WO2020071500A1 - Cell-information processing method - Google Patents
Cell-information processing methodInfo
- Publication number
- WO2020071500A1 WO2020071500A1 PCT/JP2019/039179 JP2019039179W WO2020071500A1 WO 2020071500 A1 WO2020071500 A1 WO 2020071500A1 JP 2019039179 W JP2019039179 W JP 2019039179W WO 2020071500 A1 WO2020071500 A1 WO 2020071500A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- cells
- time
- processing method
- information processing
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 35
- 238000004458 analytical method Methods 0.000 claims abstract description 57
- 230000000638 stimulation Effects 0.000 claims abstract description 54
- 230000003993 interaction Effects 0.000 claims abstract description 38
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 230000010534 mechanism of action Effects 0.000 claims abstract description 23
- 230000009471 action Effects 0.000 claims abstract description 16
- 230000007246 mechanism Effects 0.000 claims abstract description 14
- 210000004027 cell Anatomy 0.000 claims description 818
- 230000008859 change Effects 0.000 claims description 91
- 108090000623 proteins and genes Proteins 0.000 claims description 77
- 238000000034 method Methods 0.000 claims description 64
- 230000014509 gene expression Effects 0.000 claims description 60
- 230000010365 information processing Effects 0.000 claims description 31
- 230000000694 effects Effects 0.000 claims description 24
- 239000012620 biological material Substances 0.000 claims description 21
- 230000003834 intracellular effect Effects 0.000 claims description 21
- 238000000513 principal component analysis Methods 0.000 claims description 20
- 230000002123 temporal effect Effects 0.000 claims description 18
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 17
- 102000004169 proteins and genes Human genes 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 16
- 238000006366 phosphorylation reaction Methods 0.000 claims description 14
- 230000026731 phosphorylation Effects 0.000 claims description 13
- 230000008827 biological function Effects 0.000 claims description 12
- 238000012482 interaction analysis Methods 0.000 claims description 12
- 108020004999 messenger RNA Proteins 0.000 claims description 12
- 239000007850 fluorescent dye Substances 0.000 claims description 11
- 239000002207 metabolite Substances 0.000 claims description 10
- 108010026552 Proteome Proteins 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 8
- 238000012986 modification Methods 0.000 claims description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 7
- 230000007067 DNA methylation Effects 0.000 claims description 7
- 108010033040 Histones Proteins 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 7
- 230000021736 acetylation Effects 0.000 claims description 7
- 238000006640 acetylation reaction Methods 0.000 claims description 7
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 7
- 210000004369 blood Anatomy 0.000 claims description 7
- 239000008280 blood Substances 0.000 claims description 7
- 239000011575 calcium Substances 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 201000010099 disease Diseases 0.000 claims description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 7
- 230000001973 epigenetic effect Effects 0.000 claims description 7
- 230000006870 function Effects 0.000 claims description 7
- 230000036252 glycation Effects 0.000 claims description 7
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 7
- 239000011777 magnesium Substances 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 239000002679 microRNA Substances 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 239000011591 potassium Substances 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 230000014616 translation Effects 0.000 claims description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 6
- 108700011259 MicroRNAs Proteins 0.000 claims description 6
- 238000013527 convolutional neural network Methods 0.000 claims description 6
- 230000011987 methylation Effects 0.000 claims description 6
- 238000007069 methylation reaction Methods 0.000 claims description 6
- 230000000704 physical effect Effects 0.000 claims description 6
- 230000031018 biological processes and functions Effects 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 108020004417 Untranslated RNA Proteins 0.000 claims description 4
- 102000039634 Untranslated RNA Human genes 0.000 claims description 4
- 210000004102 animal cell Anatomy 0.000 claims description 4
- 230000001580 bacterial effect Effects 0.000 claims description 4
- 238000005842 biochemical reaction Methods 0.000 claims description 4
- 230000003915 cell function Effects 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 4
- 238000000684 flow cytometry Methods 0.000 claims description 4
- 230000002538 fungal effect Effects 0.000 claims description 4
- 230000004060 metabolic process Effects 0.000 claims description 4
- 230000008512 biological response Effects 0.000 claims description 3
- 230000008777 canonical pathway Effects 0.000 claims description 3
- 238000000370 laser capture micro-dissection Methods 0.000 claims description 3
- 238000007885 magnetic separation Methods 0.000 claims description 3
- 230000009145 protein modification Effects 0.000 claims description 3
- 230000008439 repair process Effects 0.000 claims description 3
- 210000004881 tumor cell Anatomy 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 230000004663 cell proliferation Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract 1
- 239000003814 drug Substances 0.000 description 48
- 229940079593 drug Drugs 0.000 description 46
- 210000002569 neuron Anatomy 0.000 description 46
- 210000001130 astrocyte Anatomy 0.000 description 43
- 239000000523 sample Substances 0.000 description 26
- 210000004498 neuroglial cell Anatomy 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 102000014150 Interferons Human genes 0.000 description 9
- 108010050904 Interferons Proteins 0.000 description 9
- 229940079322 interferon Drugs 0.000 description 9
- 230000030833 cell death Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 7
- 230000036962 time dependent Effects 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 238000012258 culturing Methods 0.000 description 6
- 210000002950 fibroblast Anatomy 0.000 description 6
- 239000003102 growth factor Substances 0.000 description 6
- 210000002865 immune cell Anatomy 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 102000003777 Interleukin-1 beta Human genes 0.000 description 4
- 108090000193 Interleukin-1 beta Proteins 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000000144 pharmacologic effect Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 240000005384 Rhizopus oryzae Species 0.000 description 3
- 235000013752 Rhizopus oryzae Nutrition 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 238000003501 co-culture Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 210000003771 C cell Anatomy 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 description 2
- 229940119178 Interleukin 1 receptor antagonist Drugs 0.000 description 2
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 2
- 102000013462 Interleukin-12 Human genes 0.000 description 2
- 108010065805 Interleukin-12 Proteins 0.000 description 2
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 2
- 241000218922 Magnoliophyta Species 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 2
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 2
- 229960002964 adalimumab Drugs 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 2
- 229960002411 imatinib Drugs 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000003407 interleukin 1 receptor blocking agent Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 210000000274 microglia Anatomy 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 210000002243 primary neuron Anatomy 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000256844 Apis mellifera Species 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 241000239290 Araneae Species 0.000 description 1
- 241000251557 Ascidiacea Species 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000251556 Chordata Species 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 201000007336 Cryptococcosis Diseases 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 101001011446 Homo sapiens Interferon regulatory factor 6 Proteins 0.000 description 1
- 101000655352 Homo sapiens Telomerase reverse transcriptase Proteins 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100030130 Interferon regulatory factor 6 Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 241001480167 Lotus japonicus Species 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000276569 Oryzias latipes Species 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241001138501 Salmonella enterica Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 101150080074 TP53 gene Proteins 0.000 description 1
- 241001441722 Takifugu rubripes Species 0.000 description 1
- 241001634925 Trichosporon ovoides Species 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000269368 Xenopus laevis Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- 230000003140 astrocytic effect Effects 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000037149 energy metabolism Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000008531 maintenance mechanism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 229960003301 nivolumab Drugs 0.000 description 1
- 210000003458 notochord Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 108700025694 p53 Genes Proteins 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- GCYXWQUSHADNBF-AAEALURTSA-N preproglucagon 78-108 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 GCYXWQUSHADNBF-AAEALURTSA-N 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 230000009822 protein phosphorylation Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000012106 screening analysis Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 238000011222 transcriptome analysis Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
Definitions
- the present invention relates to a cell information processing method.
- a cell information processing method In particular, to analyze the interaction between different cell types and the mechanism of action that occur when cell stimulation by a drug is given to a cell population cultured under a situation where different cell types are mixed. About the method.
- Patent Literature 1 discloses “(1) calculating a feature amount reflecting similarity between data from data indicating a change in the expression level of a gene over time, (2) calculating the eigenvectors of the similarity matrix M for all combinations between genes from the calculated feature amounts; and (3) converting the similarity matrix M into a Boolean matrix N while maintaining the eigenvalues of the eigenvectors.
- a gene clustering method that performs at least a converting step and (4) a step of clustering each data based on the Boolean matrix N. ”That is, a plurality of genes are classified based on the similarity of the expression level change over time.
- a grouping method has been proposed (claim 9).
- Patent Document 2 discloses a method for clustering gene expression profiles, which includes selecting one or more GO terms from a gene ontology (GO) tree; receiving a gene expression data set; Classifying the sets into groups according to GO terms; first, clustering the gene expression data belonging to each group based on the similarity of the gene expression data; and, second, seeding the result of the first clustering.
- a drug is applied to a cell population consisting of only cells 30, 32 and 34 of the same kind arranged individually in each well 36 and cultured. Then, a method of analyzing the drug efficacy using the averaged data of each cell population, or culturing by giving a drug to a cell population containing a plurality of cell types extracted from an organ, and averaging the drug efficacy of the cell population A method of analyzing using has been used.
- Patent Document 3 discloses a method for evaluating cell activity, in which (a) a step of arranging a cell population containing a plurality of different types of cells on a region, that is, a different plurality of cells in each nanowell on a nanowell array plate. Setting up a cell population containing different types of cells; (b) assaying the dynamic behavior of the cell population as a function of time, i.e., measuring the dynamic behavior at the single cell level with a microscope, fluorescence microscope, etc.
- JP 2010-157214 A US Patent Application Publication No. 2009/0112480 JP-T-2018-514195
- Patent Documents 1 and 2 are methods for examining intracellular networks, and it is impossible to know interactions between cells and cell types.
- the method described in Patent Document 3 is also a method for merely evaluating each cell activity, and thus cannot know the interaction between cells and between cell types.
- the method described in Patent Document 3 discloses that a human observes the dynamic behavior of a cell population composed of at least 100 to 200 cells by image analysis, and uses a plurality of types of cells and cells having different dynamic behavior. In order to identify and select single cells to be analyzed from among them, and to analyze the mechanism of action and intercellular interaction of the dynamic behavior of single cells selected by humans, Since humans arbitrarily judge the morphology of the cell type and the dynamic change of each cell over time to identify and select the cells to be analyzed, there is a problem that it is not possible to obtain highly accurate analysis results. Was.
- Patent Document 1 when a cell population to be analyzed contains immune cells, specifically, when a blood sample contains immune cells, a drug is added to the blood sample. There is a situation that cells are killed in about 24 hours after the application.
- the analysis method described in Patent Document 1 is for observing a cell population to which a drug has been applied over time and performing analysis (that is, observation of one sample is continued until the analysis is completed.
- the method since the method is a method in which the analysis is performed while repeatedly selecting and culturing cells to be analyzed), when the method described in Patent Literature 3 is employed, all the cells are administered at least within 24 hours after the drug is given to the cell population. There is a very severe time constraint that the analysis must be completed.
- Patent Document 3 requires labor and cost for cell identification and selection of a target cell, and the method of calculating the evaluation by the analysis and the result thereof are complicated, so that the method is efficient and highly accurate.
- a method for identifying each cell type which is performed in a cell population containing a plurality of different cell types, using a single-cell analysis technique, and culturing each of the cell populations containing a plurality of different types of cells by giving the agent thereto, At present, there is no report on how to efficiently analyze the efficacy and pharmacology of species.
- the present invention has been made in view of the above problems of the related art, and provides a cell information processing method for efficiently analyzing an interaction between cell populations when a plurality of different types of cell populations are mixed. With the goal. More specifically, the interaction between different cell types that occurs when a drug or a cell stimulus is applied to a cell population cultured in a situation where different cell types are mixed, and the mechanism of action It is an object of the present invention to provide a method which can efficiently and quickly evaluate and analyze with high accuracy and quickness by a simpler operation, and can be used even on an industrial scale.
- a cell collecting step of collecting all cells in one container, a single cell forming step of converting all cells collected at each time point into a single cell, and a single cell forming step of each cell at each time point A single cell data acquisition step of acquiring single cell data; and, based on the single cell data at each time point, grouping all cells collected at each time point into a plurality of cell populations having a common first cell characteristic.
- Plotted on a two-dimensional plane or three-dimensional space perform a process of identifying the cell type of each grouped cell population, and at each time point A grouping step of obtaining a clustering result, and a cell change detection step of detecting a change over time of the cell population of the same cell type by comparing the clustering results at each time point, based on a result of the detection. Analyzing the mechanism of action of the temporal change of the cell population of the cell type, and analyzing the interaction occurring between the cell populations of different cell types based on the result of the mechanism of action analysis Interaction analysis step.
- the interaction occurring between the cell populations in the interaction analysis step preferably includes an interaction occurring between cell populations of the same cell type.
- the cell change detection step includes comparing a clustering result at each time point to determine a temporal change in the number of cells constituting the cell population of the same cell type and a temporal change in the first cell characteristic. It can also be detected.
- the cell change detection step further includes detecting, with the clustering result at each time point, a temporal change in the number of cells constituting the cell population of the same cell type, and a temporal change in the first cell characteristic. Is also good.
- the cell collection step further includes preparing a target cell group including the plurality of types of cells to be cultured without applying the predetermined cell stimulation, and, at one or more time points, all cells in one predetermined container.
- the cell change detection step evaluates the change over time of the same cell tumor cell population due to the presence or absence of the predetermined cell stimulation of the cell population by comparing the clustering results at the respective time points. You can also.
- the cell stimulus is preferably at least one selected from the group consisting of a chemical stimulus and a physical stimulus.
- the chemical stimulus is preferably due to the addition of an agent that induces a biological response to the cells.
- the action mechanism is a specific biochemical reaction or interaction for exerting a biological phenomenon induced inside and outside the cell by the cell stimulation.
- the single cell data includes the DNA sequence information of the gene (genome), epigenetic information controlling the expression of the gene (DNA methylation, histone methylation, acetylation, phosphorylation), the primary transcript of the gene (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
- the single cell data is preferably a gene expression level and a gene DNA sequence.
- the first cell feature is obtained by reducing the n-dimensional cell feature included in the single cell data into two or three dimensions.
- the dimension reduction method is based on the group consisting of principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, and convolutional neural network (CNN).
- PCA principal component analysis
- Kernel-PCA principal component analysis with kernel
- MDS multidimensional scaling
- t-SNE t-SNE
- CNN convolutional neural network
- the first cell feature is preferably obtained by performing a principal component analysis on the gene expression amount and reducing the dimension to two or three dimensions.
- the second cell feature is at least one piece of cell information capable of identifying each cell type from a cell function or a cell state.
- the above-mentioned cell information includes DNA sequence information of a gene (genome), epigenetic information for controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
- the function of the cell is preferably at least one selected from cell growth, repair, metabolism, and information exchange between cells.
- the state of the cell is preferably at least one selected from the state of gene expression, the state of protein expression, and the enzymatic activity.
- the interaction occurring between the cell populations refers to a biological or physical action occurring between cell populations of different cell types, or the number of cells due to the action, the first cell Preferably, it is a change in characteristics.
- a value representing the amount or state of a plurality of biological substances time-series data obtained at a plurality of time points for each biological substance is created in advance, and a time change of the time-series data for each biological substance, Based on the similarity in biological function of each biological material, the cells from which the single cell data has been obtained are grouped into cell populations having a common first cell characteristic, and in the interaction analysis step, For each of the time points, a value representing the state of the cell population is generated from one or more first cell characteristics included in each of the plurality of cell populations, and the generated plurality of time points of the plurality of cell populations are generated.
- Similarity of the above biological functions means having a common gene ontology, belonging to a common canonical pathway, having a common upstream factor, being involved in a common expression system, and being involved in a common disease
- the evaluation is based on at least one selected from the group consisting of:
- a method of collecting all cells and converting it into a single cell is manually operated, flow cytometry, magnetic separation, laser capture microdissection, micro flow path, micro droplet, nano well,
- the method uses at least one selected from the group consisting of micropipette fine needle aspiration, laser tweezers, label arrays, surface plasmon response, and nanobiodevice.
- it is preferable to use at least one selected from the group consisting of a fluorescent label, a radioisotope label, an antibody label, and a magnetic label as a cell label.
- the target cell group containing the plurality of types of cells is preferably cells obtained from at least one selected from the group consisting of a biological tissue sample, a blood sample, a culture sample, and an environmental sample.
- the plurality of types of cells are preferably at least one selected from the group consisting of animal cells, plant cells, fungal cells, and bacterial cells.
- the present invention it is possible to provide a cell information processing method for efficiently analyzing an interaction between different cell populations when a plurality of types of cell populations are mixed. More specifically, it is possible to identify and identify each cell type in a cell population in which a plurality of different cell types are present, or to evaluate and analyze drug efficacy and pharmacological screening with a simpler operation with high accuracy and speed. And provide a method that can be used on an industrial scale. Therefore, not only changes between cell populations composed of the same cell type, but also changes in cell populations composed of different cell types (interaction between cell populations) can be efficiently and simultaneously confirmed. Further, as a result, a wider interaction between cells and between cell types (interconnection network) can be analyzed with high accuracy and easily.
- a sample obtained by co-culturing a plurality of types of cells is used.
- the cells to be analyzed can be identified.
- the mechanism of action by co-culture with cells other than the analysis target for example, the mechanism of action of a sample drug or cell stimulation that requires co-culture of the analysis target cell and immune cells can be appropriately analyzed.
- FIG. 1 is a flowchart illustrating the cell information processing method of the present invention.
- FIG. 2A is a diagram showing cells immediately after cell stimulation (time point 0).
- FIG. 2B is a diagram showing cells one hour after the cell stimulation (time point 1).
- FIG. 2C is a diagram showing cells 6 hours after the cell stimulation (time point 2).
- FIG. 3A is a diagram illustrating a result of the clustering according to FIG. 2A (time point 0).
- FIG. 3B is a diagram illustrating a result of the clustering according to FIG. 2B (time point 1).
- FIG. 3C is a diagram showing a result of the clustering according to FIG. 2C (time point 2).
- FIG. 4 is a diagram showing the change over time of the cell population based on FIG. 3B.
- FIG. 5 is a diagram showing a time-dependent change of the cell population based on FIG. 3C.
- FIG. 6 is a diagram showing the results of measuring the amount of each component of nerve cells and glial cells over time.
- FIG. 7 is a diagram showing a time-dependent change of a cell population based on FIGS. 3C and 6.
- FIG. 8 is a diagram for explaining a conventional drug screening method.
- Embodiment 1 The first embodiment analyzes the interaction between nerve cells and glial cells, that is, the interaction network between nerve cells and glial cells generated when a drug is added to a target cell group consisting of nerve cells and glial cells and cultured. An analysis of the formation process (change over time) will be described as an example.
- FIG. 1 is a flowchart showing a cell information processing method according to Embodiment 1 of the present invention.
- ⁇ Cell collection step (S1)> First, in this step, as shown in FIG. 2A, at least two or more predetermined containers 1 seeded with a plurality of different types of cell groups (cell groups including glial cells 2 and nerve cells 4) are prepared.
- the cell group seeded in the predetermined container 1 is referred to as a target cell group.
- the cells are stimulated and cultured by adding a drug, and cultured at two or more time points (for example, immediately after drug addition, 1 hour after drug addition, and 6 hours). Time, 12 hours, 24 hours, 48 hours, 72 hours ...) Collect all cells in one container.
- FIG. 2A shows the cells immediately after the cell stimulation (time 0)
- FIG. 2B shows the cells 1 hour after the application of the cell stimulation (time 1)
- FIG. 2C shows the cells after the application of the cell stimulation. , 6 hours later (time point 2).
- all cells in the container 1 are collected at each time point.
- the shape of astrocytes 2 and nerve cells 4 was not changed, and at time point 1, the cells were changed to reactive astrocytes 10 in which the shape of astrocytes 2 was changed due to cell stimulation by the addition of a drug.
- the nerve cell 4 comes into contact with the changed reactive astrocyte 10 and the nerve cell 4 includes the nerve cell 12 whose shape has changed.
- the target cell group is a cell group seeded in the predetermined container 1 and means a group of cells including a plurality of different types of cells. More specifically, “a group of cells containing a plurality of different types of cells” includes, for example, a plurality of cells having different cell types, such as a cell group composed of human iPS cells and mouse embryo-derived fibroblasts. A cell group composed of cells derived from the same species or a cell group composed of cells derived from different species. In the present embodiment, the cells constituting the target cell group are described as glial cells and nerve cells, but the types of cells included in the target cell group are not particularly limited.
- Examples of the “target cell group containing a plurality of types of cells” include a biological tissue sample, a blood sample, a culture sample, and an environmental sample.
- Examples of the biological tissue sample include mouse brain tissue and human resected tumor tissue.
- Examples of the blood sample include a human blood sample.
- Examples of the culture sample include a co-culture sample of human iPS cells and mouse embryo-derived fibroblasts.
- Examples of the environmental sample include a soil sample and a water sample collected from a seabed hydrothermal vent.
- cells included in the “target cell group containing a plurality of cell types” include, for example, animal cells, plant cells, fungal cells, and bacterial cells.
- Examples of the animal cells include vertebrate, notochord (excluding vertebrates) or insect cells.
- Examples of the vertebrates include mammals such as humans, chimpanzees, rhesus monkeys, dogs, pigs, mice, rats, Chinese hamsters, and guinea pigs, Xenopus laevis, zebrafish, medaka, and tiger puffer.
- the mammalian cells include, but are not limited to, tumor cells, hepatocytes, fibroblasts, stem cells, and immune cells.
- ascidians are exemplified.
- Examples of the insects include Drosophila, silkworm, tobacco spider, and honeybee.
- Examples of the plant cell include an angiosperm cell.
- Examples of the angiosperm include Arabidopsis thaliana, rice, wheat, minatocamphor, Lotus japonicus, and tobacco.
- Examples of the fungal cells include mold and yeast cells.
- Examples of the mold include Neurospora crassa, Aspergillus oryzae, Aspergillus fumigatus, Aspergillus nidulans, Rhizopus oryzae and Rhizopus oryzae circumne, and Rhizopus oryzae or muciin in Rhozopus oryzae. Is exemplified.
- Examples of the yeast include Saccharomyces cerevisiae, fission yeast (Schizosaccharomyces pombe), Candida albicans, Cryptococcus neoformans, and Trichosporon ovoides.
- bacterial cells include cells of Escherichia coli, Salmonella enterica, Clostridium difficile, or Bacillus anthracis.
- the cell stimulus is not particularly limited as long as it is at least one selected from the group consisting of a chemical stimulus (such as a chemical substance) and a physical stimulus (such as light, heat, or pressure).
- a chemical stimulus such as a chemical substance
- a physical stimulus such as light, heat, or pressure
- Examples of the chemical stimulus include the addition of an agent that induces a biological response to cells.
- the drug may be one that induces a biological reaction on cells by adding it to a biological sample.
- Specific examples of the biological reaction include proliferation, cell death, differentiation, antigen-antibody reaction, secretion of growth factors, and the like.
- the above-mentioned drug is not particularly limited as long as it is a drug intended to have a measurable effect on body structure and function.
- Examples of such drugs include pharmaceuticals such as anticancer drugs, growth factors, cytokines and low-molecular-weight drugs.
- Specific examples of growth factors include epidermal growth factor (EGF).
- tumor necrosis factor TNF- ⁇
- interleukin 1 ⁇ IL-1 ⁇
- insulin glucagon-like peptide-1
- GLP-1 glucagon-like peptide-1
- imatinib imatinib
- acetaminophen adalimumab
- Nivolumab Nivolumab.
- the container 1 for housing the target cell group is not particularly limited as long as it is a cell culture container for housing and culturing the target cell group. Further, as the culture solution to be used, a preferable one can be appropriately used depending on the cells and the analysis technique.
- a target cell group including a plurality of cell types is cultured for a predetermined period of time, and then a drug is added thereto to stimulate the cells.
- ⁇ Single cell conversion step (S2)> the target cell group collected in the cell collection step (S1) is converted into a single cell (single cell).
- the method and device for converting the target cell group into a single cell and collecting the single cell are not particularly limited, and known methods and devices can be used.
- known methods include manual, flow cytometry, magnetic separation, laser capture microdissection, microdroplet method, micropipette fine needle suction method, and surface plasmon resonance method.
- microchannels, nanowells, laser tweezers, label arrays, and nanobiodevices it is preferable to use a microdroplet method, a microchannel, a nanowell, and flow cytometry. This is because a large amount of cells can be separated and recovered at a high speed without the need for skill in single cell formation, thereby improving analysis accuracy.
- each cell When recovering single cells, it is preferable to label each cell using a fluorescent label, a radioisotope (RI) label, an antibody label, and a magnetic label. This is because it can be used to identify the cell type of each cell population in the grouping step (S4) described later.
- the astrocytes 2 are labeled with a fluorescent label 6
- the nerve cells 4 are labeled with a fluorescent label 8.
- the fluorescent label is attached to only one cell each of the astrocyte 2 and the nerve cell 4, but it is assumed that the fluorescent label is attached to all cells.
- a combination of an antibody that binds to a protein expressed on the surface of a cell and a fluorescent, RI, or magnetic label is preferable because the specificity of the antibody increases.
- C1 TM Single-Cell Auto Prep system made by Fluidime
- the solution can automatically perform single cell isolation, cell labeling, cell lysis, and genomic DNA or total RNA extraction performed in the single cell data acquisition step (S3) described below, For example, if it is used when acquiring single cell data using genomic DNA or total RNA, the working efficiency can be further improved.
- a single cell data acquisition step (S3) the DNA sequence information of the gene and the gene expression level are acquired as single cell data from each cell collected at each time and converted into a single cell.
- the single cell data is acquired for each single cell collected as a single cell.
- the “gene expression level” in the present invention is the amount of mRNA that is a transcription product of a gene, and can be measured by examining the expression state of the gene by gene expression analysis. Alternatively, the amount of a protein that is an expression product of a gene may be analyzed.
- the single cell data refers to information indicating the function, property, and state of a single cell, and is not limited to the above-described gene expression amount and DNA sequence information.
- DNA sequence information of a gene (genome), epigenetic information controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, untranslated RNA, micro RNA, etc.) (transcriptome), protein translation amount and modification such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), cell
- the internal ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), intracellular temperature, etc. may be acquired as single cell data. Further, when collecting single cells, if each cell is labeled with a fluorescent substance, an antibody, or the like, such information can also be obtained as single data.
- each principal component corresponds to the “first cell feature”.
- the cell type of each grouped cell is identified (clustering analysis).
- the number of cell features used to group the collected cells into a plurality of cell populations is not particularly limited.
- One or more of the n cell features may be used to group cells.
- cells obtained from single-cell data are visualized by two-dimensional or three-dimensional reduction using principal component analysis, and the cells are grouped into a cell population having a common first cell characteristic.
- methods for dimension reduction include, for example, principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, Alternatively, a convolutional neural network (CNN) can be used.
- PCA principal component analysis
- Kernel-PCA principal component analysis with kernel
- MDS multidimensional scaling
- t-SNE t-SNE
- CNN convolutional neural network
- values representing the amounts or states of a plurality of biological materials, and time series data obtained at a plurality of time points for each biological material are prepared in advance.
- Grouping cells that have obtained single-cell data into a cell population having a common first cell characteristic based on the time change of time-series data for each biological material and the similarity of biological functions of each biological material You may divide.
- the similarity of biological functions means that they have a common gene ontology, belong to a common canonical pathway, have a common upstream factor, be involved in a common expression system, and have a common disease. It is preferable that the evaluation is based on at least one selected from the group consisting of related items.
- FIG. 3A shows a clustering result (main component and) based on single cell data obtained from the target cell group immediately after the cell stimulation of FIG. 2A (time 0), and FIG. 3B shows one hour after the cell stimulation of FIG. 2B ( FIG. 3C shows the (principal component and) clustering results based on the single cell data obtained from the target cell group at time 1), and FIG. 3C shows a single cell obtained from the target cell group 6 times after the cell stimulation in FIG. 2C (time 2). 7 shows a (principal component and) clustering result based on cell data. Principal component analysis is performed on the single cell data (gene expression level data) obtained from the target cell group immediately after the cell stimulation (time point 0) in FIG. And 16 (FIG.
- the cell type constituting the cell population 14 is astrocyte 2, which constitutes the cell population 16.
- the cell type is identified as the nerve cell 4.
- the principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group one hour after the cell stimulation in FIG. 2B (time point 1), and the two-dimensional compression is performed.
- Cells are grouped into a plurality of cell populations 18, 20 and 22 (FIG. 3B), and based on single cell data (DNA sequence and fluorescent labels 6 and 8), cell types constituting cell populations 18 and 20 are determined. It is identified that the cell type which is the astrocyte 2 and which constitutes the cell population 22 is the nerve cell 4.
- the principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group after 6 hours (time point 2) after the cell stimulation in FIG.
- the target cell group after 6 hours (time point 2) after the cell stimulation in FIG.
- the cell type constituting the cell population 26 is identified as the nerve cell 4.
- the cell type of each cell population is identified using the DNA sequence and the fluorescent label as the second cell feature, but the present invention is not particularly limited thereto.
