Specifically, when the volume fraction of the amount of mercury infiltrated into a plurality of pores is measured, the pore diameter range in which the volume fraction of the amount of mercury intrusion shows a peak is 1 ⁇ m to 3 ⁇ m.
- the conditions described here will be referred to as “pore size conditions”.
- the range of the pore diameter at which the volume fraction of the infiltration amount of mercury into a plurality of pores shows a peak is 1 ⁇ m or more and 3 ⁇ m or less
- the measurement result of the mercury porosimeter (the horizontal axis is In the pore size ( ⁇ m) and the vertical axis, the volume fraction of mercury intrusion (%)), when focusing on the range of the pore diameter of 1 ⁇ m to 3 ⁇ m on the horizontal axis, the volume fraction of mercury intrusion is upward.
- a convex curve (peak) is drawn, and it means that the apex of the peak is located within the range where the pore diameter is 1 ⁇ m to 3 ⁇ m.
- the measurement result of the mercury porosimeter is data obtained by plotting the volume fraction of the infiltration amount of mercury against the pore diameter by measuring the intrusion amount of mercury into a plurality of pores while gradually increasing the pressure.
- a peak is detected in the mercury porosimeter measurement results, check the pore diameter (corresponding pore diameter) corresponding to the peak apex.
- the pore diameter condition is satisfied.
- the corresponding pore diameter is out of the range of 1 ⁇ m to 3 ⁇ m, the pore diameter condition is not satisfied.
- the mercury porosimeter measurement results shown in Fig. 3 were obtained.
- the peak P1 solid line
- the corresponding pore diameter is 2 ⁇ m, which satisfies the pore diameter condition.
- the peak P2 broken line
- the corresponding pore diameter is 3.5 ⁇ m, which does not satisfy the pore diameter condition.
- the range of the pore diameter of 1 ⁇ m to 3 ⁇ m is shaded.
- the corresponding pore diameter is 1 ⁇ m to 3 ⁇ m, and when the first negative electrode active material particles 100 include the ion conductive material 101, the amount of voids (void distribution) in the negative electrode active material layer 2 is optimized. Because. This improves the ion conductivity in each of the first negative electrode active material particles 100 and also improves the ion conductivity in the periphery of each of the first negative electrode active material particles 100. The sexuality is dramatically improved.
- the lithium ion secondary battery including the negative electrode 10 and the electrolytic solution
- the negative electrode 10 a plurality of pores in the negative electrode active material layer 2
- the ions in the electrolytic solution are Since the transport efficiency is remarkably improved, it becomes easy for lithium ions to smoothly and stably input and output to and from the negative electrode 10.
- the corresponding pore size changes each of the median diameter D50 of the plurality of first negative electrode active material particles 100 and the median diameter D50 of the plurality of second negative electrode active material particles 200 described above, that is, the ratio of the median diameters D50 of both. It can be adjusted to a desired value by changing it. This is because the distribution of voids in the negative electrode active material layer 2 changes, so the position of the peak detected in the measurement result of the mercury porosimeter changes.
- the negative electrode active material layer 2 is cut so as to have a size of 25 mm ⁇ 350 mm, and a mercury porosimeter (Autopore 9500 series) manufactured by Micromeritics is used.
- the negative electrode active material layer 2 includes the above-described two types of negative electrode active materials (the plurality of first negative electrode active material particles 100 and the plurality of second negative electrode active material particles 200), and further, among other negative electrode active materials. Any one type or two or more types may be included.
- the other negative electrode active material is, for example, a metal-based material
- the metal-based material is a general term for materials containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
- the metal-based material may be a simple substance, an alloy, a compound, a mixture of two or more kinds thereof, or a material containing one kind or two or more kinds of phases thereof.
- the alloy includes not only a material composed of two or more kinds of metal elements but also a material containing one kind or two or more kinds of metal elements and one kind or two or more kinds of metalloid elements. Further, the alloy may contain one kind or two or more kinds of non-metal elements.
- the structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexisting substance of two or more kinds thereof.
- metal elements and the metalloid element can form an alloy with lithium.
- metal elements and metalloid elements are, for example, magnesium, boron, aluminum, gallium, indium, silicon, germanium, tin, lead, bismuth, cadmium, silver, zinc, hafnium, zirconium, yttrium, palladium and platinum. And so on.
- silicon and tin are preferable, and silicon is more preferable. This is because the lithium storage and release capacity is excellent and a remarkably high energy density can be obtained.
- the metallic material may be a simple substance of silicon, an alloy of silicon, a compound of silicon, a simple substance of tin, an alloy of tin, or a compound of tin. However, it may be a mixture of two or more kinds thereof, or a material containing one kind or two or more kinds of phases thereof.
- the alloy of tin is, for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium, or Contains two or more types.
- the tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin.
- the tin compound may include, for example, as a constituent element other than tin, one kind or two or more kinds of the series of constituent elements described for the alloy of tin.
- the tin alloy and the tin compound are, for example, SnO w (0 ⁇ w ⁇ 2), SnSiO 3 and Mg 2 Sn.
- the negative electrode binder contains, for example, synthetic rubber and a polymer compound.
- the synthetic rubber is, for example, styrene-butadiene rubber.
- the polymer compound is, for example, polyvinylidene fluoride, polyimide and aramid.
- the negative electrode conductive agent contains a conductive material such as a carbon material.
- This carbon material is, for example, graphite, carbon black, acetylene black, Ketjen black, carbon nanotube, carbon nanofiber, or the like.
- the negative electrode conductive agent may be a metal material, a conductive polymer, or the like.
- the negative electrode 10 is manufactured, for example, by the following procedure.
- a mixture is obtained by mixing the ion conductive material 101, the plurality of carbon-containing particles 102, and the plurality of silicon-containing particles 103. Then, the mixture is put into a solvent, and then the solvent is stirred to prepare a mixed solution.
- the type of solvent is not particularly limited as long as it is any one type or two or more types of any solvent, and examples thereof include an aqueous solvent and an organic solvent capable of dissolving the ion conductive substance 101.
- the aqueous solvent is, for example, pure water
- the organic solvent is, for example, N-methyl-2-pyrrolidone.
- a stirring device such as a stirrer may be used.
- the mixed solution is dried. Thereby, since the plurality of carbon-containing particles 102 and the plurality of silicon-containing particles 103 are contained in the ion conductive material 101, a plurality of first negative electrode active material particles 100 are obtained.
- a plurality of first negative electrode active materials 100, a plurality of second negative electrode active material particles 200, and a negative electrode binder, a negative electrode conductive agent, and the like are mixed to form a negative electrode mixture.
- the negative electrode mixture slurry is prepared by dispersing or dissolving the negative electrode mixture in an organic solvent or an aqueous solvent.
- the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 1, and then the negative electrode mixture slurry is dried to form the negative electrode active material layer 2.
- the negative electrode active material layer 2 may be compression molded using a roll press or the like. In this case, the negative electrode active material layer 2 may be heated or compression molding may be repeated a plurality of times.
- the negative electrode active material layers 2 are formed on both surfaces of the negative electrode current collector 1, so that the negative electrode 10 is completed.
- the negative electrode active material layer 2 having a plurality of pores has a plurality of first negative electrode active material particles 100 (ion conductive material 101, a plurality of carbon-containing particles 102 and a plurality of silicon-containing particles 103), and It includes a plurality of second negative electrode active material particles 200 and has a corresponding pore diameter of 1 ⁇ m to 3 ⁇ m.
- the ions in the electrolytic solution are Transport efficiency is significantly improved. Therefore, lithium ions can be smoothly and stably input to and output from the negative electrode 10, so that a secondary battery including the negative electrode 10 can have excellent battery characteristics.
- the ion conductive material 101 contains an ion conductive polymer compound or the like, sufficient ion conductivity can be obtained inside the first negative electrode active material particles 100, and a higher effect can be obtained.
- lithium ions are smoothly and stably input / output to / from each of the carbon-containing particles 102 and the silicon-containing particles 103. Since it is easier to do so, a higher effect can be obtained.
- the weight ratio R1 is 1.0% by weight to 2.5% by weight, excellent ion conductivity can be obtained while ensuring a high energy density, so that a higher effect can be obtained.
- the weight ratio R2 is 60.6% by weight to 85.9% by weight, expansion and shrinkage of the negative electrode active material layer 2 due to the presence of the silicon-containing material are suppressed, and a high energy density is obtained and excellent. Also, high ionic conductivity can be obtained, so that a higher effect can be obtained.
- the median diameter D50 of the plurality of first negative electrode active material particles 100 is 3.5 ⁇ m to 13.0 ⁇ m
- the median diameter D50 of the plurality of second negative electrode active material particles 200 is 7.0 ⁇ m to 20.0 ⁇ m.
- the distribution of the plurality of pores is easily controlled so that a predetermined condition is satisfied with respect to the volume fraction of the infiltration amount of mercury, so that a higher effect can be obtained.
- the weight ratio R3 is 10.5% by weight to 42.1% by weight, the expansion and shrinkage of the negative electrode active material layer 2 due to the presence of the silicon-containing material is suppressed, a high energy density is obtained and excellent. Also, high ionic conductivity can be obtained, so that a higher effect can be obtained.
- Lithium-ion secondary battery Next, a lithium ion secondary battery according to an embodiment of the present technology using the above-described negative electrode 10 will be described.
- the lithium-ion secondary battery described here includes a positive electrode 21 and a negative electrode 22, as described later.
- the lithium-ion secondary battery is, for example, a secondary battery in which the capacity of the negative electrode 22 is obtained by utilizing the occlusion and release of lithium.
- the charge capacity of the negative electrode 22 is larger than the discharge capacity of the positive electrode 21 in order to prevent unintentional deposition of lithium metal on the surface of the negative electrode 22 during charging. ing.
- FIG. 4 shows a cross-sectional structure of the lithium-ion secondary battery
- FIG. 5 shows an enlarged cross-sectional structure of a main part (rolled electrode body 20) of the lithium-ion secondary battery shown in FIG. .
- FIG. 5 only a part of the spirally wound electrode body 20 is shown.
- a battery element (rolled electrode body 20) is housed inside a cylindrical battery can 11.
- the lithium ion secondary battery includes, for example, a pair of insulating plates 12 and 13 and a wound electrode body 20 inside a battery can 11.
- the wound electrode body 20 is, for example, a structure in which a positive electrode 21 and a negative electrode 22 are stacked on each other via a separator 23, and then the positive electrode 21, a negative electrode 22 and a separator 23 are wound.
- the spirally wound electrode body 20 is impregnated with an electrolytic solution which is a liquid electrolyte.
- the battery can 11 has, for example, a hollow cylindrical structure with one end closed and the other end open, and contains, for example, a metal material such as iron. However, the surface of the battery can 11 may be plated with a metal material such as nickel.
- Each of the insulating plates 12 and 13 extends, for example, in a direction intersecting the winding peripheral surface of the wound electrode body 20 and is arranged so as to sandwich the wound electrode body 20 therebetween.
- the battery lid 14 At the open end of the battery can 11, for example, the battery lid 14, the safety valve mechanism 15, and the PTC element 16 are caulked via the gasket 17, so that the open end of the battery can 11 is It is sealed.
- the material forming the battery lid 14 is, for example, the same as the material forming the battery can 11.
- the safety valve mechanism 15 and the PTC element 16 are provided inside the battery lid 14, and the safety valve mechanism 15 is electrically connected to the battery lid 14 via the PTC element 16.
- the disk plate 15A In this safety valve mechanism 15, when the internal pressure of the battery can 11 exceeds a certain level due to, for example, an internal short circuit and external heating, the disk plate 15A is inverted, so that the electrical connection between the battery lid 14 and the spirally wound electrode body 20 is reduced. The connection is broken.
- the electric resistance of the PTC element 16 increases with an increase in temperature in order to prevent abnormal heat generation due to a large current.
- the gasket 17 includes, for example, an insulating material. However, the surface of the gas
- a positive electrode lead 25 is connected to the positive electrode 21, and the positive electrode lead 25 contains a conductive material such as aluminum. The positive electrode lead 25 is electrically connected to the battery lid 14 via the safety valve mechanism 15, for example.
- a negative electrode lead 26 is connected to the negative electrode 22, and the negative electrode lead 26 contains a conductive material such as nickel. The negative electrode lead 26 is electrically connected to the battery can 11, for example.
- the positive electrode 21 includes, for example, as shown in FIG. 5, a positive electrode current collector 21A and a positive electrode active material layer 21B provided on the positive electrode current collector 21A.
- the positive electrode active material layer 21B may be provided, for example, on only one surface of the positive electrode current collector 21A, or may be provided on both surfaces of the positive electrode current collector 21A. In FIG. 5, for example, the case where the positive electrode active material layer 21B is provided on both surfaces of the positive electrode current collector 21A is shown.
- the cathode current collector 21A contains a conductive material such as aluminum.
- the positive electrode active material layer 21B contains, as a positive electrode active material, any one kind or two or more kinds of positive electrode materials capable of inserting and extracting lithium. However, the positive electrode active material layer 21B may further include any one kind or two or more kinds of other materials such as a positive electrode binder and a positive electrode conductive agent.
- the positive electrode material contains, for example, a lithium compound, and the lithium compound is a general term for compounds containing lithium as a constituent element. This is because a high energy density can be obtained.
- the type of lithium compound is not particularly limited, and examples thereof include a lithium composite oxide and a lithium phosphate compound.
- the lithium composite oxide is an oxide containing lithium and one or more kinds of other elements as constituent elements, and has a crystal structure such as a layered rock salt type and a spinel type.
- the lithium phosphoric acid compound is a phosphoric acid compound containing lithium and one or more kinds of other elements as constituent elements, and has, for example, an olivine type crystal structure.
- Other elements are elements other than lithium.
- the type of the other element is not particularly limited, but is preferably an element belonging to Groups 2 to 15 of the long periodic table. This is because a high voltage can be obtained.
- the other element is, for example, nickel, cobalt, manganese, iron, or the like.
- the lithium composite oxide having a layered rock salt type crystal structure is, for example, LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , or LiNiO 2 . 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 and the like.
- the lithium composite oxide having a spinel type crystal structure is, for example, LiMn 2 O 4 .
- the lithium phosphate compound having an olivine type crystal structure is, for example, LiFePO 4 , LiMnPO 4 , LiMn 0.5 Fe 0.5 PO 4 , LiMn 0.7 Fe 0.3 PO 4 and LiMn 0.75 Fe 0.25 PO 4 .
- each of the positive electrode binder and the negative electrode conductive agent are the same as the details regarding each of the negative electrode binder and the negative electrode conductive agent, for example.
- the negative electrode 22 has the same configuration as the negative electrode 10 described above. That is, the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B, for example, as shown in FIG.
- the respective configurations of the negative electrode current collector 22A and the negative electrode active material layer 22B are the same as the respective configurations of the negative electrode current collector 1 and the negative electrode active material layer 2.
- the separator 23 includes, for example, a porous film such as synthetic resin and ceramic, and may be a laminated film in which two or more kinds of porous films are laminated with each other.
- the synthetic resin is, for example, polyethylene.
- the separator 23 may include, for example, the above-mentioned porous film (base material layer) and a polymer compound layer provided on the base material layer.
- the polymer compound layer may be provided on only one surface of the base material layer, or may be provided on both surfaces of the base material layer, for example. This is because the adhesion of the separator 23 to the positive electrode 21 is improved and the adhesion of the separator 23 to the negative electrode 22 is improved, so that the spirally wound electrode body 20 is less likely to be distorted. Thereby, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution with which the base material layer is impregnated is also suppressed.
- the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable.
- the polymer compound layer may include a plurality of insulating particles such as inorganic particles. This is because the safety is improved.
- the type of inorganic particles is not particularly limited, but examples thereof include aluminum oxide and aluminum nitride.
- the electrolytic solution is impregnated in the spirally wound electrode body 20. Therefore, for example, the electrolytic solution is impregnated in the separator 23 and also in the positive electrode 21 and the negative electrode 22.
- This electrolytic solution contains, for example, a solvent and an electrolyte salt.
- the solvent includes, for example, any one kind or two or more kinds of non-aqueous solvent (organic solvent) and the like.
- the electrolytic solution containing a non-aqueous solvent is a so-called non-aqueous electrolytic solution.
- the type of non-aqueous solvent is not particularly limited, and examples thereof include cyclic carbonic acid ester, chain carbonic acid ester, lactone, chain carboxylic acid ester, and nitrile (mononitrile) compound.
- Cyclic carbonates are, for example, ethylene carbonate and propylene carbonate.
- the chain carbonic acid ester is, for example, dimethyl carbonate or diethyl carbonate.
- the lactone is, for example, ⁇ -butyrolactone or ⁇ -valerolactone.
- the chain carboxylic acid ester is, for example, methyl acetate, ethyl acetate and methyl propionate.
- Nitrile compounds are, for example, acetonitrile, methoxyacetonitrile and 3-methoxypropionitrile. This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
- the non-aqueous solvent may be, for example, unsaturated cyclic carbonic acid ester, halogenated carbonic acid ester, sulfonic acid ester, acid anhydride, dicyano compound (dinitrile compound) and diisocyanate compound, phosphoric acid ester, and the like.
- the unsaturated cyclic carbonic acid ester is, for example, vinylene carbonate, vinyl ethylene carbonate, methylene ethylene carbonate, or the like.
- the halogenated carbonic acid ester include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one and fluoromethylmethyl carbonate.
- Examples of the sulfonic acid ester include 1,3-propane sultone and 1,3-propene sultone.
- Examples of the acid anhydride include succinic anhydride, glutaric anhydride, maleic anhydride, ethanedisulfonic acid anhydride, propanedisulfonic acid anhydride, sulfobenzoic acid anhydride, sulfopropionic acid anhydride, and sulfobutyric anhydride.
- the dinitrile compound is, for example, succinonitrile, glutaronitrile, adiponitrile and phthalonitrile.
- the diisocyanate compound is, for example, hexamethylene diisocyanate.
- the phosphoric acid ester is, for example, trimethyl phosphate and triethyl phosphate. This is because any one type or two or more types of the series of characteristics described above are further improved.
- the electrolyte salt contains, for example, one kind or two or more kinds of lithium salts and the like.
- the type of lithium salt is not particularly limited, and examples thereof include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and bis (fluorosulfonyl) imide lithium (LiN (SO 2 F) 2 ), Lithium bis (trifluoromethanesulfonyl) imide (LiN (CF 3 SO 2 ) 2 ), lithium fluorophosphate (Li 2 PFO 3 ), lithium difluorophosphate (LiPF 2 O 2 ) and lithium bis (oxalato) borate (LiC 4 BO 8 ) and the like. This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
- the content of the electrolyte salt is not particularly limited, but is, for example, 0.3 mol / kg or more and 3.0 mol / kg or less with respect to the solvent.
- lithium ions are released from the positive electrode 21 and the lithium ions are occluded in the negative electrode 22 via the electrolytic solution. Further, in the lithium ion secondary battery, for example, during discharging, lithium ions are released from the negative electrode 22 and the lithium ions are occluded in the positive electrode 21 via the electrolytic solution.
- a positive electrode active material and, if necessary, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to obtain a positive electrode mixture.
- the positive electrode mixture slurry is prepared by dispersing or dissolving the positive electrode mixture in an organic solvent or an aqueous solvent.
- the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A, and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 21B.
- the positive electrode active material layer 21B may be compression-molded using a roll press or the like. In this case, the positive electrode active material layer 21B may be heated or compression molding may be repeated a plurality of times.
- Negative electrode active material layers 22B are formed on both surfaces of the negative electrode current collector 22A by the same procedure as the above-described procedure for producing the negative electrode 20.
- the positive electrode lead 25 is connected to the positive electrode current collector 21A using a welding method or the like, and the negative electrode lead 26 is connected to the negative electrode current collector 22A using a welding method or the like. Then, the positive electrode 21 and the negative electrode 22 are laminated on each other via the separator 23, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to form a wound body. Then, the center pin 24 is inserted into the space 20C provided in the winding center of the wound body.
- the wound body is housed inside the battery can 11.
- the positive electrode lead 25 is connected to the safety valve mechanism 15 by a welding method or the like
- the negative electrode lead 26 is connected to the battery can 11 by a welding method or the like.
- the wound body is impregnated with the electrolytic solution by injecting the electrolytic solution into the battery can 11.
- the positive electrode 21, the negative electrode 22, and the separator 23 are each impregnated with the electrolytic solution, so that the wound electrode body 20 is formed.
- the negative electrode 22 has the same configuration as the negative electrode 10 described above. Therefore, for the reasons described above, lithium ions are likely to smoothly and stably input and output to and from the negative electrode 22, so that excellent battery characteristics can be obtained.
- the other functions and effects of the cylindrical lithium ion secondary battery are similar to those of the negative electrode 10 described above.
- FIG. 6 shows a perspective configuration of another lithium ion secondary battery
- FIG. 7 shows a main part of the lithium ion secondary battery (rolled electrode body 30) taken along the line VII-VII shown in FIG. ) Is expanding the cross-sectional structure.
- FIG. 6 shows a state where the spirally wound electrode body 30 and the exterior member 40 are separated from each other.
- a battery element (rolled electrode body 30) is housed inside a film-like exterior member 40 having flexibility (or flexibility). There is.
- the wound electrode body 30 is, for example, a structure in which a positive electrode 33 and a negative electrode 34 are laminated on each other via a separator 35 and an electrolyte layer 36, and then the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are wound.
- the surface of the spirally wound electrode body 30 is protected by a protective tape 37, for example.
- the electrolyte layer 36 is interposed, for example, between the positive electrode 33 and the separator 35 and also between the negative electrode 34 and the separator 35.
- the positive electrode lead 31 is connected to the positive electrode 33, and the positive electrode lead 31 is led out from the inside of the exterior member 40 toward the outside.
- the material for forming the positive electrode lead 31 is, for example, the same as the material for forming the positive electrode lead 25, and the shape of the positive electrode lead 31 is, for example, a thin plate shape or a mesh shape.
- the negative electrode lead 32 is connected to the negative electrode 34, and the negative electrode lead 32 is led out from the inside of the exterior member 40 toward the outside.
- the derivation direction of the negative electrode lead 32 is the same as the derivation direction of the positive electrode lead 31, for example.
- the material forming the negative electrode lead 32 is, for example, the same as the material forming the negative electrode lead 26, and the shape of the negative electrode lead 32 is the same as the shape of the positive electrode lead 31, for example.
