[go: up one dir, main page]

WO2020065927A1 - 蛍光体素子、その製造方法および照明装置 - Google Patents

蛍光体素子、その製造方法および照明装置 Download PDF

Info

Publication number
WO2020065927A1
WO2020065927A1 PCT/JP2018/036331 JP2018036331W WO2020065927A1 WO 2020065927 A1 WO2020065927 A1 WO 2020065927A1 JP 2018036331 W JP2018036331 W JP 2018036331W WO 2020065927 A1 WO2020065927 A1 WO 2020065927A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
incident surface
incident
index layer
Prior art date
Application number
PCT/JP2018/036331
Other languages
English (en)
French (fr)
Inventor
近藤 順悟
直剛 岡田
雄一 岩田
浅井 圭一郎
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2018/036331 priority Critical patent/WO2020065927A1/ja
Priority to PCT/JP2019/013259 priority patent/WO2020066077A1/ja
Priority to JP2019519429A priority patent/JP6632108B1/ja
Priority to DE112019004254.8T priority patent/DE112019004254B4/de
Publication of WO2020065927A1 publication Critical patent/WO2020065927A1/ja
Priority to US17/577,638 priority patent/US11635189B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8514Wavelength conversion means characterised by their shape, e.g. plate or foil
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • F21V7/26Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/113Fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses
    • H10H20/856Reflecting means

