WO2020066246A1 - Uninterruptible power supply device - Google Patents
Uninterruptible power supply device Download PDFInfo
- Publication number
- WO2020066246A1 WO2020066246A1 PCT/JP2019/028771 JP2019028771W WO2020066246A1 WO 2020066246 A1 WO2020066246 A1 WO 2020066246A1 JP 2019028771 W JP2019028771 W JP 2019028771W WO 2020066246 A1 WO2020066246 A1 WO 2020066246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- chopper
- uninterruptible power
- carrier
- inverter
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
- H02J7/04—Regulation of charging current or voltage
- H02J7/06—Regulation of charging current or voltage using discharge tubes or semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/062—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/40—Synchronising a generator for connection to a network or to another generator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
- H02M3/1586—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC
- H02M5/42—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters
- H02M5/44—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC
- H02M5/453—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
Definitions
- the present invention includes a battery and a plurality of uninterruptible power supply modules including a converter and an inverter, and switches a power supply source to a load from a commercial power supply to a battery when a power failure or the like of a commercial power supply occurs, thereby stably supplying power.
- the present invention relates to an uninterruptible power supply that continuously supplies power.
- Patent Document 1 discloses a technique in which a main control unit and a gate control unit provided separately from each other perform carrier synchronization by serial communication to generate a gate pulse.
- Patent Document 1 when the technology disclosed in Patent Document 1 is applied to an uninterruptible power supply device in which a main control unit and an uninterruptible power supply module serving as a plurality of sub-control units share one battery, a plurality of uninterruptible power supply modules are used. If the power-on timing of the power supply is shifted, the phases of the chopper carriers generated in the respective uninterruptible power supply modules may be shifted by 180 °.
- the chopper carrier is a triangular wave for setting a phase of a PWM signal for operating a switching element of the chopper provided in each of the plurality of uninterruptible power supply modules.
- the present invention has been made in view of the above, and an object of the present invention is to provide an uninterruptible power supply that can suppress occurrence of cross current in a configuration that shares a battery.
- an uninterruptible power supply includes a battery, a converter that converts an AC voltage into a DC voltage and outputs the DC voltage, and a battery that converts a DC voltage from the converter.
- a plurality of uninterruptible power supply modules having a chopper for converting a DC voltage from a battery and outputting the converted DC voltage, and an inverter for converting a DC voltage output from the converter or the chopper to an AC voltage.
- the uninterruptible power supply includes a first control unit that outputs a phase command and a voltage command for controlling a timing of a switching operation of a switching element included in each of the chopper and the inverter.
- Each of the plurality of uninterruptible power supply modules performs a switching operation of a switching element included in a chopper at a peak phase of a first triangular wave carrier that controls a switching operation of a switching element included in an inverter based on the phase information and the voltage command.
- a second controller for controlling the switching operation of the switching element included in the chopper using the synchronized second triangular wave carrier by synchronizing the phase of the peak or valley of the second triangular wave carrier for controlling the switching operation.
- FIG. 2 is a diagram showing a circuit configuration of the uninterruptible power supply shown in FIG.
- FIG. 1 is a diagram showing an outline of an uninterruptible power supply according to an embodiment of the present invention.
- the uninterruptible power supply device 100 switches the power supply source to the load 300 from the AC power supply 200 to the battery 10 even when a power failure or the like occurs in the AC power supply 200 which is a commercial power supply. This is a device that continues to supply power.
- the load 300 is, for example, a server installed in a data center or the like.
- the uninterruptible power supply device 100 includes a battery 10, a main control unit 20, a first uninterruptible power supply module 31, a second uninterruptible power supply module 32, a third uninterruptible power supply module 33, and a fourth uninterruptible power supply module 34.
- a first uninterruptible power supply module 31, the second uninterruptible power supply module 32, the third uninterruptible power supply module 33, and the fourth uninterruptible power supply module 34 are not distinguished, they may be referred to as uninterruptible power supply modules. is there.
- the first uninterruptible power supply module 31, the second uninterruptible power supply module 32, the third uninterruptible power supply module 33, and the fourth uninterruptible power supply module 34 may be referred to as a plurality of uninterruptible power supply modules. .
- the main control unit 20 and the plurality of uninterruptible power supply modules are housed in, for example, a plurality of rectangular parallelepiped casings arranged adjacent to each other. These housings are provided in a data center or the like.
- four uninterruptible power supply modules are provided in the uninterruptible power supply device 100.
- the number of uninterruptible power supply modules is not limited to four, and may be less than four or five or more.
- the number of uninterruptible power supply modules is adjusted according to the power capacity of the load 300. For example, when the capacity of the load 300 is small, two uninterruptible power supply modules are operated in parallel, and when the capacity of the load 300 is large, three or three Four uninterruptible power supply modules are operated in parallel.
- the main control unit 11 is provided with the main control board 1.
- the first control unit 2 is provided on the main control board 1.
- the first control unit 2 is configured by, for example, an FPGA (Field-Programmable ⁇ Gate ⁇ Array).
- the first control unit 2 may be constituted by a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit) other than the FPGA, It may be a combination.
- the first control unit 2 generates information for controlling the timing of the switching operation of the chopper 5 and the inverter 4 included in each of the plurality of uninterruptible power supply modules, for example, phase information and a voltage command.
- Each of the plurality of uninterruptible power supply modules includes a converter (CON) 3 that converts an AC voltage output from the AC power supply 200 into a DC voltage and outputs the same, and an inverter (INV) that converts a DC voltage into an AC voltage and outputs the same. 4, a chopper (CHOP) 5 and a sub-control board 6.
- Converter 3 is a rectifier in which a smoothing capacitor is combined with a diode bridge composed of, for example, four diodes.
- the inverter 4 includes a plurality of semiconductor switching elements, and these semiconductor switching elements perform a switching operation (on / off operation), so that a DC voltage is converted to an AC voltage.
- the AC voltage output from the inverter 4 is applied to the load 300. Since the configurations of the converter 3 and the inverter 4 are publicly known, detailed descriptions of these configurations are omitted.
- the second control unit 7 is provided on the sub-control board 6.
- the second control unit 7 is configured by, for example, an FPGA.
- the second control unit 7 may be configured by a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, or a combination of these, in addition to the FPGA.
- connection topology between the second control unit 7 provided in each of the plurality of uninterruptible power supply modules and the first control unit 2 is a star connection. That is, each of the plurality of second control units 7 is directly connected to one first control unit 2 via the communication line 400.
- the second control unit 7 generates an inverter carrier as a first triangular wave carrier and a chopper carrier as a second triangular wave carrier based on a carrier as phase information and a voltage command output from the first control unit 2.
- the inverter carrier is a carrier for controlling a switching operation of a semiconductor switching element included in the inverter 4.
- the phase of the inverter carrier is synchronized with the phase information output from the first control unit 2.
- the chopper carrier is a carrier for controlling a switching operation of a semiconductor switching element included in the chopper 5. The operation of synchronizing these chopper carriers, inverter carriers and the like will be described later.
- phase of the chopper carrier is synchronized with the phase of the inverter carrier, and the cycle of the chopper carrier is, for example, n times (n is a natural number of 1 or more) the cycle of the inverter carrier.
- cycle of the chopper carrier is twice the cycle of the inverter carrier, but the cycle of the chopper carrier is not limited to this.
- the second control unit 7 generates a first PWM (Pulse Width Modulation) signal for controlling the switching operation of the semiconductor switching element included in the inverter 4 by comparing the inverter carrier with the voltage command.
- the first PWM signal is amplified to a voltage that can drive a semiconductor switching element included in the inverter 4 and is input to the inverter 4 as a first drive signal.
- the first drive signal is generated by a drive circuit provided in the inverter 4 or the second control unit 7.
- the second control section 7 generates a second PWM signal for controlling the switching operation of the semiconductor switching element included in the chopper 5 by comparing the chopper carrier with the voltage command.
- the second PWM signal is amplified to a voltage that can drive the semiconductor switching element included in the chopper 5, and is input to the chopper 5 as a second drive signal.
- the second drive signal is generated by a drive circuit provided in the chopper 5 or the second control unit 7.
- the DC voltage output from the converter 3 is applied to the chopper 5, and the DC voltage is reduced by the step-down operation of the chopper 5, and the reduced voltage is supplied to the battery 10. Applied. Thereby, battery 10 is charged using a part of the electric power supplied from AC power supply 200.
- the AC power supply 200 is out of power, the DC voltage output from the battery 10 is applied to the chopper 5, so that the DC voltage is boosted by the chopper 5 performing the boosting operation, and the boosted voltage is reduced. It is applied to the inverter 4.
- the load 300 can be continuously operated using the electric power supplied from the battery 10.
- the uninterruptible power supply 100 is configured to synchronize the phase of the peak of the chopper carrier with the phase of the peak of the inverter carrier, and control the switching operation of the chopper 5 using the synchronized chopper carrier. ing.
- the reason and operation of synchronizing the phase of the chopper carrier with the phase of the inverter carrier will be specifically described with reference to FIG.
- FIG. 2 is a diagram showing a circuit configuration of the uninterruptible power supply shown in FIG. FIG. 2 shows only the first uninterruptible power supply module 31 and the second uninterruptible power supply module 32 of the plurality of uninterruptible power supply modules shown in FIG. 1 for simplicity of description.
- the uninterruptible power supply 100 shown in FIG. 2 includes a first uninterruptible power supply module 31 and a second uninterruptible power supply module 32, a first noise filter 9 for removing noise transmitted to the AC power supply 200, and a load. And a second noise filter 12 that removes noise transmitted to 300.
- the first noise filter 9 includes an inductor 9a having one end connected to the AC power supply 200 and the other end connected to the converter 3, and a capacitor 9b having one end connected to the AC power supply 200 and the inductor 9a and the other end grounded. .
- the inductor 9a reflects high-frequency noise transmitted from the converter 3 toward the AC power supply 200, thereby suppressing intrusion of noise into the AC power supply 200.
- the capacitor 9 b emits the high-frequency noise to the ground, thereby suppressing noise from entering the AC power supply 200.
- the second noise filter 12 includes an inductor 12a having one end connected to the inverter 4 and the other end connected to the load 300, and a capacitor 12b having one end connected to the inductor 12a and the load 300 and the other end grounded.
- the inductor 12a reflects high-frequency noise transmitted from the inverter 4 toward the load 300, thereby suppressing noise from entering the load 300.
- the capacitor 12b emits the high-frequency noise to the ground, thereby suppressing the noise from entering the load 300.
- Each of the first uninterruptible power supply module 31 and the second uninterruptible power supply module 32 includes, in addition to the converter 3, the inverter, the chopper, and the second control unit 7, a smoothing capacitor 8 for smoothing a DC voltage output from the converter 3.
- a smoothing capacitor 8 for smoothing a DC voltage output from the converter 3.
- FIG. 3 is a diagram showing a configuration example of the chopper shown in FIG.
- the chopper 5 includes, for example, a series connection body 70 in which a semiconductor switching element 70a and a semiconductor switching element 70b are connected in series, a choke coil 71, and a smoothing capacitor 73. Diodes are connected in anti-parallel to each of the semiconductor switching element 70a and the semiconductor switching element 70b.
- Each of the semiconductor switching element 70a and the semiconductor switching element 70b may be any switching means capable of performing a switching operation, and may be an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor-Field Effect Transistor).
- IGBT Insulated Gate Bipolar Transistor
- MOSFET Metal Oxide Semiconductor-Field Effect Transistor
- a MOSFET is used when the capacity of the chopper 5 is relatively low (low voltage), and an IGBT or the like is used when it is necessary to increase the breakdown voltage with a large capacity.
- Semiconductor switching element 70a is connected to first bus P.
- Semiconductor switching element 70b is connected to second bus N.
- choke coil 71 One end of the choke coil 71 is connected to a connection point between the two semiconductor switching elements 70a and 70b.
- the other end of choke coil 71 is connected to one end of smoothing capacitor 73 and the positive electrode of battery 10.
- the other end of the smoothing capacitor 73 is connected to the negative electrode of the battery 10 and the semiconductor switching element 70b.
- the output voltage of the converter 3 is reduced and applied to the battery 10 by the semiconductor switching element 70a repeating the on / off operation according to the drive signal.
- the output voltage of the battery 10 is amplified and applied to the inverter 4 by the semiconductor switching element 70 b repeating the on / off operation according to the drive signal.
- the configuration of the chopper is not limited to the example shown in FIG. 3.
- the battery 10 can be charged by stepping down the output voltage of the converter 3 during a non-power failure and increasing the output voltage of the battery 10 during a power failure. What is necessary is just to be able to supply the electric power stored in the battery 10 to the inverter 4.
- the uninterruptible power supply device 100 configured as described above, if a difference occurs in the power-on timing of the first uninterruptible power supply module 31 and the second uninterruptible power supply module 32, the phases of the chopper carriers are not synchronized, and the A potential difference occurs between the chopper 5 of the first uninterruptible power supply module 31 and the chopper 5 of the second uninterruptible power supply module 32, and a circulating current is generated along a route shown by an arrow in FIG. This circulating current is called cross flow.
- FIG. 4 is a diagram showing the phase of the chopper carrier when a cross flow occurs.
- FIG. 4 shows, in order from the top, the carrier waveform (A), the inverter carrier waveform (B-1), and the chopper carrier waveform (B) which are the phase information generated by the first control unit 2 of the main control unit 20. -2), a waveform (C-1) of the inverter carrier, and a waveform (C-2) of the chopper carrier.
- the inverter carrier B-1 is a triangular wave for inverter control generated by the second control unit 7 provided in the first uninterruptible power supply module 31 so as to synchronize with the phase information generated by the first control unit 2. is there.
- the chopper carrier B-2 is a triangular wave for chopper control generated by the second controller 7 provided in the first uninterruptible power supply module 31 so as to synchronize with the inverter carrier B-1.
- the inverter carrier C-1 is a triangular wave for inverter control generated by the second control unit 7 provided in the second uninterruptible power supply module 32 so as to synchronize with the phase information generated by the first control unit 2. is there.
- the chopper carrier C-2 is a triangular wave for chopper control generated by the second controller 7 provided in the second uninterruptible power supply module 32 so as to synchronize with the inverter carrier C-1.
- the information transmitted by serial communication from the first control unit 2 to the second control unit 7 is transmitted in association with carrier information and a number for determining the peak or valley of the carrier. Therefore, the second control unit 7 can synchronize the inverter carrier with the carrier generated by the first control unit 2 by using the number for determining the peak or valley of the carrier. Therefore, the phase of the peak of the inverter carrier indicated by B-1 and C-1 is synchronized with the phase of the peak of the carrier indicated by A.
- the second control unit 7 can synchronize the phase of the chopper carrier with the phase of the peak or valley of the carrier by determining the phase of the peak or valley of the carrier.
- the phase of the peak of the chopper carrier B-2 is synchronized with the phase of the peak of the inverter carrier B-1. Further, the phase of the peak of the chopper carrier C-2 is synchronized with the phase of the peak of the inverter carrier C-1.
- the phase of the chopper carrier indicated by C-2 becomes equal to the phase of the chopper carrier indicated by B-2. 180 ° shift. Therefore, a potential difference occurs between the chopper 5 of the first uninterruptible power supply module 31 and the chopper 5 of the second uninterruptible power supply module 32, and a cross current occurs. Therefore, in order to suppress the occurrence of the cross current, the phase of the peak of the chopper carrier of B-2 and the phase of the peak of the chopper carrier of C-2 need to be synchronized, that is, matched.
- the uninterruptible power supply device 100 is configured to synchronize the phases of the chopper carriers between the plurality of uninterruptible power supply modules even when the power-on timing is shifted between the plurality of uninterruptible power supply modules. Have been. The operation of synchronizing the peak phases of the chopper carrier will be described with reference to FIGS.
- FIG. 5 is a first flowchart for explaining the operation of synchronizing the peak phases of the chopper carriers in the uninterruptible power supply according to the embodiment of the present invention.
- FIG. 6 is a second flowchart for explaining the operation of synchronizing the peak phases of the chopper carriers in the uninterruptible power supply according to the embodiment of the present invention.
- FIG. 7 is a diagram showing a state in which the peak phases of the chopper carrier are synchronized.
- FIG. 7 shows waveforms similar to the plurality of waveforms shown in FIG. The difference from the waveform of FIG. 4 is that the phase of the peak of the waveform of B-2 and the phase of the peak of the waveform of C-2 are synchronized.
- the dashed line superimposed on the waveforms of B-2 and C-2 is the voltage command Vref transmitted from the first control unit 2 to the second control unit 7.
- the magnitude of voltage command Vref is changed by a step-up operation or a step-down operation.
- step S1 When the plurality of uninterruptible power supply modules are powered on, the plurality of uninterruptible power supply modules start the operation of generating an inverter carrier (step S1).
- the timer counter of the inverter carrier is counted up (step S2), and the second control unit 7 determines whether or not the count value of the timer counter has reached an upper limit (for example, +2000) (step S3). If the count value of the timer counter has not reached the upper limit value (step S3, No), the operations of steps S2 and S3 are repeated until the count value of the timer counter reaches the upper limit value.
- an upper limit for example, +2000
- Step S4 the second controller 7 determines whether the value of the number N indicating the peak or valley of the inverter carrier is equal to "0". (Step S4). In the number N immediately after the power of the uninterruptible power supply module is turned on, “0” indicating an initial value is set. The value of the number N is cyclically counted up by the cyclic counter at the timing when the timer counter is switched from up-counting to down-counting and the timing when the timer counter is switched from down-counting to up-counting.
- Step S4 If the value of the number N is equal to “0” (Step S4, Yes), the second controller 7 updates the value of the number N by adding “1” to the initial value “0” (Step S4). Step S5). As a result, the number “1” is set to the peak of the inverter carrier. When the number “1” is set to the peak of the inverter carrier, the timer counter of the inverter carrier is switched from up-counting to down-counting (step S6). Thereafter, the second control unit 7 determines whether or not the count value of the timer counter has reached a lower limit value (for example, -2000) (step S7). If the count value of the timer counter has not reached the lower limit value (step S7, No), the operations of steps S6 and S7 are repeated until the timer counter reaches the lower limit value.
- a lower limit value for example, -2000
- step S7 If the timer counter has reached the lower limit (step S7, Yes), the second controller 7 updates the value of the number N by adding “1” to the number N. For example, the value of the number N updated in step S8 immediately after the power is turned on is “2”. As a result, the number “2” is set at the valley of the inverter carrier. When the number “2” is set in the valley of the inverter carrier, the timer counter of the inverter carrier is switched from down-counting to up-counting (step S9). Thereafter, the processing from step S2 to step S4 is repeated.
- step S4 When the value of the number N is other than “0” in step S4 (step S4, No), the second control unit 7 updates the value of the number N by adding “1” to the number N. You. For example, when the value of the number N before the processing of step S10 is executed is “2”, the value of the updated number N is “3”. As a result, the number “3” is set to the peak of the inverter carrier. After the processing in step S10, the processing in step S6 is executed again, and the timer counter of the inverter carrier is switched from up-counting to down-counting.
- step S10 numbers such as “1”, “3”, “5”, and “7” are set in the peaks of the inverter carrier, and the valleys of the inverter carrier are set.
- the phase of the peak of the chopper carrier is synchronized with the phase of the peak of the inverter carrier. Also, as a result of the processing in steps S20 and S21, the number "1" is set in the crest of the chopper carrier in the second controller 7 provided in each of the plurality of uninterruptible power supply modules. Synchronize. After the processing in step S21, the processing in step S22 is executed.
- step S22 If the number N is other than “1” in step S20 (step S20, No), the process of step S22 is executed.
- step S22 it is determined whether the value of the number N is equal to 2n (n is a natural number of 1 or more).
- the value of the number N is equal to 2n (Step S22, Yes)
- the count value of the timer counter of the chopper carrier is reset (Step S23), and reset.
- the count down of the timer counter of the chopper carrier is continued again (step S24).
- the processing in step S22 is executed. By resetting the count value, the peak and valley waveforms of the chopper carrier can be made symmetrical.
- step S25 Yes
- the timer counter of the chopper carrier is switched from down-counting to up-counting, and for example, the number “3” is set in the chopper carrier valley.
- Step S26 Since the number “3” set on the chopper carrier is equal to the number “3” set on the inverter carrier, the phase of the valley of the chopper carrier is synchronized with the phase of the peak of the inverter carrier.
- step S26 in the second control unit 7 provided in each of the plurality of uninterruptible power supply modules, the number “3” is set at the crest of the chopper carrier, so that the phases of the chopper carriers are also different. Synchronize. After step S26, the process of step S27 is performed.
- step S27 it is determined whether the value of the number N is equal to 2n (n is a natural number of 1 or more). If the value of the number N is different from 2n (step S27, No), the process of step S27 is continued until the value of the number N becomes equal to 2n.
- the up-counting of the counter is continued (step S29). After the processing in step S29, the processing in step S30 is executed.
- the uninterruptible power supply 100 includes the first control unit that outputs the phase information for controlling the timing of the switching operation of each of the chopper 5 and the inverter 4 and the voltage command. 2 and a second control unit 7 provided in each of the plurality of uninterruptible power supply modules. Then, based on the phase information and the voltage command, the second control unit 7 provided in each of the plurality of uninterruptible power supply modules switches the chopper switching to the peak phase of the first triangular wave carrier that controls the switching operation of the inverter 4. The phase of the peak of the second triangular wave carrier for controlling the operation is synchronized, and the switching operation of the chopper 5 is controlled using the synchronized second triangular wave carrier.
- the second control units 7 provided in each of the plurality of uninterruptible power supply modules are star-connected to the first control unit 2, but the plurality of second control units 7 are daisy-chain connected.
- the daisy chain connection since it is necessary to connect the second control units 7 with the crossover wiring, it is necessary to additionally provide the sub-control board 6 with a connector for connecting the crossover wiring. Therefore, the structure of the sub-control board 6 is complicated, the manufacturing cost is increased, and the space for mounting the semiconductor components on the sub-control board 6 is relatively narrow.
- the size of the uninterruptible power supply module increases.
- the number of uninterruptible power supply modules increases, the number of steps for connecting the crossover wiring also increases.
- communication control between the plurality of second control units 7 is more complicated than in the case of the star connection, so that the processing load on the CPU (Central Processing Unit) provided in the second control unit 7 increases. I do.
- the plurality of second control units 7 are star-connected to the first control unit 2, a connector for connecting the crossover wiring to the sub-control board 6 becomes unnecessary, and the structure of the sub-control board 6 is simplified. And the manufacturing cost of the sub-control board 6 can be reduced. Further, since the structure of the sub-control board 6 is simplified, the reliability of the second control unit 7 is improved. Further, communication control between the plurality of second control units 7 is simplified, and an inexpensive CPU with low processing capability can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
- Stand-By Power Supply Arrangements (AREA)
Abstract
This uninterruptible power supply device (100) is provided with a battery (10) and a plurality of uninterruptible power supply modules (31), (32) each having a converter (3), a chopper (5) for changing the value of a DC voltage output from the battery (10) or the converter (3), and an inverter (4). The uninterruptible power supply device (100) is provided with a first control unit (2) for outputting phase information and a voltage command which control the timing of the switching operation of switching elements included in the chopper (5) and the inverter. The plurality of uninterruptible power supply modules (31), (32) are each provided with a second control unit (32) which, on the basis of the phase information and the voltage command, synchronizes the phase of the peak or valley of a chopper carrier for controlling the switching operation of the chopper (5) with the phase of the peak of an inverter carrier for controlling the switching operation of the switching elements and controls the switching operation of the chopper (5) using the synchronized chopper carrier.
Description
本発明は、バッテリと、コンバータ及びインバータを有する複数の無停電電源モジュールとを備え、商用電源の停電などが発生した際に負荷への電力供給源を商用電源からバッテリに切り替えて安定的に電力供給を継続する無停電電源装置に関する。
The present invention includes a battery and a plurality of uninterruptible power supply modules including a converter and an inverter, and switches a power supply source to a load from a commercial power supply to a battery when a power failure or the like of a commercial power supply occurs, thereby stably supplying power. The present invention relates to an uninterruptible power supply that continuously supplies power.
特許文献1には、互いに離れて設けられる主制御部及びゲート制御部がシリアル通信でキャリア同期を行い、ゲートパルス生成を行う技術が開示される。
Patent Document 1 discloses a technique in which a main control unit and a gate control unit provided separately from each other perform carrier synchronization by serial communication to generate a gate pulse.
しかしながら、特許文献1に開示される技術を、メイン制御ユニットと複数のサブ制御ユニットである無停電電源モジュールとが1つのバッテリを共用する無停電電源装置に適用した場合、複数の無停電電源モジュールの電源投入のタイミングにずれが生じると、複数の無停電電源モジュールのそれぞれで生成されるチョッパキャリアの位相が180°ずれる場合がある。チョッパキャリアは、複数の無停電電源モジュールのそれぞれに設けられるチョッパのスイッチング素子を動作させるPWM信号の位相を設定するための三角波である。このようにチョッパキャリアの位相がずれると、異なる無停電電源モジュールのチョッパ間に電位差が生じて、横流と呼ばれる循環電流が発生するという課題があった。
However, when the technology disclosed in Patent Document 1 is applied to an uninterruptible power supply device in which a main control unit and an uninterruptible power supply module serving as a plurality of sub-control units share one battery, a plurality of uninterruptible power supply modules are used. If the power-on timing of the power supply is shifted, the phases of the chopper carriers generated in the respective uninterruptible power supply modules may be shifted by 180 °. The chopper carrier is a triangular wave for setting a phase of a PWM signal for operating a switching element of the chopper provided in each of the plurality of uninterruptible power supply modules. When the phases of the chopper carriers are shifted in this manner, a potential difference is generated between the choppers of different uninterruptible power supply modules, and there is a problem that a circulating current called a cross current is generated.
本発明は、上記に鑑みてなされたものであって、バッテリを共用する構成において横流の発生を抑制できる無停電電源装置を得ることを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide an uninterruptible power supply that can suppress occurrence of cross current in a configuration that shares a battery.
上述した課題を解決し、目的を達成するため、本発明に係る無停電電源装置は、バッテリと、交流電圧を直流電圧に変換して出力するコンバータと、コンバータからの直流電圧を変換してバッテリを充電し、又はバッテリからの直流電圧を変換して出力するチョッパと、コンバータ又はチョッパから出力される直流電圧を交流電圧に変換するインバータとを有する複数の無停電電源モジュールを備える。無停電電源装置は、チョッパ及びインバータのそれぞれに含まれるスイッチング素子のスイッチング動作のタイミングを制御する位相情報と電圧指令とを出力する第1制御部を備える。複数の無停電電源モジュールのそれぞれは、位相情報と電圧指令とに基づき、インバータに含まれるスイッチング素子のスイッチング動作を制御する第1三角波キャリアの山の位相に、チョッパに含まれるスイッチング素子のスイッチング動作を制御する第2三角波キャリアの山又は谷の位相を同期させて、同期した第2三角波キャリアを用いてチョッパに含まれるスイッチング素子のスイッチング動作を制御する第2制御部を備える。
In order to solve the above-described problems and achieve the object, an uninterruptible power supply according to the present invention includes a battery, a converter that converts an AC voltage into a DC voltage and outputs the DC voltage, and a battery that converts a DC voltage from the converter. Or a plurality of uninterruptible power supply modules having a chopper for converting a DC voltage from a battery and outputting the converted DC voltage, and an inverter for converting a DC voltage output from the converter or the chopper to an AC voltage. The uninterruptible power supply includes a first control unit that outputs a phase command and a voltage command for controlling a timing of a switching operation of a switching element included in each of the chopper and the inverter. Each of the plurality of uninterruptible power supply modules performs a switching operation of a switching element included in a chopper at a peak phase of a first triangular wave carrier that controls a switching operation of a switching element included in an inverter based on the phase information and the voltage command. And a second controller for controlling the switching operation of the switching element included in the chopper using the synchronized second triangular wave carrier by synchronizing the phase of the peak or valley of the second triangular wave carrier for controlling the switching operation.
本発明によれば、バッテリを共用する構成において横流の発生を抑制できるという効果を奏する。
According to the present invention, there is an effect that occurrence of cross current can be suppressed in a configuration sharing a battery.
以下に、本発明の実施の形態に係る無停電電源装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
Hereinafter, an uninterruptible power supply according to an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited by the embodiment.
実施の形態.
図1は本発明の実施の形態に係る無停電電源装置の概要を示す図である。実施の形態に係る無停電電源装置100は、商用電源である交流電源200に停電などが発生した場合でも、負荷300への電力供給源を交流電源200からバッテリ10に切り替えることによって、負荷300への電力供給を継続する装置である。負荷300は、例えばデータセンタなどに設置されるサーバである。 Embodiment.
FIG. 1 is a diagram showing an outline of an uninterruptible power supply according to an embodiment of the present invention. The uninterruptiblepower supply device 100 according to the embodiment switches the power supply source to the load 300 from the AC power supply 200 to the battery 10 even when a power failure or the like occurs in the AC power supply 200 which is a commercial power supply. This is a device that continues to supply power. The load 300 is, for example, a server installed in a data center or the like.
図1は本発明の実施の形態に係る無停電電源装置の概要を示す図である。実施の形態に係る無停電電源装置100は、商用電源である交流電源200に停電などが発生した場合でも、負荷300への電力供給源を交流電源200からバッテリ10に切り替えることによって、負荷300への電力供給を継続する装置である。負荷300は、例えばデータセンタなどに設置されるサーバである。 Embodiment.
FIG. 1 is a diagram showing an outline of an uninterruptible power supply according to an embodiment of the present invention. The uninterruptible
無停電電源装置100は、バッテリ10、メイン制御ユニット20、第1無停電電源モジュール31、第2無停電電源モジュール32、第3無停電電源モジュール33、及び第4無停電電源モジュール34を備える。以下では、第1無停電電源モジュール31、第2無停電電源モジュール32、第3無停電電源モジュール33、及び第4無停電電源モジュール34のそれぞれを区別しない場合、無停電電源モジュールと称する場合がある。また、以下では、第1無停電電源モジュール31、第2無停電電源モジュール32、第3無停電電源モジュール33、及び第4無停電電源モジュール34を、複数の無停電電源モジュールと称する場合がある。
The uninterruptible power supply device 100 includes a battery 10, a main control unit 20, a first uninterruptible power supply module 31, a second uninterruptible power supply module 32, a third uninterruptible power supply module 33, and a fourth uninterruptible power supply module 34. Hereinafter, when the first uninterruptible power supply module 31, the second uninterruptible power supply module 32, the third uninterruptible power supply module 33, and the fourth uninterruptible power supply module 34 are not distinguished, they may be referred to as uninterruptible power supply modules. is there. Hereinafter, the first uninterruptible power supply module 31, the second uninterruptible power supply module 32, the third uninterruptible power supply module 33, and the fourth uninterruptible power supply module 34 may be referred to as a plurality of uninterruptible power supply modules. .
メイン制御ユニット20と複数の無停電電源モジュールは、例えば互いに隣接して配列される複数の直方体状の筐体に収納されている。これらの筐体は、データセンタなどに設けられている。本実施の形態では、4つの無停電電源モジュールが無停電電源装置100に設けられている。但し無停電電源モジュールの数は、4つに限定されず、4つ未満でもよいし、5つ以上でもよい。無停電電源モジュールの数は、負荷300の電力容量に併せて調整され、例えば負荷300の容量が小さいときには、2つの無停電電源モジュールが並列運転され、負荷300の容量が大きいときには、3つ又は4つの無停電電源モジュールが並列運転される。
The main control unit 20 and the plurality of uninterruptible power supply modules are housed in, for example, a plurality of rectangular parallelepiped casings arranged adjacent to each other. These housings are provided in a data center or the like. In the present embodiment, four uninterruptible power supply modules are provided in the uninterruptible power supply device 100. However, the number of uninterruptible power supply modules is not limited to four, and may be less than four or five or more. The number of uninterruptible power supply modules is adjusted according to the power capacity of the load 300. For example, when the capacity of the load 300 is small, two uninterruptible power supply modules are operated in parallel, and when the capacity of the load 300 is large, three or three Four uninterruptible power supply modules are operated in parallel.
メイン制御ユニット11にはメイン制御基板1が設けられる。メイン制御基板1には第1制御部2が設けられる。第1制御部2は、例えばFPGA(Field-Programmable Gate Array)で構成される。なお第1制御部2は、FPGA以外にも、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)で構成されたものでもよいし、これらを組み合わせたものでもよい。第1制御部2は、複数の無停電電源モジュールのそれぞれが備えるチョッパ5及びインバータ4のスイッチング動作のタイミングを制御するための情報、例えば位相情報及び電圧指令が生成される。
The main control unit 11 is provided with the main control board 1. The first control unit 2 is provided on the main control board 1. The first control unit 2 is configured by, for example, an FPGA (Field-Programmable {Gate} Array). The first control unit 2 may be constituted by a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit) other than the FPGA, It may be a combination. The first control unit 2 generates information for controlling the timing of the switching operation of the chopper 5 and the inverter 4 included in each of the plurality of uninterruptible power supply modules, for example, phase information and a voltage command.
複数の無停電電源モジュールのそれぞれは、交流電源200から出力される交流電圧を直流電圧に変換して出力するコンバータ(CON)3と、直流電圧を交流電圧に変換して出力するインバータ(INV)4と、チョッパ(CHOP)5と、サブ制御基板6とを備える。コンバータ3は、例えば4つのダイオードで構成されるダイオードブリッジに平滑コンデンサを組み合わせた整流器である。インバータ4は、複数の半導体スイッチング素子を備え、これらの半導体スイッチング素子がスイッチング動作(オンオフ動作)することにより、直流電圧が交流電圧に変換される。インバータ4から出力される交流電圧は負荷300に印加される。コンバータ3及びインバータ4の構成は公知のため、これらの構成の詳細な説明は割愛する。
Each of the plurality of uninterruptible power supply modules includes a converter (CON) 3 that converts an AC voltage output from the AC power supply 200 into a DC voltage and outputs the same, and an inverter (INV) that converts a DC voltage into an AC voltage and outputs the same. 4, a chopper (CHOP) 5 and a sub-control board 6. Converter 3 is a rectifier in which a smoothing capacitor is combined with a diode bridge composed of, for example, four diodes. The inverter 4 includes a plurality of semiconductor switching elements, and these semiconductor switching elements perform a switching operation (on / off operation), so that a DC voltage is converted to an AC voltage. The AC voltage output from the inverter 4 is applied to the load 300. Since the configurations of the converter 3 and the inverter 4 are publicly known, detailed descriptions of these configurations are omitted.
サブ制御基板6には第2制御部7が設けられる。第2制御部7は、例えばFPGAで構成される。なお第2制御部7は、FPGA以外にも、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化したプロセッサ、ASICで構成されたものでもよいし、これらを組み合わせたものでもよい。
The second control unit 7 is provided on the sub-control board 6. The second control unit 7 is configured by, for example, an FPGA. Note that the second control unit 7 may be configured by a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, or a combination of these, in addition to the FPGA.
複数の無停電電源モジュールのそれぞれに設けられる第2制御部7と、第1制御部2との接続トポロジーはスター接続である。すなわち複数の第2制御部7は、それぞれが1つの第1制御部2に対して、通信線400を介して直接的に接続されている。
The connection topology between the second control unit 7 provided in each of the plurality of uninterruptible power supply modules and the first control unit 2 is a star connection. That is, each of the plurality of second control units 7 is directly connected to one first control unit 2 via the communication line 400.
第2制御部7は、第1制御部2から出力される位相情報であるキャリアと電圧指令とに基づき、第1三角波キャリアであるインバータキャリアと、第2三角波キャリアであるチョッパキャリアとを生成する。インバータキャリアは、インバータ4に含まれる半導体スイッチング素子のスイッチング動作を制御するためのキャリアである。インバータキャリアの位相は、第1制御部2から出力される位相情報に同期している。チョッパキャリアは、チョッパ5に含まれる半導体スイッチング素子のスイッチング動作を制御するためのキャリアである。これらのチョッパキャリア、インバータキャリアなどを同期させる動作の説明については、後述する。なお、チョッパキャリアの位相は、インバータキャリアの位相に同期しており、チョッパキャリアの周期は、例えばインバータキャリアの周期のn倍(nは1以上の自然数)である。以下では、説明を簡単化するため、チョッパキャリアの周期はインバータキャリアの周期の2倍と仮定して説明するが、チョッパキャリアの周期はこれに限定されるものではない。
The second control unit 7 generates an inverter carrier as a first triangular wave carrier and a chopper carrier as a second triangular wave carrier based on a carrier as phase information and a voltage command output from the first control unit 2. . The inverter carrier is a carrier for controlling a switching operation of a semiconductor switching element included in the inverter 4. The phase of the inverter carrier is synchronized with the phase information output from the first control unit 2. The chopper carrier is a carrier for controlling a switching operation of a semiconductor switching element included in the chopper 5. The operation of synchronizing these chopper carriers, inverter carriers and the like will be described later. Note that the phase of the chopper carrier is synchronized with the phase of the inverter carrier, and the cycle of the chopper carrier is, for example, n times (n is a natural number of 1 or more) the cycle of the inverter carrier. Hereinafter, for the sake of simplicity, the description will be made on the assumption that the cycle of the chopper carrier is twice the cycle of the inverter carrier, but the cycle of the chopper carrier is not limited to this.
第2制御部7は、インバータキャリアと電圧指令とを比較することによって、インバータ4に含まれる半導体スイッチング素子のスイッチング動作を制御するための第1PWM(Pulse Width Modulation)信号を生成する。第1PWM信号は、インバータ4に含まれる半導体スイッチング素子を駆動可能な電圧に増幅され、第1駆動信号としてインバータ4に入力される。なお第1駆動信号は、インバータ4又は第2制御部7に設けられる駆動回路によって生成される。インバータ4に含まれる半導体スイッチング素子が第1駆動信号に従ってスイッチング動作することにより、コンバータ3又はチョッパ5から出力される直流電圧が、交流電圧に変換される。
The second control unit 7 generates a first PWM (Pulse Width Modulation) signal for controlling the switching operation of the semiconductor switching element included in the inverter 4 by comparing the inverter carrier with the voltage command. The first PWM signal is amplified to a voltage that can drive a semiconductor switching element included in the inverter 4 and is input to the inverter 4 as a first drive signal. The first drive signal is generated by a drive circuit provided in the inverter 4 or the second control unit 7. When the semiconductor switching element included in the inverter 4 performs a switching operation according to the first drive signal, the DC voltage output from the converter 3 or the chopper 5 is converted into an AC voltage.
また第2制御部7は、チョッパキャリアと電圧指令とを比較することによって、チョッパ5に含まれる半導体スイッチング素子のスイッチング動作を制御するための第2PWM信号を生成する。第2PWM信号は、チョッパ5に含まれる半導体スイッチング素子を駆動可能な電圧に増幅され、第2駆動信号としてチョッパ5に入力される。なお第2駆動信号は、チョッパ5又は第2制御部7に設けられる駆動回路によって生成される。チョッパ5に含まれる半導体スイッチング素子が第2駆動信号に従ってスイッチング動作することにより、チョッパ5が昇圧動作し、又は降圧動作する。例えば、交流電源200が停電していない場合、コンバータ3から出力される直流電圧がチョッパ5に印加され、チョッパ5が降圧動作することによって当該直流電圧が降圧され、降圧された電圧がバッテリ10に印加される。これにより、交流電源200から供給される電力の一部を利用して、バッテリ10が充電される。一方、交流電源200が停電した場合、バッテリ10から出力される直流電圧がチョッパ5に印加されているため、チョッパ5が昇圧動作を行うことによって、当該直流電圧が昇圧され、昇圧された電圧がインバータ4に印加される。これにより、バッテリ10から供給される電力を利用して、負荷300を継続して運転することができる。
{Circle around (2)} The second control section 7 generates a second PWM signal for controlling the switching operation of the semiconductor switching element included in the chopper 5 by comparing the chopper carrier with the voltage command. The second PWM signal is amplified to a voltage that can drive the semiconductor switching element included in the chopper 5, and is input to the chopper 5 as a second drive signal. Note that the second drive signal is generated by a drive circuit provided in the chopper 5 or the second control unit 7. When the semiconductor switching element included in the chopper 5 performs a switching operation according to the second drive signal, the chopper 5 performs a step-up operation or a step-down operation. For example, when the AC power supply 200 is not interrupted, the DC voltage output from the converter 3 is applied to the chopper 5, and the DC voltage is reduced by the step-down operation of the chopper 5, and the reduced voltage is supplied to the battery 10. Applied. Thereby, battery 10 is charged using a part of the electric power supplied from AC power supply 200. On the other hand, when the AC power supply 200 is out of power, the DC voltage output from the battery 10 is applied to the chopper 5, so that the DC voltage is boosted by the chopper 5 performing the boosting operation, and the boosted voltage is reduced. It is applied to the inverter 4. Thus, the load 300 can be continuously operated using the electric power supplied from the battery 10.
実施の形態に係る無停電電源装置100は、インバータキャリアの山の位相に、チョッパキャリアの山の位相を同期させて、同期したチョッパキャリアを用いてチョッパ5のスイッチング動作を制御するように構成されている。以下では、図2などを用いて、インバータキャリアの位相にチョッパキャリアの位相を同期させる理由、動作などを具体的に説明する。
The uninterruptible power supply 100 according to the embodiment is configured to synchronize the phase of the peak of the chopper carrier with the phase of the peak of the inverter carrier, and control the switching operation of the chopper 5 using the synchronized chopper carrier. ing. Hereinafter, the reason and operation of synchronizing the phase of the chopper carrier with the phase of the inverter carrier will be specifically described with reference to FIG.
図2は図1に示される無停電電源装置の回路構成を示す図である。図2では、説明を簡単化するために、図1に示される複数の無停電電源モジュールの内、第1無停電電源モジュール31及び第2無停電電源モジュール32のみが示される。図2に示される無停電電源装置100は、第1無停電電源モジュール31及び第2無停電電源モジュール32に加えて、交流電源200に伝達されるノイズを除去する第1ノイズフィルタ9と、負荷300に伝達されるノイズを除去する第2ノイズフィルタ12とを備える。
FIG. 2 is a diagram showing a circuit configuration of the uninterruptible power supply shown in FIG. FIG. 2 shows only the first uninterruptible power supply module 31 and the second uninterruptible power supply module 32 of the plurality of uninterruptible power supply modules shown in FIG. 1 for simplicity of description. The uninterruptible power supply 100 shown in FIG. 2 includes a first uninterruptible power supply module 31 and a second uninterruptible power supply module 32, a first noise filter 9 for removing noise transmitted to the AC power supply 200, and a load. And a second noise filter 12 that removes noise transmitted to 300.
第1ノイズフィルタ9は、一端が交流電源200に接続され他端がコンバータ3に接続されるインダクタ9aと、一端が交流電源200及びインダクタ9aに接続され他端が接地されるコンデンサ9bとを備える。インダクタ9aは、コンバータ3から交流電源200に向かって伝達される高周波ノイズを反射させることにより、交流電源200へのノイズの浸入を抑制する。コンデンサ9bは、当該高周波ノイズをグランドへ放出することにより、交流電源200へのノイズの浸入を抑制する。
The first noise filter 9 includes an inductor 9a having one end connected to the AC power supply 200 and the other end connected to the converter 3, and a capacitor 9b having one end connected to the AC power supply 200 and the inductor 9a and the other end grounded. . The inductor 9a reflects high-frequency noise transmitted from the converter 3 toward the AC power supply 200, thereby suppressing intrusion of noise into the AC power supply 200. The capacitor 9 b emits the high-frequency noise to the ground, thereby suppressing noise from entering the AC power supply 200.
第2ノイズフィルタ12は、一端がインバータ4に接続され他端が負荷300に接続されるインダクタ12aと、一端がインダクタ12a及び負荷300に接続され他端が接地されるコンデンサ12bとを備える。インダクタ12aは、インバータ4から負荷300に向かって伝達される高周波ノイズを反射させることにより、負荷300へのノイズの浸入を抑制する。コンデンサ12bは、当該高周波ノイズをグランドへ放出することにより、負荷300へのノイズの浸入を抑制する。
The second noise filter 12 includes an inductor 12a having one end connected to the inverter 4 and the other end connected to the load 300, and a capacitor 12b having one end connected to the inductor 12a and the load 300 and the other end grounded. The inductor 12a reflects high-frequency noise transmitted from the inverter 4 toward the load 300, thereby suppressing noise from entering the load 300. The capacitor 12b emits the high-frequency noise to the ground, thereby suppressing the noise from entering the load 300.
第1無停電電源モジュール31及び第2無停電電源モジュール32のそれぞれは、コンバータ3、インバータ、チョッパ及び第2制御部7に加えて、コンバータ3から出力される直流電圧を平滑する平滑コンデンサ8を備える。平滑コンデンサ8の一端は、正極側直流母線である第1母線Pに接続され、平滑コンデンサ8の他端は、負極側直流母線である第2母線Nに接続される。
Each of the first uninterruptible power supply module 31 and the second uninterruptible power supply module 32 includes, in addition to the converter 3, the inverter, the chopper, and the second control unit 7, a smoothing capacitor 8 for smoothing a DC voltage output from the converter 3. Prepare. One end of the smoothing capacitor 8 is connected to a first bus P which is a positive DC bus, and the other end of the smoothing capacitor 8 is connected to a second bus N which is a negative DC bus.
図3は図1に示されるチョッパの構成例を示す図である。チョッパ5は、例えば半導体スイッチング素子70aと半導体スイッチング素子70bとが直列に接続された直列接続体70と、チョークコイル71と、平滑コンデンサ73とを備える。半導体スイッチング素子70a及び半導体スイッチング素子70bのそれぞれにはダイオードが逆並列接続される。半導体スイッチング素子70a及び半導体スイッチング素子70bのそれぞれは、スイッチング動作が可能なスイッチ手段であればよく、IGBT(Insurated Gate Bipolar Transistor)でもよいしMOSFET(Metal Oxide Semiconductor-Field Effect Transistor)でもよい。例えば、チョッパ5の容量が比較的低容量(低圧)の場合にはMOSFETが利用され、大容量で耐圧を高める必要がある場合にはIGBTなどが用いられる。半導体スイッチング素子70aは、第1母線Pに接続される。半導体スイッチング素子70bは、第2母線Nに接続される。
FIG. 3 is a diagram showing a configuration example of the chopper shown in FIG. The chopper 5 includes, for example, a series connection body 70 in which a semiconductor switching element 70a and a semiconductor switching element 70b are connected in series, a choke coil 71, and a smoothing capacitor 73. Diodes are connected in anti-parallel to each of the semiconductor switching element 70a and the semiconductor switching element 70b. Each of the semiconductor switching element 70a and the semiconductor switching element 70b may be any switching means capable of performing a switching operation, and may be an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor-Field Effect Transistor). For example, a MOSFET is used when the capacity of the chopper 5 is relatively low (low voltage), and an IGBT or the like is used when it is necessary to increase the breakdown voltage with a large capacity. Semiconductor switching element 70a is connected to first bus P. Semiconductor switching element 70b is connected to second bus N.
2つの半導体スイッチング素子70a,70bの接続点には、チョークコイル71の一端が接続される。チョークコイル71の他端は、平滑コンデンサ73の一端とバッテリ10の正極とに接続される。平滑コンデンサ73の他端は、バッテリ10の負極と半導体スイッチング素子70bとに接続される。
One end of the choke coil 71 is connected to a connection point between the two semiconductor switching elements 70a and 70b. The other end of choke coil 71 is connected to one end of smoothing capacitor 73 and the positive electrode of battery 10. The other end of the smoothing capacitor 73 is connected to the negative electrode of the battery 10 and the semiconductor switching element 70b.
降圧動作時は、半導体スイッチング素子70aが駆動信号に従ってオンオフ動作を繰り返すことにより、コンバータ3の出力電圧が低減され、バッテリ10に印加される。昇圧動作時は、半導体スイッチング素子70bが駆動信号に従ってオンオフ動作を繰り返すことにより、バッテリ10の出力電圧が増幅され、インバータ4に印加される。なお、チョッパの構成は、図3に示す例に限定されず、非停電時にはコンバータ3の出力電圧を降圧することによりバッテリ10を充電でき、かつ、停電時にはバッテリ10の出力電圧を昇圧することによってバッテリ10に蓄えられた電力をインバータ4へ供給できるように構成されたものであればよい。
(4) During the step-down operation, the output voltage of the converter 3 is reduced and applied to the battery 10 by the semiconductor switching element 70a repeating the on / off operation according to the drive signal. At the time of the boosting operation, the output voltage of the battery 10 is amplified and applied to the inverter 4 by the semiconductor switching element 70 b repeating the on / off operation according to the drive signal. Note that the configuration of the chopper is not limited to the example shown in FIG. 3. The battery 10 can be charged by stepping down the output voltage of the converter 3 during a non-power failure and increasing the output voltage of the battery 10 during a power failure. What is necessary is just to be able to supply the electric power stored in the battery 10 to the inverter 4.
このように構成される無停電電源装置100では、第1無停電電源モジュール31及び第2無停電電源モジュール32の電源投入のタイミングにずれが生じると、チョッパキャリアの位相が同期せずに、第1無停電電源モジュール31のチョッパ5と第2無停電電源モジュール32のチョッパ5との間に電位差が生じて、図2に矢印で示されるようなルートで、循環電流が発生する。この循環電流は横流と呼ばれる。
In the uninterruptible power supply device 100 configured as described above, if a difference occurs in the power-on timing of the first uninterruptible power supply module 31 and the second uninterruptible power supply module 32, the phases of the chopper carriers are not synchronized, and the A potential difference occurs between the chopper 5 of the first uninterruptible power supply module 31 and the chopper 5 of the second uninterruptible power supply module 32, and a circulating current is generated along a route shown by an arrow in FIG. This circulating current is called cross flow.
図4は横流が生じる場合のチョッパキャリアの位相を示す図である。図4には、上から順に、メイン制御ユニット20の第1制御部2で生成される位相情報であるキャリアの波形(A)、インバータキャリアの波形(B-1)、チョッパキャリアの波形(B-2)と、インバータキャリアの波形(C-1)、チョッパキャリアの波形(C-2)とが示される。B-1のインバータキャリアは、第1制御部2で生成される位相情報と同期するように、第1無停電電源モジュール31に設けられる第2制御部7で生成されるインバータ制御用の三角波である。B-2のチョッパキャリアは、B-1のインバータキャリアと同期するように、第1無停電電源モジュール31に設けられる第2制御部7で生成されるチョッパ制御用の三角波である。C-1のインバータキャリアは、第1制御部2で生成される位相情報と同期するように、第2無停電電源モジュール32に設けられる第2制御部7で生成されるインバータ制御用の三角波である。C-2のチョッパキャリアは、C-1のインバータキャリアと同期するように、第2無停電電源モジュール32に設けられる第2制御部7で生成されるチョッパ制御用の三角波である。
FIG. 4 is a diagram showing the phase of the chopper carrier when a cross flow occurs. FIG. 4 shows, in order from the top, the carrier waveform (A), the inverter carrier waveform (B-1), and the chopper carrier waveform (B) which are the phase information generated by the first control unit 2 of the main control unit 20. -2), a waveform (C-1) of the inverter carrier, and a waveform (C-2) of the chopper carrier. The inverter carrier B-1 is a triangular wave for inverter control generated by the second control unit 7 provided in the first uninterruptible power supply module 31 so as to synchronize with the phase information generated by the first control unit 2. is there. The chopper carrier B-2 is a triangular wave for chopper control generated by the second controller 7 provided in the first uninterruptible power supply module 31 so as to synchronize with the inverter carrier B-1. The inverter carrier C-1 is a triangular wave for inverter control generated by the second control unit 7 provided in the second uninterruptible power supply module 32 so as to synchronize with the phase information generated by the first control unit 2. is there. The chopper carrier C-2 is a triangular wave for chopper control generated by the second controller 7 provided in the second uninterruptible power supply module 32 so as to synchronize with the inverter carrier C-1.
第1制御部2から第2制御部7にシリアル通信で送信される情報には、キャリア情報と、キャリアの山又は谷を判別するための番号とが対応付けて送信される。そのため、第2制御部7は、キャリアの山又は谷を判別するための番号を利用することにより、第1制御部2で生成されるキャリアに、インバータキャリアを同期させることができる。そのため、B-1及びC-1に示されるインバータキャリアの山の位相は、Aに示されるキャリアの山の位相と同期している。また第2制御部7は、キャリアの山又は谷の位相を判別することにより、キャリアの山又は谷の位相に、チョッパキャリアの位相を同期させることができる。図4では、B-2のチョッパキャリアの山の位相が、B-1のインバータキャリアの山の位相と同期している。また、C-2のチョッパキャリアの山の位相が、C-1のインバータキャリアの山の位相と同期している。
(4) The information transmitted by serial communication from the first control unit 2 to the second control unit 7 is transmitted in association with carrier information and a number for determining the peak or valley of the carrier. Therefore, the second control unit 7 can synchronize the inverter carrier with the carrier generated by the first control unit 2 by using the number for determining the peak or valley of the carrier. Therefore, the phase of the peak of the inverter carrier indicated by B-1 and C-1 is synchronized with the phase of the peak of the carrier indicated by A. The second control unit 7 can synchronize the phase of the chopper carrier with the phase of the peak or valley of the carrier by determining the phase of the peak or valley of the carrier. In FIG. 4, the phase of the peak of the chopper carrier B-2 is synchronized with the phase of the peak of the inverter carrier B-1. Further, the phase of the peak of the chopper carrier C-2 is synchronized with the phase of the peak of the inverter carrier C-1.
ところが、第1無停電電源モジュール31及び第2無停電電源モジュール32の電源投入のタイミングにずれが生じると、C-2に示されるチョッパキャリアの位相がB-2に示されるチョッパキャリアの位相と180°ずれてしまう。そのため、第1無停電電源モジュール31のチョッパ5と第2無停電電源モジュール32のチョッパ5との間に電位差が生じて、横流が発生する。従って、横流の発生を抑制するためには、B-2のチョッパキャリアの山の位相と、C-2のチョッパキャリアの山の位相とを同期させる、すなわち一致させる必要がある。
However, if there is a difference between the power-on timings of the first uninterruptible power supply module 31 and the second uninterruptible power supply module 32, the phase of the chopper carrier indicated by C-2 becomes equal to the phase of the chopper carrier indicated by B-2. 180 ° shift. Therefore, a potential difference occurs between the chopper 5 of the first uninterruptible power supply module 31 and the chopper 5 of the second uninterruptible power supply module 32, and a cross current occurs. Therefore, in order to suppress the occurrence of the cross current, the phase of the peak of the chopper carrier of B-2 and the phase of the peak of the chopper carrier of C-2 need to be synchronized, that is, matched.
実施の形態に係る無停電電源装置100は、複数の無停電電源モジュール間で電源投入のタイミングがずれた場合でも、複数の無停電電源モジュール間でチョッパキャリアの山の位相を同期させるように構成されている。図5から図7を用いて、チョッパキャリアの山の位相を同期させる動作について説明する。
The uninterruptible power supply device 100 according to the embodiment is configured to synchronize the phases of the chopper carriers between the plurality of uninterruptible power supply modules even when the power-on timing is shifted between the plurality of uninterruptible power supply modules. Have been. The operation of synchronizing the peak phases of the chopper carrier will be described with reference to FIGS.
図5は本発明の実施の形態に係る無停電電源装置においてチョッパキャリアの山の位相を同期させる動作を説明するための第1フローチャートである。図6は本発明の実施の形態に係る無停電電源装置においてチョッパキャリアの山の位相を同期させる動作を説明するための第2フローチャートである。図7はチョッパキャリアの山の位相が同期した状態を示す図である。図7には、図4に示される複数の波形と同様の波形が示される。図4の波形との相違点は、B-2の波形の山の位相とC-2の波形の山の位相が同期していることである。なおB-2,C-2の波形に重畳される一点鎖線は、第1制御部2から第2制御部7へ伝送される電圧指令Vrefである。電圧指令Vrefの大きさは昇圧動作又は降圧動作によって変更される。
FIG. 5 is a first flowchart for explaining the operation of synchronizing the peak phases of the chopper carriers in the uninterruptible power supply according to the embodiment of the present invention. FIG. 6 is a second flowchart for explaining the operation of synchronizing the peak phases of the chopper carriers in the uninterruptible power supply according to the embodiment of the present invention. FIG. 7 is a diagram showing a state in which the peak phases of the chopper carrier are synchronized. FIG. 7 shows waveforms similar to the plurality of waveforms shown in FIG. The difference from the waveform of FIG. 4 is that the phase of the peak of the waveform of B-2 and the phase of the peak of the waveform of C-2 are synchronized. The dashed line superimposed on the waveforms of B-2 and C-2 is the voltage command Vref transmitted from the first control unit 2 to the second control unit 7. The magnitude of voltage command Vref is changed by a step-up operation or a step-down operation.
複数の無停電電源モジュールの電源が投入されると、複数の無停電電源モジュールでは、インバータキャリアの生成動作が開始される(ステップS1)。インバータキャリアのタイマカウンタがアップカウントされ(ステップS2)、第2制御部7では、タイマカウンタのカウント値が上限値(例えば+2000)に達したか否かが判断される(ステップS3)。タイマカウンタのカウント値が上限値に達していない場合(ステップS3,No)、タイマカウンタのカウント値が上限値に達するまで、ステップS2,S3の動作が繰り返される。
(4) When the plurality of uninterruptible power supply modules are powered on, the plurality of uninterruptible power supply modules start the operation of generating an inverter carrier (step S1). The timer counter of the inverter carrier is counted up (step S2), and the second control unit 7 determines whether or not the count value of the timer counter has reached an upper limit (for example, +2000) (step S3). If the count value of the timer counter has not reached the upper limit value (step S3, No), the operations of steps S2 and S3 are repeated until the count value of the timer counter reaches the upper limit value.
タイマカウンタのカウント値が上限値に達した場合(ステップS3,Yes)、第2制御部7では、インバータキャリアの山又は谷を示す番号Nの値が「0」と等しいか否かが判断される(ステップS4)。無停電電源モジュールの電源が投入された直後の番号Nには、初期値を示す「0」が設定されている。番号Nの値は、タイマカウンタがアップカウントからダウンカウントに切り替えられるタイミングと、タイマカウンタがダウンカウントからアップカウントに切り替えられるタイミングとで、サイクリックカウンタによってサイクリックにカウントアップされる。
If the count value of the timer counter has reached the upper limit (step S3, Yes), the second controller 7 determines whether the value of the number N indicating the peak or valley of the inverter carrier is equal to "0". (Step S4). In the number N immediately after the power of the uninterruptible power supply module is turned on, “0” indicating an initial value is set. The value of the number N is cyclically counted up by the cyclic counter at the timing when the timer counter is switched from up-counting to down-counting and the timing when the timer counter is switched from down-counting to up-counting.
番号Nの値が「0」と等しい場合(ステップS4,Yes)、第2制御部7では、初期値「0」に「1」が加算されることによって、番号Nの値が更新される(ステップS5)。これにより、インバータキャリアの山に番号「1」が設定される。インバータキャリアの山に番号「1」が設定されると、インバータキャリアのタイマカウンタは、アップカウントからダウンカウントに切り替えられる(ステップS6)。その後、第2制御部7では、タイマカウンタのカウント値が下限値(例えば-2000)に達したか否かが判断される(ステップS7)。タイマカウンタのカウント値が下限値に達していない場合(ステップS7,No)、タイマカウンタが下限値に達するまで、ステップS6,S7の動作が繰り返される。
If the value of the number N is equal to “0” (Step S4, Yes), the second controller 7 updates the value of the number N by adding “1” to the initial value “0” (Step S4). Step S5). As a result, the number “1” is set to the peak of the inverter carrier. When the number “1” is set to the peak of the inverter carrier, the timer counter of the inverter carrier is switched from up-counting to down-counting (step S6). Thereafter, the second control unit 7 determines whether or not the count value of the timer counter has reached a lower limit value (for example, -2000) (step S7). If the count value of the timer counter has not reached the lower limit value (step S7, No), the operations of steps S6 and S7 are repeated until the timer counter reaches the lower limit value.
タイマカウンタが下限値に達した場合(ステップS7,Yes)、第2制御部7では、番号Nに「1」が加算されることによって、番号Nの値が更新される。例えば、電源投入直後にステップS8で更新される番号Nの値は「2」となる。これにより、インバータキャリアの谷に番号「2」が設定される。インバータキャリアの谷に番号「2」が設定されると、インバータキャリアのタイマカウンタは、ダウンカウントからアップカウントに切り替えられる(ステップS9)。その後、ステップS2からステップS4の処理が繰り返される。
If the timer counter has reached the lower limit (step S7, Yes), the second controller 7 updates the value of the number N by adding “1” to the number N. For example, the value of the number N updated in step S8 immediately after the power is turned on is “2”. As a result, the number “2” is set at the valley of the inverter carrier. When the number “2” is set in the valley of the inverter carrier, the timer counter of the inverter carrier is switched from down-counting to up-counting (step S9). Thereafter, the processing from step S2 to step S4 is repeated.
ステップS4において、番号Nの値が「0」以外である場合(ステップS4,No)、第2制御部7では、番号Nに「1」が加算されることによって、番号Nの値が更新される。例えば、ステップS10の処理が実行される前の番号Nの値が「2」である場合、更新後の番号Nの値は「3」となる。これにより、インバータキャリアの山に番号「3」が設定される。ステップS10の処理の後、再びステップS6の処理が実行され、インバータキャリアのタイマカウンタは、アップカウントからダウンカウントに切り替えられる。
When the value of the number N is other than “0” in step S4 (step S4, No), the second control unit 7 updates the value of the number N by adding “1” to the number N. You. For example, when the value of the number N before the processing of step S10 is executed is “2”, the value of the updated number N is “3”. As a result, the number “3” is set to the peak of the inverter carrier. After the processing in step S10, the processing in step S6 is executed again, and the timer counter of the inverter carrier is switched from up-counting to down-counting.
このように、ステップS2からステップS10までの処理が繰り返されることによって、インバータキャリアの山には「1」、「3」、「5」、「7」などの番号が設定され、インバータキャリアの谷には「2」、「4」、「6」、「8」などの番号が設定される。すなわち、インバータキャリアの山には奇数が設定され、インバータキャリアの谷には偶数が設定される。
As described above, by repeating the processing from step S2 to step S10, numbers such as “1”, “3”, “5”, and “7” are set in the peaks of the inverter carrier, and the valleys of the inverter carrier are set. Are set to numbers such as "2", "4", "6", and "8". That is, an odd number is set to the peak of the inverter carrier, and an even number is set to the valley of the inverter carrier.
第2制御部7では、ステップS2からステップS9までの処理と並行してチョッパキャリアの生成動作が実行されており、ステップS6で番号Nの値が「1」となったとき、ステップS20以降の処理が実行される。ステップS20では、インバータキャリアの山又は谷を示す番号Nの値が「1」と等しいか否かが判断される。例えば電源投入直後は、チョッパキャリアのタイマカウンタがアップカウントされているため、番号Nの値が「1」と等しい場合(ステップS20,Yes)、チョッパキャリアのタイマカウンタがアップカウントからダウンカウントに切り替えられ、チョッパキャリアの山に番号「1」が設定される(ステップS21)。チョッパキャリアに設定された番号「1」は、インバータキャリアキャリアに設定された番号「1」と等しいため、チョッパキャリアの山の位相は、インバータキャリアの山の位相と同期する。またステップS20,S21の処理の結果、複数の無停電電源モジュールのそれぞれに設けられる第2制御部7では、チョッパキャリアの山に、番号「1」が設定されるため、チョッパキャリア同士の位相も同期する。ステップS21処理の後は、ステップS22の処理が実行される。
In the second control unit 7, a chopper carrier generation operation is executed in parallel with the processing from step S2 to step S9. When the value of the number N becomes “1” in step S6, the processing in step S20 and subsequent steps is performed. The processing is executed. In step S20, it is determined whether the value of the number N indicating the peak or valley of the inverter carrier is equal to "1". For example, immediately after the power is turned on, the timer counter of the chopper carrier is up-counted. If the value of the number N is equal to “1” (step S20, Yes), the timer counter of the chopper carrier switches from up-counting to down-counting. Then, the number "1" is set to the crest of the chopper carrier (step S21). Since the number “1” set on the chopper carrier is equal to the number “1” set on the inverter carrier, the phase of the peak of the chopper carrier is synchronized with the phase of the peak of the inverter carrier. Also, as a result of the processing in steps S20 and S21, the number "1" is set in the crest of the chopper carrier in the second controller 7 provided in each of the plurality of uninterruptible power supply modules. Synchronize. After the processing in step S21, the processing in step S22 is executed.
ステップS20において、番号Nが「1」以外である場合(ステップS20,No)、ステップS22の処理が実行される。
場合 If the number N is other than “1” in step S20 (step S20, No), the process of step S22 is executed.
ステップS22では、番号Nの値が2n(nは1以上の自然数)と等しいか否かが判断される。番号Nの値が2nと等しい場合(ステップS22,Yes)、例えばN=2,4,6,8などである場合には、チョッパキャリアのタイマカウンタのカウント値がリセットされ(ステップS23)、リセット後に再びチョッパキャリアのタイマカウンタのダウンカウントが継続される(ステップS24)。ステップS24の処理の後、ステップS22の処理が実行される。カウント値をリセットすることによって、チョッパキャリアの山と谷の波形を対称な形にすることができる。
In step S22, it is determined whether the value of the number N is equal to 2n (n is a natural number of 1 or more). When the value of the number N is equal to 2n (Step S22, Yes), for example, when N = 2, 4, 6, 8, etc., the count value of the timer counter of the chopper carrier is reset (Step S23), and reset. Thereafter, the count down of the timer counter of the chopper carrier is continued again (step S24). After the processing in step S24, the processing in step S22 is executed. By resetting the count value, the peak and valley waveforms of the chopper carrier can be made symmetrical.
ステップS22において、番号Nの値が2n以外の値である場合(ステップS22,No)、番号Nの値がN=2n+1(nは1以上の自然数)と等しいか否かが判断される(ステップS25)。すなわち、番号Nの値が3、5、7などと等しいか否かが判断される。番号Nの値がN=2n+1と異なる場合(ステップS25,No)、番号Nの値がN=2n+1と等しくなるまで、ステップS25の処理が継続される。番号Nの値がN=2n+1と等しい場合(ステップS25,Yes)、チョッパキャリアのタイマカウンタが、ダウンカウントからアップカウントに切り替えられ、さらにチョッパキャリアの谷には、例えば番号「3」が設定される(ステップS26)。チョッパキャリアに設定された番号「3」は、インバータキャリアキャリアに設定された番号「3」と等しいため、チョッパキャリアの谷の位相は、インバータキャリアの山の位相と同期する。またステップS25,S26の処理の結果、複数の無停電電源モジュールのそれぞれに設けられる第2制御部7では、チョッパキャリアの谷に、番号「3」が設定されるため、チョッパキャリア同士の位相も同期する。ステップS26処理の後は、ステップS27の処理が実行される。
In step S22, when the value of the number N is a value other than 2n (step S22, No), it is determined whether or not the value of the number N is equal to N = 2n + 1 (n is a natural number of 1 or more) (step S22). S25). That is, it is determined whether the value of the number N is equal to 3, 5, 7, or the like. If the value of the number N is different from N = 2n + 1 (step S25, No), the process of step S25 is continued until the value of the number N becomes equal to N = 2n + 1. If the value of the number N is equal to N = 2n + 1 (step S25, Yes), the timer counter of the chopper carrier is switched from down-counting to up-counting, and for example, the number “3” is set in the chopper carrier valley. (Step S26). Since the number “3” set on the chopper carrier is equal to the number “3” set on the inverter carrier, the phase of the valley of the chopper carrier is synchronized with the phase of the peak of the inverter carrier. In addition, as a result of the processing in steps S25 and S26, in the second control unit 7 provided in each of the plurality of uninterruptible power supply modules, the number “3” is set at the crest of the chopper carrier, so that the phases of the chopper carriers are also different. Synchronize. After step S26, the process of step S27 is performed.
ステップS27では、番号Nの値が2n(nは1以上の自然数)と等しいか否かが判断される。番号Nの値が2nと異なる場合(ステップS27,No)、番号Nの値が2nと等しくなるまで、ステップS27の処理が継続される。番号Nの値が2nと等しい場合(ステップS27,Yes)、例えばN=4などである場合には、チョッパキャリアのタイマカウンタのカウント値がリセットされ(ステップS28)、リセット後に再びチョッパキャリアのタイマカウンタのアップカウントが継続される(ステップS29)。ステップS29の処理の後、ステップS30の処理が実行される。
In step S27, it is determined whether the value of the number N is equal to 2n (n is a natural number of 1 or more). If the value of the number N is different from 2n (step S27, No), the process of step S27 is continued until the value of the number N becomes equal to 2n. When the value of the number N is equal to 2n (Step S27, Yes), for example, when N = 4, the count value of the timer counter of the chopper carrier is reset (Step S28), and the timer of the chopper carrier is reset again after the reset. The up-counting of the counter is continued (step S29). After the processing in step S29, the processing in step S30 is executed.
ステップS30では、番号Nの値が2n+1(nは1以上の自然数)と等しいか否かが判断される。すなわち、番号Nの値が5などと等しいか否かが判断される。番号Nの値がN=2n+1と異なる場合(ステップS30,No)、番号Nの値がN=2n+1と等しくなるまで、ステップS29,30の処理が継続される。番号Nの値がN=2n+1と等しい場合(ステップS30,Yes)、チョッパキャリアのタイマカウンタがアップカウントからダウンカウントに切り替えられ、チョッパキャリアの山に、例えば番号「5」が設定される(ステップS31)。チョッパキャリアに設定された番号「5」は、インバータキャリアに設定された番号「5」と等しいため、チョッパキャリアの山の位相は、インバータキャリアの山の位相と同期する。またステップS27~S31の処理の結果、複数の無停電電源モジュールのそれぞれに設けられる第2制御部7では、チョッパキャリアの山に、番号「5」が設定されるため、チョッパキャリア同士の位相も一致する。ステップS31の処理の後は、ステップS22以降の処理が繰り返される。
In step S30, it is determined whether the value of the number N is equal to 2n + 1 (n is a natural number of 1 or more). That is, it is determined whether the value of the number N is equal to 5 or the like. If the value of the number N is different from N = 2n + 1 (No in step S30), the processing in steps S29 and S30 is continued until the value of the number N becomes equal to N = 2n + 1. When the value of the number N is equal to N = 2n + 1 (Step S30, Yes), the timer counter of the chopper carrier is switched from the up-count to the down-count, and the number “5” is set to the crest of the chopper carrier (Step S30). S31). Since the number "5" set on the chopper carrier is equal to the number "5" set on the inverter carrier, the crest phase of the chopper carrier is synchronized with the crest phase of the inverter carrier. In addition, as a result of the processing in steps S27 to S31, the number "5" is set to the chopper carrier in the second controller 7 provided in each of the plurality of uninterruptible power supply modules. Matches. After the processing in step S31, the processing in step S22 and thereafter is repeated.
以上に説明したように、本発明の実施の形態に係る無停電電源装置100は、チョッパ5及びインバータ4のそれぞれのスイッチング動作のタイミングを制御する位相情報と電圧指令とを出力する第1制御部2と、複数の無停電電源モジュールのそれぞれに設けられる第2制御部7とを備える。そして、複数の無停電電源モジュールのそれぞれに設けられる第2制御部7は、位相情報と電圧指令とに基づき、インバータ4のスイッチング動作を制御する第1三角波キャリアの山の位相に、チョッパのスイッチング動作を制御する第2三角波キャリアの山の位相を同期させて、同期した第2三角波キャリアを用いてチョッパ5のスイッチング動作を制御するように構成されている。この構成により、複数のチョッパ5間に電位差が生じることがなくなり、横流を抑制することができる。従って、横流が生じることによって、例えばチョッパ5に含まれる半導体スイッチング素子70a,70bに過電流が流れて破損するなどの障害発生を抑制できる。その結果、横流発生時の過電流を抑制するための減衰器などの部品を追加する必要がなくなり、無停電電源装置100の製造コストを低減できると共に、無停電電源装置100の構造を簡素化できる。また無停電電源装置100の構造が簡素化されることにより、無停電電源装置100の信頼性の向上を図ることができる。
As described above, the uninterruptible power supply 100 according to the embodiment of the present invention includes the first control unit that outputs the phase information for controlling the timing of the switching operation of each of the chopper 5 and the inverter 4 and the voltage command. 2 and a second control unit 7 provided in each of the plurality of uninterruptible power supply modules. Then, based on the phase information and the voltage command, the second control unit 7 provided in each of the plurality of uninterruptible power supply modules switches the chopper switching to the peak phase of the first triangular wave carrier that controls the switching operation of the inverter 4. The phase of the peak of the second triangular wave carrier for controlling the operation is synchronized, and the switching operation of the chopper 5 is controlled using the synchronized second triangular wave carrier. With this configuration, a potential difference does not occur between the plurality of choppers 5, and cross flow can be suppressed. Therefore, it is possible to suppress the occurrence of a fault such as an overcurrent flowing through the semiconductor switching elements 70a and 70b included in the chopper 5 and being damaged due to the cross current. As a result, it is not necessary to add a component such as an attenuator for suppressing an overcurrent at the time of occurrence of a cross current, so that the manufacturing cost of the uninterruptible power supply 100 can be reduced and the structure of the uninterruptible power supply 100 can be simplified. . In addition, since the structure of the uninterruptible power supply 100 is simplified, the reliability of the uninterruptible power supply 100 can be improved.
なお本実施の形態では、インバータキャリアの山の位相にチョッパキャリアの山の位相を同期させる構成例について説明したが、無停電電源装置100は、インバータキャリアの谷の位相にチョッパキャリアの谷の位相を同期させるように構成してもよい。このように構成した場合でも、複数のチョッパ5間に電位差が生じることがなくなり、横流を抑制することができる。
In the present embodiment, a configuration example in which the phase of the crest of the chopper carrier is synchronized with the phase of the crest of the inverter carrier has been described. May be configured to be synchronized. Even in the case of such a configuration, a potential difference does not occur between the plurality of choppers 5, and cross flow can be suppressed.
また無停電電源装置100では、複数の無停電電源モジュールのそれぞれに設けられる第2制御部7が第1制御部2にスター接続されているが、複数の第2制御部7がデイジーチェーン接続されている場合でも、インバータキャリアの山又は谷の位相に、チョッパキャリアの山又は谷の位相を同期させることは可能である。但し、デイジーチェーン接続の場合、第2制御部7同士を渡り配線で接続する必要があるため、サブ制御基板6に、渡り配線を接続するためのコネクタを追加で設ける必要がある。従って、サブ制御基板6の構造が複雑化して、製造コストが増加すると共に、サブ制御基板6に半導体部品を実装するためのスペースが相対的に狭くなるため、サブ制御基板6の面積を大きくしなければならず、無停電電源モジュールが大型化する。また無停電電源モジュールの数が増える程、渡り配線を接続する工数も増加する。またデイジーチェーン接続の場合、スター接続に比べて、複数の第2制御部7間の通信制御が複雑になるため、第2制御部7に設けられるCPU(Central Processing Unit)などの処理負担が増加する。これに対して、複数の第2制御部7が第1制御部2にスター接続される場合、サブ制御基板6への渡り配線接続用のコネクタが不要になり、サブ制御基板6の構造が簡素化されると共に、サブ制御基板6の製造コストを低減できる。またサブ制御基板6の構造が簡素化されるため、第2制御部7の信頼性が向上する。また複数の第2制御部7間の通信制御が簡素化され、処理能力が低い安価なCPUを利用可能となる。
In the uninterruptible power supply device 100, the second control units 7 provided in each of the plurality of uninterruptible power supply modules are star-connected to the first control unit 2, but the plurality of second control units 7 are daisy-chain connected. However, it is possible to synchronize the phase of the peak or valley of the chopper carrier with the phase of the peak or valley of the inverter carrier. However, in the case of the daisy chain connection, since it is necessary to connect the second control units 7 with the crossover wiring, it is necessary to additionally provide the sub-control board 6 with a connector for connecting the crossover wiring. Therefore, the structure of the sub-control board 6 is complicated, the manufacturing cost is increased, and the space for mounting the semiconductor components on the sub-control board 6 is relatively narrow. And the size of the uninterruptible power supply module increases. In addition, as the number of uninterruptible power supply modules increases, the number of steps for connecting the crossover wiring also increases. In the case of the daisy chain connection, communication control between the plurality of second control units 7 is more complicated than in the case of the star connection, so that the processing load on the CPU (Central Processing Unit) provided in the second control unit 7 increases. I do. On the other hand, when the plurality of second control units 7 are star-connected to the first control unit 2, a connector for connecting the crossover wiring to the sub-control board 6 becomes unnecessary, and the structure of the sub-control board 6 is simplified. And the manufacturing cost of the sub-control board 6 can be reduced. Further, since the structure of the sub-control board 6 is simplified, the reliability of the second control unit 7 is improved. Further, communication control between the plurality of second control units 7 is simplified, and an inexpensive CPU with low processing capability can be used.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configurations described in the above embodiments are merely examples of the contents of the present invention, and can be combined with other known technologies, and can be combined with other known technologies without departing from the gist of the present invention. Parts can be omitted or changed.
本国際特許出願は2018年9月27日に出願した日本国特許出願第2018-181471号に基づきその優先権を主張するものであり、日本国特許出願第2018-181471号の全内容を本願に援用する。
This international patent application claims its priority based on Japanese Patent Application No. 2018-181471 filed on Sep. 27, 2018, and incorporates the entire contents of Japanese Patent Application No. 2018-181471 into this application. Invite.
1 メイン制御基板、2 第1制御部、3 コンバータ、4 インバータ、5 チョッパ、6 サブ制御基板、7 第2制御部、8 平滑コンデンサ、9 第1ノイズフィルタ、9a インダクタ、9b コンデンサ、10 バッテリ、11 メイン制御ユニット、12 第2ノイズフィルタ、12a インダクタ、12b コンデンサ、20 メイン制御ユニット、31 第1無停電電源モジュール、32 第2無停電電源モジュール、33 第3無停電電源モジュール、34 第4無停電電源モジュール、70 直列接続体、70a,70b 半導体スイッチング素子、71 チョークコイル、73 平滑コンデンサ、100 無停電電源装置、200 交流電源、300 負荷、400 通信線。
1 {main control board, 2} first control section, 3} converter, 4 # inverter, 5 # chopper, 6 # sub control board, 7 # second control section, 8 # smoothing capacitor, 9 # first noise filter, 9a # inductor, 9b # capacitor, 10 # battery, 11 main control unit, 12 second noise filter, 12a inductor, 12b capacitor, 20 main control unit, 31 first uninterruptible power supply module, 32 second uninterruptible power supply module, 33 third uninterruptible power supply module, 34 fourth uninterrupted power supply module Power failure power supply module, 70 series connection, 70a, 70b semiconductor switching element, 71 choke coil, 73 smoothing capacitor, 100 uninterruptible power supply, 200 AC power supply, 300 load, 400 communication line.
Claims (3)
- バッテリと、
交流電圧を直流電圧に変換して出力するコンバータと、前記コンバータからの直流電圧を変換して前記バッテリを充電し、又は前記バッテリからの直流電圧を変換して出力するチョッパと、前記コンバータ又は前記チョッパから出力される直流電圧を交流電圧に変換するインバータとを有する複数の無停電電源モジュールと、
前記チョッパ及び前記インバータのそれぞれに含まれるスイッチング素子のスイッチング動作のタイミングを制御する位相情報と電圧指令とを出力する第1制御部と、
を備え、
複数の前記無停電電源モジュールのそれぞれは、前記位相情報と前記電圧指令とに基づき、前記インバータに含まれるスイッチング素子のスイッチング動作を制御する第1三角波キャリアの山の位相に、前記チョッパに含まれるスイッチング素子のスイッチング動作を制御する第2三角波キャリアの山又は谷の位相を同期させて、同期した前記第2三角波キャリアを用いて前記チョッパに含まれるスイッチング素子のスイッチング動作を制御する第2制御部を備える無停電電源装置。 Battery and
A converter that converts an AC voltage into a DC voltage and outputs the same; a chopper that converts the DC voltage from the converter to charge the battery or converts and outputs a DC voltage from the battery; and the converter or the converter A plurality of uninterruptible power supply modules having an inverter that converts a DC voltage output from the chopper into an AC voltage,
A first control unit that outputs phase information and a voltage command for controlling timing of a switching operation of a switching element included in each of the chopper and the inverter,
With
Each of the plurality of uninterruptible power supply modules is included in the chopper in a peak phase of a first triangular wave carrier that controls a switching operation of a switching element included in the inverter based on the phase information and the voltage command. A second control unit that synchronizes a phase of a peak or a valley of a second triangular wave carrier that controls a switching operation of a switching element, and controls a switching operation of a switching element included in the chopper using the synchronized second triangular wave carrier. Uninterruptible power supply. - バッテリと、
交流電圧を直流電圧に変換して出力するコンバータと、前記コンバータからの直流電圧を変換して前記バッテリを充電し、又は前記バッテリからの直流電圧を変換して出力するチョッパと、前記コンバータ又は前記チョッパから出力される直流電圧を交流電圧に変換するインバータとを有する複数の無停電電源モジュールと、
前記チョッパ及び前記インバータのそれぞれに含まれるスイッチング素子のスイッチング動作のタイミングを制御する位相情報と電圧指令とを出力する第1制御部と、
を備え、
複数の前記無停電電源モジュールのそれぞれは、前記位相情報と前記電圧指令とに基づき、前記インバータに含まれるスイッチング素子のスイッチング動作を制御する第1三角波キャリアの谷の位相に、前記チョッパに含まれるスイッチング素子のスイッチング動作を制御する第2三角波キャリアの谷の位相を同期させて、同期した前記第2三角波キャリアを用いて前記チョッパに含まれるスイッチング素子のスイッチング動作を制御する第2制御部を備える無停電電源装置。 Battery and
A converter that converts an AC voltage into a DC voltage and outputs the same; a chopper that converts the DC voltage from the converter to charge the battery or converts and outputs a DC voltage from the battery; and the converter or the converter A plurality of uninterruptible power supply modules having an inverter that converts a DC voltage output from the chopper into an AC voltage,
A first control unit that outputs phase information and a voltage command for controlling timing of a switching operation of a switching element included in each of the chopper and the inverter,
With
Each of the plurality of uninterruptible power supply modules is included in the chopper at a valley phase of a first triangular wave carrier that controls a switching operation of a switching element included in the inverter based on the phase information and the voltage command. A second control unit that synchronizes a phase of a valley of a second triangular wave carrier that controls a switching operation of a switching element and controls a switching operation of a switching element included in the chopper using the synchronized second triangular wave carrier; Uninterruptible power system. - 複数の前記無停電電源モジュールのそれぞれに設けられる前記第2制御部は、前記第1制御部にスター接続される請求項1又は2に記載の無停電電源装置。 The uninterruptible power supply according to claim 1 or 2, wherein the second control unit provided in each of the plurality of uninterruptible power supply modules is star-connected to the first control unit.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020548048A JP6966005B2 (en) | 2018-09-27 | 2019-07-23 | Uninterruptible power system |
US17/001,995 US11177689B2 (en) | 2018-09-27 | 2020-08-25 | Uninterrupted power supply apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018181471 | 2018-09-27 | ||
JP2018-181471 | 2018-09-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/001,995 Continuation US11177689B2 (en) | 2018-09-27 | 2020-08-25 | Uninterrupted power supply apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020066246A1 true WO2020066246A1 (en) | 2020-04-02 |
Family
ID=69951351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/028771 WO2020066246A1 (en) | 2018-09-27 | 2019-07-23 | Uninterruptible power supply device |
Country Status (3)
Country | Link |
---|---|
US (1) | US11177689B2 (en) |
JP (1) | JP6966005B2 (en) |
WO (1) | WO2020066246A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7666228B2 (en) | 2021-08-23 | 2025-04-22 | 沖電気工業株式会社 | Information processing device and information processing system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114337223A (en) * | 2021-12-29 | 2022-04-12 | 新疆金风科技股份有限公司 | Zero-sequence current suppression method and device, wind power converter, medium and unit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002345252A (en) * | 2001-05-17 | 2002-11-29 | Meidensha Corp | Method and apparatus for operating a plurality of power converters |
JP2012055112A (en) * | 2010-09-02 | 2012-03-15 | Denso Corp | Power conversion apparatus, and electric power steering device using the same |
JP2018007377A (en) * | 2016-06-30 | 2018-01-11 | 東芝三菱電機産業システム株式会社 | Power conversion system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7638899B2 (en) * | 2006-03-10 | 2009-12-29 | Eaton Corporation | Nested redundant uninterruptible power supply apparatus and methods |
JP5952623B2 (en) | 2012-04-16 | 2016-07-13 | 東芝三菱電機産業システム株式会社 | Power converter |
JP5792697B2 (en) * | 2012-09-05 | 2015-10-14 | 東芝三菱電機産業システム株式会社 | Uninterruptible power system |
US10008953B2 (en) * | 2014-05-07 | 2018-06-26 | Hitachi, Ltd. | Power conversion device and power conversion method for power conversion device |
-
2019
- 2019-07-23 JP JP2020548048A patent/JP6966005B2/en active Active
- 2019-07-23 WO PCT/JP2019/028771 patent/WO2020066246A1/en active Application Filing
-
2020
- 2020-08-25 US US17/001,995 patent/US11177689B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002345252A (en) * | 2001-05-17 | 2002-11-29 | Meidensha Corp | Method and apparatus for operating a plurality of power converters |
JP2012055112A (en) * | 2010-09-02 | 2012-03-15 | Denso Corp | Power conversion apparatus, and electric power steering device using the same |
JP2018007377A (en) * | 2016-06-30 | 2018-01-11 | 東芝三菱電機産業システム株式会社 | Power conversion system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7666228B2 (en) | 2021-08-23 | 2025-04-22 | 沖電気工業株式会社 | Information processing device and information processing system |
Also Published As
Publication number | Publication date |
---|---|
US11177689B2 (en) | 2021-11-16 |
JPWO2020066246A1 (en) | 2021-02-15 |
JP6966005B2 (en) | 2021-11-10 |
US20200389047A1 (en) | 2020-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5377634B2 (en) | Control device for load drive system | |
JP4866133B2 (en) | Power converter | |
JP2013255426A (en) | System interconnection inverter system | |
JP2011036045A5 (en) | ||
US10644586B2 (en) | Adaptive power converter topologies supporting active power factor correction (PFC) | |
WO2012094670A2 (en) | Dc-dc converter | |
WO2020066246A1 (en) | Uninterruptible power supply device | |
JP5362657B2 (en) | Power converter | |
JP4873317B2 (en) | Inverter device | |
US8787055B2 (en) | Inverter device | |
JP7008222B2 (en) | Power conversion system | |
JP5791811B2 (en) | Switching control circuit and switching power supply device | |
CN115152139A (en) | Controlling Cascaded Multilevel Converters | |
JP2010110179A (en) | Rectifying circuit | |
JP6825460B2 (en) | Power supply | |
JP2011193704A (en) | Dc-ac power converter | |
KR20160117675A (en) | H-bridge multi-level inverter | |
JP4768535B2 (en) | Power converter | |
JP6052221B2 (en) | Power converter | |
JP2012065515A (en) | Switching method of electric power conversion system | |
WO2023012963A1 (en) | Power conversion device | |
JP2009303380A (en) | Power conversion device | |
JP4839729B2 (en) | AC-DC converter | |
US7705576B2 (en) | High-win circuit for multi-phase current mode control | |
JP7432111B2 (en) | uninterruptible power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19864136 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020548048 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19864136 Country of ref document: EP Kind code of ref document: A1 |