[go: up one dir, main page]

WO2020045901A1 - 가소제 조성물 및 이를 포함하는 수지 조성물 - Google Patents

가소제 조성물 및 이를 포함하는 수지 조성물 Download PDF

Info

Publication number
WO2020045901A1
WO2020045901A1 PCT/KR2019/010743 KR2019010743W WO2020045901A1 WO 2020045901 A1 WO2020045901 A1 WO 2020045901A1 KR 2019010743 W KR2019010743 W KR 2019010743W WO 2020045901 A1 WO2020045901 A1 WO 2020045901A1
Authority
WO
WIPO (PCT)
Prior art keywords
terephthalate
carbon number
weight
alkyl
ethylhexyl
Prior art date
Application number
PCT/KR2019/010743
Other languages
English (en)
French (fr)
Inventor
김현규
문정주
최우혁
조윤기
김주호
정석호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020560445A priority Critical patent/JP7095216B2/ja
Priority to CA3097991A priority patent/CA3097991A1/en
Priority to BR112020023157-6A priority patent/BR112020023157B1/pt
Priority to EP19853680.7A priority patent/EP3845589B1/en
Priority to US17/052,156 priority patent/US12122895B2/en
Priority to CN201980028635.3A priority patent/CN112041384B/zh
Priority to ES19853680T priority patent/ES2984087T3/es
Priority to MX2020012129A priority patent/MX2020012129A/es
Publication of WO2020045901A1 publication Critical patent/WO2020045901A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a plasticizer composition comprising at least two carbon atoms of the same type terephthalate and at least one carbon number different type terephthalate, and a resin composition comprising the same.
  • plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, adipate-based, and other polymer-based plastics have continued.
  • plasticizers, fillers, stabilizers, viscosity-reducing agents, dispersants, antifoaming agents, foaming agents, etc. are blended with PVC resins according to the characteristics required for each industry, such as tensile strength, elongation, light resistance, transferability, gelling or absorption rate. Done.
  • plasticizer compositions applicable to PVC when the most widely used di (2-ethylhexyl) terephthalate (DEHTP) is applied, the hardness or sol viscosity is high and the plasticizer absorption rate is high. Is relatively slow, and the performance and stress performance are not good.
  • DEHTP di (2-ethylhexyl) terephthalate
  • composition containing DEHTP As a composition containing DEHTP as an improvement, it may be considered to apply the product of the transesterification reaction with butanol as a plasticizer, but the plasticization efficiency is improved, but the performance and thermal stability are poor, and the mechanical properties are poor. There is no solution at present, except for adopting a method of compensating for the physical properties, such as a slight decrease, and to supplement it by mixing with other secondary plasticizers.
  • the present invention provides a plasticizer composition comprising two or more carbon atoms having the same type as the terephthalate and one or more carbon atoms having different types, wherein the carbon number difference of the alkyl groups bonded to the two ester groups having the carbon number different types is 3 or less, It is to provide a plasticizer composition which can maintain and improve plasticization efficiency and mechanical properties at an equivalent level or higher than conventional plasticizers and at the same time improve viscosity stability, transfer loss and stress resistance.
  • the same type of carbon number of the same number of carbon atoms of the alkyl group bonded to two ester groups as the terephthalate includes two or more, and is bonded to two ester groups as terephthalate
  • Plasticizer composition is provided.
  • the resin is at least one selected from the group consisting of straight vinyl chloride polymer, paste vinyl chloride polymer, ethylene vinyl acetate copolymer, ethylene polymer, propylene polymer, polyketone, polystyrene, polyurethane, natural rubber, synthetic rubber and thermoplastic elastomer Can be.
  • Plasticizer composition according to an embodiment of the present invention when used in the resin composition, while maintaining and improving the plasticization efficiency and mechanical properties compared to the existing plasticizer at the same level or more, while improving the viscosity stability, transfer loss and stress resistance Can be.
  • composition includes mixtures of materials comprising the composition as well as reaction and decomposition products formed from the material of the composition.
  • iso- refers to an alkyl group having a methyl group of 1 carbon group bonded to the main chain of the alkyl group by a branched chain, and generally means that a methyl branch is bonded to the alkyl group terminal.
  • it may be used as a generic term for branched alkyl groups in which methyl and / or ethyl groups are bonded to the main chain, including those bonded at the terminal, unless otherwise specified.
  • ame type of carbon number and “same type of carbon number” are terms that distinguish terephthalate, and "same type of carbon number” is an alkyl group bonded to two ester groups of terephthalate regardless of symmetry and asymmetry. Of which means that the carbon number of the same, and “different carbon number type” means that the carbon number of the alkyl groups bonded to the two ester groups of terephthalate are different from each other.
  • the term “straight vinyl chloride polymer” is one of the types of vinyl chloride polymers, and may mean polymerized through suspension polymerization or bulk polymerization, and has a size of several tens to several hundred micrometers. It refers to a polymer having a form of porous particles having a large amount of pores distributed therein and having excellent flowability.
  • the term "paste vinyl chloride polymer” is one of the types of vinyl chloride polymer, and may mean polymerized through microsuspension polymerization, microseed polymerization, or emulsion polymerization.
  • a fine, dense, pore-free particle with a size of several thousand nanometers refers to a cohesive and poorly flowable polymer.
  • compositions claimed through the use of the term 'comprising' may be used to incorporate any additional additives, adjuvants, or compounds, whether polymer or otherwise, unless stated to the contrary. It may include.
  • the term 'consisting essentially of' excludes any other component, step or procedure from the scope of any subsequent description, except that it is not essential to operability.
  • the term 'consisting of' excludes any ingredient, step or procedure not specifically described or listed.
  • the content analysis of the components in the composition herein is carried out through gas chromatography measurement, Agilent's gas chromatography instrument (product name: Agilent 7890 GC, column: HP-5, carrier gas: helium (flow rate 2.4 mL / min) , Detector: FID, injection volume: 1 uL, initial value: 70 ° C / 4,2min, end value: 280 ° C / 7.8min, program rate: 15 ° C / min).
  • hardness means Shore hardness (Shore “A” and / or Shore “D”) at 25 ° C., using ASTM D2240, measured at 3T 10s, and plasticized. It can be an index for evaluating the efficiency, and the lower the value, the better the plasticization efficiency.
  • 'tensile strength' refers to a cross head speed of 200 mm / min (1T) using a test instrument UTM (manufacturer; Instron, Model Name; 4466) by ASTM D638 method. ), And then measure the point at which the specimen is cut and calculated by the following equation (1).
  • the 'elongation rate' is measured by measuring the point at which the specimen is cut after pulling the crosshead speed to 200 mm / min (1T) using the UTM using the ASTM D638 method. Then, it is calculated by the following formula (2).
  • Elongation (%) length after elongation / initial length x 100
  • 'migration loss' is obtained by obtaining a specimen having a thickness of 2 mm or more according to KSM-3156, attaching a glass plate to both surfaces of the specimen, and applying a load of 1 kgf / cm 2 .
  • the test piece is left in a hot air circulation oven (80 ° C.) for 72 hours, then taken out and cooled at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece and the weight before and after leaving the glass plate and specimen plate in the oven, the transfer loss is calculated by the following equation (3).
  • % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
  • 'volatile loss' refers to the weight of a specimen after working the specimen at 80 ° C. for 72 hours.
  • Heat loss ⁇ (Initial Specimen Weight-Post Specimen Weight) / Initial Specimen Weight ⁇ x 100
  • the 'absorption rate' is evaluated by measuring the time required to stabilize the mixer's torque by mixing the resin and the plasticizer using a Planatary mixer (Brabender, P600) under a condition of 77 ° C. 60 rpm. .
  • the plasticizer composition includes two or more of the same type of carbon number having the same carbon number of the alkyl group bonded to two ester groups as terephthalate; and carbon number of the alkyl group bonded to two ester groups as the terephthalate.
  • carbon number different types includes one or more, the carbon number different type includes both higher alkyl and lower alkyl, the higher alkyl has 8 or less carbon atoms, the lower alkyl has 5 or more carbon atoms.
  • the plasticizer composition includes the same carbon number of the same number of carbon atoms of the alkyl group bonded to the two ester groups, this carbon number type of terephthalate includes two or more.
  • the alkyl groups bonded to two ester groups present in the terephthalate are the same as each other to have an alkyl group having the same carbon number with respect to the benzene ring, wherein the two types of the same type of terephthalate May be classified into higher alkyl terephthalates having 8 or less carbon atoms and lower alkyl terephthalates having 5 or more carbon atoms, respectively.
  • the higher alkyl has higher carbon number than 8, because it may adversely affect the plasticization efficiency.