Definitions

  • the present invention relates to a phosphor element, a method of manufacturing the same, and a lighting device that emits fluorescent light.
  • a white light source combining a blue laser or an ultraviolet laser with a phosphor.
  • the light density of the excitation light can be increased, and by concentrating a plurality of laser lights on the phosphor, the light intensity of the excitation light can be increased.
  • the luminous flux and the luminance can be simultaneously increased without changing the light emitting area.
  • a white light source combining a semiconductor laser and a phosphor has been attracting attention as a light source replacing the LED.
  • the fluorescent glass used in automotive headlights is Nippon Electric Glass Co., Ltd.'s "Lumiface” fluorescent glass, the National Research and Development Agency of Materials and Materials, Tamura Corporation, and Lightwave's YAG single crystal fluorescent glass.
  • the body is considered.
  • the width of the phosphor increases from the incident surface to the emission surface.
  • the angle of inclination of the side surface of the phosphor is 15 degrees or more and 35 degrees or less.
  • a metal film is formed to accommodate the phosphor in a resin case and allow the inner surface of the case to function as a reflector portion.
  • the phosphor is fixed to the bottom surface of the case by a sealing resin, and the side surface of the phosphor is covered with air.
  • the width of the phosphor increases from the incident surface to the emission surface, and the phosphor is accommodated in the through hole of the heat radiation member. Are bonded to the surface of the through-hole with a glass paste.
  • excitation light is incident on the phosphor, the fluorescence and the excitation light are reflected and changed in direction in the phosphor, and emitted as white light from the phosphor.
  • excitation light is made incident from the entrance surface of the phosphor, and excitation light and fluorescence are emitted from the exit surface opposite to the entrance surface, so that the optical path cannot be changed.
  • excitation light and fluorescence are emitted from the exit surface opposite to the entrance surface, so that the optical path cannot be changed.
  • the object of the present invention is to increase the fluorescence intensity of emitted light and suppress color unevenness of emitted white light when exciting light is incident on the reflective phosphor element to generate fluorescence.
  • Another object of the present invention is to provide a manufacturing method which facilitates heat radiation from a phosphor portion when manufacturing a reflective phosphor element.
  • the phosphor element according to the present invention is a phosphor section having an excitation light incident surface, a facing surface and a side surface facing the incident surface, and at least a part of the excitation light incident on the incident surface.
  • a phosphor part that converts the light into fluorescent light and emits the fluorescent light from the incident surface;
  • a reflecting film is provided, and the area of the incident surface of the phosphor section is larger than the area of the facing surface.
  • the present invention also relates to a lighting device, comprising: a light source that oscillates a laser beam; and the phosphor element.
  • the present invention is a phosphor portion having an incident surface of the excitation light, an opposing surface and a side surface facing the incident surface, and converts at least a part of the excitation light incident on the incident surface into fluorescent light.
  • a phosphor portion that emits the fluorescent light from the incident surface; and an integral reflecting film that covers the phosphor portion, wherein the area of the incident surface of the phosphor portion is greater than the area of the facing surface.
  • a method of manufacturing a large phosphor element Joining the second main surface of the phosphor substrate having a first main surface and a second main surface to a handle substrate, Forming the phosphor portion by processing the first main surface of the phosphor substrate to form the opposing surface and the side surface; A step of forming the reflection film so as to cover the facing surface and the side surface; and a step of separating the phosphor section from the handle substrate.
  • the fluorescent element which injects excitation light with respect to the incident surface of a fluorescent substance part, and emits excitation light and fluorescence from an incident surface, the fluorescence intensity of emitted light is maintained high and color unevenness is suppressed. can do.
  • an integrated reflective film can be formed at the same time, thereby promoting heat radiation from the reflective film.
  • FIG. 1A is a perspective view illustrating a phosphor element 1 according to an embodiment of the present invention
  • FIG. 2B is a cross-sectional view of the phosphor element 1.
  • (A) is a schematic diagram illustrating a light propagation path in the phosphor element 1
  • (b) is a schematic diagram illustrating a light propagation path in the phosphor element 11 of the comparative example.
  • (A) is a schematic diagram showing a light propagation path in the phosphor element 1
  • (b) is a schematic diagram showing a light propagation path in the phosphor element 21 of the comparative example.
  • FIG. 9 is a cross-sectional view illustrating a phosphor element 31 according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a phosphor element 41.
  • (A) shows a state in which a phosphor substrate 51 made of a phosphor is joined to a handle substrate 53, and (b) shows a state in which a plurality of phosphor portions 2 are formed by processing the phosphor substrate.
  • FIG. 4 is a perspective view showing a state in which a low refractive index layer 54 is provided on a bonding layer 52 and a phosphor section 2.
  • FIG. 3 is a perspective view showing a state in which a reflection film 55 is provided on a low refractive index layer 54.
  • the phosphor section 2 includes an incident surface 2a, an exit surface 2b, and four side surfaces 2c.
  • the phosphor portion has a substantially trapezoidal shape, and the angle ⁇ of the side surface 2c with respect to the incident surface 2a is an acute angle smaller than 90 °.
  • the area AI of the incident surface 2a is larger than the area AR of the opposing surface 2b.
  • a low-refractive-index layer 3b is provided on the side surface 2c of the phosphor section 2, and a low-refractive-index layer 3a is provided on the opposing surface 2b.
  • the low-refractive-index layers 3a and 3b form an integrated low-refractive-index layer.
  • the refractive index layer 3 is formed.
  • the low refractive index layer 3 covers the side surface 2c and the opposing surface 2b of the phosphor section 2 over the entire surface.
  • the reflection film 4a is provided on the low-refractive-index layer 3a
  • the reflection film 4b is provided on the low-refractive-index layer 3b.
  • the reflection films 4a and 4b form an integral reflection film 4. Have been.
  • the reflection film 4 covers the low refractive index layer 3 over the entire surface.
  • the fluorescent light emitted from the phosphor particles in the direction of the incident surface 2a is emitted from the incident surface 2a as it is.
  • the fluorescent light emitted from the phosphor particles toward the opposing surface 2b is reflected by the opposing surface and exits from the incident surface 2a as it is.
  • the fluorescent light emitted obliquely as shown by arrows C and D is reflected by the reflection film 4b and emitted from the incident surface 2a as shown by arrows E and B.
  • the area AI of the incident surface of the phosphor section 2 is larger than the area AR of the opposing surface, and the side surface 2c is inclined, the direction of the reflected light E is increased by the inclination angle ⁇ . 2a.
  • the number of reflections until the excitation light exits from the incident surface 2a can be reduced.
  • the width of the phosphor section 12 is constant.
  • the low refractive index layers 13a and 13b are provided on the side surface 12c and the opposing surface 12b of the phosphor element 12, and the low refractive index layers 13a and 13b form an integral low refractive index layer 13.
  • a reflective film 14b is provided on the low refractive index layer 13b, a reflective film 14a is provided on the low refractive index layer 13a, and the reflective films 14a and 14b form an integral reflective film 14. I have.
  • the fluorescent light F emitted from the phosphor particles 5 toward, for example, the side surface 12c is reflected as it is as G and returns to the particles 5, so that it is not reflected from the incident surface 12a. That is, since the side surface 12c and the incident surface 12a are perpendicular to each other, the function of directing the direction of the fluorescent light toward the incident surface 12a when reflecting the fluorescent light does not work. As a result, the number of fluorescence reflections increases.
  • the reflectance at the reflective film is not 100%, and a part of the fluorescent light is absorbed by the reflective film. Therefore, if the number of reflections is large, the fluorescent light is attenuated, and the temperature rise of the reflective film deteriorates the exhaust heat from the phosphor part. As a result, the temperature of the phosphor increases, and the fluorescence intensity decreases.
  • the fluorescence H is not totally reflected by the low-refractive-index layer.
  • H1 is refracted at the interface between the low refractive index layer 3a and H2, is reflected as H2 by the reflection film 4a, is refracted again at the interface between the phosphor part 2 and the low refractive index layer 3a, and is refracted as H3.
  • the light propagates through the phosphor portion 2 and exits from the incident surface 2a.
  • the shape of the phosphor part 2 is the same as that of the phosphor part 2 of FIG.
  • the low refractive index layer 23 is provided on the side surface 2c of the phosphor element 2.
  • the low refractive index layer is not provided on the opposing surface 2b of the phosphor section 2.
  • a reflective film 24b is provided on the low refractive index layer 23, and a reflective film 24a is provided on the facing surface 2b of the phosphor section 2, and the reflective films 24a and 24b are integrated.
  • the reflection film 24 is formed.
  • the fluorescence reflected from the phosphor particles 5 toward the opposing surface side as shown by the arrow H is reflected by the reflection film 24a, propagates through the phosphor part 2 as shown by the arrow H4, and is incident.
  • the light exits from the surface 2a.
  • the fluorescent light emitted obliquely from the phosphor particles 5 toward the opposing surface as shown by the arrow J satisfies the total reflection condition in the low refractive index layer 3a.
  • the light is totally reflected as indicated by an arrow J1 and further reflected at the interface between the low refractive index layer 3b and the phosphor portion 2 as indicated by an arrow J2, and exits from the incident surface 2a.
  • the fluorescent light emitted obliquely from the phosphor particles 5 toward the opposing surface as shown by the arrow J is reflected on the opposing surface 2b.