- Cell information that can be used (included in single data), for example, DNA sequence information of a gene (genome), epigenetic information that controls gene expression (DNA methylation, histone methylation, acetylation, phosphorylation) , Gene primary transcript (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation amount and modification such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information ( Metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) It can be utilized such as intra
- the cell information capable of discriminating each cell type includes not only information such as genes, proteins, and metabolites originally possessed by cells, but also genes introduced from outside the cells (eg, immortalized genes). , Proteins and metabolites, and organic matter.
- immortalizing gene include the hTERT gene (human telomerase reverse transcriptase gene) and the SV40T antigen (simian virus 40T antigen gene).
- hTERT gene human telomerase reverse transcriptase gene
- SV40T antigen simian virus 40T antigen gene
- the cell change detection step (S5) is based on the clustering result obtained in the grouping step (S4), specifically, the clustering result of the cell immediately after the cell stimulation and the predetermined time after the cell stimulation.
- the result with the clustering result of the cells By comparing the result with the clustering result of the cells, a change with time of the cell population of the same cell type (change with respect to real time, or change with pseudo time estimated from the change) is detected.
- the temporal change of the cell population it is preferable to extract the cell characteristics that have changed with time and detect the amount of the temporal change numerically.
- the “time-dependent change of the cell population” refers to the number of cells, cell characteristics (first cell characteristics), or other cell characteristics (that is, DNA sequence information (genome) of genes, control of gene expression).
- Epigenetic information DNA methylation, histone methylation, acetylation, phosphorylation
- gene primary transcript mRNA, untranslated RNA, microRNA, etc.
- protein translation and phosphorylation Modification information such as oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) , Intracellular temperature, etc.), and the biological material of the cell over time.
- FIG. 3A (time 0) and FIG. 3B (time 1) which are the clustering results obtained in the grouping step (S4) are compared, and the cell characteristics (first cell characteristics) of the cell population composed of cells of the same cell type are compared. Of the principal components 1 and 2) are detected. Specifically, a comparison between the cell population 14 identified as astrocyte 2 in FIG. 3A (time 0) and the cell populations 18 and 20 identified as astrocyte 2 in FIG. 3B (time 1), and FIG. By comparing the cell characteristics of the cell population 16 identified as the nerve cell 4 at 3A (time 0) with the cell population 22 identified as the nerve cell 4 of FIG. 3B (time 1), the cell characteristics of each cell population were determined. The presence or absence of a change over time is detected.
- the cell characteristics of the cell population 14 identified as the astrocytes 2 in FIG. 3A (time point 0) (the main components 1 and 2 which are the first cell characteristics) and the astrocyte in FIG. 2 and the cell characteristics of the identified cell population 18 detected no change over time, and in the comparison of the astrocytes of FIG. 3A (time point 1) with the cell characteristics of the identified cell population 20, It detects that there has been a change over time.
- the cell characteristics of the cell population 16 identified as the nerve cells 4 in FIG. 3A (time point 0) (the main components 1 and 2 which are the first cell characteristics) and the nerve cells 4 in FIG. 3B (time point 1) are identified.
- the comparison with the cell characteristics of the cell population 22 detected detects no change with time.
- the number of astrocytes 2 identified as constituting the cell population 18 in FIG. 3B was compared with the number of astrocytes 2 identified as constituting the cell population 14 in FIG. 3A (time point 0).
- 3B time point 1
- the number of astrocytes 2 identified as constituting the cell population 20 in FIG. 3B point 1 is detected to increase.
- the total number of glial cells that make up the cell populations 18 and 20 of FIG. 3B (time point 1) should be equal to the number of astrocyte 2 cells identified as making up the cell population 14 of FIG. 3A (time point 0). Is also detected.
- the number of neurons 4 identified as constituting the cell population 22 of FIG. 3B (time 1) is the number of neurons 4 identified as constituting the cell population 16 of FIG. 3A (time 0). Detects no change.
- FIG. 3B (time point 1) and FIG. 3C (time point 2) which are the clustering results obtained in the grouping step (S4) are compared, and the cell characteristics of the cell population composed of cells of the same cell type (first The main components 1 and 2), which are the cell characteristics, detect the presence or absence of a temporal change from time 1 to time 2. That is, in FIG. 3C (time point 2), in FIG. 3B (time point 1), the disappearance of the cell population 18 composed of astrocytes 2 and the reactive astrocyte present in FIG. It is detected that only the cell population 20 detected as composed of 10 remains. Further, in FIG. 3B (time point 1), the existing cell population 22 composed of the nerve cells 4 disappears, and in FIG.
- time point 2 the cell population 26 identified to be composed of the nerve cells 4 is newly added. Detect what is happening.
- the cell characteristics of the cell population 20 detected as being composed of the reactive astrocytes of FIG. 3B (time point 1) (the main components 1 and 2, which are the first cell characteristics), and the astrocyte 2 of time point 2
- the cell characteristics of the cell population 24 identified as being composed are compared, and no change over time is detected.
- the cell characteristics of the cell population 26 identified as being composed of the nerve cells 4 are compared to detect the change with time.
- the number of cells of the reactive astrocyte 10 detected to constitute the cell population 24 of FIG. 3B is the total number of cells constituting the cell populations 20 and 18 of FIG. 3A (time point 1). It is detected that the number of nerve cells constituting the cell population 26 in FIG. 3C (time point 2) is the same as the number of cells in the cell population 22 in FIG. 3B (time point 1). From these detection results, no change is seen in the cell characteristics and cell number of the reactive astrocytes 10 at 6 o'clock after the cell stimulation by the addition of the drug, that is, at 5 hours after time 1; 4 can easily detect a change.
- the cell characteristics of each cell population and the cell number are displayed in association with each other, not only the presence or absence of cell death, but also changes in the cell number and cell characteristics over time, and The relationship between the number and the cell characteristics can be easily or accurately confirmed or detected.
- the mechanism of action analysis step (S6) based on the cell change detection result obtained in the cell change detection step (S5), the mechanism of action of the change within the cell population of the same cell type or between the cell populations is determined.
- the mechanism of action refers to a specific action for cell stimulation by a drug to exert its pharmacological effect, and a specific action observed within or between cell populations of the same cell type.
- a biochemical reaction or interaction is meant.
- the mechanism of action of a change in a cell population or between cell populations refers to a biological phenomenon (for example, proliferation, cell death, antigen-antibody reaction, growth factor Secretion, etc.), and more specifically, specific biochemical reactions or interactions (eg, metabolism of biological materials, gene expression, etc.) to exert biological phenomena induced inside and outside cells by cell stimulation. , Energy metabolism, signal transduction, etc.).
- a biological phenomenon for example, proliferation, cell death, antigen-antibody reaction, growth factor Secretion, etc.
- specific biochemical reactions or interactions eg, metabolism of biological materials, gene expression, etc.
- each cell population obtained in the cell change detection step (S5) (For example, biological substances, genes, etc.) related to the change in the number of cells and the change in cell characteristics.
- FIG. 6 is considered to be related to the interaction between the astrocytes 2 (and the reactive astrocytes 10) and the nerve cells 4 and 12 together with the DNA sequence and the fluorescent label described above in the single cell data acquisition step (S3).
- the component amounts of components A to Z are also acquired as single cell data, and all cells are extracted along a pseudo time axis (pseudotime) estimated based on the similarity of expression profiles after dimension reduction by principal component analysis. It is the figure which plotted. By arranging the cells in this manner, pseudo temporal changes in cells and changes in gene expression can be found.
- FIGS. 6 (1) to 6 (4) show changes in components A to C and Z relating to astrocytes 2 (and reactive astrocytes 10), and
- FIGS. 12 shows changes in components A to C and Z.
- the components used in this step that are considered to be involved in the interaction between the astrocytes 2 (and the reactive astrocytes 10) and the nerve cells 4 and 12 are not particularly limited.
- the single cell data acquisition step (S3) data that can be acquired as single cell data can be used.
- the cell population 20 (astrocytic 2) to the cell population 20 (astroblast 2) from the time point 0 to the time point 1 detected in the above-described cell change detection step (S5).
- the change over time in the cell characteristics and cell number into the reactive astrocytes 10) (solid arrow in FIG. 4) indicates that the detection result that the B component whose component amount changes from time 0 to time 1 is related. To win. Also, from FIGS.
- the change over time in cell characteristics and cell number to 26 (neural cell 12) (solid line arrow in FIG. 5) relates to the Z component and the B component whose component amounts change from time 1 to time 2. Get the detection result.
- the method is used to analyze the process (time-dependent change) of the formation of a mutual network between glial cells and nerve cells.
- the present invention is not limited to this, and fungi such as Candida. It can also be used to analyze the process of infection with mucosal epithelial cells.
- gene expression profile analysis and molecular target analysis can also be used.
- analysis of the gene expression profile for example, tensor decomposition can be used.
- a gene whose expression is changed by a drug (cell stimulation) and whose change is expected to be consistent with a disease is specified.
- the compound (drug) is actually bound to the protein, what is measured is the expression level of mRNA. Since it is unlikely that the amount of mRNA of the gene encoding the protein has changed due to the binding of the compound (drug) to the protein, the molecular target (target protein) is included in the gene whose expression level is changing. ) Is assumed not to exist.
- the effect of the protein to which the compound is actually attached on other gene expression profiles is expected to be close to knocking out the gene in which the protein is encoded. Therefore, the target gene is estimated by referring to the gene expression profile when the gene is knocked out comprehensively.
- a series of effects can be obtained by simultaneously performing effect determination and action mechanism analysis on multiple types of cells. . Based on a comparison or ranking of the effects, optimal indications or uses can be found.
- the effect of cell stimulation is determined, for example, by comparing data without cell stimulation (drug) treatment with time-dependent data with cell stimulation (drug) treatment, and comparing cells derived from the same cell population with biological data. Alternatively, the cell characteristics and cell number are compared, and if there is a change, it can be determined that there is an effect.
- Interaction analysis step (S7) an interaction that occurs between cell populations of different cell types is analyzed based on the result of the action mechanism analysis obtained in the cell change detection step (S6). As a result, it is possible to analyze interactions that occur not only between cell populations of the same cell type but also between cell populations of different cell types. it can.
- the interaction that occurs between the cell populations is a biological or physical action that occurs between different types of cell populations, or a change caused by those actions.
- the biological or physical action is, for example, transfer of a humoral factor, cell adhesion, pulsation, or a weak current, and the change caused by the action is, for example, morphological change, differentiation, proliferation, Cell death, migration, increase of surface antigens, or release of humoral factors.
- the humoral factor is, for example, an inorganic substance such as a hormone, a growth factor, a cytokine, an exosome, a metabolite, or an ion.
- step (S4) when values representing the amounts or states of a plurality of biological materials are obtained at a plurality of time points for each biological material from the single cell data (information on a plurality of biological materials) of each cell.
- Sequence data is prepared in advance, and cells that have obtained single-cell data based on the time change of the time-series data for each biological material and the similarity of the biological function of each biological material are identified by a common first cell characteristic.
- interaction analysis can be performed using the method described in International Publication No. 2018 / 150878A1.
- a value representing the state of the cell population is generated from one or more first cell characteristics included in each of the plurality of cell populations. Then, the generated values representing the state of the plurality of cell populations at the plurality of time points are determined from the data set including the time-series data acquired at the plurality of time points for each biological material, and the state dependency between the cell populations is determined.
- the biological or physical effects that occur between the cell populations of different cell types by estimating and extracting the dependencies between the different cell populations within the inter-group (cell population) dependencies Or their effects (interactions that occur between cell populations of different cell types).
- the estimation of the state dependency between cell populations can be performed, for example, as follows.
- Genes having similar biological functions are grouped using Functional Annotation Clustering of the public Web tool DAVID (https://david.ncifcrf.gov/), and genes having similar gene ontology are grouped.
- Grouping based on the similarity of the temporal change and the similarity of the biological function, and the temporal dependency between the state values of each group (cell population), for example, in the light of a Bayesian network model, or It can be estimated by linking between groups (between cell populations) based on time series or biological relationship.
- the results of the mechanism of action analysis obtained in the cell change detection step (S5) described above that is, the time-dependent changes in the cell characteristics and cell number of glial cells from time 0 to time 1 (FIG. 4)
- Solid arrows indicate that the B component whose component amount changes from time 0 to time 1 is related, and that the time-dependent changes in the cell characteristics and cell number of the neurons from time 1 to time 2 (
- the solid line arrow in FIG. 5) indicates that the Z component and the B component whose component amounts change from the time point 1 to the time point 2 are related, and further, the glial cells shown in FIGS.
- a single cell analysis is performed for all cells constituting a target cell group in which a plurality of different cell types are present, and the cell type of each cell is identified. Analyzes each cell type and the mechanism of action of drugs or cell stimulation on various cells with higher accuracy than conventional methods that artificially identify the cell type of each cell from the target cell group where the cell type exists be able to.
- the identification of each cell type and the mechanism of action of a drug or cell stimulation on each cell type can be analyzed with high accuracy, not only the interaction between the same cell types but also the interaction between different cell types can be performed. It is highly accurate and can be easily analyzed.
- connection network a wider interaction between cells and between cell types (interconnection network) can be analyzed with high accuracy and easily.
- identification and selection of cell types does not require labor such as image analysis, and even when drug efficacy screening is performed on immune cells, observation of one sample is not continued until analysis is completed.
- the analysis can be performed without any restriction on the analysis time.
- the single cell analysis since the single cell analysis is used, the number of time points at which the cells are observed (collected) can be reduced as compared with the case where the change of the cells is artificially confirmed and the target cells are selected.
- the state of the cells at each time point can be visualized by the grouping step (S4). Therefore, in the cell change detection step (S5), the change of each cell (cell population) can be easily performed. You can check. As a result, in the action mechanism analysis step (S6), it is possible to easily extract cell types, genes, and the like that need to be further analyzed.
- the cells collected immediately after the cell stimulation and the cells cultured for a predetermined time after the cell stimulation are collected, and the single cells are collected.
- the analysis based on the comparison of the cell data is performed, the present invention is not limited to this.
- a target cell group to which no cell stimulation is applied and a target cell group to which the cell stimulation is applied are prepared. After culturing the cells for a predetermined time, the cells may be collected and a screening analysis based on a comparison of single cell data of those cells may be performed.
- the target cell group seeded in some of the containers 1 among the prepared containers 1 is cultured without applying cell stimulation, and the remaining cells are cultured.
- Embodiment 1 except that the target cell group seeded in the container 1 is subjected to cell stimulation to collect the cells in one container at two or more time points. Is the same as
- the mechanism of action analysis step (S6) the mechanism of action of an agent (cell stimulation) within or between individual cell populations can be analyzed. It will also be possible to analyze and identify indications for treatment.
- indications assuming treatment include, for example, diseases or conditions that can be improved by cell stimulation, or diseases or conditions related to molecular targets.
- Example 1 Human iPS cells and fibroblasts derived from mouse embryos are mixed at a ratio of 1: 1 (cell number ratio), and ROCK (Rho-associated coiled-coil forming kinase / Rho binding kinase) inhibitor Y-27632 (10 ⁇ L; Fujifilm Wako Pure) (Yakusha Co., Ltd.) and seeded in a 6-well plate at 1000 cells / well / 200 ⁇ L, 3000 cells / well / 200 ⁇ L, and 9000 cells / well / 200 ⁇ L. Cells were collected at the time of seeding (0 hour), 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, and 120 hours after seeding.
- ROCK Rastero-associated coiled-coil forming kinase / Rho binding kinase
- the cell dispersion was diluted to 1000 cells / ⁇ L, and a single cell was captured using a C1 system (made by Fluidime). Then, using a SMARTer (R) Ultra (R) Low RNA kit, lysis of the cells, reverse transcription and cDNA preamplification of mRNA was carried out. The resulting cDNA was recovered and concentrations higher than 0.05 ng / ⁇ L were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
- the prepared library was sequenced by a next-generation sequencer (HiSeq 2500 system, manufactured by Illumina) using 2 ⁇ 100 bp end reading.
- the gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
- Example 2 Human primary neurons, immortalized human microglia into which SV40T antigen has been introduced, and immortalized astrocytes into which hTERT gene has been introduced are mixed at a ratio of 2: 1: 1 (cell number ratio), seeded on a 6-well plate, and cultured for 24 hours. did.
- the cell dispersion was diluted to 1000 cells / ⁇ L, and a single cell was captured using a C1 system (made by Fluidime).
- a TP53 gene 500-600 and 750-870 target primers were added to a cDNA preparation kit (SMARTer (R) Ultra (R) Low RNA kit, manufactured by Clontech) to lyse cells, reverse transcribe mRNA and pre-amplify cDNA. Was done. The resulting cDNA was recovered and concentrations higher than 0.05 ng / ⁇ L were selected for library preparation.
- Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
- the prepared library was sequenced by a next-generation sequencer (HiSeq 2500 system, manufactured by Illumina) using 2 ⁇ 100 bp end reading.
- the gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
- Cells were obtained by immobilizing cells in which the SV40T antigen gene was detected in immortalized microglia clusters, cells in which the hTERT gene was detected in immortalized astrocyte clusters, and cells in which neither the SV40T antigen gene nor the hTERT gene were detected in human primary neurons. Each was grouped into cell clusters. For each type of cell, a change in the number of cells and a change in the amount of gene expression over time were found, and a time-varying pattern of the gene was obtained. Dependency between cells was obtained by grouping and patterning the gene temporal variation patterns of each cell collectively and further calculating temporal dependence.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Pathology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The purpose of the present invention is to provide a cell-information processing method for efficiently analyzing interactions among cell populations in the presence of a mixture of multiple types of cell populations. A cell-information processing method according to the present invention includes: a cell retrieving step for preparing at least two prescribed vessels in which target cell groups containing different multiple types of cells are seeded, subjecting the target cells to a prescribed cell stimulation to culture said cells, and retrieving all of the cells, one vessel at a time, at two or more points in time; a single-cell preparing step for preparing single cells from all of the cells retrieved at each point in time; a single-cell-data acquiring step for acquiring single-cell data from the individual cells prepared as single cells at each point in time; a grouping step for grouping, on the basis of the single-cell data at each point in time, all of the cells retrieved at each point in time into multiple cell populations having a common first cell characteristic to plot said cell populations on a two-dimensional plane or in a three-dimensional space, performing processing for identifying, on the basis of a second cell characteristic, cell types of the grouped individual cell populations, and acquiring a clustering result at each point in time; a cell-change detecting step for comparing the clustering results at the individual points in time, thereby detecting changes over time in the cell populations of the same cell types; a mechanism-of-action analyzing step for analyzing, on the basis of the detection results, mechanisms of action of the changes over time in the cell populations of the same cell types; and an interaction analyzing step for analyzing, on the basis of the mechanism-of-action analysis results, interactions occurring among the cell populations of different cell types.
Description
本発明は、細胞情報処理方法に関する。特に、異なる複数の細胞種が混在する状況下で培養された細胞集団に対し、薬剤による細胞刺激を与えた場合に生じる異なる細胞種間の相互作用、及び、その作用機序を解析するための方法に関する。
The present invention relates to a cell information processing method. In particular, to analyze the interaction between different cell types and the mechanism of action that occur when cell stimulation by a drug is given to a cell population cultured under a situation where different cell types are mixed. About the method.
生体内には多数の細胞種類が存在し、互いに依存しながら共存し、相互刺激により変化する。また、変化する際には、1細胞内で多数の遺伝子が依存関係を持ちながら変化し、遺伝子はこの依存関係を通じて生体内で機能を発揮している。そのため、創薬分野や、再生医療分野において、生命現象および生物現象を理解するために、細胞間または細胞集団間の相互作用および細胞内での分子挙動のメカニズムを解析することは重要である。例えば、複数種類の細胞を混合培養した際に、どのように細胞間で相互に刺激を与えあい、また、その刺激により細胞内での遺伝子発現量または遺伝子の状態が、どのような依存関係をもって時間変化をするかを解析することによって、生命現象の機構を解明するための手がかりを得ることができる。
There are many cell types in living organisms, they coexist depending on each other, and change by mutual stimulation. In addition, when it changes, many genes change while having a dependency in one cell, and the gene exerts a function in a living body through this dependency. Therefore, in the field of drug discovery and regenerative medicine, it is important to analyze the interaction between cells or cell populations and the mechanism of molecular behavior in cells in order to understand biological phenomena and biological phenomena. For example, when multiple types of cells are mixed and cultured, how do they mutually stimulate each other, and how much the gene expression level or gene state in the cells depends on the stimulation By analyzing whether it changes over time, a clue for elucidating the mechanism of the biological phenomenon can be obtained.
上記メカニズムを解析に利用できる方法として、特許文献1には、「(1)遺伝子の経時的な発現量変化を示すデータから、各データ間の類似度を反映した特徴量を算出するステップと、(2)算出された特徴量から、全ての遺伝子間の組合せについて類似度行列Mの固有ベクトルを算出するステップと、(3)類似度行列Mを、固有ベクトルの固有値を維持したまま、ブール行列Nに変換するステップと、(4)ブール行列Nに基づいて各データをクラスタリングするステップと、を少なくとも行う遺伝子クラスタリング方法。」、即ち、経時的な発現量変化の類似性に基づいて、複数の遺伝子をグループ化する方法が提案されている(請求項9)。
As a method that can use the above mechanism for analysis, Patent Literature 1 discloses “(1) calculating a feature amount reflecting similarity between data from data indicating a change in the expression level of a gene over time, (2) calculating the eigenvectors of the similarity matrix M for all combinations between genes from the calculated feature amounts; and (3) converting the similarity matrix M into a Boolean matrix N while maintaining the eigenvalues of the eigenvectors. A gene clustering method that performs at least a converting step and (4) a step of clustering each data based on the Boolean matrix N. ”That is, a plurality of genes are classified based on the similarity of the expression level change over time. A grouping method has been proposed (claim 9).
また、特許文献2には、遺伝子発現プロファイルをクラスター化する方法であって、遺伝子オントロジー(GO)ツリーから1または2以上のGOタームを選択するステップ;遺伝子発現データセットを受け取るステップ;遺伝子発現データセットをGOタームに従ってグループに分類するステップ;第1に、遺伝子発現データの類似性に基づいて各群に属する遺伝子発現データをクラスタリングするステップ;および、第2に、第1のクラスタリングの結果をシードとして使用して遺伝子発現データセットをクラスタリングするステップを含む方法」、即ち、発現データの類似性と、それらが関与する生物学的機能の類似性とに基づいて、複数の遺伝子をグループ化する方法が提案されている(クレーム1)。
Also, Patent Document 2 discloses a method for clustering gene expression profiles, which includes selecting one or more GO terms from a gene ontology (GO) tree; receiving a gene expression data set; Classifying the sets into groups according to GO terms; first, clustering the gene expression data belonging to each group based on the similarity of the gene expression data; and, second, seeding the result of the first clustering. Clustering gene expression data sets using the same as a method of grouping multiple genes based on similarity of expression data and similarity of biological functions involved. Has been proposed (claim 1).
また、従来の薬効及び薬理を解析する方法としては、図8に示すように、各ウェル36に個々に配置された同種の細胞30、32及び34のみからなる細胞集団に薬剤をそれぞれ与えて培養し、その薬効を各細胞集団の平均化データを用いて解析する方法、又は、臓器から抽出された複数の細胞種を含む細胞集団に薬剤を与えて培養し、薬効を細胞集団の平均化データを用いて解析する方法が用いられてきた。
As a conventional method for analyzing the efficacy and pharmacology, as shown in FIG. 8, a drug is applied to a cell population consisting of only cells 30, 32 and 34 of the same kind arranged individually in each well 36 and cultured. Then, a method of analyzing the drug efficacy using the averaged data of each cell population, or culturing by giving a drug to a cell population containing a plurality of cell types extracted from an organ, and averaging the drug efficacy of the cell population A method of analyzing using has been used.
しかし、同種の細胞のみからなる細胞集団でも、個々の細胞の経時的な動的挙動(例えば、細胞の活性化、細胞の阻害、細胞の相互作用、タンパク質発現、タンパク質分泌、細胞増殖、細胞形態の変化、細胞死等)に不均一性があるため、従来の方法では、十分に精度の高い解析を行なえていなかった。そこで、近年では、さらに解析精度を高めるために、同種の細胞のみからなる細胞集団を構成する細胞をシングルセル化し、個々の細胞(単一細胞)レベルでの解析(シングルセル解析)が行われている。このようなシングルセル解析により、細胞集団の平均化データの解析ではなく、個々の細胞を解析することができるようになったため、平均化データによる解析では検出できなかった細胞や、小さな動的挙動の変化を検出することができるようになった。このようなシングルセル解析は、例えば、癌細胞のシングルセルトランスクリプトーム解析により、癌組織中に存在する細胞亜種を分類することに用いられている。また、シングルセル解析を用いて細胞活性を評価する方法として、特許文献3に記載される方法が提案されている。
However, even in a cell population consisting of only cells of the same type, the dynamic behavior of individual cells over time (eg, cell activation, cell inhibition, cell interaction, protein expression, protein secretion, cell proliferation, cell morphology Change, cell death, etc.), conventional methods have not been able to perform sufficiently accurate analysis. Therefore, in recent years, in order to further improve the analysis accuracy, cells constituting a cell population consisting of only cells of the same type have been converted into single cells, and analysis at the level of individual cells (single cells) (single cell analysis) has been performed. ing. Such single-cell analysis has enabled analysis of individual cells instead of analysis of averaged data for cell populations. Changes can be detected. Such single cell analysis is used, for example, to classify cell subtypes present in cancer tissues by single cell transcriptome analysis of cancer cells. As a method for evaluating cell activity using single cell analysis, a method described in Patent Document 3 has been proposed.
特許文献3には、細胞活性を評価する方法であって、(a)領域上に異なる複数種類の細胞を含む細胞集団を設置する工程、即ち、ナノウェルアレイプレート上の各ナノウェルに、異なる複数種類の細胞を含む細胞集団を設置する工程;(b)該細胞集団の動的な挙動を、時間の関数としてアッセイする工程、即ち、単一細胞レベルの動的な挙動を顕微鏡、蛍光顕微鏡等で可視化して(つまり、画像解析により)経時的に測定する工程;(c)該細胞集団から、動的な挙動に基づいて、少なくとも1つの解析対象の細胞を同定する工程;(d)同定された少なくとも1つの解析対象の細胞の分子プロファイルを特徴付ける工程、即ち、同定された少なくとも1つの解析対象細胞について単一細胞レベルで、質量分析、遺伝子分析、タンパク質分析等を行い、転写活性、トランスクリプトームのプロファイル、遺伝子発現活性、ゲノムプロファイル、タンパク質発現活性、プロテオームのプロファイル、タンパク質の相互作用活性、細胞受容体の発現活性、脂質プロファイル、脂質活性、炭水化物プロファイル、微小胞活性、グルコース活性、代謝プロファイル、細胞受容体の発現活性等を取得する工程;および(e)工程(b)および(d)から得られた情報を相関させる工程を含む、上記方法が提案されている(請求項1)。
即ち、特許文献1に記載の方法は、異なる複数種類の細胞を含む細胞集団において、個々の細胞種の細胞活性を評価するものである。 Patent Document 3 discloses a method for evaluating cell activity, in which (a) a step of arranging a cell population containing a plurality of different types of cells on a region, that is, a different plurality of cells in each nanowell on a nanowell array plate. Setting up a cell population containing different types of cells; (b) assaying the dynamic behavior of the cell population as a function of time, i.e., measuring the dynamic behavior at the single cell level with a microscope, fluorescence microscope, etc. (C) identifying at least one cell to be analyzed from the cell population based on dynamic behavior; (d) identifying Characterizing the molecular profile of the identified at least one analyte cell, i.e., mass spectrometry, genetic analysis, protein analysis at the single cell level for the identified at least one analyte cell. Analysis, transcription activity, transcriptome profile, gene expression activity, genomic profile, protein expression activity, proteome profile, protein interaction activity, cell receptor expression activity, lipid profile, lipid activity, carbohydrate profile Acquiring microvesicle activity, glucose activity, metabolic profile, cell receptor expression activity, and the like; and (e) correlating the information obtained from steps (b) and (d). It has been proposed (claim 1).
That is, the method described inPatent Literature 1 evaluates the cell activity of each cell type in a cell population containing a plurality of different types of cells.
即ち、特許文献1に記載の方法は、異なる複数種類の細胞を含む細胞集団において、個々の細胞種の細胞活性を評価するものである。 Patent Document 3 discloses a method for evaluating cell activity, in which (a) a step of arranging a cell population containing a plurality of different types of cells on a region, that is, a different plurality of cells in each nanowell on a nanowell array plate. Setting up a cell population containing different types of cells; (b) assaying the dynamic behavior of the cell population as a function of time, i.e., measuring the dynamic behavior at the single cell level with a microscope, fluorescence microscope, etc. (C) identifying at least one cell to be analyzed from the cell population based on dynamic behavior; (d) identifying Characterizing the molecular profile of the identified at least one analyte cell, i.e., mass spectrometry, genetic analysis, protein analysis at the single cell level for the identified at least one analyte cell. Analysis, transcription activity, transcriptome profile, gene expression activity, genomic profile, protein expression activity, proteome profile, protein interaction activity, cell receptor expression activity, lipid profile, lipid activity, carbohydrate profile Acquiring microvesicle activity, glucose activity, metabolic profile, cell receptor expression activity, and the like; and (e) correlating the information obtained from steps (b) and (d). It has been proposed (claim 1).