  • the lower alkyl has lower carbon number than 5, the raw material of the alkyl group in the manufacturing process
  • the solubility of alcohol rapidly increases in water, and thus, may cause many problems, such as a problem of an increase in cost due to a separation process with water, an increase in wastewater throughput in that separation is difficult.
  • the same carbon number type is an alkyl group bonded to two ester groups, and may be n-pentyl, isopentyl, n-hexyl, isohexyl, n-heptyl, isoheptyl, or 2-ethylhexyl, and may be classified as lower alkyl. Which may be n-pentyl, isopentyl, n-hexyl, isohexyl, n-heptyl and isoheptyl having 5 to 7 carbon atoms.
  • 'isopentyl' refers to an alkyl group having 5 carbon atoms whose main chain is a propyl group or a butyl group and a branched chain is a methyl group or an ethyl group.
  • 2-methylbutyl group, 3-methylbutyl group, or 2-ethylpropyl Etc. may be applied.
  • isohexyl refers to a C6 alkyl group whose main chain is a butyl group or a pentyl group, and the branched chain is a methyl group or an ethyl group.
  • 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-ethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 2,4-dimethylbutyl, 2-ethylbutyl, 3-ethylbutyl and the like can be applied.
  • isoheptyl here refers to a C7 alkyl group whose main chain is a pentyl group or a hexyl group, and the branched chain is a methyl group or an ethyl group, for example, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2-ethylpentyl, 3-ethylpentyl, 4-ethylpentyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 2,5-dimethylpentyl, 3, 3-dimethylpentyl, 3,4-dimethylpentyl, 3,5-dimethylpentyl, 4,4-dimethylpentyl, 4,5-dimethylpentyl or 5,5-dimethylpentyl and the like may be applied.
  • alkyl having 6 to 8 carbon atoms it may be classified as higher alkyl having 6 to 8 carbon atoms, the alkyl group having 6 or 7 carbon atoms is as described above, the alkyl group having 8 carbon atoms may be 2-ethylhexyl.
  • n-pentyl isopentyl, 2-methylbutyl, n-hexyl, isohexyl, n-heptyl and isoheptyl, which can be bound to the lower alkyl terephthalate
  • 2-ethyl can be bound to a higher alkyl terephthalate Since the difference in carbon number with hexyl is 3 or less, the plasticization efficiency is maintained at the same level as the carbon number difference is greater than 3 when it is 4, but it is excellent in heat loss and mechanical properties. .
  • the viscosity stability can be significantly excellent when applied to the paste vinyl chloride resin, compared to the carbon number difference is greater than 3, and the effect of improving the tensile strength and elongation can also be excellent.
  • the difference between the two alkyl carbon atoms of the different carbon number type may be 2 or 3, and in this case, a more optimal effect may be obtained not only in transition and stress resistance, but also in mechanical properties such as tensile strength and elongation and loss of heating. have.
  • the carbon number different type of terephthalate must be included together, wherein the carbon number of the alkyl bonded to the two ester groups of the terephthalate of the carbon number type The difference is 3 or less, and each alkyl group may have 5 to 7 carbon atoms and 6 to 8 carbon atoms.
  • the two alkyl groups bonded to the ester group of the terephthalate having a different carbon number may be the same as the alkyl group of the lower alkyl terephthalate and the higher alkyl terephthalate having the same carbon number, and thus have the same alkyl group as the alkyl group having the same carbon number type.
  • terephthalate of carbon number type is included, the above-mentioned effect can be implemented.
  • lower alkyl may have 5 or 6 carbon atoms
  • higher alkyl may have 8 carbon atoms among 6 to 8 carbon atoms.
  • terephthalate having the same type of carbon number may be, for example, di (2-ethylhexyl) terephthalate, di (n-pentyl) terephthalate, diisopentyl terephthalate or di (2-methylbutyl) terephthalate, di ( n-hexyl) terephthalate, diisohexyl terephthalate, di (n-heptyl) terephthalate or diisoheptyl terephthalate and the like.
  • Such asymmetric terephthalates of the same type of carbon number may, for example, be (n-pentyl) (isopentyl) terephthalate, (n-hexyl) isohexyl terephthalate, or (n-heptyl) isoheptyl terephthalate,
  • the alkyl group of 'iso-' may be one selected from the various kinds of alkyl groups described above.
  • terephthalate of a carbon number different type is, for example, (n-pentyl) (2-ethylhexyl) terephthalate, (isopentyl) (2-ethylhexyl) terephthalate, (n-hexyl) (2-ethylhexyl) tere Phthalate, isohexyl (2-ethylhexyl) terephthalate, (n-heptyl) (2-ethylhexyl) terephthalate and isoheptyl (2-ethylhexyl) terephthalate, wherein ' Iso- 'is also the same as above.
  • the plasticizer composition according to another embodiment of the present invention may include essentially two terephthalates of the same type of carbon number and one terephthalate of a different type of carbon number.
  • the same carbon number type two or more carbon atoms and the same type of carbon atoms having another alkyl group and may include one or more more terephthalate of the same type of carbon atoms, and thus may further include a carbon number different type .
  • the terephthalate of essentially different carbon number type may be 8 carbon atoms of the higher alkyl
  • the terephthalate of the different carbon number type may be additionally 6 or 7 carbon atoms of the higher alkyl.
  • the inclusion of a terephthalate having a carbon number different from that of a type having a different carbon number in addition to two kinds essentially included in the same carbon number type enables more precise control of physical properties and improves physical properties.
  • the advantage is that you can see more optimally.
  • Plasticizer composition according to an embodiment of the present invention, as described above, including the same type of carbon number and different types of carbon number as terephthalate, each type of the number of terephthalates, the type of bonded alkyl groups, between the bonded alkyl groups Due to factors such as carbon number difference, it is possible to improve properties such as heating loss, migration resistance, and stress resistance, and further improve the viscosity stability of the resin, and plasticization effect and mechanical properties are also higher than those of existing products. It can be maintained and improved to such an extent.
  • the lower alkyl that is, the alkyl having 5 to 7 carbon atoms
  • the alkyl having 5 carbon atoms preferably may have 5 or 6 carbon atoms
  • n-pentyl, or isopentyl is applied, respectively
  • alkyl having 6 carbon atoms n-hexyl or isohexyl may be applied respectively, but considering the degree of increase of the effect, it may be more preferable that a mixture derived from a mixed alcohol thereof is applied.
  • the plasticizer composition when lower alkyl is applied to the plasticizer composition, as described above, it may be preferable to apply a mixed product derived from a mixed alcohol as compared to applying a single alkyl group as a product from a single alcohol. Based on the resulting three or more terephthalate-based compositions, it may be desirable that the degree of branching is 2.0 or less, and more preferably 1.5 or less.
  • the degree of branching may refer to the number of branched carbons of the alkyl groups bonded to the material included in the composition, and the degree may be determined according to the weight ratio of the material. For example, assuming that the alcohol mixture contains 60% by weight of n-hexyl alcohol, 30% by weight of methylpentyl alcohol, and 10% by weight of ethylbutyl alcohol, the branched carbon number of each alcohol is 0, 1 and 2, respectively. , The degree of branching may be calculated to be [(60x0) + (30x1) + (10x2)] / 100 and is 0.5, which is calculated based on the same carbon number.
  • the alkyl group applied to terephthalate when derived from the mixed alcohol includes n-pentyl, 2-methylbutyl and 3-methylbutyl when carbon number is 5, and n-hexyl when carbon number is 6 , Isomers such as 2-methylpentyl, 2-ethylbutyl, and 2,4-dimethylbutyl.
  • the plasticizer composition may have a moisture content of 100 ppm or less, preferably 70 ppm or less, more preferably 50 ppm or less, based on the weight of the total weight of the composition.
  • the plasticizer is likely to deteriorate due to environmental factors in the surroundings, and there is a high possibility of causing a problem in processing, so the smaller the water content in the plasticizer, the better.
  • the terephthalate included in the plasticizer composition is lower alkyl terephthalate, terephthalate of different carbon number type and higher alkyl terephthalate three, each of 0.5 to 50% by weight, 3.0 to 70% by weight relative to the total weight of the plasticizer composition % And 0.5 to 95% by weight, and these contents are values when the sum of the three terephthalates is 100% by weight, and the content is not considered until other materials are included in the plasticizer composition.
  • the effect that can be realized from the difference in the number of carbon atoms of the alkyl group bonded to the terephthalate of the type is less than 3 can be more preferably implemented, the reproducibility of the effect is also excellent Can be.
  • the content of the three terephthalates may preferably be 0.5 to 30% by weight, 10 to 60% by weight and 35 to 90% by weight.