  • the light is reflected by the film 24a as indicated by an arrow J3, is further totally reflected by the interface between the low refractive index layer 23 and the phosphor part 2 as indicated by an arrow J4, and is emitted from the incident surface 2a.
  • the amount of light energy absorbed by the reflection film 24a is large, and the temperature of the reflection film 24a rises, so that the exhaust heat of the phosphor part 2 is deteriorated and the temperature rises. Therefore, the intensity of the fluorescent light emitted from the incident surface 2a decreases due to the temperature quenching of the phosphor.
  • the phosphor element of the present invention is a phosphor portion having an incident surface of excitation light, a facing surface facing the incident surface, and a side surface, wherein at least a part of the excitation light incident on the incident surface is fluorescent. And a phosphor part for emitting the fluorescent light from the incident surface.
  • the entire excitation light is converted into fluorescent light, only the fluorescent light is emitted from the incident surface.
  • the fluorescence and the excitation light can be emitted from the incident surface.
  • the phosphor constituting the phosphor section is not limited as long as it can convert excitation light into fluorescence, but may be phosphor glass, phosphor single crystal, or phosphor polycrystal.
  • a scattering material may be added to the phosphor to scatter the excitation light and the fluorescence, or holes may be provided in the phosphor. In this case, since the light incident on the phosphor is scattered in the phosphor, the emitted light (excitation light and fluorescence) is scattered, and the scattering angle is increased.
  • the scattering angle of the phosphor can be measured by, for example, a scatterometer “Mini-Diff” manufactured by Cybernet Systems.
  • the scattering angle is defined as the full width angle that is 1 / e 2 of the peak value from the transmission spectrum of the emitted light. At this time, the scattering angle is preferably 5 degrees or more, and more preferably 10 degrees or more.
  • the upper limit of the scattering angle of the phosphor constituting the phosphor portion is not particularly limited, but may be equal to or less than the numerical aperture (NA) of the emitted light, and may be equal to or less than 80 degrees from a practical viewpoint.
  • NA numerical aperture
  • Phosphor glass is obtained by dispersing rare earth element ions in a base glass.
  • the base glass includes silica, boron oxide, calcium oxide, lanthanum oxide, barium oxide, zinc oxide, phosphorus oxide, aluminum fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, and oxide glass containing barium chloride. Can be illustrated.
  • the rare earth element ions dispersed in the phosphor glass Tb, Eu, Ce, and Nd are preferable, but La, Pr, Sc, Sm, Er, Tm, Dy, Gd, and Lu may be used.
  • the phosphor monocrystal, Y 3 Al 5 O 12, Ba 5 Si 11 A l7 N 25, Tb 3 Al 5 O 12 and YAG can be exemplified.
  • a part of Y (yttrium) of YAG may be substituted by Lu.
  • As a doping component to be doped into the phosphor single crystal rare earth ions are preferable, and Tb, Eu, Ce, and Nd are particularly preferable. However, La, Pr, Sc, Sm, Er, Tm, Dy, Gd, and Lu are preferable. There may be.
  • Examples of the polycrystalline phosphor include TAG (terbium aluminum garnet), sialon, nitride, BOS (barium orthosilicate), and YAG (yttrium aluminum garnet). A part of Y (yttrium) of YAG may be substituted by Lu.
  • TAG terbium aluminum garnet
  • BOS barium orthosilicate
  • YAG yttrium aluminum garnet
  • Lu Lu
  • rare earth ions are preferable, and Tb, Eu, Ce, and Nd are particularly preferable.
  • La, Pr, Sc, Sm, Er, Tm, Dy, Gd, and Lu are preferable. Is also good.
  • the phosphor element of the present invention may be a non-grating type phosphor element that does not include a grating (diffraction grating) in the phosphor section, and the grating may be provided in the phosphor section.
  • the phosphor section has at least an excitation light incident surface, a facing surface, and a side surface.
  • the side surface is a surface extending between the incident surface and the facing surface.
  • the shape of the phosphor is not particularly limited.
  • the shapes of the incident surface and the opposing surface of the phosphor portion may be, for example, a polygon such as a circle, an ellipse, a triangle, a square, and a hexagon.
  • an integrated low-refractive-index layer on the side surface and the opposing surface of the phosphor section, and having a lower refractive index than the phosphor section.
  • the low-refractive-index layer is provided on the side surface and the opposing surface of the phosphor portion, but the integral low-refractive-index layer means that the low-refractive-index layers are continuous with each other. I do.
  • the low-refractive-index layer does not need to cover the entire side surface and the entirety of the opposing surface, and it is acceptable that a part of the side surface and a part of the opposing surface are exposed without being covered by the low-refractive index layer. Shall be.
  • it is preferable that 90% or more of the entire area of the side surface and 90% or more of the entire area of the opposing surface are covered with the low refractive index layer. More preferably, it is covered by a rate layer.
  • Examples of the material of the low refractive index layer include aluminum oxide, magnesium oxide, aluminum nitride, tantalum oxide, silicon oxide, silicon nitride, aluminum nitride, and silicon carbide. From the viewpoint of heat dissipation, the material of the low refractive index layer is most preferably aluminum oxide or magnesium oxide.
  • the refractive index of the low refractive index layer is lower than the refractive index of the phosphor, but in this case, the total reflection due to the refractive index difference between the phosphor and the low refractive index layer can be utilized, and The reflected light component can be reduced, and light can be prevented from being absorbed by reflection by the reflection film.
  • the refractive index of the low refractive index layer is preferably 1.7 or less, and more preferably 1.6 or less. There is no particular lower limit for the refractive index of the low refractive index layer, and it is 1 or more, but it is practically 1.4 or more.
  • the difference between the refractive index of the phosphor part and the refractive index of the low refractive index layer is preferably 0.1 or more, and more preferably 0.2 or more. Further, the refractive index of the phosphor part is preferably from 1.4 to 1.7, more preferably from 1.42 to 1.5.
  • the thickness of the low refractive index layer is preferably 1 ⁇ m or less, which can reduce the influence on heat radiation. Further, from the viewpoint of suppressing the absorption by the reflective film, the thickness of the low refractive index layer is preferably 0.05 ⁇ m or more.
  • the phosphor element of the present invention has an integral reflecting film covering the surface of the low refractive index layer.
  • the fact that the reflection films are integral means that the reflection films are continuous with each other. However, it is not necessary that the reflection film covers the entire side surface and the entire opposing surface, and it is acceptable that the low refractive index layer is exposed without being covered by the reflection film on a part of the side surface and a part of the opposing surface. It shall be. However, also in this case, it is preferable that 90% or more of the total area of the side surfaces and 90% or more of the total area of the opposing surfaces are covered with the reflective film, and the entire side surfaces and the opposing surfaces are coated with the reflective film. More preferably, it is performed.
  • the material of the reflection film is not particularly limited as long as it reflects the excitation light and the fluorescence that have passed through the phosphor layer.
  • the reflection film does not need to totally reflect the excitation light, and may transmit some or all of the excitation light.
  • the reflection film is a metal film or a dielectric multilayer film.
  • the reflective film is a metal film, the light can be reflected in a wide wavelength range, the incident angle dependence can be reduced, and the durability against temperature and weather resistance are excellent.
  • the reflective film is a dielectric multilayer film, since there is no absorption, light incident at a specific angle can be made 100% reflected light without loss, and can be composed of an oxide film. By increasing the adhesion to the bonding layer, peeling can be prevented.
  • the reflectivity of the excitation light by the reflection film is set to 80% or more, preferably 95% or more.
  • the dielectric multilayer film is a film in which a high refractive material and a low refractive material are alternately laminated.
  • the high refractive index include TiO 2 , Ta 2 O 3 , Ta 2 O 3 , ZnO, Si 3 N 4 , and Nb 2 O 5 .
  • the low refraction material include SiO 2 , MgF 2 , and CaF 2 .
  • the number of layers and the total thickness of the dielectric multilayer film are appropriately selected depending on the wavelength of the fluorescence to be reflected.
  • the material of the metal film is preferably as follows. (1) Single layer film of Al, Ag, Au, etc. (2) Multilayer film of Al, Ag, Au, etc.
  • the thickness of the metal film is not particularly limited as long as it can reflect fluorescence, but is preferably 0.05 ⁇ m or more. 1 ⁇ m or more is more preferable. Further, in order to increase the adhesion between the metal film and the base material, it can be formed via a metal film of Ti, Cr, Ni, or the like.
  • the area of the incident surface of the phosphor portion is larger than the area of the opposing surface.
  • the area AI of the incident surface 2a is larger than the area AR of the opposing surface 2b, whereby the intensity of the fluorescent light emitted from the incident surface can be improved as described above.
  • the ratio of the area AI of the incident surface 2a / the area AR of the opposing surface 2b is preferably 1.2 or more, and more preferably 1.47 or more.
  • the ratio of the area AI of the incident surface 2a / the area AR of the opposing surface 2b is preferably 27.2 or less, and more preferably 11 or less.
  • the inclination angle ⁇ of the side surface with respect to the incident surface of the phosphor portion is preferably 50 ° or more and 85 ° or less, more preferably 60 ° or more and 80 ° or less.
  • a partially transparent film made of a transparent material that transmits excitation light and fluorescence can be provided on the incident surface of the phosphor section.
  • the partially transmitting film is a film that reflects a part of the excitation light and transmits the rest.
  • the reflectance of the partially transmitting film with respect to the excitation light is 9% or more, and preferably 50% or less.
  • Examples of the material of such a partial transmission film include a metal film for reflection and a dielectric multilayer film described above.
  • the incident surface side support substrate can be provided on the incident surface of the phosphor section, so that the heat radiation effect from the phosphor section can be further improved.