That is, the method described in
しかし、特許文献1及び2に記載の方法はいずれも、細胞内ネットワークを調べる方法であり、細胞間及び細胞種間の相互作用を知ることはできない。
However, the methods described in Patent Documents 1 and 2 are methods for examining intracellular networks, and it is impossible to know interactions between cells and cell types.
また、特許文献3に記載された方法も、各細胞活性を評価するだけの方法であるため、細胞間及び細胞種間の細胞種間の相互作用を知ることはできない。
また、特許文献3に記載された方法は、人間が、画像解析によって少なくとも100~200個の細胞からなる細胞集団の動的な挙動を観察し、複数種類の細胞及び動的な挙動が異なる細胞の中から解析対象の単一細胞の同定及び選択を行い、人間によって選び出された単一細胞の動的な挙動の作用機序および細胞間相互作用を解析するものであるため、つまり、各細胞種の形態や、経時的な各細胞の動的な変化を人間が恣意的に判断して解析を行う細胞を同定及び選択するため、精度の高い解析結果を得ることができないという問題があった。
また、特許文献1の一実施態様として記載されているように、解析対象の細胞集団に免疫細胞が含まれる場合、具体的には、血液サンプル中に免疫細胞が含まれる場合、血液サンプルに薬剤を与えてから約24時間で細胞が死滅してしまうという事情がある。また、特許文献1に記載の解析方法は、薬剤を与えた細胞集団を経時的に観察し、解析を行うものであるため(つまり、1つのサンプルの観察を解析が終わるまで続けるものであり、また、さらに、解析対象の細胞の選択及び培養を繰り返しながら解析する方法であるため)、特許文献3に記載の方法を採用する場合、薬剤を細胞集団に与えてから少なくとも24時間以内に全ての解析を終わらせなければならないという非常に厳しい時間的制約がある。 In addition, the method described in Patent Document 3 is also a method for merely evaluating each cell activity, and thus cannot know the interaction between cells and between cell types.
In addition, the method described in Patent Document 3 discloses that a human observes the dynamic behavior of a cell population composed of at least 100 to 200 cells by image analysis, and uses a plurality of types of cells and cells having different dynamic behavior. In order to identify and select single cells to be analyzed from among them, and to analyze the mechanism of action and intercellular interaction of the dynamic behavior of single cells selected by humans, Since humans arbitrarily judge the morphology of the cell type and the dynamic change of each cell over time to identify and select the cells to be analyzed, there is a problem that it is not possible to obtain highly accurate analysis results. Was.
Further, as described as one embodiment ofPatent Document 1, when a cell population to be analyzed contains immune cells, specifically, when a blood sample contains immune cells, a drug is added to the blood sample. There is a situation that cells are killed in about 24 hours after the application. In addition, the analysis method described in Patent Document 1 is for observing a cell population to which a drug has been applied over time and performing analysis (that is, observation of one sample is continued until the analysis is completed. In addition, since the method is a method in which the analysis is performed while repeatedly selecting and culturing cells to be analyzed), when the method described in Patent Literature 3 is employed, all the cells are administered at least within 24 hours after the drug is given to the cell population. There is a very severe time constraint that the analysis must be completed.
また、特許文献3に記載された方法は、人間が、画像解析によって少なくとも100~200個の細胞からなる細胞集団の動的な挙動を観察し、複数種類の細胞及び動的な挙動が異なる細胞の中から解析対象の単一細胞の同定及び選択を行い、人間によって選び出された単一細胞の動的な挙動の作用機序および細胞間相互作用を解析するものであるため、つまり、各細胞種の形態や、経時的な各細胞の動的な変化を人間が恣意的に判断して解析を行う細胞を同定及び選択するため、精度の高い解析結果を得ることができないという問題があった。
また、特許文献1の一実施態様として記載されているように、解析対象の細胞集団に免疫細胞が含まれる場合、具体的には、血液サンプル中に免疫細胞が含まれる場合、血液サンプルに薬剤を与えてから約24時間で細胞が死滅してしまうという事情がある。また、特許文献1に記載の解析方法は、薬剤を与えた細胞集団を経時的に観察し、解析を行うものであるため(つまり、1つのサンプルの観察を解析が終わるまで続けるものであり、また、さらに、解析対象の細胞の選択及び培養を繰り返しながら解析する方法であるため)、特許文献3に記載の方法を採用する場合、薬剤を細胞集団に与えてから少なくとも24時間以内に全ての解析を終わらせなければならないという非常に厳しい時間的制約がある。 In addition, the method described in Patent Document 3 is also a method for merely evaluating each cell activity, and thus cannot know the interaction between cells and between cell types.
In addition, the method described in Patent Document 3 discloses that a human observes the dynamic behavior of a cell population composed of at least 100 to 200 cells by image analysis, and uses a plurality of types of cells and cells having different dynamic behavior. In order to identify and select single cells to be analyzed from among them, and to analyze the mechanism of action and intercellular interaction of the dynamic behavior of single cells selected by humans, Since humans arbitrarily judge the morphology of the cell type and the dynamic change of each cell over time to identify and select the cells to be analyzed, there is a problem that it is not possible to obtain highly accurate analysis results. Was.
Further, as described as one embodiment of
また、特許文献3に記載の方法は、細胞同定や対象細胞の選択操作に手間やコストがかかり、また、その解析による評価の算出方法及びその結果も複雑であるため、効率的で、高精度、且つ迅速な評価及び解析を必要とする産業的に用いる方法としては実用的ではないという問題がある。
さらに、異なる複数の種類の細胞を含む細胞集団に薬剤をそれぞれ与えて培養し、シングルセル解析技術を用いて、異なる複数の細胞種を含む細胞集団において実施する各細胞種の同定方法、各細胞種の薬効及び薬理を効率的に解析する方法は現時点で報告されていない。そのため、異なる複数の細胞種が混在する状況下で培養された細胞集団に対し、薬剤による細胞刺激を与えた場合に生じる異なる細胞種間の相互作用、及び、その作用機序をシングルセル解析に基づいて効率的に解析する方法も現時点で報告されていない。 In addition, the method described in Patent Document 3 requires labor and cost for cell identification and selection of a target cell, and the method of calculating the evaluation by the analysis and the result thereof are complicated, so that the method is efficient and highly accurate. In addition, there is a problem that it is not practical as an industrial method that requires quick evaluation and analysis.
Furthermore, a method for identifying each cell type, which is performed in a cell population containing a plurality of different cell types, using a single-cell analysis technique, and culturing each of the cell populations containing a plurality of different types of cells by giving the agent thereto, At present, there is no report on how to efficiently analyze the efficacy and pharmacology of species. Therefore, the interaction between different cell types and the mechanism of action that occur when cell stimulation by a drug is given to a cell population cultured in a situation where multiple different cell types are mixed are analyzed by single-cell analysis. At present, there is no report on an efficient analysis based on this.
さらに、異なる複数の種類の細胞を含む細胞集団に薬剤をそれぞれ与えて培養し、シングルセル解析技術を用いて、異なる複数の細胞種を含む細胞集団において実施する各細胞種の同定方法、各細胞種の薬効及び薬理を効率的に解析する方法は現時点で報告されていない。そのため、異なる複数の細胞種が混在する状況下で培養された細胞集団に対し、薬剤による細胞刺激を与えた場合に生じる異なる細胞種間の相互作用、及び、その作用機序をシングルセル解析に基づいて効率的に解析する方法も現時点で報告されていない。 In addition, the method described in Patent Document 3 requires labor and cost for cell identification and selection of a target cell, and the method of calculating the evaluation by the analysis and the result thereof are complicated, so that the method is efficient and highly accurate. In addition, there is a problem that it is not practical as an industrial method that requires quick evaluation and analysis.
Furthermore, a method for identifying each cell type, which is performed in a cell population containing a plurality of different cell types, using a single-cell analysis technique, and culturing each of the cell populations containing a plurality of different types of cells by giving the agent thereto, At present, there is no report on how to efficiently analyze the efficacy and pharmacology of species. Therefore, the interaction between different cell types and the mechanism of action that occur when cell stimulation by a drug is given to a cell population cultured in a situation where multiple different cell types are mixed are analyzed by single-cell analysis. At present, there is no report on an efficient analysis based on this.
また、図8に示すような薬効及び薬理スクリーニング方法を用いた薬剤の探索の初期段階では、薬剤(細胞刺激)による細胞死の無しの判断のみに基づいて、異なる細胞との相互作用解析や、薬効及び薬理のメカニズムの解析が進められるため、膨大な数の候補物質から薬剤となり得る物質を抽出してくる解析初期段階においては、例えば、細胞死が検出されたとしても、それがどのような要因により、細胞死が引き起こされたのか不明なまま、薬剤候補となり得なかったりする可能性があった。
In the initial stage of drug search using the drug efficacy and pharmacological screening method as shown in FIG. 8, analysis of interaction with different cells based on only judgment of no cell death due to drug (cell stimulation), Since the analysis of the medicinal properties and pharmacological mechanisms is advanced, in the initial stage of analysis in which a substance that can be a drug is extracted from a huge number of candidate substances, for example, even if cell death is detected, Depending on the factors, it was not possible to become a drug candidate without knowing whether cell death was caused.
本発明は、従来技術の有する上記問題点を鑑みて、異なる複数の種類の細胞集団が混在する場合に、細胞集団間の相互作用を効率的に解析するための細胞情報処理方法を提供することを目的とする。
より具体的に言えば、異なる複数の細胞種が混在する状況下で培養された細胞集団に対し、薬剤または細胞刺激を与えた場合に生じる異なる細胞種間の相互作用、及び、その作用機序をより簡単な操作で、高精度に且つ迅速に評価及び解析することが効率的にでき、産業的な規模でも利用できる方法を提供することを課題とする。 The present invention has been made in view of the above problems of the related art, and provides a cell information processing method for efficiently analyzing an interaction between cell populations when a plurality of different types of cell populations are mixed. With the goal.
More specifically, the interaction between different cell types that occurs when a drug or a cell stimulus is applied to a cell population cultured in a situation where different cell types are mixed, and the mechanism of action It is an object of the present invention to provide a method which can efficiently and quickly evaluate and analyze with high accuracy and quickness by a simpler operation, and can be used even on an industrial scale.
より具体的に言えば、異なる複数の細胞種が混在する状況下で培養された細胞集団に対し、薬剤または細胞刺激を与えた場合に生じる異なる細胞種間の相互作用、及び、その作用機序をより簡単な操作で、高精度に且つ迅速に評価及び解析することが効率的にでき、産業的な規模でも利用できる方法を提供することを課題とする。 The present invention has been made in view of the above problems of the related art, and provides a cell information processing method for efficiently analyzing an interaction between cell populations when a plurality of different types of cell populations are mixed. With the goal.
More specifically, the interaction between different cell types that occurs when a drug or a cell stimulus is applied to a cell population cultured in a situation where different cell types are mixed, and the mechanism of action It is an object of the present invention to provide a method which can efficiently and quickly evaluate and analyze with high accuracy and quickness by a simpler operation, and can be used even on an industrial scale.
本発明の細胞情報処理方法は、異なる複数種類の細胞を含む対象細胞群を播種した所定の容器を少なくとも2以上用意し、上記対象細胞群に対し、所定の細胞刺激を与えて培養し、2以上の時点で、1つの容器内にある全細胞を回収する細胞回収ステップと、各時点で回収した全細胞をシングルセル化するシングルセル化ステップと、各時点のシングルセル化された各細胞からシングルセルデータを取得するシングルセルデータ取得ステップと、各時点の上記シングルセルデータに基づいて、各時点で回収された全細胞を共通の第1の細胞特徴を有する複数の細胞集団にグループ分けして二次元平面又は三次元空間上にプロットし、且つ、第2の細胞特徴に基づいて、グループ分けした各細胞集団の細胞種を同定する処理を行い、各時点におけるクラスタリング結果を取得するグルーピングステップと、各時点におけるクラスタリング結果を比較することにより、同じ細胞種の上記細胞集団の経時的な変化を検出する細胞変化検出ステップと、検出の結果に基づいて、同じ細胞種の上記細胞集団の経時的な変化の作用機序を解析する作用機序解析ステップと、作用機序解析の結果に基づいて、異なる細胞種の上記細胞集団の間で起きる相互作用を解析する相互作用解析ステップと、を含む。
In the cell information processing method of the present invention, at least two or more predetermined containers in which a target cell group including a plurality of different types of cells are seeded are prepared, and the target cell group is subjected to predetermined cell stimulation and cultured. At the above time points, a cell collecting step of collecting all cells in one container, a single cell forming step of converting all cells collected at each time point into a single cell, and a single cell forming step of each cell at each time point A single cell data acquisition step of acquiring single cell data; and, based on the single cell data at each time point, grouping all cells collected at each time point into a plurality of cell populations having a common first cell characteristic. Plotted on a two-dimensional plane or three-dimensional space, and based on the second cell feature, perform a process of identifying the cell type of each grouped cell population, and at each time point A grouping step of obtaining a clustering result, and a cell change detection step of detecting a change over time of the cell population of the same cell type by comparing the clustering results at each time point, based on a result of the detection. Analyzing the mechanism of action of the temporal change of the cell population of the cell type, and analyzing the interaction occurring between the cell populations of different cell types based on the result of the mechanism of action analysis Interaction analysis step.
上記相互作用解析ステップの上記細胞集団間で起きる相互作用には、同じ細胞種の細胞集団の間で起きる相互作用も含むことが好ましい。
上記細胞変化検出ステップは、上記各時点におけるクラスタリング結果を比較することにより、同じ細胞種の上記細胞集団を構成する細胞数の経時的な変化、及び経時的な上記第1の細胞特徴の変化を検出することもできる。
上記細胞変化検出ステップは、さらに、上記各時点におけるクラスタリング結果において、同じ細胞種の上記細胞集団を構成する細胞数の経時的変化、及び経時的な上記第1の細胞特徴の変化を検出してもよい。 The interaction occurring between the cell populations in the interaction analysis step preferably includes an interaction occurring between cell populations of the same cell type.
The cell change detection step includes comparing a clustering result at each time point to determine a temporal change in the number of cells constituting the cell population of the same cell type and a temporal change in the first cell characteristic. It can also be detected.
The cell change detection step further includes detecting, with the clustering result at each time point, a temporal change in the number of cells constituting the cell population of the same cell type, and a temporal change in the first cell characteristic. Is also good.
上記細胞変化検出ステップは、上記各時点におけるクラスタリング結果を比較することにより、同じ細胞種の上記細胞集団を構成する細胞数の経時的な変化、及び経時的な上記第1の細胞特徴の変化を検出することもできる。
上記細胞変化検出ステップは、さらに、上記各時点におけるクラスタリング結果において、同じ細胞種の上記細胞集団を構成する細胞数の経時的変化、及び経時的な上記第1の細胞特徴の変化を検出してもよい。 The interaction occurring between the cell populations in the interaction analysis step preferably includes an interaction occurring between cell populations of the same cell type.
The cell change detection step includes comparing a clustering result at each time point to determine a temporal change in the number of cells constituting the cell population of the same cell type and a temporal change in the first cell characteristic. It can also be detected.
The cell change detection step further includes detecting, with the clustering result at each time point, a temporal change in the number of cells constituting the cell population of the same cell type, and a temporal change in the first cell characteristic. Is also good.
上記細胞回収ステップは、さらに、上記所定の細胞刺激を与えずに培養する上記複数種類の細胞を含む対象細胞群を用意し、1以上の時点で、1つの上記所定の容器内にある全細胞を回収し、上記細胞変化検出ステップは、上記各時点におけるクラスタリング結果を比較することにより、上記細胞集団の上記所定の細胞刺激の有無による、上記同じ細胞腫の細胞集団の経時的な変化を評価することもできる。
上記細胞刺激は、化学的刺激および物理的刺激からなる群から選択される少なくとも1種であるのが好ましい。
上記化学的刺激は、細胞に対して生物学的な反応を誘起する薬剤の添加によるものであることが好ましい。
上記作用機序は、上記細胞刺激により細胞内外で誘起された生物学的な現象を発揮するための特異的な生化学的反応または相互作用であることが好ましい。 The cell collection step further includes preparing a target cell group including the plurality of types of cells to be cultured without applying the predetermined cell stimulation, and, at one or more time points, all cells in one predetermined container. The cell change detection step evaluates the change over time of the same cell tumor cell population due to the presence or absence of the predetermined cell stimulation of the cell population by comparing the clustering results at the respective time points. You can also.
The cell stimulus is preferably at least one selected from the group consisting of a chemical stimulus and a physical stimulus.
The chemical stimulus is preferably due to the addition of an agent that induces a biological response to the cells.
Preferably, the action mechanism is a specific biochemical reaction or interaction for exerting a biological phenomenon induced inside and outside the cell by the cell stimulation.
上記細胞刺激は、化学的刺激および物理的刺激からなる群から選択される少なくとも1種であるのが好ましい。
上記化学的刺激は、細胞に対して生物学的な反応を誘起する薬剤の添加によるものであることが好ましい。
上記作用機序は、上記細胞刺激により細胞内外で誘起された生物学的な現象を発揮するための特異的な生化学的反応または相互作用であることが好ましい。 The cell collection step further includes preparing a target cell group including the plurality of types of cells to be cultured without applying the predetermined cell stimulation, and, at one or more time points, all cells in one predetermined container. The cell change detection step evaluates the change over time of the same cell tumor cell population due to the presence or absence of the predetermined cell stimulation of the cell population by comparing the clustering results at the respective time points. You can also.
The cell stimulus is preferably at least one selected from the group consisting of a chemical stimulus and a physical stimulus.
The chemical stimulus is preferably due to the addition of an agent that induces a biological response to the cells.
Preferably, the action mechanism is a specific biochemical reaction or interaction for exerting a biological phenomenon induced inside and outside the cell by the cell stimulation.
上記シングルセルデータは、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度からなる群から選択される少なくとも1つであることが好ましい。
上記シングルセルデータは、遺伝子発現量及び遺伝子のDNA配列であることが好ましい。 The single cell data includes the DNA sequence information of the gene (genome), epigenetic information controlling the expression of the gene (DNA methylation, histone methylation, acetylation, phosphorylation), the primary transcript of the gene (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
The single cell data is preferably a gene expression level and a gene DNA sequence.
上記シングルセルデータは、遺伝子発現量及び遺伝子のDNA配列であることが好ましい。 The single cell data includes the DNA sequence information of the gene (genome), epigenetic information controlling the expression of the gene (DNA methylation, histone methylation, acetylation, phosphorylation), the primary transcript of the gene (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
The single cell data is preferably a gene expression level and a gene DNA sequence.
上記グルーピングステップにおいて、上記第1の細胞特徴とは、上記シングルセルデータに含まれるn次元の細胞特徴を2次元または3次元に次元削減したものであることが好ましい。
上記次元削減の方法は、主成分分析(PCA)、カーネルあり主成分分析(Kernel-PCA)、多次元尺度構成法(MDS)、t-SNE、及び畳込みニューラルネットワーク(CNN)からなる群から選択される少なくとも1つであることが好ましい。
上記グルーピングステップにおいて、上記第1の細胞特徴とは、上記遺伝子発現量について主成分分析を行い、2次元又は3次元に次元削減して獲得されるものであることが好ましい。
上記グルーピングステップにおいて、上記第2の細胞特徴とは、細胞の機能または細胞の状態から各細胞種を同定することが可能な少なくとも1つの細胞情報であることが好ましい。 In the grouping step, it is preferable that the first cell feature is obtained by reducing the n-dimensional cell feature included in the single cell data into two or three dimensions.
The dimension reduction method is based on the group consisting of principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, and convolutional neural network (CNN). Preferably, it is at least one selected.
In the grouping step, the first cell feature is preferably obtained by performing a principal component analysis on the gene expression amount and reducing the dimension to two or three dimensions.
In the grouping step, it is preferable that the second cell feature is at least one piece of cell information capable of identifying each cell type from a cell function or a cell state.
上記次元削減の方法は、主成分分析(PCA)、カーネルあり主成分分析(Kernel-PCA)、多次元尺度構成法(MDS)、t-SNE、及び畳込みニューラルネットワーク(CNN)からなる群から選択される少なくとも1つであることが好ましい。
上記グルーピングステップにおいて、上記第1の細胞特徴とは、上記遺伝子発現量について主成分分析を行い、2次元又は3次元に次元削減して獲得されるものであることが好ましい。
上記グルーピングステップにおいて、上記第2の細胞特徴とは、細胞の機能または細胞の状態から各細胞種を同定することが可能な少なくとも1つの細胞情報であることが好ましい。 In the grouping step, it is preferable that the first cell feature is obtained by reducing the n-dimensional cell feature included in the single cell data into two or three dimensions.
The dimension reduction method is based on the group consisting of principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, and convolutional neural network (CNN). Preferably, it is at least one selected.
In the grouping step, the first cell feature is preferably obtained by performing a principal component analysis on the gene expression amount and reducing the dimension to two or three dimensions.
In the grouping step, it is preferable that the second cell feature is at least one piece of cell information capable of identifying each cell type from a cell function or a cell state.
上記細胞情報とは、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度からなる群から選択される少なくとも1つであることが好ましい。
上記細胞の機能とは、細胞の増殖、修復、代謝、および細胞間の情報交換から選択される少なくとも1つであることが好ましい。
上記細胞の状態とは、遺伝子の発現状況、タンパク質の発現状況、および酵素活性から選択される少なくとも1つであることが好ましい。 The above-mentioned cell information includes DNA sequence information of a gene (genome), epigenetic information for controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
The function of the cell is preferably at least one selected from cell growth, repair, metabolism, and information exchange between cells.
The state of the cell is preferably at least one selected from the state of gene expression, the state of protein expression, and the enzymatic activity.
上記細胞の機能とは、細胞の増殖、修復、代謝、および細胞間の情報交換から選択される少なくとも1つであることが好ましい。
上記細胞の状態とは、遺伝子の発現状況、タンパク質の発現状況、および酵素活性から選択される少なくとも1つであることが好ましい。 The above-mentioned cell information includes DNA sequence information of a gene (genome), epigenetic information for controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
The function of the cell is preferably at least one selected from cell growth, repair, metabolism, and information exchange between cells.
The state of the cell is preferably at least one selected from the state of gene expression, the state of protein expression, and the enzymatic activity.
上記相互作用解析ステップにおいて、上記細胞集団の間で起きる相互作用とは、異なる細胞種の細胞集団の間で起きる生物学的または物理的な作用、または上記作用による細胞数、上記第1の細胞特徴の変化であることが好ましい。
上記シングルセルデータから複数の生体物質の量又は状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め作成し、上記生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けし、上記相互作用解析ステップにおいて、上記複数の時点の各々について、複数の細胞集団の各々に含まれる1つ以上の第1の細胞特徴から、上記細胞集団の状態を表す値を生成し、生成された、複数時点の、複数の細胞集団の状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データからなるデータセットから、細胞集団間の状態の依存関係を推定することが好ましい。
上記生物学的機能の類似性は、共通の遺伝子オントロジーを有すること、共通のカノニカルパスウェイに属すること、共通の上流因子を有すること、共通の表現系に関わること、および、共通の疾患に関わることからなる群から選択される少なくとも1つに基づいて評価されるものであることが好ましい。 In the interaction analysis step, the interaction occurring between the cell populations refers to a biological or physical action occurring between cell populations of different cell types, or the number of cells due to the action, the first cell Preferably, it is a change in characteristics.
From the single cell data, a value representing the amount or state of a plurality of biological substances, time-series data obtained at a plurality of time points for each biological substance is created in advance, and a time change of the time-series data for each biological substance, Based on the similarity in biological function of each biological material, the cells from which the single cell data has been obtained are grouped into cell populations having a common first cell characteristic, and in the interaction analysis step, For each of the time points, a value representing the state of the cell population is generated from one or more first cell characteristics included in each of the plurality of cell populations, and the generated plurality of time points of the plurality of cell populations are generated. It is preferable to estimate the state dependency between cell populations from a data set consisting of time-series data obtained at a plurality of time points for each biological material. .
Similarity of the above biological functions means having a common gene ontology, belonging to a common canonical pathway, having a common upstream factor, being involved in a common expression system, and being involved in a common disease Preferably, the evaluation is based on at least one selected from the group consisting of:
上記シングルセルデータから複数の生体物質の量又は状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め作成し、上記生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けし、上記相互作用解析ステップにおいて、上記複数の時点の各々について、複数の細胞集団の各々に含まれる1つ以上の第1の細胞特徴から、上記細胞集団の状態を表す値を生成し、生成された、複数時点の、複数の細胞集団の状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データからなるデータセットから、細胞集団間の状態の依存関係を推定することが好ましい。
上記生物学的機能の類似性は、共通の遺伝子オントロジーを有すること、共通のカノニカルパスウェイに属すること、共通の上流因子を有すること、共通の表現系に関わること、および、共通の疾患に関わることからなる群から選択される少なくとも1つに基づいて評価されるものであることが好ましい。 In the interaction analysis step, the interaction occurring between the cell populations refers to a biological or physical action occurring between cell populations of different cell types, or the number of cells due to the action, the first cell Preferably, it is a change in characteristics.
From the single cell data, a value representing the amount or state of a plurality of biological substances, time-series data obtained at a plurality of time points for each biological substance is created in advance, and a time change of the time-series data for each biological substance, Based on the similarity in biological function of each biological material, the cells from which the single cell data has been obtained are grouped into cell populations having a common first cell characteristic, and in the interaction analysis step, For each of the time points, a value representing the state of the cell population is generated from one or more first cell characteristics included in each of the plurality of cell populations, and the generated plurality of time points of the plurality of cell populations are generated. It is preferable to estimate the state dependency between cell populations from a data set consisting of time-series data obtained at a plurality of time points for each biological material. .
Similarity of the above biological functions means having a common gene ontology, belonging to a common canonical pathway, having a common upstream factor, being involved in a common expression system, and being involved in a common disease Preferably, the evaluation is based on at least one selected from the group consisting of:
上記細胞回収ステップ及び上記シングルセル化ステップにおいて、全細胞を回収し、シングルセル化する方法が、手動、フローサイトメトリー、磁気分離、レーザーキャプチャーマイクロダイセクション、マイクロ流路、マイクロドロップレット、ナノウェル、マイクロピペット微細針吸引、レーザーピンセット、標識アレイ、表面プラズモンレスポンス、およびナノバイオデバイスからなる群から選択される少なくとも1つを用いる方法であることが好ましい。
上記全細胞を回収し、シングルセル化する方法において、細胞の標識として蛍光標識、ラジオアイソトープ標識、抗体標識、および磁気標識からなる群から選択される少なくとも1つを用いることが好ましい。
上記複数種類の細胞を含む対象細胞群は、生体組織サンプル、血液サンプル、培養サンプル、および環境サンプルからなる群から選択される少なくとも1つから得られた細胞であることが好ましい。
上記複数種類の細胞は、動物細胞、植物細胞、真菌細胞および細菌細胞からなる群から選択される少なくとも1つであることが好ましい。 In the above-mentioned cell collection step and the above-mentioned single cell forming step, a method of collecting all cells and converting it into a single cell is manually operated, flow cytometry, magnetic separation, laser capture microdissection, micro flow path, micro droplet, nano well, Preferably, the method uses at least one selected from the group consisting of micropipette fine needle aspiration, laser tweezers, label arrays, surface plasmon response, and nanobiodevice.
In the above method of collecting all cells and forming a single cell, it is preferable to use at least one selected from the group consisting of a fluorescent label, a radioisotope label, an antibody label, and a magnetic label as a cell label.
The target cell group containing the plurality of types of cells is preferably cells obtained from at least one selected from the group consisting of a biological tissue sample, a blood sample, a culture sample, and an environmental sample.
The plurality of types of cells are preferably at least one selected from the group consisting of animal cells, plant cells, fungal cells, and bacterial cells.
上記全細胞を回収し、シングルセル化する方法において、細胞の標識として蛍光標識、ラジオアイソトープ標識、抗体標識、および磁気標識からなる群から選択される少なくとも1つを用いることが好ましい。
上記複数種類の細胞を含む対象細胞群は、生体組織サンプル、血液サンプル、培養サンプル、および環境サンプルからなる群から選択される少なくとも1つから得られた細胞であることが好ましい。
上記複数種類の細胞は、動物細胞、植物細胞、真菌細胞および細菌細胞からなる群から選択される少なくとも1つであることが好ましい。 In the above-mentioned cell collection step and the above-mentioned single cell forming step, a method of collecting all cells and converting it into a single cell is manually operated, flow cytometry, magnetic separation, laser capture microdissection, micro flow path, micro droplet, nano well, Preferably, the method uses at least one selected from the group consisting of micropipette fine needle aspiration, laser tweezers, label arrays, surface plasmon response, and nanobiodevice.
