[go: up one dir, main page]

WO2020063173A1 - 自充电混合动力变频拖动装置 - Google Patents

自充电混合动力变频拖动装置 Download PDF

Info

Publication number
WO2020063173A1
WO2020063173A1 PCT/CN2019/100681 CN2019100681W WO2020063173A1 WO 2020063173 A1 WO2020063173 A1 WO 2020063173A1 CN 2019100681 W CN2019100681 W CN 2019100681W WO 2020063173 A1 WO2020063173 A1 WO 2020063173A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
variable frequency
unit
self
charging
Prior art date
Application number
PCT/CN2019/100681
Other languages
English (en)
French (fr)
Inventor
杨雪梅
Original Assignee
杨雪梅
胡威
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨雪梅, 胡威 filed Critical 杨雪梅
Publication of WO2020063173A1 publication Critical patent/WO2020063173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters

Definitions

  • the invention relates to the technical field of hybrid power, in particular to a self-charging hybrid power variable frequency drag device.
  • the motor of the beam pumping unit generally uses power to perform work.
  • the button pitch of the motor changes due to the gravity of the sucker rod, which causes the motor to overspeed.
  • Rotating makes the motor into a generator, and the size of the motor is related to the weight of the downhole sucker rod and the balance weight.
  • the frequency converters used in oil fields have artificially consumed the electricity generated by the beam pumping unit during the downward use of automatic resistance, and did not use it effectively, resulting in the wasted electricity being wasted.
  • the present invention provides a self-charging hybrid variable frequency drag device, which converts three-phase AC power to DC power through a rectifier unit, and stores the generated electric energy by a filter energy storage unit, and controls charging.
  • the unit prevents damage to the filter energy storage unit caused by excessive charging current, and then converts the rectified DC power to three-phase AC power suitable for the motor through the frequency conversion drag unit, which can work normally when the power is input, and use self-charging when the power is not input.
  • the process works on the electric energy stored in the filtering energy storage unit to realize the operation of the motor under hybrid power.
  • the present invention provides a self-charging hybrid variable frequency drag device, including: a rectifier unit, a filter energy storage unit, a charging control unit, and a variable frequency drag unit;
  • the rectifier unit includes six rectifier diodes, six The rectifier diodes form a three-phase bridge rectifier circuit, and the input ends of the three-phase bridge rectifier circuit are respectively connected to three-phase AC power;
  • the charging control unit includes a filter transformer, an AC contactor, and a current limiting resistor.
  • a positive output terminal of the three-phase bridge rectifier circuit is connected in series with the filter transformer, the filter transformer is connected in series with the current limiting resistor, and the AC contactor is in phase with the current limiting resistor
  • the variable frequency drive unit includes a frequency converter and a motor, a positive terminal of the frequency converter is connected in series with the current limiting resistor, a negative terminal of the frequency converter and a negative output of the three-phase bridge rectifier circuit
  • the three-phase output terminals of the inverter are correspondingly connected to the input terminals of the motor
  • the filter energy storage unit includes a super capacitor group and a battery group, and A super capacitor group is connected in parallel with the battery group, the super capacitor group includes at least two groups of super capacitors connected in series, the battery group includes at least two groups of batteries connected in series, a positive electrode of the super capacitor group and the battery The positive electrode of the group is connected to the line between the current limiting resistor and the positive terminal of the frequency converter, and the negative electrode of the super capacitor group and the negative electrode
  • each terminal of the three-phase alternating current is connected to two of the rectifier diodes, and the two rectifier diodes are connected with a positive electrode and a negative electrode, respectively.
  • the corresponding terminals are connected.
  • the anode is connected to the anode of the rectifier diode connected to the terminal, and in three groups, the anode is connected to the anode of the rectifier diode connected to the terminal.
  • the motor is a power structural component of a beam pumping unit.
  • the frequency converter reduces the direct current in the filtered energy storage unit to alternating current, and the voltage and frequency of the reduced alternating current are matched with the motor.
  • the motor is a variable frequency motor.
  • the present invention has the beneficial effects that the three-phase AC power is converted into DC power by a rectifier unit, and the generated energy is stored by a filter energy storage unit, and the charging control unit prevents the filter energy from being caused by excessive charging current
  • the unit is damaged, and the rectified DC power is converted to the three-phase AC power suitable for the motor by the frequency conversion drag unit. It can work normally when the power is input, and the power stored in the filter energy storage unit is operated by the self-charging process when the power is not input. , To achieve the operation of the motor under hybrid power.
  • FIG. 1 is a schematic circuit connection diagram of a self-charging hybrid variable frequency drag device disclosed by an embodiment of the present invention.
  • Rectifier unit 111. Rectifier diode, 12. Charge control unit, 121. AC contactor, 122. Filter transformer, 123. Current limiting resistor, 13. Filter energy storage unit, 131. Battery pack, 132. Super Capacitor group, 14. Frequency conversion drag unit, 141. Frequency converter, 142. Motor.