  • an opposing surface side support substrate can be provided on the main surface on the opposing surface side of the heat radiating substrate, whereby the heat radiating effect from the heat radiating substrate can be further improved.
  • each support substrate a material having a thermal conductivity (25 ° C.) of 200 W / mK or more is preferable, and a material of 300 W / m ⁇ K or more is particularly preferable. Although there is no particular upper limit on the thermal conductivity of this material, it can be set to 500 W / m ⁇ K or less from the viewpoint of practical availability.
  • each support substrate is preferably transparent or translucent to transmit light.
  • the incident surface side support substrate can be provided with a window for irradiating the incident surface with the excitation light.
  • the material of the incident surface side support substrate does not need to be transparent or translucent.
  • the material of the support substrate is transparent or translucent
  • the material of the support substrate is preferably alumina, aluminum nitride, silicon carbide, quartz, or glass.
  • each support substrate is not transparent or translucent
  • the material of the support substrate is alumina, aluminum nitride, silicon carbide, crystal, glass, copper, silver, gold, aluminum, or an alloy material containing the above metal Is preferred.
  • the material of each support substrate may be the same or different.
  • a transparent or translucent support substrate 7 is formed on the incident surface 2a of the phosphor section 2.
  • the support substrate 7 is wider than the phosphor part 2, and the low refractive index layer 3c and the reflection film 4c are extended thereon.
  • a heat dissipation substrate is provided in contact with the reflection film.
  • the thermal conductivity (25 ° C.) of the material of the heat radiating substrate is preferably 200 W / mK or more. Although there is no particular upper limit for this thermal conductivity, it can be 350 W / m ⁇ K or less from the viewpoint of practical availability.
  • the type of metal plating film may be an electrolytic plating film or an electroless plating film.
  • the metal plating film is made of a metal having a thermal conductivity (25 ° C.) of 200 W / mK or more.
  • gold, silver, copper, aluminum, or an alloy containing these metals is particularly preferable.
  • the phosphor part 2, the low refractive index layer 3, and the reflection film 4 are the same as those of the phosphor element of FIG.
  • the phosphor portion 2, the low refractive index layer 3, and the reflection film 4 are fixed and integrated in the concave portion 8c of the heat dissipation substrate 8.
  • 8a is a thin plate portion in contact with the reflection film 4a
  • 8b is a flange portion having a constant thickness, which is in contact with the reflection film 4b.
  • Such a concave portion of the heat dissipation substrate can be formed by machining or laser processing.
  • the heat dissipation board can be formed by a plating method.
  • the type of the metal plating film may be an electrolytic plating film or an electroless plating film.
  • the metal plating film is made of a metal having a thermal conductivity (25 ° C.) of 200 W / mK or more.
  • As the kind of metal constituting the metal plating film of the phosphor part gold, silver, copper, aluminum, or an alloy containing these metals is particularly preferable.
  • a base film for plating may be provided between the reflection film and the heat dissipation substrate.
  • the base film may be Ni, Cr, Ti, or an alloy containing these metals.
  • the thickness T (FIGS. 1 and 6) of the phosphor portion is preferably 300 ⁇ m or more, and more preferably 800 ⁇ m or more, in order to improve the efficiency of taking out the fluorescence on the emission side.
  • the thickness is preferably 3.0 mm or less.
  • the illumination device of the present invention includes a light source that oscillates a laser beam and the phosphor element.
  • a semiconductor laser made of a GaN material having high reliability for exciting the phosphor for illumination is suitable.
  • a light source such as a laser array arranged one-dimensionally can also be realized. It may be a super luminescence diode, a semiconductor optical amplifier (SOA) or an LED. Also, the excitation light from the light source can be made incident on the phosphor element through the optical fiber.
  • SOA semiconductor optical amplifier
  • the method for generating white light from the semiconductor laser and the phosphor is not particularly limited, but the following method is conceivable.
  • a method of generating white light by generating yellow fluorescence with a blue laser and a phosphor A method of generating white light by generating red and green fluorescence with a blue laser and a phosphor A method of generating white light by generating green fluorescent light
  • the production method of the present invention Joining the second main surface of the phosphor substrate having a first main surface and a second main surface to a handle substrate, Forming a phosphor portion by processing the first main surface of the phosphor substrate to form an opposing surface and side surfaces, A step of forming a reflective film so as to cover the opposing surface and the side surface; and a step of separating the phosphor section from the handle substrate.
  • a large number of specific phosphor elements can be simultaneously formed in one phosphor substrate, so that mass productivity can be improved.
  • a step of forming a low-refractive-index layer on the side surface and the opposing surface of the phosphor section is provided, and a reflective film is formed on the low-refractive-index layer. According to this manufacturing method, the phosphor element according to the present invention can be obtained with high productivity.
  • a bonding layer 52 is formed on a handle substrate 53 and is opposed to the phosphor plate 51.
  • the surface 51b is joined.
  • a phosphor portion having a required form can be formed.
  • the phosphor section 2 having a desired shape is formed on the bonding layer 52.
  • Examples of such a processing method include dicing, slicing, micro grinder, laser processing, water jet, and micro blast.
  • a low-refractive-index layer 54 is formed on the phosphor section 2 and on the bonding layer 52.
  • a reflection film 55 is formed on the low refractive index layer 54.
  • each phosphor element 1 can be cut into a predetermined size.
  • a plurality of phosphor elements 1 can be used as a phosphor element array without being divided.
  • the method of forming the low refractive index layer and the reflective film is not particularly limited, but an evaporation method, a sputtering method, and a CVD method are preferable. In the case of a vapor deposition method, a film can be formed by adding ion assist.
  • a reflective film (and a low-refractive-index layer if necessary) can be formed on the side surface and the opposing surface in one film-forming step.
  • the side surface and the opposing surface are orthogonal as shown in FIG. 2B, it is not possible to simultaneously form the reflective film and the low refractive index layer on the side surface and the opposing surface by one film formation.
  • the refractive index may be distributed or the number of steps may increase the cost, but this manufacturing method can solve the problem.
  • Example 1 The phosphor element 41 shown in FIGS. 5 and 6 was manufactured by the manufacturing method described with reference to FIGS. Specifically, a phosphor plate 51 made of YAG (yttrium aluminum garnet) polycrystal having a thickness of 1 mm and a diameter of 4 inches doped with Ce and doped with a ceramic scattering material was prepared. A sapphire wafer having a thickness of 0.3 mm and a diameter of 4 inches was prepared as the handling substrate 53. The phosphor plate 51 was bonded to the handling substrate 53 using the thermoplastic resin 52 at 100 ° C., and then returned to room temperature and integrated (FIG. 7A).
  • YAG yttrium aluminum garnet
  • setback processing by dicing was performed using a blade having a width of 100 ⁇ m and # 800.
  • the phosphor plate was rotated by 90 degrees and setback processing was similarly performed by dicing to form the phosphor portion 2 (FIG. 7B).
  • the width of the incident surface was 2 mm
  • the thickness was 1 mm
  • the inclination ⁇ of the side surface with respect to the incident surface was 63.5 °.
  • the area AI of the incident surface is 4 mm 2
  • the area of the facing surface is 1 mm 2 .
  • the side surface and the opposing surface of each phosphor part 2 were processed surfaces by dicing, and the arithmetic average roughness Ra of the side surface and the opposing surface was estimated to be 10 ⁇ m.
  • a low-refractive-index layer 54 of Al 2 O 3 was formed to a thickness of 0.5 ⁇ m on the facing surface 2b and the side surface 2c of the phosphor section by sputtering (see FIG. 8). Further, a reflective film 55 made of an Al alloy film was formed on the low refractive index layer 54 with a thickness of 0.5 ⁇ m (FIG. 9). After the film formation, the substrate was heated to 100 ° C. with a hot plate, the phosphor element 1 as shown in FIG. 1 was separated from the handling substrate 53, and the adhesive was washed with an organic solvent.
  • a heat dissipation substrate 8 made of oxygen-free copper having a width of 20 mm ⁇ a length of 20 mm and a thickness of 2 mm was prepared.
  • a groove was formed in the center of the heat dissipation substrate 8 and the phosphor element 1 was buried to obtain a phosphor element 41 shown in FIGS.
  • the white light output (average output) represents the time average of the total luminous flux.
  • the total luminous flux measurement is performed by using an integrating sphere (spherical luminometer) to turn on the light source to be measured and the standard light source for which the total luminous flux is priced at the same position, and to compare the light sources. Specifically, the measurement was performed using the method specified in JISC7801.
  • the output light was evaluated by a chromaticity diagram using a luminance distribution measuring device. Then, in the chromaticity diagram, when the median value is within the range of x: 447 ⁇ 0.005 and y: 0.3553 ⁇ 0.005, “no color unevenness” is set. There is unevenness. "
  • Example 1 A phosphor element 21 having a cross section shown in FIG.
  • the fabrication method was the same as in Example 1.
  • the low-refractive-index layer 23 made of Al 2 O 3 was not formed on the opposing surface of the phosphor portion, but was formed only on the side surface by sputtering a plurality of times.
  • a reflective film 24 made of an Al alloy film was formed with a thickness of 0.5 ⁇ m on the low refractive index layer and the opposing surface.
  • the obtained device was fixed to the heat dissipation board 8 in the same manner as in Example 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】反射型蛍光体素子に対して励起光を入射させて蛍光を発生させるのに際して、出射光の蛍光強度を高くし,出射する白色光の色ムラを抑制する。 【解決手段】蛍光体素子1は、励起光の入射面2a、入射面に対向する対向面2bおよび側面2cを備えている蛍光体部2であって、入射面に入射する励起光の少なくとも一部を蛍光に変換し、蛍光を入射面から出射させる蛍光体部2、蛍光体部2の側面2c上および対向面2b上にあり、蛍光体部2の屈折率よりも低い屈折率を有する一体の低屈折率層3、および低屈折率層3の表面を被覆する一体の反射膜4を備える。蛍光体部2の入射面2aの面積AIが対向面2bの面積ARよりも大きい。

