WO2020073285A1 - 低接触电阻的三族氮化物p型欧姆电极结构 - Google Patents
低接触电阻的三族氮化物p型欧姆电极结构 Download PDFInfo
- Publication number
- WO2020073285A1 WO2020073285A1 PCT/CN2018/109876 CN2018109876W WO2020073285A1 WO 2020073285 A1 WO2020073285 A1 WO 2020073285A1 CN 2018109876 W CN2018109876 W CN 2018109876W WO 2020073285 A1 WO2020073285 A1 WO 2020073285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode structure
- crystal
- group iii
- iii nitride
- crystal orientation
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/62—Electrodes ohmically coupled to a semiconductor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
Definitions
- the invention relates to the technical field of semiconductor devices, in particular to a group III nitride p-type ohmic electrode structure with low contact resistance.
- Compound semiconductor gallium nitride (GaN) -based materials have wide direct band gaps, strong atomic bonds, high thermal conductivity, good chemical stability, strong radiation resistance, fast electron saturation migration, and other excellent chemical and Physical characteristics.
- GaN gallium nitride
- the band gap of the material can be changed, the energy band can be cut, and the corresponding wavelength of the band gap from infrared to deep ultraviolet can also be achieved Of continuous changes.
- Group III nitrides represented by GaN receive extensive attention in the field of semiconductor research, and are also widely used in the field of optoelectronics and electronic devices. Since the 1990s, the research and development of Group III nitride semiconductors in the fields of blue, green, ultraviolet light-emitting diodes (LED) and laser diodes (LD), ultraviolet photodetectors (PD), high-frequency microwave devices and power electronic devices Great progress has been made in the application. However, there are still many problems in its material preparation and device fabrication.
- Ohmic contact refers to the contact between the metal and the semiconductor, and the resistance value of the contact surface is much smaller than the resistance of the semiconductor itself.
- the ideal voltage drop on the contact surface of the ohmic contact is negligible compared with the voltage drop on the active area of the device. That is, no obvious additional impedance will be generated.
- the barrier model and the tunneling model good ohmic contact can be obtained mainly from the following aspects: first, choose a contact metal with a work function greater than the p-type group III nitride material, empty The holes will flow from the metal to the p-type group III nitride to form a positive space charge region at the contact.
- This high-conductivity region is called an anti-blocking layer to obtain a good ohmic contact with almost no impedance; but due to the work function of the p-type GaN material itself (7.5 eV) is very high, and the work function of its ternary and quaternary compounds increases with the width of the forbidden band. As a result, none of the current metals have sufficient high work function to form good p-type ohmic contacts.
- magnesium is the most suitable p-type acceptor doping element for Group III nitride materials.
- a thin Mg heavily-doped layer is usually grown after the p-type layer to reduce the p-type Ohmic contact resistance.
- the ionization energy of Mg acceptor impurities in GaN is 150-180 meV, which is much higher than the thermal energy at room temperature of 26 meV
- the ionization at room temperature The rate is very low, it is difficult to form an effective number of ions, resulting in a limited tunneling effect;
- the low solid solubility of Mg in the Group III nitride material limiting the concentration of heavy doping, excessive heavy doping Not only will Mg-derived compounds and complexes be produced, but also the quality of the crystal will deteriorate and the surface roughness will increase, which is not conducive to device fabrication.
- An object of the present invention is to provide an electrode structure that optimizes the ohmic contact between a metal and a p-type III-nitride material along the crystal direction of a III-nitride.
- the solution of the present invention is to provide a group III nitride p-type ohmic electrode structure with low contact resistance, the direction of the electrode pattern line body of the electrode structure is the same as the first crystal direction or the second crystal direction of the group III nitride Or the equivalent crystal orientation directions of the first crystal orientation and the second crystal orientation are consistent, and the crystal orientation index of the first crystal orientation is , The crystal orientation index of the second crystal orientation is , The first crystal direction is rotated clockwise by 120 ° and is parallel to the second crystal direction, the bonding pad part of the electrode structure is located at the geometric center of the electrode structure or the intersection of any electrode pattern line body .