In the above method of collecting all cells and forming a single cell, it is preferable to use at least one selected from the group consisting of a fluorescent label, a radioisotope label, an antibody label, and a magnetic label as a cell label.
The target cell group containing the plurality of types of cells is preferably cells obtained from at least one selected from the group consisting of a biological tissue sample, a blood sample, a culture sample, and an environmental sample.
The plurality of types of cells are preferably at least one selected from the group consisting of animal cells, plant cells, fungal cells, and bacterial cells.
本発明によれば、複数の種類の細胞集団が混在する場合に、異なる細胞集団間の相互作用を効率的に解析するための細胞情報処理方法を提供できる。
より具体的に言えば、異なる複数の細胞種が存在する細胞集団において実施する各細胞種の同定、若しくは薬効及び薬理スクリーニングをより簡単な操作で、高精度に且つ迅速に評価及び解析することができ、産業的な規模でも利用できる方法を提供することができる。そのため、同じ細胞種からなる細胞集団間の変化だけでなく、異なる細胞種からなる細胞集団の変化(細胞集団間の相互作用)を効率的、且つ、同時に確認することができる。また、その結果、より広い細胞間及び細胞種間の相互作用(相互ネットワーク)も精度高く、容易に解析することができる。
また、経時的な細胞の動的な挙動等を人間が恣意的に判断することがないため、各細胞種の同定、各種細胞に対する薬剤または細胞刺激の作用機序を、精度高く、解析することができる。
また、画像解析等の手間をかけることなく、対象細胞を同定することができる。
また、免疫細胞に対する薬効スクリーニングを行う場合であっても、特に解析時間に制約を設けることなく解析を行うことができる。
また、同じ細胞種ごとに培養したサンプルそれぞれに薬剤または細胞刺激を与えて解析する必要なく、複数種類の細胞を共培養したサンプルに薬剤または細胞刺激を与えて解析することができるため、解析のために、多量のサンプルを用意したり、解析したりする手間や費用の負担を減らすことができる。
また、解析対象の細胞が、細胞の生育および機能維持のために1種類の細胞だけで培養することができないものであっても、本発明によれば、複数種類の細胞を共培養したサンプルから解析対象の細胞を同定することができる。また、解析対象以外の細胞との共培養による作用機序、例えば、解析対象細胞と免疫細胞との共培養が必要なサンプル薬剤又は細胞刺激の作用機序も適切に解析することができる。 According to the present invention, it is possible to provide a cell information processing method for efficiently analyzing an interaction between different cell populations when a plurality of types of cell populations are mixed.
More specifically, it is possible to identify and identify each cell type in a cell population in which a plurality of different cell types are present, or to evaluate and analyze drug efficacy and pharmacological screening with a simpler operation with high accuracy and speed. And provide a method that can be used on an industrial scale. Therefore, not only changes between cell populations composed of the same cell type, but also changes in cell populations composed of different cell types (interaction between cell populations) can be efficiently and simultaneously confirmed. Further, as a result, a wider interaction between cells and between cell types (interconnection network) can be analyzed with high accuracy and easily.
In addition, since humans do not arbitrarily judge the dynamic behavior of cells over time, it is necessary to identify each cell type and analyze the mechanism of action of drugs or cell stimulation on various cells with high accuracy. Can be.
In addition, the target cell can be identified without any trouble such as image analysis.
In addition, even when a drug efficacy screening for immune cells is performed, the analysis can be performed without particularly limiting the analysis time.
In addition, since it is not necessary to apply a drug or cell stimulus to each sample cultured for the same cell type and analyze it, it is possible to apply a drug or cell stimulus to a sample in which multiple types of cells are co-cultured and analyze. Therefore, it is possible to reduce the labor and cost of preparing and analyzing a large number of samples.
Further, according to the present invention, even if the cells to be analyzed cannot be cultured with only one type of cells for the purpose of maintaining cell growth and function, according to the present invention, a sample obtained by co-culturing a plurality of types of cells is used. The cells to be analyzed can be identified. In addition, the mechanism of action by co-culture with cells other than the analysis target, for example, the mechanism of action of a sample drug or cell stimulation that requires co-culture of the analysis target cell and immune cells can be appropriately analyzed.
より具体的に言えば、異なる複数の細胞種が存在する細胞集団において実施する各細胞種の同定、若しくは薬効及び薬理スクリーニングをより簡単な操作で、高精度に且つ迅速に評価及び解析することができ、産業的な規模でも利用できる方法を提供することができる。そのため、同じ細胞種からなる細胞集団間の変化だけでなく、異なる細胞種からなる細胞集団の変化(細胞集団間の相互作用)を効率的、且つ、同時に確認することができる。また、その結果、より広い細胞間及び細胞種間の相互作用(相互ネットワーク)も精度高く、容易に解析することができる。
また、経時的な細胞の動的な挙動等を人間が恣意的に判断することがないため、各細胞種の同定、各種細胞に対する薬剤または細胞刺激の作用機序を、精度高く、解析することができる。
また、画像解析等の手間をかけることなく、対象細胞を同定することができる。
また、免疫細胞に対する薬効スクリーニングを行う場合であっても、特に解析時間に制約を設けることなく解析を行うことができる。
また、同じ細胞種ごとに培養したサンプルそれぞれに薬剤または細胞刺激を与えて解析する必要なく、複数種類の細胞を共培養したサンプルに薬剤または細胞刺激を与えて解析することができるため、解析のために、多量のサンプルを用意したり、解析したりする手間や費用の負担を減らすことができる。
また、解析対象の細胞が、細胞の生育および機能維持のために1種類の細胞だけで培養することができないものであっても、本発明によれば、複数種類の細胞を共培養したサンプルから解析対象の細胞を同定することができる。また、解析対象以外の細胞との共培養による作用機序、例えば、解析対象細胞と免疫細胞との共培養が必要なサンプル薬剤又は細胞刺激の作用機序も適切に解析することができる。 According to the present invention, it is possible to provide a cell information processing method for efficiently analyzing an interaction between different cell populations when a plurality of types of cell populations are mixed.
More specifically, it is possible to identify and identify each cell type in a cell population in which a plurality of different cell types are present, or to evaluate and analyze drug efficacy and pharmacological screening with a simpler operation with high accuracy and speed. And provide a method that can be used on an industrial scale. Therefore, not only changes between cell populations composed of the same cell type, but also changes in cell populations composed of different cell types (interaction between cell populations) can be efficiently and simultaneously confirmed. Further, as a result, a wider interaction between cells and between cell types (interconnection network) can be analyzed with high accuracy and easily.
In addition, since humans do not arbitrarily judge the dynamic behavior of cells over time, it is necessary to identify each cell type and analyze the mechanism of action of drugs or cell stimulation on various cells with high accuracy. Can be.
In addition, the target cell can be identified without any trouble such as image analysis.
In addition, even when a drug efficacy screening for immune cells is performed, the analysis can be performed without particularly limiting the analysis time.
In addition, since it is not necessary to apply a drug or cell stimulus to each sample cultured for the same cell type and analyze it, it is possible to apply a drug or cell stimulus to a sample in which multiple types of cells are co-cultured and analyze. Therefore, it is possible to reduce the labor and cost of preparing and analyzing a large number of samples.
Further, according to the present invention, even if the cells to be analyzed cannot be cultured with only one type of cells for the purpose of maintaining cell growth and function, according to the present invention, a sample obtained by co-culturing a plurality of types of cells is used. The cells to be analyzed can be identified. In addition, the mechanism of action by co-culture with cells other than the analysis target, for example, the mechanism of action of a sample drug or cell stimulation that requires co-culture of the analysis target cell and immune cells can be appropriately analyzed.
[細胞情報処理方法]
以下では、本発明の細胞情報処理方法について詳細に説明する。
実施形態1
実施形態1は、神経細胞とグリア細胞間の相互作用の解析、即ち、神経細胞及びグリア細胞からなる対象細胞群に対し薬剤を添加し、培養した際に生じる神経細胞とグリア細胞の相互ネットワークの形成過程(経時的変化)の解析を事例として説明する。
図1は、本発明の実施形態1に係る細胞情報処理方法を示すフローチャートである。 [Cell information processing method]
Hereinafter, the cell information processing method of the present invention will be described in detail.
Embodiment 1
The first embodiment analyzes the interaction between nerve cells and glial cells, that is, the interaction network between nerve cells and glial cells generated when a drug is added to a target cell group consisting of nerve cells and glial cells and cultured. An analysis of the formation process (change over time) will be described as an example.
FIG. 1 is a flowchart showing a cell information processing method according toEmbodiment 1 of the present invention.
以下では、本発明の細胞情報処理方法について詳細に説明する。
実施形態1
実施形態1は、神経細胞とグリア細胞間の相互作用の解析、即ち、神経細胞及びグリア細胞からなる対象細胞群に対し薬剤を添加し、培養した際に生じる神経細胞とグリア細胞の相互ネットワークの形成過程(経時的変化)の解析を事例として説明する。
図1は、本発明の実施形態1に係る細胞情報処理方法を示すフローチャートである。 [Cell information processing method]
Hereinafter, the cell information processing method of the present invention will be described in detail.
The first embodiment analyzes the interaction between nerve cells and glial cells, that is, the interaction network between nerve cells and glial cells generated when a drug is added to a target cell group consisting of nerve cells and glial cells and cultured. An analysis of the formation process (change over time) will be described as an example.
FIG. 1 is a flowchart showing a cell information processing method according to
<細胞回収ステップ(S1)>
まず、本ステップにおいては、図2Aに示すように、異なる複数種類の細胞群(グリア細胞2及び神経細胞4からなる細胞群)を播種した所定の容器1を少なくとも2以上用意する。ここで、所定の容器1に播種された細胞群を対象細胞群という。次に、準備した容器1に播種された対象細胞群に対しては、薬剤添加による細胞刺激を与えて培養し、2以上の時点で(例えば、薬剤添加直後、薬剤添加後、1時間、6時間、12時間、24時間、48時間、72時間・・・)1つの容器内にある全細胞を回収する。 <Cell collection step (S1)>
First, in this step, as shown in FIG. 2A, at least two or morepredetermined containers 1 seeded with a plurality of different types of cell groups (cell groups including glial cells 2 and nerve cells 4) are prepared. Here, the cell group seeded in the predetermined container 1 is referred to as a target cell group. Next, with respect to the target cell group seeded in the prepared container 1, the cells are stimulated and cultured by adding a drug, and cultured at two or more time points (for example, immediately after drug addition, 1 hour after drug addition, and 6 hours). Time, 12 hours, 24 hours, 48 hours, 72 hours ...) Collect all cells in one container.
まず、本ステップにおいては、図2Aに示すように、異なる複数種類の細胞群(グリア細胞2及び神経細胞4からなる細胞群)を播種した所定の容器1を少なくとも2以上用意する。ここで、所定の容器1に播種された細胞群を対象細胞群という。次に、準備した容器1に播種された対象細胞群に対しては、薬剤添加による細胞刺激を与えて培養し、2以上の時点で(例えば、薬剤添加直後、薬剤添加後、1時間、6時間、12時間、24時間、48時間、72時間・・・)1つの容器内にある全細胞を回収する。 <Cell collection step (S1)>
First, in this step, as shown in FIG. 2A, at least two or more
図2Aは、細胞刺激直後(時点0)の細胞を示し、図2Bは、細胞刺激を与えた後、1時間経過後(時点1)の細胞を示し、図2Cは、細胞刺激を与えた後、6時間後(時点2)の細胞を示す。本ステップにおいては、各時点において、容器1内の全細胞を回収する。
なお、時点0は、アストロサイト2及び神経細胞4の形状が変化する前の状態であり、時点1では、薬剤添加による細胞刺激により、アストロサイト2の形状が変化した反応性アストロサイト10に変化した状態であり、時点2では、変化した反応性アストロサイト10と神経細胞4が接触したことにより、神経細胞4の形状が変化した神経細胞12を含む状態を示す。 2A shows the cells immediately after the cell stimulation (time 0), FIG. 2B shows thecells 1 hour after the application of the cell stimulation (time 1), and FIG. 2C shows the cells after the application of the cell stimulation. , 6 hours later (time point 2). In this step, all cells in the container 1 are collected at each time point.
At time point 0, the shape ofastrocytes 2 and nerve cells 4 was not changed, and at time point 1, the cells were changed to reactive astrocytes 10 in which the shape of astrocytes 2 was changed due to cell stimulation by the addition of a drug. At the time point 2, the nerve cell 4 comes into contact with the changed reactive astrocyte 10 and the nerve cell 4 includes the nerve cell 12 whose shape has changed.
なお、時点0は、アストロサイト2及び神経細胞4の形状が変化する前の状態であり、時点1では、薬剤添加による細胞刺激により、アストロサイト2の形状が変化した反応性アストロサイト10に変化した状態であり、時点2では、変化した反応性アストロサイト10と神経細胞4が接触したことにより、神経細胞4の形状が変化した神経細胞12を含む状態を示す。 2A shows the cells immediately after the cell stimulation (time 0), FIG. 2B shows the
At time point 0, the shape of
《対象細胞群》
ここで、対象細胞群は、所定の容器1に播種された細胞群であり、且つ、異なる複数種類の細胞を含む細胞の群を意味する。「異なる複数種類の細胞を含む細胞の群」をより具体的に言えば、例えば、ヒトiPS細胞及びマウス胎児由来線維芽細胞から構成される細胞群のように、細胞種が異なる複数の細胞から構成される細胞群を意味し、同種由来の細胞で構成される細胞群であっても、異種由来の細胞で構成される細胞群であってもよい。
本実施形態において、対象細胞群を構成する細胞をグリア細胞及び神経細胞として説明しているが、対象細胞群に含まれる細胞の種類は、特に限定されない。 《Target cell group》
Here, the target cell group is a cell group seeded in thepredetermined container 1 and means a group of cells including a plurality of different types of cells. More specifically, “a group of cells containing a plurality of different types of cells” includes, for example, a plurality of cells having different cell types, such as a cell group composed of human iPS cells and mouse embryo-derived fibroblasts. A cell group composed of cells derived from the same species or a cell group composed of cells derived from different species.
In the present embodiment, the cells constituting the target cell group are described as glial cells and nerve cells, but the types of cells included in the target cell group are not particularly limited.
ここで、対象細胞群は、所定の容器1に播種された細胞群であり、且つ、異なる複数種類の細胞を含む細胞の群を意味する。「異なる複数種類の細胞を含む細胞の群」をより具体的に言えば、例えば、ヒトiPS細胞及びマウス胎児由来線維芽細胞から構成される細胞群のように、細胞種が異なる複数の細胞から構成される細胞群を意味し、同種由来の細胞で構成される細胞群であっても、異種由来の細胞で構成される細胞群であってもよい。
本実施形態において、対象細胞群を構成する細胞をグリア細胞及び神経細胞として説明しているが、対象細胞群に含まれる細胞の種類は、特に限定されない。 《Target cell group》
Here, the target cell group is a cell group seeded in the
In the present embodiment, the cells constituting the target cell group are described as glial cells and nerve cells, but the types of cells included in the target cell group are not particularly limited.
「複数種類の細胞を含む対象細胞群」としては、生体組織サンプル、血液サンプル、培養サンプル、及び環境サンプルが例示される。
上記生体組織サンプルとしては、マウスの脳組織およびヒトの切除腫瘍組織が例示される。
上記血液サンプルとしては、ヒトの採血試料が例示される。
上記培養サンプルとしては、ヒトiPS細胞とマウス胎児由来線維芽細胞との共培養サンプルが例示される。
上記環境サンプルとしては、土壌サンプルおよび海底熱水噴出孔から採取した水サンプルが例示される。 Examples of the “target cell group containing a plurality of types of cells” include a biological tissue sample, a blood sample, a culture sample, and an environmental sample.
Examples of the biological tissue sample include mouse brain tissue and human resected tumor tissue.
Examples of the blood sample include a human blood sample.
Examples of the culture sample include a co-culture sample of human iPS cells and mouse embryo-derived fibroblasts.
Examples of the environmental sample include a soil sample and a water sample collected from a seabed hydrothermal vent.
上記生体組織サンプルとしては、マウスの脳組織およびヒトの切除腫瘍組織が例示される。
上記血液サンプルとしては、ヒトの採血試料が例示される。
上記培養サンプルとしては、ヒトiPS細胞とマウス胎児由来線維芽細胞との共培養サンプルが例示される。
上記環境サンプルとしては、土壌サンプルおよび海底熱水噴出孔から採取した水サンプルが例示される。 Examples of the “target cell group containing a plurality of types of cells” include a biological tissue sample, a blood sample, a culture sample, and an environmental sample.
Examples of the biological tissue sample include mouse brain tissue and human resected tumor tissue.
Examples of the blood sample include a human blood sample.
Examples of the culture sample include a co-culture sample of human iPS cells and mouse embryo-derived fibroblasts.
Examples of the environmental sample include a soil sample and a water sample collected from a seabed hydrothermal vent.
また、「複数の細胞種を含む対象細胞群」に含まれる「細胞」として、例えば、動物細胞、植物細胞、真菌細胞、および細菌細胞が挙げられる。
In addition, “cells” included in the “target cell group containing a plurality of cell types” include, for example, animal cells, plant cells, fungal cells, and bacterial cells.
上記動物細胞としては、脊椎動物、脊索動物(脊椎動物を除く)または昆虫の細胞が例示される。
上記脊椎動物としては、ヒト、チンパンジー、アカゲザル、イヌ、ブタ、マウス、ラット、チャイニーズハムスター、およびモルモットのような哺乳類、アフリカツメガエル、ゼブラフィッシュ、メダカ、およびトラフグが例示される。
上記哺乳類の細胞(哺乳類細胞)には、腫瘍細胞、肝細胞、繊維芽細胞、幹細胞、及び免疫細胞が含まれるが、これらに限定されない。
上記脊索動物(脊椎動物を除く)としては、ホヤが例示される。
上記昆虫としては、ショウジョウバエ、カイコ、タバコスズメガ、およびミツバチが例示される。 Examples of the animal cells include vertebrate, notochord (excluding vertebrates) or insect cells.
Examples of the vertebrates include mammals such as humans, chimpanzees, rhesus monkeys, dogs, pigs, mice, rats, Chinese hamsters, and guinea pigs, Xenopus laevis, zebrafish, medaka, and tiger puffer.
The mammalian cells (mammalian cells) include, but are not limited to, tumor cells, hepatocytes, fibroblasts, stem cells, and immune cells.
As an example of the above chordates (excluding vertebrates), ascidians are exemplified.
Examples of the insects include Drosophila, silkworm, tobacco spider, and honeybee.
上記脊椎動物としては、ヒト、チンパンジー、アカゲザル、イヌ、ブタ、マウス、ラット、チャイニーズハムスター、およびモルモットのような哺乳類、アフリカツメガエル、ゼブラフィッシュ、メダカ、およびトラフグが例示される。
上記哺乳類の細胞(哺乳類細胞)には、腫瘍細胞、肝細胞、繊維芽細胞、幹細胞、及び免疫細胞が含まれるが、これらに限定されない。
上記脊索動物(脊椎動物を除く)としては、ホヤが例示される。
上記昆虫としては、ショウジョウバエ、カイコ、タバコスズメガ、およびミツバチが例示される。 Examples of the animal cells include vertebrate, notochord (excluding vertebrates) or insect cells.
Examples of the vertebrates include mammals such as humans, chimpanzees, rhesus monkeys, dogs, pigs, mice, rats, Chinese hamsters, and guinea pigs, Xenopus laevis, zebrafish, medaka, and tiger puffer.
The mammalian cells (mammalian cells) include, but are not limited to, tumor cells, hepatocytes, fibroblasts, stem cells, and immune cells.
As an example of the above chordates (excluding vertebrates), ascidians are exemplified.
Examples of the insects include Drosophila, silkworm, tobacco spider, and honeybee.
上記植物細胞としては、被子植物の細胞が例示される。
上記被子植物としては、シロイヌナズナ、イネ、コムギ、ミナトカモジグサ、ミヤコグサ、およびタバコが例示される。 Examples of the plant cell include an angiosperm cell.
Examples of the angiosperm include Arabidopsis thaliana, rice, wheat, minatocamphor, Lotus japonicus, and tobacco.
上記被子植物としては、シロイヌナズナ、イネ、コムギ、ミナトカモジグサ、ミヤコグサ、およびタバコが例示される。 Examples of the plant cell include an angiosperm cell.
Examples of the angiosperm include Arabidopsis thaliana, rice, wheat, minatocamphor, Lotus japonicus, and tobacco.
上記真菌細胞としては、カビまたは酵母の細胞が例示される。
上記カビとしては、アカパンカビ(Neurospora crassa)、コウジカビ(Aspergillus oryzae)、アスペルギルス・フミガータス(Aspergillus fumigatus)、アスペルギルス・ニジュランス(Aspergillus nidulans)、リゾプス・オリゼ(Rhizopus oryzae)、およびムコール・シルシネロイデス(Mucor circinelloides)が例示される。
上記酵母としては、出芽酵母(Saccharomyces cerevisiae)、分裂酵母(Schizosaccharomyces pombe)、カンジダ・アルビカンス(Candida albicans)、クリプトコッカス・ネオフォルマンス(Cryptococcus neoformans)、およびトリコスポロン・オボイデス(Trichosporon ovoides)が例示される。 Examples of the fungal cells include mold and yeast cells.
Examples of the mold include Neurospora crassa, Aspergillus oryzae, Aspergillus fumigatus, Aspergillus nidulans, Rhizopus oryzae and Rhizopus oryzae circumne, and Rhizopus oryzae or muciin in Rhozopus oryzae. Is exemplified.
Examples of the yeast include Saccharomyces cerevisiae, fission yeast (Schizosaccharomyces pombe), Candida albicans, Cryptococcus neoformans, and Trichosporon ovoides.
上記カビとしては、アカパンカビ(Neurospora crassa)、コウジカビ(Aspergillus oryzae)、アスペルギルス・フミガータス(Aspergillus fumigatus)、アスペルギルス・ニジュランス(Aspergillus nidulans)、リゾプス・オリゼ(Rhizopus oryzae)、およびムコール・シルシネロイデス(Mucor circinelloides)が例示される。
上記酵母としては、出芽酵母(Saccharomyces cerevisiae)、分裂酵母(Schizosaccharomyces pombe)、カンジダ・アルビカンス(Candida albicans)、クリプトコッカス・ネオフォルマンス(Cryptococcus neoformans)、およびトリコスポロン・オボイデス(Trichosporon ovoides)が例示される。 Examples of the fungal cells include mold and yeast cells.
Examples of the mold include Neurospora crassa, Aspergillus oryzae, Aspergillus fumigatus, Aspergillus nidulans, Rhizopus oryzae and Rhizopus oryzae circumne, and Rhizopus oryzae or muciin in Rhozopus oryzae. Is exemplified.
Examples of the yeast include Saccharomyces cerevisiae, fission yeast (Schizosaccharomyces pombe), Candida albicans, Cryptococcus neoformans, and Trichosporon ovoides.
上記細菌細胞としては、例えば、エシェリヒア・コリ、サルモネラ・エンテリカ、クロストリジウム・デフィシル、またはバチルス・アンスラシスの細胞が挙げられる。
{Examples of the bacterial cells include cells of Escherichia coli, Salmonella enterica, Clostridium difficile, or Bacillus anthracis.
細胞刺激とは、化学的刺激(化学物質等)および物理的刺激(光、熱、または圧力等)からなる群から選択される少なくとも1種であれば、特に限定されない。
The cell stimulus is not particularly limited as long as it is at least one selected from the group consisting of a chemical stimulus (such as a chemical substance) and a physical stimulus (such as light, heat, or pressure).
上記化学的刺激の例としては、細胞に対して生物学的な反応を誘起する薬剤の添加によるものが挙げられる。なお、薬剤は生物試料へ添加することにより細胞に対して生物学的な反応を誘起するものであってもよい。
上記生物学的な反応の具体例としては、増殖、細胞死、分化、抗原抗体反応、増殖因子の分泌等が挙げられる。
上述の薬剤とは、身体の構造及び機能に測定可能な効果を有するよう意図される薬剤であれば、特に限定されない。このような薬剤として、抗がん剤等の医薬品、成長因子、サイトカインおよび低分子薬などが挙げられ、成長因子の具体例としては、上皮成長因子(EGF: Epidermal Growth Factor)が挙げられ、サイトカインの具体例としては、腫瘍壊死因子(TNF-α)、インターロイキン1β(IL-1β)、インスリン、グルカゴン様ペプチド-1(GLP-1)、イマチニブ(imatinib)、アセトアミノフェン、アダリムマブ(Adalimumab)、およびニボルマブ(Nivolumab)が挙げられる。 Examples of the chemical stimulus include the addition of an agent that induces a biological response to cells. The drug may be one that induces a biological reaction on cells by adding it to a biological sample.
Specific examples of the biological reaction include proliferation, cell death, differentiation, antigen-antibody reaction, secretion of growth factors, and the like.
The above-mentioned drug is not particularly limited as long as it is a drug intended to have a measurable effect on body structure and function. Examples of such drugs include pharmaceuticals such as anticancer drugs, growth factors, cytokines and low-molecular-weight drugs. Specific examples of growth factors include epidermal growth factor (EGF). Specific examples include: tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), insulin, glucagon-like peptide-1 (GLP-1), imatinib (imatinib), acetaminophen, adalimumab (Adalimumab) , And Nivolumab.
上記生物学的な反応の具体例としては、増殖、細胞死、分化、抗原抗体反応、増殖因子の分泌等が挙げられる。
上述の薬剤とは、身体の構造及び機能に測定可能な効果を有するよう意図される薬剤であれば、特に限定されない。このような薬剤として、抗がん剤等の医薬品、成長因子、サイトカインおよび低分子薬などが挙げられ、成長因子の具体例としては、上皮成長因子(EGF: Epidermal Growth Factor)が挙げられ、サイトカインの具体例としては、腫瘍壊死因子(TNF-α)、インターロイキン1β(IL-1β)、インスリン、グルカゴン様ペプチド-1(GLP-1)、イマチニブ(imatinib)、アセトアミノフェン、アダリムマブ(Adalimumab)、およびニボルマブ(Nivolumab)が挙げられる。 Examples of the chemical stimulus include the addition of an agent that induces a biological response to cells. The drug may be one that induces a biological reaction on cells by adding it to a biological sample.
Specific examples of the biological reaction include proliferation, cell death, differentiation, antigen-antibody reaction, secretion of growth factors, and the like.
The above-mentioned drug is not particularly limited as long as it is a drug intended to have a measurable effect on body structure and function. Examples of such drugs include pharmaceuticals such as anticancer drugs, growth factors, cytokines and low-molecular-weight drugs. Specific examples of growth factors include epidermal growth factor (EGF). Specific examples include: tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), insulin, glucagon-like peptide-1 (GLP-1), imatinib (imatinib), acetaminophen, adalimumab (Adalimumab) , And Nivolumab.
なお、対象細胞群を収容する容器1は、対象細胞群を収容し培養できる細胞培養容器であればよく、特に限定されない。また、使用する培養液も、細胞や解析手法に応じて、適宜好ましいものを用いることができる。
各容器には、複数の細胞種を所定の比率で構成した対象細胞群(例えば、A細胞、B細胞及びC細胞からなり、各細胞の数が、A細胞:B細胞:C細胞=2:1:1で構成される対象細胞群)が播種される。複数の細胞種を含む対象細胞群は、所定の時間培養された後、薬剤が添加され細胞刺激が与えられる。 Thecontainer 1 for housing the target cell group is not particularly limited as long as it is a cell culture container for housing and culturing the target cell group. Further, as the culture solution to be used, a preferable one can be appropriately used depending on the cells and the analysis technique.
In each container, a target cell group (for example, composed of A cells, B cells, and C cells) composed of a plurality of cell types at a predetermined ratio, and the number of each cell is A cell: B cell: C cell = 2: (A target cell group consisting of 1: 1). A target cell group including a plurality of cell types is cultured for a predetermined period of time, and then a drug is added thereto to stimulate the cells.
各容器には、複数の細胞種を所定の比率で構成した対象細胞群(例えば、A細胞、B細胞及びC細胞からなり、各細胞の数が、A細胞:B細胞:C細胞=2:1:1で構成される対象細胞群)が播種される。複数の細胞種を含む対象細胞群は、所定の時間培養された後、薬剤が添加され細胞刺激が与えられる。 The
In each container, a target cell group (for example, composed of A cells, B cells, and C cells) composed of a plurality of cell types at a predetermined ratio, and the number of each cell is A cell: B cell: C cell = 2: (A target cell group consisting of 1: 1). A target cell group including a plurality of cell types is cultured for a predetermined period of time, and then a drug is added thereto to stimulate the cells.