Description

蛍光体素子、その製造方法および照明装置
 本発明は、蛍光体素子、その製造方法および蛍光を発光する照明装置に関するものである。
 最近、レーザ光源を用いた自動車用ヘッドライトの研究が盛んに行われており、その内の一つに、青色レーザあるいは紫外レーザと蛍光体を組み合わせた白色光源がある。レーザ光を集光することにより、励起光の光密度を高めることができる上に、複数のレーザ光を蛍光体上に重ねて集光することで、励起光の光強度も高めることができる。これによって、発光面積を変えずに光束と輝度とを同時に大きくすることができる。このため、半導体レーザと蛍光体とを組み合わせた白色光源が、LEDに替わる光源として注目されている。例えば、自動車用ヘッドライトに使用する蛍光体ガラスは、日本電気硝子株式会社の蛍光体ガラス「ルミファス」や国立研究開発法人物質・材料研究機構と株式会社タムラ製作所、株式会社光波のYAG単結晶蛍光体が考えられている。
 特許文献1(特許5679435)記載の蛍光体素子では、蛍光体の幅が、入射面から出射面へ向かって拡がっている。この蛍光体の側面の傾斜角度は15度以上、35度以下とされている。そして、樹脂ケースの中に蛍光体を収容し、ケースの内面をリフレクタ部として機能させるために金属膜が形成されている。蛍光体は封止樹脂によってケースの底面に固定されており、蛍光体の側面は空気で覆われている。
 特許文献2(特開2017-85038)に記載の蛍光体素子では、蛍光体の幅が、入射面から出射面へ向かって拡がっており、放熱部材の貫通孔に蛍光体を収容し、貫通孔の側面が貫通孔の表面とガラスペーストによって接着されている。
  また、特許文献3~5記載の蛍光体素子では、蛍光体に対して励起光を入射し、蛍光体内で蛍光および励起光を反射して方向転換させ、蛍光体から白色光として出射する。
特許5679435 特開2017-85038 特開2013-187043 特開2014-986556 WO 2017/217486 A1
  特許文献1、2記載の蛍光体素子では、蛍光体の入射面から励起光を入射させ、入射面と反対側の出射面から励起光および蛍光を出射させるので、光路を変更することができず、設計上の限界がある。
  一方、本発明者が、蛍光体中で光を反射させる反射型蛍光体素子の検討を進めるうちに、次の問題が明らかになってきた。すなわち、蛍光強度を高くするためには、励起光の強度を高くする必要がある。しかし、反射型の蛍光体素子では、蛍光体中で励起光および蛍光が反射されて伝搬するが、反射する回数が多く、反射による吸収や散乱による光子の消失がある。このため、励起光強度を上げると、蛍光体の温度が上がり、得られる光強度に限界があった。更に、素子から出射する白色光に色ムラが発生することがあった。このため、継続使用時の出射光の蛍光強度を高く維持し、色ムラを抑制することが必要である。
 本発明の課題は、反射型蛍光体素子に対して励起光を入射させて蛍光を発生させるのに際して、出射光の蛍光強度を高くし,出射する白色光の色ムラを抑制することである。
  また、本発明の課題は、反射型蛍光体素子を製造するのに際して、蛍光体部からの放熱を促進しやすい製法を提供することである。
  本発明に係る蛍光体素子は、励起光の入射面、前記入射面に対向する対向面および側面を備えている蛍光体部であって、前記入射面に入射する前記励起光の少なくとも一部を蛍光に変換し、前記蛍光を前記入射面から出射させる蛍光体部、
  前記蛍光体部の前記側面上および前記対向面上にあり、前記蛍光体部の屈折率よりも低い屈折率を有する一体の低屈折率層、および
  前記低屈折率層の表面を被覆する一体の反射膜
を備えており、前記蛍光体部の前記入射面の面積が前記対向面の面積よりも大きいことを特徴とする。
  また、本発明は、レーザ光を発振する光源、および前記蛍光体素子を備えることを特徴とする、照明装置に係るものである。
  また、本発明は、励起光の入射面、前記入射面に対向する対向面および側面を備えている蛍光体部であって、前記入射面に入射する前記励起光の少なくとも一部を蛍光に変換し、前記蛍光を前記入射面から出射させる蛍光体部、および
  前記蛍光体部を被覆する一体の反射膜
を備えており、前記蛍光体部の前記入射面の面積が前記対向面の面積よりも大きい蛍光体素子を製造する方法であって、
  第一の主面と第二の主面を有する蛍光体基板の前記第二の主面をハンドル基板に対して接合する工程、
  前記蛍光体基板の前記第一の主面を加工して前記対向面および前記側面を形成することによって前記蛍光体部を形成する工程、
  前記対向面および前記側面を被覆するように前記反射膜を成膜する工程、および
  前記蛍光体部を前記ハンドル基板から分離する工程
を有することを特徴とする。
 本発明によれば、蛍光体部の入射面に対して励起光を入射し、入射面から励起光および蛍光を出射させる蛍光体素子において、出射光の蛍光強度を高く維持し、色ムラを抑制することができる。
  また、本発明の製法によれば、蛍光体部の入射面に対して励起光を入射し、入射面から励起光および蛍光を出射させる蛍光体素子において、蛍光体部の側面上および対向面上に一体の反射膜を同時に形成でき、これによって反射膜からの放熱を促進できる。
(a)は、本発明の実施形態に係る蛍光体素子1を示す斜視図であり、(b)は、蛍光体素子1の断面図である。 (a)は、蛍光体素子1における光の伝搬経路を示す模式図であり、(b)は、対照例の蛍光体素子11における光の伝搬経路を示す模式図である。 (a)は、蛍光体素子1における光の伝搬経路を示す模式図であり、(b)は、対照例の蛍光体素子21における光の伝搬経路を示す模式図である。 本発明の他の実施形態に係る蛍光体素子31を示す断面図である。 本発明の更に他の実施形態に係る蛍光体素子41を示す斜視図である。 蛍光体素子41の断面図である。 (a)は、蛍光体からなる蛍光体基板51をハンドル基板53に対して接合した状態を示し、(b)は、蛍光体基板を加工して複数の蛍光体部2を形成した状態を示す。 接合層52上および蛍光体部2上に低屈折率層54を設けた状態を示す斜視図である。 低屈折率層54上に反射膜55を設けた状態を示す斜視図である。
  以下、適宜図面を参照しつつ、本発明を更に詳細に説明する。
  図1に示す蛍光体素子1においては、蛍光体部2は、入射面2a、出射面2bおよび4つの側面2cを備えている。図2(b)に示すように、蛍光体部の横断面においては、蛍光体部は略台形をなしており、入射面2aに対する側面2cの角度θは90°より小さい鋭角となっている。そして、入射面2aの面積AIは対向面2bの面積ARよりも大きい。
  蛍光体部2の側面2c上には低屈折率層3bが設けられており、対向面2b上には低屈折率層3aが設けられており、低屈折率層3aと3bとによって一体の低屈折率層3が形成されている。本例では、低屈折率層3は、蛍光体部2の側面2cおよび対向面2bを全面にわたって被覆している。更に、本例では、低屈折率層3a上に反射膜4aが設けられ、低屈折率層3b上に反射膜4bが設けられており、反射膜4aと4bとによって一体の反射膜4が形成されている。本例では、反射膜4は低屈折率層3を全面にわたって被覆している。
  ここで、本発明の蛍光体素子によって高い蛍光強度が得られ、色ムラが抑制される理由について更に述べる。
  図2(a)に示すように、本発明の蛍光体素子1では、蛍光体部2中に分散されている多数の蛍光体粒子5に対して、矢印Aのように入射した励起光があたる。すると,各蛍光体粒子5から矢印C、Dのように蛍光が放出される。このとき、各蛍光体粒子からは、あらゆる方向に向かって均等に蛍光が放射される傾向がある。
  ここで、蛍光体粒子から入射面2aの方向に向かって放射される蛍光は、そのまま入射面2aから出射する。また蛍光体粒子から対向面2bに向かって放射される蛍光は、対向面で反射してそのまま入射面2aから出射する。しかし、矢印C、Dのように斜めに放射される蛍光は、反射膜4bで反射されて矢印E、Bのように入射面2aから出射する。このとき、蛍光体部2の入射面の面積AIが対向面の面積ARよりも大きくなっており、側面2cが傾斜していると、その傾斜角度θのぶんだけ反射光Eの方向が傾斜面2aに向かって傾斜する。この結果、励起光が入射面2aから出射するまでの反射回数を減らすことができる。
  一方、図2(b)に示す対照例の蛍光体素子11によれば、蛍光体部12の幅は一定である。そして、蛍光体素子12の側面12c、対向面12b上には低屈折率層13a、13bが設けられており、低屈折率層13aと13bとは一体の低屈折率層13を形成している。低屈折率層13b上には反射膜14bが設けられており、低屈折率層13a上には反射膜14aが設けられており、反射膜14aと14bとは一体の反射膜14を形成している。
  この場合には、蛍光体粒子5から例えば側面12cに向かって放射された蛍光Fは、そのままGのように反射されて粒子5に戻るため、入射面12aから反射されないことになる。つまり、側面12cと入射面12aとが垂直であるので、蛍光を反射するときに蛍光の方向を入射面12aへと向ける作用が働かない。この結果、蛍光の反射回数が増加する。反射膜での反射率は100%ではなく、蛍光の一部が反射膜で吸収されるので、反射回数が多いと蛍光は減衰し、反射膜の温度上昇により蛍光体部からの排熱が悪くなり、蛍光体の温度が上昇し、蛍光強度が低下する。
  更に、図3(a)に示すように、本発明の蛍光体素子においては、蛍光体粒子5から発振した蛍光のうち、蛍光Hは、低屈折率層によって全反射をうけず、蛍光体部2と低屈折率層3aとの界面でH1のように屈折し、反射膜4aによってH2のように反射され、再び蛍光体部2と低屈折率層3aとの界面で屈折し、H3のように蛍光体部2中を伝搬し、入射面2aから出射する。
  一方、図3(b)の対照例では蛍光体部2の形状は図3(a)の蛍光体部2と同じにする。そして、蛍光体素子2の側面2c上には低屈折率層23が設けられている。しかし、蛍光体部2の対向面2b上には低屈折率層が設けられていない。その上で、低屈折率層23上には反射膜24bが設けられており、蛍光体部2の対向面2b上には反射膜24aが設けられており、反射膜24aと24bとは一体の反射膜24を形成している。