- the electrode structure is in the shape of a regular hexagonal spider web, including concentric regular hexagonal linear bodies, three regular diagonal linear bodies connecting three pairs of positive diagonal lines of the regular hexagonal linear bodies, located at the electrodes The electrode part of the welding wire at the geometric center of the structure or the intersection of the line body of any electrode pattern.
- two of the three sets of opposite sides of the regular hexagonal line body are respectively consistent with the first crystal direction and the second crystal direction of the group III nitride, and the remaining group is the same as the first crystal of the group III nitride
- the directions of the equivalent crystal directions of the two directions are the same.
- the three diagonal lines are consistent with the first crystal orientation, the second crystal orientation, the equivalent crystal orientation directions of the first crystal orientation and the second crystal orientation of the group III nitride, respectively.
- the number and size of the regular hexagonal linear bodies are not limited, and the length and size of the corresponding positive diagonal linear bodies are not limited.
- the electrode structure has a honeycomb shape, including a plurality of regular hexagonal line bodies densely connected in a honeycomb shape, a welding wire electrode portion located at the geometric center of the electrode structure or at any intersection point of the electrode pattern line bodies.
- the electrode structure is arcuate, including a plurality of line bodies forming an arcuate shape, and a wire electrode part located at the geometric center of the electrode structure.
- the bonding pad portion is any one of circular, elliptical, rectangular, and regular polygonal.
- a layer of p-type ohmic contact conductive film that completely covers the shape of the electrode structure is deposited on the surface of the electrode structure.
- the present invention is mainly to obtain good ohmic contact characteristics on p-type group III nitride materials.
- the light holes in the group III nitride materials are with
- the crystal direction has a lower effective mass, and the electrode structure along the crystal direction can maximize the use of the group III nitride material crystal direction and the higher tunneling probability characteristics of its equivalent crystal direction, thereby reducing the contact resistivity, and it is
- the technical methods of selecting high work function metal and heavy doping technology to optimize the ohmic contact of p-type materials do not conflict, and can be used together to improve the ohmic contact characteristics.
- TLM Transmission Line Model
- the test resistivity values of the ohmic contact electrodes in each case are arranged from small to large, and the contact resistivity is shown in FIG. 5.
- the abscissa is the sequence number of the test times
- the ordinate is the resistivity value obtained by the test
- the curves a, b, and c are the reference group of the ohmic contact electrode with a deflection of 11 °
- Crystal contact electrode and Line chart of resistivity distribution of crystal-direction contact electrode The data shows that the two groups of crystal-oriented ohmic contact electrodes both exhibit lower specific contact resistivity than ohmic contact electrodes with a deflection angle of 11 °.
- the specific contact resistivity is expressed as,
- the ⁇ c value of the crystal contact electrode is between 3.97 ⁇ 10 -8 ⁇ 3.36 ⁇ 10 -7 ⁇ ⁇ m 2
- the ⁇ c value of the crystal-direction contact electrode is between 1.57 ⁇ 10 -7 ⁇ 1.11 ⁇ 10 -6 ⁇ ⁇ m 2
- the ⁇ c value of the 11 ° deflection contact electrode is 2.13 ⁇ 10 -5 ⁇ 8.81 ⁇ 10 -5
- the average specific contact resistivity of crystal-oriented ohmic contact electrodes is 2-3 orders of magnitude lower than the average value of electrodes with an angle of 11 °.
- FIG. 1 is a schematic structural diagram of a first embodiment of the present invention.
- FIG. 2 is a schematic structural diagram of a second embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of a third embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of a fourth embodiment of the present invention.
- FIG. 5 is a graph showing the relationship between the resistivity of the crystal-direction electrode structure and the crystal direction.
- the electrode structure is a regular hexagonal spider web shape, including two concentric regular hexagonal line bodies 110, and three pairs of regular hexagonal line bodies
- One of the diagonal lines 120 and the first crystal orientation of the group III nitride The direction is the same, another diagonal line body 130 and the second crystal direction of the group III nitride The direction is the same, leaving a diagonal line 140 and the first crystal direction of the group III nitride And the second crystal orientation
- the direction of the equivalent crystal direction is the same.