<シングルセル化ステップ(S2)>
次いで、本ステップにおいて、細胞回収ステップ(S1)で回収された対象細胞群を、単一細胞化(シングルセル化)する。 <Single cell conversion step (S2)>
Next, in this step, the target cell group collected in the cell collection step (S1) is converted into a single cell (single cell).
次いで、本ステップにおいて、細胞回収ステップ(S1)で回収された対象細胞群を、単一細胞化(シングルセル化)する。 <Single cell conversion step (S2)>
Next, in this step, the target cell group collected in the cell collection step (S1) is converted into a single cell (single cell).
対象細胞群をシングルセル化し、単一細胞を回収する方法及び器具は、特に限定されず、公知の方法や器具を使用することができる。例えば、公知の方法としては、手動、フローサイトメトリー、磁気分離、レーザーキャプチャーマイクロダイセクション、マイクロドロップレット法、マイクロピペット微細針吸引法、及び表面プラズモン共鳴法が挙げられ、公知の器具としては、例えば、マイクロ流路、ナノウェル、レーザーピンセット、標識アレイ、およびナノバイオデバイスが挙げられる。
これら公知の方法の中でも、マイクロドロップレット法、マイクロ流路、ナノウェル、フローサイトメトリーを使用することが好ましい。シングルセル化の熟練を必要とせず、大量の細胞を高速に分離・回収できるため、解析精度を高めることができるからである。 The method and device for converting the target cell group into a single cell and collecting the single cell are not particularly limited, and known methods and devices can be used. For example, known methods include manual, flow cytometry, magnetic separation, laser capture microdissection, microdroplet method, micropipette fine needle suction method, and surface plasmon resonance method. For example, microchannels, nanowells, laser tweezers, label arrays, and nanobiodevices.
Among these known methods, it is preferable to use a microdroplet method, a microchannel, a nanowell, and flow cytometry. This is because a large amount of cells can be separated and recovered at a high speed without the need for skill in single cell formation, thereby improving analysis accuracy.
これら公知の方法の中でも、マイクロドロップレット法、マイクロ流路、ナノウェル、フローサイトメトリーを使用することが好ましい。シングルセル化の熟練を必要とせず、大量の細胞を高速に分離・回収できるため、解析精度を高めることができるからである。 The method and device for converting the target cell group into a single cell and collecting the single cell are not particularly limited, and known methods and devices can be used. For example, known methods include manual, flow cytometry, magnetic separation, laser capture microdissection, microdroplet method, micropipette fine needle suction method, and surface plasmon resonance method. For example, microchannels, nanowells, laser tweezers, label arrays, and nanobiodevices.
Among these known methods, it is preferable to use a microdroplet method, a microchannel, a nanowell, and flow cytometry. This is because a large amount of cells can be separated and recovered at a high speed without the need for skill in single cell formation, thereby improving analysis accuracy.
単一細胞を回収する際には、蛍光標識、ラジオアイソトープ(RI)標識、抗体標識、および磁気標識を用いて、各細胞を標識することが好ましい。後述するグルーピングステップ(S4)において、各細胞集団の細胞種の同定に利用することができるからである。図2A~2Cにおいて、アストロサイト2には、蛍光標識6が付され、神経細胞4には蛍光標識8が付されている。なお、図中では、蛍光標識は、アストロサイト2及び神経細胞4それぞれ、1つの細胞のみに付されているが、全細胞にそれぞれ付されているものとする。
特に、細胞の表面に発現しているタンパク質に結合する抗体と、蛍光、RI標識、または磁気標識との組み合わせは、抗体の特異性が増すため好ましい。 When recovering single cells, it is preferable to label each cell using a fluorescent label, a radioisotope (RI) label, an antibody label, and a magnetic label. This is because it can be used to identify the cell type of each cell population in the grouping step (S4) described later. 2A to 2C, theastrocytes 2 are labeled with a fluorescent label 6, and the nerve cells 4 are labeled with a fluorescent label 8. In the figure, the fluorescent label is attached to only one cell each of the astrocyte 2 and the nerve cell 4, but it is assumed that the fluorescent label is attached to all cells.
In particular, a combination of an antibody that binds to a protein expressed on the surface of a cell and a fluorescent, RI, or magnetic label is preferable because the specificity of the antibody increases.
特に、細胞の表面に発現しているタンパク質に結合する抗体と、蛍光、RI標識、または磁気標識との組み合わせは、抗体の特異性が増すため好ましい。 When recovering single cells, it is preferable to label each cell using a fluorescent label, a radioisotope (RI) label, an antibody label, and a magnetic label. This is because it can be used to identify the cell type of each cell population in the grouping step (S4) described later. 2A to 2C, the
In particular, a combination of an antibody that binds to a protein expressed on the surface of a cell and a fluorescent, RI, or magnetic label is preferable because the specificity of the antibody increases.
なお、C1TM Single-Cell Auto Prepシステム(フリューダイム社製)等のシングルセル・ゲノム研究用自動化ソリューションを用いることもできる。当該ソリューションは、シングルセルの単離、細胞の標識、細胞の溶解、および、後述するシングルセルデータ取得ステップ(S3)において行うゲノムDNAまたはトータルRNAの抽出までを自動的に行うことができるため、例えば、ゲノムDNAまたはトータルRNAを用いてシングルセルデータを取得しようとする場合に利用すれば、作業効率をより高めることができる。
It should be noted that an automated solution for single-cell genome research such as C1 ™ Single-Cell Auto Prep system (made by Fluidime) can also be used. Since the solution can automatically perform single cell isolation, cell labeling, cell lysis, and genomic DNA or total RNA extraction performed in the single cell data acquisition step (S3) described below, For example, if it is used when acquiring single cell data using genomic DNA or total RNA, the working efficiency can be further improved.
<シングルセルデータ取得ステップ(S3)>
次に、シングルセルデータ取得ステップ(S3)において、各時点で回収され、且つシングルセル化された各細胞から、遺伝子のDNA配列情報、及び遺伝子発現量をシングルセルデータとして取得する。シングルセルデータは、シングルセル化されて回収された全ての単一細胞それぞれについて取得する。
本発明における「遺伝子発現量」とは、遺伝子の転写産物であるmRNA量であり、遺伝子発現解析により遺伝子の発現状態を調べることにより測定することができる。又は、遺伝子の発現産物であるタンパク質の量の解析を行うようにしてもよい。 <Single cell data acquisition step (S3)>
Next, in a single cell data acquisition step (S3), the DNA sequence information of the gene and the gene expression level are acquired as single cell data from each cell collected at each time and converted into a single cell. The single cell data is acquired for each single cell collected as a single cell.
The “gene expression level” in the present invention is the amount of mRNA that is a transcription product of a gene, and can be measured by examining the expression state of the gene by gene expression analysis. Alternatively, the amount of a protein that is an expression product of a gene may be analyzed.
次に、シングルセルデータ取得ステップ(S3)において、各時点で回収され、且つシングルセル化された各細胞から、遺伝子のDNA配列情報、及び遺伝子発現量をシングルセルデータとして取得する。シングルセルデータは、シングルセル化されて回収された全ての単一細胞それぞれについて取得する。
本発明における「遺伝子発現量」とは、遺伝子の転写産物であるmRNA量であり、遺伝子発現解析により遺伝子の発現状態を調べることにより測定することができる。又は、遺伝子の発現産物であるタンパク質の量の解析を行うようにしてもよい。 <Single cell data acquisition step (S3)>
Next, in a single cell data acquisition step (S3), the DNA sequence information of the gene and the gene expression level are acquired as single cell data from each cell collected at each time and converted into a single cell. The single cell data is acquired for each single cell collected as a single cell.
The “gene expression level” in the present invention is the amount of mRNA that is a transcription product of a gene, and can be measured by examining the expression state of the gene by gene expression analysis. Alternatively, the amount of a protein that is an expression product of a gene may be analyzed.
《シングルセルデータ》
なお、シングルセルデータとは、単一細胞の機能や性質、状態を示す情報を意味し、上述した遺伝子発現量及びDNA配列情報に限定されない。例えば、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度などをシングルセルデータとして取得してもよい。
また、単一細胞を回収する際に、各細胞を蛍光物質や、抗体等で標識した場合は、それらの情報もシングルデータとして取得することもできる。 《Single cell data》
The single cell data refers to information indicating the function, property, and state of a single cell, and is not limited to the above-described gene expression amount and DNA sequence information. For example, DNA sequence information of a gene (genome), epigenetic information controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, untranslated RNA, micro RNA, etc.) (transcriptome), protein translation amount and modification such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), cell The internal ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), intracellular temperature, etc. may be acquired as single cell data.
Further, when collecting single cells, if each cell is labeled with a fluorescent substance, an antibody, or the like, such information can also be obtained as single data.
なお、シングルセルデータとは、単一細胞の機能や性質、状態を示す情報を意味し、上述した遺伝子発現量及びDNA配列情報に限定されない。例えば、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度などをシングルセルデータとして取得してもよい。
また、単一細胞を回収する際に、各細胞を蛍光物質や、抗体等で標識した場合は、それらの情報もシングルデータとして取得することもできる。 《Single cell data》
The single cell data refers to information indicating the function, property, and state of a single cell, and is not limited to the above-described gene expression amount and DNA sequence information. For example, DNA sequence information of a gene (genome), epigenetic information controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, untranslated RNA, micro RNA, etc.) (transcriptome), protein translation amount and modification such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), cell The internal ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), intracellular temperature, etc. may be acquired as single cell data.
Further, when collecting single cells, if each cell is labeled with a fluorescent substance, an antibody, or the like, such information can also be obtained as single data.
<グルーピングステップ(S4)>
次に、グルーピングステップ(S4)において、上記シングルセルデータ取得ステップにおいて取得したシングルセルデータ(遺伝子発現量データ、DNA配列及び蛍光標識)に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けし、さらに、シングルセルデータに含まれる各細胞種を判別することが可能な第2の細胞特徴に基づいて、第1の細胞特徴でグループ分けした各細胞集団の細胞種を同定する。
具体的には、主成分分析を用いて、遺伝子発現量データに含まれるn個(n次元)の細胞特徴を可視化可能な2次元または3次元にまで圧縮処理し、回収された全細胞を複数の細胞集団にグループ分けして2次元平面または3次元空間上にプロットする(つまり、各主成分が「第1の細胞特徴」に該当する)。また、さらに、各細胞集団を構成する細胞の塩基配列及び蛍光標識(第2の細胞特徴)に基づき、グループ分けした各細胞集団の細胞種の同定処理(クラスタリング解析)を行う。
ここで、主成分分析の際の主成分軸は、データ(確率変数)の分散が最大になるような軸を探索することが好ましい。 <Grouping step (S4)>
Next, in the grouping step (S4), based on the single cell data (gene expression amount data, DNA sequence and fluorescent label) obtained in the single cell data obtaining step, the cells from which the single cell data has been Each cell grouped into a cell population having one cell characteristic, and further grouped by a first cell characteristic based on a second cell characteristic capable of discriminating each cell type included in the single cell data. Identify the cell type of the cell population.
Specifically, using the principal component analysis, the n (n-dimensional) cell features included in the gene expression amount data are compressed to a two-dimensional or three-dimensional that can be visualized, and all the collected cells are subjected to multiple processing. And plotted on a two-dimensional plane or three-dimensional space (that is, each principal component corresponds to the “first cell feature”). Further, based on the base sequence of the cells constituting each cell population and the fluorescent label (second cell characteristic), the cell type of each grouped cell is identified (clustering analysis).
Here, it is preferable to search for an axis that maximizes the variance of data (random variables) as the principal axis during principal component analysis.
次に、グルーピングステップ(S4)において、上記シングルセルデータ取得ステップにおいて取得したシングルセルデータ(遺伝子発現量データ、DNA配列及び蛍光標識)に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けし、さらに、シングルセルデータに含まれる各細胞種を判別することが可能な第2の細胞特徴に基づいて、第1の細胞特徴でグループ分けした各細胞集団の細胞種を同定する。
具体的には、主成分分析を用いて、遺伝子発現量データに含まれるn個(n次元)の細胞特徴を可視化可能な2次元または3次元にまで圧縮処理し、回収された全細胞を複数の細胞集団にグループ分けして2次元平面または3次元空間上にプロットする(つまり、各主成分が「第1の細胞特徴」に該当する)。また、さらに、各細胞集団を構成する細胞の塩基配列及び蛍光標識(第2の細胞特徴)に基づき、グループ分けした各細胞集団の細胞種の同定処理(クラスタリング解析)を行う。
ここで、主成分分析の際の主成分軸は、データ(確率変数)の分散が最大になるような軸を探索することが好ましい。 <Grouping step (S4)>
Next, in the grouping step (S4), based on the single cell data (gene expression amount data, DNA sequence and fluorescent label) obtained in the single cell data obtaining step, the cells from which the single cell data has been Each cell grouped into a cell population having one cell characteristic, and further grouped by a first cell characteristic based on a second cell characteristic capable of discriminating each cell type included in the single cell data. Identify the cell type of the cell population.
Specifically, using the principal component analysis, the n (n-dimensional) cell features included in the gene expression amount data are compressed to a two-dimensional or three-dimensional that can be visualized, and all the collected cells are subjected to multiple processing. And plotted on a two-dimensional plane or three-dimensional space (that is, each principal component corresponds to the “first cell feature”). Further, based on the base sequence of the cells constituting each cell population and the fluorescent label (second cell characteristic), the cell type of each grouped cell is identified (clustering analysis).
Here, it is preferable to search for an axis that maximizes the variance of data (random variables) as the principal axis during principal component analysis.
本ステップにより、各細胞集団の細胞特徴と、細胞数が対応付けられて可視化されるため、細胞数と細胞特徴との関係性を同時に確認又は検出することが容易に、精度高くできる。
In this step, since the cell characteristics of each cell population and the cell number are visualized in association with each other, it is possible to easily confirm or detect the relationship between the cell number and the cell characteristics at the same time and with high accuracy.
なお、回収された全細胞を複数の細胞集団にグループ分けするために使用する細胞特徴の数は、特に限定されない。n個の細胞特徴のうち、1個以上の細胞特徴を、細胞をグループ化するために用いてもよい。
また、本実施形態においては、主成分分析を用いて、2次元または3次元への次元削減により可視化し、シングルセルデータを取得した細胞を共通の第1の細胞特徴を有する細胞集団にグループ分けしているが、これに限定されず、次元削減の方法は、例えば、主成分分析(PCA)、カーネルあり主成分分析(Kernel-PCA)、多次元尺度構成法(MDS)、t-SNE、または、畳込みニューラルネットワーク(CNN)を用いることもできる。
また、各細胞のシングルセルデータ(複数の生体物質に係る情報)から、複数の生体物質の量または状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め用意し、生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けしてもよい。
ここで、生物学的機能の類似性は、共通の遺伝子オントロジーを有すること、共通のカノニカルパスウェイに属すること、共通の上流因子を有すること、共通の表現系に関わること、および、共通の疾患に関わることからなる群から選択される少なくとも1つに基づいて評価されるものであることが好ましい。 The number of cell features used to group the collected cells into a plurality of cell populations is not particularly limited. One or more of the n cell features may be used to group cells.
Further, in the present embodiment, cells obtained from single-cell data are visualized by two-dimensional or three-dimensional reduction using principal component analysis, and the cells are grouped into a cell population having a common first cell characteristic. However, the present invention is not limited to this, and methods for dimension reduction include, for example, principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, Alternatively, a convolutional neural network (CNN) can be used.
In addition, from the single cell data of each cell (information on a plurality of biological materials), values representing the amounts or states of a plurality of biological materials, and time series data obtained at a plurality of time points for each biological material are prepared in advance. Grouping cells that have obtained single-cell data into a cell population having a common first cell characteristic based on the time change of time-series data for each biological material and the similarity of biological functions of each biological material You may divide.
Here, the similarity of biological functions means that they have a common gene ontology, belong to a common canonical pathway, have a common upstream factor, be involved in a common expression system, and have a common disease. It is preferable that the evaluation is based on at least one selected from the group consisting of related items.
また、本実施形態においては、主成分分析を用いて、2次元または3次元への次元削減により可視化し、シングルセルデータを取得した細胞を共通の第1の細胞特徴を有する細胞集団にグループ分けしているが、これに限定されず、次元削減の方法は、例えば、主成分分析(PCA)、カーネルあり主成分分析(Kernel-PCA)、多次元尺度構成法(MDS)、t-SNE、または、畳込みニューラルネットワーク(CNN)を用いることもできる。
また、各細胞のシングルセルデータ(複数の生体物質に係る情報)から、複数の生体物質の量または状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め用意し、生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けしてもよい。
ここで、生物学的機能の類似性は、共通の遺伝子オントロジーを有すること、共通のカノニカルパスウェイに属すること、共通の上流因子を有すること、共通の表現系に関わること、および、共通の疾患に関わることからなる群から選択される少なくとも1つに基づいて評価されるものであることが好ましい。 The number of cell features used to group the collected cells into a plurality of cell populations is not particularly limited. One or more of the n cell features may be used to group cells.
Further, in the present embodiment, cells obtained from single-cell data are visualized by two-dimensional or three-dimensional reduction using principal component analysis, and the cells are grouped into a cell population having a common first cell characteristic. However, the present invention is not limited to this, and methods for dimension reduction include, for example, principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, Alternatively, a convolutional neural network (CNN) can be used.
In addition, from the single cell data of each cell (information on a plurality of biological materials), values representing the amounts or states of a plurality of biological materials, and time series data obtained at a plurality of time points for each biological material are prepared in advance. Grouping cells that have obtained single-cell data into a cell population having a common first cell characteristic based on the time change of time-series data for each biological material and the similarity of biological functions of each biological material You may divide.
Here, the similarity of biological functions means that they have a common gene ontology, belong to a common canonical pathway, have a common upstream factor, be involved in a common expression system, and have a common disease. It is preferable that the evaluation is based on at least one selected from the group consisting of related items.
図3Aは、図2Aの細胞刺激直後(時点0)の対象細胞群から取得したシングルセルデータに基づく(主成分及び)クラスタリング結果を示し、図3Bは、図2Bの細胞刺激後1時間後(時点1)の対象細胞群から取得したシングルセルデータに基づく(主成分及び)クラスタリング結果を示し、図3Cは、図2Cの細胞刺激後6間後(時点2)の対象細胞群から取得したシングルセルデータに基づく(主成分及び)クラスタリング結果を示す。
図2Aの細胞刺激直後(時点0)の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団14及び16にグループ分けし(図3A)、且つ、シングルセルデータ(DNA配列及び蛍光標識6及び8)に基づき、細胞集団14を構成する細胞種がアストロサイト2であり、細胞集団16を構成する細胞種が神経細胞4であることを同定する。
同様に、図2Bの細胞刺激後、1時間経過後(時点1)の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団18、20及び22にグループ分けし(図3B)、且つ、シングルセルデータ(DNA配列及び蛍光標識6及び8)に基づき、細胞集団18及び20を構成する細胞種がアストロサイト2であり、細胞集団22を構成する細胞種が神経細胞4であることを同定する。
また、図2Cの細胞刺激後、6時間経過後(時点2)の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団24及び26にグループ分けし(図3C)、且つ、シングルセルデータ(DNA配列及び蛍光標識6及び8)に基づき、細胞集団24を構成する細胞種がアストロサイト2であり、細胞集団26を構成する細胞種が神経細胞4であることを同定する。 FIG. 3A shows a clustering result (main component and) based on single cell data obtained from the target cell group immediately after the cell stimulation of FIG. 2A (time 0), and FIG. 3B shows one hour after the cell stimulation of FIG. 2B ( FIG. 3C shows the (principal component and) clustering results based on the single cell data obtained from the target cell group at time 1), and FIG. 3C shows a single cell obtained from thetarget cell group 6 times after the cell stimulation in FIG. 2C (time 2). 7 shows a (principal component and) clustering result based on cell data.
Principal component analysis is performed on the single cell data (gene expression level data) obtained from the target cell group immediately after the cell stimulation (time point 0) in FIG. And 16 (FIG. 3A), and based on the single-cell data (DNA sequence andfluorescent labels 6 and 8), the cell type constituting the cell population 14 is astrocyte 2, which constitutes the cell population 16. The cell type is identified as the nerve cell 4.
Similarly, the principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group one hour after the cell stimulation in FIG. 2B (time point 1), and the two-dimensional compression is performed. Cells are grouped into a plurality of cell populations 18, 20 and 22 (FIG. 3B), and based on single cell data (DNA sequence and fluorescent labels 6 and 8), cell types constituting cell populations 18 and 20 are determined. It is identified that the cell type which is the astrocyte 2 and which constitutes the cell population 22 is the nerve cell 4.
In addition, the principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group after 6 hours (time point 2) after the cell stimulation in FIG. Are grouped into a plurality ofcell populations 24 and 26 (FIG. 3C), and based on single cell data (DNA sequence and fluorescent labels 6 and 8), the cell type constituting the cell population 24 is astrocyte 2. , The cell type constituting the cell population 26 is identified as the nerve cell 4.
図2Aの細胞刺激直後(時点0)の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団14及び16にグループ分けし(図3A)、且つ、シングルセルデータ(DNA配列及び蛍光標識6及び8)に基づき、細胞集団14を構成する細胞種がアストロサイト2であり、細胞集団16を構成する細胞種が神経細胞4であることを同定する。
同様に、図2Bの細胞刺激後、1時間経過後(時点1)の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団18、20及び22にグループ分けし(図3B)、且つ、シングルセルデータ(DNA配列及び蛍光標識6及び8)に基づき、細胞集団18及び20を構成する細胞種がアストロサイト2であり、細胞集団22を構成する細胞種が神経細胞4であることを同定する。
また、図2Cの細胞刺激後、6時間経過後(時点2)の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団24及び26にグループ分けし(図3C)、且つ、シングルセルデータ(DNA配列及び蛍光標識6及び8)に基づき、細胞集団24を構成する細胞種がアストロサイト2であり、細胞集団26を構成する細胞種が神経細胞4であることを同定する。 FIG. 3A shows a clustering result (main component and) based on single cell data obtained from the target cell group immediately after the cell stimulation of FIG. 2A (time 0), and FIG. 3B shows one hour after the cell stimulation of FIG. 2B ( FIG. 3C shows the (principal component and) clustering results based on the single cell data obtained from the target cell group at time 1), and FIG. 3C shows a single cell obtained from the
Principal component analysis is performed on the single cell data (gene expression level data) obtained from the target cell group immediately after the cell stimulation (time point 0) in FIG. And 16 (FIG. 3A), and based on the single-cell data (DNA sequence and
Similarly, the principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group one hour after the cell stimulation in FIG. 2B (time point 1), and the two-dimensional compression is performed. Cells are grouped into a plurality of
In addition, the principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group after 6 hours (time point 2) after the cell stimulation in FIG. Are grouped into a plurality of
なお、本実施形態においては、第2の細胞特徴として、DNA配列及び蛍光標識を用いて、各細胞集団の細胞種を同定したが、特にこれらに限定されない。細胞の機能(例えば、細胞の増殖、修復、代謝、および細胞間の情報交換)、又は細胞の状態(例えば、遺伝子の発現状況、タンパク質の発現状況、および酵素活性)から各細胞種を判別することが可能な(シングルデータに含まれる)細胞情報、例えば、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度などを利用することができる。
上記各細胞種を判別することが可能な細胞情報には、細胞が本来持っている遺伝子、タンパク質、及び代謝産物等の情報だけでなく、細胞外から導入された遺伝子(例えば、不死化遺伝子)、タンパク質及び代謝物や、有機物等の情報も含む。不死化遺伝子の例としては、hTERT遺伝子(ヒトテロメラーゼ逆転写酵素遺伝子)、及びSV40T抗原(サルウィルス40T抗原遺伝子)が挙げられる。また、シングルセルを回収する際に、各細胞を蛍光物質や、抗体等で標識した場合は、それらの情報も含む。 In the present embodiment, the cell type of each cell population is identified using the DNA sequence and the fluorescent label as the second cell feature, but the present invention is not particularly limited thereto. Distinguishing each cell type from cell function (eg, cell growth, repair, metabolism, and information exchange between cells) or cell state (eg, gene expression status, protein expression status, and enzyme activity) Cell information that can be used (included in single data), for example, DNA sequence information of a gene (genome), epigenetic information that controls gene expression (DNA methylation, histone methylation, acetylation, phosphorylation) , Gene primary transcript (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation amount and modification such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information ( Metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) It can be utilized such as intracellular temperature.
The cell information capable of discriminating each cell type includes not only information such as genes, proteins, and metabolites originally possessed by cells, but also genes introduced from outside the cells (eg, immortalized genes). , Proteins and metabolites, and organic matter. Examples of the immortalizing gene include the hTERT gene (human telomerase reverse transcriptase gene) and the SV40T antigen (simian virus 40T antigen gene). In addition, when collecting single cells, if each cell is labeled with a fluorescent substance, an antibody, or the like, such information is also included.
上記各細胞種を判別することが可能な細胞情報には、細胞が本来持っている遺伝子、タンパク質、及び代謝産物等の情報だけでなく、細胞外から導入された遺伝子(例えば、不死化遺伝子)、タンパク質及び代謝物や、有機物等の情報も含む。不死化遺伝子の例としては、hTERT遺伝子(ヒトテロメラーゼ逆転写酵素遺伝子)、及びSV40T抗原(サルウィルス40T抗原遺伝子)が挙げられる。また、シングルセルを回収する際に、各細胞を蛍光物質や、抗体等で標識した場合は、それらの情報も含む。 In the present embodiment, the cell type of each cell population is identified using the DNA sequence and the fluorescent label as the second cell feature, but the present invention is not particularly limited thereto. Distinguishing each cell type from cell function (eg, cell growth, repair, metabolism, and information exchange between cells) or cell state (eg, gene expression status, protein expression status, and enzyme activity) Cell information that can be used (included in single data), for example, DNA sequence information of a gene (genome), epigenetic information that controls gene expression (DNA methylation, histone methylation, acetylation, phosphorylation) , Gene primary transcript (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation amount and modification such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information ( Metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) It can be utilized such as intracellular temperature.
The cell information capable of discriminating each cell type includes not only information such as genes, proteins, and metabolites originally possessed by cells, but also genes introduced from outside the cells (eg, immortalized genes). , Proteins and metabolites, and organic matter. Examples of the immortalizing gene include the hTERT gene (human telomerase reverse transcriptase gene) and the SV40T antigen (simian virus 40T antigen gene). In addition, when collecting single cells, if each cell is labeled with a fluorescent substance, an antibody, or the like, such information is also included.
<細胞変化検出ステップ(S5)>
次に、細胞変化検出ステップ(S5)は、グルーピングステップ(S4)で取得されたクラスタリング結果に基づいて、具体的には、細胞刺激直後の細胞に係るクラスタリング結果と、細胞刺激後、所定時間経過した細胞に係るクラスタリング結果との比較することにより、同じ細胞種の細胞集団の経時的な変化(実時間に対する変化、もしくは変化から推定された疑似時間に対する変化)を検出する。なお、細胞集団の経時的変化は、経時的に変化した細胞特徴を抽出し、且つ、その経時的な変化量を数値で検出しておくことが好ましい。
ここで、「細胞集団の経時的変化」とは、細胞数、細胞特徴(第1の細胞特徴)、または、その他細胞特徴(即ち、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度等)、及び細胞の生体物質の経時的な変化を意味する。 <Cell change detection step (S5)>
Next, the cell change detection step (S5) is based on the clustering result obtained in the grouping step (S4), specifically, the clustering result of the cell immediately after the cell stimulation and the predetermined time after the cell stimulation. By comparing the result with the clustering result of the cells, a change with time of the cell population of the same cell type (change with respect to real time, or change with pseudo time estimated from the change) is detected. In addition, as for the temporal change of the cell population, it is preferable to extract the cell characteristics that have changed with time and detect the amount of the temporal change numerically.
Here, the “time-dependent change of the cell population” refers to the number of cells, cell characteristics (first cell characteristics), or other cell characteristics (that is, DNA sequence information (genome) of genes, control of gene expression). Epigenetic information (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation and phosphorylation Modification information such as oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) , Intracellular temperature, etc.), and the biological material of the cell over time.
次に、細胞変化検出ステップ(S5)は、グルーピングステップ(S4)で取得されたクラスタリング結果に基づいて、具体的には、細胞刺激直後の細胞に係るクラスタリング結果と、細胞刺激後、所定時間経過した細胞に係るクラスタリング結果との比較することにより、同じ細胞種の細胞集団の経時的な変化(実時間に対する変化、もしくは変化から推定された疑似時間に対する変化)を検出する。なお、細胞集団の経時的変化は、経時的に変化した細胞特徴を抽出し、且つ、その経時的な変化量を数値で検出しておくことが好ましい。
ここで、「細胞集団の経時的変化」とは、細胞数、細胞特徴(第1の細胞特徴)、または、その他細胞特徴(即ち、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度等)、及び細胞の生体物質の経時的な変化を意味する。 <Cell change detection step (S5)>
Next, the cell change detection step (S5) is based on the clustering result obtained in the grouping step (S4), specifically, the clustering result of the cell immediately after the cell stimulation and the predetermined time after the cell stimulation. By comparing the result with the clustering result of the cells, a change with time of the cell population of the same cell type (change with respect to real time, or change with pseudo time estimated from the change) is detected. In addition, as for the temporal change of the cell population, it is preferable to extract the cell characteristics that have changed with time and detect the amount of the temporal change numerically.
Here, the “time-dependent change of the cell population” refers to the number of cells, cell characteristics (first cell characteristics), or other cell characteristics (that is, DNA sequence information (genome) of genes, control of gene expression). Epigenetic information (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation and phosphorylation Modification information such as oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) , Intracellular temperature, etc.), and the biological material of the cell over time.
グルーピングステップ(S4)で取得されたクラスタリング結果である図3A(時点0)、図3B(時点1)を比較し、同じ細胞種の細胞で構成される細胞集団の細胞特徴(第1の細胞特徴である主成分1及び2)の変化を検出する。具体的には、図3A(時点0)のアストロサイト2と同定された細胞集団14と、図3B(時点1)のアストロサイト2と同定された細胞集団18及び20との比較、及び、図3A(時点0)の神経細胞4と同定された細胞集団16の細胞特徴と、図3B(時点1)の神経細胞4と同定された細胞集団22との比較により、各細胞集団の細胞特徴の経時的変化の有無を検出する。
具体的には、図3A(時点0)のアストロサイト2と同定された細胞集団14の細胞特徴(第1の細胞特徴である主成分1及び2)と、図3B(時点1)のアストロサイト2と同定された細胞集団18の細胞特徴との比較では、経時的変化がないことを検出し、図3A(時点1)のアストロサイトと同定された細胞集団20の細胞特徴との比較では、経時的変化があったことを検出する。また、図3A(時点0)の神経細胞4と同定された細胞集団16の細胞特徴(第1の細胞特徴である主成分1及び2)と、図3B(時点1)の神経細胞4と同定された細胞集団22の細胞特徴との比較では、経時的変化がないことを検出する。 3A (time 0) and FIG. 3B (time 1) which are the clustering results obtained in the grouping step (S4) are compared, and the cell characteristics (first cell characteristics) of the cell population composed of cells of the same cell type are compared. Of theprincipal components 1 and 2) are detected. Specifically, a comparison between the cell population 14 identified as astrocyte 2 in FIG. 3A (time 0) and the cell populations 18 and 20 identified as astrocyte 2 in FIG. 3B (time 1), and FIG. By comparing the cell characteristics of the cell population 16 identified as the nerve cell 4 at 3A (time 0) with the cell population 22 identified as the nerve cell 4 of FIG. 3B (time 1), the cell characteristics of each cell population were determined. The presence or absence of a change over time is detected.
Specifically, the cell characteristics of thecell population 14 identified as the astrocytes 2 in FIG. 3A (time point 0) (the main components 1 and 2 which are the first cell characteristics) and the astrocyte in FIG. 2 and the cell characteristics of the identified cell population 18 detected no change over time, and in the comparison of the astrocytes of FIG. 3A (time point 1) with the cell characteristics of the identified cell population 20, It detects that there has been a change over time. In addition, the cell characteristics of the cell population 16 identified as the nerve cells 4 in FIG. 3A (time point 0) (the main components 1 and 2 which are the first cell characteristics) and the nerve cells 4 in FIG. 3B (time point 1) are identified. The comparison with the cell characteristics of the cell population 22 detected detects no change with time.
具体的には、図3A(時点0)のアストロサイト2と同定された細胞集団14の細胞特徴(第1の細胞特徴である主成分1及び2)と、図3B(時点1)のアストロサイト2と同定された細胞集団18の細胞特徴との比較では、経時的変化がないことを検出し、図3A(時点1)のアストロサイトと同定された細胞集団20の細胞特徴との比較では、経時的変化があったことを検出する。また、図3A(時点0)の神経細胞4と同定された細胞集団16の細胞特徴(第1の細胞特徴である主成分1及び2)と、図3B(時点1)の神経細胞4と同定された細胞集団22の細胞特徴との比較では、経時的変化がないことを検出する。 3A (time 0) and FIG. 3B (time 1) which are the clustering results obtained in the grouping step (S4) are compared, and the cell characteristics (first cell characteristics) of the cell population composed of cells of the same cell type are compared. Of the
Specifically, the cell characteristics of the
また、図3B(時点1)の細胞集団18を構成すると同定されたアストロサイト2の細胞数は、図3A(時点0)の細胞集団14を構成すると同定されたアストロサイト2の細胞数と比べて減少しているが、図3B(時点1)の細胞集団20を構成すると同定されたアストロサイト2の細胞数は増加していることを検出する。さらに、図3B(時点1)の細胞集団18及び20を構成するグリア細胞数の合計数は、図3A(時点0)の細胞集団14を構成すると同定されたアストロサイト2の細胞数に等しいことも検出する。さらに、図3B(時点1)の細胞集団22を構成すると同定された神経細胞4の細胞数は、図3A(時点0)の細胞集団16を構成すると同定された神経細胞4の細胞数は、変化がないことを検出する。
The number of astrocytes 2 identified as constituting the cell population 18 in FIG. 3B (time point 1) was compared with the number of astrocytes 2 identified as constituting the cell population 14 in FIG. 3A (time point 0). 3B (time point 1), the number of astrocytes 2 identified as constituting the cell population 20 in FIG. 3B (point 1) is detected to increase. Furthermore, the total number of glial cells that make up the cell populations 18 and 20 of FIG. 3B (time point 1) should be equal to the number of astrocyte 2 cells identified as making up the cell population 14 of FIG. 3A (time point 0). Is also detected. Furthermore, the number of neurons 4 identified as constituting the cell population 22 of FIG. 3B (time 1) is the number of neurons 4 identified as constituting the cell population 16 of FIG. 3A (time 0). Detects no change.
これらの検出結果から、薬剤添加による細胞刺激後、1時時間経過すると、アストロサイト2の細胞特徴及び細胞数に変化がみられるが、神経細胞4には変化が見られないことを容易に検出することができる。さらに、アストロサイト2の細胞特徴及び細胞数の変化から、細胞集団20が、アストロサイト2の形状が変化した反応性アストロサイト10から構成されることを検出(推定または確認)することができる。その結果、時点0から時点1にかけて、アストロサイト2の形状が変化し、反応性アストロサイト10になったことを容易に検出(推定又は確認)することができる(図4実線矢印)。
From these detection results, one hour after the cell stimulation by the addition of the drug, changes in the cell characteristics and cell number of astrocytes 2 were observed, but it was easily detected that there was no change in the nerve cells 4. can do. Furthermore, it can be detected (estimated or confirmed) that the cell population 20 is composed of the reactive astrocytes 10 in which the shape of the astrocytes 2 has changed from the changes in the cell characteristics and the number of cells of the astrocytes 2. As a result, it is possible to easily detect (estimate or confirm) that the shape of the astrocyte 2 has changed from time 0 to time 1 and has become the reactive astrocyte 10 (solid arrow in FIG. 4).
同様に、グルーピングステップ(S4)で取得されたクラスタリング結果である図3B(時点1)及び図3C(時点2)を比較し、同じ細胞種の細胞で構成される細胞集団の細胞特徴(第1の細胞特徴である主成分1及び2)が時点1から時点2における経時的変化の有無を検出する。
即ち、図3C(時点2)では、図3B(時点1)では、アストロサイト2で構成される細胞集団18が消失していること、及び、図3B(時点1)で存在する反応性アストロサイト10で構成されると検出された細胞集団20だけが残っていることを検出する。また、図3B(時点1)では存在する神経細胞4で構成される細胞集団22が消失し、図3C(時点2)では、神経細胞4で構成されると同定された細胞集団26が新たに生じていることを検出する。
また、図3B(時点1)の反応性アストロサイトで構成されると検出された細胞集団20の細胞特徴(第1の細胞特徴である主成分1及び2)と、時点2のアストロサイト2で構成されると同定された細胞集団24の細胞特徴とを比較し、経時的変化がないことを検出する。同様に、図3B(時点1)の神経細胞4で構成されると検出された細胞集団22の細胞特徴(第1の細胞特徴である主成分1及び2)と、図3C(時点2)の神経細胞4で構成されると同定された細胞集団26の細胞特徴とを比較し、経時的変化があることを検出する。 Similarly, FIG. 3B (time point 1) and FIG. 3C (time point 2) which are the clustering results obtained in the grouping step (S4) are compared, and the cell characteristics of the cell population composed of cells of the same cell type (first Themain components 1 and 2), which are the cell characteristics, detect the presence or absence of a temporal change from time 1 to time 2.
That is, in FIG. 3C (time point 2), in FIG. 3B (time point 1), the disappearance of thecell population 18 composed of astrocytes 2 and the reactive astrocyte present in FIG. It is detected that only the cell population 20 detected as composed of 10 remains. Further, in FIG. 3B (time point 1), the existing cell population 22 composed of the nerve cells 4 disappears, and in FIG. 3C (time point 2), the cell population 26 identified to be composed of the nerve cells 4 is newly added. Detect what is happening.
In addition, the cell characteristics of thecell population 20 detected as being composed of the reactive astrocytes of FIG. 3B (time point 1) (the main components 1 and 2, which are the first cell characteristics), and the astrocyte 2 of time point 2 The cell characteristics of the cell population 24 identified as being composed are compared, and no change over time is detected. Similarly, the cell characteristics (the main components 1 and 2 that are the first cell characteristics) of the cell population 22 detected to be composed of the nerve cells 4 in FIG. 3B (time point 1) and the cell characteristics in FIG. The cell characteristics of the cell population 26 identified as being composed of the nerve cells 4 are compared to detect the change with time.
即ち、図3C(時点2)では、図3B(時点1)では、アストロサイト2で構成される細胞集団18が消失していること、及び、図3B(時点1)で存在する反応性アストロサイト10で構成されると検出された細胞集団20だけが残っていることを検出する。また、図3B(時点1)では存在する神経細胞4で構成される細胞集団22が消失し、図3C(時点2)では、神経細胞4で構成されると同定された細胞集団26が新たに生じていることを検出する。
また、図3B(時点1)の反応性アストロサイトで構成されると検出された細胞集団20の細胞特徴(第1の細胞特徴である主成分1及び2)と、時点2のアストロサイト2で構成されると同定された細胞集団24の細胞特徴とを比較し、経時的変化がないことを検出する。同様に、図3B(時点1)の神経細胞4で構成されると検出された細胞集団22の細胞特徴(第1の細胞特徴である主成分1及び2)と、図3C(時点2)の神経細胞4で構成されると同定された細胞集団26の細胞特徴とを比較し、経時的変化があることを検出する。 Similarly, FIG. 3B (time point 1) and FIG. 3C (time point 2) which are the clustering results obtained in the grouping step (S4) are compared, and the cell characteristics of the cell population composed of cells of the same cell type (first The
That is, in FIG. 3C (time point 2), in FIG. 3B (time point 1), the disappearance of the
In addition, the cell characteristics of the
また、さらに、図3B(時点2)の細胞集団24を構成すると検出された反応性アストロサイト10の細胞数は、図3A(時点1)の細胞集団20及び18を構成する細胞数の合計数に等しいこと、図3C(時点2)の細胞集団26を構成する神経細胞数は、図3B(時点1)の細胞集団22の細胞数と同じであることを検出する。
これらの検出結果から、薬剤添加による細胞刺激後、6時時間経過、即ち、時点1から5時間経過すると、反応性アストロサイト10の細胞特徴及び細胞数には変化が見られないが、神経細胞4には、変化がみられることを容易に検出することができる。さらに、神経細胞4で構成されると検出された細胞集団22の細胞特徴及び細胞数の変化から、細胞集団26が神経細胞4の形状が変化した神経細胞12から構成されることを検出(推定または確認)することができる。その結果、時点1から時点2にかけて神経細胞4の形状が変化し、神経細胞12になったことを容易に検出(推定または確認)することができる。(図5実線矢印)。 Further, the number of cells of thereactive astrocyte 10 detected to constitute the cell population 24 of FIG. 3B (time point 2) is the total number of cells constituting the cell populations 20 and 18 of FIG. 3A (time point 1). It is detected that the number of nerve cells constituting the cell population 26 in FIG. 3C (time point 2) is the same as the number of cells in the cell population 22 in FIG. 3B (time point 1).
From these detection results, no change is seen in the cell characteristics and cell number of thereactive astrocytes 10 at 6 o'clock after the cell stimulation by the addition of the drug, that is, at 5 hours after time 1; 4 can easily detect a change. Further, it is detected from the change in the cell characteristics and the number of cells of the cell population 22 detected to be composed of the nerve cells 4 that the cell population 26 is composed of the nerve cells 12 in which the shape of the nerve cells 4 has changed (estimated). Or confirm). As a result, it is possible to easily detect (estimate or confirm) that the shape of the nerve cell 4 has changed from the time point 1 to the time point 2 and has become the nerve cell 12. (FIG. 5 solid line arrow).
これらの検出結果から、薬剤添加による細胞刺激後、6時時間経過、即ち、時点1から5時間経過すると、反応性アストロサイト10の細胞特徴及び細胞数には変化が見られないが、神経細胞4には、変化がみられることを容易に検出することができる。さらに、神経細胞4で構成されると検出された細胞集団22の細胞特徴及び細胞数の変化から、細胞集団26が神経細胞4の形状が変化した神経細胞12から構成されることを検出(推定または確認)することができる。その結果、時点1から時点2にかけて神経細胞4の形状が変化し、神経細胞12になったことを容易に検出(推定または確認)することができる。(図5実線矢印)。 Further, the number of cells of the
From these detection results, no change is seen in the cell characteristics and cell number of the
このように、本発明においては、各細胞集団の細胞特徴と、細胞数が対応付けられて表示されるため、細胞死の有無だけでなく、経時的な細胞数や細胞特徴の変化、及び細胞数と細胞特徴との関係性を容易に、精度高く確認又は検出することができる。
As described above, in the present invention, since the cell characteristics of each cell population and the cell number are displayed in association with each other, not only the presence or absence of cell death, but also changes in the cell number and cell characteristics over time, and The relationship between the number and the cell characteristics can be easily or accurately confirmed or detected.
<作用機序解析ステップ(S6)>
次に、作用機序解析ステップ(S6)において、細胞変化検出ステップ(S5)において取得された細胞変化検出結果に基づいて、同じ細胞種の細胞集団内または細胞集団間の変化の作用機序を解析する。ここで、作用機序とは、薬剤による細胞刺激がその薬理学的効果を発揮するための特異的な作用であり、且つ、同じ細胞種の細胞集団内または細胞集団間でみられる特異的な生化学的反応または相互作用を意味する。 <Action mechanism analysis step (S6)>
Next, in the mechanism of action analysis step (S6), based on the cell change detection result obtained in the cell change detection step (S5), the mechanism of action of the change within the cell population of the same cell type or between the cell populations is determined. To analyze. Here, the mechanism of action refers to a specific action for cell stimulation by a drug to exert its pharmacological effect, and a specific action observed within or between cell populations of the same cell type. A biochemical reaction or interaction is meant.
次に、作用機序解析ステップ(S6)において、細胞変化検出ステップ(S5)において取得された細胞変化検出結果に基づいて、同じ細胞種の細胞集団内または細胞集団間の変化の作用機序を解析する。ここで、作用機序とは、薬剤による細胞刺激がその薬理学的効果を発揮するための特異的な作用であり、且つ、同じ細胞種の細胞集団内または細胞集団間でみられる特異的な生化学的反応または相互作用を意味する。 <Action mechanism analysis step (S6)>
Next, in the mechanism of action analysis step (S6), based on the cell change detection result obtained in the cell change detection step (S5), the mechanism of action of the change within the cell population of the same cell type or between the cell populations is determined. To analyze. Here, the mechanism of action refers to a specific action for cell stimulation by a drug to exert its pharmacological effect, and a specific action observed within or between cell populations of the same cell type. A biochemical reaction or interaction is meant.
本実施形態において、細胞集団内または細胞集団間の変化の作用機序とは、細胞刺激により細胞内外で誘起された生物学的な現象(例えば、増殖、細胞死、抗原抗体反応、増殖因子の分泌等)であり、より詳細には、細胞刺激により細胞内外で誘起された生物学的な現象を発揮するための特異的な生化学的反応または相互作用(例えば、生体物質の代謝、遺伝子発現、エネルギー代謝、シグナル伝達等)である。
本実施形態においては、細胞変化検出ステップ(S5)において取得された細胞変化検出結果から、上述したような作用機序を解析することにより、細胞変化検出ステップ(S5)において取得された各細胞集団の細胞数の変化、及び細胞特徴の変化に関与する因子(例えば、生体物質、遺伝子等)を抽出する。 In the present embodiment, the mechanism of action of a change in a cell population or between cell populations refers to a biological phenomenon (for example, proliferation, cell death, antigen-antibody reaction, growth factor Secretion, etc.), and more specifically, specific biochemical reactions or interactions (eg, metabolism of biological materials, gene expression, etc.) to exert biological phenomena induced inside and outside cells by cell stimulation. , Energy metabolism, signal transduction, etc.).
In the present embodiment, by analyzing the mechanism of action as described above from the cell change detection result obtained in the cell change detection step (S5), each cell population obtained in the cell change detection step (S5) (For example, biological substances, genes, etc.) related to the change in the number of cells and the change in cell characteristics.
本実施形態においては、細胞変化検出ステップ(S5)において取得された細胞変化検出結果から、上述したような作用機序を解析することにより、細胞変化検出ステップ(S5)において取得された各細胞集団の細胞数の変化、及び細胞特徴の変化に関与する因子(例えば、生体物質、遺伝子等)を抽出する。 In the present embodiment, the mechanism of action of a change in a cell population or between cell populations refers to a biological phenomenon (for example, proliferation, cell death, antigen-antibody reaction, growth factor Secretion, etc.), and more specifically, specific biochemical reactions or interactions (eg, metabolism of biological materials, gene expression, etc.) to exert biological phenomena induced inside and outside cells by cell stimulation. , Energy metabolism, signal transduction, etc.).
In the present embodiment, by analyzing the mechanism of action as described above from the cell change detection result obtained in the cell change detection step (S5), each cell population obtained in the cell change detection step (S5) (For example, biological substances, genes, etc.) related to the change in the number of cells and the change in cell characteristics.
図6は、シングルセルデータ取得ステップ(S3)において、先述したDNA配列及び蛍光標識等とともに、アストロサイト2(及び反応性アストロサイト10)と神経細胞4及び12との相互作用に関係すると考えられる成分A~Zの成分量もシングルセルデータとして取得しておき、主成分分析による次元削減後の発現プロファイルの類似度に基づいて推定された疑似的な時間軸(pseudotime)に沿って全細胞をプロットした図である。このように細胞を配置することにより、疑似的な時間的な細胞変化及び遺伝子発現変化がわかる。
図6(1)~(4)は、アストロサイト2(及び反応性アストロサイト10)に係る成分A~C及びZの変化を示し、図6(5)~(8)は、神経細胞4及び12の成分A~C及びZの変化を示す。 FIG. 6 is considered to be related to the interaction between the astrocytes 2 (and the reactive astrocytes 10) and the nerve cells 4 and 12 together with the DNA sequence and the fluorescent label described above in the single cell data acquisition step (S3). The component amounts of components A to Z are also acquired as single cell data, and all cells are extracted along a pseudo time axis (pseudotime) estimated based on the similarity of expression profiles after dimension reduction by principal component analysis. It is the figure which plotted. By arranging the cells in this manner, pseudo temporal changes in cells and changes in gene expression can be found.
FIGS. 6 (1) to 6 (4) show changes in components A to C and Z relating to astrocytes 2 (and reactive astrocytes 10), and FIGS. 12 shows changes in components A to C and Z.
図6(1)~(4)は、アストロサイト2(及び反応性アストロサイト10)に係る成分A~C及びZの変化を示し、図6(5)~(8)は、神経細胞4及び12の成分A~C及びZの変化を示す。 FIG. 6 is considered to be related to the interaction between the astrocytes 2 (and the reactive astrocytes 10) and the
FIGS. 6 (1) to 6 (4) show changes in components A to C and Z relating to astrocytes 2 (and reactive astrocytes 10), and FIGS. 12 shows changes in components A to C and Z.
なお、本ステップにおいて使用するアストロサイト2(及び反応性アストロサイト10)と神経細胞4及び12との相互作用に関係すると考えられる成分は、特に限定されない。シングルセルデータ取得ステップ(S3)において、シングルセルデータとして取得可能なものを用いることができる。
The components used in this step that are considered to be involved in the interaction between the astrocytes 2 (and the reactive astrocytes 10) and the nerve cells 4 and 12 are not particularly limited. In the single cell data acquisition step (S3), data that can be acquired as single cell data can be used.
本実施形態においては、図6(1)~(4)から、先述した細胞変化検出ステップ(S5)で検出された時点0から時点1に係る細胞集団18(アストロサイト2)から細胞集団20(反応性アストロサイト10)への細胞特徴及び細胞数の経時的変化(図4の実線矢印)は、時点0から時点1にかけて成分量が変化しているB成分が関係しているという検出結果を獲得する。
また、図6(5)~(8)から、先述した細胞変化検出ステップ(S5)で検出された時点1から時点2に係る細胞集団28、即ち、細胞集団22(神経細胞4)から細胞集団26(神経細胞12)への細胞特徴及び細胞数の経時的変化(図5の実線矢印)は、時点1から時点2にかけて成分量が変化しているZ成分及びB成分が関係しているという検出結果を獲得する。 In the present embodiment, from FIG. 6 (1) to (4), the cell population 20 (astrocytic 2) to the cell population 20 (astroblast 2) from the time point 0 to thetime point 1 detected in the above-described cell change detection step (S5). The change over time in the cell characteristics and cell number into the reactive astrocytes 10) (solid arrow in FIG. 4) indicates that the detection result that the B component whose component amount changes from time 0 to time 1 is related. To win.
Also, from FIGS. 6 (5) to (8), thecell population 28 from the time point 1 to the time point 2 detected in the above-described cell change detection step (S5), that is, the cell population 22 (the nerve cell 4) to the cell population The change over time in cell characteristics and cell number to 26 (neural cell 12) (solid line arrow in FIG. 5) relates to the Z component and the B component whose component amounts change from time 1 to time 2. Get the detection result.
また、図6(5)~(8)から、先述した細胞変化検出ステップ(S5)で検出された時点1から時点2に係る細胞集団28、即ち、細胞集団22(神経細胞4)から細胞集団26(神経細胞12)への細胞特徴及び細胞数の経時的変化(図5の実線矢印)は、時点1から時点2にかけて成分量が変化しているZ成分及びB成分が関係しているという検出結果を獲得する。 In the present embodiment, from FIG. 6 (1) to (4), the cell population 20 (astrocytic 2) to the cell population 20 (astroblast 2) from the time point 0 to the
Also, from FIGS. 6 (5) to (8), the
なお、本実施形態においては、グリア細胞と神経細胞の相互ネットワーク形成の過程(経時的変化)を解析するために使用しているが、これに限定されず、Candida.albicansのような真菌と口腔粘膜上皮細胞との感染過程を解析することにも使用することができる。
In the present embodiment, the method is used to analyze the process (time-dependent change) of the formation of a mutual network between glial cells and nerve cells. However, the present invention is not limited to this, and fungi such as Candida. It can also be used to analyze the process of infection with mucosal epithelial cells.
上記作用機序解析として、例えば、遺伝子発現プロファイルの解析や、分子ターゲットの解析を用いることもできる。
遺伝子発現プロファイルの解析には、例えば、テンソル分解を用いることができる。 As the mechanism of action analysis, for example, gene expression profile analysis and molecular target analysis can also be used.
For analysis of the gene expression profile, for example, tensor decomposition can be used.
遺伝子発現プロファイルの解析には、例えば、テンソル分解を用いることができる。 As the mechanism of action analysis, for example, gene expression profile analysis and molecular target analysis can also be used.
For analysis of the gene expression profile, for example, tensor decomposition can be used.
分子ターゲットの解析の例を説明する。
まず、薬剤(細胞刺激)によって発現が変化し、かつ、その変化が疾患によるものと一致していると期待できる遺伝子を特定する。ここで、実際に化合物(薬剤)が結合しているのはタンパクであるが、計測されているのはmRNAの発現量である。タンパクに化合物(薬剤)が結合することでそのタンパクをコードしている遺伝子のmRNAの量が変化しているとは思えないので、発現量が変化している遺伝子の中に分子ターゲット(標的タンパク)は無いと推定する。
化合物が実際に結合しているタンパクの他の遺伝子発現プロファイルに対する影響は、そのタンパクがコードされている遺伝子をノックアウトした場合に近いと期待される。そこで遺伝子を網羅的にノックアウトした場合の遺伝子発現プロファイルを参照することで標的遺伝子を推定する。 An example of analyzing a molecular target will be described.
First, a gene whose expression is changed by a drug (cell stimulation) and whose change is expected to be consistent with a disease is specified. Here, although the compound (drug) is actually bound to the protein, what is measured is the expression level of mRNA. Since it is unlikely that the amount of mRNA of the gene encoding the protein has changed due to the binding of the compound (drug) to the protein, the molecular target (target protein) is included in the gene whose expression level is changing. ) Is assumed not to exist.
The effect of the protein to which the compound is actually attached on other gene expression profiles is expected to be close to knocking out the gene in which the protein is encoded. Therefore, the target gene is estimated by referring to the gene expression profile when the gene is knocked out comprehensively.
まず、薬剤(細胞刺激)によって発現が変化し、かつ、その変化が疾患によるものと一致していると期待できる遺伝子を特定する。ここで、実際に化合物(薬剤)が結合しているのはタンパクであるが、計測されているのはmRNAの発現量である。タンパクに化合物(薬剤)が結合することでそのタンパクをコードしている遺伝子のmRNAの量が変化しているとは思えないので、発現量が変化している遺伝子の中に分子ターゲット(標的タンパク)は無いと推定する。
化合物が実際に結合しているタンパクの他の遺伝子発現プロファイルに対する影響は、そのタンパクがコードされている遺伝子をノックアウトした場合に近いと期待される。そこで遺伝子を網羅的にノックアウトした場合の遺伝子発現プロファイルを参照することで標的遺伝子を推定する。 An example of analyzing a molecular target will be described.
First, a gene whose expression is changed by a drug (cell stimulation) and whose change is expected to be consistent with a disease is specified. Here, although the compound (drug) is actually bound to the protein, what is measured is the expression level of mRNA. Since it is unlikely that the amount of mRNA of the gene encoding the protein has changed due to the binding of the compound (drug) to the protein, the molecular target (target protein) is included in the gene whose expression level is changing. ) Is assumed not to exist.
The effect of the protein to which the compound is actually attached on other gene expression profiles is expected to be close to knocking out the gene in which the protein is encoded. Therefore, the target gene is estimated by referring to the gene expression profile when the gene is knocked out comprehensively.
複数の疾患または症例タイプ候補から細胞刺激の最適な適応例を見出すには、複数の種類の細胞に対して一斉に効果判定および作用機序解析を行うことで、効果の序列を得ることができる。その効果の比較もしくは序列に基づいて、最適な適応症または用途を見出すことができる。ここで、細胞刺激の効果判定は、例えば、細胞刺激(薬剤)処理無のデータと細胞刺激(薬剤)処理有の時間依存データを比較して、同一細胞集団に由来する細胞が生物学的データまたは細胞特徴、細胞数を比較し、変化があった場合は、効果があったと判定できる。
In order to find the best indication of cell stimulation from multiple disease or case type candidates, a series of effects can be obtained by simultaneously performing effect determination and action mechanism analysis on multiple types of cells. . Based on a comparison or ranking of the effects, optimal indications or uses can be found. Here, the effect of cell stimulation is determined, for example, by comparing data without cell stimulation (drug) treatment with time-dependent data with cell stimulation (drug) treatment, and comparing cells derived from the same cell population with biological data. Alternatively, the cell characteristics and cell number are compared, and if there is a change, it can be determined that there is an effect.
<相互作用解析ステップ(S7)>
次に、相互作用解析ステップ(S7)において、細胞変化検出ステップ(S6)において取得された作用機序解析の結果に基づいて、異なる細胞種の細胞集団の間で起きる相互作用を解析する。その結果、同じ細胞種の細胞集団間だけでなく、異なる細胞種の細胞集団の間で起きる相互作用を解析することができるため、より広い細胞間及び細胞種間の相互ネットワークを解析することができる。 <Interaction analysis step (S7)>
Next, in an interaction analysis step (S7), an interaction that occurs between cell populations of different cell types is analyzed based on the result of the action mechanism analysis obtained in the cell change detection step (S6). As a result, it is possible to analyze interactions that occur not only between cell populations of the same cell type but also between cell populations of different cell types. it can.
次に、相互作用解析ステップ(S7)において、細胞変化検出ステップ(S6)において取得された作用機序解析の結果に基づいて、異なる細胞種の細胞集団の間で起きる相互作用を解析する。その結果、同じ細胞種の細胞集団間だけでなく、異なる細胞種の細胞集団の間で起きる相互作用を解析することができるため、より広い細胞間及び細胞種間の相互ネットワークを解析することができる。 <Interaction analysis step (S7)>
Next, in an interaction analysis step (S7), an interaction that occurs between cell populations of different cell types is analyzed based on the result of the action mechanism analysis obtained in the cell change detection step (S6). As a result, it is possible to analyze interactions that occur not only between cell populations of the same cell type but also between cell populations of different cell types. it can.
上記細胞集団の間で起きる相互作用とは、種類の異なる細胞集団の間で起きる生物学的または物理的な作用、またはそれらの作用により生じる変化である。
上記生物学的または物理的な作用とは、例えば、液性因子の授受、細胞接着、拍動や、または微弱電流であり、上記作用により生じる変化とは、例えば、形態変化、分化、増殖、細胞死、遊走、表面抗原の増加、または液性因子の放出である。
上記液性因子は、例えば、ホルモン、成長因子、サイトカイン、エクソソーム、代謝物質、またはイオン等の無機物である。 The interaction that occurs between the cell populations is a biological or physical action that occurs between different types of cell populations, or a change caused by those actions.
The biological or physical action is, for example, transfer of a humoral factor, cell adhesion, pulsation, or a weak current, and the change caused by the action is, for example, morphological change, differentiation, proliferation, Cell death, migration, increase of surface antigens, or release of humoral factors.
The humoral factor is, for example, an inorganic substance such as a hormone, a growth factor, a cytokine, an exosome, a metabolite, or an ion.
上記生物学的または物理的な作用とは、例えば、液性因子の授受、細胞接着、拍動や、または微弱電流であり、上記作用により生じる変化とは、例えば、形態変化、分化、増殖、細胞死、遊走、表面抗原の増加、または液性因子の放出である。
上記液性因子は、例えば、ホルモン、成長因子、サイトカイン、エクソソーム、代謝物質、またはイオン等の無機物である。 The interaction that occurs between the cell populations is a biological or physical action that occurs between different types of cell populations, or a change caused by those actions.
The biological or physical action is, for example, transfer of a humoral factor, cell adhesion, pulsation, or a weak current, and the change caused by the action is, for example, morphological change, differentiation, proliferation, Cell death, migration, increase of surface antigens, or release of humoral factors.
The humoral factor is, for example, an inorganic substance such as a hormone, a growth factor, a cytokine, an exosome, a metabolite, or an ion.
上記グルーピングステップ(S4)において、各細胞のシングルセルデータ(複数の生体物質に係る情報)から、複数の生体物質の量または状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め用意し、生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けした場合は、国際公開2018/150878A1に記載の方法を用いて相互作用解析を行うことができる。
本発明においては、相互作用解析ステップ(S7)において、複数の時点の各々について、複数の細胞集団の各々に含まれる1つ以上の第1の細胞特徴から、細胞集団の状態を表す値を生成し、生成された、複数時点の、複数の細胞集団の状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データからなるデータセットから、細胞集団間の状態の依存関係を推定し、そのグループ間(細胞集団間)の依存関係の中において、細胞集団が異なる細胞集団間の依存関係を抜き出すことで異なる細胞種の細胞集団の間で起きる生物学的または物理的な作用、またはそれらの作用(異なる細胞種の細胞集団の間で起きる相互作用)を推定することができる。 In the above grouping step (S4), when values representing the amounts or states of a plurality of biological materials are obtained at a plurality of time points for each biological material from the single cell data (information on a plurality of biological materials) of each cell. Sequence data is prepared in advance, and cells that have obtained single-cell data based on the time change of the time-series data for each biological material and the similarity of the biological function of each biological material are identified by a common first cell characteristic. When the cells are grouped into cell populations having the following, interaction analysis can be performed using the method described in International Publication No. 2018 / 150878A1.
In the present invention, in the interaction analysis step (S7), for each of the plurality of time points, a value representing the state of the cell population is generated from one or more first cell characteristics included in each of the plurality of cell populations. Then, the generated values representing the state of the plurality of cell populations at the plurality of time points are determined from the data set including the time-series data acquired at the plurality of time points for each biological material, and the state dependency between the cell populations is determined. The biological or physical effects that occur between the cell populations of different cell types by estimating and extracting the dependencies between the different cell populations within the inter-group (cell population) dependencies Or their effects (interactions that occur between cell populations of different cell types).
本発明においては、相互作用解析ステップ(S7)において、複数の時点の各々について、複数の細胞集団の各々に含まれる1つ以上の第1の細胞特徴から、細胞集団の状態を表す値を生成し、生成された、複数時点の、複数の細胞集団の状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データからなるデータセットから、細胞集団間の状態の依存関係を推定し、そのグループ間(細胞集団間)の依存関係の中において、細胞集団が異なる細胞集団間の依存関係を抜き出すことで異なる細胞種の細胞集団の間で起きる生物学的または物理的な作用、またはそれらの作用(異なる細胞種の細胞集団の間で起きる相互作用)を推定することができる。 In the above grouping step (S4), when values representing the amounts or states of a plurality of biological materials are obtained at a plurality of time points for each biological material from the single cell data (information on a plurality of biological materials) of each cell. Sequence data is prepared in advance, and cells that have obtained single-cell data based on the time change of the time-series data for each biological material and the similarity of the biological function of each biological material are identified by a common first cell characteristic. When the cells are grouped into cell populations having the following, interaction analysis can be performed using the method described in International Publication No. 2018 / 150878A1.
In the present invention, in the interaction analysis step (S7), for each of the plurality of time points, a value representing the state of the cell population is generated from one or more first cell characteristics included in each of the plurality of cell populations. Then, the generated values representing the state of the plurality of cell populations at the plurality of time points are determined from the data set including the time-series data acquired at the plurality of time points for each biological material, and the state dependency between the cell populations is determined. The biological or physical effects that occur between the cell populations of different cell types by estimating and extracting the dependencies between the different cell populations within the inter-group (cell population) dependencies Or their effects (interactions that occur between cell populations of different cell types).
細胞集団間の状態の依存関係の推定は、例えば、以下のようにして行うことができる。
細胞を、配列データから同定し、それぞれの遺伝子発現量の時間的な変化パターンが似ている遺伝子を、例えば、7つある隣接2時点における状態値の遷移が、ある閾値に照らして増加した、不変だった、減少した、の3つのうちのどれであるかを判定し、それぞれ37=2187のグループ(細胞集団)に分類する。
生物学的機能が似ている遺伝子を公共のWebツールDAVID(https://david.ncifcrf.gov/)のFunctional Annotation Clusteringを用い、類似した遺伝子オントロジーを有する遺伝子をグループ化する。時間的変化の類似性と、生物学的機能の類似性とに基づいてグループ化し、各グループ(細胞集団)の状態値間の時間的な依存関係を、例えば、ベイジアンネットワークモデルに照らして、または、時系列もしくは生物学的な関係性によってグループ間(細胞集団間)の紐付けをして、推定することができる。 The estimation of the state dependency between cell populations can be performed, for example, as follows.
The cells were identified from the sequence data, and the genes whose temporal change patterns of the gene expression levels were similar to each other were, for example, the transition of the state value at two adjacent two time points increased according to a certain threshold value. It is determined which of the three was unchanged or decreased, and classified into 3 7 = 2187 groups (cell populations).
Genes having similar biological functions are grouped using Functional Annotation Clustering of the public Web tool DAVID (https://david.ncifcrf.gov/), and genes having similar gene ontology are grouped. Grouping based on the similarity of the temporal change and the similarity of the biological function, and the temporal dependency between the state values of each group (cell population), for example, in the light of a Bayesian network model, or It can be estimated by linking between groups (between cell populations) based on time series or biological relationship.
細胞を、配列データから同定し、それぞれの遺伝子発現量の時間的な変化パターンが似ている遺伝子を、例えば、7つある隣接2時点における状態値の遷移が、ある閾値に照らして増加した、不変だった、減少した、の3つのうちのどれであるかを判定し、それぞれ37=2187のグループ(細胞集団)に分類する。
生物学的機能が似ている遺伝子を公共のWebツールDAVID(https://david.ncifcrf.gov/)のFunctional Annotation Clusteringを用い、類似した遺伝子オントロジーを有する遺伝子をグループ化する。時間的変化の類似性と、生物学的機能の類似性とに基づいてグループ化し、各グループ(細胞集団)の状態値間の時間的な依存関係を、例えば、ベイジアンネットワークモデルに照らして、または、時系列もしくは生物学的な関係性によってグループ間(細胞集団間)の紐付けをして、推定することができる。 The estimation of the state dependency between cell populations can be performed, for example, as follows.
The cells were identified from the sequence data, and the genes whose temporal change patterns of the gene expression levels were similar to each other were, for example, the transition of the state value at two adjacent two time points increased according to a certain threshold value. It is determined which of the three was unchanged or decreased, and classified into 3 7 = 2187 groups (cell populations).
Genes having similar biological functions are grouped using Functional Annotation Clustering of the public Web tool DAVID (https://david.ncifcrf.gov/), and genes having similar gene ontology are grouped. Grouping based on the similarity of the temporal change and the similarity of the biological function, and the temporal dependency between the state values of each group (cell population), for example, in the light of a Bayesian network model, or It can be estimated by linking between groups (between cell populations) based on time series or biological relationship.
本実施形態においては、先述した細胞変化検出ステップ(S5)で取得された作用機序解析の結果、即ち、時点0から時点1に係るグリア細胞の細胞特徴及び細胞数の経時的変化(図4の実線矢印)は、時点0から時点1にかけて成分量が変化しているB成分が関係していること、及び、時点1から時点2に係る神経細胞の細胞特徴及び細胞数の経時的変化(図5の実線矢印)は、時点1から時点2にかけて成分量が変化しているZ成分及びB成分が関係しているという結果、さらに、図6(1)~(4)に示されるグリア細胞に係る成分A~C及びZの変化、及び図6(5)~(8)に示される神経細胞の成分A~C及びZの変化に基づいて、時点1のグリア細胞で構成される細胞集団20と神経細胞4で構成される細胞集団22との間で起きる生物学的または物理的な作用(刺激)、またはそれらの作用(刺激)、即ち、異なる細胞種の細胞集団の間で起きる相互作用があること、及び、時点0から時点2にかけて、まず、はじめに、薬剤添加による細胞刺激により、グリア細胞のB成分が増加し、グリア細胞の細胞特徴が変化し(図4及び図7実線矢印)、即ち、アストロサイト2が反応性アストロサイト10への変化し、変化した反応性アストロサイト10から生物学的または物理的な刺激が神経細胞4なされる(図7太矢印)。続いて、反応性アストロサイト10から刺激を受けた神経細胞4の成分Cが減少することに応じて、神経細胞4のZ成分が増加することにより、神経細胞の細胞特徴が変化し(図5実線矢印)し、即ち、神経細胞4が神経細胞12へ変化するという、グリア細胞と神経細胞間の細胞間の相互ネットワークを推定することができる。
In the present embodiment, the results of the mechanism of action analysis obtained in the cell change detection step (S5) described above, that is, the time-dependent changes in the cell characteristics and cell number of glial cells from time 0 to time 1 (FIG. 4) Solid arrows) indicate that the B component whose component amount changes from time 0 to time 1 is related, and that the time-dependent changes in the cell characteristics and cell number of the neurons from time 1 to time 2 ( The solid line arrow in FIG. 5) indicates that the Z component and the B component whose component amounts change from the time point 1 to the time point 2 are related, and further, the glial cells shown in FIGS. 6 (1) to (4) Cell population composed of glial cells at time point 1 based on the changes in the components A to C and Z according to the above and the changes in the components A to C and Z of the nerve cells shown in FIGS. 6 (5) to (8) 20 and a cell population 22 composed of nerve cells 4 The biological or physical actions (stimulations) that occur, or their actions (stimulations), that is, the interactions that occur between cell populations of different cell types, and from time 0 to time 2, First, the B component of glial cells increases due to cell stimulation by the addition of a drug, and the cellular characteristics of glial cells change (solid arrows in FIGS. 4 and 7), that is, astrocyte 2 changes to reactive astrocyte 10. Then, a biological or physical stimulus is given from the changed reactive astrocyte 10 to the nerve cell 4 (thick arrow in FIG. 7). Subsequently, as the component C of the nerve cell 4 stimulated by the reactive astrocyte 10 decreases, the Z component of the nerve cell 4 increases, thereby changing the cell characteristics of the nerve cell (FIG. 5). It is possible to estimate a mutual network between the glial cells and the nerve cells, that is, the change of the nerve cells 4 to the nerve cells 12.
実施形態1の方法によれば、異なる複数の細胞種が存在する対象細胞群を構成する全ての細胞について、シングルセル解析を行い、各細胞の細胞種を同定するものであるため、異なる複数の細胞種が存在する対象細胞群から人為的に各細胞の細胞種を同定する従来の方法よりも、各細胞種の同定、各種細胞に対する薬剤または細胞刺激の作用機序を、精度高く、解析することができる。
また、各細胞種の同定、及び各細胞種に対する薬剤又は細胞刺激の作用機序を精度高く解析することができるため、同じ細胞種間の相互作用だけでなく、異なる細胞種間の相互作用も精度高く、容易に解析することができる。また、その結果、より広い細胞間及び細胞種間の相互作用(相互ネットワーク)も精度高く、容易に解析することができる。
また、細胞種の同定及び選択に画像解析等の手間をかけることがなく、また、免疫細胞に対する薬効スクリーニングを行う場合であっても、1つのサンプルの観察を解析が終わるまで続けるものでもないため、特に解析時間に制約を設けることなく解析を行うことができる。
また、シングルセル解析を利用するため、人為的に細胞の変化を確認し、対象細胞を選択する場合よりも、細胞を観察する(回収する)時点数を減らすことができる。 According to the method ofEmbodiment 1, a single cell analysis is performed for all cells constituting a target cell group in which a plurality of different cell types are present, and the cell type of each cell is identified. Analyzes each cell type and the mechanism of action of drugs or cell stimulation on various cells with higher accuracy than conventional methods that artificially identify the cell type of each cell from the target cell group where the cell type exists be able to.
In addition, since the identification of each cell type and the mechanism of action of a drug or cell stimulation on each cell type can be analyzed with high accuracy, not only the interaction between the same cell types but also the interaction between different cell types can be performed. It is highly accurate and can be easily analyzed. Further, as a result, a wider interaction between cells and between cell types (interconnection network) can be analyzed with high accuracy and easily.
In addition, since identification and selection of cell types does not require labor such as image analysis, and even when drug efficacy screening is performed on immune cells, observation of one sample is not continued until analysis is completed. In particular, the analysis can be performed without any restriction on the analysis time.
Further, since the single cell analysis is used, the number of time points at which the cells are observed (collected) can be reduced as compared with the case where the change of the cells is artificially confirmed and the target cells are selected.
また、各細胞種の同定、及び各細胞種に対する薬剤又は細胞刺激の作用機序を精度高く解析することができるため、同じ細胞種間の相互作用だけでなく、異なる細胞種間の相互作用も精度高く、容易に解析することができる。また、その結果、より広い細胞間及び細胞種間の相互作用(相互ネットワーク)も精度高く、容易に解析することができる。
また、細胞種の同定及び選択に画像解析等の手間をかけることがなく、また、免疫細胞に対する薬効スクリーニングを行う場合であっても、1つのサンプルの観察を解析が終わるまで続けるものでもないため、特に解析時間に制約を設けることなく解析を行うことができる。
また、シングルセル解析を利用するため、人為的に細胞の変化を確認し、対象細胞を選択する場合よりも、細胞を観察する(回収する)時点数を減らすことができる。 According to the method of
In addition, since the identification of each cell type and the mechanism of action of a drug or cell stimulation on each cell type can be analyzed with high accuracy, not only the interaction between the same cell types but also the interaction between different cell types can be performed. It is highly accurate and can be easily analyzed. Further, as a result, a wider interaction between cells and between cell types (interconnection network) can be analyzed with high accuracy and easily.
In addition, since identification and selection of cell types does not require labor such as image analysis, and even when drug efficacy screening is performed on immune cells, observation of one sample is not continued until analysis is completed. In particular, the analysis can be performed without any restriction on the analysis time.
Further, since the single cell analysis is used, the number of time points at which the cells are observed (collected) can be reduced as compared with the case where the change of the cells is artificially confirmed and the target cells are selected.
また、実施形態1の方法は、グルーピングステップ(S4)により、各時点の細胞の状態を可視化できるものであるため、細胞変化検出ステップ(S5)において、各細胞(細胞集団)の変化を容易に確認することができる。また、その結果、作用機序解析ステップ(S6)において、さらに解析する必要のある細胞種や、遺伝子等を容易に抽出することができる。
In the method of the first embodiment, the state of the cells at each time point can be visualized by the grouping step (S4). Therefore, in the cell change detection step (S5), the change of each cell (cell population) can be easily performed. You can check. As a result, in the action mechanism analysis step (S6), it is possible to easily extract cell types, genes, and the like that need to be further analyzed.
実施形態1の変形例
上述の実施形態1では、上記細胞回収ステップ(S1)において、細胞刺激直後に回収された細胞と、細胞刺激後、所定時間培養した細胞とを回収し、それら細胞のシングルセルデータの比較に基づく解析を行っているが、これに限定されず、上記細胞回収ステップ(S1)において、細胞刺激が与えられない対象細胞群と、細胞刺激が与えられる対象細胞群をそれぞれ用意し、それぞれ所定時間培養した後に、細胞を回収し、それら細胞のシングルセルデータの比較に基づくスクリーニング解析を行ってもよい。 Modification ofEmbodiment 1 In Embodiment 1 described above, in the cell collection step (S1), the cells collected immediately after the cell stimulation and the cells cultured for a predetermined time after the cell stimulation are collected, and the single cells are collected. Although the analysis based on the comparison of the cell data is performed, the present invention is not limited to this. In the cell collection step (S1), a target cell group to which no cell stimulation is applied and a target cell group to which the cell stimulation is applied are prepared. After culturing the cells for a predetermined time, the cells may be collected and a screening analysis based on a comparison of single cell data of those cells may be performed.
上述の実施形態1では、上記細胞回収ステップ(S1)において、細胞刺激直後に回収された細胞と、細胞刺激後、所定時間培養した細胞とを回収し、それら細胞のシングルセルデータの比較に基づく解析を行っているが、これに限定されず、上記細胞回収ステップ(S1)において、細胞刺激が与えられない対象細胞群と、細胞刺激が与えられる対象細胞群をそれぞれ用意し、それぞれ所定時間培養した後に、細胞を回収し、それら細胞のシングルセルデータの比較に基づくスクリーニング解析を行ってもよい。 Modification of
具体的には、上記細胞回収ステップ(S1)において、準備した複数の容器1のうち、一部の容器1に播種された対象細胞群に対しては、細胞刺激を与えずに培養し、残りの容器1に播種された対象細胞群に遺体しては、細胞刺激を与え、それぞれ、2以上の時点で、1つの容器内にある全細胞を回収する作業を行うこと以外は、実施形態1と同様である。
Specifically, in the cell collection step (S1), the target cell group seeded in some of the containers 1 among the prepared containers 1 is cultured without applying cell stimulation, and the remaining cells are cultured. Embodiment 1 except that the target cell group seeded in the container 1 is subjected to cell stimulation to collect the cells in one container at two or more time points. Is the same as
このように、さらに、対照サンプルを用意し解析を行うことにより、薬剤(細胞刺激)による効果であるのか、それとも培養条件等のその他要因による効果であるのかを確認することができる。
より詳細には、作用機序解析ステップ(S6)において、薬剤(細胞刺激)による個々の細胞集団内または細胞集団間への作用機序を解析することができ、さらに、細胞刺激の分子ターゲットを解析したり、治療を想定した適応例を特定したりすることもできるようになる。
ここで、治療を想定した適応例としては、例えば、細胞刺激により改善が見込める疾患もしくは症状、または分子ターゲットに関連する疾患もしくは症状を挙げることができる。 As described above, by further preparing and analyzing a control sample, it is possible to confirm whether the effect is due to a drug (cell stimulation) or an effect due to other factors such as culture conditions.
More specifically, in the mechanism of action analysis step (S6), the mechanism of action of an agent (cell stimulation) within or between individual cell populations can be analyzed. It will also be possible to analyze and identify indications for treatment.
Here, examples of indications assuming treatment include, for example, diseases or conditions that can be improved by cell stimulation, or diseases or conditions related to molecular targets.
より詳細には、作用機序解析ステップ(S6)において、薬剤(細胞刺激)による個々の細胞集団内または細胞集団間への作用機序を解析することができ、さらに、細胞刺激の分子ターゲットを解析したり、治療を想定した適応例を特定したりすることもできるようになる。
ここで、治療を想定した適応例としては、例えば、細胞刺激により改善が見込める疾患もしくは症状、または分子ターゲットに関連する疾患もしくは症状を挙げることができる。 As described above, by further preparing and analyzing a control sample, it is possible to confirm whether the effect is due to a drug (cell stimulation) or an effect due to other factors such as culture conditions.
More specifically, in the mechanism of action analysis step (S6), the mechanism of action of an agent (cell stimulation) within or between individual cell populations can be analyzed. It will also be possible to analyze and identify indications for treatment.
Here, examples of indications assuming treatment include, for example, diseases or conditions that can be improved by cell stimulation, or diseases or conditions related to molecular targets.
以下では実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[実施例1]
ヒトiPS細胞およびマウス胎児由来線維芽細胞を1:1(細胞数比)で混合し、ROCK(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)阻害剤Y-27632(10μL;富士フイルム和光純薬社製)を加えて、1000細胞/ウェル/200μL、3000細胞/ウェル/200μL、および9000細胞/ウェル/200μLで、6ウェルプレートに播種した。
播種時(0時間)、播種から6時間後、12時間後、24時間後、48時間後、72時間後、96時間後、および120時間後の細胞を回収した。
細胞分散液を1000細胞/μLに希釈し、C1システム(フリューダイム社製)を用いてシングルセルを捕捉した。次いで、SMARTer(R) Ultra(R) Low RNAキットを用いて、細胞の溶解、mRNAの逆転写およびcDNAプレ増幅を行った。
得られたcDNAを回収し、0.05ng/μLより高い濃度を、ライブラリー調製のために選択した。ライブラリー調製は、Nextera(R) XT DNAサンプル調製キット(イルミナ社製)を用いて行った。 [Example 1]
Human iPS cells and fibroblasts derived from mouse embryos are mixed at a ratio of 1: 1 (cell number ratio), and ROCK (Rho-associated coiled-coil forming kinase / Rho binding kinase) inhibitor Y-27632 (10 μL; Fujifilm Wako Pure) (Yakusha Co., Ltd.) and seeded in a 6-well plate at 1000 cells / well / 200 μL, 3000 cells / well / 200 μL, and 9000 cells / well / 200 μL.
Cells were collected at the time of seeding (0 hour), 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, and 120 hours after seeding.
The cell dispersion was diluted to 1000 cells / μL, and a single cell was captured using a C1 system (made by Fluidime). Then, using a SMARTer (R) Ultra (R) Low RNA kit, lysis of the cells, reverse transcription and cDNA preamplification of mRNA was carried out.
The resulting cDNA was recovered and concentrations higher than 0.05 ng / μL were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
ヒトiPS細胞およびマウス胎児由来線維芽細胞を1:1(細胞数比)で混合し、ROCK(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)阻害剤Y-27632(10μL;富士フイルム和光純薬社製)を加えて、1000細胞/ウェル/200μL、3000細胞/ウェル/200μL、および9000細胞/ウェル/200μLで、6ウェルプレートに播種した。
播種時(0時間)、播種から6時間後、12時間後、24時間後、48時間後、72時間後、96時間後、および120時間後の細胞を回収した。
細胞分散液を1000細胞/μLに希釈し、C1システム(フリューダイム社製)を用いてシングルセルを捕捉した。次いで、SMARTer(R) Ultra(R) Low RNAキットを用いて、細胞の溶解、mRNAの逆転写およびcDNAプレ増幅を行った。
得られたcDNAを回収し、0.05ng/μLより高い濃度を、ライブラリー調製のために選択した。ライブラリー調製は、Nextera(R) XT DNAサンプル調製キット(イルミナ社製)を用いて行った。 [Example 1]
Human iPS cells and fibroblasts derived from mouse embryos are mixed at a ratio of 1: 1 (cell number ratio), and ROCK (Rho-associated coiled-coil forming kinase / Rho binding kinase) inhibitor Y-27632 (10 μL; Fujifilm Wako Pure) (Yakusha Co., Ltd.) and seeded in a 6-well plate at 1000 cells / well / 200 μL, 3000 cells / well / 200 μL, and 9000 cells / well / 200 μL.
Cells were collected at the time of seeding (0 hour), 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, and 120 hours after seeding.
The cell dispersion was diluted to 1000 cells / μL, and a single cell was captured using a C1 system (made by Fluidime). Then, using a SMARTer (R) Ultra (R) Low RNA kit, lysis of the cells, reverse transcription and cDNA preamplification of mRNA was carried out.
The resulting cDNA was recovered and concentrations higher than 0.05 ng / μL were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
調製したライブラリーについて、次世代シーケンサー(HiSeq2500システム,イルミナ社製)により、2×100bpの末端読取りを用いて配列決定した。得られたデータから細胞毎の遺伝子発現量を算出し、薬剤毎に時点サンプルをまとめ、主成分分析を用いてクラスタリング解析を行った。
細胞は、配列データからヒトiPS細胞であるかマウス胎児由来線維芽細胞であるかを同定し、それぞれの遺伝子発現量の時間的な変化パターンが似ている遺伝子を、具体的には、7つある隣接2時点における状態値の遷移が、ある閾値に照らして増加した、不変だった、減少した、の3つのうちのどれであるかを判定し、それぞれ2187(=3の7乗)のグループに分類した。生物学的機能が似ている遺伝子を公共のWebツールDAVID(https://david.ncifcrf.gov/)のFunctional Annotation Clusteringを用い、類似した遺伝子オントロジーを有する遺伝子をグループ化した。時間的変化の類似性と、生物学的機能の類似性とに基づいてグループ化した結果、7305個のグループが得られた。7305個のグループの状態値間の時間的な依存関係を、ベイジアンネットワークモデルに照らし推定したところ、マウス胎児由来線維芽細胞の増殖因子の分泌に伴うヒトiPS細胞の未分化性維持機構の活性化が時系列的な機序を捉える事ができた。 The prepared library was sequenced by a next-generation sequencer (HiSeq 2500 system, manufactured by Illumina) using 2 × 100 bp end reading. The gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
The cells were identified as human iPS cells or mouse embryonic fibroblasts from the sequence data, and genes with similar temporal changes in the expression levels of each gene were identified. It is determined whether the transition of the state value at a certain two adjacent times is one of three, that is, increased, invariable, or decreased according to a certain threshold value, and each of the 2187 (= 3 to the seventh power) groups is determined. Classified. Genes having similar biological functions were grouped using Functional Annotation Clustering of the public Web tool DAVID (https://david.ncifcrf.gov/), and genes having similar gene ontology were grouped. As a result of grouping based on the similarity of the temporal change and the similarity of the biological function, 7305 groups were obtained. The time dependence between the status values of the 7305 groups was estimated in light of the Bayesian network model, and the activation of the undifferentiated maintenance mechanism of human iPS cells following the secretion of growth factors of mouse embryonic fibroblasts was estimated. Was able to capture the chronological mechanism.
細胞は、配列データからヒトiPS細胞であるかマウス胎児由来線維芽細胞であるかを同定し、それぞれの遺伝子発現量の時間的な変化パターンが似ている遺伝子を、具体的には、7つある隣接2時点における状態値の遷移が、ある閾値に照らして増加した、不変だった、減少した、の3つのうちのどれであるかを判定し、それぞれ2187(=3の7乗)のグループに分類した。生物学的機能が似ている遺伝子を公共のWebツールDAVID(https://david.ncifcrf.gov/)のFunctional Annotation Clusteringを用い、類似した遺伝子オントロジーを有する遺伝子をグループ化した。時間的変化の類似性と、生物学的機能の類似性とに基づいてグループ化した結果、7305個のグループが得られた。7305個のグループの状態値間の時間的な依存関係を、ベイジアンネットワークモデルに照らし推定したところ、マウス胎児由来線維芽細胞の増殖因子の分泌に伴うヒトiPS細胞の未分化性維持機構の活性化が時系列的な機序を捉える事ができた。 The prepared library was sequenced by a next-generation sequencer (HiSeq 2500 system, manufactured by Illumina) using 2 × 100 bp end reading. The gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
The cells were identified as human iPS cells or mouse embryonic fibroblasts from the sequence data, and genes with similar temporal changes in the expression levels of each gene were identified. It is determined whether the transition of the state value at a certain two adjacent times is one of three, that is, increased, invariable, or decreased according to a certain threshold value, and each of the 2187 (= 3 to the seventh power) groups is determined. Classified. Genes having similar biological functions were grouped using Functional Annotation Clustering of the public Web tool DAVID (https://david.ncifcrf.gov/), and genes having similar gene ontology were grouped. As a result of grouping based on the similarity of the temporal change and the similarity of the biological function, 7305 groups were obtained. The time dependence between the status values of the 7305 groups was estimated in light of the Bayesian network model, and the activation of the undifferentiated maintenance mechanism of human iPS cells following the secretion of growth factors of mouse embryonic fibroblasts was estimated. Was able to capture the chronological mechanism.
[実施例2]
ヒト初代神経細胞、SV40T抗原を導入した不死化ヒトミクログリア、およびhTERT遺伝子を導入した不死化アストロサイトを2:1:1(細胞数比)で混合して6ウェルプレートに播種し、24時間培養した。
生着を確認後に、生理食塩水、TNF-α(腫瘍壊死因子α)、IL-1β(インターロイキン1β)、IL-1ra(インターロイキン1受容体アンタゴニスト)、IL-12(インターロイキン12)、IFNγ(インターフェロンγ)、IRF1(インターフェロン制御因子1)、IRF2(インターフェロン制御因子2)、IRF3(インターフェロン制御因子3)、IRF4(インターフェロン制御因子4)、IRF5(インターフェロン制御因子5)、IRF6(インターフェロン制御因子6)、IRF7(インターフェロン制御因子7)、IRF8(インターフェロン制御因子8)、IRF9(インターフェロン制御因子9)、およびLPS(リポ多糖)を各ウェルに添加した。
添加時(0時間)、添加から6時間後、12時間後、24時間後、および48時間後の時点で細胞をトリプシン処理して回収した。
細胞分散液を1000細胞/μLに希釈し、C1システム(フリューダイム社製)を用いてシングルセルを捕捉した。 [Example 2]
Human primary neurons, immortalized human microglia into which SV40T antigen has been introduced, and immortalized astrocytes into which hTERT gene has been introduced are mixed at a ratio of 2: 1: 1 (cell number ratio), seeded on a 6-well plate, and cultured for 24 hours. did.
After confirming engraftment, saline, TNF-α (tumor necrosis factor α), IL-1β (interleukin 1β), IL-1ra (interleukin 1 receptor antagonist), IL-12 (interleukin 12), IFNγ (interferon γ), IRF1 (interferon regulator 1), IRF2 (interferon regulator 2), IRF3 (interferon regulator 3), IRF4 (interferon regulator 4), IRF5 (interferon regulator 5), IRF6 (interferon regulation) Factor 6), IRF7 (interferon regulator 7), IRF8 (interferon regulator 8), IRF9 (interferon regulator 9), and LPS (lipopolysaccharide) were added to each well.
At the time of addition (0 hour), 6, 12, 24, and 48 hours after addition, the cells were trypsinized and collected.
The cell dispersion was diluted to 1000 cells / μL, and a single cell was captured using a C1 system (made by Fluidime).
ヒト初代神経細胞、SV40T抗原を導入した不死化ヒトミクログリア、およびhTERT遺伝子を導入した不死化アストロサイトを2:1:1(細胞数比)で混合して6ウェルプレートに播種し、24時間培養した。
生着を確認後に、生理食塩水、TNF-α(腫瘍壊死因子α)、IL-1β(インターロイキン1β)、IL-1ra(インターロイキン1受容体アンタゴニスト)、IL-12(インターロイキン12)、IFNγ(インターフェロンγ)、IRF1(インターフェロン制御因子1)、IRF2(インターフェロン制御因子2)、IRF3(インターフェロン制御因子3)、IRF4(インターフェロン制御因子4)、IRF5(インターフェロン制御因子5)、IRF6(インターフェロン制御因子6)、IRF7(インターフェロン制御因子7)、IRF8(インターフェロン制御因子8)、IRF9(インターフェロン制御因子9)、およびLPS(リポ多糖)を各ウェルに添加した。
添加時(0時間)、添加から6時間後、12時間後、24時間後、および48時間後の時点で細胞をトリプシン処理して回収した。
細胞分散液を1000細胞/μLに希釈し、C1システム(フリューダイム社製)を用いてシングルセルを捕捉した。 [Example 2]
Human primary neurons, immortalized human microglia into which SV40T antigen has been introduced, and immortalized astrocytes into which hTERT gene has been introduced are mixed at a ratio of 2: 1: 1 (cell number ratio), seeded on a 6-well plate, and cultured for 24 hours. did.
After confirming engraftment, saline, TNF-α (tumor necrosis factor α), IL-1β (interleukin 1β), IL-1ra (
At the time of addition (0 hour), 6, 12, 24, and 48 hours after addition, the cells were trypsinized and collected.
The cell dispersion was diluted to 1000 cells / μL, and a single cell was captured using a C1 system (made by Fluidime).
cDNA調製キット(SMARTer(R) Ultra(R) Low RNAキット,クロンテック社製)にTP53遺伝子の500-600および750-870のターゲットプライマーを加えて、細胞の溶解、mRNAの逆転写およびcDNAプレ増幅を行った。
得られたcDNAを回収し、0.05ng/μLより高い濃度を、ライブラリー調製のために選択した。ライブラリー調製は、Nextera(R) XT DNAサンプル調製キット(イルミナ社製)を用いて行った。
調製したライブラリーについて、次世代シーケンサー(HiSeq2500システム,イルミナ社製)により、2×100bpの末端読取りを用いて配列決定した。
得られたデータから細胞毎の遺伝子発現量を算出し、薬剤毎に時点サンプルをまとめ、主成分分析を用いてクラスタリング解析を行った。 A TP53 gene 500-600 and 750-870 target primers were added to a cDNA preparation kit (SMARTer (R) Ultra (R) Low RNA kit, manufactured by Clontech) to lyse cells, reverse transcribe mRNA and pre-amplify cDNA. Was done.
The resulting cDNA was recovered and concentrations higher than 0.05 ng / μL were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
The prepared library was sequenced by a next-generation sequencer (HiSeq 2500 system, manufactured by Illumina) using 2 × 100 bp end reading.
The gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
得られたcDNAを回収し、0.05ng/μLより高い濃度を、ライブラリー調製のために選択した。ライブラリー調製は、Nextera(R) XT DNAサンプル調製キット(イルミナ社製)を用いて行った。
調製したライブラリーについて、次世代シーケンサー(HiSeq2500システム,イルミナ社製)により、2×100bpの末端読取りを用いて配列決定した。
得られたデータから細胞毎の遺伝子発現量を算出し、薬剤毎に時点サンプルをまとめ、主成分分析を用いてクラスタリング解析を行った。 A TP53 gene 500-600 and 750-870 target primers were added to a cDNA preparation kit (SMARTer (R) Ultra (R) Low RNA kit, manufactured by Clontech) to lyse cells, reverse transcribe mRNA and pre-amplify cDNA. Was done.
The resulting cDNA was recovered and concentrations higher than 0.05 ng / μL were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
The prepared library was sequenced by a next-generation sequencer (HiSeq 2500 system, manufactured by Illumina) using 2 × 100 bp end reading.
The gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
細胞は、SV40T抗原遺伝子が検出された細胞を不死化ミクログリアクラスターに、hTERT遺伝子が検出された細胞を不死化アストロサイトクラスターに、SV40T抗原遺伝子およびhTERT遺伝子のいずれもが検出されない細胞をヒト初代神経細胞クラスターに、それぞれグルーピングした。
細胞の種類ごとに、時間経過による細胞数変動および遺伝子発現量変動を見出し、遺伝子の時間変動パターンを取得した。各細胞各遺伝子時間変動パターンをまとめてグループ化およびパターン化し、さらに時間的な依存関係を算出することで、細胞間の依存関係を取得した。 Cells were obtained by immobilizing cells in which the SV40T antigen gene was detected in immortalized microglia clusters, cells in which the hTERT gene was detected in immortalized astrocyte clusters, and cells in which neither the SV40T antigen gene nor the hTERT gene were detected in human primary neurons. Each was grouped into cell clusters.
For each type of cell, a change in the number of cells and a change in the amount of gene expression over time were found, and a time-varying pattern of the gene was obtained. Dependency between cells was obtained by grouping and patterning the gene temporal variation patterns of each cell collectively and further calculating temporal dependence.
細胞の種類ごとに、時間経過による細胞数変動および遺伝子発現量変動を見出し、遺伝子の時間変動パターンを取得した。各細胞各遺伝子時間変動パターンをまとめてグループ化およびパターン化し、さらに時間的な依存関係を算出することで、細胞間の依存関係を取得した。 Cells were obtained by immobilizing cells in which the SV40T antigen gene was detected in immortalized microglia clusters, cells in which the hTERT gene was detected in immortalized astrocyte clusters, and cells in which neither the SV40T antigen gene nor the hTERT gene were detected in human primary neurons. Each was grouped into cell clusters.
For each type of cell, a change in the number of cells and a change in the amount of gene expression over time were found, and a time-varying pattern of the gene was obtained. Dependency between cells was obtained by grouping and patterning the gene temporal variation patterns of each cell collectively and further calculating temporal dependence.
以上、本発明の細胞情報処理方法についての種々の実施形態及び実施例を挙げて詳細に説明したが、本発明は、これらの実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。
As described above, various embodiments and examples of the cell information processing method of the present invention have been described in detail. However, the present invention is not limited to these embodiments and examples, and does not depart from the gist of the present invention. Of course, various improvements or changes may be made within the scope.
As described above, various embodiments and examples of the cell information processing method of the present invention have been described in detail. However, the present invention is not limited to these embodiments and examples, and does not depart from the gist of the present invention. Of course, various improvements or changes may be made within the scope.
Claims (24)
- 異なる複数種類の細胞を含む対象細胞群を播種した所定の容器を少なくとも2以上用意し、前記対象細胞群に対し、所定の細胞刺激を与えて培養し、2以上の時点で、1つの容器内にある全細胞を回収する細胞回収ステップと、
各時点で回収した全細胞をシングルセル化するシングルセル化ステップと、
各時点のシングルセル化された各細胞からシングルセルデータを取得するシングルセルデータ取得ステップと、
各時点の前記シングルセルデータに基づいて、各時点で回収された全細胞を共通の第1の細胞特徴を有する複数の細胞集団にグループ分けして二次元平面又は三次元空間上にプロットし、且つ、第2の細胞特徴に基づいて、グループ分けした各細胞集団の細胞種を同定する処理を行い、各時点におけるクラスタリング結果を取得するグルーピングステップと、
前記各時点におけるクラスタリング結果を比較することにより、同じ細胞種の前記細胞集団の経時的な変化を検出する細胞変化検出ステップと、
前記検出の結果に基づいて、前記同じ細胞種の前記細胞集団の経時的な変化の作用機序を解析する作用機序解析ステップと、
前記作用機序解析の結果に基づいて、異なる細胞種の前記細胞集団の間で起きる相互作用を解析する相互作用解析ステップと
を含む、細胞情報処理方法。 At least two or more predetermined containers in which a target cell group including a plurality of different types of cells are seeded are prepared, and the target cell group is cultured by applying a predetermined cell stimulation to the target cell group. A cell collection step of collecting all cells in the cell,
A single-celling step of converting all cells collected at each time point into a single cell,
Single cell data acquisition step of acquiring single cell data from each cell that has been made into a single cell at each time point,
Based on the single cell data at each time point, all cells collected at each time point are grouped into a plurality of cell populations having a common first cell characteristic and plotted on a two-dimensional plane or three-dimensional space, A grouping step of performing a process of identifying a cell type of each of the grouped cell populations based on the second cell feature, and acquiring a clustering result at each time point;
By comparing the clustering results at each time point, a cell change detection step of detecting a change over time of the cell population of the same cell type,
Based on the result of the detection, an action mechanism analysis step of analyzing the action mechanism of the change over time of the cell population of the same cell type,
An interaction analysis step of analyzing an interaction occurring between the cell populations of different cell types based on a result of the action mechanism analysis. - 前記相互作用解析ステップの前記細胞集団間で起きる相互作用には、前記同じ細胞種の前記細胞集団の間で起きる相互作用も含む請求項1に記載の細胞情報処理方法。 The cell information processing method according to claim 1, wherein the interaction occurring between the cell populations in the interaction analysis step includes an interaction occurring between the cell populations of the same cell type.
- 前記細胞変化検出ステップは、前記各時点におけるクラスタリング結果を比較することにより、前記同じ細胞種の前記細胞集団を構成する細胞数の経時的な変化、及び経時的な前記第1の細胞特徴の変化を検出する請求項1または2に記載の細胞情報処理方法。 The cell change detecting step includes, by comparing the clustering results at the respective time points, a change over time in the number of cells constituting the cell population of the same cell type, and a change in the first cell characteristic over time. The cell information processing method according to claim 1 or 2, wherein the cell information is detected.
- 前記細胞変化検出ステップは、さらに、前記各時点におけるクラスタリング結果において、前記同じ細胞種の前記細胞集団を構成する細胞数の経時的変化、及び経時的な前記第1の細胞特徴の変化を検出する請求項3に記載の細胞情報処理方法。 The cell change detecting step further detects, with the clustering result at each time point, a temporal change in the number of cells constituting the cell population of the same cell type and a temporal change in the first cell characteristic. The cell information processing method according to claim 3.
- 前記細胞回収ステップは、さらに、前記所定の細胞刺激を与えずに培養する前記複数種類の細胞を含む対象細胞群を用意し、1以上の時点で、1つの前記所定の容器内にある全細胞を回収し、
前記細胞変化検出ステップは、前記各時点におけるクラスタリング結果を比較することにより、前記細胞集団の前記所定の細胞刺激の有無による、前記同じ細胞腫の細胞集団の経時的な変化を評価する請求項1~4のいずれか1項に記載の細胞情報処理方法。 The cell collection step further includes preparing a target cell group including the plurality of types of cells to be cultured without applying the predetermined cell stimulation, and, at one or more time points, all cells in one predetermined container. And collect
The cell change detecting step evaluates a change over time of the same cell tumor cell population depending on the presence or absence of the predetermined cell stimulation of the cell population by comparing clustering results at the respective time points. 5. The cell information processing method according to any one of items 4 to 4. - 前記細胞刺激は、化学的刺激および物理的刺激からなる群から選択される少なくとも1種である、請求項1~5のいずれか1項に記載の細胞情報処理方法。 The cell information processing method according to any one of claims 1 to 5, wherein the cell stimulus is at least one selected from the group consisting of a chemical stimulus and a physical stimulus.
- 前記化学的刺激は、細胞に対して生物学的な反応を誘起する薬剤の添加によるものである、請求項6に記載の細胞情報処理方法。 7. The cell information processing method according to claim 6, wherein the chemical stimulus is caused by the addition of an agent that induces a biological response to the cell.
- 前記作用機序は、前記細胞刺激により細胞内外で誘起された生物学的な現象を発揮するための特異的な生化学的反応または相互作用である、請求項1~7のいずれか1項に記載の細胞情報処理方法。 The method according to any one of claims 1 to 7, wherein the mechanism of action is a specific biochemical reaction or interaction for exerting a biological phenomenon induced inside and outside the cell by the cell stimulation. The cell information processing method according to the above.
- 前記シングルセルデータは、単一細胞の機能や性質、状態を示す生体物質の情報であり、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度からなる群から選択される少なくとも1つである、請求項1~8のいずれか1項に記載の細胞情報処理方法。 The single-cell data is information on biological material indicating the function, property, and state of a single cell, and includes DNA sequence information of a gene (genome) and epigenetic information that controls gene expression (DNA methylation, histone methyl). Acetylation, phosphorylation), gene primary transcripts (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence Information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), selected from the group consisting of intracellular temperature The cell information processing method according to any one of claims 1 to 8, wherein the method is at least one.
- 前記シングルセルデータは、遺伝子発現量及び遺伝子のDNA配列である請求項9に記載の細胞情報処理方法。 10. The cell information processing method according to claim 9, wherein the single cell data is a gene expression level and a DNA sequence of the gene.
- 前記グルーピングステップにおいて、前記第1の細胞特徴とは、前記シングルセルデータに含まれるn次元の細胞特徴を2次元または3次元に次元削減したものである請求項1~10のいずれか1項に記載の細胞情報処理方法。 The method according to any one of claims 1 to 10, wherein in the grouping step, the first cell feature is obtained by reducing the n-dimensional cell feature included in the single cell data by two or three dimensions. The cell information processing method according to the above.
- 前記次元削減の方法は、主成分分析(PCA)、カーネルあり主成分分析(Kernel-PCA)、多次元尺度構成法(MDS)、t-SNE、及び畳込みニューラルネットワーク(CNN)からなる群から選択される少なくとも1つである、請求項11に記載の細胞情報処理方法。 The dimension reduction method is based on a group consisting of principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, and convolutional neural network (CNN). The cell information processing method according to claim 11, which is at least one selected.
- 前記グルーピングステップにおいて、前記第1の細胞特徴とは、前記遺伝子発現量について主成分分析を行い、2次元又は3次元に次元削減して獲得されるものである請求項10~12のいずれか1項に記載の細胞情報処理方法。 13. The method according to claim 10, wherein in the grouping step, the first cell feature is obtained by performing principal component analysis on the gene expression amount and reducing the dimension to two or three dimensions. Item 14. The cell information processing method according to Item.
- 前記グルーピングステップにおいて、前記第2の細胞特徴とは、細胞の機能または細胞の状態から各細胞種を同定することが可能な少なくとも1つの細胞情報である、請求項1~13のいずれか1項に記載の細胞情報処理方法。 The method according to any one of claims 1 to 13, wherein in the grouping step, the second cell feature is at least one piece of cell information capable of identifying each cell type from a cell function or a cell state. 3. The cell information processing method according to item 1.
- 前記細胞情報とは、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度からなる群から選択される少なくとも1つである請求項14に記載の細胞情報処理方法。 The cell information includes DNA sequence information of a gene (genome), epigenetic information for controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), primary transcript of a gene (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation amount and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index The cell information processing method according to claim 14, which is at least one selected from the group consisting of (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) and intracellular temperature.
- 前記細胞の機能とは、細胞の増殖、修復、代謝、および細胞間の情報交換から選択される少なくとも1つである、請求項14または15に記載の細胞情報処理方法。 16. The cell information processing method according to claim 14 or 15, wherein the function of the cell is at least one selected from cell proliferation, repair, metabolism, and information exchange between cells.
- 前記細胞の状態とは、遺伝子の発現状況、タンパク質の発現状況、および酵素活性から選択される少なくとも1つである、請求項14または15に記載の細胞情報処理方法。 16. The cell information processing method according to claim 14, wherein the cell state is at least one selected from a gene expression state, a protein expression state, and an enzyme activity.
- 前記相互作用解析ステップにおいて、前記細胞集団の間で起きる相互作用とは、前記異なる細胞種の細胞集団の間で起きる生物学的または物理的な作用、または前記作用による細胞数、前記第1の細胞特徴の変化である、請求項1~17のいずれか1項に記載の細胞情報処理方法。 In the interaction analysis step, the interaction that occurs between the cell populations refers to a biological or physical action that occurs between the cell populations of the different cell types, or the number of cells due to the action, The cell information processing method according to any one of claims 1 to 17, which is a change in cell characteristics.
- 前記シングルセルデータから複数の生体物質の量又は状態を表す値を、前記生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め作成し、前記生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、前記シングルセルデータを取得した細胞を、前記共通の第1の細胞特徴を有する細胞集団にグループ分けし、
前記相互作用解析ステップにおいて、前記複数の時点の各々について、複数の細胞集団の各々に含まれる1つ以上の第1の細胞特徴から、前記細胞集団の状態を表す値を生成し、生成された、複数時点の、複数の細胞集団の状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データからなるデータセットから、細胞集団間の状態の依存関係を推定する、請求項1~18のいずれか1項に記載の細胞情報処理方法。 From the single cell data, a value representing the amount or state of a plurality of biological materials, time-series data acquired at a plurality of time points for each of the biological materials is created in advance, and a time change of the time-series data for each of the biological materials. , Based on the similarity of the biological function of each biological material, the cells obtained the single cell data, grouped into a cell population having the common first cell characteristics,
In the interaction analysis step, for each of the plurality of time points, a value representing a state of the cell population is generated from one or more first cell characteristics included in each of the plurality of cell populations. At a plurality of time points, values representing the state of a plurality of cell populations, from a data set consisting of time-series data obtained at a plurality of time points for each biological material, to estimate the state dependency between the cell populations, 19. The cell information processing method according to any one of 1 to 18. - 前記生物学的機能の類似性は、共通の遺伝子オントロジーを有すること、共通のカノニカルパスウェイに属すること、共通の上流因子を有すること、共通の表現系に関わること、および、共通の疾患に関わることからなる群から選択される少なくとも1つに基づいて評価されるものである、請求項19に記載の細胞情報処理方法。 Similarity of the biological functions may have a common gene ontology, belong to a common canonical pathway, have a common upstream factor, be involved in a common expression system, and be involved in a common disease 20. The cell information processing method according to claim 19, wherein the method is evaluated based on at least one selected from the group consisting of:
- 前記細胞回収ステップ及び前記シングルセル化ステップにおいて、全細胞を回収し、シングルセル化する方法が、手動、フローサイトメトリー、磁気分離、レーザーキャプチャーマイクロダイセクション、マイクロ流路、マイクロドロップレット、ナノウェル、マイクロピペット微細針吸引、レーザーピンセット、標識アレイ、表面プラズモンレスポンス、およびナノバイオデバイスからなる群から選択される少なくとも1つを用いる方法である、請求項1~20のいずれか1項に記載の細胞情報処理方法。 In the cell collection step and the single cell forming step, a method of collecting all cells and forming a single cell is performed manually, flow cytometry, magnetic separation, laser capture microdissection, microchannel, micro droplet, nanowell, The cell information according to any one of claims 1 to 20, wherein the method is a method using at least one selected from the group consisting of a micropipette fine needle aspiration, a laser tweezer, a label array, a surface plasmon response, and a nanobiodevice. Processing method.
- 前記全細胞を回収し、シングルセル化する方法において、細胞の標識として蛍光標識、ラジオアイソトープ標識、抗体標識、および磁気標識からなる群から選択される少なくとも1つを用いる、請求項21に記載の細胞情報処理方法。 22. The method according to claim 21, wherein in the method of collecting the whole cells and forming a single cell, at least one selected from the group consisting of a fluorescent label, a radioisotope label, an antibody label, and a magnetic label is used as a cell label. Cell information processing method.
- 前記複数種類の細胞を含む対象細胞群は、生体組織サンプル、血液サンプル、培養サンプル、および環境サンプルからなる群から選択される少なくとも1つから得られた細胞である、請求項1~22のいずれか1項に記載の細胞情報処理方法。 23. The cell according to claim 1, wherein the target cell group including the plurality of types of cells is a cell obtained from at least one selected from the group consisting of a biological tissue sample, a blood sample, a culture sample, and an environmental sample. The cell information processing method according to claim 1.
- 前記複数種類の細胞は、動物細胞、植物細胞、真菌細胞および細菌細胞からなる群から選択される少なくとも1つである、請求項23に記載の細胞情報処理方法。 24. The cell information processing method according to claim 23, wherein the plurality of types of cells are at least one selected from the group consisting of animal cells, plant cells, fungal cells, and bacterial cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020550559A JP7155281B2 (en) | 2018-10-03 | 2019-10-03 | Cell information processing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018188225 | 2018-10-03 | ||
JP2018-188225 | 2018-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020071500A1 true WO2020071500A1 (en) | 2020-04-09 |
Family
ID=70054559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039179 WO2020071500A1 (en) | 2018-10-03 | 2019-10-03 | Cell-information processing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7155281B2 (en) |
WO (1) | WO2020071500A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090112480A1 (en) * | 2007-03-21 | 2009-04-30 | Electronics And Telecommunications Research Institute | Method and apparatus for clustering gene expression profiles by using gene ontology |
JP2010157214A (en) * | 2008-12-02 | 2010-07-15 | Sony Corp | Gene clustering program, gene clustering method, and gene cluster analyzing device |
JP2013081457A (en) * | 2011-09-30 | 2013-05-09 | Univ Of Tokyo | Method for analyzing intercell interactions |
JP2016515383A (en) * | 2013-03-15 | 2016-05-30 | ザ・ブロード・インスティテュート・インコーポレイテッド | Dendritic cell response gene expression, composition and method of use thereof |
JP2018514195A (en) * | 2015-03-26 | 2018-06-07 | ユニバーシティー オブ ヒューストン システム | Integrated cellular functionality and molecular profiling |
-
2019
- 2019-10-03 WO PCT/JP2019/039179 patent/WO2020071500A1/en active Application Filing
- 2019-10-03 JP JP2020550559A patent/JP7155281B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090112480A1 (en) * | 2007-03-21 | 2009-04-30 | Electronics And Telecommunications Research Institute | Method and apparatus for clustering gene expression profiles by using gene ontology |
JP2010157214A (en) * | 2008-12-02 | 2010-07-15 | Sony Corp | Gene clustering program, gene clustering method, and gene cluster analyzing device |
JP2013081457A (en) * | 2011-09-30 | 2013-05-09 | Univ Of Tokyo | Method for analyzing intercell interactions |
JP2016515383A (en) * | 2013-03-15 | 2016-05-30 | ザ・ブロード・インスティテュート・インコーポレイテッド | Dendritic cell response gene expression, composition and method of use thereof |
JP2018514195A (en) * | 2015-03-26 | 2018-06-07 | ユニバーシティー オブ ヒューストン システム | Integrated cellular functionality and molecular profiling |
Non-Patent Citations (2)
Title |
---|
CAMP, J.G. ET AL.: "Multilineage communication regulates human liver bud development from pluripotency", NATURE, vol. 546, 2017, pages 533 - 538, XP037023008, ISSN: 0028-0836, DOI: 10.1038/nature22796 * |
CHEN, K. Y. ET AL.: "Single-cell transcriptomics reveals heterogeneity and drug response of human colorectal cancer organoids", 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (JULY 2018) PP., pages 2378 - 2381, XP033428834 * |
Also Published As
Publication number | Publication date |
---|---|
JP7155281B2 (en) | 2022-10-18 |
JPWO2020071500A1 (en) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shaw et al. | Single-cell transcriptome analysis in plants: advances and challenges | |
Mereu et al. | Benchmarking single-cell RNA-sequencing protocols for cell atlas projects | |
Andrews et al. | Identifying cell populations with scRNASeq | |
US12282499B1 (en) | Database processing system for determining whether an entity affects a transition | |
Luo et al. | Probing infectious disease by single-cell RNA sequencing: progresses and perspectives | |
Hamadeh et al. | An overview of toxicogenomics | |
JP2025083418A (en) | Cell information processing method | |
TW202000919A (en) | Systems and methods for discriminating effects on targets | |
Ye et al. | High-throughput and scalable single cell proteomics identifies over 5000 proteins per cell | |
Rosen et al. | Inter-gastruloid heterogeneity revealed by single cell transcriptomics time course: implications for organoid based perturbation studies | |
Shen et al. | Integrating single-cell genomics pipelines to discover mechanisms of stem cell differentiation | |
Vingron et al. | Computational aspects of expression data | |
Duan et al. | FBA: feature barcoding analysis for single cell RNA-Seq | |
Ali et al. | Plant biotechnology research with single-cell transcriptome: Recent advancements and prospects | |
WO2020071500A1 (en) | Cell-information processing method | |
JP7581619B2 (en) | Novel drug discovery screening method, novel drug discovery screening system, and novel drug discovery screening control device | |
CN111595980A (en) | A kind of identification method of Vibrio species | |
US20250029681A1 (en) | Systems and methods for cell-type identification | |
JP2012146067A (en) | Nucleic acid information processing apparatus and processing method thereof | |
CN112908407A (en) | Method for quality control of protein biosynthesis system by using tRNA omics | |
Parks et al. | Microba’s community profiler enables precise measurement of the gut microbiome | |
US20210364523A1 (en) | Genetically encoded ratiometric fluorescent barcodes | |
Arya et al. | Deciphering cellular heterogeneity in Spodoptera frugiperda midgut cell line through single cell RNA sequencing | |
Ellis et al. | Microarrays and stage conversion in Toxoplasma gondii | |
McIntire et al. | Guided Differentiation of Pluripotent Stem Cells into Heterogeneously Differentiating Cultures of Cardiac Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19868816 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020550559 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19868816 Country of ref document: EP Kind code of ref document: A1 |