  この場合にも、蛍光体粒子5から矢印Hのように対向面側へと向かって反射された蛍光は、反射膜24aで反射され、矢印H4のように蛍光体部2内を伝搬し、入射面2aから出射する。
  一方、図3(a)に示すように、蛍光体粒子5から矢印Jのように対向面へと向かって斜めに放射された蛍光は、低屈折率層3aで全反射条件を満足するので、矢印J1のように全反射し、更に低屈折率層3bと蛍光体部2との界面で矢印J2のように全反射し、入射面2aから出射する。
  これに対して、図3(b)の蛍光体素子21では、蛍光体粒子5から矢印Jのように対向面へと向かって斜めに放射された蛍光は、対向面2b上に設けられた反射膜24aで矢印J3のように反射され、更に低屈折率層23と蛍光体部2との界面で矢印J4のように全反射し、入射面2aから出射する。この場合、反射膜24aでの光エネルギーの吸収量が多いのとともに、反射膜24aの温度が上昇し、蛍光体部2の排熱が悪くなり、温度上昇を招く。したがって、蛍光体の温度消光によって入射面2aから出射する蛍光の強度が低下する。
  本発明の蛍光体素子は、励起光の入射面、前記入射面に対向する対向面および側面を備えている蛍光体部であって、前記入射面に入射する前記励起光の少なくとも一部を蛍光に変換し、前記蛍光を前記入射面から出射させる蛍光体部を有する。
 ここで、励起光の全体を蛍光に変換した場合には、蛍光のみが入射面から出射する。あるいは、励起光の一部を蛍光に変換することで、蛍光および励起光を入射面から出射させることができる。
 蛍光体部を構成する蛍光体は、励起光を蛍光に変換できるものであれば限定されないが、蛍光体ガラス、蛍光体単結晶または蛍光体多結晶であってよい。
 また、蛍光体には、励起光および蛍光を散乱させるために散乱材を添加したり、空孔を設けたりすることができる。この場合、蛍光体に入射する光は、蛍光体内で散乱させるために出射光(励起光および蛍光)は散乱され散乱角は大きくなる。
  蛍光体の散乱角は、例えば、サイバーネットシステム社の散乱測定器「Mini-Diff」によって測定することができる。散乱角は、出射光の透過スペクトルからピーク値の1/eとなる全幅角度と定義する。
 このとき散乱角は5度以上であることが好ましく、10度以上であることが更に好ましい。ただし、蛍光体部を構成する蛍光体の散乱角の上限は特にないが、出射光の開口数(NA)以下であってよく、実用的な観点からは、80度以下であってよい。
  蛍光体ガラスは、ベースとなるガラス中に希土類元素イオンを分散したものである。
 ベースとなるガラスとしては、シリカ、酸化ホウ素、酸化カルシウム、酸化ランタン、酸化バリウム、酸化亜鉛、酸化リン、フッ化アルミニウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、塩化バリウムを含む酸化ガラスが例示できる。
 蛍光体ガラス中に分散される希土類元素イオンとしては、Tb、Eu、Ce、Ndが好ましいが、La、Pr、Sc、Sm、Er、Tm、Dy、Gd、Luであってもよい。
 蛍光体単結晶としては、YAl12、BaSi11l725、TbAl12やYAG(イットリウム・アルミニウム・ガーネット)が例示できる。YAGのY(イットリウム)の一部がLuに置換されていてもよい。また、蛍光体単結晶中にドープするドープ成分としては、希土類イオンが好ましく、Tb、Eu、Ce、Ndが特に好ましいが、La、Pr、Sc、Sm、Er、Tm、Dy、Gd、Luであってもよい。
 また、蛍光体多結晶としては、TAG(テルビウム・アルミニウム・ガーネット)系、サイアロン系、窒化物系、BOS(バリウム・オルソシリケート)系、YAG(イットリウム・アルミニウム・ガーネット)が例示できる。YAGのY(イットリウム)の一部がLuに置換されていてもよい。
 蛍光体多結晶中にドープするドープ成分としては、希土類イオンが好ましく、Tb、Eu、Ce、Ndが特に好ましいが、La、Pr、Sc、Sm、Er、Tm、Dy、Gd、Luであってもよい。
 なお、本発明の蛍光体素子は、グレーティング(回折格子)を蛍光体部内に含んでいない無グレーティング型蛍光体素子であってよく、グレーティングが蛍光体部中に設けられていてもよい。
 蛍光体部は,励起光の入射面、対向面および側面を少なくとも有する。側面とは、入射面と対向面との間に伸びる面である。ここで、蛍光体部の形状は特に限定されない。例えば蛍光体部の入射面、対向面の形状は、例えば、円形、楕円形、三角形、四角形、六角形などの多角形であってよい。
  本発明では、蛍光体部の側面上および対向面上にあり、蛍光体部の屈折率よりも低い屈折率を有する一体の低屈折率層を有する。
  ここで、低屈折率層は、蛍光体部の側面上および対向面上に設けられているが、低屈折率層が一体であるとは、低屈折率層が互いに連続していることを意味する。ただし、低屈折率層が、側面および対向面の全面をすべて被覆している必要はなく、側面の一部、対向面の一部が低屈折率層によって被覆されずに露出することは許容するものとする。しかし、この場合にも、側面の全面積のうち90%以上、対向面の全面積のうち90%以上が低屈折率層によって被覆されていることが好ましく、側面および対向面の全面が低屈折率層によって被覆されていることが更に好ましい。
  低屈折率層の材質としては、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム、酸化タンタル、酸化ケイ素、窒化ケイ素、窒化アルミニウム、炭化ケイ素を例示できる。放熱性という観点からは、低屈折率層の材質は、酸化アルミニウム、酸化マグネシウムが最も良い。
  また、低屈折率層の屈折率は、蛍光体の屈折率より低いが、このようにすると、蛍光体と低屈折率層の屈折率差による全反射を利用することができ、反射膜での反射する光成分を少なくすることができ、反射膜による反射で光が吸収されることを抑制することができる。低屈折率層の屈折率は、1.7以下であることが好ましく、1.6以下であることが更に好ましい。低屈折率層の屈折率の下限は特になく、1以上であるが、1.4以上であることが実用的である。また、蛍光体部の屈折率と低屈折率層の屈折率との差異は、0.1以上であることが好ましく、0.2以上であることが更に好ましい。
 更に蛍光体部の屈折率は1.4~1.7が好ましく、1.42~1.5が更に好ましい。
 低屈折率層の厚みは1μm以下が好ましく、これによって放熱に対する影響を少なくできる。また、反射膜による吸収を抑制する観点からは、低屈折率層の厚みは0.05μm以上が好ましい。
  本発明の蛍光体素子は、低屈折率層の表面を被覆する一体の反射膜を有する。反射膜が一体であるとは、反射膜が互いに連続していることを意味する。ただし、反射膜が、側面および対向面の全面をすべて被覆している必要はなく、側面の一部、対向面の一部において低屈折率層が反射膜によって被覆されずに露出することは許容するものとする。しかし、この場合にも、側面の全面積のうち90%以上、対向面の全面積のうち90%以上が反射膜によって被覆されていることが好ましく、側面および対向面の全面が反射膜によって被覆されていることが更に好ましい。
 反射膜の材質は、蛍光体層を通過してきた励起光と蛍光を反射するものであれば特に制限されない。反射膜は、励起光を全反射する必要はなく、励起光の一部を透過させても良いし、全部を透過するものであっても良い。
 好適な実施形態においては、反射膜が、金属膜または誘電体多層膜である。
 反射膜を金属膜とした場合は、広い波長域で反射することができ、入射角度依存性も小さくすることができ、温度に対する耐久性、耐候性が優れている。一方、反射膜を誘電体多層膜とした場合には、吸収がないため、特定の角度で入射した光は損失なく100%反射光とすることが可能であるし、酸化膜から構成できるので、接合層との密着性を上げることにより、はがれを防止できる。
 反射膜による励起光の反射率は、80%以上とするが、95%以上であることが好ましい。
 誘電体多層膜は、高屈折材料と低屈折材料とを交互に積層した膜である。高屈折材料率としては、TiO、Ta、Ta、ZnO、Si、Nbを例示できる。また、低屈折材料としては、SiO、MgF、CaFを例示できる。誘電体多層膜の積層数や合計厚さは、反射させるべき蛍光の波長によって適宜選択する。
 また、金属膜の材質としては、以下が好ましい。
(1) Al、Ag、Auなどの単層膜
(2) Al、Ag、Auなどの多層膜
 金属膜の厚さは、蛍光を反射できれば特に限定されないが、0.05μm以上が好ましく、0.1μm以上が更に好ましい。また金属膜と基材との密着性を上げるために、Ti、Cr、Ni、等の金属膜を介して形成することもできる。
  本発明においては、蛍光体部の入射面の面積が対向面の面積よりも大きい。前記した低屈折率層および反射膜と、このような対向面のほうが面積の小さい蛍光体部の形態とを組み合わせることによって、前述したメカニズムで、蛍光体部における励起光、蛍光の反射回数を少なくして入射面から出射させることができ、反射膜での吸収による発熱を抑制し、かつ蛍光体部中での光の伝搬によって発生した熱の放熱を促進することができる。
  本発明においては、入射面2aの面積AIは対向面2bの面積ARよりも大きく、これによって前述のように入射面から発光する蛍光の強度を向上させることができる。こうした観点からは、入射面2aの面積AI/対向面2bの面積ARは、1.2以上が好ましく、1.47以上が更に好ましい。また、実際上は、入射面2aの面積AI/対向面2bの面積ARは、27.2以下が好ましく、11以下が更に好ましい。
  同様の観点から、蛍光体部の入射面に対する側面の傾斜角度θが50°以上、85°以下であることが好ましく、60°以上、80°以下であることが更に好ましい。