  • Method for producing a plasticizer composition according to an embodiment of the present invention is a method known in the art, if the above-described plasticizer composition can be prepared can be applied without particular limitation.
  • the plasticizer composition three kinds of terephthalates are included as a basis, and an esterification reaction may be used, and both a direct esterification reaction and a trans esterification reaction may be applied.
  • the direct esterification reaction may include adding terephthalic acid and two or more alcohols, followed by adding a catalyst and reacting under a nitrogen atmosphere; Removing unreacted alcohol and neutralizing unreacted acid; And dehydrating and filtering by distillation under reduced pressure.
  • the alcohol may be a single alcohol or a mixed alcohol having the same carbon number selected from the group consisting of n-pentanol, isopentanol, n-hexanol, isohexanol, n-heptanol and isoheptanol, And a mixture of alcohols of a structural isomer relationship, in which case the degree of branching of the mixed alcohols may be 2.0 or less, preferably 1.5 or less, as described above. And as another 1 type, 2-ethylhexyl alcohol can be applied.
  • the alcohol may be used in the range of 150 to 500 mol%, 200 to 400 mol%, 200 to 350 mol%, 250 to 400 mol%, or 270 to 330 mol% based on 100 mol% of terephthalic acid.
  • the catalyst is, for example, acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, paratoluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkyl sulfuric acid, aluminum lactic acid, lithium fluoride, potassium chloride, cesium chloride, calcium chloride, It may be at least one selected from metal salts such as iron chloride and aluminum phosphate, metal oxides such as heteropoly acid, natural / synthetic zeolites, cation and anion exchange resins, organic metals such as tetra alkyl titanate and polymers thereof. As a specific example, the catalyst may use tetraalkyl titanate.
  • acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, paratoluenesulfonic acid, methanesulfonic acid, ethanesul
  • the amount of the catalyst used may vary depending on the type, for example, in the case of a homogeneous catalyst, 0.01 to 5% by weight, 0.01 to 3% by weight, 1 to 5% by weight or 2 to 4% by weight based on 100% by weight of the total reactants. And, in the case of heterogeneous catalysts, it may be in the range of 5 to 200%, 5 to 100%, 20 to 200%, or 20 to 150% by weight of the total amount of reactants.
  • reaction temperature may be in the range of 180 to 280 ° C, 200 to 250 ° C, or 210 to 230 ° C.
  • the transesterification reaction is a group consisting of di (2-ethylhexyl) terephthalate, n-pentanol, isopentanol, n-hexanol, isohexanol, n-heptanol and isoheptanol
  • the terephthalate compound may be prepared through a transesterification reaction in which at least one carbon number selected from the same alcohol, that is, a mixed alcohol that is a single alcohol or a mixture of structural isomers is reacted.
  • the alkyl group which terephthalate and an alcohol have may cross each other.
  • trans esterification reaction refers to a reaction in which an alcohol reacts with an ester as shown in Scheme 1 below, and R '' of the ester is interchanged with R 'of an alcohol as shown in Scheme 1 below:
  • the transesterification reaction when the alkoxide of the alcohol attacks the carbon of two ester (RCOOR '') groups present in the ester compound; Attacking the carbon of the ester (RCOOR ")group;
  • three kinds of ester compositions may be generated by water.
  • the shape and number of probabilities that can be generated can be predicted. This can be done by designing the carbon number, type, and composition ratio of alcohols that are added to the trans reaction in consideration of the quality of the final plasticizer composition. May be optionally prepared.
  • the trans esterification reaction has the advantage that the waste water problem is not caused compared to the acid-alcohol esterification reaction, and can be progressed under a catalyst, it can solve the problem when using the acid catalyst.
  • the mixture prepared by the transesterification reaction may control the composition ratio of the mixture according to the amount of alcohol added.
  • the amount of the alcohol added may be 0.1 to 89.9 parts by weight, specifically 3 to 50 parts by weight, and more specifically 5 to 40 parts by weight based on 100 parts by weight of the terephthalate compound.
  • the compound of the terephthalate will increase the mole fraction of the terephthalate participating in the transesterification reaction, the greater the amount of alcohol added, the content of the two terephthalates as a product in the mixture may increase, so Correspondingly unreacted terephthalate content may tend to decrease.
  • the molar ratio of the reactant terephthalate and alcohol is, for example, 1: 0.005 to 5.0, 1: 0.05 to 2.5, or 1: 0.1 to 1.0, and within this range, the processability and economic efficiency may be excellent. It can be, and there is an effect of obtaining a plasticizer composition that can implement the above-described effect.
  • the trans esterification reaction is 10 minutes to 10 hours, preferably at a reaction temperature of 120 °C to 190 °C, preferably 135 °C to 180 °C, more preferably 141 °C to 179 °C Preferably from 30 minutes to 8 hours, more preferably from 1 to 6 hours.
  • the reaction time may be calculated from the point of reaching the reaction temperature after the temperature of the reactant.
  • the transesterification reaction may be carried out under an acid catalyst or a metal catalyst, in which case the reaction time is shortened.
  • the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid, and the like, and the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or the metal itself.
  • the metal component may be any one selected from the group consisting of tin, titanium, and zirconium, or a mixture of two or more thereof.
  • the method may further include distilling and removing unreacted alcohol and reaction by-products after the transesterification reaction.
  • the distillation may be, for example, two-stage distillation that is separated separately using the difference between the break points of the alcohol and the reaction by-product.
  • the distillation may be mixed distillation. In this case, there is an effect that the ester plasticizer composition can be relatively stable at a desired composition ratio.
  • the mixed distillation means distilling unreacted alcohol and reaction by-products simultaneously.
  • a resin composition comprising the plasticizer composition and the resin described above.
  • the resin may be a resin known in the art.
  • a resin known in the art for example, at least one selected from the group consisting of straight vinyl chloride polymer, paste vinyl chloride polymer, ethylene vinyl acetate copolymer, ethylene polymer, propylene polymer, polyketone, polystyrene, polyurethane, natural rubber, synthetic rubber and thermoplastic elastomer Mixtures and the like can be used, but are not limited thereto.
  • the plasticizer composition may be included in an amount of 5 to 150 parts by weight, preferably 5 to 130 parts by weight, or 10 to 120 parts by weight based on 100 parts by weight of the resin.
  • the resin in which the plasticizer composition is used may be prepared as a resin product through melt processing or plastisol processing, and the melt processed resin and plastisol processed resin may be produced differently according to each polymerization method.
  • the vinyl chloride polymer when used for melt processing, it is prepared by suspension polymerization or the like, and solid resin particles having a large average particle diameter are used.
  • Such vinyl chloride polymer is called a straight vinyl chloride polymer, and is used for plastisol processing.
  • a sol resin is used as fine resin particles, which are prepared by emulsion polymerization, and such vinyl chloride polymer is called paste vinyl chloride resin.
  • the plasticizer may be included in 5 to 150 parts by weight relative to 100 parts by weight of the polymer, it is preferably included in the range of 5 to 80 parts by weight, in the case of paste vinyl chloride polymer 100 weight It may be included in an amount of 5 to 150 parts by weight, and preferably included in a range of 40 to 120 parts by weight.
  • the resin composition may further include a filler.
  • the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
  • the filler may be a filler known in the art, it is not particularly limited.
  • it may be at least one mixture selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate and barium sulfate.
  • the resin composition may further include other additives such as stabilizers, if necessary.
  • additives such as the stabilizer may be, for example, 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin.
  • the stabilizer may be, for example, a calcium-zinc-based (Ca-Zn-based) stabilizer such as a calcium stearate salt, but is not particularly limited thereto.
  • a calcium-zinc-based (Ca-Zn-based) stabilizer such as a calcium stearate salt, but is not particularly limited thereto.
  • the resin composition may be applied to both melt processing and plastisol processing as described above, for example, melt processing may be applied to a calendering process, an extrusion process, or an injection process, and the plastisol process may be a coating process or the like. This can be applied.
  • DnPTP di (n-pentyl) terephthalate
  • nPEHTP di (n-pentyl) (2-ethylhexyl) terephthalate
  • DEHTP di (2 A composition comprising ethyl hexyl) terephthalate
  • DMBTP di (2-methylbutyl) terephthalate
  • MBEHTP (2-methylbutyl) (2-ethylhexyl) terephthalate
  • DEHTP di (2-ethylhexyl) terephthalate
  • composition prepared in Example 1 was mixed with the composition prepared in Example 2 at a weight ratio of 70:30.
  • DnPTP di (n-pentyl) terephthalate
  • nPEHTP di (n-pentyl) (2-ethylhexyl) terephthalate
  • DEHTP di (2-ethylhexyl) terephthalate
  • DMBTP Di (2-methylbutyl) terephthalate
  • (2-methylbutyl) was prepared in the same manner as in Example 4 except that 220 g of 2-methylbutyl alcohol was used instead of n-pentyl alcohol in Example 4.