- the exterior member 40 is, for example, a single film that can be folded in the direction of the arrow R shown in FIG. A part of the exterior member 40 is provided with a recess 40U for housing the spirally wound electrode body 30, for example.
- the exterior member 40 is, for example, a laminate (laminate film) in which a fusion bonding layer, a metal layer, and a surface protection layer are laminated in this order from the inside to the outside.
- a laminate laminate film
- the fusing layer is, for example, a film containing a polymer compound such as polypropylene.
- the metal layer is, for example, a metal foil containing a metal material such as aluminum.
- the surface protective layer is, for example, a film containing a polymer compound such as nylon.
- the exterior member 40 is, for example, two laminated films, and the two laminated films may be bonded to each other via an adhesive, for example.
- an adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31, for example, an adhesion film 41 is inserted to prevent outside air from entering.
- the adhesion film 41 contains a polyolefin resin such as polypropylene.
- an adhesive film 42 having the same function as the adhesive film 41 is inserted between the exterior member 40 and the negative electrode lead 32.
- the forming material of the contact film 42 is, for example, the same as the forming material of the contact film 41.
- the positive electrode 33 includes, for example, a positive electrode current collector 33A and a positive electrode active material layer 33B
- the negative electrode 34 includes, for example, a negative electrode current collector 34A and a negative electrode active material layer 34B.
- the configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B are, for example, the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode.
- the configurations are the same as those of the active material layer 22B.
- the configuration of the separator 35 is similar to that of the separator 23, for example.
- the electrolyte layer 36 contains a polymer compound together with an electrolytic solution. Since the electrolyte layer 36 described here is a so-called gel electrolyte, the electrolyte solution is held by the polymer compound in the electrolyte layer 36. This is because a high ionic conductivity (for example, 1 mS / cm or more at room temperature) is obtained, and leakage of the electrolytic solution is prevented. However, the electrolyte layer 36 may further include other materials such as various additives.
- the composition of the electrolyte is as described above.
- the polymer compound contains, for example, one or both of a homopolymer and a copolymer.
- the homopolymer is, for example, polyvinylidene fluoride
- the copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
- the solvent contained in the electrolytic solution is a broad concept including not only a liquid material but also a material having ion conductivity capable of dissociating an electrolyte salt. Therefore, when a polymer compound having ion conductivity is used, the polymer compound is also included in the solvent.
- lithium ions are released from the positive electrode 33, and the lithium ions are occluded in the negative electrode 34 via the electrolyte layer 36.
- lithium ions are released from the negative electrode 34 and the lithium ions are stored in the positive electrode 33 via the electrolyte layer 36.
- the lithium-ion secondary battery provided with the electrolyte layer 36 is manufactured by, for example, three types of procedures described below.
- the positive electrode 33 is manufactured by forming the positive electrode active material layers 33B on both surfaces of the positive electrode current collector 33A by a procedure similar to the procedure for manufacturing the positive electrode 21. Further, the negative electrode 34 is manufactured by forming the negative electrode active material layers 34B on both surfaces of the negative electrode current collector 34A by the same procedure as the manufacturing procedure of the negative electrode 22.
- the precursor solution is prepared by mixing the electrolytic solution, the polymer compound, and the organic solvent. Subsequently, after applying the precursor solution to the positive electrode 33, the precursor solution is dried to form the electrolyte layer 36. Further, the electrolyte layer 36 is formed by applying the precursor solution to the negative electrode 34 and then drying the precursor solution. Subsequently, the positive electrode lead 31 is connected to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is connected to the negative electrode current collector 34A using a welding method or the like.
- the positive electrode 33 and the negative electrode 34 are laminated on each other via the separator 35 and the electrolyte layer 36, and then the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are wound to form the wound electrode body 30.
- the protective tape 37 is attached to the surface of the spirally wound electrode body 30.
- the outer peripheral edge portions of the exterior member 40 are adhered to each other by using a heat fusion method or the like.
- the adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31, and the adhesion film 42 is inserted between the exterior member 40 and the negative electrode lead 32.
- the spirally wound electrode body 30 is sealed inside the exterior member 40, so that the lithium ion secondary battery is completed.
- the positive electrode lead 31 is connected to the positive electrode 33 and the negative electrode lead 32 is connected to the negative electrode 34.
- the positive electrode 33 and the negative electrode 34 are laminated on each other via the separator 35, and the positive electrode 33, the negative electrode 34, and the separator 35 are wound to form a wound body.
- the protective tape 37 is attached to the surface of the wound body.
- the exterior member 40 is folded so as to sandwich the wound body, the remaining outer peripheral edge portions of the exterior member 40 excluding one outer peripheral edge portion are bonded to each other by using a heat fusion method or the like.
- the wound body is housed inside the bag-shaped exterior member 40.
- the electrolyte solution the monomer that is the raw material of the polymer compound, the polymerization initiator, and if necessary, other materials such as a polymerization inhibitor are mixed, and then the mixture is stirred to prepare an electrolyte solution.
- a composition is prepared.
- the electrolyte composition is injected into the bag-shaped exterior member 40, and then the exterior member 40 is sealed by a heat fusion method or the like.
- the polymer is formed by thermally polymerizing the monomers. As a result, the electrolytic solution is held by the polymer compound, so that the electrolyte layer 36 is formed. Therefore, since the spirally wound electrode body 30 is enclosed inside the exterior member 40, the lithium ion secondary battery is completed.
- a wound body is produced by a procedure similar to the above-described second procedure except that the separator 35 having the polymer compound layers provided on both surfaces of the base material layer is used, and then the bag-shaped exterior member.
- the wound body is stored inside 40.
- the opening of the exterior member 40 is sealed by using a heat fusion method or the like.
- the separator 35 is brought into close contact with each of the positive electrode 33 and the negative electrode 34 via the polymer compound layer.
- the polymer compound layer is impregnated with the electrolytic solution and the polymer compound layer is gelated, so that the electrolyte layer 36 is formed. Therefore, since the spirally wound electrode body 30 is enclosed inside the exterior member 40, the lithium ion secondary battery is completed.
- the lithium-ion secondary battery is less likely to swell. Further, in the third procedure, as compared with the second procedure, the solvent and the monomer (raw material of the polymer compound) are less likely to remain in the electrolyte layer 36, so that the positive electrode 33, the negative electrode 34, and the separator 35 are respectively removed. The electrolyte layer 36 is sufficiently adhered.
- the laminate film type lithium ion secondary battery may include, for example, an electrolytic solution instead of the electrolyte layer 36.
- an electrolytic solution instead of the electrolyte layer 36.
- the electrolytic solution is impregnated into each of the positive electrode 33, the negative electrode 34, and the separator 35.
- the electrolytic solution is injected into the bag-shaped exterior member 40, so that the wound body is impregnated with the electrolytic solution. Therefore, the wound electrode body 30 is formed. Even in this case, the same effect can be obtained.
- Lithium-ion secondary batteries can be used for machines, devices, appliances, devices and systems (collection of multiple devices, etc.) that can use the lithium-ion secondary battery as a power source for driving and a power storage source for power storage. It is not particularly limited as long as it is a body).
- the lithium ion secondary battery used as a power source may be a main power source or an auxiliary power source.
- the main power source is a power source that is preferentially used regardless of the presence or absence of another power source.
- the auxiliary power source may be, for example, a power source used instead of the main power source, or a power source that can be switched from the main power source as needed.
- the type of main power source is not limited to the lithium ion secondary battery.
- the usage of the lithium-ion secondary battery is, for example, as follows.
- Electronic devices including portable electronic devices
- portable electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions and portable information terminals.
- It is a portable household appliance such as an electric shaver.
- It is a storage device such as a backup power supply and a memory card.
- Electric tools such as electric drills and electric saws.
- This is a battery pack that can be mounted on a laptop computer as a detachable power source.
- Medical electronic devices such as pacemakers and hearing aids.
- Electric vehicles such as electric vehicles (including hybrid vehicles).
- It is a power storage system such as a household battery system that stores power in case of an emergency.
- the use of the lithium ion secondary battery may be other than the above-mentioned use.
- Layer 33B was formed.
- the positive electrode active material layer 33B was compression-molded using a roll press.
- a mixture was obtained by mixing graphite) with a plurality of silicon-containing particles (silicon).
- the mixing ratio (% by weight) of the ion conductive material, the plurality of carbon-containing particles and the plurality of silicon-containing particles, and the weight ratios R1 and R2 (% by weight) are as shown in Table 1.
- the mixture was put into an aqueous solvent (pure water), and then the solvent was stirred using a stirrer to prepare a mixed solution.
- a plurality of contained first negative electrode active material particles were obtained.
- the median diameter D50 ( ⁇ m) of the plurality of first negative electrode active material particles was adjusted.
- CMC carboxymethyl cellulose
- a plurality of first negative electrode active material particles, a plurality of second negative electrode active material particles (graphite), a negative electrode binder (polyvinylidene fluoride) 3.0 parts by mass, and a negative electrode conductive agent (carbon black) 2 A negative electrode mixture was obtained by mixing with 0.0 part by mass.
- the mixing ratio (% by weight) of each of the plurality of first negative electrode active material particles and each of the plurality of second negative electrode active material particles and the weight ratio R3 (% by weight) are as shown in Table 1. In this case, as shown in Table 1, the median diameter D50 ( ⁇ m) of the plurality of second negative electrode active material particles was adjusted.
- the negative electrode mixture was put into an organic solvent (N-methyl-2-pyrrolidone), and the organic solvent was stirred to prepare a paste-like negative electrode mixture slurry.
- Layer 34B was formed.
- the negative electrode active material layer 34B was compression-molded using a roll press.
- the corresponding pore diameter ( ⁇ m) was examined using a mercury porosimeter, and the results shown in Table 2 were obtained.
- the details regarding the model number of the mercury porosimeter and the measurement conditions are as described above.
- Table 1 and Table 2 by changing the median diameter D50 of the plurality of first negative electrode active material particles and the median diameter D50 of the plurality of second negative electrode active material particles, respectively, The pore size was adjusted.
- the electrolyte salt lithium hexafluorophosphate
- the solvent ethylene carbonate and dimethyl carbonate
- the content of the electrolyte salt was 1.0 mol / kg with respect to the solvent.
- the positive electrode lead 31 made of aluminum was welded to the positive electrode collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode collector 34A. Then, the positive electrode 33 and the negative electrode 34 were laminated
- stacked on each other through the separator 35 (microporous polyethylene film, thickness 15 micrometers), and the laminated body was obtained. Then, after winding the laminated body, a protective tape 37 was attached to the laminated body to obtain a wound body.
- the exterior member 40 was folded so as to sandwich the wound body, and the outer peripheral edge portions of the two sides of the exterior member 40 were heat-sealed to each other.
- a metal layer aluminum layer
- the aluminum laminated film thus prepared was used.
- the adhesion film 41 polypropylene film
- the adhesion film 42 polypropylene film
- the wound body is impregnated with the electrolytic solution by injecting the electrolytic solution into the exterior member 40, and then the outer peripheral edge portions of the remaining one side of the exterior member 40 in the reduced pressure environment. Heat fused.
- the spirally wound electrode body 30 was formed, and the spirally wound electrode body 30 was enclosed inside the exterior member 40. Thus, a laminated film type lithium ion secondary battery was completed.
- the discharge capacity at the second cycle was measured.
- the charging / discharging conditions were the same as when the state of the lithium ion secondary battery was stabilized.
- 1.0 C, 1.5 C and 2.0 C are current values at which the battery capacity (theoretical capacity) is completely discharged in 1 hour, 2/3 hours and 0.5 hour, respectively.
- the load retention rate greatly fluctuated according to the configuration of the negative electrode 34, more specifically, the corresponding pore diameter. Specifically, when the corresponding pore diameter is within the range of 1 ⁇ m to 3 ⁇ m (Experimental Examples 1 to 14), compared with the case where the corresponding pore diameter is outside the range of 1 ⁇ m to 3 ⁇ m (Experimental Examples 15 and 16). , The load retention rate increased without depending on the current value during discharge. The result of the increase in the load maintenance rate in this manner indicates that lithium ions are easily input and output to and from the negative electrode 34.
- the following tendencies were obtained especially when the corresponding pore size was in the range of 1 ⁇ m to 3 ⁇ m.
- the weight ratio R1 was 1.0% by weight to 2.5% by weight
- a high load retention rate was obtained.
- the weight ratio R2 was 60.6% by weight to 85.9% by weight
- a high load retention rate was obtained.
- the median diameter D50 of the plurality of first negative electrode active material particles is 3.5 ⁇ m to 13.0 ⁇ m
- the median diameter D50 of the plurality of second negative electrode active material particles is 7.0 ⁇ m to 20.0 ⁇ m.
- a high load maintenance rate was obtained.
- the weight ratio R3 was 10.5% by weight to 42.1% by weight, a high load retention rate was obtained.
- the negative electrode active material layer 34B having pores has a plurality of first negative electrode active material particles (ion conductive material, a plurality of carbon-containing particles and a plurality of silicon-containing particles) and a plurality of
- first negative electrode active material particles ion conductive material, a plurality of carbon-containing particles and a plurality of silicon-containing particles
- second negative electrode active material particles were included and the corresponding pore diameter was 1 ⁇ m to 3 ⁇ m, the load characteristics of the lithium ion secondary battery were improved. Therefore, excellent battery characteristics were obtained in the lithium ion secondary battery.
- the cylindrical lithium ion secondary battery and the laminate film type lithium ion secondary battery have been described, but the invention is not limited to them.
- other lithium ion secondary batteries such as a prismatic lithium ion secondary battery and a coin type lithium ion secondary battery may be used.
- the battery element has a winding structure
- the invention is not limited to this.
- the battery element may have another structure such as a laminated structure.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
This lithium ion secondary battery comprises: a positive electrode; a negative electrode comprising
a negative electrode active material layer that has a plurality of pores, the negative electrode active material layer including a plurality of first negative electrode active material particles and a plurality of second negative electrode active material particles, each of the plurality of first negative electrode active material particles including a plurality of carbon-containing particles and a plurality of silicon-containing particles in an ion transfer substance, each of the second negative electrode active material particles contains a carbon-containing material, and the range of pore diameters at which a peak is shown in the volumetric fraction of the amount of mercury intruding into the plurality of pores is 1-3 μm; and a liquid electrolyte.
Description
本技術は、リチウムイオン二次電池に用いられる負極およびその負極を用いたリチウムイオン二次電池に関する。
The present technology relates to a negative electrode used in a lithium ion secondary battery and a lithium ion secondary battery using the negative electrode.
携帯電話機などの多様な電子機器が普及しているため、電源として、小型かつ軽量であると共に高エネルギー密度を得ることが可能であるリチウムイオン二次電池の開発が進められている。
Due to the widespread use of various electronic devices such as mobile phones, the development of lithium-ion secondary batteries that are compact and lightweight and that can obtain high energy density as a power source is under way.
このリチウムイオン二次電池は、正極および負極と共に電解液を備えている。負極の構成は、電池特性に大きな影響を及ぼすため、その負極の構成に関しては、様々な検討がなされている。具体的には、優れたサイクル特性などを得るために、負極活物質と共に、フッ素系樹脂である結合材が用いられている。この負極活物質では、複合材料(炭素材料、黒鉛材料および金属材料)の表面に、カルボキシル基を有する高分子化合物および金属酸化物粒子が付着されている(例えば、特許文献1参照。)。
This lithium-ion secondary battery is equipped with an electrolyte solution as well as a positive electrode and a negative electrode. Since the configuration of the negative electrode has a great influence on the battery characteristics, various studies have been made on the configuration of the negative electrode. Specifically, in order to obtain excellent cycle characteristics and the like, a binder that is a fluororesin is used together with the negative electrode active material. In this negative electrode active material, a polymer compound having a carboxyl group and metal oxide particles are attached to the surface of a composite material (carbon material, graphite material and metal material) (for example, see Patent Document 1).
リチウムイオン二次電池が搭載される電子機器は、益々、高性能化および多機能化しているため、その電子機器の使用頻度は増加していると共に、その電子機器の使用環境は拡大している。そこで、リチウムイオン二次電池の電池特性に関しては、未だ改善の余地がある。
Electronic devices equipped with lithium-ion secondary batteries are becoming increasingly sophisticated and multifunctional, so the frequency of use of the electronic devices is increasing and the environment in which the electronic devices are used is expanding. . Therefore, there is still room for improvement in the battery characteristics of the lithium ion secondary battery.
本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた電池特性を得ることが可能なリチウムイオン二次電池用負極およびリチウムイオン二次電池を提供することにある。
The present technology has been made in view of such problems, and an object thereof is to provide a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery that can obtain excellent battery characteristics.
本技術の一実施形態のリチウムイオン二次電池用負極は、正極と、複数の細孔を有する負極活物質層を備え、その負極活物質層が複数の第1負極活物質粒子および複数の第2負極活物質粒子を含み、その複数の第1負極活物質粒子のそれぞれがイオン伝導性物質中に複数の炭素含有粒子および複数のケイ素含有粒子を含み、その第2負極活物質粒子のそれぞれが炭素含有材料を含有し、その複数の細孔に対する水銀の浸入量の体積分率がピークを示す孔径の範囲は1μm以上3μm以下である負極と、電解液とを備えたものである。
A negative electrode for a lithium-ion secondary battery according to an embodiment of the present technology includes a positive electrode and a negative electrode active material layer having a plurality of pores, and the negative electrode active material layer has a plurality of first negative electrode active material particles and a plurality of first negative electrode active material particles. 2 negative electrode active material particles, each of the plurality of first negative electrode active material particles includes a plurality of carbon-containing particles and a plurality of silicon-containing particles in the ion conductive material, and each of the second negative electrode active material particles. A negative electrode that contains a carbon-containing material and has a pore diameter range in which the volume fraction of mercury intrusion into a plurality of pores shows a peak is 1 μm or more and 3 μm or less, and an electrolyte solution.
本技術の一実施形態のリチウムイオン二次電池は、正極と、負極と、電解液とを備え、その負極が上記した本技術の一実施形態のリチウムイオン二次電池用負極と同様の構成を有するものである。
A lithium ion secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution, and the negative electrode has the same configuration as the above-described negative electrode for a lithium ion secondary battery according to an embodiment of the present technology. I have.
上記した「複数の細孔に対する水銀の浸入量の体積分率」は、水銀圧入法(水銀ポロシメータ)を用いて測定される。ただし、水銀の浸入量の値は、水銀の表面張力=485mN/mおよび接触角=130°とすると共に複数の細孔の孔径と圧力との関係を180/圧力=孔径と近似した場合に測定される値とする。
The above-mentioned “volume fraction of the amount of mercury infiltrating into a plurality of pores” is measured using the mercury porosimetry (mercury porosimeter). However, the amount of mercury penetration is measured when the surface tension of mercury is 485 mN / m and the contact angle is 130 °, and the relationship between the pore diameter and the pressure of a plurality of pores is approximately 180 / pressure = pore diameter. Value.
これに伴い、「複数の細孔に対する水銀の浸入量の体積分率がピークを示す孔径の範囲は1μm以上3μm以下である」とは、水銀ポロシメータの測定結果(横軸は孔径(μm)および縦軸は水銀の浸入量の体積分率(%))中において、横軸の孔径が1μm~3μmである範囲に着目した場合に、水銀の浸入量の体積分率が上向き凸型の曲線(ピーク)を描くように分布していると共に、その孔径が1μm~3μmである範囲内にピークの頂点が位置していることを意味している。
Along with this, "the range of the pore diameter at which the volume fraction of the amount of infiltration of mercury into a plurality of pores shows a peak is 1 μm or more and 3 μm or less" is the measurement result of the mercury porosimeter (the horizontal axis indicates the pore diameter (μm) and In the vertical axis of the volume fraction of mercury intrusion (%), when focusing on the range of the pore diameter on the horizontal axis of 1 μm to 3 μm, the volume fraction of mercury intrusion is an upward convex curve ( It means that the peaks are distributed so as to draw a peak, and the apex of the peak is located within the range where the pore diameter is 1 μm to 3 μm.
本技術のリチウムイオン二次電池用負極またはリチウムイオン二次電池によれば、複数の細孔を有する負極活物質層が上記した複数の第1負極活物質粒子および複数の第2負極活物質粒子を含んでおり、その複数の細孔に対する水銀の浸入量の体積分率がピークを示す孔径の範囲に関して上記した条件を満たしているので、優れた電池特性を得ることができる。
According to the negative electrode for a lithium ion secondary battery or the lithium ion secondary battery of the present technology, the plurality of first negative electrode active material particles and the plurality of second negative electrode active material particles in which the negative electrode active material layer having a plurality of pores is described above. And satisfying the above-mentioned conditions regarding the range of the pore diameter at which the volume fraction of the amount of mercury infiltrated into the plurality of pores shows a peak, excellent battery characteristics can be obtained.
なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
The effect of the present technology is not necessarily limited to the effect described here, and may be any one of a series of effects related to the present technology described later.
以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。
1.リチウムイオン二次電池用負極
1-1.構成
1-2.製造方法
1-3.作用および効果
2.リチウムイオン二次電池
2-1.円筒型
2-1-1.構成
2-1-2.動作
2-1-3.製造方法
2-1-4.作用および効果
2-2.ラミネートフィルム型
2-2-1.構成
2-2-2.動作
2-2-3.製造方法
2-2-4.作用および効果
3.変形例
4.リチウムイオン二次電池の用途
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The order of description is as follows.
1. Negative electrode for lithium-ion secondary battery 1-1. Configuration 1-2. Manufacturing method 1-3. Action andeffect 2. Lithium ion secondary battery 2-1. Cylindrical type 2-1-1. Configuration 2-1-2. Operation 2-1-3. Manufacturing method 2-1-4. Action and effect 2-2. Laminated film type 2-2-1. Configuration 2-2-2. Operation 2-2-3. Manufacturing method 2-2-4. Action and effect 3. Modified example 4. Applications of lithium-ion secondary batteries
1.リチウムイオン二次電池用負極
1-1.構成
1-2.製造方法
1-3.作用および効果
2.リチウムイオン二次電池
2-1.円筒型
2-1-1.構成
2-1-2.動作
2-1-3.製造方法
2-1-4.作用および効果
2-2.ラミネートフィルム型
2-2-1.構成
2-2-2.動作
2-2-3.製造方法
2-2-4.作用および効果
3.変形例
4.リチウムイオン二次電池の用途
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The order of description is as follows.
1. Negative electrode for lithium-ion secondary battery 1-1. Configuration 1-2. Manufacturing method 1-3. Action and
<1.リチウムイオン二次電池用負極>
まず、本技術の一実施形態のリチウムイオン二次電池用負極(以下、単に「負極」と呼称する。)に関して説明する。 <1. Negative electrode for lithium-ion secondary battery>
First, a negative electrode for a lithium ion secondary battery (hereinafter, simply referred to as “negative electrode”) according to an embodiment of the present technology will be described.
まず、本技術の一実施形態のリチウムイオン二次電池用負極(以下、単に「負極」と呼称する。)に関して説明する。 <1. Negative electrode for lithium-ion secondary battery>
First, a negative electrode for a lithium ion secondary battery (hereinafter, simply referred to as “negative electrode”) according to an embodiment of the present technology will be described.
ここで説明する負極が用いられるリチウムイオン二次電池は、後述するように、リチウムの吸蔵放出を利用して電池容量が得られる二次電池である。
The lithium-ion secondary battery in which the negative electrode described here is used is a secondary battery in which the battery capacity can be obtained by utilizing the occlusion / release of lithium, as described below.
<1-1.構成>
図1は、負極の一例である負極10の断面構成を表している。図2は、第1負極活物質粒子100および第2負極活物質粒子200のそれぞれの断面構成を模式的に表している。図3は、水銀ポロシメータの測定結果の一例を表している。図3では、横軸が孔径(%)を示していると共に、縦軸が水銀の浸入量の体積分率(%))を示している。 <1-1. Composition>
FIG. 1 shows a cross-sectional structure of anegative electrode 10, which is an example of the negative electrode. FIG. 2 schematically shows respective cross-sectional configurations of the first negative electrode active material particles 100 and the second negative electrode active material particles 200. FIG. 3 shows an example of the measurement result of the mercury porosimeter. In FIG. 3, the horizontal axis represents the hole diameter (%), and the vertical axis represents the volume fraction (%) of the amount of infiltration of mercury.
図1は、負極の一例である負極10の断面構成を表している。図2は、第1負極活物質粒子100および第2負極活物質粒子200のそれぞれの断面構成を模式的に表している。図3は、水銀ポロシメータの測定結果の一例を表している。図3では、横軸が孔径(%)を示していると共に、縦軸が水銀の浸入量の体積分率(%))を示している。 <1-1. Composition>
FIG. 1 shows a cross-sectional structure of a
負極10は、図1に示したように、負極活物質層2を備えている。より具体的には、負極10は、例えば、負極集電体1を備えており、上記した負極活物質層2は、負極集電体1に設けられている。ただし、負極活物質層2は、負極集電体1の片面だけに設けられていてもよいし、負極集電体1の両面に設けられていてもよい。図1では、例えば、負極活物質層2が負極集電体1の両面に設けられている場合を示している。
The negative electrode 10 includes the negative electrode active material layer 2 as shown in FIG. More specifically, the negative electrode 10 includes, for example, the negative electrode current collector 1, and the above-described negative electrode active material layer 2 is provided on the negative electrode current collector 1. However, the negative electrode active material layer 2 may be provided on only one surface of the negative electrode current collector 1, or may be provided on both surfaces of the negative electrode current collector 1. In FIG. 1, for example, the case where the negative electrode active material layers 2 are provided on both surfaces of the negative electrode current collector 1 is shown.
[負極集電体]
負極集電体1は、例えば、銅などの導電性材料を含んでいる。負極集電体1の表面は、電解法などを用いて粗面化されていることが好ましい。アンカー効果を利用して、負極集電体1に対する負極活物質層2の密着性が向上するからである。 [Negative electrode current collector]
The negative electrodecurrent collector 1 contains a conductive material such as copper. The surface of the negative electrode current collector 1 is preferably roughened by an electrolytic method or the like. This is because the adhesion of the negative electrode active material layer 2 to the negative electrode current collector 1 is improved by utilizing the anchor effect.
負極集電体1は、例えば、銅などの導電性材料を含んでいる。負極集電体1の表面は、電解法などを用いて粗面化されていることが好ましい。アンカー効果を利用して、負極集電体1に対する負極活物質層2の密着性が向上するからである。 [Negative electrode current collector]
The negative electrode
[負極活物質層]
負極活物質層2は、図2に示したように、2種類の粒子状の負極活物質(複数の第1負極活物質粒子100および複数の第2負極活物質粒子200)を含んでいる。このため、負極活物質層2は、複数の細孔(空隙)を有している。図2では、1個の第1負極活物質粒子100だけを示していると共に、1個の第2負極活物質粒子200だけを示している。ただし、負極活物質層2は、例えば、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 [Negative electrode active material layer]
As shown in FIG. 2, the negative electrodeactive material layer 2 contains two types of particulate negative electrode active materials (a plurality of first negative electrode active material particles 100 and a plurality of second negative electrode active material particles 200). Therefore, the negative electrode active material layer 2 has a plurality of pores (voids). In FIG. 2, only one first negative electrode active material particle 100 is shown, and only one second negative electrode active material particle 200 is shown. However, the negative electrode active material layer 2 may further include any one kind or two or more kinds of other materials such as a negative electrode binder and a negative electrode conductive agent.
負極活物質層2は、図2に示したように、2種類の粒子状の負極活物質(複数の第1負極活物質粒子100および複数の第2負極活物質粒子200)を含んでいる。このため、負極活物質層2は、複数の細孔(空隙)を有している。図2では、1個の第1負極活物質粒子100だけを示していると共に、1個の第2負極活物質粒子200だけを示している。ただし、負極活物質層2は、例えば、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 [Negative electrode active material layer]
As shown in FIG. 2, the negative electrode
(複数の第1負極活物質粒子)
第1負極活物質粒子100は、図2に示したように、イオン伝導性物質101中に、リチウムを吸蔵放出する複数の炭素含有粒子102と、リチウムを吸蔵放出する複数のケイ素含有粒子103とを含んでいる。 (Plurality of first negative electrode active material particles)
As shown in FIG. 2, the first negative electrodeactive material particles 100 include, in the ion conductive material 101, a plurality of carbon-containing particles 102 that occlude and release lithium and a plurality of silicon-containing particles 103 that occlude and release lithium. Is included.
第1負極活物質粒子100は、図2に示したように、イオン伝導性物質101中に、リチウムを吸蔵放出する複数の炭素含有粒子102と、リチウムを吸蔵放出する複数のケイ素含有粒子103とを含んでいる。 (Plurality of first negative electrode active material particles)
As shown in FIG. 2, the first negative electrode
すなわち、第1負極活物質粒子100は、イオン伝導性物質101中に複数の炭素含有粒子102および複数のケイ素含有粒子103が含有(埋設)された複合粒子である。ただし、複数の炭素含有粒子102のうちの一部は、イオン伝導性物質101から部分的に露出していてもよい。このようにイオン伝導性物質101から部分的に露出していてもよいことは、複数のケイ素含有粒子103のうちの一部に関しても同様である。
That is, the first negative electrode active material particles 100 are composite particles in which a plurality of carbon-containing particles 102 and a plurality of silicon-containing particles 103 are contained (embedded) in the ion conductive material 101. However, some of the plurality of carbon-containing particles 102 may be partially exposed from the ion conductive material 101. The fact that the ion-conductive substance 101 may be partially exposed in this way is the same for some of the plurality of silicon-containing particles 103.
複数の第1負極活物質粒子100の平均粒径(メジアン径D50)は、特に限定されないが、中でも、3.5μm~13.0μmであることが好ましい。複数の第2負極活物質粒子200の平均粒径(メジアン径D50)との関係において、複数の第1負極活物質粒子100の平均粒径が適正化されるからである。これにより、負極活物質層2中の複数の細孔に対する水銀の浸入量の体積分率に関して後述する所定の条件が満たされるように、その複数の細孔の分布が制御されやすくなる。
The average particle diameter (median diameter D50) of the plurality of first negative electrode active material particles 100 is not particularly limited, but is preferably 3.5 μm to 13.0 μm among them. This is because the average particle diameter of the plurality of first negative electrode active material particles 100 is optimized in relation to the average particle diameter (median diameter D50) of the plurality of second negative electrode active material particles 200. This facilitates controlling the distribution of the plurality of pores so that a predetermined condition, which will be described later, is satisfied with respect to the volume fraction of the infiltration amount of mercury with respect to the plurality of pores in the negative electrode active material layer 2.
(イオン伝導性物質)
イオン伝導性物質101は、リチウムイオンの伝導性を向上させることにより、炭素含有粒子102およびケイ素含有粒子103のそれぞれにおいてリチウムイオンを入出力しやすくする物質である。 (Ion conductive material)
The ionconductive material 101 is a material that improves the conductivity of lithium ions to facilitate the input and output of lithium ions in each of the carbon-containing particles 102 and the silicon-containing particles 103.
イオン伝導性物質101は、リチウムイオンの伝導性を向上させることにより、炭素含有粒子102およびケイ素含有粒子103のそれぞれにおいてリチウムイオンを入出力しやすくする物質である。 (Ion conductive material)
The ion
このイオン伝導性物質101は、例えば、イオン伝導性高分子化合物および固体電解質などのうちのいずれか1種類または2種類以上を含んでいる。第1負極活物質粒子100の内部において十分なイオン伝導性が得られるからである。具体的には、イオン伝導性高分子化合物は、例えば、ポリエーテル、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリメタクリル酸メチル、ポリアクリル酸メチル、ポリビニルアルコール、ポリアクリロニトリル、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、ポリイソプレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリオキサジアゾール、ポリヘキサフルオロプロピレンおよび炭酸ポリエチレンなどであり、そのポリエーテルは、例えば、ポリエチレンオキサイド(PEO)およびポリプロピレンオキサイド(PPO)などである。
The ion conductive material 101 contains, for example, one kind or two or more kinds of an ion conductive polymer compound and a solid electrolyte. This is because sufficient ionic conductivity can be obtained inside the first negative electrode active material particles 100. Specifically, the ion conductive polymer compound is, for example, polyether, polyacrylonitrile, polyvinylidene fluoride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polyacrylonitrile, polymethacrylonitrile, Polyvinylacetate, polyvinylpyrrolidone, polyethyleneimine, polybutadiene, polystyrene, polyisoprene, polyaniline, polypyrrole, polythiophene, polyacetylene, polyphenylene, polyparaphenylene, polyphenylenevinylene, polyoxadiazole, polyhexafluoropropylene and polyethylene carbonate, and the like. Polyethers are, for example, polyethylene oxide (PEO) and polypropylene oxide (PPO).
なお、イオン伝導性高分子化合物は、例えば、上記したポリエーテルなどの誘導体でもよい。また、イオン伝導性高分子化合物は、例えば、上記したポリエーテルなどの単独重合体でもよいし、そのポリエーテルなどのうちの任意の2種類以上の共重合体でもよい。中でも、イオン伝導性高分子化合物は、ポリエチレンオキサイドであることが好ましい。高いイオン伝導性が得られるからである。
The ion-conductive polymer compound may be, for example, a derivative such as the above-mentioned polyether. Further, the ion-conductive polymer compound may be, for example, a homopolymer such as the above-mentioned polyether, or may be a copolymer of any two or more kinds of the polyether and the like. Among them, the ion conductive polymer compound is preferably polyethylene oxide. This is because high ionic conductivity can be obtained.
イオン伝導性物質101のイオン伝導度は、特に限定されないが、中でも、10-6S/cm~10-1S/cmであることが好ましい。炭素含有粒子102およびケイ素含有粒子103のそれぞれにおいてリチウムイオンが円滑かつ安定に入出力しやすくなるからである。
The ionic conductivity of the ionic conductive material 101 is not particularly limited, but is preferably 10 −6 S / cm to 10 −1 S / cm. This is because it becomes easy for lithium ions to smoothly and stably input and output in each of the carbon-containing particles 102 and the silicon-containing particles 103.
第1負極活物質粒子100中におけるイオン伝導性物質101の含有量は、特に限定されない。中でも、第1負極活物質粒子100の重量に対してイオン伝導性物質101の重量が占める割合(重量割合R1)は、1.0重量%~2.5重量%であることが好ましい。複数の炭素含有粒子102および複数のケイ素含有粒子103のそれぞれの量に対してイオン伝導性物質101の量が適正化されるため、高いエネルギー密度が担保されながら優れたイオン伝導性が得られるからである。
The content of the ion conductive material 101 in the first negative electrode active material particles 100 is not particularly limited. Above all, the ratio of the weight of the ion conductive material 101 to the weight of the first negative electrode active material particles 100 (weight ratio R1) is preferably 1.0% by weight to 2.5% by weight. Since the amount of the ion conductive material 101 is optimized with respect to the respective amounts of the plurality of carbon-containing particles 102 and the plurality of silicon-containing particles 103, excellent ion conductivity can be obtained while ensuring a high energy density. Is.
(複数の炭素含有粒子)
炭素含有粒子102は、リチウムを吸蔵放出する負極材料として、炭素含有材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素含有材料とは、炭素を構成元素として含んでいる材料の総称である。炭素含有材料の結晶構造はリチウムの吸蔵放出時においてほとんど変化しないため、高いエネルギー密度が安定に得られるからである。また、炭素含有材料は負極導電剤としても機能するため、第1負極活物質粒子100の導電性が向上するからである。 (Multiple carbon-containing particles)
The carbon-containingparticles 102 include any one kind or two or more kinds of carbon-containing materials as a negative electrode material that absorbs and releases lithium. The carbon-containing material is a general term for materials containing carbon as a constituent element. This is because the crystal structure of the carbon-containing material hardly changes during occlusion / release of lithium, so that a high energy density can be stably obtained. Further, the carbon-containing material also functions as a negative electrode conductive agent, so that the conductivity of the first negative electrode active material particles 100 is improved.
炭素含有粒子102は、リチウムを吸蔵放出する負極材料として、炭素含有材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素含有材料とは、炭素を構成元素として含んでいる材料の総称である。炭素含有材料の結晶構造はリチウムの吸蔵放出時においてほとんど変化しないため、高いエネルギー密度が安定に得られるからである。また、炭素含有材料は負極導電剤としても機能するため、第1負極活物質粒子100の導電性が向上するからである。 (Multiple carbon-containing particles)
The carbon-containing
具体的には、炭素含有材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素に関する(002)面の面間隔は、例えば、0.37nm以上であると共に、黒鉛に関する(002)面の面間隔は、例えば、0.34nm以下である。
Specifically, the carbon-containing material is, for example, graphitizable carbon, non-graphitizable carbon and graphite. However, the interplanar spacing of the (002) plane for non-graphitizable carbon is, for example, 0.37 nm or more, and the interplanar spacing of the (002) plane for graphite is, for example, 0.34 nm or less.
より具体的には、炭素含有材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類は、例えば、ピッチコークス、ニードルコークスおよび石油コークスなどを含む。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が任意の温度で焼成(炭素化)された焼成物である。この他、炭素含有材料は、例えば、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。炭素材料の形状は、例えば、繊維状、球状、粒状および鱗片状などである。
More specifically, the carbon-containing material is, for example, pyrolytic carbon, coke, glassy carbon fiber, organic polymer compound fired body, activated carbon and carbon black. The cokes include, for example, pitch cokes, needle cokes and petroleum cokes. The organic polymer compound fired body is a fired product obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an arbitrary temperature. In addition, the carbon-containing material may be, for example, low crystalline carbon heat-treated at a temperature of about 1000 ° C. or lower, or amorphous carbon. The shape of the carbon material is, for example, fibrous, spherical, granular or scaly.
(複数のケイ素含有粒子)
ケイ素含有粒子103は、リチウムを吸蔵放出する負極材料として、ケイ素含有材料のうちのいずれか1種類または2種類以上を含んでいる。このケイ素含有材料とは、ケイ素を構成元素として含んでいる材料の総称である。リチウムの吸蔵放出能力が優れているため、高いエネルギー密度が得られるからである。 (Plurality of silicon-containing particles)
The silicon-containingparticles 103 contain any one kind or two or more kinds of silicon-containing materials as a negative electrode material that absorbs and releases lithium. This silicon-containing material is a general term for materials containing silicon as a constituent element. This is because a high energy density can be obtained due to the excellent ability to store and release lithium.
ケイ素含有粒子103は、リチウムを吸蔵放出する負極材料として、ケイ素含有材料のうちのいずれか1種類または2種類以上を含んでいる。このケイ素含有材料とは、ケイ素を構成元素として含んでいる材料の総称である。リチウムの吸蔵放出能力が優れているため、高いエネルギー密度が得られるからである。 (Plurality of silicon-containing particles)
The silicon-containing
このケイ素含有材料は、リチウムと合金を形成可能であり、ケイ素の単体でもよいし、ケイ素の合金でもよいし、ケイ素の化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。ただし、ここで説明した単体は、あくまで一般的な単体を意味しているため、微量の不純物を含んでいてもよい。すなわち、単体の純度は、必ずしも100%に限られない。
This silicon-containing material is capable of forming an alloy with lithium, and may be a simple substance of silicon, an alloy of silicon, a compound of silicon, a mixture of two or more thereof, or one of them. A material containing one kind or two or more kinds of phases may be used. However, since the simple substance described here means a general simple substance, it may contain a trace amount of impurities. That is, the purity of the simple substance is not necessarily 100%.
ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の構成元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
The alloy of silicon is, for example, as a constituent element other than silicon, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium, or Contains two or more types. The compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon. The silicon compound may include, for example, as a constituent element other than silicon, any one kind or two kinds or more of the series of constituent elements described for the alloy of silicon.
具体的には、ケイ素の合金およびケイ素の化合物は、例えば、SiB4 、SiB6 、Mg2 Si、Ni2 Si、TiSi2 、MoSi2 、CoSi2 、NiSi2 、CaSi2 、CrSi2 、Cu5 Si、FeSi2 、MnSi2 、NbSi2 、TaSi2 、VSi2 、WSi2 、ZnSi2 、SiC、Si3 N4 、Si2 N2 OおよびSiOv (0<v≦2)などである。ただし、vの範囲は、例えば、0.2<v<1.4でもよい。
Specifically, silicon alloys and silicon compounds include, for example, SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O and SiO v (0 <v ≦ 2). However, the range of v may be 0.2 <v <1.4, for example.
複数の炭素含有粒子102と複数のケイ素含有粒子103との混合比(重量比)は、特に限定されない。中でも、複数の炭素含有粒子102の重量と複数のケイ素含有粒子103の重量との総和に対して複数のケイ素含有粒子103の重量が占める割合(重量割合R2)は、60.6重量%~85.9重量%であることが好ましい。複数の炭素含有粒子102の量に対して複数のケイ素含有粒子103の量が適正化されるため、ケイ素含有材料の存在に起因する負極活物質層2の膨張収縮が抑制されながら、高いエネルギー密度が得られると共に優れたイオン伝導性も得られるからである。なお、重量割合R2の値は、小数点第二位の値を四捨五入した値とする。
The mixing ratio (weight ratio) of the plurality of carbon-containing particles 102 and the plurality of silicon-containing particles 103 is not particularly limited. Above all, the ratio (weight ratio R2) of the weight of the plurality of silicon-containing particles 103 to the total weight of the plurality of carbon-containing particles 102 and the weight of the plurality of silicon-containing particles 103 is 60.6% by weight to 85%. It is preferably 1.9% by weight. Since the amount of the plurality of silicon-containing particles 103 is optimized with respect to the amount of the plurality of carbon-containing particles 102, the expansion and contraction of the negative electrode active material layer 2 due to the presence of the silicon-containing material is suppressed, and the high energy density is achieved. Is obtained, and also excellent ion conductivity is obtained. The value of the weight ratio R2 is a value rounded off to the second decimal place.
(複数の第2負極活物質粒子)
第2負極活物質粒子200は、図2に示したように、炭素含有材料のうちのいずれか1種類または2種類以上を含んでいる。炭素含有材料に関する詳細は、上記した通りである。なお、第2負極活物質粒子200に含まれる炭素含有材料の種類は、炭素含有粒子102に含まれる炭素含有材料の種類と同じでもよいし、炭素含有粒子102に含まれる炭素含有材料の種類と異なってもよい。 (Plurality of second negative electrode active material particles)
As shown in FIG. 2, the second negative electrodeactive material particles 200 include any one kind or two or more kinds of carbon-containing materials. Details regarding the carbon-containing material are as described above. The kind of carbon-containing material contained in the second negative electrode active material particles 200 may be the same as the kind of carbon-containing material contained in the carbon-containing particles 102, or the kind of carbon-containing material contained in the carbon-containing particles 102. May be different.
第2負極活物質粒子200は、図2に示したように、炭素含有材料のうちのいずれか1種類または2種類以上を含んでいる。炭素含有材料に関する詳細は、上記した通りである。なお、第2負極活物質粒子200に含まれる炭素含有材料の種類は、炭素含有粒子102に含まれる炭素含有材料の種類と同じでもよいし、炭素含有粒子102に含まれる炭素含有材料の種類と異なってもよい。 (Plurality of second negative electrode active material particles)
As shown in FIG. 2, the second negative electrode
複数の第2負極活物質粒子200の平均粒径(メジアン径D50)は、特に限定されないが、中でも、7.0μm~20.0μmであることが好ましい。複数の第1負極活物質粒子100の平均粒径(メジアン径D50)との関係において、複数の第2負極活物質粒子200の平均粒径が適正化されるからである。これにより、上記したように、負極活物質層2中の複数の細孔に対する水銀の浸入量の体積分率に関して所定の条件が満たされるように、その複数の細孔の分布が制御されやすくなる。
The average particle diameter (median diameter D50) of the plurality of second negative electrode active material particles 200 is not particularly limited, but is preferably 7.0 μm to 20.0 μm among them. This is because the average particle diameter of the plurality of second negative electrode active material particles 200 is optimized in relation to the average particle diameter (median diameter D50) of the plurality of first negative electrode active material particles 100. Thereby, as described above, it becomes easy to control the distribution of the plurality of pores so that a predetermined condition is satisfied with respect to the volume fraction of the infiltration amount of mercury with respect to the plurality of pores in the negative electrode active material layer 2. .
複数の第1負極活物質粒子100と複数の第2負極活物質粒子200との混合比(重量比)は、特に限定されない。中でも、複数の第1負極活物質粒子100の重量と複数の第2負極活物質粒子200の重量との総和に対して複数の第1負極活物質粒子100の重量が占める割合(重量割合R3)は、10.5重量%~42.1重量%であることが好ましい。複数の第2負極活物質粒子200の量に対して複数の第1負極活物質粒子100の量が適正化されるため、ケイ素含有材料の存在に起因する負極活物質層2の膨張収縮が抑制されながら、高いエネルギー密度が得られると共に優れたイオン伝導性も得られるからである。なお、重量割合R3の値は、小数点第二位の値を四捨五入した値とする。
The mixing ratio (weight ratio) of the plurality of first negative electrode active material particles 100 and the plurality of second negative electrode active material particles 200 is not particularly limited. Among them, the ratio of the weight of the plurality of first negative electrode active material particles 100 to the total weight of the plurality of first negative electrode active material particles 100 and the weight of the plurality of second negative electrode active material particles 200 (weight ratio R3) Is preferably 10.5% to 42.1% by weight. Since the amount of the plurality of first negative electrode active material particles 100 is optimized with respect to the amount of the plurality of second negative electrode active material particles 200, expansion and contraction of the negative electrode active material layer 2 due to the presence of the silicon-containing material is suppressed. This is because while high energy density is obtained, excellent ion conductivity is also obtained. The value of the weight ratio R3 is a value rounded off to the second decimal place.
(負極活物質層の物性)
ここで、負極活物質層2中に含まれている複数の細孔は、所定の条件を満たすように分布している。具体的には、複数の細孔に対する水銀の浸入量の体積分率を測定すると、その水銀の浸入量の体積分率がピークを示す孔径の範囲は、1μm~3μmである。以下では、ここで説明した条件を「孔径条件」と呼称する。 (Physical properties of negative electrode active material layer)
Here, the plurality of pores included in the negative electrodeactive material layer 2 are distributed so as to satisfy a predetermined condition. Specifically, when the volume fraction of the amount of mercury infiltrated into a plurality of pores is measured, the pore diameter range in which the volume fraction of the amount of mercury intrusion shows a peak is 1 μm to 3 μm. Hereinafter, the conditions described here will be referred to as “pore size conditions”.
ここで、負極活物質層2中に含まれている複数の細孔は、所定の条件を満たすように分布している。具体的には、複数の細孔に対する水銀の浸入量の体積分率を測定すると、その水銀の浸入量の体積分率がピークを示す孔径の範囲は、1μm~3μmである。以下では、ここで説明した条件を「孔径条件」と呼称する。 (Physical properties of negative electrode active material layer)
Here, the plurality of pores included in the negative electrode
この「複数の細孔に対する水銀の浸入量の体積分率」は、上記したように、水銀圧入法(水銀ポロシメータ)を用いて測定される。ただし、水銀の浸入量の値は、水銀の表面張力=485mN/mおよび接触角=130°とすると共に複数の細孔の孔径と圧力との関係を180/圧力=孔径と近似した場合に測定される値とする。
This "volume fraction of the amount of mercury infiltrating into multiple pores" is measured using the mercury porosimetry (mercury porosimeter) as described above. However, the amount of mercury penetration is measured when the surface tension of mercury is 485 mN / m and the contact angle is 130 °, and the relationship between the pore diameter and the pressure of a plurality of pores is approximately 180 / pressure = pore diameter. Value.
これに伴い、「複数の細孔に対する水銀の浸入量の体積分率がピークを示す孔径の範囲は1μm以上3μm以下である」とは、上記したように、水銀ポロシメータの測定結果(横軸は孔径(μm)および縦軸は水銀の浸入量の体積分率(%))中において、横軸の孔径が1μm~3μmである範囲に着目した場合に、水銀の浸入量の体積分率が上向き凸型の曲線(ピーク)を描いていると共に、その孔径が1μm~3μmである範囲内にピークの頂点が位置していることを意味している。この水銀ポロシメータの測定結果は、圧力を段階的に増加させながら複数の細孔に対する水銀の浸入量を測定することにより、孔径に対して水銀の浸入量の体積分率をプロットしたデータである。
Along with this, "the range of the pore diameter at which the volume fraction of the infiltration amount of mercury into a plurality of pores shows a peak is 1 μm or more and 3 μm or less" means that the measurement result of the mercury porosimeter (the horizontal axis is In the pore size (μm) and the vertical axis, the volume fraction of mercury intrusion (%)), when focusing on the range of the pore diameter of 1 μm to 3 μm on the horizontal axis, the volume fraction of mercury intrusion is upward. A convex curve (peak) is drawn, and it means that the apex of the peak is located within the range where the pore diameter is 1 μm to 3 μm. The measurement result of the mercury porosimeter is data obtained by plotting the volume fraction of the infiltration amount of mercury against the pore diameter by measuring the intrusion amount of mercury into a plurality of pores while gradually increasing the pressure.
より具体的には、水銀ポロシメータの測定結果中においてピークが検出された場合には、そのピークの頂点に対応する孔径(対応孔径)を調べる。この対応孔径が1μm~3μmの範囲内である場合には、孔径条件を満たしている。一方、対応孔径が1μm~3μmの範囲外である場合には、孔径条件を満たしていない。
More specifically, if a peak is detected in the mercury porosimeter measurement results, check the pore diameter (corresponding pore diameter) corresponding to the peak apex. When the corresponding pore diameter is in the range of 1 μm to 3 μm, the pore diameter condition is satisfied. On the other hand, when the corresponding pore diameter is out of the range of 1 μm to 3 μm, the pore diameter condition is not satisfied.
一例を挙げると、図3に示した水銀ポロシメータの測定結果が得られたとする。ここで、ピークP1(実線)が検出された場合には、対応孔径が2μmであるため、孔径条件を満たしている。一方、ピークP2(破線)が検出された場合には、対応孔径が3.5μmであるため、孔径条件を満たしていない。図3では、孔径が1μm~3μmである範囲に網掛けを施している。
As an example, assume that the mercury porosimeter measurement results shown in Fig. 3 were obtained. Here, when the peak P1 (solid line) is detected, the corresponding pore diameter is 2 μm, which satisfies the pore diameter condition. On the other hand, when the peak P2 (broken line) is detected, the corresponding pore diameter is 3.5 μm, which does not satisfy the pore diameter condition. In FIG. 3, the range of the pore diameter of 1 μm to 3 μm is shaded.
対応孔径が1μm~3μmであるのは、第1負極活物質粒子100にイオン伝導性物質101が含まれている場合において、負極活物質層2中における空隙量(空隙分布)が適正化されるからである。これにより、各第1負極活物質粒子100中ではイオン伝導性が向上すると共に、各第1負極活物質粒子100の周辺でもイオン伝導性が向上するため、負極活物質層2の全体においてイオン伝導性が飛躍的に向上する。よって、負極10と共に電解液を備えたリチウムイオン二次電池では、その負極10(負極活物質層2中の複数の細孔)中に電解液が含浸された際に、その電解液中のイオン輸送効率が著しく向上するため、その負極10においてリチウムイオンが円滑かつ安定に入出力しやすくなる。
The corresponding pore diameter is 1 μm to 3 μm, and when the first negative electrode active material particles 100 include the ion conductive material 101, the amount of voids (void distribution) in the negative electrode active material layer 2 is optimized. Because. This improves the ion conductivity in each of the first negative electrode active material particles 100 and also improves the ion conductivity in the periphery of each of the first negative electrode active material particles 100. The sexuality is dramatically improved. Therefore, in the lithium ion secondary battery including the negative electrode 10 and the electrolytic solution, when the negative electrode 10 (a plurality of pores in the negative electrode active material layer 2) is impregnated with the electrolytic solution, the ions in the electrolytic solution are Since the transport efficiency is remarkably improved, it becomes easy for lithium ions to smoothly and stably input and output to and from the negative electrode 10.
なお、対応孔径は、上記した複数の第1負極活物質粒子100のメジアン径D50および複数の第2負極活物質粒子200のメジアン径D50のそれぞれを変更し、すなわち両者のメジアン径D50の比を変更することにより、所望の値となるように調整可能である。負極活物質層2中における空隙の分布が変化するため、水銀ポロシメータの測定結果中に検出されるピークの位置が変化するからである。
In addition, the corresponding pore size changes each of the median diameter D50 of the plurality of first negative electrode active material particles 100 and the median diameter D50 of the plurality of second negative electrode active material particles 200 described above, that is, the ratio of the median diameters D50 of both. It can be adjusted to a desired value by changing it. This is because the distribution of voids in the negative electrode active material layer 2 changes, so the position of the peak detected in the measurement result of the mercury porosimeter changes.
また、対応孔径を調べる場合には、例えば、25mm×350mmのサイズとなるように負極活物質層2を切断すると共に、Micromeritics 社製の水銀ポロシメータ(オートポア9500シリーズ)を用いる。
When examining the corresponding pore size, for example, the negative electrode active material layer 2 is cut so as to have a size of 25 mm × 350 mm, and a mercury porosimeter (Autopore 9500 series) manufactured by Micromeritics is used.
(他の負極活物質)
なお、負極活物質層2は、上記した2種類の負極活物質(複数の第1負極活物質粒子100および複数の第2負極活物質粒子200)と共に、さらに、他の負極活物質のうちのいずれか1種類または2種類以上を含んでいてもよい。 (Other negative electrode active materials)
The negative electrodeactive material layer 2 includes the above-described two types of negative electrode active materials (the plurality of first negative electrode active material particles 100 and the plurality of second negative electrode active material particles 200), and further, among other negative electrode active materials. Any one type or two or more types may be included.
なお、負極活物質層2は、上記した2種類の負極活物質(複数の第1負極活物質粒子100および複数の第2負極活物質粒子200)と共に、さらに、他の負極活物質のうちのいずれか1種類または2種類以上を含んでいてもよい。 (Other negative electrode active materials)
The negative electrode
他の負極活物質は、例えば、金属系材料であり、その金属系材料は、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。高いエネルギー密度が得られるからである。
The other negative electrode active material is, for example, a metal-based material, and the metal-based material is a general term for materials containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。ただし、合金には、2種類以上の金属元素からなる材料だけでなく、1種類または2種類以上の金属元素と1種類または2種類以上の半金属元素とを含む材料も含まれる。また、合金は、1種類または2種類以上の非金属元素を含んでいてもよい。金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。
The metal-based material may be a simple substance, an alloy, a compound, a mixture of two or more kinds thereof, or a material containing one kind or two or more kinds of phases thereof. However, the alloy includes not only a material composed of two or more kinds of metal elements but also a material containing one kind or two or more kinds of metal elements and one kind or two or more kinds of metalloid elements. Further, the alloy may contain one kind or two or more kinds of non-metal elements. The structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexisting substance of two or more kinds thereof.
金属元素および半金属元素のそれぞれは、リチウムと合金を形成可能である。具体的には、金属元素および半金属元素は、例えば、マグネシウム、ホウ素、アルミニウム、ガリウム、インジウム、ケイ素、ゲルマニウム、スズ、鉛、ビスマス、カドミウム、銀、亜鉛、ハフニウム、ジルコニウム、イットリウム、パラジウムおよび白金などである。
Each of the metal element and the metalloid element can form an alloy with lithium. Specifically, metal elements and metalloid elements are, for example, magnesium, boron, aluminum, gallium, indium, silicon, germanium, tin, lead, bismuth, cadmium, silver, zinc, hafnium, zirconium, yttrium, palladium and platinum. And so on.
中でも、ケイ素およびスズが好ましく、ケイ素がより好ましい。リチウムの吸蔵放出能力が優れているため、著しく高いエネルギー密度が得られるからである。
Among them, silicon and tin are preferable, and silicon is more preferable. This is because the lithium storage and release capacity is excellent and a remarkably high energy density can be obtained.
具体的には、金属系材料は、ケイ素の単体でもよいし、ケイ素の合金でもよいし、ケイ素の化合物でもよいし、スズの単体でもよいし、スズの合金でもよいし、スズの化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。
Specifically, the metallic material may be a simple substance of silicon, an alloy of silicon, a compound of silicon, a simple substance of tin, an alloy of tin, or a compound of tin. However, it may be a mixture of two or more kinds thereof, or a material containing one kind or two or more kinds of phases thereof.
ケイ素の合金およびケイ素の化合物のそれぞれに関する詳細は、上記した通りである。スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の構成元素のうちのいずれか1種類または2種類以上を含んでいてもよい。具体的には、スズの合金およびスズの化合物は、例えば、SnOw (0<w≦2)、SnSiO3 およびMg2 Snなどである。
The details regarding each of the alloy of silicon and the compound of silicon are as described above. The alloy of tin is, for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium, or Contains two or more types. The tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin. The tin compound may include, for example, as a constituent element other than tin, one kind or two or more kinds of the series of constituent elements described for the alloy of tin. Specifically, the tin alloy and the tin compound are, for example, SnO w (0 <w ≦ 2), SnSiO 3 and Mg 2 Sn.
(負極結着剤および負極導電剤)
負極結着剤は、例えば、合成ゴムおよび高分子化合物などを含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴムなどである。高分子化合物は、例えば、ポリフッ化ビニリデン、ポリイミドおよびアラミドなどである。 (Negative electrode binder and negative electrode conductive agent)
The negative electrode binder contains, for example, synthetic rubber and a polymer compound. The synthetic rubber is, for example, styrene-butadiene rubber. The polymer compound is, for example, polyvinylidene fluoride, polyimide and aramid.
負極結着剤は、例えば、合成ゴムおよび高分子化合物などを含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴムなどである。高分子化合物は、例えば、ポリフッ化ビニリデン、ポリイミドおよびアラミドなどである。 (Negative electrode binder and negative electrode conductive agent)
The negative electrode binder contains, for example, synthetic rubber and a polymer compound. The synthetic rubber is, for example, styrene-butadiene rubber. The polymer compound is, for example, polyvinylidene fluoride, polyimide and aramid.
負極導電剤は、例えば、炭素材料などの導電性材料を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブおよびカーボンナノファイバなどである。ただし、負極導電剤は、金属材料および導電性高分子などでもよい。
The negative electrode conductive agent contains a conductive material such as a carbon material. This carbon material is, for example, graphite, carbon black, acetylene black, Ketjen black, carbon nanotube, carbon nanofiber, or the like. However, the negative electrode conductive agent may be a metal material, a conductive polymer, or the like.
<1-2.製造方法>
この負極10は、例えば、以下の手順により製造される。 <1-2. Manufacturing method>
Thenegative electrode 10 is manufactured, for example, by the following procedure.
この負極10は、例えば、以下の手順により製造される。 <1-2. Manufacturing method>
The
最初に、イオン伝導性物質101と、複数の炭素含有粒子102と、複数のケイ素含有粒子103とを混合することにより、混合物を得る。続いて、溶媒に混合物を投入したのち、その溶媒を撹拌することにより、混合溶液を調製する。溶媒の種類は、任意の溶媒のうちのいずれか1種類または2種類以上であれば、特に限定されないが、例えば、イオン伝導性物質101を溶解可能な水性溶媒および有機溶剤などである。水性溶媒は、例えば、純水などであると共に、有機溶剤は、例えば、N-メチル-2-ピロリドンなどである。溶媒を撹拌する場合には、例えば、スターラなどの撹拌装置を用いてもよい。続いて、スプレードライ装置を用いて混合溶液を噴霧したのち、その混合溶液を乾燥させる。これにより、イオン伝導性物質101中に複数の炭素含有粒子102および複数のケイ素含有粒子103が含有されるため、複数の第1負極活物質粒子100が得られる。
First, a mixture is obtained by mixing the ion conductive material 101, the plurality of carbon-containing particles 102, and the plurality of silicon-containing particles 103. Then, the mixture is put into a solvent, and then the solvent is stirred to prepare a mixed solution. The type of solvent is not particularly limited as long as it is any one type or two or more types of any solvent, and examples thereof include an aqueous solvent and an organic solvent capable of dissolving the ion conductive substance 101. The aqueous solvent is, for example, pure water, and the organic solvent is, for example, N-methyl-2-pyrrolidone. When stirring the solvent, for example, a stirring device such as a stirrer may be used. Then, after spraying the mixed solution using a spray drying device, the mixed solution is dried. Thereby, since the plurality of carbon-containing particles 102 and the plurality of silicon-containing particles 103 are contained in the ion conductive material 101, a plurality of first negative electrode active material particles 100 are obtained.
続いて、複数の第1負極活物質100と、複数の第2負極活物質粒子200と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤とする。続いて、有機溶剤または水性溶媒などに負極合剤を分散または溶解させることにより、ペースト状の負極合剤スラリーを調製する。最後に、負極集電体1の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層2を形成する。こののち、ロールプレス機などを用いて負極活物質層2を圧縮成型してもよい。この場合には、負極活物質層2を加熱してもよいし、圧縮成型を複数回繰り返してもよい。
Subsequently, a plurality of first negative electrode active materials 100, a plurality of second negative electrode active material particles 200, and a negative electrode binder, a negative electrode conductive agent, and the like are mixed to form a negative electrode mixture. Then, the negative electrode mixture slurry is prepared by dispersing or dissolving the negative electrode mixture in an organic solvent or an aqueous solvent. Finally, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 1, and then the negative electrode mixture slurry is dried to form the negative electrode active material layer 2. After that, the negative electrode active material layer 2 may be compression molded using a roll press or the like. In this case, the negative electrode active material layer 2 may be heated or compression molding may be repeated a plurality of times.
これにより、負極集電体1の両面に負極活物質層2が形成されるため、負極10が完成する。
With this, the negative electrode active material layers 2 are formed on both surfaces of the negative electrode current collector 1, so that the negative electrode 10 is completed.
<1-3.作用および効果>
この負極10によれば、複数の細孔を有する負極活物質層2が複数の第1負極活物質粒子100(イオン伝導性物質101、複数の炭素含有粒子102および複数のケイ素含有粒子103)および複数の第2負極活物質粒子200を含んでおり、対応孔径が1μm~3μmである。 <1-3. Action and effect>
According to thisnegative electrode 10, the negative electrode active material layer 2 having a plurality of pores has a plurality of first negative electrode active material particles 100 (ion conductive material 101, a plurality of carbon-containing particles 102 and a plurality of silicon-containing particles 103), and It includes a plurality of second negative electrode active material particles 200 and has a corresponding pore diameter of 1 μm to 3 μm.
この負極10によれば、複数の細孔を有する負極活物質層2が複数の第1負極活物質粒子100(イオン伝導性物質101、複数の炭素含有粒子102および複数のケイ素含有粒子103)および複数の第2負極活物質粒子200を含んでおり、対応孔径が1μm~3μmである。 <1-3. Action and effect>
According to this
この場合には、上記したように、負極活物質層2の全体においてイオン伝導性が飛躍的に向上するため、負極10と共に電解液を備えたリチウムイオン二次電池において、その電解液中のイオン輸送効率が著しく向上する。よって、負極10においてリチウムイオンが円滑かつ安定に入出力しやすくなるため、その負極10を備えた二次電池において優れた電池特性を得ることができる。
In this case, as described above, since the ion conductivity is dramatically improved in the entire negative electrode active material layer 2, in the lithium ion secondary battery including the negative electrode 10 and the electrolytic solution, the ions in the electrolytic solution are Transport efficiency is significantly improved. Therefore, lithium ions can be smoothly and stably input to and output from the negative electrode 10, so that a secondary battery including the negative electrode 10 can have excellent battery characteristics.
特に、イオン伝導性物質101がイオン伝導性高分子化合物などを含んでいれば、第1負極活物質粒子100の内部において十分なイオン伝導性が得られるため、より高い効果を得ることができる。
In particular, if the ion conductive material 101 contains an ion conductive polymer compound or the like, sufficient ion conductivity can be obtained inside the first negative electrode active material particles 100, and a higher effect can be obtained.
また、イオン伝導性物質101のイオン伝導度が10-6S/cm~10-1S/cmであれば、炭素含有粒子102およびケイ素含有粒子103のそれぞれにおいてリチウムイオンが円滑かつ安定に入出力しやすくなるため、より高い効果を得ることができる。
When the ion conductivity of the ion-conductive substance 101 is 10 −6 S / cm to 10 −1 S / cm, lithium ions are smoothly and stably input / output to / from each of the carbon-containing particles 102 and the silicon-containing particles 103. Since it is easier to do so, a higher effect can be obtained.
また、重量割合R1が1.0重量%~2.5重量%であれば、高いエネルギー密度が担保されながら優れたイオン伝導性が得られるため、より高い効果を得ることができる。
Further, if the weight ratio R1 is 1.0% by weight to 2.5% by weight, excellent ion conductivity can be obtained while ensuring a high energy density, so that a higher effect can be obtained.
また、重量割合R2が60.6重量%~85.9重量%であれば、ケイ素含有材料の存在に起因する負極活物質層2の膨張収縮が抑制されながら、高いエネルギー密度が得られると共に優れたイオン伝導性も得られるため、より高い効果を得ることができる。
When the weight ratio R2 is 60.6% by weight to 85.9% by weight, expansion and shrinkage of the negative electrode active material layer 2 due to the presence of the silicon-containing material are suppressed, and a high energy density is obtained and excellent. Also, high ionic conductivity can be obtained, so that a higher effect can be obtained.
また、複数の第1負極活物質粒子100のメジアン径D50が3.5μm~13.0μmであると共に、複数の第2負極活物質粒子200のメジアン径D50が7.0μm~20.0μmであれば、水銀の浸入量の体積分率に関して所定の条件が満たされるように複数の細孔の分布が制御されやすくなるため、より高い効果を得ることができる。
Further, the median diameter D50 of the plurality of first negative electrode active material particles 100 is 3.5 μm to 13.0 μm, and the median diameter D50 of the plurality of second negative electrode active material particles 200 is 7.0 μm to 20.0 μm. In this case, the distribution of the plurality of pores is easily controlled so that a predetermined condition is satisfied with respect to the volume fraction of the infiltration amount of mercury, so that a higher effect can be obtained.
また、重量割合R3が10.5重量%~42.1重量%であれば、ケイ素含有材料の存在に起因する負極活物質層2の膨張収縮が抑制されながら、高いエネルギー密度が得られると共に優れたイオン伝導性も得られるため、より高い効果を得ることができる。
When the weight ratio R3 is 10.5% by weight to 42.1% by weight, the expansion and shrinkage of the negative electrode active material layer 2 due to the presence of the silicon-containing material is suppressed, a high energy density is obtained and excellent. Also, high ionic conductivity can be obtained, so that a higher effect can be obtained.
<2.リチウムイオン二次電池>
次に、上記した負極10を用いた本技術の一実施形態のリチウムイオン二次電池に関して説明する。 <2. Lithium-ion secondary battery>
Next, a lithium ion secondary battery according to an embodiment of the present technology using the above-describednegative electrode 10 will be described.
次に、上記した負極10を用いた本技術の一実施形態のリチウムイオン二次電池に関して説明する。 <2. Lithium-ion secondary battery>
Next, a lithium ion secondary battery according to an embodiment of the present technology using the above-described
ここで説明するリチウムイオン二次電池は、後述するように、正極21および負極22を備えている。このリチウムイオン二次電池は、例えば、リチウムの吸蔵放出を利用して負極22の容量が得られる二次電池である。
The lithium-ion secondary battery described here includes a positive electrode 21 and a negative electrode 22, as described later. The lithium-ion secondary battery is, for example, a secondary battery in which the capacity of the negative electrode 22 is obtained by utilizing the occlusion and release of lithium.
このリチウムイオン二次電池では、例えば、充電途中において負極22の表面にリチウム金属が意図せずに析出することを防止するために、負極22の充電容量は、正極21の放電容量よりも大きくなっている。
In this lithium-ion secondary battery, for example, the charge capacity of the negative electrode 22 is larger than the discharge capacity of the positive electrode 21 in order to prevent unintentional deposition of lithium metal on the surface of the negative electrode 22 during charging. ing.
<2-1.円筒型>
まず、リチウムイオン二次電池の一例として、円筒型のリチウムイオン二次電池に関して説明する。 <2-1. Cylindrical type>
First, a cylindrical lithium ion secondary battery will be described as an example of the lithium ion secondary battery.
まず、リチウムイオン二次電池の一例として、円筒型のリチウムイオン二次電池に関して説明する。 <2-1. Cylindrical type>
First, a cylindrical lithium ion secondary battery will be described as an example of the lithium ion secondary battery.
<2-1-1.構成>
図4は、リチウムイオン二次電池の断面構成を表していると共に、図5は、図4に示したリチウムイオン二次電池の主要部(巻回電極体20)の断面構成を拡大している。ただし、図5では、巻回電極体20の一部だけを示している。 <2-1-1. Composition>
FIG. 4 shows a cross-sectional structure of the lithium-ion secondary battery, and FIG. 5 shows an enlarged cross-sectional structure of a main part (rolled electrode body 20) of the lithium-ion secondary battery shown in FIG. . However, in FIG. 5, only a part of the spirallywound electrode body 20 is shown.
図4は、リチウムイオン二次電池の断面構成を表していると共に、図5は、図4に示したリチウムイオン二次電池の主要部(巻回電極体20)の断面構成を拡大している。ただし、図5では、巻回電極体20の一部だけを示している。 <2-1-1. Composition>
FIG. 4 shows a cross-sectional structure of the lithium-ion secondary battery, and FIG. 5 shows an enlarged cross-sectional structure of a main part (rolled electrode body 20) of the lithium-ion secondary battery shown in FIG. . However, in FIG. 5, only a part of the spirally
このリチウムイオン二次電池では、例えば、図4に示したように、円筒状の電池缶11の内部に電池素子(巻回電極体20)が収納されている。
In this lithium-ion secondary battery, for example, as shown in FIG. 4, a battery element (rolled electrode body 20) is housed inside a cylindrical battery can 11.
具体的には、リチウムイオン二次電池は、例えば、電池缶11の内部に、一対の絶縁板12,13と、巻回電極体20とを備えている。この巻回電極体20は、例えば、セパレータ23を介して正極21および負極22が互いに積層されたのち、その正極21、負極22およびセパレータ23が巻回された構造体である。巻回電極体20には、液状の電解質である電解液が含浸されている。
Specifically, the lithium ion secondary battery includes, for example, a pair of insulating plates 12 and 13 and a wound electrode body 20 inside a battery can 11. The wound electrode body 20 is, for example, a structure in which a positive electrode 21 and a negative electrode 22 are stacked on each other via a separator 23, and then the positive electrode 21, a negative electrode 22 and a separator 23 are wound. The spirally wound electrode body 20 is impregnated with an electrolytic solution which is a liquid electrolyte.
電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空の円筒構造を有しており、例えば、鉄などの金属材料を含んでいる。ただし、電池缶11の表面には、例えば、ニッケルなどの金属材料が鍍金されていてもよい。絶縁板12,13のそれぞれは、例えば、巻回電極体20の巻回周面に対して交差する方向に延在していると共に、互いに巻回電極体20を挟むように配置されている。
The battery can 11 has, for example, a hollow cylindrical structure with one end closed and the other end open, and contains, for example, a metal material such as iron. However, the surface of the battery can 11 may be plated with a metal material such as nickel. Each of the insulating plates 12 and 13 extends, for example, in a direction intersecting the winding peripheral surface of the wound electrode body 20 and is arranged so as to sandwich the wound electrode body 20 therebetween.
電池缶11の開放端部には、例えば、電池蓋14、安全弁機構15および熱感抵抗素子(PTC素子)16がガスケット17を介してかしめられているため、その電池缶11の開放端部は密閉されている。電池蓋14の形成材料は、例えば、電池缶11の形成材料と同様である。安全弁機構15および熱感抵抗素子16は、電池蓋14の内側に設けられており、その安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、例えば、内部短絡および外部加熱などに起因して電池缶11の内圧が一定以上になると、ディスク板15Aが反転するため、電池蓋14と巻回電極体20との電気的接続が切断される。熱感抵抗素子16の電気抵抗は、大電流に起因する異常な発熱を防止するために、温度の上昇に応じて増加する。ガスケット17は、例えば、絶縁性材料を含んでいる。ただし、ガスケット17の表面には、例えば、アスファルトなどが塗布されていてもよい。
At the open end of the battery can 11, for example, the battery lid 14, the safety valve mechanism 15, and the PTC element 16 are caulked via the gasket 17, so that the open end of the battery can 11 is It is sealed. The material forming the battery lid 14 is, for example, the same as the material forming the battery can 11. The safety valve mechanism 15 and the PTC element 16 are provided inside the battery lid 14, and the safety valve mechanism 15 is electrically connected to the battery lid 14 via the PTC element 16. In this safety valve mechanism 15, when the internal pressure of the battery can 11 exceeds a certain level due to, for example, an internal short circuit and external heating, the disk plate 15A is inverted, so that the electrical connection between the battery lid 14 and the spirally wound electrode body 20 is reduced. The connection is broken. The electric resistance of the PTC element 16 increases with an increase in temperature in order to prevent abnormal heat generation due to a large current. The gasket 17 includes, for example, an insulating material. However, the surface of the gasket 17 may be coated with, for example, asphalt.
巻回電極体20の巻回中心に設けられた空間20Cには、例えば、センターピン24が挿入されている。ただし、センターピン24は、空間20Cに挿入されていなくてもよい。正極21には、正極リード25が接続されており、その正極リード25は、例えば、アルミニウムなどの導電性材料を含んでいる。この正極リード25は、例えば、安全弁機構15を介して電池蓋14と電気的に接続されている。負極22には、負極リード26が接続されており、その負極リード26は、例えば、ニッケルなどの導電性材料を含んでいる。この負極リード26は、例えば、電池缶11と電気的に接続されている。
A center pin 24, for example, is inserted in the space 20C provided at the winding center of the spirally wound electrode body 20. However, the center pin 24 does not have to be inserted into the space 20C. A positive electrode lead 25 is connected to the positive electrode 21, and the positive electrode lead 25 contains a conductive material such as aluminum. The positive electrode lead 25 is electrically connected to the battery lid 14 via the safety valve mechanism 15, for example. A negative electrode lead 26 is connected to the negative electrode 22, and the negative electrode lead 26 contains a conductive material such as nickel. The negative electrode lead 26 is electrically connected to the battery can 11, for example.
[正極]
正極21は、例えば、図5に示したように、正極集電体21Aと、その正極集電体21Aに設けられた正極活物質層21Bとを含んでいる。この正極活物質層21Bは、例えば、正極集電体21Aの片面だけに設けられていてもよいし、正極集電体21Aの両面に設けられていてもよい。図5では、例えば、正極活物質層21Bが正極集電体21Aの両面に設けられている場合を示している。 [Positive electrode]
Thepositive electrode 21 includes, for example, as shown in FIG. 5, a positive electrode current collector 21A and a positive electrode active material layer 21B provided on the positive electrode current collector 21A. The positive electrode active material layer 21B may be provided, for example, on only one surface of the positive electrode current collector 21A, or may be provided on both surfaces of the positive electrode current collector 21A. In FIG. 5, for example, the case where the positive electrode active material layer 21B is provided on both surfaces of the positive electrode current collector 21A is shown.
正極21は、例えば、図5に示したように、正極集電体21Aと、その正極集電体21Aに設けられた正極活物質層21Bとを含んでいる。この正極活物質層21Bは、例えば、正極集電体21Aの片面だけに設けられていてもよいし、正極集電体21Aの両面に設けられていてもよい。図5では、例えば、正極活物質層21Bが正極集電体21Aの両面に設けられている場合を示している。 [Positive electrode]
The
正極集電体21Aは、例えば、アルミニウムなどの導電性材料を含んでいる。正極活物質層21Bは、正極活物質として、リチウムを吸蔵放出可能である正極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
The cathode current collector 21A contains a conductive material such as aluminum. The positive electrode active material layer 21B contains, as a positive electrode active material, any one kind or two or more kinds of positive electrode materials capable of inserting and extracting lithium. However, the positive electrode active material layer 21B may further include any one kind or two or more kinds of other materials such as a positive electrode binder and a positive electrode conductive agent.
正極材料は、例えば、リチウム化合物を含んでおり、そのリチウム化合物は、リチウムを構成元素として含む化合物の総称である。高いエネルギー密度が得られるからである。リチウム化合物の種類は、特に限定されないが、例えば、リチウム複合酸化物およびリチウムリン酸化合物などである。
The positive electrode material contains, for example, a lithium compound, and the lithium compound is a general term for compounds containing lithium as a constituent element. This is because a high energy density can be obtained. The type of lithium compound is not particularly limited, and examples thereof include a lithium composite oxide and a lithium phosphate compound.
リチウム複合酸化物は、リチウムと1種類または2種類以上の他元素とを構成元素として含む酸化物であり、例えば、層状岩塩型およびスピネル型などの結晶構造を有している。リチウムリン酸化合物は、リチウムと1種類または2種類以上の他元素とを構成元素として含むリン酸化合物であり、例えば、オリビン型などの結晶構造を有している。
The lithium composite oxide is an oxide containing lithium and one or more kinds of other elements as constituent elements, and has a crystal structure such as a layered rock salt type and a spinel type. The lithium phosphoric acid compound is a phosphoric acid compound containing lithium and one or more kinds of other elements as constituent elements, and has, for example, an olivine type crystal structure.
他元素は、リチウム以外の元素である。他元素の種類は、特に限定されないが、中でも、長周期型周期表のうちの2族~15族に属する元素であることが好ましい。高い電圧が得られるからである。具体的には、他元素は、例えば、ニッケル、コバルト、マンガンおよび鉄などである。
Other elements are elements other than lithium. The type of the other element is not particularly limited, but is preferably an element belonging to Groups 2 to 15 of the long periodic table. This is because a high voltage can be obtained. Specifically, the other element is, for example, nickel, cobalt, manganese, iron, or the like.
層状岩塩型の結晶構造を有するリチウム複合酸化物は、例えば、LiNiO2 、LiCoO2 、LiCo0.98Al0.01Mg0.01O2 、LiNi0.5 Co0.2 Mn0.3 O2 、LiNi0.8 Co0.15Al0.05O2 、LiNi0.33Co0.33Mn0.33O2 、Li1.2 Mn0.52Co0.175 Ni0.1 O2 およびLi1.15(Mn0.65Ni0.22Co0.13)O2 などである。スピネル型の結晶構造を有するリチウム複合酸化物は、例えば、LiMn2 O4 などである。オリビン型の結晶構造を有するリチウムリン酸化合物は、例えば、LiFePO4 、LiMnPO4 、LiMn0.5 Fe0.5 PO4 、LiMn0.7 Fe0.3 PO4 およびLiMn0.75Fe0.25PO4 などである。
The lithium composite oxide having a layered rock salt type crystal structure is, for example, LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , or LiNiO 2 . 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 and the like. The lithium composite oxide having a spinel type crystal structure is, for example, LiMn 2 O 4 . The lithium phosphate compound having an olivine type crystal structure is, for example, LiFePO 4 , LiMnPO 4 , LiMn 0.5 Fe 0.5 PO 4 , LiMn 0.7 Fe 0.3 PO 4 and LiMn 0.75 Fe 0.25 PO 4 .
正極結着剤および負極導電剤のそれぞれに関する詳細は、例えば、負極結着剤および負極導電剤のそれぞれに関する詳細と同様である。
Details regarding each of the positive electrode binder and the negative electrode conductive agent are the same as the details regarding each of the negative electrode binder and the negative electrode conductive agent, for example.
[負極]
負極22は、上記した負極10と同様の構成を有している。すなわち、負極22は、例えば、図5に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。負極集電体22Aおよび負極活物質層22Bのそれぞれの構成は、負極集電体1および負極活物質層2のそれぞれの構成と同様である。 [Negative electrode]
Thenegative electrode 22 has the same configuration as the negative electrode 10 described above. That is, the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B, for example, as shown in FIG. The respective configurations of the negative electrode current collector 22A and the negative electrode active material layer 22B are the same as the respective configurations of the negative electrode current collector 1 and the negative electrode active material layer 2.
負極22は、上記した負極10と同様の構成を有している。すなわち、負極22は、例えば、図5に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。負極集電体22Aおよび負極活物質層22Bのそれぞれの構成は、負極集電体1および負極活物質層2のそれぞれの構成と同様である。 [Negative electrode]
The
[セパレータ]
セパレータ23は、例えば、合成樹脂およびセラミックなどの多孔質膜を含んでおり、2種類以上の多孔質膜が互いに積層された積層膜でもよい。合成樹脂は、例えば、ポリエチレンなどである。 [Separator]
Theseparator 23 includes, for example, a porous film such as synthetic resin and ceramic, and may be a laminated film in which two or more kinds of porous films are laminated with each other. The synthetic resin is, for example, polyethylene.
セパレータ23は、例えば、合成樹脂およびセラミックなどの多孔質膜を含んでおり、2種類以上の多孔質膜が互いに積層された積層膜でもよい。合成樹脂は、例えば、ポリエチレンなどである。 [Separator]
The
特に、セパレータ23は、例えば、上記した多孔質膜(基材層)と、その基材層に設けられた高分子化合物層とを含んでいてもよい。この高分子化合物層は、例えば、基材層の片面だけに設けられていてもよいし、基材層の両面に設けられていてもよい。正極21に対するセパレータ23の密着性が向上すると共に、負極22に対するセパレータ23の密着性が向上するため、巻回電極体20が歪みにくくなるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制される。
In particular, the separator 23 may include, for example, the above-mentioned porous film (base material layer) and a polymer compound layer provided on the base material layer. The polymer compound layer may be provided on only one surface of the base material layer, or may be provided on both surfaces of the base material layer, for example. This is because the adhesion of the separator 23 to the positive electrode 21 is improved and the adhesion of the separator 23 to the negative electrode 22 is improved, so that the spirally wound electrode body 20 is less likely to be distorted. Thereby, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution with which the base material layer is impregnated is also suppressed.
高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。なお、高分子化合物層は、例えば、無機粒子などの複数の絶縁性粒子を含んでいてもよい。安全性が向上するからである。無機粒子の種類は、特に限定されないが、例えば、酸化アルミニウムおよび窒化アルミニウムなどである。
The polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable. The polymer compound layer may include a plurality of insulating particles such as inorganic particles. This is because the safety is improved. The type of inorganic particles is not particularly limited, but examples thereof include aluminum oxide and aluminum nitride.
[電解液]
電解液は、上記したように、巻回電極体20に含浸されている。このため、電解液は、例えば、セパレータ23に含浸されていると共に、正極21および負極22のそれぞれに含浸されている。この電解液は、例えば、溶媒および電解質塩を含んでいる。 [Electrolyte]
As described above, the electrolytic solution is impregnated in the spirallywound electrode body 20. Therefore, for example, the electrolytic solution is impregnated in the separator 23 and also in the positive electrode 21 and the negative electrode 22. This electrolytic solution contains, for example, a solvent and an electrolyte salt.
電解液は、上記したように、巻回電極体20に含浸されている。このため、電解液は、例えば、セパレータ23に含浸されていると共に、正極21および負極22のそれぞれに含浸されている。この電解液は、例えば、溶媒および電解質塩を含んでいる。 [Electrolyte]
As described above, the electrolytic solution is impregnated in the spirally
溶媒は、例えば、非水溶媒(有機溶剤)などのうちのいずれか1種類または2種類以上を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。
The solvent includes, for example, any one kind or two or more kinds of non-aqueous solvent (organic solvent) and the like. The electrolytic solution containing a non-aqueous solvent is a so-called non-aqueous electrolytic solution.
非水溶媒の種類は、特に限定されないが、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびニトリル(モノニトリル)化合物などである。環状炭酸エステルは、例えば、炭酸エチレンおよび炭酸プロピレンなどである。鎖状炭酸エステルは、例えば、炭酸ジメチルおよび炭酸ジエチルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチルおよびプロピオン酸メチルなどである。ニトリル化合物は、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
The type of non-aqueous solvent is not particularly limited, and examples thereof include cyclic carbonic acid ester, chain carbonic acid ester, lactone, chain carboxylic acid ester, and nitrile (mononitrile) compound. Cyclic carbonates are, for example, ethylene carbonate and propylene carbonate. The chain carbonic acid ester is, for example, dimethyl carbonate or diethyl carbonate. The lactone is, for example, γ-butyrolactone or γ-valerolactone. The chain carboxylic acid ester is, for example, methyl acetate, ethyl acetate and methyl propionate. Nitrile compounds are, for example, acetonitrile, methoxyacetonitrile and 3-methoxypropionitrile. This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
また、非水溶媒は、例えば、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物(ジニトリル化合物)およびジイソシアネート化合物、リン酸エステルなどでもよい。不飽和環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンおよび炭酸フルオロメチルメチルなどである。スルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどである。酸無水物は、例えば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水エタンジスルホン酸、無水プロパンジスルホン酸、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。ジニトリル化合物は、例えば、スクシノニトリル、グルタロニトリル、アジポニトリルおよびフタロニトリルなどである。ジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネートなどである。リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。上記した一連の特性のうちのいずれか1種類または2種類以上がより向上するからである。
The non-aqueous solvent may be, for example, unsaturated cyclic carbonic acid ester, halogenated carbonic acid ester, sulfonic acid ester, acid anhydride, dicyano compound (dinitrile compound) and diisocyanate compound, phosphoric acid ester, and the like. The unsaturated cyclic carbonic acid ester is, for example, vinylene carbonate, vinyl ethylene carbonate, methylene ethylene carbonate, or the like. Examples of the halogenated carbonic acid ester include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one and fluoromethylmethyl carbonate. Examples of the sulfonic acid ester include 1,3-propane sultone and 1,3-propene sultone. Examples of the acid anhydride include succinic anhydride, glutaric anhydride, maleic anhydride, ethanedisulfonic acid anhydride, propanedisulfonic acid anhydride, sulfobenzoic acid anhydride, sulfopropionic acid anhydride, and sulfobutyric anhydride. The dinitrile compound is, for example, succinonitrile, glutaronitrile, adiponitrile and phthalonitrile. The diisocyanate compound is, for example, hexamethylene diisocyanate. The phosphoric acid ester is, for example, trimethyl phosphate and triethyl phosphate. This is because any one type or two or more types of the series of characteristics described above are further improved.
電解質塩は、例えば、リチウム塩などのうちのいずれか1種類または2種類以上を含んでいる。リチウム塩の種類は、特に限定されないが、例えば、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、ビス(フルオロスルホニル)イミドリチウム(LiN(SO2 F)2 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO2 )2 )、フルオロリン酸リチウム(Li2 PFO3 )、ジフルオロリン酸リチウム(LiPF2 O2 )およびビス(オキサラト)ホウ酸リチウム(LiC4 BO8 )などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
The electrolyte salt contains, for example, one kind or two or more kinds of lithium salts and the like. The type of lithium salt is not particularly limited, and examples thereof include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and bis (fluorosulfonyl) imide lithium (LiN (SO 2 F) 2 ), Lithium bis (trifluoromethanesulfonyl) imide (LiN (CF 3 SO 2 ) 2 ), lithium fluorophosphate (Li 2 PFO 3 ), lithium difluorophosphate (LiPF 2 O 2 ) and lithium bis (oxalato) borate (LiC 4 BO 8 ) and the like. This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
電解質塩の含有量は、特に限定されないが、例えば、溶媒に対して0.3mol/kg以上3.0mol/kg以下である。
The content of the electrolyte salt is not particularly limited, but is, for example, 0.3 mol / kg or more and 3.0 mol / kg or less with respect to the solvent.
<2-1-2.動作>
このリチウムイオン二次電池では、例えば、充電時において、正極21からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極22に吸蔵される。また、リチウムイオン二次電池では、例えば、放電時において、負極22からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極21に吸蔵される。 <2-1-2. Operation>
In this lithium-ion secondary battery, for example, during charging, lithium ions are released from thepositive electrode 21 and the lithium ions are occluded in the negative electrode 22 via the electrolytic solution. Further, in the lithium ion secondary battery, for example, during discharging, lithium ions are released from the negative electrode 22 and the lithium ions are occluded in the positive electrode 21 via the electrolytic solution.
このリチウムイオン二次電池では、例えば、充電時において、正極21からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極22に吸蔵される。また、リチウムイオン二次電池では、例えば、放電時において、負極22からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極21に吸蔵される。 <2-1-2. Operation>
In this lithium-ion secondary battery, for example, during charging, lithium ions are released from the
<2-1-3.製造方法>
リチウムイオン二次電池を製造する場合には、例えば、以下で説明する手順により、正極21の作製、負極22の作製および電解液の調製を行ったのち、リチウムイオン二次電池の組み立てを行う。 <2-1-3. Manufacturing method>
When manufacturing a lithium ion secondary battery, for example, thepositive electrode 21 is manufactured, the negative electrode 22 is manufactured, and the electrolytic solution is prepared by the procedure described below, and then the lithium ion secondary battery is assembled.
リチウムイオン二次電池を製造する場合には、例えば、以下で説明する手順により、正極21の作製、負極22の作製および電解液の調製を行ったのち、リチウムイオン二次電池の組み立てを行う。 <2-1-3. Manufacturing method>
When manufacturing a lithium ion secondary battery, for example, the
[正極の作製]
最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤または水性溶媒などに正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体21Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成する。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。 [Production of positive electrode]
First, a positive electrode active material and, if necessary, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to obtain a positive electrode mixture. Then, the positive electrode mixture slurry is prepared by dispersing or dissolving the positive electrode mixture in an organic solvent or an aqueous solvent. Finally, the positive electrode mixture slurry is applied to both surfaces of the positive electrodecurrent collector 21A, and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 21B. After that, the positive electrode active material layer 21B may be compression-molded using a roll press or the like. In this case, the positive electrode active material layer 21B may be heated or compression molding may be repeated a plurality of times.
最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤または水性溶媒などに正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体21Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成する。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。 [Production of positive electrode]
First, a positive electrode active material and, if necessary, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to obtain a positive electrode mixture. Then, the positive electrode mixture slurry is prepared by dispersing or dissolving the positive electrode mixture in an organic solvent or an aqueous solvent. Finally, the positive electrode mixture slurry is applied to both surfaces of the positive electrode
[負極の作製]
上記した負極20の作製手順と同様の手順により、負極集電体22Aの両面に負極活物質層22Bを形成する。 [Preparation of negative electrode]
Negative electrode active material layers 22B are formed on both surfaces of the negative electrodecurrent collector 22A by the same procedure as the above-described procedure for producing the negative electrode 20.
上記した負極20の作製手順と同様の手順により、負極集電体22Aの両面に負極活物質層22Bを形成する。 [Preparation of negative electrode]
Negative electrode active material layers 22B are formed on both surfaces of the negative electrode
[電解液の調製]
溶媒に電解質塩を加えたのち、その溶媒を撹拌することにより、その溶媒中において電解質塩を溶解させる。この場合には、上記した不飽和環状炭酸エステルおよびハロゲン化炭酸エステルなどを添加剤として溶媒に加えてもよい。 [Preparation of electrolyte]
After the electrolyte salt is added to the solvent, the solvent is stirred to dissolve the electrolyte salt in the solvent. In this case, the above-mentioned unsaturated cyclic carbonic acid ester and halogenated carbonic acid ester may be added as additives to the solvent.
溶媒に電解質塩を加えたのち、その溶媒を撹拌することにより、その溶媒中において電解質塩を溶解させる。この場合には、上記した不飽和環状炭酸エステルおよびハロゲン化炭酸エステルなどを添加剤として溶媒に加えてもよい。 [Preparation of electrolyte]
After the electrolyte salt is added to the solvent, the solvent is stirred to dissolve the electrolyte salt in the solvent. In this case, the above-mentioned unsaturated cyclic carbonic acid ester and halogenated carbonic acid ester may be added as additives to the solvent.
[リチウムイオン二次電池の組み立て]
最初に、溶接法などを用いて正極集電体21Aに正極リード25を接続させると共に、溶接法などを用いて負極集電体22Aに負極リード26を接続させる。続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体を形成する。続いて、巻回体の巻回中心に設けられた空間20Cにセンターピン24を挿入する。 [Assembly of lithium-ion secondary battery]
First, thepositive electrode lead 25 is connected to the positive electrode current collector 21A using a welding method or the like, and the negative electrode lead 26 is connected to the negative electrode current collector 22A using a welding method or the like. Then, the positive electrode 21 and the negative electrode 22 are laminated on each other via the separator 23, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to form a wound body. Then, the center pin 24 is inserted into the space 20C provided in the winding center of the wound body.
最初に、溶接法などを用いて正極集電体21Aに正極リード25を接続させると共に、溶接法などを用いて負極集電体22Aに負極リード26を接続させる。続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体を形成する。続いて、巻回体の巻回中心に設けられた空間20Cにセンターピン24を挿入する。 [Assembly of lithium-ion secondary battery]
First, the
続いて、一対の絶縁板12,13により巻回体が挟まれた状態において、その巻回体を電池缶11の内部に収納する。この場合には、溶接法などを用いて正極リード25を安全弁機構15に接続させると共に、溶接法などを用いて負極リード26を電池缶11に接続させる。続いて、電池缶11の内部に電解液を注入することにより、その電解液を巻回体に含浸させる。これにより、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されるため、巻回電極体20が形成される。
Next, with the wound body sandwiched by the pair of insulating plates 12 and 13, the wound body is housed inside the battery can 11. In this case, the positive electrode lead 25 is connected to the safety valve mechanism 15 by a welding method or the like, and the negative electrode lead 26 is connected to the battery can 11 by a welding method or the like. Then, the wound body is impregnated with the electrolytic solution by injecting the electrolytic solution into the battery can 11. Thereby, the positive electrode 21, the negative electrode 22, and the separator 23 are each impregnated with the electrolytic solution, so that the wound electrode body 20 is formed.
最後に、ガスケット17を介して電池缶11の開放端部をかしめることにより、その電池缶11の開放端部に電池蓋14、安全弁機構15および熱感抵抗素子16を取り付ける。これにより、電池缶11の内部に巻回電極体20が封入されるため、リチウムイオン二次電池が完成する。
Finally, by caulking the open end of the battery can 11 via the gasket 17, the battery lid 14, the safety valve mechanism 15, and the PTC device 16 are attached to the open end of the battery can 11. As a result, the spirally wound electrode body 20 is sealed inside the battery can 11, so that the lithium ion secondary battery is completed.
<2-1-4.作用および効果>
この円筒型のリチウムイオン二次電池によれば、負極22が上記した負極10と同様の構成を有している。よって、上記した理由により、その負極22においてリチウムイオンが円滑かつ安定に入出力しやすくなるため、優れた電池特性を得ることができる。これ以外の円筒型のリチウムイオン二次電池に関する作用および効果は、上記した負極10に関する作用および効果と同様である。 <2-1-4. Action and effect>
According to this cylindrical lithium ion secondary battery, thenegative electrode 22 has the same configuration as the negative electrode 10 described above. Therefore, for the reasons described above, lithium ions are likely to smoothly and stably input and output to and from the negative electrode 22, so that excellent battery characteristics can be obtained. The other functions and effects of the cylindrical lithium ion secondary battery are similar to those of the negative electrode 10 described above.
この円筒型のリチウムイオン二次電池によれば、負極22が上記した負極10と同様の構成を有している。よって、上記した理由により、その負極22においてリチウムイオンが円滑かつ安定に入出力しやすくなるため、優れた電池特性を得ることができる。これ以外の円筒型のリチウムイオン二次電池に関する作用および効果は、上記した負極10に関する作用および効果と同様である。 <2-1-4. Action and effect>
According to this cylindrical lithium ion secondary battery, the
<2-2.ラミネートフィルム型>
次に、リチウムイオン二次電池の他の一例として、ラミネートフィルム型のリチウムイオン二次電池に関して説明する。以下の説明では、随時、既に説明した円筒型のリチウムイオン二次電池の構成要素(図4および図5参照)を引用する。 <2-2. Laminated film type>
Next, a laminated film type lithium ion secondary battery will be described as another example of the lithium ion secondary battery. In the following description, the constituent elements of the cylindrical lithium-ion secondary battery (see FIGS. 4 and 5) that have already been described are cited as needed.
次に、リチウムイオン二次電池の他の一例として、ラミネートフィルム型のリチウムイオン二次電池に関して説明する。以下の説明では、随時、既に説明した円筒型のリチウムイオン二次電池の構成要素(図4および図5参照)を引用する。 <2-2. Laminated film type>
Next, a laminated film type lithium ion secondary battery will be described as another example of the lithium ion secondary battery. In the following description, the constituent elements of the cylindrical lithium-ion secondary battery (see FIGS. 4 and 5) that have already been described are cited as needed.
図6は、他のリチウムイオン二次電池の斜視構成を表していると共に、図7は、図6に示したVII-VII線に沿ったリチウムイオン二次電池の主要部(巻回電極体30)の断面構成を拡大している。ただし、図6では、巻回電極体30と外装部材40とが互いに離間された状態を示している。
FIG. 6 shows a perspective configuration of another lithium ion secondary battery, and FIG. 7 shows a main part of the lithium ion secondary battery (rolled electrode body 30) taken along the line VII-VII shown in FIG. ) Is expanding the cross-sectional structure. However, FIG. 6 shows a state where the spirally wound electrode body 30 and the exterior member 40 are separated from each other.
<2-2-1.構成>
このリチウムイオン二次電池では、例えば、図6に示したように、柔軟性(または可撓性)を有するフィルム状の外装部材40の内部に電池素子(巻回電極体30)が収納されている。 <2-2-1. Composition>
In this lithium-ion secondary battery, for example, as shown in FIG. 6, a battery element (rolled electrode body 30) is housed inside a film-like exterior member 40 having flexibility (or flexibility). There is.
このリチウムイオン二次電池では、例えば、図6に示したように、柔軟性(または可撓性)を有するフィルム状の外装部材40の内部に電池素子(巻回電極体30)が収納されている。 <2-2-1. Composition>
In this lithium-ion secondary battery, for example, as shown in FIG. 6, a battery element (rolled electrode body 30) is housed inside a film-
巻回電極体30は、例えば、セパレータ35および電解質層36を介して正極33および負極34が互いに積層されたのち、その正極33、負極34、セパレータ35および電解質層36が巻回された構造体であり、その巻回電極体30の表面は、例えば、保護テープ37により保護されている。電解質層36は、例えば、正極33とセパレータ35との間に介在していると共に、負極34とセパレータ35との間に介在している。
The wound electrode body 30 is, for example, a structure in which a positive electrode 33 and a negative electrode 34 are laminated on each other via a separator 35 and an electrolyte layer 36, and then the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are wound. The surface of the spirally wound electrode body 30 is protected by a protective tape 37, for example. The electrolyte layer 36 is interposed, for example, between the positive electrode 33 and the separator 35 and also between the negative electrode 34 and the separator 35.
正極33には、正極リード31が接続されており、その正極リード31は、外装部材40の内部から外部に向かって導出されている。正極リード31の形成材料は、例えば、正極リード25の形成材料と同様であり、その正極リード31の形状は、例えば、薄板状および網目状などである。
The positive electrode lead 31 is connected to the positive electrode 33, and the positive electrode lead 31 is led out from the inside of the exterior member 40 toward the outside. The material for forming the positive electrode lead 31 is, for example, the same as the material for forming the positive electrode lead 25, and the shape of the positive electrode lead 31 is, for example, a thin plate shape or a mesh shape.
負極34には、負極リード32が接続されており、その負極リード32は、外装部材40の内部から外部に向かって導出されている。負極リード32の導出方向は、例えば、正極リード31の導出方向と同様である。負極リード32の形成材料は、例えば、負極リード26の形成材料と同様であり、その負極リード32の形状は、例えば、正極リード31の形状と同様である。
The negative electrode lead 32 is connected to the negative electrode 34, and the negative electrode lead 32 is led out from the inside of the exterior member 40 toward the outside. The derivation direction of the negative electrode lead 32 is the same as the derivation direction of the positive electrode lead 31, for example. The material forming the negative electrode lead 32 is, for example, the same as the material forming the negative electrode lead 26, and the shape of the negative electrode lead 32 is the same as the shape of the positive electrode lead 31, for example.
[外装部材]
外装部材40は、例えば、図6に示した矢印Rの方向に折り畳み可能な1枚のフィルムである。外装部材40の一部には、例えば、巻回電極体30を収納するための窪み40Uが設けられている。 [Exterior member]
Theexterior member 40 is, for example, a single film that can be folded in the direction of the arrow R shown in FIG. A part of the exterior member 40 is provided with a recess 40U for housing the spirally wound electrode body 30, for example.
外装部材40は、例えば、図6に示した矢印Rの方向に折り畳み可能な1枚のフィルムである。外装部材40の一部には、例えば、巻回電極体30を収納するための窪み40Uが設けられている。 [Exterior member]
The
この外装部材40は、例えば、内側から外側に向かって融着層、金属層および表面保護層がこの順に積層された積層体(ラミネートフィルム)である。リチウムイオン二次電池の製造工程では、例えば、融着層同士が巻回電極体30を介して互いに対向するように外装部材40が折り畳まれたのち、その融着層のうちの外周縁部同士が互いに融着される。融着層は、例えば、ポリプロピレンなどの高分子化合物を含むフィルムである。金属層は、例えば、アルミニウムなどの金属材料を含む金属箔である。表面保護層は、例えば、ナイロンなどの高分子化合物を含むフィルムである。ただし、外装部材40は、例えば、2枚のラミネートフィルムであり、その2枚のラミネートフィルムは、例えば、接着剤を介して互いに貼り合わされていてもよい。
The exterior member 40 is, for example, a laminate (laminate film) in which a fusion bonding layer, a metal layer, and a surface protection layer are laminated in this order from the inside to the outside. In the manufacturing process of the lithium-ion secondary battery, for example, after the exterior member 40 is folded so that the fusion layers face each other with the spirally wound electrode body 30 in between, the outer peripheral edge portions of the fusion layers are adjacent to each other. Are fused together. The fusing layer is, for example, a film containing a polymer compound such as polypropylene. The metal layer is, for example, a metal foil containing a metal material such as aluminum. The surface protective layer is, for example, a film containing a polymer compound such as nylon. However, the exterior member 40 is, for example, two laminated films, and the two laminated films may be bonded to each other via an adhesive, for example.
外装部材40と正極リード31との間には、例えば、外気の侵入を防止するために密着フィルム41が挿入されている。この密着フィルム41は、例えば、ポリプロピレンなどのポリオレフィン樹脂を含んでいる。
Between the exterior member 40 and the positive electrode lead 31, for example, an adhesion film 41 is inserted to prevent outside air from entering. The adhesion film 41 contains a polyolefin resin such as polypropylene.
外装部材40と負極リード32との間には、例えば、密着フィルム41と同様の機能を有する密着フィルム42が挿入されている。密着フィルム42の形成材料は、例えば、密着フィルム41の形成材料と同様である。
Between the exterior member 40 and the negative electrode lead 32, for example, an adhesive film 42 having the same function as the adhesive film 41 is inserted. The forming material of the contact film 42 is, for example, the same as the forming material of the contact film 41.
[正極、負極およびセパレータ]
正極33は、例えば、正極集電体33Aおよび正極活物質層33Bを含んでいると共に、負極34は、例えば、負極集電体34Aおよび負極活物質層34Bを含んでいる。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bのそれぞれの構成は、例えば、正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bのそれぞれの構成と同様である。また、セパレータ35の構成は、例えば、セパレータ23の構成と同様である。 [Positive electrode, negative electrode and separator]
Thepositive electrode 33 includes, for example, a positive electrode current collector 33A and a positive electrode active material layer 33B, and the negative electrode 34 includes, for example, a negative electrode current collector 34A and a negative electrode active material layer 34B. The configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B are, for example, the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode. The configurations are the same as those of the active material layer 22B. The configuration of the separator 35 is similar to that of the separator 23, for example.
正極33は、例えば、正極集電体33Aおよび正極活物質層33Bを含んでいると共に、負極34は、例えば、負極集電体34Aおよび負極活物質層34Bを含んでいる。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bのそれぞれの構成は、例えば、正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bのそれぞれの構成と同様である。また、セパレータ35の構成は、例えば、セパレータ23の構成と同様である。 [Positive electrode, negative electrode and separator]
The
[電解質層]
電解質層36は、電解液と共に高分子化合物を含んでいる。ここで説明する電解質層36は、いわゆるゲル状の電解質であるため、その電解質層36中では、電解液が高分子化合物により保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。ただし、電解質層36は、例えば、さらに、各種の添加剤などの他の材料を含んでいてもよい。 [Electrolyte layer]
Theelectrolyte layer 36 contains a polymer compound together with an electrolytic solution. Since the electrolyte layer 36 described here is a so-called gel electrolyte, the electrolyte solution is held by the polymer compound in the electrolyte layer 36. This is because a high ionic conductivity (for example, 1 mS / cm or more at room temperature) is obtained, and leakage of the electrolytic solution is prevented. However, the electrolyte layer 36 may further include other materials such as various additives.
電解質層36は、電解液と共に高分子化合物を含んでいる。ここで説明する電解質層36は、いわゆるゲル状の電解質であるため、その電解質層36中では、電解液が高分子化合物により保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。ただし、電解質層36は、例えば、さらに、各種の添加剤などの他の材料を含んでいてもよい。 [Electrolyte layer]
The
電解液の構成は、上記した通りである。高分子化合物は、例えば、単独重合体および共重合体のうちの一方または双方を含んでいる。単独重合体は、例えば、ポリフッ化ビニリデンなどであると共に、共重合体は、例えば、フッ化ビニリデンとヘキサフルオロピレンとの共重合体などである。
The composition of the electrolyte is as described above. The polymer compound contains, for example, one or both of a homopolymer and a copolymer. The homopolymer is, for example, polyvinylidene fluoride, and the copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
ゲル状の電解質である電解質層36において、電解液に含まれる溶媒は、液状の材料だけでなく、電解質塩を解離可能であるイオン伝導性を有する材料も含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
In the electrolyte layer 36 which is a gel electrolyte, the solvent contained in the electrolytic solution is a broad concept including not only a liquid material but also a material having ion conductivity capable of dissociating an electrolyte salt. Therefore, when a polymer compound having ion conductivity is used, the polymer compound is also included in the solvent.
<2-2-2.動作>
このリチウムイオン二次電池では、例えば、充電時において、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。また、リチウムイオン二次電池では、例えば、放電時において、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。 <2-2-2. Operation>
In this lithium-ion secondary battery, for example, during charging, lithium ions are released from thepositive electrode 33, and the lithium ions are occluded in the negative electrode 34 via the electrolyte layer 36. In the lithium-ion secondary battery, for example, during discharge, lithium ions are released from the negative electrode 34 and the lithium ions are stored in the positive electrode 33 via the electrolyte layer 36.
このリチウムイオン二次電池では、例えば、充電時において、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。また、リチウムイオン二次電池では、例えば、放電時において、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。 <2-2-2. Operation>
In this lithium-ion secondary battery, for example, during charging, lithium ions are released from the
<2-2-3.製造方法>
電解質層36を備えたリチウムイオン二次電池は、例えば、以下で説明する3種類の手順により製造される。 <2-2-3. Manufacturing method>
The lithium-ion secondary battery provided with theelectrolyte layer 36 is manufactured by, for example, three types of procedures described below.
電解質層36を備えたリチウムイオン二次電池は、例えば、以下で説明する3種類の手順により製造される。 <2-2-3. Manufacturing method>
The lithium-ion secondary battery provided with the
[第1手順]
最初に、正極21の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成することにより、正極33を作製する。また、負極22の作製手順と同様の手順により、負極集電体34Aの両面に負極活物質層34Bを形成することにより、負極34を作製する。 [First procedure]
First, thepositive electrode 33 is manufactured by forming the positive electrode active material layers 33B on both surfaces of the positive electrode current collector 33A by a procedure similar to the procedure for manufacturing the positive electrode 21. Further, the negative electrode 34 is manufactured by forming the negative electrode active material layers 34B on both surfaces of the negative electrode current collector 34A by the same procedure as the manufacturing procedure of the negative electrode 22.
最初に、正極21の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成することにより、正極33を作製する。また、負極22の作製手順と同様の手順により、負極集電体34Aの両面に負極活物質層34Bを形成することにより、負極34を作製する。 [First procedure]
First, the
続いて、電解液を調製したのち、その電解液と、高分子化合物と、有機溶剤などとを混合することにより、前駆溶液を調製する。続いて、正極33に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、電解質層36を形成する。また、負極34に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、電解質層36を形成する。続いて、溶接法などを用いて正極集電体33Aに正極リード31を接続させると共に、溶接法などを用いて負極集電体34Aに負極リード32を接続させる。続いて、セパレータ35および電解質層36を介して正極33および負極34を互いに積層させたのち、その正極33、負極34、セパレータ35および電解質層36を巻回させることにより、巻回電極体30を形成する。続いて、巻回電極体30の表面に保護テープ37を貼り付ける。
Next, after preparing the electrolytic solution, the precursor solution is prepared by mixing the electrolytic solution, the polymer compound, and the organic solvent. Subsequently, after applying the precursor solution to the positive electrode 33, the precursor solution is dried to form the electrolyte layer 36. Further, the electrolyte layer 36 is formed by applying the precursor solution to the negative electrode 34 and then drying the precursor solution. Subsequently, the positive electrode lead 31 is connected to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is connected to the negative electrode current collector 34A using a welding method or the like. Subsequently, the positive electrode 33 and the negative electrode 34 are laminated on each other via the separator 35 and the electrolyte layer 36, and then the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are wound to form the wound electrode body 30. Form. Then, the protective tape 37 is attached to the surface of the spirally wound electrode body 30.
最後に、巻回電極体30を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40の外周縁部同士を互いに接着させる。この場合には、外装部材40と正極リード31との間に密着フィルム41を挿入すると共に、外装部材40と負極リード32との間に密着フィルム42を挿入する。これにより、外装部材40の内部に巻回電極体30が封入されるため、リチウムイオン二次電池が完成する。
Finally, after folding the exterior member 40 so as to sandwich the spirally wound electrode body 30, the outer peripheral edge portions of the exterior member 40 are adhered to each other by using a heat fusion method or the like. In this case, the adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31, and the adhesion film 42 is inserted between the exterior member 40 and the negative electrode lead 32. As a result, the spirally wound electrode body 30 is sealed inside the exterior member 40, so that the lithium ion secondary battery is completed.
[第2手順]
最初に、正極33および負極34を作製したのち、正極33に正極リード31を接続させると共に、負極34に負極リード32を接続させる。続いて、セパレータ35を介して正極33および負極34を互いに積層させたのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回体を形成する。続いて、巻回体の表面に保護テープ37を貼り付ける。続いて、巻回体を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材40の内部に巻回体を収納する。 [Second procedure]
First, after thepositive electrode 33 and the negative electrode 34 are manufactured, the positive electrode lead 31 is connected to the positive electrode 33 and the negative electrode lead 32 is connected to the negative electrode 34. Subsequently, the positive electrode 33 and the negative electrode 34 are laminated on each other via the separator 35, and the positive electrode 33, the negative electrode 34, and the separator 35 are wound to form a wound body. Then, the protective tape 37 is attached to the surface of the wound body. Next, after the exterior member 40 is folded so as to sandwich the wound body, the remaining outer peripheral edge portions of the exterior member 40 excluding one outer peripheral edge portion are bonded to each other by using a heat fusion method or the like. Thus, the wound body is housed inside the bag-shaped exterior member 40.
最初に、正極33および負極34を作製したのち、正極33に正極リード31を接続させると共に、負極34に負極リード32を接続させる。続いて、セパレータ35を介して正極33および負極34を互いに積層させたのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回体を形成する。続いて、巻回体の表面に保護テープ37を貼り付ける。続いて、巻回体を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材40の内部に巻回体を収納する。 [Second procedure]
First, after the
続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを混合したのち、その混合物を撹拌することにより、電解質用組成物を調製する。続いて、袋状の外装部材40の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材40を密封する。最後に、モノマーを熱重合させることにより、高分子化合物を形成する。これにより、電解液が高分子化合物により保持されるため、電解質層36が形成される。よって、外装部材40の内部に巻回電極体30が封入されるため、リチウムイオン二次電池が完成する。
Subsequently, the electrolyte solution, the monomer that is the raw material of the polymer compound, the polymerization initiator, and if necessary, other materials such as a polymerization inhibitor are mixed, and then the mixture is stirred to prepare an electrolyte solution. A composition is prepared. Subsequently, the electrolyte composition is injected into the bag-shaped exterior member 40, and then the exterior member 40 is sealed by a heat fusion method or the like. Finally, the polymer is formed by thermally polymerizing the monomers. As a result, the electrolytic solution is held by the polymer compound, so that the electrolyte layer 36 is formed. Therefore, since the spirally wound electrode body 30 is enclosed inside the exterior member 40, the lithium ion secondary battery is completed.
[第3手順]
最初に、基材層の両面に高分子化合物層が設けられたセパレータ35を用いることを除いて、上記した第2手順と同様の手順により、巻回体を作製したのち、袋状の外装部材40の内部に巻回体を収納する。続いて、外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。最後に、外装部材40に加重をかけながら、その外装部材40を加熱することにより、高分子化合物層を介してセパレータ35を正極33および負極34のそれぞれに密着させる。これにより、高分子化合物層に電解液が含浸されると共に、その高分子化合物層がゲル化するため、電解質層36が形成される。よって、外装部材40の内部に巻回電極体30が封入されるため、リチウムイオン二次電池が完成する。 [Third procedure]
First, a wound body is produced by a procedure similar to the above-described second procedure except that theseparator 35 having the polymer compound layers provided on both surfaces of the base material layer is used, and then the bag-shaped exterior member. The wound body is stored inside 40. Subsequently, after the electrolytic solution is injected into the exterior member 40, the opening of the exterior member 40 is sealed by using a heat fusion method or the like. Finally, by heating the exterior member 40 while applying a load to the exterior member 40, the separator 35 is brought into close contact with each of the positive electrode 33 and the negative electrode 34 via the polymer compound layer. As a result, the polymer compound layer is impregnated with the electrolytic solution and the polymer compound layer is gelated, so that the electrolyte layer 36 is formed. Therefore, since the spirally wound electrode body 30 is enclosed inside the exterior member 40, the lithium ion secondary battery is completed.
最初に、基材層の両面に高分子化合物層が設けられたセパレータ35を用いることを除いて、上記した第2手順と同様の手順により、巻回体を作製したのち、袋状の外装部材40の内部に巻回体を収納する。続いて、外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。最後に、外装部材40に加重をかけながら、その外装部材40を加熱することにより、高分子化合物層を介してセパレータ35を正極33および負極34のそれぞれに密着させる。これにより、高分子化合物層に電解液が含浸されると共に、その高分子化合物層がゲル化するため、電解質層36が形成される。よって、外装部材40の内部に巻回電極体30が封入されるため、リチウムイオン二次電池が完成する。 [Third procedure]
First, a wound body is produced by a procedure similar to the above-described second procedure except that the
この第3手順では、第1手順と比較して、リチウムイオン二次電池が膨れにくくなる。また、第3手順では、第2手順と比較して、溶媒およびモノマー(高分子化合物の原料)が電解質層36中に残存しにくくなるため、正極33、負極34およびセパレータ35のそれぞれに対して電解質層36が十分に密着される。
In this third procedure, compared to the first procedure, the lithium-ion secondary battery is less likely to swell. Further, in the third procedure, as compared with the second procedure, the solvent and the monomer (raw material of the polymer compound) are less likely to remain in the electrolyte layer 36, so that the positive electrode 33, the negative electrode 34, and the separator 35 are respectively removed. The electrolyte layer 36 is sufficiently adhered.
<2-2-4.作用および効果>
このラミネートフィルム型のリチウムイオン二次電池によれば、負極34が上記した負極10と同様の構成を有しているので、上記した円筒型のリチウムイオン二次電池と同様に、優れた電池特性を得ることができる。これ以外の円筒型のラミネートフィルム型のリチウムイオン二次電池に関する作用および効果は、円筒型のリチウムイオン二次電池に関する作用および効果と同様である。 <2-2-4. Action and effect>
According to this laminate film type lithium ion secondary battery, since thenegative electrode 34 has the same configuration as the negative electrode 10 described above, it has excellent battery characteristics similar to the cylindrical lithium ion secondary battery described above. Can be obtained. The other functions and effects of the cylindrical laminated film type lithium ion secondary battery are similar to those of the cylindrical lithium ion secondary battery.
このラミネートフィルム型のリチウムイオン二次電池によれば、負極34が上記した負極10と同様の構成を有しているので、上記した円筒型のリチウムイオン二次電池と同様に、優れた電池特性を得ることができる。これ以外の円筒型のラミネートフィルム型のリチウムイオン二次電池に関する作用および効果は、円筒型のリチウムイオン二次電池に関する作用および効果と同様である。 <2-2-4. Action and effect>
According to this laminate film type lithium ion secondary battery, since the
<3.変形例>
ラミネートフィルム型のリチウムイオン二次電池は、例えば、電解質層36の代わりに電解液を備えていてもよい。この場合には、電解液が巻回電極体30に含浸されているため、その電解液が正極33、負極34およびセパレータ35のそれぞれに含浸されている。また、袋状の外装部材40の内部に巻回体が収納されたのち、その袋状の外装部材40の内部に電解液が注入されることにより、その巻回体に電解液が含浸されるため、巻回電極体30が形成される。この場合においても、同様の効果を得ることができる。 <3. Modification>
The laminate film type lithium ion secondary battery may include, for example, an electrolytic solution instead of theelectrolyte layer 36. In this case, since the spirally wound electrode body 30 is impregnated with the electrolytic solution, the electrolytic solution is impregnated into each of the positive electrode 33, the negative electrode 34, and the separator 35. In addition, after the wound body is housed inside the bag-shaped exterior member 40, the electrolytic solution is injected into the bag-shaped exterior member 40, so that the wound body is impregnated with the electrolytic solution. Therefore, the wound electrode body 30 is formed. Even in this case, the same effect can be obtained.
ラミネートフィルム型のリチウムイオン二次電池は、例えば、電解質層36の代わりに電解液を備えていてもよい。この場合には、電解液が巻回電極体30に含浸されているため、その電解液が正極33、負極34およびセパレータ35のそれぞれに含浸されている。また、袋状の外装部材40の内部に巻回体が収納されたのち、その袋状の外装部材40の内部に電解液が注入されることにより、その巻回体に電解液が含浸されるため、巻回電極体30が形成される。この場合においても、同様の効果を得ることができる。 <3. Modification>
The laminate film type lithium ion secondary battery may include, for example, an electrolytic solution instead of the
<4.リチウムイオン二次電池の用途>
上記したリチウムイオン二次電池の用途は、例えば、以下で説明する通りである。ただし、上記した負極の用途は、リチウムイオン二次電池の用途と同様であるため、その負極の用途に関しては、以下で併せて説明する。 <4. Applications of lithium-ion secondary batteries>
Applications of the above-mentioned lithium ion secondary battery are as described below, for example. However, the use of the above-mentioned negative electrode is similar to the use of the lithium-ion secondary battery, and therefore the use of the negative electrode will be described below together.
上記したリチウムイオン二次電池の用途は、例えば、以下で説明する通りである。ただし、上記した負極の用途は、リチウムイオン二次電池の用途と同様であるため、その負極の用途に関しては、以下で併せて説明する。 <4. Applications of lithium-ion secondary batteries>
Applications of the above-mentioned lithium ion secondary battery are as described below, for example. However, the use of the above-mentioned negative electrode is similar to the use of the lithium-ion secondary battery, and therefore the use of the negative electrode will be described below together.
リチウムイオン二次電池の用途は、そのリチウムイオン二次電池を駆動用の電源および電力蓄積用の電力貯蔵源などとして利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられるリチウムイオン二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、例えば、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。リチウムイオン二次電池を補助電源として用いる場合には、主電源の種類はリチウムイオン二次電池に限られない。
Lithium-ion secondary batteries can be used for machines, devices, appliances, devices and systems (collection of multiple devices, etc.) that can use the lithium-ion secondary battery as a power source for driving and a power storage source for power storage. It is not particularly limited as long as it is a body). The lithium ion secondary battery used as a power source may be a main power source or an auxiliary power source. The main power source is a power source that is preferentially used regardless of the presence or absence of another power source. The auxiliary power source may be, for example, a power source used instead of the main power source, or a power source that can be switched from the main power source as needed. When the lithium ion secondary battery is used as the auxiliary power source, the type of main power source is not limited to the lithium ion secondary battery.
リチウムイオン二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む。)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時に備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、リチウムイオン二次電池の用途は、上記した用途以外の他の用途でもよい。
The usage of the lithium-ion secondary battery is, for example, as follows. Electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions and portable information terminals. It is a portable household appliance such as an electric shaver. It is a storage device such as a backup power supply and a memory card. Electric tools such as electric drills and electric saws. This is a battery pack that can be mounted on a laptop computer as a detachable power source. Medical electronic devices such as pacemakers and hearing aids. Electric vehicles such as electric vehicles (including hybrid vehicles). It is a power storage system such as a household battery system that stores power in case of an emergency. Of course, the use of the lithium ion secondary battery may be other than the above-mentioned use.
本技術の実施例に関して説明する。
Explain an example of this technology.
(実験例1~17)
以下で説明するように、図6および図7に示したラミネートフィルム型のリチウムイオン二次電池を作製したのち、そのリチウムイオン二次電池の電池特性を評価した。 (Experimental Examples 1 to 17)
As described below, after producing the laminated film type lithium ion secondary battery shown in FIGS. 6 and 7, the battery characteristics of the lithium ion secondary battery were evaluated.
以下で説明するように、図6および図7に示したラミネートフィルム型のリチウムイオン二次電池を作製したのち、そのリチウムイオン二次電池の電池特性を評価した。 (Experimental Examples 1 to 17)
As described below, after producing the laminated film type lithium ion secondary battery shown in FIGS. 6 and 7, the battery characteristics of the lithium ion secondary battery were evaluated.
[リチウムイオン二次電池の作製]
正極33を作製する場合には、最初に、正極活物質(コバルト酸リチウム(LiCoO2 ))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体33A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層33Bを形成した。最後に、ロールプレス機を用いて正極活物質層33Bを圧縮成型した。 [Preparation of lithium-ion secondary battery]
When manufacturing thepositive electrode 33, first, 91 parts by mass of the positive electrode active material (lithium cobalt oxide (LiCoO 2 )), 3 parts by mass of the positive electrode binder (polyvinylidene fluoride), and the positive electrode conductive material (graphite) 6 A positive electrode mixture was obtained by mixing with parts by mass. Then, the positive electrode mixture was put into an organic solvent (N-methyl-2-pyrrolidone), and the organic solvent was stirred to prepare a paste-like positive electrode mixture slurry. Then, the positive electrode current collector 33A (band-shaped aluminum foil, thickness = 12 μm) is coated with the positive electrode mixture slurry on both sides by using a coating device, and the positive electrode mixture slurry is dried to obtain the positive electrode active material. Layer 33B was formed. Finally, the positive electrode active material layer 33B was compression-molded using a roll press.
正極33を作製する場合には、最初に、正極活物質(コバルト酸リチウム(LiCoO2 ))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体33A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層33Bを形成した。最後に、ロールプレス機を用いて正極活物質層33Bを圧縮成型した。 [Preparation of lithium-ion secondary battery]
When manufacturing the
負極34を作製する場合には、最初に、イオン伝導性物質(イオン伝導性高分子化合物であるポリエチレンオキサイド(PEO),イオン伝導度=10-6S/cm)と、複数の炭素含有粒子(黒鉛)と、複数のケイ素含有粒子(ケイ素)とを混合することにより、混合物を得た。イオン伝導性物質、複数の炭素含有粒子および複数のケイ素含有粒子のそれぞれの混合比(重量%)と、重量割合R1,R2(重量%)とは、表1に示した通りである。続いて、水性溶媒(純水)に混合物を投入したのち、スターラを用いて溶媒を撹拌することにより、混合溶液を調製した。続いて、スプレードライ装置を用いて混合溶液を噴霧したのち、その混合溶液を乾燥(乾燥温度=150℃)させることにより、イオン伝導性物質中に複数の炭素含有粒子および複数のケイ素含有粒子が含有された複数の第1負極活物質粒子を得た。この場合には、表1に示したように、複数の第1負極活物質粒子のメジアン径D50(μm)を調整した。
When manufacturing the negative electrode 34, first, an ion conductive substance (polyethylene oxide (PEO) which is an ion conductive polymer, ion conductivity = 10 −6 S / cm) and a plurality of carbon-containing particles ( A mixture was obtained by mixing graphite) with a plurality of silicon-containing particles (silicon). The mixing ratio (% by weight) of the ion conductive material, the plurality of carbon-containing particles and the plurality of silicon-containing particles, and the weight ratios R1 and R2 (% by weight) are as shown in Table 1. Then, the mixture was put into an aqueous solvent (pure water), and then the solvent was stirred using a stirrer to prepare a mixed solution. Then, after spraying the mixed solution using a spray drying device, the mixed solution is dried (drying temperature = 150 ° C.), whereby a plurality of carbon-containing particles and a plurality of silicon-containing particles are contained in the ion conductive material. A plurality of contained first negative electrode active material particles were obtained. In this case, as shown in Table 1, the median diameter D50 (μm) of the plurality of first negative electrode active material particles was adjusted.
なお、負極34を作製する場合には、比較のために、イオン伝導性高分子化合物(PEO)に代えて非イオン伝導性高分子化合物(カルボキシメチルセルロース(CMC))を用いたことを除いて、同様の手順を経た。表1では、イオン伝導性物質の欄にカルボキシメチルセルロース(CMC)も併せて示している。
In addition, when producing the negative electrode 34, for comparison, except that a non-ion conductive polymer compound (carboxymethyl cellulose (CMC)) was used in place of the ion conductive polymer compound (PEO), A similar procedure was followed. In Table 1, carboxymethyl cellulose (CMC) is also shown in the column of the ion conductive substance.
続いて、複数の第1負極活物質粒子と、複数の第2負極活物質粒子(黒鉛)と、負極結着剤(ポリフッ化ビニリデン)3.0質量部と、負極導電剤(カーボンブラック)2.0質量部とを混合することにより、負極合剤とした。複数の第1負極活物質粒子および複数の第2負極活物質粒子のそれぞれの混合比(重量%)と、重量割合R3(重量%)とは、表1に示した通りである。この場合には、表1に示したように、複数の第2負極活物質粒子のメジアン径D50(μm)を調整した。続いて、有機溶剤(N-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体34A(帯状の銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層34Bを形成した。最後に、ロールプレス機を用いて負極活物質層34Bを圧縮成型した。
Then, a plurality of first negative electrode active material particles, a plurality of second negative electrode active material particles (graphite), a negative electrode binder (polyvinylidene fluoride) 3.0 parts by mass, and a negative electrode conductive agent (carbon black) 2 A negative electrode mixture was obtained by mixing with 0.0 part by mass. The mixing ratio (% by weight) of each of the plurality of first negative electrode active material particles and each of the plurality of second negative electrode active material particles and the weight ratio R3 (% by weight) are as shown in Table 1. In this case, as shown in Table 1, the median diameter D50 (μm) of the plurality of second negative electrode active material particles was adjusted. Subsequently, the negative electrode mixture was put into an organic solvent (N-methyl-2-pyrrolidone), and the organic solvent was stirred to prepare a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 34A (strip-shaped copper foil, thickness = 15 μm) using a coating device, and then the negative electrode mixture slurry is dried to obtain a negative electrode active material. Layer 34B was formed. Finally, the negative electrode active material layer 34B was compression-molded using a roll press.
なお、負極34を作製したのち、水銀ポロシメータを用いて対応孔径(μm)を調べたところ、表2に示した結果が得られた。水銀ポロシメータの型番および測定条件などに関する詳細は、上記した通りである。この場合には、表1および表2に示したように、複数の第1負極活物質粒子のメジアン径D50および複数の第2負極活物質粒子のメジアン径D50のそれぞれを変更することにより、対応孔径を調整した。
After preparing the negative electrode 34, the corresponding pore diameter (μm) was examined using a mercury porosimeter, and the results shown in Table 2 were obtained. The details regarding the model number of the mercury porosimeter and the measurement conditions are as described above. In this case, as shown in Table 1 and Table 2, by changing the median diameter D50 of the plurality of first negative electrode active material particles and the median diameter D50 of the plurality of second negative electrode active material particles, respectively, The pore size was adjusted.
電解液を調製する場合には、溶媒(炭酸エチレンおよび炭酸ジメチル)に電解質塩(六フッ化リン酸リチウム)を加えたのち、その溶媒を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸ジメチル=40:60とすると共に、電解質塩の含有量を溶媒に対して1.0mol/kgとした。
When preparing the electrolytic solution, the electrolyte salt (lithium hexafluorophosphate) was added to the solvent (ethylene carbonate and dimethyl carbonate), and then the solvent was stirred. In this case, the mixing ratio (weight ratio) of the solvent was ethylene carbonate: dimethyl carbonate = 40: 60, and the content of the electrolyte salt was 1.0 mol / kg with respect to the solvent.
リチウムイオン二次電池を組み立てる場合には、最初に、正極集電体33Aにアルミニウム製の正極リード31を溶接すると共に、負極集電体34Aに銅製の負極リード32を溶接した。続いて、セパレータ35(微多孔性ポリエチレンフィルム,厚さ=15μm)を介して正極33および負極34を互いに積層させることにより、積層体を得た。続いて、積層体を巻回させたのち、その積層体に保護テープ37を貼り付けることにより、巻回体を得た。
When assembling a lithium ion secondary battery, first, the positive electrode lead 31 made of aluminum was welded to the positive electrode collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode collector 34A. Then, the positive electrode 33 and the negative electrode 34 were laminated | stacked on each other through the separator 35 (microporous polyethylene film, thickness = 15 micrometers), and the laminated body was obtained. Then, after winding the laminated body, a protective tape 37 was attached to the laminated body to obtain a wound body.
続いて、巻回体を挟むように外装部材40を折り畳んだのち、その外装部材40のうちの2辺の外周縁部同士を互いに熱融着した。外装部材40としては、表面保護層(ナイロンフィルム,厚さ=25μm)と、金属層(アルミニウム箔,厚さ=40μm)と、融着層(ポリプロピレンフィルム,厚さ=30μm)とがこの順に積層されたアルミラミネートフィルムを用いた。この場合には、外装部材40と正極リード31との間に密着フィルム41(ポリプロピレンフィルム)を挿入すると共に、外装部材40と負極リード32との間に密着フィルム42(ポリプロピレンフィルム)を挿入した。
Subsequently, the exterior member 40 was folded so as to sandwich the wound body, and the outer peripheral edge portions of the two sides of the exterior member 40 were heat-sealed to each other. As the exterior member 40, a surface protective layer (nylon film, thickness = 25 μm), a metal layer (aluminum foil, thickness = 40 μm), and a fusion bonding layer (polypropylene film, thickness = 30 μm) are laminated in this order. The aluminum laminated film thus prepared was used. In this case, the adhesion film 41 (polypropylene film) was inserted between the exterior member 40 and the positive electrode lead 31, and the adhesion film 42 (polypropylene film) was inserted between the exterior member 40 and the negative electrode lead 32.
最後に、外装部材40の内部に電解液を注入することにより、その電解液を巻回体に含浸させたのち、減圧環境中において外装部材40のうちの残りの1辺の外周縁部同士を熱融着した。これにより、巻回電極体30が形成されると共に、その巻回電極体30が外装部材40の内部に封入されたため、ラミネートフィルム型のリチウムイオン二次電池が完成した。
Finally, the wound body is impregnated with the electrolytic solution by injecting the electrolytic solution into the exterior member 40, and then the outer peripheral edge portions of the remaining one side of the exterior member 40 in the reduced pressure environment. Heat fused. As a result, the spirally wound electrode body 30 was formed, and the spirally wound electrode body 30 was enclosed inside the exterior member 40. Thus, a laminated film type lithium ion secondary battery was completed.
[リチウムイオン電池特性の評価]
リチウムイオン二次電池の電池特性を評価したところ、表2に示した結果が得られた。ここでは、リチウムイオンの入出力特性を表す負荷特性を調べた。 [Evaluation of lithium-ion battery characteristics]
When the battery characteristics of the lithium ion secondary battery were evaluated, the results shown in Table 2 were obtained. Here, the load characteristic showing the input / output characteristic of lithium ion was investigated.
リチウムイオン二次電池の電池特性を評価したところ、表2に示した結果が得られた。ここでは、リチウムイオンの入出力特性を表す負荷特性を調べた。 [Evaluation of lithium-ion battery characteristics]
When the battery characteristics of the lithium ion secondary battery were evaluated, the results shown in Table 2 were obtained. Here, the load characteristic showing the input / output characteristic of lithium ion was investigated.
負荷特性を調べる場合には、最初に、リチウムイオン二次電池の状態を安定化させるために、常温環境中(温度=23℃)においてリチウムイオン二次電池を1サイクル充放電させた。充電時には、0.2Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電したと共に、0.2Cの電流で電圧が2.5Vに到達するまで定電流放電した。なお、0.2Cおよび0.05Cとは、電池容量(理論容量)をそれぞれ5時間および20時間で放電しきる電流値である。
When examining the load characteristics, first, in order to stabilize the state of the lithium ion secondary battery, the lithium ion secondary battery was charged and discharged for one cycle in a normal temperature environment (temperature = 23 ° C). At the time of charging, constant current charging was performed with a current of 0.2 C until the voltage reached 4.2 V, and then constant voltage charging was performed with a current of 4.2 V until the current reached 0.05 C, and a current of 0.2 C At that time, constant current discharge was performed until the voltage reached 2.5V. Note that 0.2 C and 0.05 C are current values at which the battery capacity (theoretical capacity) is completely discharged in 5 hours and 20 hours, respectively.
続いて、同環境中においてリチウムイオン二次電池を1サイクル充放電させたのち、2サイクル目の放電容量を測定した。充放電条件は、リチウムイオン二次電池の状態を安定化させた場合と同様にした。
Next, after charging and discharging the lithium-ion secondary battery for one cycle in the same environment, the discharge capacity at the second cycle was measured. The charging / discharging conditions were the same as when the state of the lithium ion secondary battery was stabilized.
続いて、同環境中においてリチウムイオン二次電池を1サイクル充放電させたのち、3サイクル目の放電容量を測定した。充放電条件は、放電時の電流を1.0C、1.5Cおよび2.0Cのそれぞれに変更したことを除いて、リチウムイオン二次電池の状態を安定化させた場合と同様にした。なお、1.0C、1.5Cおよび2.0Cとは、電池容量(理論容量)をそれぞれ1時間、2/3時間および0.5時間で放電しきる電流値である。
Next, after charging and discharging the lithium-ion secondary battery for 1 cycle in the same environment, the discharge capacity at the 3rd cycle was measured. The charging / discharging conditions were the same as those in the case where the state of the lithium ion secondary battery was stabilized, except that the current during discharging was changed to 1.0 C, 1.5 C and 2.0 C, respectively. It should be noted that 1.0 C, 1.5 C and 2.0 C are current values at which the battery capacity (theoretical capacity) is completely discharged in 1 hour, 2/3 hours and 0.5 hour, respectively.
最後に、負荷維持率(%)=(3サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。なお、表1に記載した「1.0C」、「1.5C」および「2.0C」のそれぞれは、3サイクル目の放電時における電流値を表している。
Finally, the load maintenance ratio (%) = (discharge capacity at the 3rd cycle / discharge capacity at the 2nd cycle) × 100 was calculated. In addition, each of "1.0C", "1.5C", and "2.0C" described in Table 1 represents a current value at the time of discharging in the third cycle.
[考察]
表1および表2に示したように、負荷維持率は、負極34の構成、より具体的には対応孔径に応じて大きく変動した。具体的には、対応孔径が1μm~3μmの範囲内である場合(実験例1~14)には、対応孔径が1μm~3μmの範囲外である場合(実験例15,16)と比較して、放電時の電流値に依存せずに負荷維持率が増加した。このように負荷維持率が増加した結果は、負極34においてリチウムイオンが入出力しやすくなったことを表している。 [Discussion]
As shown in Table 1 and Table 2, the load retention rate greatly fluctuated according to the configuration of thenegative electrode 34, more specifically, the corresponding pore diameter. Specifically, when the corresponding pore diameter is within the range of 1 μm to 3 μm (Experimental Examples 1 to 14), compared with the case where the corresponding pore diameter is outside the range of 1 μm to 3 μm (Experimental Examples 15 and 16). , The load retention rate increased without depending on the current value during discharge. The result of the increase in the load maintenance rate in this manner indicates that lithium ions are easily input and output to and from the negative electrode 34.
表1および表2に示したように、負荷維持率は、負極34の構成、より具体的には対応孔径に応じて大きく変動した。具体的には、対応孔径が1μm~3μmの範囲内である場合(実験例1~14)には、対応孔径が1μm~3μmの範囲外である場合(実験例15,16)と比較して、放電時の電流値に依存せずに負荷維持率が増加した。このように負荷維持率が増加した結果は、負極34においてリチウムイオンが入出力しやすくなったことを表している。 [Discussion]
As shown in Table 1 and Table 2, the load retention rate greatly fluctuated according to the configuration of the
特に、対応孔径が1μm~3μmの範囲内である場合には、以下の傾向が得られた。第1に、重量割合R1が1.0重量%~2.5重量%であると、高い負荷維持率が得られた。第2に、重量割合R2が60.6重量%~85.9重量%であると、高い負荷維持率が得られた。第3に、複数の第1負極活物質粒子のメジアン径D50が3.5μm~13.0μmであると共に、複数の第2負極活物質粒子のメジアン径D50が7.0μm~20.0μmであると、高い負荷維持率が得られた。第4に、重量割合R3が10.5重量%~42.1重量%であると、高い負荷維持率が得られた。
The following tendencies were obtained especially when the corresponding pore size was in the range of 1 μm to 3 μm. First, when the weight ratio R1 was 1.0% by weight to 2.5% by weight, a high load retention rate was obtained. Secondly, when the weight ratio R2 was 60.6% by weight to 85.9% by weight, a high load retention rate was obtained. Thirdly, the median diameter D50 of the plurality of first negative electrode active material particles is 3.5 μm to 13.0 μm, and the median diameter D50 of the plurality of second negative electrode active material particles is 7.0 μm to 20.0 μm. And a high load maintenance rate was obtained. Fourthly, when the weight ratio R3 was 10.5% by weight to 42.1% by weight, a high load retention rate was obtained.
もちろん、イオン伝導性高分子化合物(PEO)を用いた場合(実験例1)には、非イオン伝導性高分子化合物(CMC)を用いた場合(実験例17)と比較して、放電時の電流値に依存せずに負荷維持率が大幅に増加した。
Of course, in the case of using the ion conductive polymer compound (PEO) (Experimental example 1), as compared with the case of using the non-ion conductive polymer compound (CMC) (Experimental example 17), the discharge The load maintenance ratio increased significantly without depending on the current value.
[まとめ]
表1および表2に示した結果から、細孔を有する負極活物質層34Bが複数の第1負極活物質粒子(イオン伝導性物質、複数の炭素含有粒子および複数のケイ素含有粒子)および複数の第2負極活物質粒子を含んでおり、対応孔径が1μm~3μmであると、リチウムイオン二次電池の負荷特性が改善された。よって、リチウムイオン二次電池において優れた電池特性が得られた。 [Summary]
From the results shown in Table 1 and Table 2, the negative electrodeactive material layer 34B having pores has a plurality of first negative electrode active material particles (ion conductive material, a plurality of carbon-containing particles and a plurality of silicon-containing particles) and a plurality of When the second negative electrode active material particles were included and the corresponding pore diameter was 1 μm to 3 μm, the load characteristics of the lithium ion secondary battery were improved. Therefore, excellent battery characteristics were obtained in the lithium ion secondary battery.
表1および表2に示した結果から、細孔を有する負極活物質層34Bが複数の第1負極活物質粒子(イオン伝導性物質、複数の炭素含有粒子および複数のケイ素含有粒子)および複数の第2負極活物質粒子を含んでおり、対応孔径が1μm~3μmであると、リチウムイオン二次電池の負荷特性が改善された。よって、リチウムイオン二次電池において優れた電池特性が得られた。 [Summary]
From the results shown in Table 1 and Table 2, the negative electrode
以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の態様は一実施形態および実施例において説明された態様に限定されないため、その本技術の態様は種々に変形可能である。
Although the present technology has been described above with reference to the embodiment and the example, the aspect of the present technology is not limited to the aspect described in the embodiment and the example, and thus the aspect of the present technology can be variously modified. Is.
具体的には、円筒型のリチウムイオン二次電池およびラミネートフィルム型のリチウムイオン二次電池に関して説明したが、それらに限られない。例えば、角型のリチウムイオン二次電池およびコイン型のリチウムイオン二次電池などの他のリチウムイオン二次電池でもよい。
Specifically, the cylindrical lithium ion secondary battery and the laminate film type lithium ion secondary battery have been described, but the invention is not limited to them. For example, other lithium ion secondary batteries such as a prismatic lithium ion secondary battery and a coin type lithium ion secondary battery may be used.
また、電池素子が巻回構造を有する場合に関して説明したが、それに限られない。例えば、電池素子が積層構造などの他の構造を有していてもよい。
Also, the case where the battery element has a winding structure has been described, but the invention is not limited to this. For example, the battery element may have another structure such as a laminated structure.
なお、本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して他の効果が得られてもよい。
Note that the effects described in the present specification are merely examples, and the effects of the present technology are not limited to the effects described in the present specification. Therefore, other effects may be obtained with the present technology.
Claims (8)
- 正極と、
複数の細孔を有する負極活物質層を備え、前記負極活物質層は、複数の第1負極活物質粒子および複数の第2負極活物質粒子を含み、前記複数の第1負極活物質粒子のそれぞれは、イオン伝導性物質中に複数の炭素含有粒子および複数のケイ素含有粒子を含み、前記第2負極活物質粒子のそれぞれは、炭素含有材料を含有し、前記複数の細孔に対する水銀の浸入量の体積分率がピークを示す孔径の範囲は、1μm以上3μm以下である、負極と、
電解液と
を備えた、リチウムイオン二次電池。 The positive electrode,
A negative electrode active material layer having a plurality of pores, wherein the negative electrode active material layer includes a plurality of first negative electrode active material particles and a plurality of second negative electrode active material particles, the plurality of first negative electrode active material particles Each contains a plurality of carbon-containing particles and a plurality of silicon-containing particles in an ion conductive material, each of the second negative electrode active material particles contains a carbon-containing material, and the mercury infiltration into the plurality of pores. The negative electrode having a pore size range in which the volume fraction of the amount shows a peak is 1 μm or more and 3 μm or less;
A lithium-ion secondary battery including an electrolytic solution. - 前記イオン伝導性物質は、イオン伝導性高分子化合物および固体電解質のうちの少なくとも一方を含む、
請求項1記載のリチウムイオン二次電池。 The ion conductive material includes at least one of an ion conductive polymer compound and a solid electrolyte,
The lithium-ion secondary battery according to claim 1. - 前記イオン伝導性物質のイオン伝導度は、10-6S/cm以上10-1S/cm以下である、
請求項1または請求項2に記載のリチウムイオン二次電池。 The ionic conductivity of the ionic conductive material is 10 -6 S / cm or more and 10 -1 S / cm or less,
The lithium ion secondary battery according to claim 1 or 2. - 前記第1負極活物質粒子の重量に対して前記イオン伝導性物質の重量が占める割合は、1.0重量%以上2.5重量%以下である、
請求項1ないし請求項3のいずれか1項に記載のリチウムイオン二次電池。 The ratio of the weight of the ion conductive material to the weight of the first negative electrode active material particles is 1.0 wt% or more and 2.5 wt% or less,
The lithium ion secondary battery according to any one of claims 1 to 3. - 前記複数の炭素含有粒子の重量と前記複数のケイ素含有粒子の重量との総和に対して前記複数のケイ素含有粒子の重量が占める割合は、60.6重量%以上85.9重量%以下である、
請求項1ないし請求項4のいずれか1項に記載のリチウムイオン二次電池。 The ratio of the weight of the plurality of silicon-containing particles to the total weight of the plurality of carbon-containing particles and the weight of the plurality of silicon-containing particles is 60.6% by weight or more and 85.9% by weight or less. ,
The lithium ion secondary battery according to any one of claims 1 to 4. - 前記複数の第1負極活物質粒子のメジアン径D50は、3.5μm以上13.0μm以下であり、
前記複数の第2負極活物質粒子のメジアン径D50は、7.0μm以上20.0μm以下である、
請求項1ないし請求項5のいずれか1項に記載のリチウムイオン二次電池。 The median diameter D50 of the plurality of first negative electrode active material particles is 3.5 μm or more and 13.0 μm or less,
The median diameter D50 of the plurality of second negative electrode active material particles is 7.0 μm or more and 20.0 μm or less,
The lithium ion secondary battery according to any one of claims 1 to 5. - 前記複数の第1負極活物質粒子の重量と前記複数の第2負極活物質粒子の重量との総和に対して前記複数の第1負極活物質粒子の重量が占める割合は、10.5重量%以上42.1重量%以下である、
請求項1ないし請求項6のいずれか1項に記載のリチウムイオン二次電池。 The ratio of the weight of the plurality of first negative electrode active material particles to the total weight of the plurality of first negative electrode active material particles and the weight of the plurality of second negative electrode active material particles is 10.5% by weight. Or more and 42.1% by weight or less,
The lithium ion secondary battery according to any one of claims 1 to 6. - 複数の細孔を有する負極活物質層を備え、
前記負極活物質層は、複数の第1負極活物質粒子および複数の第2負極活物質粒子を含み、
前記複数の第1負極活物質粒子のそれぞれは、イオン伝導性物質中に複数の炭素含有粒子および複数のケイ素含有粒子を含み、
前記第2負極活物質粒子のそれぞれは、炭素含有材料を含有し、
前記複数の細孔に対する水銀の浸入量の体積分率がピークを示す孔径の範囲は、1μm以上3μm以下である、
リチウムイオン二次電池用負極。 A negative electrode active material layer having a plurality of pores,
The negative electrode active material layer includes a plurality of first negative electrode active material particles and a plurality of second negative electrode active material particles,
Each of the plurality of first negative electrode active material particles includes a plurality of carbon-containing particles and a plurality of silicon-containing particles in the ion conductive material,
Each of the second negative electrode active material particles contains a carbon-containing material,
The range of the pore diameter at which the volume fraction of the amount of infiltration of mercury into the plurality of pores shows a peak is 1 μm or more and 3 μm or less,
Negative electrode for lithium-ion secondary battery.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19873222.4A EP3869586A4 (en) | 2018-10-17 | 2019-10-10 | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
CN201980066589.6A CN112805849B (en) | 2018-10-17 | 2019-10-10 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
JP2020553124A JP7074203B2 (en) | 2018-10-17 | 2019-10-10 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
US17/232,334 US20210242489A1 (en) | 2018-10-17 | 2021-04-16 | Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-195504 | 2018-10-17 | ||
JP2018195504 | 2018-10-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/232,334 Continuation US20210242489A1 (en) | 2018-10-17 | 2021-04-16 | Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020080245A1 true WO2020080245A1 (en) | 2020-04-23 |
Family
ID=70283384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039972 WO2020080245A1 (en) | 2018-10-17 | 2019-10-10 | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210242489A1 (en) |
EP (1) | EP3869586A4 (en) |
JP (1) | JP7074203B2 (en) |
CN (1) | CN112805849B (en) |
WO (1) | WO2020080245A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021070564A1 (en) * | 2019-09-16 | 2021-04-15 | 川上総一郎 | Negative-electrode active material for lithium-ion secondary battery, production method for same, electrode structure, and secondary battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20250070967A (en) * | 2023-11-14 | 2025-05-21 | 삼성에스디아이 주식회사 | Negative electrode for recahrgaeble lithium battery fand rechargeable lithium battery including the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010287505A (en) * | 2009-06-12 | 2010-12-24 | Toyota Motor Corp | Manufacturing method and electrode structure of negative electrode for secondary battery |
JP2013157339A (en) | 2013-05-23 | 2013-08-15 | Jfe Chemical Corp | Negative electrode mixture for lithium ion secondary battery |
JP2015125818A (en) * | 2013-12-25 | 2015-07-06 | Jsr株式会社 | ELECTRODE PARTICLE, ELECTRODE AND ELECTRIC STORAGE DEVICE |
JP2016100226A (en) * | 2014-11-21 | 2016-05-30 | 日立化成株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2018088406A (en) * | 2016-11-22 | 2018-06-07 | 三菱ケミカル株式会社 | Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040214085A1 (en) * | 2003-01-06 | 2004-10-28 | Kyou-Yoon Sheem | Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery |
KR20130090913A (en) * | 2005-10-20 | 2013-08-14 | 미쓰비시 가가꾸 가부시키가이샤 | Lithium secondary cell and nonaqueous electrolytic solution for use therein |
WO2008023744A1 (en) * | 2006-08-22 | 2008-02-28 | Mitsubishi Chemical Corporation | Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same |
JP4998358B2 (en) * | 2008-04-08 | 2012-08-15 | ソニー株式会社 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
KR101057162B1 (en) * | 2008-12-01 | 2011-08-16 | 삼성에스디아이 주식회사 | Anode active material, anode and lithium secondary battery having same |
EP2634847B1 (en) * | 2010-10-29 | 2018-12-12 | Mitsubishi Chemical Corporation | Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery |
JP5636351B2 (en) * | 2011-09-27 | 2014-12-03 | 株式会社東芝 | Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for producing negative electrode active material for nonaqueous electrolyte secondary battery |
KR20140022682A (en) * | 2012-08-14 | 2014-02-25 | 삼성에스디아이 주식회사 | Negative active material for rechargeable lithium battery, and negative electrode and rechargeable lithium battery including same |
KR102202366B1 (en) * | 2013-08-20 | 2021-01-13 | 강원대학교산학협력단 | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
JP6240586B2 (en) * | 2014-10-28 | 2017-11-29 | Jfeケミカル株式会社 | Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery |
TWI594487B (en) * | 2015-04-28 | 2017-08-01 | 烏明克公司 | Composite powder for use in an anode of a lithium ion battery, method for manufacturing a composite powder and lithium ion battery |
JP6094932B2 (en) * | 2015-06-02 | 2017-03-15 | 富士シリシア化学株式会社 | Composition for negative electrode active material, negative electrode, non-aqueous electrolyte secondary battery, and method for producing composition for negative electrode active material |
CN107925060A (en) * | 2015-08-04 | 2018-04-17 | 三井化学株式会社 | Composite material paste, lithium ion secondary battery cathode, the manufacture method of lithium ion secondary battery cathode and the lithium rechargeable battery of lithium ion secondary battery negative pole |
CN107615524A (en) * | 2015-08-10 | 2018-01-19 | 索尼公司 | Secondary battery cathode and its preparation method, secondary cell and its preparation method, battery pack, electric vehicle, power storage system, electric tool and electronic equipment |
EP3373377A1 (en) * | 2015-11-06 | 2018-09-12 | Hitachi, Ltd. | Lithium ion secondary battery and method for manufacturing lithium ion secondary battery |
KR102591512B1 (en) * | 2016-09-30 | 2023-10-23 | 삼성전자주식회사 | Negative active material, lithium secondary battery including the material, and method for manufacturing the material |
CN110024189B (en) * | 2016-11-22 | 2022-08-30 | 三菱化学株式会社 | Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery |
US10211455B2 (en) * | 2017-02-20 | 2019-02-19 | Nanotek Instruments, Inc. | Lithium secondary batteries containing protected particles of anode active materials and method of manufacturing |
US20180316002A1 (en) * | 2017-04-27 | 2018-11-01 | Tec One Co., Ltd. | Carbon-silicon composite material, negative electrode, and secondary battery |
US10424810B2 (en) * | 2017-10-13 | 2019-09-24 | Global Graphene Group, Inc. | Surface-stabilized anode active material particulates for lithium batteries and production method |
-
2019
- 2019-10-10 CN CN201980066589.6A patent/CN112805849B/en active Active
- 2019-10-10 EP EP19873222.4A patent/EP3869586A4/en active Pending
- 2019-10-10 WO PCT/JP2019/039972 patent/WO2020080245A1/en unknown
- 2019-10-10 JP JP2020553124A patent/JP7074203B2/en active Active
-
2021
- 2021-04-16 US US17/232,334 patent/US20210242489A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010287505A (en) * | 2009-06-12 | 2010-12-24 | Toyota Motor Corp | Manufacturing method and electrode structure of negative electrode for secondary battery |
JP2013157339A (en) | 2013-05-23 | 2013-08-15 | Jfe Chemical Corp | Negative electrode mixture for lithium ion secondary battery |
JP2015125818A (en) * | 2013-12-25 | 2015-07-06 | Jsr株式会社 | ELECTRODE PARTICLE, ELECTRODE AND ELECTRIC STORAGE DEVICE |
JP2016100226A (en) * | 2014-11-21 | 2016-05-30 | 日立化成株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2018088406A (en) * | 2016-11-22 | 2018-06-07 | 三菱ケミカル株式会社 | Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery |
Non-Patent Citations (1)
Title |
---|
See also references of EP3869586A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021070564A1 (en) * | 2019-09-16 | 2021-04-15 | 川上総一郎 | Negative-electrode active material for lithium-ion secondary battery, production method for same, electrode structure, and secondary battery |
JPWO2021070564A1 (en) * | 2019-09-16 | 2021-04-15 | ||
JP7394406B2 (en) | 2019-09-16 | 2023-12-08 | 川上 総一郎 | Negative electrode active material for lithium ion secondary batteries, manufacturing method thereof, electrode structure, and secondary battery |
Also Published As
Publication number | Publication date |
---|---|
EP3869586A4 (en) | 2022-07-13 |
US20210242489A1 (en) | 2021-08-05 |
EP3869586A1 (en) | 2021-08-25 |
CN112805849B (en) | 2024-09-10 |
JPWO2020080245A1 (en) | 2021-09-02 |
CN112805849A (en) | 2021-05-14 |
JP7074203B2 (en) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101689496B1 (en) | Non-aqueous electrolyte secondary battery | |
JP7697988B2 (en) | Positive electrode for lithium secondary battery, method for producing same, and lithium secondary battery including same | |
US20140363736A1 (en) | Lithium secondary battery including multi-layered active material layers | |
JP4905267B2 (en) | Positive electrode mixture and non-aqueous electrolyte battery | |
US20070248884A1 (en) | Negative electrode and secondary battery | |
CN110832678A (en) | Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device | |
US12057578B2 (en) | Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP6962373B2 (en) | Laminated structure and its manufacturing method, and roll press equipment | |
JP7107382B2 (en) | secondary battery | |
US20210242489A1 (en) | Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
KR102563788B1 (en) | Electrolyte for lithium ion secondary battery and lithium ion secondary battery | |
JP2011086503A (en) | Lithium ion secondary battery, and negative electrode for the same | |
WO2020065832A1 (en) | Electrically conductive substance, positive electrode, and secondary battery | |
JP2019169392A (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2020071469A1 (en) | Electrolyte solution for lithium ion secondary batteries, and lithium ion secondary battery | |
US12300783B2 (en) | Secondary battery | |
JP6709991B2 (en) | Lithium ion secondary battery | |
US20210210760A1 (en) | Secondary battery | |
JP3575308B2 (en) | Non-aqueous electrolyte secondary battery | |
WO2020059873A1 (en) | Secondary battery | |
CN112956053B (en) | Secondary battery | |
JP7044174B2 (en) | Secondary battery | |
JP2011086468A (en) | Nonaqueous electrolyte battery | |
CN118352469A (en) | High performance lithium ion battery cell design with Lithiated Silicon Oxide (LSO) anode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19873222 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020553124 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019873222 Country of ref document: EP Effective date: 20210517 |