  好適な実施形態においては、励起光および蛍光を透過する透過性材料からなる部分透過膜を蛍光体部の入射面上に備えることができる。部分透過膜は、励起光の一部を反射し、残りを透過する膜である。具体的には、部分透過膜の励起光に対する反射率は、9%以上であり、50%以下が好ましい。こうした部分透過膜の材質としては、前述した反射用の金属膜や誘電体多層膜を挙げることができる。
 また、好適な実施形態においては、蛍光体部の入射面上に入射面側支持基板を備えることができ、これによって蛍光体部からの放熱効果を一層改善することができる。また、他の好適な実施形態においては、放熱基板の対向面側の主面上に対向面側支持基板を備えることができ、これによって放熱基板からの放熱効果を一層改善することができる。
 ここで、各支持基板の材質としては、熱伝導率(25℃)が200W/mK以上の材質が好ましく、300W/m・K以上の材質が特に好ましい。この材質の熱伝導率の上限は特にないが、実際的な入手の観点からは、500W/m・K以下とすることができる。
 ここで、各支持基板の材質は、光を通すために透明ないし透光性であることが好ましい。しかし、入射面側支持基板には、入射面に励起光を照射するための窓を設けることができ、この場合には入射面側支持基板の材質は透明ないし透光性である必要はない。
 各支持基板の材質が透明または透光性である場合には、支持基板の材質はアルミナ、窒化アルミ、シリコンカーバイド、水晶、ガラス
が好ましい。
 各支持基板の材質が透明、透光性ではない場合には、支持基板の材質はアルミナ、窒化アルミ、シリコンカーバイド、水晶、ガラス、銅、銀、金、アルミニウム、あるいは、上記金属を含む合金材料が好ましい。各支持基板の材質は、同じであっても異なっていてもよい。
  図4に示す蛍光体素子31においては、蛍光体部2の入射面2a上に透明または透光性な支持基板7が形成されている。本例では、支持基板7は蛍光体部2よりも広がっており、その上に低屈折率層3cおよび反射膜4cが延設されている。
  また、好適な実施形態においては、反射膜と接する放熱基板を備える。放熱基板の材質の熱伝導率(25℃)は200W/mK以上であることが好ましい。この熱伝導率の上限は特にないが、実際的な入手の観点からは、350W/m・K以下とすることができる。
 金属メッキ膜の種類は、電解メッキ膜であってよく、無電解メッキ膜であってもよい。また、金属メッキ膜は、熱伝導率(25℃)が200W/mK以上の金属からなる。
 蛍光体部の金属メッキ膜を構成する金属の種類は、金、銀、銅、アルミニウム、あるいは、これらの金属を含む合金が特に好ましい。
  図5、図6の蛍光体素子41においては、蛍光体部2、低屈折率層3、反射膜4は、図1の蛍光体素子と同じである。しかし、本例では、蛍光体部2、低屈折率層3および反射膜4が、放熱基板8の凹部8c内に固定され、一体化されている。ただし、8aは、反射膜4aに接する薄板部であり、8bは厚さ一定のフランジ部であり、反射膜4bに接している。こうした放熱基板の凹部は機械加工やレーザー加工によって形成することができる。あるいは、放熱基板は、メッキ法によって形成することもできる。
 金属メッキ膜の種類は、電解メッキ膜であってよく、無電解メッキ膜であってもよい。また、金属メッキ膜は、熱伝導率(25℃)が200W/mK以上の金属からなる。
 蛍光体部の金属メッキ膜を構成する金属の種類は、金、銀、銅、アルミニウム、あるいは、これらの金属を含む合金が特に好ましい。
  反射膜と放熱基板の間には、メッキ用の下地膜があってもよい。下地膜は、Ni、Cr、Ti、あるいは、これらの金属を含む合金であってよい。
 蛍光体部の厚みT(図1、図6)は、蛍光の出射側取出し効率を向上させるために、300μm以上が好ましいが、800μm以上が一層好ましい。しかし、小型化という観点から3.0mm以下とすることが好ましい。
 また、本発明の照明装置は、レーザ光を発振する光源、および前記蛍光体素子を備える。
 光源としては、照明用蛍光体の励起用として高い信頼性を有するGaN材料による半導体レーザが好適である。また、一次元状に配列したレーザアレイ等の光源も実現可能である。スーパールミネッセンスダイオード、半導体光アンプ(SOA)やLEDであってもよい。また、光ファイバーを通して光源からの励起光を蛍光体素子に対して入射させることもできる。
 半導体レーザと蛍光体から白色光を発生する方法は、特には限定されないが、以下の方法が考えられる。
 青色レーザと蛍光体により黄色の蛍光を発生し、白色光を得る方法
 青色レーザと蛍光体により赤色と緑色の蛍光を発生し白色光を得る方法
 また青色レーザや紫外レーザから蛍光体により赤色、青色、緑色の蛍光を発生し白色光を得る方法
 青色レーザや紫外レーザから蛍光体により青色と黄色の蛍光を発生し白色光を得る方法
  本発明の製法は、
  第一の主面と第二の主面を有する蛍光体基板の前記第二の主面をハンドル基板に対して接合する工程、
  蛍光体基板の第一の主面を加工して対向面および側面を形成することによって蛍光体部を形成する工程、
  対向面および側面を被覆するように反射膜を成膜する工程、および
  蛍光体部をハンドル基板から分離する工程
を有する。こうした製法であれば、特定の蛍光体素子を一つの蛍光体基板中に多数同時に成形することができるので、量産性を向上させることが可能である。
  好適な実施形態においては、蛍光体部の側面および対向面上に低屈折率層を成膜する工程を有しており、低屈折率層上に反射膜を成膜する。この製法によれば、本発明に係る蛍光体素子を高い生産性で得ることができる。
  以下、図面を参照しつつ、本製法を例示する。
 図7(a)、図7(b)に示すように、ハンドル基板53上に接合層52を形成し、蛍光体板51と対向させ,ハンドル基板53上に蛍光体板51の第二の主面51bを接合する。
 次いで、ハンドル基板53上の蛍光体板51の第一の主面51aを加工することで、必要な形態を有する蛍光体部を成形することができる。例えば、図7(b)の例では、接合層52上に、所望形状を有する蛍光体部2を成形している。こうした加工方法としては、ダイシング、スライシング、マイクログラインダー、レーザ加工、ウォータージェット、マイクロブラストを例示できる。
 次いで、好適な実施形態においては、図8に示すように、蛍光体部2上および接合層52上に低屈折率層54を形成する。次いで、図9に示すように、低屈折率層54上に反射膜55を形成する。
 次いで、ハンドル基板および接合層を除去することによって、図1に示す蛍光体素子1が多数形成された基板を得ることができる。次いで、各蛍光体素子1を所定寸法に切り分けることができる。あるいは、複数の蛍光体素子1を切り分けることなく、蛍光体素子アレイとして利用することができる。
 低屈折率層、反射膜の成膜方法は特に限定されないが、蒸着法、スパッタ法、CVD法が好ましい。蒸着法の場合、イオンアシストを付加して成膜することもできる。
 本発明製法によれば、反射膜(および必要に応じて低屈折率層)を一回の成膜工程で側面上および対向面上に成膜することができる。例えば、図2(b)のように側面と対向面が直交している場合は、側面上および対向面上に1回の成膜で同時に反射膜や低屈折率層を形成することができない。複数回成膜工程がある場合に、屈折率に分布ができてしまうことや工数がかかることによるコスト増となる可能性があるが、本製法ではその問題点が解消できる。
(実施例1)
  図5、6に示す蛍光体素子41を、図7~図9を参照しつつ説明した製法で製造した。
  具体的には、Ceをドープし、かつセラミック散乱材を添加した厚み1mm、直径4インチのYAG(イットリウム・アルミニウム・ガーネット)多結晶からなる蛍光体板51を準備した。また、ハンドリング基板53として、厚み0.3mm、直径4インチのサファイアウエハーを用意した。蛍光体板51をハンドリング基板53に対して熱可塑性樹脂52を用いて100℃で貼り合わせを行い、その後、常温にもどして一体化した(図7(a))。
  次に、幅100μm、#800のブレードを使用してダイシングによるセットバック加工を行った。次いで、蛍光体板を90度回転させて同様にダイシングによるセットバック加工を行い、蛍光体部2を形成した(図7(b))。入射面の幅を2mmとし、厚さを1mmとし、入射面に対する側面の傾斜θを63.5°とした。入射面の面積AIは4mmであり、対向面の面積は1mmである。各蛍光体部2の側面および対向面はダイシングによる加工面であるが、側面および対向面の算術平均粗さRaは10μmと見積もられた。
  次いで、蛍光体部の対向面2bおよび側面2cに対して、スパッタリングにて、Alからなる低屈折率層54を0.5μmの厚みで成膜した(図8参照)。さらに、Al合金膜からなる反射膜55を、低屈折率層54上に0.5μmの厚みで成膜した(図9)。成膜後、ホットプレートで基板を100℃に加熱し、図1に示すような蛍光体素子1をハンドリング基板53から分離し、有機溶剤にて接着剤を洗浄した。
  次に、幅20mm×長さ20mm、厚み2mmの無酸素銅からなる放熱基板8を準備した。この放熱基板8の中央に溝を形成し、蛍光体素子1を埋設し、図5、図6に示す蛍光体素子41を得た。
 出力3WのGaN系青色レーザーを10個アレイ化し、出力30Wの光源を得た。この光源からレーザー光を蛍光体素子に照射し、照明光の評価を行った。各例の素子の評価結果を表1に示す。
(白色光出力)
 白色光出力(平均出力)は、全光束の時間平均を表す。全光束測定は,積分球(球形光束計)を使用して、被測定光源と全光束が値付けられた標準光源とを同じ位置で点灯し、その比較によって行う。詳細には、JISC7801にて規定されている方法を用いて測定を行った。
(色ムラ面内分布)
 出力した光を輝度分布測定装置を用いて色度図で評価を行った。そして、色度図において、中央値x:0.3447±0.005、y:0.3553±0.005の範囲にある場合は「色ムラなし」とし、この範囲外の場合には「色ムラあり」とした。
Figure JPOXMLDOC01-appb-T000001
 