  • a composition comprising 2-ethylhexyl) terephthalate (MBEHTP) and di (2-ethylhexyl) terephthalate (DEHTP) at 2.1 wt%, 25.8 wt% and 72.1 wt%, respectively, was obtained.
  • DHxTP di (n-hexyl) terephthalate
  • HxEHTP n-hexyl (2-ethylhexyl) terephthalate
  • DEHTP di (2- A composition comprising ethylhexyl) terephthalate
  • DHxTP di (n-hexyl) terephthalate
  • HxEHTP n-hexyl (2-ethylhexyl) terephthalate
  • DEHTP di (2- A composition comprising ethylhexyl) terephthalate
  • DHpTP di (n-heptyl) terephthalate
  • HpEHTP n-heptyl (2-ethylhexyl) terephthalate
  • DEHTP ethylhexyl terephthalate
  • DHpTP di (n-heptyl) terephthalate
  • HpEHTP n-heptyl (2-ethylhexyl) terephthalate
  • DEHTP ethylhexyl terephthalate
  • di (2-ethylhexyl) terephthalate (DEHTP, LGflex GL300) was used as a plasticizer composition.
  • LG Chem produced 4.1 wt%, 25.7 wt% and 70.2 wt% of dibutyl terephthalate (DBTP), butyl (2-ethylhexyl) terephthalate (BEHTP) and di (2-ethylhexyl) terephthalate (DEHTP), respectively.
  • DBTP dibutyl terephthalate
  • BEHTP butyl (2-ethylhexyl) terephthalate
  • DEHTP di (2-ethylhexyl) terephthalate
  • DINTP diisononyl terephthalate
  • n-pentyl alcohol 18 parts by weight based on 100 parts by weight of DINTP
  • DPTP di (n-pentyl) terephthalate
  • PINTP isononyl terephthalate
  • DINTP diisononyl terephthalate
  • DINTP diisononyl terephthalate
  • n-pentyl alcohol 11 parts by weight based on 100 parts by weight of DINTP
  • DPTP di (n-pentyl) terephthalate
  • PINTP isononyl terephthalate
  • DINTP diisononyl terephthalate
  • Elongation (%) calculated after elongation / initial length x 100.
  • a specimen of 2 mm or more in thickness was obtained according to KSM-3156.
  • a glass plate was attached to both sides of the 1T specimen, and a load of 1 kgf / cm 2 was applied.
  • the specimen was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece, the weight loss was measured before and after leaving the glass plate and specimen plate in the oven, and the transfer loss was calculated by the following equation.
  • % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
  • Absorption rate is measured under the condition of 77 °C and 60rpm by using Planatary mixer (Brabender, P600) to measure the time (mm: ss) before mixing the resin and ester compound to stabilize the torque of the mixer. Evaluated.
  • Example 1 97.5 59.6 1.65 0.98 268.3 308.7
  • Example 2 97.8 60.0 1.78 1.23 267.9 293.1
  • Example 3 97.6 59.6 1.67 0.99 268.0 305.7
  • Example 4 97.8 59.8 1.88 0.86 268.9 310.5
  • Example 5 98.0 59.6 1.69 0.90 268.2 305.4
  • Example 6 98.2 59.6 2.12 0.91 265.6 301.2
  • Example 7 98.4 59.7 2.10 0.80 268.4 305.2
  • Example 8 98.6 59.9 2.25 0.80 266.2 294.1
  • Example 9 98.7 59.9 2.37 0.79 266.7 298.6 Comparative Example 1 99.8 61.6 3.81 0.78 264.7 296.9 Comparative Example 2 97.4 59.4 3.12 2.54 248.5 287.7 Comparative Example 3 98.2 59.8 3.54 2.0
  • the specimens were prepared according to ASTM D638 under the following prescription and fabrication conditions.
  • Hardness (plasticization efficiency) (hardness) : Using the ASTM D2240, Shore hardness (Shore “A” and “D”) at 25 °C was measured for 10 seconds with 3T specimen. The smaller the value, the better the plasticization efficiency.
  • Elongation (%) calculated after elongation / initial length x 100.
  • % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
  • Stress test Stress resistance: After bending the specimen having a thickness of 2 mm at 23 °C for 168 hours, observed the degree of transition (soaking out), and the results are described numerically, 0 The closer it is, the better the properties.
  • Example 1 78.1 33.0 5.33 0.92 194.1 359.9 0
  • Example 2 79.0 33.5 5.80 1.48 189.0 349.8 0
  • Example 4 79.0 33.4 5.23 0.76 198.6 346.7 0
  • Example 5 79.4 33.5 5.25 0.84 192.5 348.2 0
  • Example 6 79.3 33.4 5.87 0.83 191.9 349.3 0.5
  • Example 7 79.8 33.6 5.64 0.78 196.4 345.7 0.5
  • Example 8 80.0 33.9 6.07 0.71 194.7 339.4 1.0
  • Example 9 80.6 34.2 5.89 0.65 199.2 340.5 1.5
  • Comparative Example 1 81.0 34.7 8.29 0.76 190.7 319.7 3
  • Comparative Example 2 77.9 32.3 6.57 2.55 178.0 325.2 0
  • Comparative Example 3 79.0 33.5 6.89 2.20 180.3
  • the specimens were prepared according to ASTM D638 under the following prescription and fabrication conditions.
  • Viscosity Brookfield viscosity, measured using a Brookfield (LV type) viscometer, # 62 was used as the spindle, measurement speed was 6 rpm, measurement temperature was 25 ° C and 60 ° C. Measured as
  • Tensile strength By pulling the cross head speed to 100 mm / min using UTM (manufacturer; Instron, Model Name; 4466), a test instrument, by ASTM D412 method, The point to be cut was measured. Tensile strength was calculated as follows:
  • Elongation (%) calculated after elongation / initial length x 100.
  • % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
  • Example 1 235 250 6.4 160 205 28.1 9.36 13.2 364.8
  • Example 2 240 265 10.4 155 215 38.7 9.13 13.9 370.3
  • Example 3 235 255 8.5 155 210 35.5 9.21 13.5 368.9
  • Example 4 205 215 4.9 150 175 16.7 9.53 13.3 363.5
  • Example 5 215 235 9.3 155 185 19.4 9.76 13.5
  • Example 6 210 245 16.7 135 170 25.9 10.91 12.5 360.3
  • Example 7 255 15.9 140 170 21.4 10.90 12.8 362.8
  • Example 8 225 260
  • Comparative Example 1 in the case of Comparative Example 1 of the existing product GL300 showed a change over time more than twice as compared to the Examples it was confirmed that the stability is somewhat reduced, Comparative Example 2 is an improved product of Comparative Example 1 Even in the case of 5 to 5 it can be seen that the change over time is a fairly poor level.
  • Comparative Examples 1 to 5 are considerably poor compared to Examples 1 to 9, and in particular, elongation exhibits poor physical properties of 10% or more.
  • the plasticizer composition according to an embodiment of the present invention includes a terephthalate having the same type of carbon atoms and a terephthalate having a different carbon number, but the carbon number is bonded to two ester groups of the type terephthalate It can be seen that in the case of applying an alkyl group having 5 to 7 carbon atoms and 8 carbon atoms, respectively, a considerably superior effect can be achieved in comparison with the other alkyl groups, and the carbon number difference of the alkyl groups is 3 or less and 4 It can be seen that the difference from that is a significant difference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 가소제 조성물에 관한 것으로 테레프탈레이트로서 2 개의 에스터기에 결합된 알킬기의 탄소수가 서로 동일한 탄소수 동일 타입;을 2종 이상 포함하고, 테레프탈레이트로서 2 개의 에스터기에 결합된 알킬기의 탄소수가 서로 다른 탄소수 상이 타입;을 1종 이상 포함하며, 상기 탄소수 상이 타입은 고급알킬 및 저급알킬을 모두 포함하고, 상기 고급알킬은 탄소수가 8 이하인 것에서 선택되고, 저급알킬은 탄소수가 5 이상인 것에서 선택되는 것을 특징으로 하며, 상기 가소제 조성물은 수지에 적용시 점도 안정성, 내이행성, 그리고 내스트레스성과 같은 효과를 개선할 수 있고, 가소화 효율과 기계적 물성 또한 동등 이상의 수준으로 유지 및 개선할 수 있다.