- a layer of nickel / gold (Ni / Au) double-layer alloy with a thickness of less than 10 nm in the shape of a spider web is deposited on top of the electrode to enhance the overall conductivity.
- the number of regular hexagonal linear bodies is not limited to two, and can be increased or decreased as needed.
- the number of positive diagonal linear bodies can also be deleted as needed.
- the electrode structure has a honeycomb shape, including a number of regular hexagonal lines (210, 220) densely connected in a honeycomb shape, located at the geometric center of the electrode structure
- the lines of all regular hexagonal lines are strictly aligned with the first crystal orientation of the group III nitride , Second crystal orientation Or the first crystal orientation And the second crystal orientation Direction of the equivalent crystal orientation.
- no more thin film conductive contacts are added to enhance the conductivity within the electrode coverage.
- the number of regular hexagonal line bodies is not limited, and the regular hexagonal line bodies can be continued to be connected on the basis of the external six regular hexagon line bodies 220 as required, so that the electrode structure is always a honeycomb shape. Regular hexagonal lines can be added with diagonal lines as needed.
- the electrode structure is arcuate, including a plurality of line bodies forming an arcuate shape, and a welding wire electrode part located at the geometric center of the electrode structure.
- a line body forming an arc shape includes two first crystal directions along a group III nitride
- the line body 330 in the direction of the equivalent crystal direction and the wire electrode part 340 are located at the geometric center of the arcuate electrode structure.
- a layer of iridium oxide (IrO 2 ) with a thickness of less than 10 nm in a bow shape is deposited on top of the electrode to enhance the overall conductivity.
- the line body forming the arc shape includes four first crystal directions along the group III nitride Line body 410, 2 along the second crystal direction of Group III nitride Line body 420, 2 along the first crystal orientation of Group III nitrides And the second crystal orientation
- the line body 430 in the direction of the equivalent crystal direction of the crystal direction and the wire electrode part 440 are located at the geometric center of the arcuate electrode structure.
- a further layer of ruthenium oxide (RuO 2 ) in the shape of a bow is deposited above the electrode to enhance the overall conductivity.
- the number of line bodies forming the arcuate electrode structure can be increased or decreased as needed, but the electrode structure is always arcuate.
- the contact portion in any of the above embodiments is any one of a circle, an ellipse, a rectangle, and a regular polygon.
- the specific size ratio of the electrode structure in any of the above embodiments is not limited, and the range of use is not limited to p-GaN, and can also be used for p-AlN and p-InN materials and p-type doped ternary alloys AlGaN, InGaN Material.
- a layer of p-type ohmic contact conductive film that completely covers the shape of the electrode structure is deposited on the surface of the electrode structure. In this way, the expansion of the current within the coverage of the p-type crystal to the ohmic contact electrode can be enhanced, and the electrical conductivity of the electrode structure can be improved.
- TLM Transmission Line Model
- FIG. 5 is the test chart of the contact resistivity in the first embodiment.
- the abscissa is the sequence number of the test times
- the ordinate is the resistivity value obtained by the test
- the curves a, b, and c are the reference group of the ohmic contact electrode with a deflection of 11 °, Crystal contact electrode and Line chart of resistivity distribution of crystal-direction contact electrode.
- the data shows that the two groups of crystal-oriented ohmic contact electrodes both exhibit lower specific contact resistivity than ohmic contact electrodes with a deflection angle of 11 °.