(比較例1)
  図3(b)に示す断面を有する蛍光体素子21を作製した。作製方法は実施例1と同様に行った。しかし、Alからなる低屈折率層23は、蛍光体部の対向面には設けることなく、側面上にのみスパッターリングにて複数回に分けて成膜した。そして、Al合金膜からなる反射膜24を、低屈折率層上および対向面上に0.5μmの厚みで成膜した。得られた素子を、実施例1と同様にして放熱基板8に固定した。
  得られた蛍光体素子について、実施例1と同様にして照明光の評価を行った。各例の素子の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
  実施例1の蛍光体素子の場合には、白色光出力が相対的に高く、かつ色ムラがみられなかった。比較例1の蛍光体素子では、白色光出力が低くなり、色ムラが観測された。

Claims (12)

  1.  励起光の入射面、前記入射面に対向する対向面および側面を備えている蛍光体部であって、前記入射面に入射する前記励起光の少なくとも一部を蛍光に変換し、前記蛍光を前記入射面から出射させる蛍光体部、
      前記蛍光体部の前記側面上および前記対向面上にあり、前記蛍光体部の屈折率よりも低い屈折率を有する一体の低屈折率層、および
      前記低屈折率層の表面を被覆する一体の反射膜
    を備えており、前記蛍光体部の前記入射面の面積が前記対向面の面積よりも大きいことを特徴とする、蛍光体素子。
  2.   前記入射面に対する前記側面の傾斜角度が50°以上、85°以下であることを特徴とする、請求項1記載の蛍光体素子。
  3.   前記励起光および前記蛍光を透過する透過性材料からなる支持基板を前記入射面上に備えることを特徴とする、請求項1または2記載の蛍光体素子。
  4.   前記反射膜と接する放熱基板を備えていることを特徴とする、請求項1~3のいずれか一つの請求項に記載の蛍光体素子。
  5.   前記放熱基板が、熱伝導率が200W/mK以上の金属からなることを特徴とする、請求項4記載の蛍光体素子。
  6.  レーザ光を発振する光源、および請求項1~5のいずれか一つの請求項に記載の蛍光体素子を備えることを特徴とする、照明装置。
  7.   励起光の入射面、前記入射面に対向する対向面および側面を備えている蛍光体部であって、前記入射面に入射する前記励起光の少なくとも一部を蛍光に変換し、前記蛍光を前記入射面から出射させる蛍光体部、および
      前記蛍光体部を被覆する一体の反射膜
    を備えており、前記蛍光体部の前記入射面の面積が前記対向面の面積よりも大きい蛍光体素子を製造する方法であって、
      第一の主面と第二の主面を有する蛍光体基板の前記第二の主面をハンドル基板に対して接合する工程、
      前記蛍光体基板の前記第一の主面を加工して前記対向面および前記側面を形成することによって前記蛍光体部を形成する工程、
      前記対向面および前記側面を被覆するように前記反射膜を成膜する工程、および
      前記蛍光体部を前記ハンドル基板から分離する工程
    を有することを特徴とする、蛍光体素子の製造方法。
  8.   前記蛍光体部の前記側面および前記対向面上に前記低屈折率層を成膜する工程を有しており、前記低屈折率層上に前記反射膜を成膜することを特徴とする、請求項7記載の方法。
  9.   前記入射面に対する前記側面の傾斜角度が50°以上、85°以下であることを特徴とする、請求項7または8記載の方法。
  10.   前記励起光および前記蛍光を透過する透過性材料からなる支持基板を前記入射面上に設けることを特徴とする、請求項7~9のいずれか一つの請求項に記載の方法。
  11.   前記反射膜と接する放熱基板を設けることを特徴とする、請求項7~10のいずれか一つの請求項に記載の方法。
  12.   前記放熱基板が、熱伝導率が200W/mK以上の金属からなることを特徴とする、請求項7~11のいずれか一つの請求項に記載の方法。
PCT/JP2018/036331 2018-09-28 2018-09-28 蛍光体素子、その製造方法および照明装置 WO2020065927A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/036331 WO2020065927A1 (ja) 2018-09-28 2018-09-28 蛍光体素子、その製造方法および照明装置
PCT/JP2019/013259 WO2020066077A1 (ja) 2018-09-28 2019-03-27 蛍光体素子、その製造方法および照明装置
JP2019519429A JP6632108B1 (ja) 2018-09-28 2019-03-27 蛍光体素子、その製造方法および照明装置
DE112019004254.8T DE112019004254B4 (de) 2018-09-28 2019-03-27 Leuchtstoffelement, verfahren zu dessen herstellung und beleuchtungsvorrichtung
US17/577,638 US11635189B2 (en) 2018-09-28 2022-01-18 Phosphor element and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036331 WO2020065927A1 (ja) 2018-09-28 2018-09-28 蛍光体素子、その製造方法および照明装置

Publications (1)

Publication Number Publication Date
WO2020065927A1 true WO2020065927A1 (ja) 2020-04-02

Family

ID=69949351

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/036331 WO2020065927A1 (ja) 2018-09-28 2018-09-28 蛍光体素子、その製造方法および照明装置
PCT/JP2019/013259 WO2020066077A1 (ja) 2018-09-28 2019-03-27 蛍光体素子、その製造方法および照明装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013259 WO2020066077A1 (ja) 2018-09-28 2019-03-27 蛍光体素子、その製造方法および照明装置

Country Status (1)

Country Link
WO (2) WO2020065927A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187043A (ja) * 2012-03-08 2013-09-19 Stanley Electric Co Ltd 光源装置および照明装置
WO2014119783A1 (ja) * 2013-02-04 2014-08-07 ウシオ電機株式会社 蛍光光源装置
JP2014186916A (ja) * 2013-03-25 2014-10-02 Stanley Electric Co Ltd 発光モジュール及び光源装置
JP2015050124A (ja) * 2013-09-03 2015-03-16 スタンレー電気株式会社 発光装置
WO2015163109A1 (ja) * 2014-04-23 2015-10-29 日東電工株式会社 波長変換部材およびその製造方法
JP2016058624A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 発光装置
JP2017028251A (ja) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 波長変換部材、光源装置、照明装置車両、および波長変換部材の製造方法
US20170219171A1 (en) * 2016-01-28 2017-08-03 Osram Gmbh Conversion device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187043A (ja) * 2012-03-08 2013-09-19 Stanley Electric Co Ltd 光源装置および照明装置
WO2014119783A1 (ja) * 2013-02-04 2014-08-07 ウシオ電機株式会社 蛍光光源装置
JP2014186916A (ja) * 2013-03-25 2014-10-02 Stanley Electric Co Ltd 発光モジュール及び光源装置
JP2015050124A (ja) * 2013-09-03 2015-03-16 スタンレー電気株式会社 発光装置
WO2015163109A1 (ja) * 2014-04-23 2015-10-29 日東電工株式会社 波長変換部材およびその製造方法
JP2016058624A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 発光装置
JP2017028251A (ja) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 波長変換部材、光源装置、照明装置車両、および波長変換部材の製造方法
US20170219171A1 (en) * 2016-01-28 2017-08-03 Osram Gmbh Conversion device

Also Published As

Publication number Publication date
WO2020066077A1 (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
US7312560B2 (en) Phosphor based light sources having a non-planar long pass reflector and method of making
US7157839B2 (en) Phosphor based light sources utilizing total internal reflection
JP6371201B2 (ja) 発光モジュール及びそれを用いた発光装置
EP3396232B1 (en) Light-emitting element and illumination device
US11262046B2 (en) Phosphor element, method for producing same, and lighting device
JP6457099B2 (ja) 波長変換部材および発光装置
JP2013207049A (ja) 波長変換体を用いた発光装置
TW201920608A (zh) 光波長轉換裝置及光複合裝置
WO2017217486A1 (ja) 蛍光体素子および照明装置
US12140304B2 (en) Phosphor element with heat dissipating substrate that has thermally conductive metal plating film
JP2016058619A (ja) 発光装置
US10859747B2 (en) Phosphor element and illumination device
US11561333B2 (en) White-light generating device with fluorescent body with inclined side surface
US20220278506A1 (en) Phosphor element, phosphor device, and illumination apparatus
JP6632108B1 (ja) 蛍光体素子、その製造方法および照明装置
WO2020065927A1 (ja) 蛍光体素子、その製造方法および照明装置
JP2018163816A (ja) 蛍光体素子および照明装置
JP7305791B2 (ja) 蛍光体素子、蛍光体デバイスおよび照明装置
TWI802898B (zh) 螢光板、波長轉換構件及光源裝置
JP2018163828A (ja) 蛍光体素子および照明装置
JP6660484B2 (ja) 蛍光体素子および照明装置
CN117515470A (zh) 一种波长转换模块及发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP