[go: up one dir, main page]

WO2020054342A1 - Method for producing rubber composition - Google Patents

Method for producing rubber composition Download PDF

Info

Publication number
WO2020054342A1
WO2020054342A1 PCT/JP2019/032792 JP2019032792W WO2020054342A1 WO 2020054342 A1 WO2020054342 A1 WO 2020054342A1 JP 2019032792 W JP2019032792 W JP 2019032792W WO 2020054342 A1 WO2020054342 A1 WO 2020054342A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
rubber
rubber composition
mass
dispersion
Prior art date
Application number
PCT/JP2019/032792
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 加藤
康太郎 伊藤
芽衣 ▲高▼木
喜威 山田
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2020546803A priority Critical patent/JP6915170B2/en
Publication of WO2020054342A1 publication Critical patent/WO2020054342A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to a method for producing a rubber composition containing modified cellulose nanofibers.
  • CNFs Cellulose nanofibers
  • Patent Document 1 describes a rubber composition in which cellulose nanofibers are dispersed.
  • dispersion is performed by applying a shearing force with a stirring blade or the like using a homogenizer, a propeller-type stirring device, a rotary stirring device, or the like.
  • the dispersibility of cellulose nanofibers in a rubber composition containing cellulose nanofibers and a rubber component affects physical properties of a molded article or the like made from this rubber composition. Therefore, it is required to further improve the dispersibility of the cellulose nanofiber in the rubber composition.
  • an object of the present invention is to provide a production method which is excellent in dispersibility and continuous operability and can obtain a high-strength rubber composition.
  • the present invention provides the following.
  • a method for producing a rubber composition containing modified cellulose nanofibers comprising a mixing step of mixing a modified cellulose nanofiber dispersion and a latex containing a rubber component using an in-line static fluid mixing device.
  • a method for producing a rubber composition (2) The method for producing a rubber composition according to (1), wherein the modified cellulose nanofiber contains oxidized cellulose nanofiber.
  • the method for producing a rubber composition according to (1) or (2), wherein the in-line static fluid mixing device is an OHR mixer.
  • to includes an end value. That is, “X to Y” includes the values X and Y at both ends.
  • the method for producing a rubber composition of the present invention includes a mixing step of mixing a modified cellulose nanofiber dispersion and a latex containing a rubber component using an inline static fluid mixing device.
  • modified cellulose nanofibers are fine fibers made from modified cellulose as a raw material.
  • the fiber diameter of the modified cellulose nanofiber is not particularly limited, but is about 3 to 500 nm.
  • the average fiber diameter and average fiber length of the modified cellulose nanofibers are obtained from observation of each fiber using a scanning electron microscope (SEM), an atomic force microscope (AFM), or a transmission electron microscope (TEM). It can be obtained by averaging the fiber diameter and fiber length.
  • the modified cellulose nanofiber can be obtained by defibrating modified cellulose.
  • the average fiber length and average fiber diameter of the fine fibers can be adjusted by an oxidation treatment and a defibration treatment.
  • the average aspect ratio of the modified cellulose nanofiber used in the present invention is usually 50 or more.
  • the upper limit is not particularly limited, but is usually 1,000 or less.
  • Modified cellulose is obtained by modifying cellulose contained in a cellulose raw material.
  • the cellulose raw material may contain cellulose, and is not particularly limited.
  • plants for example, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp (conifer unbleached kraft pulp (NUKP), Softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), bleached kraft pulp (BKP), softwood unbleached sulphite pulp (NUSP), softwood bleached sulphite pulp (NBSP) Thermomechanical pulp (TMP), recycled pulp, waste paper, etc.), animals (eg, ascidians), algae, microorganisms (eg, acetic acid bacteria (acetobacter)), microorganism products, etc.
  • NUKP conifer unbleached kraft pulp
  • NKP Softwood bleached kraft pulp
  • LKP hardwood un
  • cellulose raw material examples include: Or a combination of two or more types.
  • cellulosic material e.g., cellulosic fibers
  • cellulose material of plant origin e.g., cellulose fibers
  • the number average fiber diameter of the cellulose raw material is not particularly limited, but it is about 30 to 60 ⁇ m for softwood kraft pulp, which is a common pulp, and about 10 to 30 ⁇ m for hardwood kraft pulp. In the case of other pulp, those having undergone general purification are about 50 ⁇ m. For example, in the case of purifying a chip or the like having a size of several centimeters, it is preferable to perform a mechanical treatment with a disintegrator such as a refiner or a beater to adjust the diameter to about 50 ⁇ m.
  • a disintegrator such as a refiner or a beater
  • Cellulose has three hydroxyl groups per glucose unit and can be modified in various ways.
  • modification generally, chemical modification
  • esterification such as oxidation, etherification, and phosphate esterification, silane coupling, fluorination, and cationization.
  • oxidation carboxylation
  • etherification carboxymethylation
  • cationization oxidation and carboxymethylation are more preferred.
  • oxidized (carboxylated) cellulose when used as the modified cellulose, oxidized cellulose (also referred to as carboxylated cellulose) can be obtained by oxidizing (carboxylated) the above-mentioned cellulose raw material by a known method. .
  • a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof.
  • an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof.
  • the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized, and the cellulose fiber having an aldehyde group and a carboxyl group (—COOH) or a carboxylate group (—COO ⁇ ) on the surface.
  • the concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
  • N-oxyl compound means a compound capable of generating a nitroxy radical.
  • any compound can be used as long as it promotes a desired oxidation reaction.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxy radical
  • its derivative eg, 4-hydroxy TEMPO
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of oxidizing cellulose as a raw material.
  • the amount is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and still more preferably 0.05 to 0.5 mmol, based on 1 g of absolutely dried cellulose. Further, the amount is preferably about 0.1 to 4 mmol / L with respect to the reaction system.
  • Bromide is a compound containing bromine, and examples thereof include an alkali metal bromide that can be dissociated and ionized in water.
  • iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction.
  • the total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and still more preferably 0.5 to 5 mmol, based on 1 g of absolutely dried cellulose.
  • oxidizing agent known agents can be used, and for example, halogen, hypohalous acid, halogenous acid, perhalic acid or salts thereof, halogen oxide, peroxide and the like can be used. Among them, sodium hypochlorite which is inexpensive and has a low environmental load is preferable.
  • the amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol, based on 1 g of absolutely dried cellulose. Further, for example, 1 to 40 mol is preferable for 1 mol of the N-oxyl compound.
  • the reaction temperature is preferably 4 to 40 ° C, and may be room temperature of about 15 to 30 ° C. Since a carboxyl group is generated in the cellulose as the reaction proceeds, a decrease in the pH of the reaction solution is observed.
  • an alkaline solution such as an aqueous solution of sodium hydroxide to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11.
  • the reaction medium is preferably water because of its easy handling and the fact that side reactions hardly occur.
  • the reaction time in the oxidation reaction can be appropriately set according to the degree of progress of the oxidation, and is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours.
  • the oxidation reaction may be performed in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency of the oxidized cellulose can be reduced without being inhibited by the salt produced as a by-product in the first-stage reaction. Can be well oxidized.
  • oxidation (carboxylation) method there can be mentioned a method of oxidizing by bringing a gas containing ozone into contact with a cellulose raw material.
  • a gas containing ozone By this oxidation reaction, at least the hydroxyl groups at the 2- and 6-positions of the glucopyranose ring are oxidized, and the cellulose chain is decomposed.
  • the ozone concentration in the gas containing ozone is preferably from 50 to 250 g / m 3 , more preferably from 50 to 220 g / m 3 .
  • the amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass.
  • the ozone treatment temperature is preferably 0 to 50 ° C, more preferably 20 to 50 ° C.
  • the ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 360 minutes. When the conditions of the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
  • an additional oxidation treatment may be performed using an oxidizing agent.
  • the oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. For example, these oxidizing agents may be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and the additional oxidation treatment may be performed by immersing the cellulose raw material in the solution.
  • the amount of carboxyl groups in oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidizing agent added and the reaction time.
  • carboxymethylated cellulose when carboxymethylated cellulose is used as the modified cellulose, the carboxymethylated cellulose may be obtained by subjecting the above-mentioned cellulose raw material to carboxymethylation by a known method, or using a commercially available product. Is also good. In any case, it is preferable that the degree of carboxymethyl group substitution per anhydroglucose unit of cellulose is 0.01 to 0.50.
  • An example of a method for producing such carboxymethylated cellulose includes the following method.
  • Cellulose is used as the starting material, and 3 to 20 times by mass of water and / or lower alcohol as a solvent, specifically, water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary A single medium such as butanol or a mixed medium of two or more kinds is used.
  • the mixing ratio of the lower alcohol is 60 to 95% by mass.
  • the mercerizing agent 0.5 to 20 times mol of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide, is used per anhydroglucose residue of the starting material.
  • the starting material, the solvent and the mercerizing agent are mixed, and the mercerizing treatment is performed at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • a carboxymethylating agent is added in a molar amount of 0.05 to 10.0 times per glucose residue, and the reaction temperature is 30 to 90 ° C, preferably 40 to 80 ° C, and the reaction time is 30 minutes to 10 hours, preferably 1 hour.
  • the etherification reaction is performed for 44 hours.
  • ⁇ carboxymethylated cellulose '' which is one type of modified cellulose used for preparing cellulose nanofibers, is one in which at least a part of the fibrous shape is maintained even when dispersed in water. Say. Therefore, it is distinguished from carboxymethyl cellulose which is a kind of water-soluble polymer.
  • carboxymethyl cellulose which is a kind of water-soluble polymer.
  • a fibrous substance can be observed.
  • carboxymethyl cellulose which is a kind of water-soluble polymer
  • no fibrous substance is observed.
  • “carboxymethylated cellulose” is measured by X-ray diffraction, a peak of cellulose type I crystal can be observed, but no cellulose type I crystal is observed in carboxymethyl cellulose as a water-soluble polymer.
  • the modified cellulose cellulose obtained by further cationizing the carboxylated cellulose can be used.
  • the cation-modified cellulose is obtained by adding a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydride or its halohydrin type to the carboxylated cellulose raw material, and an alkali hydroxide as a catalyst. It can be obtained by reacting a metal (such as sodium hydroxide and potassium hydroxide) in the presence of water or an alcohol having 1 to 4 carbon atoms.
  • a metal such as sodium hydroxide and potassium hydroxide
  • the degree of cation substitution per glucose unit is preferably from 0.02 to 0.50.
  • the celluloses repel each other electrically. For this reason, the cellulose into which the cation substituent is introduced can be easily nano-defibrated. If the degree of cation substitution per glucose unit is smaller than 0.02, nanofibrillation cannot be sufficiently performed. On the other hand, if the degree of cation substitution per glucose unit is greater than 0.50, the swelling or dissolution may result in the inability to obtain a nanofiber.
  • the cation-modified cellulose raw material obtained above is preferably washed.
  • the degree of cation substitution can be adjusted by the addition amount of the cationizing agent to be reacted and the composition ratio of water or an alcohol having 1 to 4 carbon atoms.
  • Esterified cellulose can be used as the modified cellulose.
  • the cellulose is obtained by a method of mixing a powder or an aqueous solution of the phosphoric acid compound A with the aforementioned cellulose raw material, or a method of adding an aqueous solution of the phosphoric acid compound A to a slurry of the cellulose raw material.
  • Examples of the phosphoric acid compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof. These may be in the form of salts. Among these, compounds having a phosphate group are preferable because they are low-cost, easy to handle, and can improve the defibration efficiency by introducing a phosphate group into cellulose of the pulp fiber.
  • Compounds having a phosphate group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, potassium hypophosphite , Sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate , Ammonium pyrophosphate, ammonium metaphosphate and the like. These can be used alone or in combination of two or more.
  • phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, phosphoric acid from the viewpoint of high efficiency of phosphate group introduction, easy defibration in the following defibration step, and easy industrial application.
  • sodium dihydrogen phosphate and disodium hydrogen phosphate are preferable.
  • the phosphoric acid-based compound A is preferably used as an aqueous solution because the uniformity of the reaction is increased and the efficiency of introducing a phosphate group is increased.
  • the pH of the aqueous solution of the phosphoric acid-based compound A is preferably 7 or less from the viewpoint of increasing the efficiency of introducing a phosphate group, but is preferably from 3 to 7 from the viewpoint of suppressing the hydrolysis of pulp fibers.
  • a phosphoric acid compound A is added to a dispersion of a cellulose raw material having a solid content of 0.1 to 10% by mass while stirring to introduce a phosphate group into the cellulose.
  • the amount of the phosphoric acid compound A to be added is preferably 0.2 to 500 parts by mass, more preferably 1 to 400 parts by mass, as the amount of phosphorus element.
  • the ratio of the phosphoric acid compound A is equal to or more than the lower limit, the yield of fine fibrous cellulose can be further improved. However, if the ratio exceeds the upper limit, the effect of improving the yield will level off, which is not preferable in terms of cost.
  • the compound B is not particularly limited, but a nitrogen-containing compound showing basicity is preferable.
  • “basic” is defined as the aqueous solution exhibiting a pink to red color in the presence of the phenolphthalein indicator, or the pH of the aqueous solution being greater than 7.
  • the nitrogen-containing compound exhibiting basicity used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable.
  • Examples include, but are not limited to, urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, and the like. Of these, urea which is easy to handle at low cost is preferable.
  • the amount of compound B to be added is preferably 2 to 1000 parts by mass, more preferably 100 to 700 parts by mass, based on 100 parts by mass of the solid content of the cellulose raw material.
  • the reaction temperature is preferably from 0 to 95 ° C, more preferably from 30 to 90 ° C. Although the reaction time is not particularly limited, it is about 1-600 minutes, more preferably 30-480 minutes.
  • the conditions of the esterification reaction are within these ranges, it is possible to prevent cellulose from being excessively esterified and being easily dissolved, and the yield of phosphorylated esterified cellulose is improved.
  • a heat treatment at 100 to 170 ° C. from the viewpoint of suppressing hydrolysis of cellulose. Further, it is preferable to heat at 130 ° C. or lower, preferably 110 ° C. or lower while water is contained in the heat treatment, remove the water, and heat-treat at 100 to 170 ° C.
  • the phosphoric acid-esterified cellulose preferably has a phosphate group substitution degree per glucose unit of 0.001 to 0.40.
  • a phosphate group substituent By introducing a phosphate group substituent into cellulose, the celluloses repel each other electrically. For this reason, the cellulose into which the phosphate group has been introduced can be easily nanofibrillated. If the degree of substitution of the phosphate group per glucose unit is less than 0.001, nanofibrillation cannot be sufficiently performed. On the other hand, if the degree of substitution of the phosphate group per glucose unit is more than 0.40, it may swell or dissolve, and thus may not be obtained as a nanofiber. In order to carry out the defibration efficiently, it is preferable to wash the phosphoric acid-esterified cellulose raw material obtained above by boiling and then washing with cold water.
  • the device for defibrating is not particularly limited, but a high-speed rotation type, a colloid mill type, a high pressure type, a roll mill type, applying a strong shearing force to the aqueous dispersion using an apparatus such as an ultrasonic type.
  • a wet high-pressure or ultra-high-pressure homogenizer capable of applying a pressure of 50 MPa or more to the aqueous dispersion and applying a strong shearing force.
  • the pressure is more preferably at least 100 MPa, even more preferably at least 140 MPa.
  • the above-mentioned CNF Prior to the defibration / dispersion treatment with a high-pressure homogenizer, the above-mentioned CNF can be subjected to a pretreatment, if necessary, using a known mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer. It is.
  • the number of processes (passes) in the defibrating device may be one, two or more, and preferably two or more.
  • the modified cellulose is usually dispersed in a solvent.
  • the solvent is not particularly limited as long as the modified cellulose can be dispersed, and examples thereof include water, an organic solvent (eg, a hydrophilic organic solvent such as methanol), and a mixed solvent thereof. Since the cellulose raw material is hydrophilic, the solvent is preferably water.
  • the solid content concentration of the modified cellulose in the dispersion is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more. This makes the liquid amount appropriate for the amount of the cellulose fiber raw material, which is efficient.
  • the upper limit is usually 10% by mass or less, preferably 6% by mass or less. Thereby, fluidity can be maintained.
  • a preliminary treatment may be performed if necessary.
  • the preliminary treatment may be performed using a mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer.
  • the modified cellulose nanofiber obtained through the defibration step is in the form of a salt, it may be used as it is, or may be used as the acid form by an acid treatment using a mineral acid or a method using a cation exchange resin. Is also good. Further, hydrophobicity may be imparted by a method using a cationic additive.
  • the modified cellulose nanofiber is subjected to a mixing step in a state of a dispersion liquid dispersed in a dispersion medium.
  • the dispersion medium include water and an organic solvent, and a mixture thereof may be used.
  • the concentration of the modified cellulose nanofiber dispersion used in the mixing step may be 0.1 to 5% (w / v) when the dispersion medium is water, and the dispersion medium may be water and an organic solvent such as alcohol. , It may be 0.1 to 20% (w / v).
  • the modified cellulose nanofibers may be a combination of two or more modified cellulose nanofibers.
  • the rubber component is a raw material of rubber and refers to a material which is crosslinked to form rubber.
  • the rubber component includes a rubber component for natural rubber and a rubber component for synthetic rubber.
  • Examples of the rubber component for natural rubber include natural rubber (NR) in a narrow sense without chemical modification; chemically modified natural rubber such as chlorinated natural rubber, chlorosulfonated natural rubber, and epoxidized natural rubber; hydrogenated natural rubber Rubber; deproteinized natural rubber.
  • Examples of rubber components for synthetic rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer.
  • BR butadiene rubber
  • SBR styrene-butadiene copolymer rubber
  • IR isoprene rubber
  • NBR acrylonitrile-butadiene rubber
  • chloroprene rubber chloroprene rubber
  • styrene-isoprene copolymer examples include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer.
  • Diene rubbers such as coalesced rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber; butyl rubber (IIR), ethylene-propylene rubber (EPM, EPDM), acrylic rubber (ACM), epichlorohydrid Non-diene rubbers such as rubber (CO, ECO), fluoro rubber (FKM), silicone rubber (Q), urethane rubber (U), and chlorosulfonated polyethylene (CSM).
  • NBR, NR, SBR, chloroprene rubber and BR are preferred.
  • the rubber component may be used alone or in combination of two or more.
  • the rubber component is subjected to a mixing step as a latex (dispersion liquid) dispersed in a dispersion medium.
  • a dispersion medium include water and an organic solvent, and a mixture thereof may be used.
  • the content ratio of the rubber component in the latex is preferably 10 to 80%, more preferably 20 to 70%.
  • the modified cellulose nanofiber dispersion and the latex containing the rubber component are mixed using an in-line static fluid mixing device.
  • an in-line static fluid mixing device In the mixing step of the present invention, an in-line static fluid mixing device is used.
  • the in-line static fluid mixing device include a static mixer, an OHR mixer, and an MSE static mixer.
  • the static mixer, the OHR mixer and the It is more preferable to use
  • a static mixer is a fluid mixer in which a right-handed spiral element and a left-handed spiral element are alternately arranged in a pipe such that one end is perpendicular to the other end. Device.
  • the OHR mixer is a fluid mixing device that enhances cavitation in a fluid by providing a plurality of protrusions on a peripheral wall surface of a pipe to promote mixing and stirring.
  • the MSE static mixer is a fluid mixing device in which a stack of mixing elements having a large number of small through holes and a large through hole in the center is disposed in a pipe, or such a mixing element is installed in a pipe and used. It is a fluid mixing device.
  • the production efficiency can be increased as compared with a batch type. Further, space saving can be achieved as compared with the case where the stirring tank is used.
  • a stationary mixing device since a stationary mixing device is used, energy can be saved, and latex agglomeration due to shearing force such as rotation of the stirring blade can be suppressed. Further, since the aggregation of the latex is suppressed, the frequency of removing the aggregated dirt is reduced, and as a result, the continuous operability is excellent.
  • inline static fluid mixing apparatus may be used alone, or a plurality of inline static fluid mixing apparatuses may be used in combination.
  • the number of treatments (passes) in the in-line static fluid mixing device may be one, or two or more, and preferably two or more.
  • the rubber component is contained so that the modified cellulose nanofiber is contained in an amount of 0.5 to 30 parts by mass on a solid basis based on 100 parts by mass of the rubber component in the latex.
  • the modified latex and the modified cellulose nanofiber dispersion are mixed.
  • the production method of the present invention may include a step of adding one or more optional components depending on the use of the obtained rubber composition and the like.
  • Optional components include, for example, reinforcing agents (eg, carbon black, silica, etc.), silane coupling agents, cross-linking agents, vulcanization accelerators, vulcanization accelerators (eg, zinc oxide, stearic acid), oils, and curing.
  • vulcanization accelerators eg, zinc oxide, stearic acid
  • oils eg, and curing.
  • curing examples include compounding agents that can be used in the rubber industry, such as resins, waxes, antioxidants, and coloring agents. Among these, a vulcanization accelerator and a vulcanization accelerator are preferable.
  • the content of the optional component may be appropriately determined according to the type of the optional component, and is not particularly limited.
  • the rubber composition when it is an unvulcanized rubber composition or a final product, it preferably contains a crosslinking agent.
  • the crosslinking agent include sulfur, sulfur halide, organic peroxide, quinone dioximes, organic polyamine compounds, and alkylphenol resins having a methylol group. Of these, sulfur is preferred.
  • the content of the crosslinking agent is preferably at least 1.0 part by mass, more preferably at least 1.5 parts by mass, even more preferably at least 1.7 parts by mass based on 100 parts by mass of the rubber component.
  • the upper limit is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and even more preferably 5 parts by mass or less.
  • Examples of the vulcanization accelerator include Nt-butyl-2-benzothiazolesulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide.
  • the content of the vulcanization accelerator is preferably 0.1 part by mass, more preferably 0.3 part by mass or more, even more preferably 0.4 part by mass or more based on 100 parts by mass of the rubber component.
  • the upper limit is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 2 parts by mass or less.
  • the use of the rubber composition obtained by the production method of the present invention is not particularly limited as long as it is a composition for obtaining a rubber as a final product. That is, it may be an intermediate (master batch) for rubber production, an unvulcanized rubber composition containing a vulcanizing agent, or rubber as a final product.
  • the use of the final product is not particularly limited.
  • transportation equipment such as automobiles, trains, ships, and airplanes; electric appliances such as personal computers, televisions, telephones, and watches; mobile communication equipment such as mobile phones; Equipment, video playback equipment, printing equipment, copying equipment, sports equipment, etc .; building materials; office equipment such as stationery, containers, containers and the like.
  • application to members using rubber or flexible plastic is possible, and application to tires is preferable.
  • Examples of the tire include pneumatic tires for passenger cars, trucks, buses, heavy vehicles, and the like.
  • a CNF dispersion index was calculated for a mixture of natural rubber latex and an aqueous CNF dispersion as described below, and the degree of dispersion was evaluated according to the following criteria.
  • 2 drops of ink drops manufactured by Kuretake Co., Ltd., solid content: 10%
  • a vortex mixer manufactured by IUCHI, device name: (Automatic Lab-mixer HM-10H) was rotated for 1 minute with the rotation speed scale set to the maximum.
  • the mixture containing the ink droplets was sandwiched between two glass plates so that the film thickness became 0.15 mm, and the magnification was measured using an optical microscope (Digital Microscope KH-8700 (manufactured by Hilox Corporation)). Observed at 100x.
  • the major axis of the aggregate existing in the range of 3 mm ⁇ 2.3 mm was measured, and the observed aggregate was determined to be oversized: 150 ⁇ m or more, large: 100 ⁇ m or more and less than 150 ⁇ m, medium: 50 ⁇ m or more and less than 100 ⁇ m, and small: The particles were classified into 20 ⁇ m or more and less than 50 ⁇ m, the number of classified aggregates was counted, and the CNF dispersion index was calculated by the following equation.
  • CNF dispersion index (extra large number ⁇ 512 + large number ⁇ 64 + medium number ⁇ 8 + small number ⁇ 1) ⁇ 2 ⁇ CNF concentration coefficient
  • the CNF concentration coefficient is shown in Table 1.
  • CNF dispersion index is less than 1600 ⁇ : CNF dispersion index is 1600 or more and less than 6400 ⁇ : CNF dispersion index is 6400 or more
  • the evaluation results of the degree of dispersion are shown in Table 2.
  • the pH in the system decreased, but the pH was adjusted to 10 by sequentially adding a 3M aqueous sodium hydroxide solution.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system stopped changing.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose).
  • the pulp yield was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.6 mmol / g.
  • oxidized cellulose nanofiber had an average fiber diameter of 3 nm and an aspect ratio of 250.
  • Example 1 A 1% aqueous dispersion of the oxidized CNF obtained in Production Example 1 above based on 100 parts by mass of the absolute dry solid content of natural rubber latex (trade name: HA latex, Retex Co., solid content concentration: 61.5% by mass) And a static mixer (2 units of 3 / 8-N30-232-F manufactured by NORITAKE CO., LIMITED) connected as an in-line type static fluid mixing device, and a processing flow rate of 10 .9 L / min) to obtain a mixture. The mixture was dried in a heating oven at 70 ° C. for 15 hours to obtain a master batch. After the mixture was obtained, the inside of the static mixer was visually checked, and the degree of contamination by latex aggregates was examined. Staining by latex agglomerates was not observed, which was a good result.
  • a sheet of an unvulcanized rubber composition was placed in a mold and press-vulcanized at 150 ° C. for 15 minutes to obtain a vulcanized rubber sheet (vulcanized rubber composition) having a thickness of 2 mm.
  • the obtained vulcanized rubber sheet is cut into a test piece having a predetermined shape, and according to JIS K6251 “Vulcanized rubber and thermoplastic rubber-How to determine tensile properties”, a sheet having a tensile strength of 50% strain ( M50), stress at 100% strain (M100), and stress at 300% strain (M300), and breaking strength were measured.
  • the results are shown in Table 2. As the numerical values of the tensile stress and the breaking strength are larger, the vulcanized rubber composition is satisfactorily reinforced and the mechanical strength is excellent.
  • Example 2 A mixture was obtained in the same manner as in Example 1 except that the treatment by the static mixer was performed in three passes. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
  • Example 3 A mixture was obtained in the same manner as in Example 1, except that the treatment by the static mixer was changed to 10-pass treatment. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
  • Example 4 A mixture was obtained in the same manner as in Example 1, except that 10 passes were performed using an OHR mixer (MX-F8, manufactured by OHR Fluid Engineering Laboratory Co., Ltd., processing flow rate: 3.9 L / min) instead of the static mixer.
  • OHR mixer MX-F8, manufactured by OHR Fluid Engineering Laboratory Co., Ltd., processing flow rate: 3.9 L / min
  • a masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
  • Example 5 A mixture was obtained in the same manner as in Example 1, except that 10 passes were performed using an OHR mixer (MX-F8, manufactured by OHR Fluid Engineering Laboratory Co., Ltd., processing flow rate: 6.7 L / min) instead of the static mixer.
  • OHR mixer MX-F8, manufactured by OHR Fluid Engineering Laboratory Co., Ltd., processing flow rate: 6.7 L / min
  • a masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
  • Example 1 A mixture was obtained in the same manner as in Example 1, except that Cavitron (CD1000, manufactured by Eurotech Co., Ltd., processing flow rate: 10.9 L / min), which was an inline emulsifying and dispersing machine, was used instead of the static mixer. After the mixture was obtained, the inside of the Cavitron was visually checked, and the degree of contamination by latex aggregates was examined. Staining by latex agglomerates was observed, which was a bad result. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
  • Comparative Example 2 A mixture was obtained in the same manner as in Comparative Example 1 except that the treatment with the Cavitron was performed in three passes. After the mixture was obtained, the inside of the Cavitron was visually checked, and the degree of contamination by latex aggregates was examined. Many stains due to latex aggregates were observed, which was a very bad result. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
  • Example 3 A natural rubber latex and a 1% aqueous solution of CNF oxide were respectively introduced into a same pipe using a pump at a processing flow rate of 10.9 L / min without using a static mixer, and were passed through the same pipes. A mixture was obtained in the same manner as in Example 1. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided is a method for producing a rubber composition, the method including a mixing step for mixing a modified cellulose nanofiber dispersion and a rubber component-containing latex, by using a static in-line fluid mixer.

Description

ゴム組成物の製造方法Method for producing rubber composition
 本発明は、変性セルロースナノファイバーを含有するゴム組成物の製造方法に関する。 << The present invention relates to a method for producing a rubber composition containing modified cellulose nanofibers.
セルロースナノファイバー(CNF)はゴム組成物の補強繊維としての利用が期待されている。例えば特許文献1には、セルロースナノファイバーを分散させたゴム組成物が記載されている。 Cellulose nanofibers (CNFs) are expected to be used as reinforcing fibers in rubber compositions. For example, Patent Document 1 describes a rubber composition in which cellulose nanofibers are dispersed.
 一般に、ゴム組成物にセルロースナノファイバーを均一に分散させるため、ホモジナイザー、プロペラ式撹拌装置、ロータリー撹拌装置などを用いて、撹拌翼等によりせん断力を加えることによる分散が行われている。 Generally, in order to uniformly disperse cellulose nanofibers in a rubber composition, dispersion is performed by applying a shearing force with a stirring blade or the like using a homogenizer, a propeller-type stirring device, a rotary stirring device, or the like.
特開2006-206864号公報JP 2006-206864 A
 しかしながら、高速回転式の撹拌翼を備えたホモジナイザーを用いて天然ゴムのラテックスとセルロースナノファイバー分散液とを混合すると、撹拌翼によるせん断力により、ラテックスが凝集する場合があった。また、ホモジナイザーの内部にラテックスの凝集汚れが付着し、この汚れを除去するためにホモジナイザーの運転を定期的に停止しなければならず、連続操業性に問題があった。 However, when a natural rubber latex and a cellulose nanofiber dispersion were mixed using a homogenizer equipped with a high-speed rotating stirring blade, the latex sometimes aggregated due to the shearing force of the stirring blade. In addition, coagulated dirt of latex adheres to the inside of the homogenizer, and the operation of the homogenizer must be stopped periodically to remove the dirt, resulting in a problem in continuous operability.
 また、セルロースナノファイバーとゴム成分とを含有するゴム組成物におけるセルロースナノファイバーの分散性は、このゴム組成物から作製される成形体等の物性にも影響を及ぼす。そのため、ゴム組成物中でのセルロースナノファイバーの分散性をより一層高めることが求められている。 分散 In addition, the dispersibility of cellulose nanofibers in a rubber composition containing cellulose nanofibers and a rubber component affects physical properties of a molded article or the like made from this rubber composition. Therefore, it is required to further improve the dispersibility of the cellulose nanofiber in the rubber composition.
 そこで、本発明は、分散性および連続操業性に優れ、高強度なゴム組成物を得ることができる製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a production method which is excellent in dispersibility and continuous operability and can obtain a high-strength rubber composition.
 本発明者らは、かかる目的を達成するため鋭意検討した結果、特定の混合装置を用いることが極めて有効であることを見出し、本発明を完成した。 者 The present inventors have conducted intensive studies to achieve such an object, and as a result, have found that it is extremely effective to use a specific mixing device, and have completed the present invention.
 本発明は以下を提供する。
(1)変性セルロースナノファイバーを含有するゴム組成物の製造方法であって、変性セルロースナノファイバー分散液と、ゴム成分を含有するラテックスとをインライン静止型流体混合装置を用いて混合する混合工程を含む、ゴム組成物の製造方法。
(2)前記変性セルロースナノファイバーが、酸化セルロースナノファイバーを含む(1)のゴム組成物の製造方法。
(3)前記インライン静止型流体混合装置が、スタティックミキサーである(1)または(2)のゴム組成物の製造方法。
(4)前記インライン静止型流体混合装置が、OHRミキサーである(1)または(2)のゴム組成物の製造方法。
The present invention provides the following.
(1) A method for producing a rubber composition containing modified cellulose nanofibers, comprising a mixing step of mixing a modified cellulose nanofiber dispersion and a latex containing a rubber component using an in-line static fluid mixing device. A method for producing a rubber composition.
(2) The method for producing a rubber composition according to (1), wherein the modified cellulose nanofiber contains oxidized cellulose nanofiber.
(3) The method for producing a rubber composition according to (1) or (2), wherein the in-line static fluid mixing device is a static mixer.
(4) The method for producing a rubber composition according to (1) or (2), wherein the in-line static fluid mixing device is an OHR mixer.
 本発明によれば、分散性および連続操業性に優れ、高強度なゴム組成物を得ることができる製造方法を提供することができる。 According to the present invention, it is possible to provide a production method which is excellent in dispersibility and continuous operability and can obtain a high-strength rubber composition.
 以下、本発明を詳細に説明する。本発明において「~」は端値を含む。すなわち「X~Y」はその両端の値XおよびYを含む。 Hereinafter, the present invention will be described in detail. In the present invention, “to” includes an end value. That is, “X to Y” includes the values X and Y at both ends.
 本発明のゴム組成物の製造方法は、変性セルロースナノファイバー分散液と、ゴム成分を含有するラテックスとをインライン静止型流体混合装置を用いて混合する混合工程を含む。 ゴ ム The method for producing a rubber composition of the present invention includes a mixing step of mixing a modified cellulose nanofiber dispersion and a latex containing a rubber component using an inline static fluid mixing device.
(変性セルロースナノファイバー)
 本発明において、変性セルロースナノファイバー(CNF)は、変性セルロースを原料とする微細繊維である。変性セルロースナノファイバーの繊維径は、特に限定されないが、3~500nm程度である。変性セルロースナノファイバーの平均繊維径および平均繊維長は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察した結果から得られる繊維径および繊維長を平均することによって得ることができる。変性セルロースナノファイバーは、変性セルロースを解繊することによって得ることができる。微細繊維の平均繊維長と平均繊維径は、酸化処理、解繊処理により調整することができる。
(Modified cellulose nanofiber)
In the present invention, modified cellulose nanofibers (CNF) are fine fibers made from modified cellulose as a raw material. The fiber diameter of the modified cellulose nanofiber is not particularly limited, but is about 3 to 500 nm. The average fiber diameter and average fiber length of the modified cellulose nanofibers are obtained from observation of each fiber using a scanning electron microscope (SEM), an atomic force microscope (AFM), or a transmission electron microscope (TEM). It can be obtained by averaging the fiber diameter and fiber length. The modified cellulose nanofiber can be obtained by defibrating modified cellulose. The average fiber length and average fiber diameter of the fine fibers can be adjusted by an oxidation treatment and a defibration treatment.
 本発明に用いる変性セルロースナノファイバーの平均アスペクト比は、通常50以上である。上限は特に限定されないが、通常は1000以下である。平均アスペクト比は、下記の式により算出することができる:
 アスペクト比=平均繊維長/平均繊維径
The average aspect ratio of the modified cellulose nanofiber used in the present invention is usually 50 or more. The upper limit is not particularly limited, but is usually 1,000 or less. The average aspect ratio can be calculated by the following equation:
Aspect ratio = average fiber length / average fiber diameter
 変性セルロースは、セルロース原料に含まれるセルロースを変性して得られる。セルロース原料は、セルロースを含んでいればよく、特に限定されないが、例えば、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、晒クラフトパルプ(BKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等が挙げられる。セルロース原料としては、これらのいずれかであってもよいし2種類以上の組み合わせであってもよいが、好ましくは植物又は微生物由来のセルロース原料(例えば、セルロース繊維)であり、より好ましくは植物由来のセルロース原料(例えば、セルロース繊維)である。 Modified cellulose is obtained by modifying cellulose contained in a cellulose raw material. The cellulose raw material may contain cellulose, and is not particularly limited. For example, plants (for example, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp (conifer unbleached kraft pulp (NUKP), Softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), bleached kraft pulp (BKP), softwood unbleached sulphite pulp (NUSP), softwood bleached sulphite pulp (NBSP) Thermomechanical pulp (TMP), recycled pulp, waste paper, etc.), animals (eg, ascidians), algae, microorganisms (eg, acetic acid bacteria (acetobacter)), microorganism products, etc. Examples of the cellulose raw material include: Or a combination of two or more types. Properly plant or microbial origin cellulosic material (e.g., cellulosic fibers), more preferably a cellulose material of plant origin (e.g., cellulose fibers).
 セルロース原料の数平均繊維径は特に制限されないが、一般的なパルプである針葉樹クラフトパルプの場合は30~60μm程度、広葉樹クラフトパルプの場合は10~30μm程度である。その他のパルプの場合、一般的な精製を経たものは50μm程度である。例えばチップ等の数cm大のものを精製したものである場合、リファイナー、ビーター等の離解機で機械的処理を行い、50μm程度に調整することが好ましい。 数 The number average fiber diameter of the cellulose raw material is not particularly limited, but it is about 30 to 60 μm for softwood kraft pulp, which is a common pulp, and about 10 to 30 μm for hardwood kraft pulp. In the case of other pulp, those having undergone general purification are about 50 μm. For example, in the case of purifying a chip or the like having a size of several centimeters, it is preferable to perform a mechanical treatment with a disintegrator such as a refiner or a beater to adjust the diameter to about 50 μm.
 セルロースは、グルコース単位あたり3つのヒドロキシル基を有しており、各種の変性を行うことが可能である。変性(通常は、化学変性)としては、例えば、酸化、エーテル化、リン酸エステル化等のエステル化、シランカップリング、フッ素化、カチオン化等が挙げられる。中でも、酸化(カルボキシル化)、エーテル化(カルボキシメチル化等)、カチオン化、エステル化が好ましく、酸化(カルボキシル化)、カルボキシメチル化がより好ましい。 Cellulose has three hydroxyl groups per glucose unit and can be modified in various ways. Examples of the modification (generally, chemical modification) include esterification such as oxidation, etherification, and phosphate esterification, silane coupling, fluorination, and cationization. Among them, oxidation (carboxylation), etherification (carboxymethylation and the like), cationization and esterification are preferred, and oxidation (carboxylation) and carboxymethylation are more preferred.
(変性)
(酸化)
 本発明において、変性セルロースとして酸化(カルボキシル化)したセルロースを用いる場合、酸化セルロース(カルボキシル化セルロースとも呼ぶ)は、上記のセルロース原料を公知の方法で酸化(カルボキシル化)することにより得ることができる。特に限定されるものではないが、酸化の際には、変性セルロースナノファイバーの絶乾質量に対して、カルボキシル基の量が0.6~2.0mmol/gとなるように調整することが好ましく、1.0mmol/g~2.0mmol/gになるように調整することがさらに好ましい。
(Denaturation)
(Oxidation)
In the present invention, when oxidized (carboxylated) cellulose is used as the modified cellulose, oxidized cellulose (also referred to as carboxylated cellulose) can be obtained by oxidizing (carboxylated) the above-mentioned cellulose raw material by a known method. . Although not particularly limited, it is preferable to adjust the amount of the carboxyl group to 0.6 to 2.0 mmol / g with respect to the absolute dry mass of the modified cellulose nanofiber during the oxidation. It is more preferable to adjust the concentration to be 1.0 mmol / g to 2.0 mmol / g.
 酸化(カルボキシル化)方法の一例として、セルロース原料を、N-オキシル化合物と、臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中で酸化する方法を挙げることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にアルデヒド基と、カルボキシル基(-COOH)またはカルボキシレート基(-COO-)とを有するセルロース繊維を得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下が好ましい。 As an example of the oxidation (carboxylation) method, a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof. Methods can be mentioned. By this oxidation reaction, the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized, and the cellulose fiber having an aldehyde group and a carboxyl group (—COOH) or a carboxylate group (—COO ) on the surface. Can be obtained. The concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)およびその誘導体(例えば4-ヒドロキシTEMPO)が挙げられる。 N-oxyl compound means a compound capable of generating a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it promotes a desired oxidation reaction. For example, 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivative (eg, 4-hydroxy TEMPO) can be mentioned.
 N-オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロースに対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.05~0.5mmolがさらに好ましい。また、反応系に対し0.1~4mmol/L程度が好ましい。 The amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of oxidizing cellulose as a raw material. For example, the amount is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and still more preferably 0.05 to 0.5 mmol, based on 1 g of absolutely dried cellulose. Further, the amount is preferably about 0.1 to 4 mmol / L with respect to the reaction system.
 臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロースに対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。 Bromide is a compound containing bromine, and examples thereof include an alkali metal bromide that can be dissociated and ionized in water. Further, iodide is a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and still more preferably 0.5 to 5 mmol, based on 1 g of absolutely dried cellulose.
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。酸化剤の使用量としては、例えば、絶乾1gのセルロースに対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolが最も好ましい。また、例えば、N-オキシル化合物1molに対して1~40molが好ましい。 As the oxidizing agent, known agents can be used, and for example, halogen, hypohalous acid, halogenous acid, perhalic acid or salts thereof, halogen oxide, peroxide and the like can be used. Among them, sodium hypochlorite which is inexpensive and has a low environmental load is preferable. The amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol, based on 1 g of absolutely dried cellulose. Further, for example, 1 to 40 mol is preferable for 1 mol of the N-oxyl compound.
 セルロースの酸化は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4~40℃が好ましく、また15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱容易性や、副反応が生じにくいこと等から、水が好ましい。 酸化 The oxidation of cellulose allows the reaction to proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 to 40 ° C, and may be room temperature of about 15 to 30 ° C. Since a carboxyl group is generated in the cellulose as the reaction proceeds, a decrease in the pH of the reaction solution is observed. In order for the oxidation reaction to proceed efficiently, it is preferable to add an alkaline solution such as an aqueous solution of sodium hydroxide to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11. The reaction medium is preferably water because of its easy handling and the fact that side reactions hardly occur.
 酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、例えば、0.5~4時間程度である。 The reaction time in the oxidation reaction can be appropriately set according to the degree of progress of the oxidation, and is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours.
 また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。 酸化 The oxidation reaction may be performed in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency of the oxidized cellulose can be reduced without being inhibited by the salt produced as a by-product in the first-stage reaction. Can be well oxidized.
 酸化(カルボキシル化)方法の別の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50~250g/m3であることが好ましく、50~220g/m3であることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1~30質量部であることが好ましく、5~30質量部であることがより好ましい。オゾン処理温度は、0~50℃であることが好ましく、20~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となる。オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。 As another example of the oxidation (carboxylation) method, there can be mentioned a method of oxidizing by bringing a gas containing ozone into contact with a cellulose raw material. By this oxidation reaction, at least the hydroxyl groups at the 2- and 6-positions of the glucopyranose ring are oxidized, and the cellulose chain is decomposed. The ozone concentration in the gas containing ozone is preferably from 50 to 250 g / m 3 , more preferably from 50 to 220 g / m 3 . The amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass. The ozone treatment temperature is preferably 0 to 50 ° C, more preferably 20 to 50 ° C. The ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 360 minutes. When the conditions of the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved. After the ozone treatment, an additional oxidation treatment may be performed using an oxidizing agent. The oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. For example, these oxidizing agents may be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and the additional oxidation treatment may be performed by immersing the cellulose raw material in the solution.
 酸化セルロースのカルボキシル基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。 量 The amount of carboxyl groups in oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidizing agent added and the reaction time.
(カルボキシメチル化)
 本発明において、変性セルロースとして、カルボキシメチル化したセルロースを用いる場合、カルボキシメチル化したセルロースは、上記のセルロース原料を公知の方法でカルボキシメチル化することにより得てもよいし、市販品を用いてもよい。いずれの場合も、セルロースの無水グルコース単位当たりのカルボキシメチル基置換度が0.01~0.50となるものが好ましい。そのようなカルボキシメチル化したセルロースを製造する方法の一例として次のような方法を挙げることができる。セルロースを発底原料にし、溶媒として3~20質量倍の水及び/又は低級アルコール、具体的には水、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等の単独、又は2種以上の混合媒体を使用する。なお、低級アルコールを混合する場合の低級アルコールの混合割合は、60~95質量%である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5~20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。発底原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、マーセル化処理を行う。その後、カルボキシメチル化剤をグルコース残基当たり0.05~10.0倍モル添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行う。
(Carboxymethylation)
In the present invention, when carboxymethylated cellulose is used as the modified cellulose, the carboxymethylated cellulose may be obtained by subjecting the above-mentioned cellulose raw material to carboxymethylation by a known method, or using a commercially available product. Is also good. In any case, it is preferable that the degree of carboxymethyl group substitution per anhydroglucose unit of cellulose is 0.01 to 0.50. An example of a method for producing such carboxymethylated cellulose includes the following method. Cellulose is used as the starting material, and 3 to 20 times by mass of water and / or lower alcohol as a solvent, specifically, water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary A single medium such as butanol or a mixed medium of two or more kinds is used. When the lower alcohol is mixed, the mixing ratio of the lower alcohol is 60 to 95% by mass. As the mercerizing agent, 0.5 to 20 times mol of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide, is used per anhydroglucose residue of the starting material. The starting material, the solvent and the mercerizing agent are mixed, and the mercerizing treatment is performed at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Thereafter, a carboxymethylating agent is added in a molar amount of 0.05 to 10.0 times per glucose residue, and the reaction temperature is 30 to 90 ° C, preferably 40 to 80 ° C, and the reaction time is 30 minutes to 10 hours, preferably 1 hour. The etherification reaction is performed for 44 hours.
 なお、本明細書において、セルロースナノファイバーの調製に用いる変性セルロースの一種である「カルボキシメチル化したセルロース」は、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものをいう。したがって、水溶性高分子の一種であるカルボキシメチルセルロースとは区別される。「カルボキシメチル化したセルロース」の水分散液を電子顕微鏡で観察すると、繊維状の物質を観察することができる。一方、水溶性高分子の一種であるカルボキシメチルセルロースの水分散液を観察しても、繊維状の物質は観察されない。また、「カルボキシメチル化したセルロース」はX線回折で測定した際にセルロースI型結晶のピークを観測することができるが、水溶性高分子のカルボキシメチルセルロースではセルロースI型結晶はみられない。 In the present specification, `` carboxymethylated cellulose '', which is one type of modified cellulose used for preparing cellulose nanofibers, is one in which at least a part of the fibrous shape is maintained even when dispersed in water. Say. Therefore, it is distinguished from carboxymethyl cellulose which is a kind of water-soluble polymer. When the aqueous dispersion of “carboxymethylated cellulose” is observed with an electron microscope, a fibrous substance can be observed. On the other hand, even when an aqueous dispersion of carboxymethyl cellulose, which is a kind of water-soluble polymer, is observed, no fibrous substance is observed. In addition, when "carboxymethylated cellulose" is measured by X-ray diffraction, a peak of cellulose type I crystal can be observed, but no cellulose type I crystal is observed in carboxymethyl cellulose as a water-soluble polymer.
(カチオン化)
 変性セルロースとして、前記カルボキシル化セルロースをさらにカチオン化したセルロースを使用することができる。当該カチオン変性されたセルロースは、前記カルボキシル化セルロース原料に、グリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリアルキルアンモニウムハイドライトまたはそのハロヒドリン型などのカチオン化剤と、触媒である水酸化アルカリ金属(水酸化ナトリウム、水酸化カリウムなど)を、水または炭素数1~4のアルコールの存在下で反応させることによって得ることができる。
(Cationization)
As the modified cellulose, cellulose obtained by further cationizing the carboxylated cellulose can be used. The cation-modified cellulose is obtained by adding a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydride or its halohydrin type to the carboxylated cellulose raw material, and an alkali hydroxide as a catalyst. It can be obtained by reacting a metal (such as sodium hydroxide and potassium hydroxide) in the presence of water or an alcohol having 1 to 4 carbon atoms.
 グルコース単位当たりのカチオン置換度は0.02~0.50であることが好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したセルロースは容易にナノ解繊することができる。グルコース単位当たりのカチオン置換度が0.02より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのカチオン置換度が0.50より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たカチオン変性されたセルロース原料は洗浄されることが好ましい。当該カチオン置換度は、反応させるカチオン化剤の添加量、水または炭素数1~4のアルコールの組成比率によって調整できる。 カ チ オ ン The degree of cation substitution per glucose unit is preferably from 0.02 to 0.50. By introducing a cation substituent into cellulose, the celluloses repel each other electrically. For this reason, the cellulose into which the cation substituent is introduced can be easily nano-defibrated. If the degree of cation substitution per glucose unit is smaller than 0.02, nanofibrillation cannot be sufficiently performed. On the other hand, if the degree of cation substitution per glucose unit is greater than 0.50, the swelling or dissolution may result in the inability to obtain a nanofiber. In order to perform defibration efficiently, the cation-modified cellulose raw material obtained above is preferably washed. The degree of cation substitution can be adjusted by the addition amount of the cationizing agent to be reacted and the composition ratio of water or an alcohol having 1 to 4 carbon atoms.
(エステル化)
 変性セルロースとして、エステル化したセルロースを使用できる。当該セルロースは、前述のセルロース原料にリン酸系化合物Aの粉末や水溶液を混合する方法、セルロース原料のスラリーにリン酸系化合物Aの水溶液を添加する方法により得られる。
(Esterification)
Esterified cellulose can be used as the modified cellulose. The cellulose is obtained by a method of mixing a powder or an aqueous solution of the phosphoric acid compound A with the aforementioned cellulose raw material, or a method of adding an aqueous solution of the phosphoric acid compound A to a slurry of the cellulose raw material.
 リン酸系化合物Aとしては、リン酸、ポリリン酸、亜リン酸、次亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらのエステルが挙げられる。これらは塩の形態であってもよい。これらの中でも、低コストであり、扱いやすく、またパルプ繊維のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由からリン酸基を有する化合物が好ましい。リン酸基を有する化合物としては、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、亜リン酸ナトリウム、亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。これらは1種、あるいは2種以上を併用できる。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩がより好ましい。特にリン酸二水素ナトリウム、リン酸水素二ナトリウムが好ましい。また、反応の均一性が高まり、かつリン酸基導入の効率が高くなることから前記リン酸系化合物Aは水溶液として用いることが好ましい。リン酸系化合物Aの水溶液のpHは、リン酸基導入の効率が高くなることから7以下であることが好ましいが、パルプ繊維の加水分解を抑える観点からpH3~7が好ましい。 (4) Examples of the phosphoric acid compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof. These may be in the form of salts. Among these, compounds having a phosphate group are preferable because they are low-cost, easy to handle, and can improve the defibration efficiency by introducing a phosphate group into cellulose of the pulp fiber. Compounds having a phosphate group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, potassium hypophosphite , Sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate , Ammonium pyrophosphate, ammonium metaphosphate and the like. These can be used alone or in combination of two or more. Among them, phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, phosphoric acid, from the viewpoint of high efficiency of phosphate group introduction, easy defibration in the following defibration step, and easy industrial application. Are more preferred. Particularly, sodium dihydrogen phosphate and disodium hydrogen phosphate are preferable. In addition, the phosphoric acid-based compound A is preferably used as an aqueous solution because the uniformity of the reaction is increased and the efficiency of introducing a phosphate group is increased. The pH of the aqueous solution of the phosphoric acid-based compound A is preferably 7 or less from the viewpoint of increasing the efficiency of introducing a phosphate group, but is preferably from 3 to 7 from the viewpoint of suppressing the hydrolysis of pulp fibers.
 リン酸エステル化セルロースの製造方法の一例として以下の方法を挙げることができる。固形分濃度0.1~10質量%のセルロース原料の分散液に、リン酸系化合物Aを撹拌しながら添加してセルロースにリン酸基を導入する。セルロース原料を100質量部とした際に、リン酸系化合物Aの添加量はリン元素量として、0.2~500質量部であることが好ましく、1~400質量部であることがより好ましい。リン酸系化合物Aの割合が前記下限値以上であれば、微細繊維状セルロースの収率をより向上させることができる。しかし、前記上限値を超えると収率向上の効果は頭打ちとなるのでコスト面から好ましくない。 The following method can be mentioned as an example of the method for producing phosphate esterified cellulose. A phosphoric acid compound A is added to a dispersion of a cellulose raw material having a solid content of 0.1 to 10% by mass while stirring to introduce a phosphate group into the cellulose. When the cellulose raw material is 100 parts by mass, the amount of the phosphoric acid compound A to be added is preferably 0.2 to 500 parts by mass, more preferably 1 to 400 parts by mass, as the amount of phosphorus element. When the ratio of the phosphoric acid compound A is equal to or more than the lower limit, the yield of fine fibrous cellulose can be further improved. However, if the ratio exceeds the upper limit, the effect of improving the yield will level off, which is not preferable in terms of cost.
 この際、セルロース原料、リン酸系化合物Aの他に、これ以外の化合物Bの粉末や水溶液を混合してもよい。化合物Bは特に限定されないが、塩基性を示す窒素含有化合物が好ましい。ここでの「塩基性」は、フェノールフタレイン指示薬の存在下で水溶液が桃~赤色を呈すること、または水溶液のpHが7より大きいことと定義される。本発明で用いる塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられるが、特に限定されない。この中でも低コストで扱いやすい尿素が好ましい。化合物Bの添加量はセルロース原料の固形分100質量部に対して、2~1000質量部が好ましく、100~700質量部がより好ましい。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、1~600分程度であり、30~480分がより好ましい。エステル化反応の条件がこれらの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを防ぐことができ、リン酸エステル化セルロースの収率が良好となる。得られたリン酸エステル化セルロース懸濁液を脱水した後、セルロースの加水分解を抑える観点から、100~170℃で加熱処理することが好ましい。さらに、加熱処理の際に水が含まれている間は130℃以下、好ましくは110℃以下で加熱し、水を除いた後、100~170℃で加熱処理することが好ましい。 At this time, in addition to the cellulose raw material and the phosphoric acid-based compound A, other powders or aqueous solutions of the compound B may be mixed. The compound B is not particularly limited, but a nitrogen-containing compound showing basicity is preferable. As used herein, "basic" is defined as the aqueous solution exhibiting a pink to red color in the presence of the phenolphthalein indicator, or the pH of the aqueous solution being greater than 7. The nitrogen-containing compound exhibiting basicity used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable. Examples include, but are not limited to, urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, and the like. Of these, urea which is easy to handle at low cost is preferable. The amount of compound B to be added is preferably 2 to 1000 parts by mass, more preferably 100 to 700 parts by mass, based on 100 parts by mass of the solid content of the cellulose raw material. The reaction temperature is preferably from 0 to 95 ° C, more preferably from 30 to 90 ° C. Although the reaction time is not particularly limited, it is about 1-600 minutes, more preferably 30-480 minutes. When the conditions of the esterification reaction are within these ranges, it is possible to prevent cellulose from being excessively esterified and being easily dissolved, and the yield of phosphorylated esterified cellulose is improved. After dehydrating the obtained phosphated cellulose suspension, it is preferable to perform a heat treatment at 100 to 170 ° C. from the viewpoint of suppressing hydrolysis of cellulose. Further, it is preferable to heat at 130 ° C. or lower, preferably 110 ° C. or lower while water is contained in the heat treatment, remove the water, and heat-treat at 100 to 170 ° C.
 リン酸エステル化されたセルロースのグルコース単位当たりのリン酸基置換度は0.001~0.40であることが好ましい。セルロースにリン酸基置換基を導入することで、セルロース同士が電気的に反発する。このため、リン酸基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのリン酸基置換度が0.001より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのリン酸基置換度が0.40より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たリン酸エステル化されたセルロース原料は煮沸した後、冷水で洗浄することで洗浄されることが好ましい。 (4) The phosphoric acid-esterified cellulose preferably has a phosphate group substitution degree per glucose unit of 0.001 to 0.40. By introducing a phosphate group substituent into cellulose, the celluloses repel each other electrically. For this reason, the cellulose into which the phosphate group has been introduced can be easily nanofibrillated. If the degree of substitution of the phosphate group per glucose unit is less than 0.001, nanofibrillation cannot be sufficiently performed. On the other hand, if the degree of substitution of the phosphate group per glucose unit is more than 0.40, it may swell or dissolve, and thus may not be obtained as a nanofiber. In order to carry out the defibration efficiently, it is preferable to wash the phosphoric acid-esterified cellulose raw material obtained above by boiling and then washing with cold water.
(解繊)
 本発明において、解繊する装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いて前記水分散体に強力なせん断力を印加することが好ましい。特に、効率よく解繊するには、前記水分散体に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、撹拌、乳化、分散装置を用いて、上記のCNFに予備処理を施すことも可能である。解繊装置での処理(パス)回数は、1回でもよいし2回以上でもよく、2回以上が好ましい。
(Defibrillation)
In the present invention, the device for defibrating is not particularly limited, but a high-speed rotation type, a colloid mill type, a high pressure type, a roll mill type, applying a strong shearing force to the aqueous dispersion using an apparatus such as an ultrasonic type. Is preferred. In particular, for efficient defibration, it is preferable to use a wet high-pressure or ultra-high-pressure homogenizer capable of applying a pressure of 50 MPa or more to the aqueous dispersion and applying a strong shearing force. The pressure is more preferably at least 100 MPa, even more preferably at least 140 MPa. Prior to the defibration / dispersion treatment with a high-pressure homogenizer, the above-mentioned CNF can be subjected to a pretreatment, if necessary, using a known mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer. It is. The number of processes (passes) in the defibrating device may be one, two or more, and preferably two or more.
 分散処理においては通常、溶媒に変性セルロースを分散する。溶媒は、変性セルロースを分散できるものであれば特に限定されないが、例えば、水、有機溶媒(例えば、メタノール等の親水性の有機溶媒)、それらの混合溶媒が挙げられる。セルロース原料が親水性であることから、溶媒は水であることが好ましい。 In the dispersion treatment, the modified cellulose is usually dispersed in a solvent. The solvent is not particularly limited as long as the modified cellulose can be dispersed, and examples thereof include water, an organic solvent (eg, a hydrophilic organic solvent such as methanol), and a mixed solvent thereof. Since the cellulose raw material is hydrophilic, the solvent is preferably water.
 分散体中の変性セルロースの固形分濃度は、通常は0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上である。これにより、セルロース繊維原料の量に対する液量が適量となり効率的である。上限は、通常10質量%以下、好ましくは6質量%以下である。これにより流動性を保持することができる。 変 性 The solid content concentration of the modified cellulose in the dispersion is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more. This makes the liquid amount appropriate for the amount of the cellulose fiber raw material, which is efficient. The upper limit is usually 10% by mass or less, preferably 6% by mass or less. Thereby, fluidity can be maintained.
 解繊処理又は分散処理に先立ち、必要に応じて予備処理を行ってもよい。予備処理は、高速せん断ミキサーなどの混合、撹拌、乳化、分散装置を用いて行えばよい。 予 備 Prior to the defibrating or dispersing treatment, a preliminary treatment may be performed if necessary. The preliminary treatment may be performed using a mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer.
 解繊工程を経て得られた変性セルロースナノファイバーが塩型の場合は、そのまま用いても良いし、鉱酸を用いた酸処理や、陽イオン交換樹脂を用いた方法等により酸型として用いても良い。また、カチオン性添加剤を用いた方法により疎水性を付与して用いても良い。 If the modified cellulose nanofiber obtained through the defibration step is in the form of a salt, it may be used as it is, or may be used as the acid form by an acid treatment using a mineral acid or a method using a cation exchange resin. Is also good. Further, hydrophobicity may be imparted by a method using a cationic additive.
 本発明において、変性セルロースナノファイバーは分散媒に分散させた分散液の状態で混合工程に供する。分散媒としては、水、有機溶媒が挙げられ、これらを混合したものであっても良い。混合工程に用いる変性セルロースナノファイバー分散液の濃度は、分散媒が水である場合、0.1~5%(w/v)であってもよく、分散媒が水とアルコール等の有機溶媒とを含む場合、0.1~20%(w/v)であってもよい。 に お い て In the present invention, the modified cellulose nanofiber is subjected to a mixing step in a state of a dispersion liquid dispersed in a dispersion medium. Examples of the dispersion medium include water and an organic solvent, and a mixture thereof may be used. The concentration of the modified cellulose nanofiber dispersion used in the mixing step may be 0.1 to 5% (w / v) when the dispersion medium is water, and the dispersion medium may be water and an organic solvent such as alcohol. , It may be 0.1 to 20% (w / v).
 変性セルロースナノファイバーは、2以上の変性セルロースナノファイバーの組み合わせでもよい。本発明においては、ゴムの補強効果の観点から、完全ナノ分散しており、かつ高アスペクト比である酸化セルロースナノファイバーを含むことが好ましい。 The modified cellulose nanofibers may be a combination of two or more modified cellulose nanofibers. In the present invention, from the viewpoint of the reinforcing effect of rubber, it is preferable to include oxidized cellulose nanofibers that are completely nanodispersed and have a high aspect ratio.
 (ゴム成分)
 ゴム成分とはゴムの原料であり、架橋してゴムとなるものをいう。ゴム成分としては、天然ゴム用のゴム成分と合成ゴム用のゴム成分が存在する。天然ゴム用のゴム成分としては、例えば、化学修飾を施さない狭義の天然ゴム(NR);塩素化天然ゴム、クロロスルホン化天然ゴム、エポキシ化天然ゴム等の化学修飾した天然ゴム;水素化天然ゴム;脱タンパク天然ゴムが挙げられる。合成ゴム用のゴム成分としては、例えば、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム等のジエン系ゴム;ブチルゴム(IIR)、エチレン-プロピレンゴム(EPM、EPDM)、アクリルゴム(ACM)、エピクロロヒドリンゴム(CO、ECO)、フッ素ゴム(FKM)、シリコーンゴム(Q)、ウレタンゴム(U)、クロロスルホン化ポリエチレン(CSM)等の非ジエン系ゴムが挙げられる。これらの中で、NBR、NR、SBR、クロロプレンゴム、BRが好ましい。ゴム成分は、1種単独でもよいし、2種以上の組み合わせでもよい。
(Rubber component)
The rubber component is a raw material of rubber and refers to a material which is crosslinked to form rubber. The rubber component includes a rubber component for natural rubber and a rubber component for synthetic rubber. Examples of the rubber component for natural rubber include natural rubber (NR) in a narrow sense without chemical modification; chemically modified natural rubber such as chlorinated natural rubber, chlorosulfonated natural rubber, and epoxidized natural rubber; hydrogenated natural rubber Rubber; deproteinized natural rubber. Examples of rubber components for synthetic rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer. Diene rubbers such as coalesced rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber; butyl rubber (IIR), ethylene-propylene rubber (EPM, EPDM), acrylic rubber (ACM), epichlorohydrid Non-diene rubbers such as rubber (CO, ECO), fluoro rubber (FKM), silicone rubber (Q), urethane rubber (U), and chlorosulfonated polyethylene (CSM). Among them, NBR, NR, SBR, chloroprene rubber and BR are preferred. The rubber component may be used alone or in combination of two or more.
 本発明において、ゴム成分は分散媒に分散させたラテックス(分散液)として混合工程に供する。分散媒としては、水、有機溶媒が挙げられ、これらを混合したものであっても良い。ラテックス中におけるゴム成分の含有割合は、好ましくは10~80%、より好ましくは20~70%である。 に お い て In the present invention, the rubber component is subjected to a mixing step as a latex (dispersion liquid) dispersed in a dispersion medium. Examples of the dispersion medium include water and an organic solvent, and a mixture thereof may be used. The content ratio of the rubber component in the latex is preferably 10 to 80%, more preferably 20 to 70%.
(混合工程)
 本発明においては、上記変性セルロースナノファイバー分散液と、上記ゴム成分を含有するラテックスとをインライン静止型流体混合装置を用いて混合する。
(Mixing process)
In the present invention, the modified cellulose nanofiber dispersion and the latex containing the rubber component are mixed using an in-line static fluid mixing device.
(インライン静止型流体混合装置)
 本発明の混合工程においては、インライン静止型流体混合装置を用いる。インライン静止型流体混合装置としては、スタティックミキサー、OHRミキサー、MSEスタティックミキサー等が挙げられ、長期間の運転後のミキサー内のラテックス凝集汚れの付着量や洗浄性の観点からスタティックミキサー、及びOHRミキサーを用いることがより好ましい。
(Inline static fluid mixing device)
In the mixing step of the present invention, an in-line static fluid mixing device is used. Examples of the in-line static fluid mixing device include a static mixer, an OHR mixer, and an MSE static mixer. The static mixer, the OHR mixer and the It is more preferable to use
 スタティックミキサーとは、管中に、右捻りの螺旋状エレメントと左捻りの螺旋状エレメントとを交互に、かつ一方の端が他方の端に対して直角になるように配列された形の流体混合装置である。 A static mixer is a fluid mixer in which a right-handed spiral element and a left-handed spiral element are alternately arranged in a pipe such that one end is perpendicular to the other end. Device.
 OHRミキサーとは、管体内周壁面に複数の突起物を設け、流体中のキャビテーションを増大させることにより、混合・撹拌を促進させる流体混合装置である。 The OHR mixer is a fluid mixing device that enhances cavitation in a fluid by providing a plurality of protrusions on a peripheral wall surface of a pipe to promote mixing and stirring.
 MSEスタティックミキサーとは、多数の小貫通孔及び中央に大貫通孔を有する混合エレメントの積層体が管内に配置されている流体混合装置、または、このような混合エレメントを配管内に設置して用いる流体混合装置である。 The MSE static mixer is a fluid mixing device in which a stack of mixing elements having a large number of small through holes and a large through hole in the center is disposed in a pipe, or such a mixing element is installed in a pipe and used. It is a fluid mixing device.
 本発明においては、インライン式(連続式)の混合装置を用いるため、バッチ式と比較すると、生産効率を高めることができる。また、撹拌槽を用いた場合と比較して、省スペース化が図れる。また、静止型の混合装置を用いるため、省エネルギー化を図ることができ、撹拌翼の回転等のせん断力に起因するラテックスの凝集を抑制することができる。さらには、ラテックスの凝集が抑制されるため、凝集汚れの除去の頻度が減り、その結果、連続操業性に優れる。 た め In the present invention, since an in-line (continuous) mixing apparatus is used, the production efficiency can be increased as compared with a batch type. Further, space saving can be achieved as compared with the case where the stirring tank is used. In addition, since a stationary mixing device is used, energy can be saved, and latex agglomeration due to shearing force such as rotation of the stirring blade can be suppressed. Further, since the aggregation of the latex is suppressed, the frequency of removing the aggregated dirt is reduced, and as a result, the continuous operability is excellent.
 なお、インライン静止型流体混合装置は、1基を単独で用いてもよいし、複数基を連結して用いてもよい。 Note that one inline static fluid mixing apparatus may be used alone, or a plurality of inline static fluid mixing apparatuses may be used in combination.
 また、インライン静止型流体混合装置での処理(パス)回数は、1回でもよいし2回以上でもよく、2回以上が好ましい。 は The number of treatments (passes) in the in-line static fluid mixing device may be one, or two or more, and preferably two or more.
 本発明のゴム組成物の製造方法においては、ラテックス中におけるゴム成分の固形分100質量部に対して、変性セルロースナノファイバーを固形分で0.5~30質量部含むように、ゴム成分を含有するラテックスと変性セルロースナノファイバー分散液とを混合する。 In the method for producing a rubber composition according to the present invention, the rubber component is contained so that the modified cellulose nanofiber is contained in an amount of 0.5 to 30 parts by mass on a solid basis based on 100 parts by mass of the rubber component in the latex. The modified latex and the modified cellulose nanofiber dispersion are mixed.
 本発明の製造方法には、得られるゴム組成物の用途等に応じて、1種または2種以上の任意成分を加える工程を含んでいてもよい。任意成分としては、例えば、補強剤(例えば、カーボンブラック、シリカ等)、シランカップリング剤、架橋剤、加硫促進剤、加硫促進助剤(例えば、酸化亜鉛、ステアリン酸)、オイル、硬化レジン、ワックス、老化防止剤、着色剤など、ゴム工業で使用され得る配合剤が挙げられる。このうち加硫促進剤、加硫促進助剤が好ましい。任意成分の含有量は、任意成分の種類等に応じて適宜決定すればよく、特に限定されない。 製造 The production method of the present invention may include a step of adding one or more optional components depending on the use of the obtained rubber composition and the like. Optional components include, for example, reinforcing agents (eg, carbon black, silica, etc.), silane coupling agents, cross-linking agents, vulcanization accelerators, vulcanization accelerators (eg, zinc oxide, stearic acid), oils, and curing. Examples include compounding agents that can be used in the rubber industry, such as resins, waxes, antioxidants, and coloring agents. Among these, a vulcanization accelerator and a vulcanization accelerator are preferable. The content of the optional component may be appropriately determined according to the type of the optional component, and is not particularly limited.
 ゴム組成物が未加硫ゴム組成物または最終製品である場合、架橋剤を含むことが好ましい。架橋剤としては、例えば、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられる。これらの中でも硫黄が好ましい。架橋剤の含有量は、ゴム成分100質量部に対し1.0質量部以上が好ましく、1.5質量部以上がより好ましく、1.7質量部以上がさらに好ましい。上限は、10質量部以下が好ましく、7質量部以下が好ましく、5質量部以下がさらに好ましい。 場合 When the rubber composition is an unvulcanized rubber composition or a final product, it preferably contains a crosslinking agent. Examples of the crosslinking agent include sulfur, sulfur halide, organic peroxide, quinone dioximes, organic polyamine compounds, and alkylphenol resins having a methylol group. Of these, sulfur is preferred. The content of the crosslinking agent is preferably at least 1.0 part by mass, more preferably at least 1.5 parts by mass, even more preferably at least 1.7 parts by mass based on 100 parts by mass of the rubber component. The upper limit is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and even more preferably 5 parts by mass or less.
 加硫促進剤としては、例えば、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミドが挙げられる。加硫促進剤の含有量は、ゴム成分100質量部に対し0.1質量部が好ましく、0.3質量部以上がより好ましく、0.4質量部以上がさらに好ましい。上限は、5質量部以下が好ましく、3質量部以下が好ましく、2質量部以下がさらに好ましい。 {Examples of the vulcanization accelerator include Nt-butyl-2-benzothiazolesulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide. The content of the vulcanization accelerator is preferably 0.1 part by mass, more preferably 0.3 part by mass or more, even more preferably 0.4 part by mass or more based on 100 parts by mass of the rubber component. The upper limit is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 2 parts by mass or less.
 本発明の製造方法により得られるゴム組成物の用途は、特に限定されず、最終製品としてゴムを得るための組成物であればよい。すなわち、ゴム製造用の中間体(マスターバッチ)でもよいし、加硫剤を含む未加硫のゴム組成物でもよいし、最終製品としてのゴムでもよい。最終製品の用途は特に限定されず、例えば、自動車、電車、船舶、飛行機等の輸送機器等;パソコン、テレビ、電話、時計等の電化製品等;携帯電話等の移動通信機器等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等;建築材;文具等の事務機器等、容器、コンテナー等が挙げられる。これら以外であっても、ゴムや柔軟なプラスチックが用いられている部材への適用が可能であり、タイヤへの適用が好適である。タイヤとしては例えば、乗用車用、トラック用、バス用、重車両用などの空気入りタイヤが挙げられる。 用途 The use of the rubber composition obtained by the production method of the present invention is not particularly limited as long as it is a composition for obtaining a rubber as a final product. That is, it may be an intermediate (master batch) for rubber production, an unvulcanized rubber composition containing a vulcanizing agent, or rubber as a final product. The use of the final product is not particularly limited. For example, transportation equipment such as automobiles, trains, ships, and airplanes; electric appliances such as personal computers, televisions, telephones, and watches; mobile communication equipment such as mobile phones; Equipment, video playback equipment, printing equipment, copying equipment, sports equipment, etc .; building materials; office equipment such as stationery, containers, containers and the like. Other than these, application to members using rubber or flexible plastic is possible, and application to tires is preferable. Examples of the tire include pneumatic tires for passenger cars, trucks, buses, heavy vehicles, and the like.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、各実施例における各数値の測定/算出方法が特に記載されていない場合には、明細書中に記載されている方法により測定/算出されたものである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In addition, when the method of measuring / calculating each numerical value in each example is not particularly described, it is measured / calculated by the method described in the specification.
(分散度の測定方法)
 実施例および比較例において、天然ゴムラテックスおよびCNF水分散液の混合物について、下記の通りCNF分散指数を算出し、下記基準に従って分散度の評価を行った。
 実施例および比較例において得られたCNF水分散液と天然ゴムラテックスの混合物1gに、墨滴(株式会社呉竹製、固形分10%)を2適垂らし、ボルテックスミキサー(IUCHI社製、機器名:Automatic Lab-mixer HM-10H)の回転数の目盛りを最大に設定して1分間撹拌した。次に、墨滴を含有する上記混合物の膜厚が0.15mmになるように二枚のガラス板に挟み、光学顕微鏡(デジタルマイクロスコープKH-8700(株式会社ハイロックス製))を用いて倍率100倍で観察した。
(Method of measuring the degree of dispersion)
In Examples and Comparative Examples, a CNF dispersion index was calculated for a mixture of natural rubber latex and an aqueous CNF dispersion as described below, and the degree of dispersion was evaluated according to the following criteria.
To 1 g of a mixture of the CNF aqueous dispersion and the natural rubber latex obtained in the examples and comparative examples, 2 drops of ink drops (manufactured by Kuretake Co., Ltd., solid content: 10%) were dripped, and a vortex mixer (manufactured by IUCHI, device name: (Automatic Lab-mixer HM-10H) was rotated for 1 minute with the rotation speed scale set to the maximum. Next, the mixture containing the ink droplets was sandwiched between two glass plates so that the film thickness became 0.15 mm, and the magnification was measured using an optical microscope (Digital Microscope KH-8700 (manufactured by Hilox Corporation)). Observed at 100x.
 上記観察において、3mm×2.3mmの範囲に存在する凝集物の長径を測定し、観察された凝集物を、特大:150μm以上、大:100μm以上150μm未満、中:50μm以上100μm未満、小:20μm以上50μm未満に分類し、分類した凝集物の個数を数え、下式によりCNF分散指数を算出した。 In the above observation, the major axis of the aggregate existing in the range of 3 mm × 2.3 mm was measured, and the observed aggregate was determined to be oversized: 150 μm or more, large: 100 μm or more and less than 150 μm, medium: 50 μm or more and less than 100 μm, and small: The particles were classified into 20 μm or more and less than 50 μm, the number of classified aggregates was counted, and the CNF dispersion index was calculated by the following equation.
 CNF分散指数=(特大の個数×512+大の個数×64+中の個数×8+小の個数×1)÷2×CNF濃度係数
 なお、CNF濃度係数を、表1に示した。
CNF dispersion index = (extra large number × 512 + large number × 64 + medium number × 8 + small number × 1) ÷ 2 × CNF concentration coefficient The CNF concentration coefficient is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(分散度の評価基準)
○:CNF分散指数が1600未満
△:CNF分散指数が1600以上、6400未満
×:CNF分散指数が6400以上
 なお、分散度の評価結果は、表2に示した。
(Evaluation standard of dispersion degree)
:: CNF dispersion index is less than 1600 Δ: CNF dispersion index is 1600 or more and less than 6400 ×: CNF dispersion index is 6400 or more The evaluation results of the degree of dispersion are shown in Table 2.
(製造例1)
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.6mmol/gであった。これを水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回処理して、酸化セルロースナノファイバー水分散液を得た。得られた酸化セルロースナノファイバーは、平均繊維径が3nm、アスペクト比は250であった。
(Production Example 1)
5.00 g (absolutely dry) of bleached unbeaten kraft pulp (whiteness 85%) derived from conifers is 39 mg (0.05 mmol per 1 g of absolute dry cellulose) of TEMPO (Sigma Aldrich) and 514 mg of sodium bromide (absolute dry) (1.0 mmol per 1 g of cellulose) was added to 500 mL of an aqueous solution, and the mixture was stirred until the pulp was uniformly dispersed. An aqueous solution of sodium hypochlorite was added to the reaction system so that the amount of sodium hypochlorite became 6.0 mmol / g, and an oxidation reaction was started. During the reaction, the pH in the system decreased, but the pH was adjusted to 10 by sequentially adding a 3M aqueous sodium hydroxide solution. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system stopped changing. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose). At this time, the pulp yield was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.6 mmol / g. This was adjusted to 1.0% (w / v) with water, and treated three times with an ultra-high pressure homogenizer (20 ° C., 150 MPa) to obtain an aqueous dispersion of oxidized cellulose nanofibers. The obtained oxidized cellulose nanofiber had an average fiber diameter of 3 nm and an aspect ratio of 250.
(カルボキシル基量の測定方法)
 カルボキシル化セルロースの0.5質量%スラリー(水分散液)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出した:
カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔mL〕×0.05/カルボキシル化セルロース質量〔g〕
(Method for measuring carboxyl group content)
60 mL of a 0.5% by mass carboxylated cellulose slurry (aqueous dispersion) was prepared, and a 0.1 M aqueous hydrochloric acid solution was added to adjust the pH to 2.5. The electrical conductivity was measured until and the amount of sodium hydroxide consumed in the neutralization step of the weak acid with a gradual change in electrical conductivity was calculated using the following equation:
Carboxyl group content [mmol / g carboxylated cellulose] = a [mL] × 0.05 / carboxylated cellulose mass [g]
(実施例1)
 天然ゴムラテックス(商品名:HAラテックス、レヂテックス社、固形分濃度61.5質量%)の絶乾固形分100質量部に対して、上記製造例1で得られた酸化CNFの1%水分散液を絶乾相当で20質量部含むように配合し、インライン式の静止型流体混合装置であるスタティックミキサー(ノリタケカンパニーリミテド社製3/8-N30-232-F型を2基連結、処理流量10.9L/分)で1パス処理して混合物を得た。この混合物を、70℃の加熱オーブン中で15時間乾燥させることにより、マスターバッチを得た。なお、混合物を得た後に、スタティックミキサーの内部を目視で確認し、ラテックスの凝集物による汚れ具合を調査した。ラテックスの凝集物による汚れは見られず、良好な結果であった。
(Example 1)
A 1% aqueous dispersion of the oxidized CNF obtained in Production Example 1 above based on 100 parts by mass of the absolute dry solid content of natural rubber latex (trade name: HA latex, Retex Co., solid content concentration: 61.5% by mass) And a static mixer (2 units of 3 / 8-N30-232-F manufactured by NORITAKE CO., LIMITED) connected as an in-line type static fluid mixing device, and a processing flow rate of 10 .9 L / min) to obtain a mixture. The mixture was dried in a heating oven at 70 ° C. for 15 hours to obtain a master batch. After the mixture was obtained, the inside of the static mixer was visually checked, and the degree of contamination by latex aggregates was examined. Staining by latex agglomerates was not observed, which was a good result.
 上記の方法により得たマスターバッチに対し、酸化亜鉛、ステアリン酸をマスターバッチ中のゴム成分に対しそれぞれ6質量%、0.5質量%混合し、オープンロール(関西ロール株式会社製)にて、30℃で10分間混練することによって混練物を得た。この混練物に対し、硫黄および加硫促進剤(BBS、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド)を、混練物中のゴム成分に対しそれぞれ3.5質量%、0.7質量%加え、オープンロール(関西ロール株式会社製)を用い、30℃で10分間混練して、未加硫ゴム組成物のシートを得た。得られた未加硫ゴム組成物のシートを金型にはさみ、150℃で15分間プレス加硫することにより、厚さ2mmの加硫ゴムシート(加硫ゴム組成物)を得た。得られた加硫ゴムシートを、所定の形状の試験片に裁断し、JIS K6251「加硫ゴムおよび熱可塑性ゴム-引張特性の求め方」に従い、引張強度を示すものとして、50%ひずみ時(M50)、100%ひずみ時(M100)、および300%ひずみ時(M300)における応力、破断強度をそれぞれ測定した。結果を表2に示した。引張応力、および破断強度については数値が大きい程、加硫ゴム組成物が良好に補強されており、機械強度に優れることを示す。 With respect to the masterbatch obtained by the above method, zinc oxide and stearic acid were mixed at 6% by mass and 0.5% by mass with respect to the rubber component in the masterbatch, respectively, and were mixed with an open roll (Kansai Roll Co., Ltd.). A kneaded material was obtained by kneading at 30 ° C. for 10 minutes. To this kneaded material, sulfur and a vulcanization accelerator (BBS, Nt-butyl-2-benzothiazolesulfenamide) were added in an amount of 3.5% by mass and 0.7% by mass, respectively, based on the rubber component in the kneaded material. %, And kneaded at 30 ° C. for 10 minutes using an open roll (manufactured by Kansai Roll Co., Ltd.) to obtain a sheet of an unvulcanized rubber composition. The obtained unvulcanized rubber composition sheet was placed in a mold and press-vulcanized at 150 ° C. for 15 minutes to obtain a vulcanized rubber sheet (vulcanized rubber composition) having a thickness of 2 mm. The obtained vulcanized rubber sheet is cut into a test piece having a predetermined shape, and according to JIS K6251 “Vulcanized rubber and thermoplastic rubber-How to determine tensile properties”, a sheet having a tensile strength of 50% strain ( M50), stress at 100% strain (M100), and stress at 300% strain (M300), and breaking strength were measured. The results are shown in Table 2. As the numerical values of the tensile stress and the breaking strength are larger, the vulcanized rubber composition is satisfactorily reinforced and the mechanical strength is excellent.
(実施例2)
 スタティックミキサーによる処理を3パス処理としたこと以外は実施例1と同様にして混合物を得た。また、この混合物を用いたこと以外は実施例1と同様にマスターバッチおよび加硫ゴムシートを得て、引張強度、破断強度の測定を行った。結果を表2に示した。
(Example 2)
A mixture was obtained in the same manner as in Example 1 except that the treatment by the static mixer was performed in three passes. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
(実施例3)
 スタティックミキサーによる処理を10パス処理としたこと以外は実施例1と同様にして混合物を得た。また、この混合物を用いたこと以外は実施例1と同様にマスターバッチおよび加硫ゴムシートを得て、引張強度、破断強度の測定を行った。結果を表2に示した。
(Example 3)
A mixture was obtained in the same manner as in Example 1, except that the treatment by the static mixer was changed to 10-pass treatment. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
(実施例4)
 スタティックミキサーに代えて、OHRミキサー(株式会社OHR流体工学研究所製、MX-F8、処理流量3.9L/分)を用いて10パス処理したこと以外は実施例1と同様にして混合物を得た。また、この混合物を用いたこと以外は実施例1と同様にマスターバッチおよび加硫ゴムシートを得て、引張強度、破断強度の測定を行った。結果を表2に示した。
(Example 4)
A mixture was obtained in the same manner as in Example 1, except that 10 passes were performed using an OHR mixer (MX-F8, manufactured by OHR Fluid Engineering Laboratory Co., Ltd., processing flow rate: 3.9 L / min) instead of the static mixer. Was. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
(実施例5)
 スタティックミキサーに代えて、OHRミキサー(株式会社OHR流体工学研究所製、MX-F8、処理流量6.7L/分)を用いて10パス処理したこと以外は実施例1と同様にして混合物を得た。また、この混合物を用いたこと以外は実施例1と同様にマスターバッチおよび加硫ゴムシートを得て、引張強度、破断強度の測定を行った。結果を表2に示した。
(Example 5)
A mixture was obtained in the same manner as in Example 1, except that 10 passes were performed using an OHR mixer (MX-F8, manufactured by OHR Fluid Engineering Laboratory Co., Ltd., processing flow rate: 6.7 L / min) instead of the static mixer. Was. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
(比較例1)
 スタティックミキサーに代えて、インライン式の乳化分散機であるキャビトロン(株式会社ユーロテック製 CD1000、処理流量10.9L/分)を用いたこと以外は実施例1と同様にして混合物を得た。また、混合物を得た後に、キャビトロン内部を目視確認し、ラテックスの凝集物による汚れ具合を調査した。ラテックスの凝集物による汚れが見られ、悪い結果であった。また、この混合物を用いたこと以外は実施例1と同様にマスターバッチおよび加硫ゴムシートを得て、引張強度、破断強度の測定を行った。結果を表2に示した。
(Comparative Example 1)
A mixture was obtained in the same manner as in Example 1, except that Cavitron (CD1000, manufactured by Eurotech Co., Ltd., processing flow rate: 10.9 L / min), which was an inline emulsifying and dispersing machine, was used instead of the static mixer. After the mixture was obtained, the inside of the Cavitron was visually checked, and the degree of contamination by latex aggregates was examined. Staining by latex agglomerates was observed, which was a bad result. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
(比較例2)
 キャビトロンによる処理を3パス処理としたこと以外は比較例1と同様にして混合物を得た。また、混合物を得た後に、キャビトロン内部を目視確認し、ラテックスの凝集物による汚れ具合を調査した。ラテックスの凝集物による汚れが多く見られ、非常に悪い結果であった。また、この混合物を用いたこと以外は実施例1と同様にマスターバッチおよび加硫ゴムシートを得て、引張強度、破断強度の測定を行った。結果を表2に示した。
(Comparative Example 2)
A mixture was obtained in the same manner as in Comparative Example 1 except that the treatment with the Cavitron was performed in three passes. After the mixture was obtained, the inside of the Cavitron was visually checked, and the degree of contamination by latex aggregates was examined. Many stains due to latex aggregates were observed, which was a very bad result. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
(比較例3)
 スタティックミキサーを用いず、天然ゴムラテックスと酸化CNF1%水分散液とをそれぞれポンプを用いて同一の配管に処理流量が10.9L/分となるように導入し、通過させたこと以外は実施例1と同様にして混合物を得た。また、この混合物を用いたこと以外は実施例1と同様にマスターバッチおよび加硫ゴムシートを得て、引張強度、破断強度の測定を行った。結果を表2に示した。
(Comparative Example 3)
Example 2 A natural rubber latex and a 1% aqueous solution of CNF oxide were respectively introduced into a same pipe using a pump at a processing flow rate of 10.9 L / min without using a static mixer, and were passed through the same pipes. A mixture was obtained in the same manner as in Example 1. A masterbatch and a vulcanized rubber sheet were obtained in the same manner as in Example 1 except that this mixture was used, and the tensile strength and the breaking strength were measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2からわかる通り、変性CNF分散液とゴム成分を含有するラテックスとをインライン静止型流体混合装置であるスタティックミキサーまたはOHRミキサーを用いて混合する混合工程を含むゴム組成物の製造方法によれば、ミキサー内の汚れも見られず、CNFの分散度が高く、得られた加硫ゴムシートは、引張強度及び破断強度に優れるものであった。 As can be seen from Table 2, according to the method for producing a rubber composition including a mixing step of mixing a modified CNF dispersion and a latex containing a rubber component using a static mixer or an OHR mixer that is an in-line static fluid mixing device. No contamination in the mixer was observed, the degree of dispersion of CNF was high, and the obtained vulcanized rubber sheet was excellent in tensile strength and breaking strength.

Claims (4)

  1.  変性セルロースナノファイバーを含有するゴム組成物の製造方法であって、
     変性セルロースナノファイバー分散液と、ゴム成分を含有するラテックスとをインライン静止型流体混合装置を用いて混合する混合工程を含む、ゴム組成物の製造方法。
    A method for producing a rubber composition containing modified cellulose nanofibers,
    A method for producing a rubber composition, comprising a mixing step of mixing a modified cellulose nanofiber dispersion and a latex containing a rubber component using an inline static fluid mixing device.
  2.  前記変性セルロースナノファイバーが、酸化セルロースナノファイバーを含む請求項1記載のゴム組成物の製造方法。 方法 The method for producing a rubber composition according to claim 1, wherein the modified cellulose nanofibers include oxidized cellulose nanofibers.
  3.  前記インライン静止型流体混合装置が、スタティックミキサーである請求項1または2記載のゴム組成物の製造方法。 3. The method for producing a rubber composition according to claim 1, wherein the in-line static fluid mixing device is a static mixer.
  4.  前記インライン静止型流体混合装置が、OHRミキサーである請求項1または2記載のゴム組成物の製造方法。 3. The method for producing a rubber composition according to claim 1, wherein the in-line static fluid mixing device is an OHR mixer.
PCT/JP2019/032792 2018-09-14 2019-08-22 Method for producing rubber composition WO2020054342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546803A JP6915170B2 (en) 2018-09-14 2019-08-22 Method for manufacturing rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172384 2018-09-14
JP2018172384 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054342A1 true WO2020054342A1 (en) 2020-03-19

Family

ID=69778035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032792 WO2020054342A1 (en) 2018-09-14 2019-08-22 Method for producing rubber composition

Country Status (2)

Country Link
JP (1) JP6915170B2 (en)
WO (1) WO2020054342A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293845A (en) * 2001-03-28 2002-10-09 Mitsubishi Rayon Co Ltd Method for enlarging rubber latex particles and method for producing graft polymer thereof
JP2015098576A (en) * 2013-10-17 2015-05-28 日信工業株式会社 Manufacturing method of rubber composition and rubber composition
WO2016133076A1 (en) * 2015-02-17 2016-08-25 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion
WO2017061605A1 (en) * 2015-10-07 2017-04-13 日本製紙株式会社 Process for producing rubber composition
WO2018008700A1 (en) * 2016-07-07 2018-01-11 日本製紙株式会社 Modified cellulose nanofibers and rubber composition containing same
JP2018510931A (en) * 2015-02-16 2018-04-19 東レ・ダウコーニング株式会社 Sponge-forming silicone rubber composition and silicone rubber sponge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293845A (en) * 2001-03-28 2002-10-09 Mitsubishi Rayon Co Ltd Method for enlarging rubber latex particles and method for producing graft polymer thereof
JP2015098576A (en) * 2013-10-17 2015-05-28 日信工業株式会社 Manufacturing method of rubber composition and rubber composition
JP2018510931A (en) * 2015-02-16 2018-04-19 東レ・ダウコーニング株式会社 Sponge-forming silicone rubber composition and silicone rubber sponge
WO2016133076A1 (en) * 2015-02-17 2016-08-25 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion
WO2017061605A1 (en) * 2015-10-07 2017-04-13 日本製紙株式会社 Process for producing rubber composition
WO2018008700A1 (en) * 2016-07-07 2018-01-11 日本製紙株式会社 Modified cellulose nanofibers and rubber composition containing same

Also Published As

Publication number Publication date
JPWO2020054342A1 (en) 2021-08-30
JP6915170B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6155415B1 (en) Masterbatch, rubber composition, and production method thereof
JP7141950B2 (en) Rubber composition and its manufacturing method
JP7061998B2 (en) Rubber composition and its manufacturing method
JP6689082B2 (en) Rubber composition for oil seal
JP6990190B2 (en) Method for manufacturing rubber composition
JP6700741B2 (en) Rubber composition
JP6877158B2 (en) Masterbatch, rubber compositions, and methods of making them
JP6994345B2 (en) Rubber composition and molded products
US20220185998A1 (en) Latex immersion liquid, rubber composition and method for producing the same
JP6944451B2 (en) Masterbatch manufacturing method
JP7324225B2 (en) Method for producing masterbatch and rubber composition containing anion-modified cellulose nanofibers
JP6951844B2 (en) Masterbatch manufacturing method
JP6915170B2 (en) Method for manufacturing rubber composition
JP7015970B2 (en) Rubber composition and its manufacturing method
JP2020100755A (en) Method for producing fine fibrous cellulose dispersion
JP2020007457A (en) Cellulose nanofiber, and manufacturing method of rubber composition containing cellulose nanofiber
JP6832110B2 (en) Masterbatch manufacturing method
WO2024203807A1 (en) Method for producing rubber composition
JP2025036065A (en) Method for producing rubber composition
JP2024092412A (en) Composite manufacturing methods
WO2025047917A1 (en) Rubber composition and crosslinked rubber product
JP2025091094A (en) Composite manufacturing methods
JP2025038727A (en) Method for supplying rubber composition containing fine cellulose fibers
WO2025018185A1 (en) Rubber composition and method for manufacturing same
WO2024009850A1 (en) Method for producing rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546803

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858746

Country of ref document: EP

Kind code of ref document: A1