  • a self-charging hybrid variable frequency drag device includes: a rectifier unit 11, a filtering energy storage unit 13, a charging control unit 12, and a variable frequency drag unit 14;
  • the rectifier unit 11 includes six Three rectifier diodes 111 and six rectifier diodes 111 form a three-phase bridge rectifier circuit, and the input ends of the three-phase bridge rectifier circuit are connected to three-phase AC power respectively;
  • the charging control unit 12 includes a filter transformer 122, an AC contactor 121 and Current limiting resistor 123, the positive output terminal of the three-phase bridge rectifier circuit is connected in series with the filter transformer 122, the filter transformer 122 is connected in series with the current limiting resistor 123, and the AC contactor 121 is connected in parallel with the current limiting resistor 123;
  • the variable frequency drive unit 14 includes an inverter 141 and a motor 142.
  • the positive terminal of the inverter 141 is connected in series with the current limiting resistor 123.
  • the negative terminal of the inverter 141 is connected to the negative output terminal of the three-phase bridge rectifier circuit.
  • the three-phase output terminals of 141 are correspondingly connected to the input terminals of the motor 142;
  • the filter energy storage unit 13 includes a super capacitor group 132 and a battery group 131, and the super capacitor group 132 is parallel to the battery group 131.
  • the super capacitor group 132 includes at least two super capacitors connected in series, and the battery group 131 includes at least two batteries connected in series.
  • the positive electrode of the super capacitor group 132 and the positive electrode of the battery group 131 are connected to the current limiting resistor 123 and the inverter.
  • the negative electrode of the super capacitor group 132 and the negative electrode of the battery group 131 are both connected to the negative terminal of the inverter 141.
  • the rectifier unit 11 has the same principle as a general rectifier circuit, and a three-phase bridge rectifier circuit is composed of six rectifier diodes to change three-phase AC power into pulsating DC power.
  • the filter energy storage unit 13 works together with the super capacitor 132 and the storage battery 131 and stores the generated electric energy therein.
  • the charging control unit 12 is composed of a filter transformer 122, an AC contactor 121, and a current limiting resistor 123 to prevent damage to the super capacitor 132 and the battery 131 due to excessive charging current.
  • the variable frequency drive unit 14 converts the rectified DC power into three-phase AC power to meet the working voltage of the motor 142 drive system.
  • the inverter 141 restores the DC power in the filtered energy storage unit 13 to AC power. The voltage and frequency match the motor 142.
  • the motor 142 is a power structural component of a beam pumping unit.
  • the three-phase alternating current is rectified into direct current by a rectifying unit 11 composed of rectifying diodes D1 to D6, and the direct voltage is reduced to an alternating current of 380V and a frequency of 50Hz by the inverting inverter 141 of the inverter 141.
  • a rectifying unit 11 composed of rectifying diodes D1 to D6
  • the direct voltage is reduced to an alternating current of 380V and a frequency of 50Hz by the inverting inverter 141 of the inverter 141.
  • the principle of dynamic work is: when the beam pumping unit is descending, the torque and load changes of the motor make the motor 142 in a power generating state, which causes the potentials at points C and E to rise, and the supercapacitor 132 and the battery 131 are raised at the same time
  • the rated operating current of the motor is the charging current when the motor is generating electricity That is why it is called self-charging.
  • each terminal of the three-phase alternating current is connected to two rectifier diodes 111, and the two rectifier diodes 111 are connected to the corresponding terminals with a positive electrode and a negative electrode, respectively.
  • the anode of the rectifier diode 111 connected to the terminal is connected to the anode
  • the anode of the rectifier diode 111 connected to the terminal is connected to the anode.
  • the motor 142 is a variable frequency motor 142, and the frequency is changed by the inverter 141 to implement the stepless speed change function of the motor 142.
  • the device can work normally when AC power is inputted to 380V.
  • AC power When AC power is not inputted, it can work using the electric energy stored in the filter energy storage unit 13, which is a hybrid drag device. Both power sources can meet the requirements of the normal motor 142 to drag the load.
  • the self-charging hybrid variable-frequency drag device provided by the present invention, the three-phase AC power is converted into DC power by a rectifier unit, and the filtered electric energy storage unit stores the generated electric energy for charging control.
  • the unit prevents damage to the filter energy storage unit caused by excessive charging current, and then converts the rectified DC power to three-phase AC power suitable for the motor through the frequency conversion drag unit, which can work normally when the power is input, and use self-charging when the power is not input.
  • the process works on the electric energy stored in the filtering energy storage unit to realize the operation of the motor under hybrid power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种自充电混合动力变频拖动装置,包括:整流单元、滤波储能单元、充电控制单元和变频拖动单元;整流单元包括六个整流二极管,六个整流二极管组成三相桥式整流电路;充电控制单元包括滤波互感器、交流接触器和限流电阻器;变频拖动单元包括变频器和电机,变频器的三相输出端分别与电机的输入端对应连接;滤波储能单元包括超级电容组和蓄电池组,超级电容组中的超级电容和蓄电池组中的蓄电池均相互串联。通过本发明的技术方案,能够在输入电能时正常工作,没有输入电能时利用自充电过程在滤波储能单元储存的电能工作,实现电机在混合动力下的运行。