Description

가소제 조성물 및 이를 포함하는 수지 조성물
관련출원과의 상호인용
본 출원은 2018년 08월 27일자 한국 특허 출원 제10-2018-0100356호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 2종 이상의 탄소수 동일 타입 테레프탈레이트와 1종 이상의 탄소수 상이 타입 테레프탈레이트를 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 아디페이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
한편, 바닥재, 벽지, 연질 및 경질 시트, 장갑, 전선, 호스, 필름 등의 완제품을 제조하는 플라스티졸 업종, 캘린더링 업종, 압출/사출 컴파운드 업종을 막론하고, 이러한 친환경 제품에 대한 요구가 증대고 있으며, 이에 대한 완제품별 품질 특성, 가공성 및 생산성을 강화하기 위하여 변색 및 이행성, 기계적 물성 등을 고려하여 적절한 가소제를 사용하여야 한다.
이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 혹은 흡수속도 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등의 부원료등을 배합하게 된다.
일례로, PVC에 적용 가능한 가소제 조성물 중, 가격이 상대적으로 저렴하면서 가장 범용적으로 사용되는 디(2-에틸헥실) 테레프탈레이트(DEHTP)를 적용할 경우, 경도 혹은 졸 점도가 높고 가소제의 흡수 속도가 상대적으로 느리며, 이행성 및 스트레스 이행성도 양호하지 않았다.
이에 대한 개선으로 DEHTP를 포함하는 조성물로서, 부탄올과의 트랜스 에스터화 반응의 생성물을 가소제로 적용하는 것을 고려할 수 있으나, 가소화 효율은 개선되는 반면, 이행성이나 열안정성 등이 열악하고, 기계적 물성이 다소 저하되는 등 물성의 개선이 요구되어 일반적으로 다른 2차 가소제와의 혼용을 통해서 이를 보완하는 방식을 채용하는 것 외에는 현재로써 해결책이 없는 상황이다.
그러나, 2차 가소제를 적용하는 경우에는 물성 변화에 대한 예측이 어렵고, 제품 단가가 상승하는 요인으로 작용할 수 있으며, 특정한 경우 이외에는 물성의 개선이 뚜렷하게 나타나지 않는 등 연구가 더디게 진행되는 것이 실정이다.
본 발명은 테레프탈레이트로서 탄소수 동일 타입이 2종 이상 포함되고 탄소수 상이 타입이 1종 이상 포함되는 가소제 조성물로서, 상기 탄소수 상이 타입의 2개의 에스터기에 결합되는 알킬기의 탄소수 차이가 3 이하인 것을 적용함으로써, 기존 가소제 대비 가소화 효율 및 기계적 물성을 동등 이상의 수준으로 유지 및 개선함과 동시에 점도 안정성, 이행손실과 내스트레스성을 개선할 수 있는 가소제 조성물을 제공하고자 하는 것이다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 테레프탈레이트로서 2 개의 에스터기에 결합된 알킬기의 탄소수가 서로 동일한 탄소수 동일 타입;을 2종 이상 포함하고, 테레프탈레이트로서 2 개의 에스터기에 결합된 알킬기의 탄소수가 서로 다른 탄소수 상이 타입;을 1종 이상 포함하며, 상기 탄소수 상이 타입은 고급알킬 및 저급알킬을 모두 포함하며, 상기 고급알킬의 탄소수는 8 이하이고, 상기 저급알킬의 탄소수는 5 이상인 것인 가소제 조성물이 제공된다.
상기 과제를 해결하기 위하여 본 발명의 또 다른 일 실시예에 따르면, 수지 100 중량부; 및 전술한 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물이 제공된다.
상기 수지는 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌초산비닐 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 천연고무, 합성고무 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것일 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 기존 가소제 대비 가소화 효율 및 기계적 물성을 동등 이상의 수준으로 유지 및 개선함과 동시에 점도 안정성, 이행손실과 내스트레스성을 개선할 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
용어의 정의
본 명세서에서 이용되는 바와 같은 "조성물"이란 용어는, 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.
본 명세서에서 이용되는 바와 같은 접두어 "이소-"는 알킬기의 주사슬에 탄소수 1인 메틸기가 분지쇄로 결합된 알킬기를 의미하며, 일반적으로는 알킬기 말단에 메틸 분지가 결합된 것을 의미하나, 본 명세서에서는, 달리 별도로 칭하는 알킬기가 없는 이상 말단에 결합된 것을 포함하여 분지쇄로 메틸기 및/또는 에틸기가 주사슬에 결합된 분지형의 알킬기를 총칭하는 것으로 사용될 수 있다.
본 명세서에서 이용되는 바와 같은 "탄소수 동일 타입" 및 "탄소수 상이 타입"은 테레프탈레이트를 구분 짓는 용어로서 "탄소수 동일 타입"이란 대칭 및 비대칭과는 무관하게, 테레프탈레이트의 2개의 에스터기에 결합된 알킬기들의 탄소수가 서로 동일한 것을 의미하고, "탄소수 상이 타입"은 테레프탈레이트의 2개의 에스터기에 결합된 알킬기들의 탄소수가 서로 상이한 것을 의미한다.
본 명세서에서 이용되는 바와 같은 "스트레이트 염화비닐 중합체"란 용어는, 염화비닐 중합체의 종류 중 하나로서, 현탁 중합 또는 벌크 중합 등을 통해 중합된 것을 의미할 수 있고, 수십 내지 수백 마이크로미터 크기를 가지는 다량의 기공이 분포된 다공성 입자의 형태를 갖고 응집성이 없으며 흐름성이 우수한중합체를 말한다.
본 명세서에서 이용되는 바와 같은 "페이스트 염화비닐 중합체"란 용어는, 염화비닐 중합체의 종류 중 하나로서, 미세현탁 중합, 미세시드 중합, 또는 유화 중합 등을 통해 중합된 것을 의미할 수 있고, 수십 내지 수천 나노미터 크기를 가지는 미세하고 치밀한 공극이 없는 입자로서 응집성을 갖고 흐름성이 열악한 중합체를 말한다.
'포함하는', '가지는'이란 용어 및 이들의 파생어는, 이들이 구체적으로 개시되어 있든지 그렇치 않든지 간에, 임의의 추가의 성분, 단계 혹은 절차의 존재를 배제하도록 의도된 것은 아니다. 어떠한 불확실함도 피하기 위하여, '포함하는'이란 용어의 사용을 통해 청구된 모든 조성물은, 반대로 기술되지 않는 한, 중합체든지 혹은 그 밖의 다른 것이든지 간에, 임의의 추가의 첨가제, 보조제, 혹은 화합물을 포함할 수 있다. 이와 대조적으로, '로 본질적으로 구성되는'이란 용어는, 조작성에 필수적이지 않은 것을 제외하고, 임의의 기타 성분, 단계 혹은 절차를 임의의 연속하는 설명의 범위로부터 배제한다. '로 구성되는'이란 용어는 구체적으로 기술되거나 열거되지 않은 임의의 성분, 단계 혹은 절차를 배제한다.
측정 방법
본 명세서에서 조성물 내의 성분들의 함량 분석은 가스 크로마토그래피 측정을 통해 수행하며, Agilent 사의 가스 크로마토그래피 기기(제품명: Agilent 7890 GC, 컬럼: HP-5, 캐리어 가스: 헬륨(flow rate 2.4mL/min), 디텍터: F.I.D, 인젝션 볼륨: 1uL, 초기값: 70℃/4,2min, 종기값: 280℃/7.8min, program rate: 15℃/min)로 분석한다.
본 명세서에서, '경도(hardness)'는 ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "A" 및/또는 Shore "D")를 의미하며, 3T 10s의 조건에서 측정하고, 가소화 효율을 평가하는 지표가 될 수 있으며 낮을수록 가소화 효율이 우수함을 의미한다.
본 명세서에서, '인장강도(tensile strength)'는 ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하고 하기 수학식 1로 계산한다.
[수학식 1]
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
본 명세서에서 '신율(elongation rate)'은 ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 하기 수학식 2로 계산한다.
[수학식 2]
신율(%) = 신장 후 길이 / 초기 길이 x 100
본 명세서에서 '이행 손실(migration loss)'은 KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻고, 시험편 양면에 Glass Plate를 붙인 후 1 kgf/cm2 의 하중을 가한다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시킨다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 하기 수학식 3에 의하여 계산한다.
[수학식 3]
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
본 명세서에서 '가열 감량(volatile loss)'은 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정한다.
[수학식 4]
가열 감량 (중량%) = {(초기 시편 무게 - 작업 후 시편 무게) / 초기 시편 무게} x 100
본 명세서에서 '흡수 속도'는 77℃ 60rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 가소제가 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데 까지 소요된 시간을 측정하여 평가한다.
상기 다양한 측정 조건들의 경우, 온도, 회전속도, 시간 등의 세부 조건은 경우에 따라 다소 상이해질 수 있으며, 상이한 경우에는 별도로 그 측정 방법 및 조건을 명시하였다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 발명의 일 실시예에 따르면, 가소제 조성물은 테레프탈레이트로서 2 개의 에스터기에 결합된 알킬기의 탄소수가 서로 동일한 탄소수 동일 타입;을 2종 이상 포함하고, 테레프탈레이트로서 2 개의 에스터기에 결합된 알킬기의 탄소수가 서로 다른 탄소수 상이 타입;을 1종 이상 포함하며, 상기 탄소수 상이 타입은 고급알킬 및 저급알킬을 모두 포함하며, 상기 고급알킬의 탄소수는 8 이하이고, 상기 저급알킬의 탄소수는 5 이상이다.
본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 2 개의 에스터기에 결합된 알킬기의 탄소수가 서로 동일한 탄소수 동일 타입을 포함하며, 이 탄소수 동일 타입의 테레프탈레이트는 2종 이상 포함한다.
상기 탄소수 동일 타입의 경우, 테레프탈레이트에 존재하는 2 개의 에스터기에 결합된 알킬기가 서로 동일하여 벤젠링을 중심으로 서로 동일한 탄소수를 갖는 알킬기를 갖는다는 의미이며, 여기서 상기 2 종의 탄소수 동일 타입 테레프탈레이트는 탄소수 8 이하인 고급알킬 테레프탈레이트와 탄소수 5 이상인 저급알킬 테레프탈레이트로 각각 분류되어 동시에 포함될 수 있다.
상기 고급알킬로서 탄소수가 8보다 큰 것이 적용되는 경우에는 가소화 효율에 악영향을 줄 수 있기 때문에, 바람직하지 못하며, 저급알킬로서 탄소수가 5 미만인 것을 적용하는 경우에는 제조 공정에 있어서 이 알킬기의 원료가 되는 알코올이 물에 대한 용해도가 급 상승하고, 이에 따라, 물과의 분리 공정에 따른 비용 상승의 문제, 분리가 어렵다는 점에서 증가하는 폐수 처리량에 관한 문제 등등 많은 문제점을 야기할 수 있다.
상기 탄소수 동일 타입은 2개의 에스터기에 결합되는 알킬기로서, n-펜틸, 이소펜틸, n-헥실, 이소헥실, n-헵틸, 이소헵틸 또는 2-에틸헥실일 수 있고, 여기서 저급알킬로 분류될 수 있는 것은 탄소수가 5개 내지 7개인 n-펜틸, 이소펜틸, n-헥실, 이소헥실, n-헵틸 및 이소헵틸일 수 있다.
여기서 '이소펜틸'은 주쇄가 프로필기 또는 부틸기이고, 분지쇄가 메틸기 또는 에틸기인 탄소수 5의 알킬기를 총칭하는 것으로, 예컨대, 2-메틸부틸기, 3-메틸부틸기, 또는 2-에틸프로필 등이 적용될 수 있다.
또한, 여기서 '이소헥실'은 주쇄가 부틸기 또는 펜틸기이고, 분지쇄가 메틸기 또는 에틸기인 탄소수 6의 알킬기를 총칭하는 것으로, 예컨대, 2-메틸펜틸, 3-메틸펜틸, 4-메틸펜틸, 2-에틸부틸, 2,2-디메틸부틸, 2,3-디메틸부틸, 2,4-디메틸부틸, 2-에틸부틸, 또는 3-에틸부틸 등이 적용될 수 있다.
또, 여기서 '이소헵틸'은 주쇄가 펜틸기 또는 헥실기이고, 분지쇄가 메틸기 또는 에틸기인 탄소수 7의 알킬기를 총칭하는 것으로, 예컨대, 2-메틸헥실, 3-메틸헥실, 4-메틸헥실, 5-메틸헥실, 2-에틸펜틸, 3-에틸펜틸, 4-에틸펜틸, 2,2-디메틸펜틸, 2,3-디메틸펜틸, 2,4-디메틸펜틸, 2,5-디메틸펜틸, 3,3-디메틸펜틸, 3,4-디메틸펜틸, 3,5-디메틸펜틸, 4,4-디메틸펜틸, 4,5-디메틸펜틸 또는 5,5-디메틸펜틸 등이 적용될 수 있다.
또한, 고급알킬로 분류될 수 있는 것은 탄소수가 6 내지 8인 것으로서 탄소수 6 또는 7의 알킬기는 전술한 것과 같고, 탄소수 8인 알킬기는 2-에틸헥실일 수 있다.
상기 저급알킬 테레프탈레이트에 결합될 수 있는 n-펜틸, 이소펜틸, 2-메틸부틸, n-헥실, 이소헥실, n-헵틸 및 이소헵틸의 경우, 고급알킬 테레프탈레이트에 결합될 수 있는 2-에틸헥실과의 탄소수 차이가 3 이하라는 점에서, 탄소수 차이가 3을 초과하는 것으로서 4인 것 대비 수지에 적용시 가소화 효율은 동등 수준으로 유지되되, 가열감량 및 기계적 물성 등에서 탁월한 효과를 볼 수 있다.
또한, 다른 측면에서, 탄소수 차이가 3을 초과하는 것 대비해서 페이스트 염화비닐 수지에 적용시 점도 안정성이 상당히 우수할 수 있고, 이행성은 물론 인장강도와 신율의 개선 효과 또한 탁월할 수 있다.
보다 바람직하게 상기 탄소수 상이 타입의 두 알킬 탄소수 차이는 2 또는 3일 수 있고, 이 경우에는 이행성과 내스트레스성 뿐만 아니라, 인장강도와 신율과 같은 기계적 물성, 가열감량에서도 보다 최적의 효과를 얻을 수 있다.
상기와 같은 탄소수 동일 타입의 탄소수 특징과 더불어, 전술한 효과를 달성하기 위해서는, 탄소수 상이 타입의 테레프탈레이트도 함께 포함되어야 하며, 이 때 탄소수 상이 타입의 테레프탈레이트의 2 개의 에스터기에 결합되는 알킬의 탄소수 차이는 3 이하이며, 각각의 알킬기는 탄소수가 5 내지 7인 것과 탄소수 6 내지 8인 것이 적용될 수 있다.
여기서 탄소수 상이 타입의 테레프탈레이트의 에스터기에 결합되는 2 개의 알킬기는 각각 탄소수 동일 타입인 저급알킬 테레프탈레이트 및 고급알킬 테레프탈레이트의 알킬기와 동일한 것일 수 있으며, 이처럼 탄소수 동일 타입의 알킬기와 동일한 알킬기를 모두 갖는 탄소수 상이 타입의 테레프탈레이트가 포함되는 경우, 상기한 효과를 구현할 수 있다.
바람직하게 저급알킬은 탄소수 5 내지 7인 것 중 탄소수 5 또는 6인 것이 더 좋고, 고급알킬은 탄소수 6 내지 8인 것 중 탄소수 8인 것이 더 바람직할 수 있다.
구체적으로, 상기 탄소수 동일 타입의 테레프탈레이트는 예컨대, 디(2-에틸헥실) 테레프탈레이트, 디(n-펜틸) 테레프탈레이트, 디이소펜틸 테레프탈레이트 또는 디(2-메틸부틸) 테레프탈레이트, 디(n-헥실) 테레프탈레이트, 디이소헥실 테레프탈레이트, 디(n-헵틸) 테레프탈레이트 또는 디이소헵틸 테레프탈레이트등이 있을 수 있다.
즉, 탄소수 동일 타입의 경우 상호 알킬기의 탄소수가 동일할 뿐만 아니라 구조도 동일한 것인 대칭형이 있을 수 있고, 경우에 따라서는 탄소수는 동일하지만 구조는 상이한, 즉 구조이성질체 관계에 있는 알킬기가 결합된 비대칭형 테레프탈레이트도 포함될 수 있다.
이러한 탄소수 동일 타입의 비대칭형 테레프탈레이트는, 예컨대, (n-펜틸)(이소펜틸) 테레프탈레이트, (n-헥실)이소헥실 테레프탈레이트, 또는 (n-헵틸)이소헵틸 테레프탈레이트가 있을 수 있고, 여기서 '이소-'의 알킬기는 각각이 전술한 여러 종류의 알킬기 중에서 선택되는 것일 수 있다.
또, 탄소수 상이 타입의 테레프탈레이트는 예컨대, (n-펜틸)(2-에틸헥실) 테레프탈레이트, (이소펜틸)(2-에틸헥실) 테레프탈레이트, (n-헥실)(2-에틸헥실) 테레프탈레이트, 이소헥실(2-에틸헥실) 테레프탈레이트, (n-헵틸)(2-에틸헥실) 테레프탈레이트 및 이소헵틸(2-에틸헥실) 테레프탈레이트로 이루어진 군에서 선택되는 것일 수 있으며, 여기서의 '이소-' 또한 위와 같다.
한편, 본 발명의 다른 실시예에 따른 가소제 조성물은, 탄소수 동일 타입의 테레프탈레이트 2종과 탄소수 상이 타입의 테레프탈레이트 1종을 필수적으로 포함할 수 있다. 이에 추가적으로, 탄소수 동일 타입으로써, 2종의 탄소수 동일 타입과는 탄소수가 또 다른 알킬기를 갖는 탄소수 동일 타입의 테레프탈레이트를 1종 이상 더 포함할 수 있고, 이에 따라 탄소수 상이 타입 역시 더 포함할 수 있다. 이 경우, 필수적으로 포함되는 탄소수 상이 타입의 테레프탈레이트는 고급 알킬의 탄소수가 8인 것일 수 있으며, 추가적으로 포함될 수 있는 탄소수 상이 타입의 테레프탈레이트는 고급알킬의 탄소수가 6인 것 또는 7인 것일 수 있다.
이와 같이, 탄소수 동일 타입에 필수적으로 포함되는 2종 외에 이와는 탄소수가 다른 1종이 더 포함됨에 따라 발생되는 탄소수 상이 타입의 테레프탈레이트의 포함은 보다 더 세밀한 물성의 제어를 가능하게 하며, 물성 개선 효과를 보다 더 최적으로 볼 수 있다는 장점이 있다.
본 발명의 일 실시예에 따른 가소제 조성물은, 전술한 것과 같이 테레프탈레이트로서 탄소수 동일 타입과 탄소수 상이 타입을 포함하되, 각 타입의 테레프탈레이트의 개수, 결합된 알킬기의 종류, 결합된 알킬기들 사이의 탄소수 차이와 같은 요인으로 인하여, 가열감량, 내이행성, 내스트레스성과 같은 물성 개선이 가능할 수 있으며, 나아가 수지의 점도 안정성까지 향상시킬 수 있고, 가소화 효울이나 기계적 물성 또한 기존 제품 대비 그 수준이 상회하는 정도로 유지 및 개선할 수 있다.
다만, 바람직하게는 상기 저급알킬, 즉 탄소수가 5 내지 7의 알킬인 경우, 바람직하게는 탄소수가 5 또는 6일 수 있고, 탄소수가 5인 알킬의 경우, n-펜틸, 또는 이소펜틸이 각각 적용될 수 있고 탄소수가 6인 알킬의 경우, n-헥실 또는 이소헥실이 각각 적용될 수 있지만, 효과의 상승 정도를 고려하건대, 이들의 혼합 알코올로부터 유래되는 혼합물이 적용되는 경우가 보다 바람직할 수 있다.
또한, 상기 가소제 조성물에 저급알킬이 적용되는 경우에는, 전술한 것과 같이 하나의 단독 알코올로부터 단독 알킬기가 생성물로 적용되는 것 대비 혼합 알코올로부터 유래되어 혼합 생성물이 적용되는 것이 바람직할 수 있는데, 이 때 생성된 3종 이상의 테레프탈레이트계 조성물을 기준으로 보면, 분지화도가 2.0 이하인 것이 바람직할 수 있고, 더 바람직하게는 1.5 이하일 수 있다.
여기서 '분지화도'란 조성물 내 포함된 물질에 결합된 알킬기들이 몇 개의 분지 탄소를 갖는지를 의미하는 것일 수 있고, 해당 물질의 중량비에 따라 그 정도가 결정될 수 있다. 예컨대, 알코올 혼합물에 n-헥실 알코올이 60 중량%, 메틸펜틸 알코올이 30 중량%, 그리고 에틸부틸 알코올이 10 중량% 포함되어 있다고 가정하면, 상기 각 알코올의 분지 탄소수는 각각 0, 1 및 2인바, 분지화도는 [(60x0)+(30x1)+(10x2)] / 100으로 계산되어 0.5인 것일 수 있으며, 이 분지화도는 동일 탄소수를 기준으로 산정된다.
바람직하게, 상기 혼합 알코올로부터 유래되는 경우 테레프탈레이트에 적용되는 알킬기는 탄소수가 5인 경우, n-펜틸, 2-메틸부틸 및 3-메틸부틸 등을 포함하며, 탄소수가 6인 경우, n-헥실, 2-메틸펜틸, 2-에틸부틸 및 2,4-디메틸부틸 등 전술한 이성질체들을 포함할 수 있다.
이와 같이, 혼합 알코올에 의한 혼합 알킬기가 테레프탈레이트계 가소제 조성물에 구현됨과 동시에, 전술한 분지화도를 만족한다면, 가소화 효율, 이행성, 가열감량 등의 개선 효과를 기대할 수 있다.
본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 조성물 총 중량 대비 수분 함량이 중량 기준으로 100 ppm 이하일 수 있고, 바람직하게는 70 ppm 이하, 더 바람직하게는 50 ppm 이하일 수 있다. 가소제 내 수분 함량이 높을 경우, 주변의 환경적인 요인에 의해 가소제가 변질될 가능성이 크고, 가공시 문제를 일으킬 가능성이 크기 때문에, 가소제 내 수분 함량은 작을수록 우수하다.
보다 구체적으로, 가소제 조성물에 포함되는 테레프탈레이트를 저급알킬 테레프탈레이트, 탄소수 상이 타입의 테레프탈레이트 및 고급알킬 테레프탈레이트 3종으로 본다면, 가소제 조성물 총 중량 대비 각각이 0.5 내지 50 중량%, 3.0 내지 70 중량% 및 0.5 내지 95 중량%로 포함될 수 있으며, 이들 함량은 상기 3 종 테레프탈레이트의 총합을 100 중량%로 보았을 때의 값이며, 상기 가소제 조성물에 다른 물질이 포함된 경우까지 고려된 함량은 아니다.
상기와 같은 함량을 갖는 경우에는 전술한 것과 같이, 탄소수 상이 타입의 테레프탈레이트에 결합되는 알킬기 탄소수 차이가 3 이하인 것으로부터 구현될 수 있는 효과가 보다 바람직하게 구현될 수 있고, 그 효과의 재현성 또한 뛰어날 수 있다.
나아가, 이러한 효과의 최적화 측면에서, 상기 3종의 테레프탈레이트의 함량은 바람직하게 0.5 내지 30 중량%, 10 내지 60 중량% 및 35 내지 90 중량%일 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물을 제조하는 방법은 당업계에 알려진 방법으로서, 전술한 가소제 조성물을 제조할 수 있는 경우라면 특별히 제한되지 않고 적용될 수 있다.
특히 상기 가소제 조성물의 경우 3 종의 테레프탈레이트를 포함하는 것이 기본으로서, 에스터화 반응이 이용될 수 있고, 직접 에스터화 반응뿐만 아니라 트랜스 에스터화 반응이 모두 적용될 수 있다.
일례로, 상기 직접 에스터화 반응은, 테레프탈산과 2 종 이상의 알코올을 투입한 다음 촉매를 첨가하고 질소분위기 하에서 반응시키는 단계; 미반응 알코올을 제거하고, 미반응 산을 중화시키는 단계; 및 감압증류에 의해 탈수 및 여과하는 단계;로 수행될 수 있다.
상기 알코올은, n-펜탄올, 이소펜탄올, n-헥산올, 이소헥산올, n-헵탄올 및 이소헵탄올로 이루어진 군에서 선택된 탄소수가 동일한 단독 알코올 또는 혼합 알코올일 수 있고, 혼합 알코올인 경우 구조 이성질체 관계의 알코올들의 혼합물일 수 있으며, 이 경우 혼합 알코올의 분지화도는 전술한 것과 같이 2.0 이하, 바람직하게는 1.5 이하일 수 있다. 그리고, 다른 1 종으로는 2-에틸헥실 알코올이 적용될 수 있다. 상기 알코올은, 테레프탈산 100 몰% 기준으로 150 내지 500 몰%, 200 내지 400 몰%, 200 내지 350 몰%, 250 내지 400 몰%, 혹은 270 내지 330 몰% 범위 내로 사용될 수 있다.
상기 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매, 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염, 헤테로폴리산 등의 금속 산화물, 천연/합성 제올라이트, 양이온 및 음이온 교환수지, 테트라알킬 티타네이트(tetra alkyl titanate) 및 그 폴리머 등의 유기금속 중에서 선택된 1종 이상일 수 있다. 구체적인 예로, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 내지 5 중량%, 0.01 내지 3 중량%, 1 내지 5 중량% 혹은 2 내지 4 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 내지 200 중량%, 5 내지 100 중량%, 20 내지 200 중량%, 혹은 20 내지 150 중량% 범위 내일 수 있다.