- the specific contact resistivity is expressed as,
- the ⁇ c value of the crystal contact electrode is between 3.97 ⁇ 10 -8 ⁇ 3.36 ⁇ 10 -7 ⁇ ⁇ m 2
- the ⁇ c value of the crystal-direction contact electrode is between 1.57 ⁇ 10 -7 ⁇ 1.11 ⁇ 10 -6 ⁇ ⁇ m 2
- the ⁇ c value of the 11 ° deflection contact electrode is 2.13 ⁇ 10 -5 ⁇ 8.81 ⁇ 10 -5
- the average specific contact resistivity of crystal-oriented ohmic contact electrodes is 2-3 orders of magnitude lower than the average value of electrodes with an angle of 11 °.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明涉及半导体器件技术领域,具体涉及低接触电阻的三族氮化物p型欧姆电极结构,所述电极结构的电极图形线条体的方向均与三族氮化物的第一晶向或第二晶向或第一晶向和第二晶向的等效晶向方向一致,所述第一晶向顺时针旋转120°后与所述第二晶向平行,所述电极结构的焊线电极部分位于电极结构的几何中心或任何电极图形线条体交叉点上。本发明电极结构的目的是为了在p型三族氮化物材料上获得良好的欧姆接触特性,所提出的沿晶向的电极结构能有效利用空穴在三族氮化物材料晶向以及其等效晶向上的高隧穿概率特性,从而降低欧姆接触的电阻率。
Description
本发明涉及半导体器件技术领域,具体涉及低接触电阻的三族氮化物p型欧姆电极结构。
化合物半导体氮化镓(GaN)基材料具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好、强的抗辐照能力、电子饱和迁移速度快等优异的化学和物理特性。特别是,通过调节GaN基材料三元化合物AlGaN、AlInN和InGaN、四元化合物AlInGaN的组分,可改变材料的禁带宽度、实现能带裁剪,也可实现带隙对应波长从红外到深紫外的连续变化。这些材料特性的优势,使得以GaN为代表的三族氮化物在半导体研究领域受到了广泛的关注,在光电子与电子器件领域也得到了广泛的应用。自九十年代以来,三族氮化物半导体在蓝、绿、紫外光发光二极管(LED)和激光二极管(LD),紫外光电探测器(PD)以及高频微波器件和功率电子器件领域的研究与应用中都取得了巨大的进展。但是,当前在其材料制备与器件制作中仍然存在着诸多的问题。其中,在p型GaN及与其相比具有更宽禁带的三、四元化合物材料上制备良好的欧姆接触一直是个挑战,而获得良好的欧姆接触是制备高性能GaN/AlGaN基器件的关键。
欧姆接触是指金属与半导体的接触,而其接触面的电阻值远小于半导体本身的电阻,理想的欧姆接触接触面上的压降与器件有源区上的压降相比,可以忽略不计,即不会产生明显的附加阻抗。根据欧姆接触形成的两种主要理论机制:势垒模型和隧穿模型,获得良好的欧姆接触主要可以从以下方面出发:第一,选择功函数大于p型三族氮化物材料的接触金属,空穴将由金属流向p型三族氮化物在接触处形成正的空间电荷区,该高电导的区域称为反阻挡层,以获得几乎无阻抗的良好欧姆接触;但由于p型GaN材料本身功函数(7.5 eV)很高,其三元、四元化合物的功函数随着禁带宽度的增大而增大,导致目前的金属都不具有足够的高功函数以形成良好p型欧姆接触。第二,通过重掺杂的方式提高隧穿概率。隧穿概率与p型三族氮化物的掺杂浓度、外加电压、接触势垒的高度和空穴的有效质量都有很大的关系。目前镁(Mg)是三族氮化物材料最适合的p型受主掺杂元素,在GaN基光电器件中,通常在p型层之后再生长一薄层的Mg重掺杂层来降低p型欧姆接触电阻。但是,由于宽禁带半导体中的受主离化能较高(GaN中Mg受主杂质的离化能在150~180 meV,远高于室温热能的26 meV),因而在室温下的离化率很低,难以形成有效数量的离子,从而导致隧穿的作用有限;同时,由于Mg在三族氮化物材料中的固溶度较低,限制了重掺杂的浓度,过度的重掺杂不仅会产生Mg的衍生化合物与络合物,还会导致晶体质量劣化,表面粗糙度增加,不利于器件制作。这些因素,均妨碍了GaN基材料良好p型欧姆接触的形成,使得p型欧姆接触电阻有待进一步降低。
本发明的目的是提供一种沿三族氮化物晶向来优化金属与p型三族氮化物材料欧姆接触的电极结构。
本发明的方案为:提供一种低接触电阻的三族氮化物p型欧姆电极结构,所述电极结构的电极图形线条体的方向均与三族氮化物的第一晶向或第二晶向或第一晶向和第二晶向的等效晶向方向一致,所述第一晶向的晶向指数为
,所述第二晶向的晶向指数为
,所述第一晶向顺时针旋转120°后与所述第二晶向平行,所述电极结构的焊线电极(bonding pad)部分位于电极结构的几何中心或任何电极图形线条体交叉点上。
优选地,所述电极结构为正六边形的蜘蛛网形状,包括同心的正六边形线条体、将正六边形线条体的三对正对角连接起来的三条正对角线线条体、位于电极结构的几何中心或任何电极图形线条体交叉点上的焊线电极部分。
优选地,所述正六边形线条体的三组对边中有两组分别与三族氮化物的第一晶向、第二晶向方向一致,剩余一组与三族氮化物的第一晶向和第二晶向的等效晶向方向一致。
优选地,三条所述正对角线线条体分别与三族氮化物的第一晶向、第二晶向、第一晶向和第二晶向的等效晶向方向一致。
优选地,所述正六边形线条体的个数和大小不限,对应的所述正对角线线条体的长度和大小不限。
优选地,所述电极结构为蜂窝形状,包括密集连接成蜂窝状的若干正六边形线条体、位于电极结构的几何中心或任何电极图形线条体交叉点上的焊线电极部分。
优选地,所述电极结构为弓字形,包括若干构成弓字形的线条体、位于电极结构的几何中心的焊线电极部分。
优选地,所述焊线电极(bonding pad)部分为圆形、椭圆形、矩形、正多边形的任一种。
优选地,所述电极结构与三族氮化物材料形成p型欧姆接触后,所述电极结构表面沉积一层将电极结构形状完全覆盖的p型欧姆接触导电薄膜。
1.本发明主要为在p型三族氮化物材料上获得良好的欧姆接触特性,三族氮化物材料中轻空穴在
和
晶向上具有更低有效质量,沿晶向的电极结构能最大程度利用三族氮化物材料晶向、以及其等效晶向上更高的隧穿概率特性,从而降低接触电阻率,并且它与当前选用高功函数金属、重掺杂技术来优化p型材料欧姆接触的技术方法不冲突,可以一并使用,来改善欧姆接触特性。
2.利用矩形传输线模型(TLM,Transmission LineModel)分别对多组p型欧姆接触电极进行电阻率测试。测试中,将沿
、
两个晶向的条形欧姆接触电极分别制作在p-GaN材料上,并对所采用的镍/金(Ni/Au)双层金属电极进行合金退火使其与p型GaN材料形成欧姆接触;同时也制备了参照组的欧姆接触电极,其形状、金属组合与合金条件均与晶向接触电极相同,不同之处仅是将其偏转,使条形电极与
晶向呈11°的角度差。为了方便观察三种情况下测试得到的电阻率分布差异,将每种情况下欧姆接触电极的测试电阻率值从小到大排列,其接触电阻率如图5所示。图中,横坐标为测试次数的排列序号,纵坐标为测试得到的电阻率值,曲线a、b、c分别为偏转11°角的欧姆接触电极参照组、
晶向接触电极和
晶向接触电极的电阻率分布折线图。数据显示,相比偏转11°角的欧姆接触电极,两组晶向欧姆接触电极均表现出较低的比接触电阻率。其中,比接触电阻率分别表现为,
晶向接触电极的ρ
c值在3.97×10
-8 ~3.36×10
-7 Ω·m
2之间,
晶向接触电极的ρ
c值在1.57×10
-7~1.11×10
-6 Ω·m
2之间,而偏转11°角接触电极的ρ
c值在2.13×10
-5~8.81×10
-5 Ω·m
2之间。晶向欧姆接触电极的平均比接触电阻率值比偏转11°角电极的平均值降低了2-3个数量级。这些测试数据表明,晶向欧姆接触电极可大幅度降低p型欧姆接触电阻,从而改善所制作的含有p型欧姆接触的III族氮化物光电子与电子器件的性能。
图1是本发明第一种实施例的结构示意图。
图2是本发明第二种实施例的结构示意图。
图3为本发明第三种实施例的结构示意图。
图4为本发明第四种实施例的结构示意图。
图5为晶向电极结构电阻率与晶向关系图。
本发明下面将结合附图作进一步详述:
请参阅图1所示,作为本发明的第一种实施例,电极结构为正六边形的蜘蛛网形状,包括2个同心的正六边形线条体110、将正六边形线条体的三对正对角连接起来的三条正对角线线条体(120,130,140)、位于电极结构的几何中心或任何电极图形线条体交叉点上的焊线电极部分150,所述正六边形线条体的三组对边中有两组分别与三族氮化物的第一晶向、第二晶向方向一致,剩余一组与三族氮化物的第一晶向和第二晶向的等效晶向方向一致。其中一条正对角线线条体120与三族氮化物的第一晶向
方向一致,另一条正对角线线条体130与三族氮化物的第二晶向
方向一致,剩下一条正对角线线条体140与三族氮化物的第一晶向
和第二晶向
的等效晶向方向一致。再沉积一层蜘蛛网形状的厚度低于10nm的镍/金(Ni/Au)双层合金于电极上方,增强整体电导率。
在第一种实施例中的正六边形线条体的数量不局限于2个,可根据需要增减,正对角线线条体的条数也可根据需要删减。
请参阅图2所示,作为本发明的第二种实施例,电极结构为蜂窝形状,包括密集连接成蜂窝状的若干正六边形线条体(210,220)、位于电极结构的几何中心或任何电极图形线条体交叉点上的焊线电极部分(230),其中位于中心的正六边形线条体的图号为210,中心的正六边形线条体210外接密集的6个正六边形线条体220,所有正六边形线条体的线条均严格对准三族氮化物的第一晶向
、第二晶向
或第一晶向
和第二晶向
的等效晶向方向。在电极分布较密集的情况下,不再增加薄膜导电接触来增强电极覆盖范围内的电导率。
在第二种实施例中的正六边形线条体个数没有限制,可根据需要继续在外接的6个正六边形线条体220的基础上继续外接正六边形线条体,使得电极结构始终为蜂窝形状。正六边形线条体可根据需要各自添加正对角线线条体。
请参阅图3和图4所示,所述电极结构为弓字形,包括若干构成弓字形的线条体、位于电极结构的几何中心的焊线电极部分。
请参阅图3所示,作为本发明的第三种实施例,构成弓字形的线条体包括2条沿着三族氮化物的第一晶向
的线条体310,4条沿着三族氮化物的第二晶向
的线条体320,2条沿着三族氮化物的第一晶向
和第二晶向
的等效晶向方向的线条体330,焊线电极部分340位于弓字形电极结构的几何中心。再沉积一层弓字形状的厚度低于10 nm的氧化铱(IrO
2)于电极上方,增强整体电导率。
请参阅图4所示,作为本发明的第四种实施例,构成弓字形的线条体包括4条沿着三族氮化物的第一晶向
的线条体410、2条沿着三族氮化物的第二晶向
的线条体420、2条沿着三族氮化物的第一晶向
和第二晶向
晶向的等效晶向方向的线条体430,焊线电极部分440位于弓字形电极结构的几何中心。再沉积一层弓字形状的氧化钌 (RuO
2)于电极上方,增强整体电导率。
在第三和第四种实施中,构成弓字形电极结构的线条体数量可根据需要增减,但电极结构始终为弓字形。
上述任一实施例中的接触部分为圆形、椭圆形、矩形、正多边形的任一种。上述任一实施例中的电极结构的具体大小比例不受限定,使用范围不受限于p-GaN,还可用于p-AlN和p-InN材料以及p型掺杂的三元合金AlGaN、InGaN材料上。
所述电极结构与三族氮化物材料形成p型欧姆接触后,所述电极结构表面沉积一层将电极结构形状完全覆盖的p型欧姆接触导电薄膜。这样可以增强电流在p型晶向欧姆接触电极覆盖范围内的扩展,提高了电极结构的电导率。
利用矩形传输线模型(TLM,Transmission LineModel)分别对多组p型欧姆接触电极进行电阻率测试。测试中,将沿
、
两个晶向的条形欧姆接触电极分别制作在p-GaN材料上,并对所采用的镍/金(Ni/Au)双层金属电极进行合金退火使其与p型GaN材料形成欧姆接触;同时也制备了参照组的欧姆接触电极,其形状、金属组合与合金条件均与晶向接触电极相同,不同之处仅是将其偏转,使条形电极与
晶向呈11°的角度差。为了方便观察三种情况下测试得到的电阻率分布差异,将每种情况下欧姆接触电极的测试电阻率值从小到大排列,图5为第一种实施例情况下的接触电阻率测试图。图中,横坐标为测试次数的排列序号,纵坐标为测试得到的电阻率值,曲线a、b、c分别为偏转11°角的欧姆接触电极参照组、
晶向接触电极和
晶向接触电极的电阻率分布折线图。数据显示,相比偏转11°角的欧姆接触电极,两组晶向欧姆接触电极均表现出较低的比接触电阻率。其中,比接触电阻率分别表现为,
晶向接触电极的ρ
c值在3.97×10
-8 ~3.36×10
-7 Ω·m
2之间,
晶向接触电极的ρ
c值在1.57×10
-7~1.11×10
-6 Ω·m
2之间,而偏转11°角接触电极的ρ
c值在2.13×10
-5~8.81×10
-5 Ω·m
2之间。晶向欧姆接触电极的平均比接触电阻率值比偏转11°角电极的平均值降低了2-3个数量级。这些测试数据表明,晶向欧姆接触电极可大幅度降低p型欧姆接触电阻,从而改善所制作的含有p型欧姆接触的III族氮化物光电子与电子器件的性能。
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明权利要求的涵盖范围。
Claims (9)
- 根据权利要求1所述的低接触电阻的三族氮化物p型欧姆电极结构,其特征在于,所述电极结构为正六边形的蜘蛛网形状,包括同心的正六边形线条体、将正六边形线条体的三对正对角连接起来的三条正对角线线条体、位于电极结构的几何中心或任何电极图形线条体交叉点上的焊线电极部分。
- 根据权利要求2所述的低接触电阻的三族氮化物p型欧姆电极结构,其特征在于,所述正六边形线条体的三组对边中有两组分别与三族氮化物的第一晶向、第二晶向方向一致,剩余一组与三族氮化物的第一晶向和第二晶向的等效晶向方向一致。
- 根据权利要求2所述的低接触电阻的三族氮化物p型欧姆电极结构,其特征在于,三条所述正对角线线条体分别与三族氮化物的第一晶向、第二晶向、第一晶向和第二晶向的等效晶向方向一致。
- 根据权利要求2所述的低接触电阻的三族氮化物p型欧姆电极结构,其特征在于,所述正六边形线条体的个数和大小不限,对应的所述正对角线线条体的长度和大小不限。
- 根据权利要求1所述的低接触电阻的三族氮化物p型欧姆电极结构,其特征在于,所述电极结构为蜂窝形状,包括密集连接成蜂窝状的若干正六边形线条体、位于电极结构的几何中心或任何电极图形线条体交叉点上的焊线电极部分。
- 根据权利要求1所述的低接触电阻的三族氮化物p型欧姆电极结构,其特征在于,所述电极结构为弓字形,包括若干构成弓字形的线条体、位于电极结构的几何中心的焊线电极部分。
- 根据权利要求1所述的低接触电阻的三族氮化物p型欧姆电极结构,其特征在于,所述焊线电极部分为圆形、椭圆形、矩形、正多边形的任一种。
- 根据权利要求1所述的低接触电阻的三族氮化物p型欧姆电极结构,其特征在于,所述电极结构与三族氮化物材料形成p型欧姆接触后,所述电极结构表面沉积一层将电极结构形状完全覆盖的p型欧姆接触导电薄膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/109876 WO2020073285A1 (zh) | 2018-10-11 | 2018-10-11 | 低接触电阻的三族氮化物p型欧姆电极结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/109876 WO2020073285A1 (zh) | 2018-10-11 | 2018-10-11 | 低接触电阻的三族氮化物p型欧姆电极结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020073285A1 true WO2020073285A1 (zh) | 2020-04-16 |
Family
ID=70164350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/109876 WO2020073285A1 (zh) | 2018-10-11 | 2018-10-11 | 低接触电阻的三族氮化物p型欧姆电极结构 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020073285A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6586328B1 (en) * | 2000-06-05 | 2003-07-01 | The Board Of Trustees Of The University Of Illinois | Method to metallize ohmic electrodes to P-type group III nitrides |
US20040058465A1 (en) * | 2002-09-19 | 2004-03-25 | Toyoda Gosei Co., Ltd. | Method for producing p-type Group III nitride compound semiconductor |
CN1508847A (zh) * | 2002-12-20 | 2004-06-30 | 上海北大蓝光科技有限公司 | 低阻P型GaN基材料欧姆接触制备的方法 |
CN101350392A (zh) * | 2008-08-29 | 2009-01-21 | 华中科技大学 | 纳米图案p型氮化物半导体欧姆接触电极及其制备方法 |
CN101840964A (zh) * | 2009-03-18 | 2010-09-22 | 中国科学院半导体研究所 | 低阻p-GaN欧姆接触电极制备方法 |
-
2018
- 2018-10-11 WO PCT/CN2018/109876 patent/WO2020073285A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6586328B1 (en) * | 2000-06-05 | 2003-07-01 | The Board Of Trustees Of The University Of Illinois | Method to metallize ohmic electrodes to P-type group III nitrides |
US20040058465A1 (en) * | 2002-09-19 | 2004-03-25 | Toyoda Gosei Co., Ltd. | Method for producing p-type Group III nitride compound semiconductor |
CN1508847A (zh) * | 2002-12-20 | 2004-06-30 | 上海北大蓝光科技有限公司 | 低阻P型GaN基材料欧姆接触制备的方法 |
CN101350392A (zh) * | 2008-08-29 | 2009-01-21 | 华中科技大学 | 纳米图案p型氮化物半导体欧姆接触电极及其制备方法 |
CN101840964A (zh) * | 2009-03-18 | 2010-09-22 | 中国科学院半导体研究所 | 低阻p-GaN欧姆接触电极制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100558890B1 (ko) | 반도체 소자 | |
US9041012B2 (en) | Galium-nitride light emitting device having a microarray-type structure | |
JP2004228554A (ja) | 分散配置電極を有する発光ダイオード | |
CN111864024A (zh) | 一种选区外延生长Micro-LED芯片及其制备方法 | |
CN103647009A (zh) | 氮化物发光二极管及其制备方法 | |
CN101877377B (zh) | 一种分立发光二极管的外延片及其制造方法 | |
CN113594329A (zh) | 一种抑制SRH非辐射复合的Micro LED器件及制备方法 | |
CN106558638A (zh) | 一种具有高发光效率的led芯片及其制作方法 | |
CN104143595B (zh) | 发光器件 | |
CN102637801A (zh) | 发光二极管 | |
CN115911239B (zh) | 一种发光元件及其制备方法 | |
JP2008124217A (ja) | ショットキーバリアダイオード | |
CN103618042A (zh) | 一种半导体发光二极管芯片 | |
KR20100096927A (ko) | 발광소자의 제조방법 | |
CN113690348B (zh) | 一种用于可见光通信的led器件 | |
CN107958900B (zh) | 一种垂直结构的发光二极管 | |
CN104538523B (zh) | 一种改善电流扩展的半导体器件 | |
CN106960871A (zh) | 一种带沟槽阵列和空腔的碳化硅衬底结构 | |
Qi et al. | Fabrication and characteristics of excellent current spreading GaN-based LED by using transparent electrode-insulator-semiconductor structure | |
CN103137800A (zh) | 一种发光二极管制作方法 | |
CN109461770B (zh) | 低接触电阻的三族氮化物p型欧姆电极结构 | |
WO2020073285A1 (zh) | 低接触电阻的三族氮化物p型欧姆电极结构 | |
CN114038969B (zh) | 一种led外延结构及led芯片 | |
CN113690265B (zh) | 一种用于通信的led的器件 | |
CN106887490B (zh) | 一种半导体led芯片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18936295 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18936295 Country of ref document: EP Kind code of ref document: A1 |