Description

自充电混合动力变频拖动装置 技术领域
本发明涉及混合动力技术领域,尤其涉及一种自充电混合动力变频拖动装置。
背景技术
现有技术中,在油田抽油过程中,通常采用的游梁式抽油机的电机做功是耗电的,在下冲程过程中由于抽油杆的重力作用使电动机的钮距发生变化使电动机超速转动使电动机变成发电机,电动机所发电的大小跟井下抽油杆的重量和平衡块有关系。一般来说井下抽油杆重量越重发电量就越大,通常人为无法控制它的发电量。
目前在油田使用的变频器都是人为将游梁式抽油机在下行过程中发的电利用自动电阻消耗掉了,没有将其有效的利用,导致所发的电白白浪费掉。
发明内容
针对上述问题中的至少之一,本发明提供了一种自充电混合动力变频拖动装置,通过整流单元将三相交流电转换为直流电,由滤波储能单元将所发的电能储存起来,充电控制单元防止充电电流过大造成滤波储能单元的损坏,再通过变频拖动单元将整流后的直流电逆变为电机适用的三相交流电,能够在输入电能时正常工作,没有输入电能时利用自充电过程在滤波储能单元储存的电能工作,实现电机在混合动力下的运行。
为实现上述目的,本发明提供了一种自充电混合动力变频拖动装置,包括:整流单元、滤波储能单元、充电控制单元和变频拖动单元;所述整流单元包括六个整流二极管,六个所述整流二极管组成三相桥式整流电路,所述三相桥式整流电路的输入端分别与三相交流电相连接;所述充电控制单元包括滤波互感器、交流接触器和限流电阻器,所述三相桥式整流电路的正极输出端与所述滤波互感器相串联,所述滤波互感器与所述限流电阻器相串联,所述交流接触器与所述限流电阻器相并联;所述变频拖动单元包括变频器和电机,所述变频器的正极端与所述限流电阻器相串联,所述变频器的负极端与所述三相桥式整流电路的负极输出端相连接,所述变频器的三相输出端分 别与所述电机的输入端对应连接;所述滤波储能单元包括超级电容组和蓄电池组,所述超级电容组与所述蓄电池组相并联,所述超级电容组包括至少两组相串联的超级电容,所述蓄电池组包括至少两组相串联的蓄电池,所述超级电容组的正极与所述蓄电池组的正极均连接于所述限流电阻器与所述变频器的正极端之间的线路上,所述超级电容组的负极与所述蓄电池组的负极均连接于所述变频器的负极端。
在上述技术方案中,优选地,所述整流单元的三相桥式整流电路中,三相交流电的每个接线端与两个所述整流二极管相连,该两个整流二极管分别以正极和负极与对应的接线端相连,三组中以正极与接线端相连的整流二极管的负极相连接,三组中以负极与接线端相连的整流二极管的正极相连接。
在上述技术方案中,优选地,所述电机为游梁式抽油机的动力结构部件。
在上述技术方案中,优选地,所述变频器将滤波储能单元中的直流电还原为交流电,还原后的交流电的电压和频率与所述电机相匹配。
在上述技术方案中,优选地,所述电机为变频电机。
与现有技术相比,本发明的有益效果为:通过整流单元将三相交流电转换为直流电,由滤波储能单元将所发的电能储存起来,充电控制单元防止充电电流过大造成滤波储能单元的损坏,再通过变频拖动单元将整流后的直流电逆变为电机适用的三相交流电,能够在输入电能时正常工作,没有输入电能时利用自充电过程在滤波储能单元储存的电能工作,实现电机在混合动力下的运行。
附图说明
图1为本发明一种实施例公开的自充电混合动力变频拖动装置的电路连接示意图。
图中,各组件与附图标记之间的对应关系为:
11.整流单元,111.整流二极管,12.充电控制单元,121.交流接触器,122.滤波互感器,123.限流电阻器,13.滤波储能单元,131.蓄电池组,132.超级电容组,14.变频拖动单元,141.变频器,142.电机。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图对本发明做进一步的详细描述:
如图1所示,根据本发明提供的一种自充电混合动力变频拖动装置,包括:整流单元11、滤波储能单元13、充电控制单元12和变频拖动单元14;整流单元11包括六个整流二极管111,六个整流二极管111组成三相桥式整流电路,三相桥式整流电路的输入端分别与三相交流电相连接;充电控制单元12包括滤波互感器122、交流接触器121和限流电阻器123,三相桥式整流电路的正极输出端与滤波互感器122相串联,滤波互感器122与限流电阻器123相串联,交流接触器121与限流电阻器123相并联;变频拖动单元14包括变频器141和电机142,变频器141的正极端与限流电阻器123相串联,变频器141的负极端与三相桥式整流电路的负极输出端相连接,变频器141的三相输出端分别与电机142的输入端对应连接;滤波储能单元13包括超级电容组132和蓄电池组131,超级电容组132与蓄电池组131相并联,超级电容组132包括至少两组相串联的超级电容,蓄电池组131包括至少两组相串联的蓄电池,超级电容组132的正极与蓄电池组131的正极均连接于限流电阻器123与变频器141的正极端之间的线路上,超级电容组132的负极与蓄电池组131的负极均连接于变频器141的负极端。
在该实施例中,具体地,整流单元11与一般整流电路原理一样,由六个整流二级管组成三相桥式整流电路,将三相交流电变为脉动直流电。滤波储能单元13由超级电容132和蓄电池131共同作用,并将所发的电能储存其中。充电控制单元12由滤波互感器122、交流接触器121、限流电阻器123组成,以防止充电电流过大造成超级电容132和蓄电池131损坏。变频拖动单元14将整流后所储存的直流电逆变成三相交流电以满足电机142拖动系统的工作电压,变频器141将滤波储能单元13中的直流电还原为交流电,还原后的交流电的电压和频率与电机142相匹配。
在该实施例中,优选地,电机142为游梁式抽油机的动力结构部件。
具体地,如图1所示,三相交流电经整流二极管D1-D6构成的整流单元11整流为直流电,直流电压由变频器141中的逆变频器141还原成交流380V、频率为50Hz的交流电,以满足电动机拖动游梁式抽油机的各项条件。动态工作的原理是:当游梁式抽油机下行时,电动机的扭矩和负载变化使电机142处于发电状态,使得C、E点电位升高,电位升高的同时给超级电容132和蓄电池131充电,充电电压是整流电压的2倍,充电电流I=P/U,设P=45Kw那么充电电流为I=100A,经长期测试发现,电动机的额定工作电流就是当电动机处于发电时的充电电流,也就是称之为自充电的原因。
其中,优选地,整流单元11的三相桥式整流电路中,三相交流电的每个接线端与两个整流二极管111相连,该两个整流二极管111分别以正极和负极与对应的接线端相连,三组中以正极与接线端相连的整流二极管111的负极相连接,三组中以负极与接线端相连的整流二极管111的正极相连接。
在上述实施例中,优选地,电机142为变频电机142,通过变频器141改变频率以实现电机142的无级变速功能。
在上述实施例中,装置在输入380V交流电的情况下,可正常工作,当没有输入交流电的情况下,其可利用滤波储能单元13中所存储的电能工作,即为混合动力拖动装置,两种动力源都能满足正常电机142拖动负载的要求。
以上所述为本发明的实施方式,根据本发明提出的自充电混合动力变频拖动装置,通过整流单元将三相交流电转换为直流电,由滤波储能单元将所发的电能储存起来,充电控制单元防止充电电流过大造成滤波储能单元的损坏,再通过变频拖动单元将整流后的直流电逆变为电机适用的三相交流电,能够在输入电能时正常工作,没有输入电能时利用自充电过程在滤波储能单元储存的电能工作,实现电机在混合动力下的运行。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种自充电混合动力变频拖动装置,其特征在于,包括:整流单元、滤波储能单元、充电控制单元和变频拖动单元;
    所述整流单元包括六个整流二极管,六个所述整流二极管组成三相桥式整流电路,所述三相桥式整流电路的输入端分别与三相交流电相连接;
    所述充电控制单元包括滤波互感器、交流接触器和限流电阻器,所述三相桥式整流电路的正极输出端与所述滤波互感器相串联,所述滤波互感器与所述限流电阻器相串联,所述交流接触器与所述限流电阻器相并联;
    所述变频拖动单元包括变频器和电机,所述变频器的正极端与所述限流电阻器相串联,所述变频器的负极端与所述三相桥式整流电路的负极输出端相连接,所述变频器的三相输出端分别与所述电机的输入端对应连接;
    所述滤波储能单元包括超级电容组和蓄电池组,所述超级电容组与所述蓄电池组相并联,所述超级电容组包括至少两组相串联的超级电容,所述蓄电池组包括至少两组相串联的蓄电池,所述超级电容组的正极与所述蓄电池组的正极均连接于所述限流电阻器与所述变频器的正极端之间的线路上,所述超级电容组的负极与所述蓄电池组的负极均连接于所述变频器的负极端。
  2. 根据权利要求1所述的自充电混合动力变频拖动装置,其特征在于,所述整流单元的三相桥式整流电路中,三相交流电的每个接线端与两个所述整流二极管相连,该两个整流二极管分别以正极和负极与对应的接线端相连,三组中以正极与接线端相连的整流二极管的负极相连接,三组中以负极与接线端相连的整流二极管的正极相连接。
  3. 根据权利要求1所述的自充电混合动力变频拖动装置,其特征在于,所述电机为游梁式抽油机的动力结构部件。
  4. 根据权利要求1所述的自充电混合动力变频拖动装置,其特征在于,所述变频器将滤波储能单元中的直流电还原为交流电,还原后的交流电的电压和频率与所述电机相匹配。
  5. 根据权利要求1或4所述的自充电混合动力变频拖动装置,其特征在于,所述电机为变频电机。
PCT/CN2019/100681 2018-09-26 2019-08-15 自充电混合动力变频拖动装置 WO2020063173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811125272.9A CN109104136A (zh) 2018-09-26 2018-09-26 自充电混合动力变频拖动装置
CN201811125272.9 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020063173A1 true WO2020063173A1 (zh) 2020-04-02

Family

ID=64867779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100681 WO2020063173A1 (zh) 2018-09-26 2019-08-15 自充电混合动力变频拖动装置

Country Status (2)

Country Link
CN (1) CN109104136A (zh)
WO (1) WO2020063173A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109104136A (zh) * 2018-09-26 2018-12-28 杨雪梅 自充电混合动力变频拖动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202508704U (zh) * 2012-03-21 2012-10-31 成都市特种设备检验院 一种电梯能量回馈装置
CN204652281U (zh) * 2015-05-27 2015-09-16 赵建明 1140v高效节能变频拖动装置
US20170267112A1 (en) * 2016-03-16 2017-09-21 Alstom Transport Technologies System for converting electric energy, electric energy storage device and power train for a railway vehicle
CN207117525U (zh) * 2017-07-04 2018-03-16 贵州玖玖新能源有限公司 节能变频器
CN109104136A (zh) * 2018-09-26 2018-12-28 杨雪梅 自充电混合动力变频拖动装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158065B (zh) * 2011-03-01 2013-01-30 徐州中矿大传动与自动化有限公司 一种无网侧电动势传感器pwm整流器启动控制方法
CN103490524A (zh) * 2013-09-16 2014-01-01 江苏大学 一种大型混合储能系统及其控制策略

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202508704U (zh) * 2012-03-21 2012-10-31 成都市特种设备检验院 一种电梯能量回馈装置
CN204652281U (zh) * 2015-05-27 2015-09-16 赵建明 1140v高效节能变频拖动装置
US20170267112A1 (en) * 2016-03-16 2017-09-21 Alstom Transport Technologies System for converting electric energy, electric energy storage device and power train for a railway vehicle
CN207117525U (zh) * 2017-07-04 2018-03-16 贵州玖玖新能源有限公司 节能变频器
CN109104136A (zh) * 2018-09-26 2018-12-28 杨雪梅 自充电混合动力变频拖动装置

Also Published As

Publication number Publication date
CN109104136A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
CN102983568B (zh) 一种用于电网黑启动的mmc-hvdc换流站启动方法
CN107121611B (zh) 监测DCM Boost PFC变换器输出电容失效的方法
CN106329969B (zh) 适用于Vienna整流器的输出电压动态响应优化控制
CN1039158A (zh) 不间断电源装置
CN101841188A (zh) 电能回馈式光网混合供电不间断逆变电源
CN105703689B (zh) 大功率无刷双馈电机三电平双向变频调速系统
CN107623466B (zh) 一种交直交牵引传动系统的制动装置及制动方法
CN101697429A (zh) 一种微能耗电梯
CN105991059A (zh) 一种逆变器系统及减小逆变器直流母线电容的方法
CN107342697A (zh) 稳态负电平输出下混合型mmc子模块电容参数的获取方法
WO2020063173A1 (zh) 自充电混合动力变频拖动装置
CN104143902A (zh) 一种能适应多种供电要求的电力电子变换器系统
CN114421451A (zh) 基于soc均衡算法的vdcm并联协调控制方法
CN112242699B (zh) 孤立直流微电网的改进自适应有源阻尼控制方法
CN201530655U (zh) 一种微能耗电梯
CN112436500A (zh) 一种直流微电网发输配电系统
CN114556759A (zh) 电源装置
CN117543654A (zh) 用于石油钻井平台微电网的直接功率补偿系统
CN113013919B (zh) 一种对称式双模光伏逆变器装置
CN104242670A (zh) 一种矿用提升机专用变频器
CN106787791A (zh) 一种船用恒频恒压带电能存储供电系统
Kim et al. Comparative analysis of the utilization of supercapacitor versus grid-tie inverter regenerative braking methods for elevator systems
CN106992552B (zh) 海岛特种电源供电系统
CN206452305U (zh) 一种船用恒频恒压带电能存储供电系统
CN203691049U (zh) 基于可调速驱动装置的不间断电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864857

Country of ref document: EP

Kind code of ref document: A1