이때 상기 반응 온도는 180 내지 280℃, 200 내지 250℃, 혹은 210 내지 230℃ 범위 내일 수 있다.
다른 일례로, 상기 트랜스 에스터화 반응은 디(2-에틸헥실) 테레프탈레이트와, n-펜탄올, 이소펜탄올, n-헥산올, 이소헥산올, n-헵탄올 및 이소헵탄올로 이루어진 군에서 선택된 1종 이상의 탄소수가 동일한 알코올, 즉 단독 알코올 또는 구조 이성질체의 혼합물인 혼합 알코올이 반응하는 트랜스 에스터화 반응;을 통하여 테레프탈레이트 화합물을 제조할 수 있다. 여기서 테레프탈레이트와 알코올이 갖는 알킬기는 서로 교차되어도 무방하다.
본 발명에서 사용되는 "트랜스 에스터화 반응"은 하기 반응식 1과 같이 알코올과 에스터가 반응하여 이하 반응식 1에서 나타나듯이 에스터의 R"가 알코올의 R'와 서로 상호교환되는 반응을 의미한다:
[반응식 1]
Figure PCTKR2019010743-appb-I000001
본 발명의 일 실시예에 따르면, 상기 트랜스 에스터화 반응이 이루어지면 알코올의 알콕사이드가 에스터계 화합물에 존재하는 두 개의 에스터(RCOOR")기의 탄소를 공격할 경우; 에스터계 화합물에 존재하는 한 개의 에스터(RCOOR")기의 탄소를 공격할 경우; 반응이 이루어지지 않은 미반응인 경우;와 같이, 세 가지의 경우에 수에 의해서 3 종의 에스터 조성물이 생성될 수 있다. 이 때 투입되는 알코올이 2종 이상인 경우에는 확률적으로 발생되는 조성물의 모양과 개수를 예측할 수 있으며, 이는 최종 가소제 조성물의 품질을 고려하여 트랜스 반응에 투입되는 알코올의 탄소수, 종류 및 조성비를 설계하여 선택적으로 제조할 수 있다.
또한, 상기 트랜스 에스터화 반응은 산-알코올간 에스터화 반응과 비교하여 폐수 문제가 야기되지 않는 장점이 있으며, 무촉매하에서 진행될 수 있으므로, 산촉매 사용시의 문제점을 해결할 수 있다.
상기 트랜스 에스터화 반응에 의해 제조된 혼합물은 알코올의 첨가량에 따라 상기 혼합물의 조성 비율을 제어할 수 있다. 상기 알코올의 첨가량은 테레프탈레이트 화합물 100 중량부에 대해 0.1 내지 89.9 중량부, 구체적으로는 3 내지 50 중량부, 더욱 구체적으로는 5 내지 40 중량부일 수 있다.
상기 테레프탈레이트는 화합물은 알코올의 첨가량이 많을수록, 트랜스 에스터화 반응에 참여하는 테레프탈레이트의 몰분율(mole fraction)이 커질 것이므로, 상기 혼합물에 있어서 생성물인 두 개의 테레프탈레이트의 함량이 증가할 수 있고, 이에 상응하여 미반응으로 존재하는 테레프탈레이트의 함량은 감소하는 경향을 보일 수 있다.
본 발명의 일 실시예에 따르면, 반응물인 테레프탈레이트와 알코올의 몰비는 일례로 1:0.005 내지 5.0, 1:0.05 내지 2.5, 혹은 1:0.1 내지 1.0이고, 이 범위 내에서는 공정성 및 경제성이 우수할 수 있고, 전술한 효과를 구현할 수 있는 가소제 조성물을 수득하는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 트랜스 에스터화 반응은 120℃ 내지 190℃, 바람직하게는 135℃ 내지 180℃, 더욱 바람직하게는 141℃ 내지 179℃의 반응 온도 하에서 10분 내지 10시간, 바람직하게는 30분 내지 8시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서는 최종 가소제 조성물의 성분비를 효율적으로 제어할 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
상기 트랜스 에스터화 반응은 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 상기 트랜스 에스터화 반응 후 미반응 알코올과 반응 부산물 등을 증류시켜 제거하는 단계를 더 포함할 수 있다. 상기 증류는 일례로 상기 알코올과 반응 부산물의 끊는점 차이를 이용하여 따로 분리하는 2단계 증류일 수 있다. 또 다른 일례로, 상기 증류는 혼합증류일 수 있다. 이 경우 에스터계 가소제 조성물을 원하는 조성비로 비교적 안정적으로 확보할 수 있는 효과가 있다. 상기 혼합증류는 미반응 알코올과 반응 부산물을 동시에 증류하는 것을 의미한다.
본 발명의 다른 일 실시예에 따르면, 전술한 가소제 조성물 및 수지를 포함하는 수지 조성물이 제공된다.
상기 수지는 당 분야에 알려져 있는 수지를 사용할 수 있다. 예를 들면, 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌초산비닐 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 천연고무, 합성고무 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1종 이상의 혼합물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 가소제 조성물은 상기 수지 100 중량부를 기준으로 5 내지 150 중량부, 바람직하게 5 내지 130 중량부, 또는 10 내지 120 중량부로 포함될 수 있다.
일반적으로, 가소제 조성물이 사용되는 수지는 용융 가공 또는 플라스티졸 가공을 통해 수지 제품으로 제조될 수 있으며, 용융 가공 수지와 플라스티졸 가공 수지는 각 중합 방법에 따라 다르게 생산되는 것일 수 있다.
예를 들어, 염화비닐 중합체는 용융 가공에 사용되는 경우 현탁 중합 등으로 제조되어 평균 입경이 큰 고체상의 수지 입자가 사용되며 이러한 염화비닐 중합체는 스트레이트 염화비닐 중합체로 불리우며, 플라스티졸 가공에 사용되는 경우 유화 중합 등으로 제조되어 미세한 수지 입자로서 졸 상태의 수지가 사용되며 이러한 염화비닐 중합체는 페이스트 염화비닐 수지로 불리운다.
이 때, 상기 스트레이트 염화비닐 중합체의 경우, 가소제는 중합체 100 중량부 대비 5 내지 150 중량부로 포함될 수 있고, 5 내지 80 중량부의 범위 내에서 포함되는 것이 바람직하며, 페이스트 염화비닐 중합체의 경우 중합체 100 중량부 대비 5 내지 150 중량부로 포함될 수 있으며, 40 내지 120 중량부의 범위 내에서 포함되는 것이 바람직하다.
상기 수지 조성물은 충진제를 더 포함할 수 있다. 상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다.
상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다.
또한, 상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다. 상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.
상기 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 수지 조성물은 전술한 것과 같이 용융 가공 및 플라스티졸 가공에 모두 적용될 수 있고, 예를 들어 용융 가공은 카렌더링 가공, 압출 가공, 또는 사출 가공이 적용될 수 있고, 플라스티졸 가공은 코팅 가공 등이 적용될 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
교반기, 응축기 및 데칸터가 설치된 반응기에 디(2-에틸헥실)테레프탈레이트(GL300, ㈜LG화학) 2000g 및 n-펜틸 알코올 340g (DEHTP 100 중량부를 기준으로 17 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(n-펜틸) 테레프탈레이트(DnPTP), (n-펜틸)(2-에틸헥실)테레프탈레이트(nPEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 6.4 중량%, 38.3 중량% 및 55.3 중량%로 포함하는 조성물을 얻었다.
실시예 2
교반기, 응축기 및 데칸터가 설치된 반응기에 디(2-에틸헥실)테레프탈레이트(GL300, ㈜LG화학) 2000g 및 2-메틸부틸 알코올 340g (DEHTP 100 중량부를 기준으로 17 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(2-메틸부틸) 테레프탈레이트(DMBTP), (2-메틸부틸)(2-에틸헥실)테레프탈레이트(MBEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 6.4 중량%, 38.2 중량% 및 55.4 중량%로 포함하는 조성물을 얻었다.
실시예 3
상기 실시예 1에서 제조한 조성물과 실시예 2에서 제조한 조성물을 70:30의 중량비로 혼합하여 조성물을 제조하였다.
실시예 4
교반기, 응축기 및 데칸터가 설치된 반응기에 디(2-에틸헥실)테레프탈레이트(GL300, ㈜LG화학) 2000g 및 n-펜틸 알코올 220g (DEHTP 100 중량부를 기준으로 11 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(n-펜틸) 테레프탈레이트(DnPTP), (n-펜틸)(2-에틸헥실)테레프탈레이트(nPEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 2.4 중량%, 26.9 중량% 및 70.7 중량%로 포함하는 조성물을 얻었다.
실시예 5
상기 실시예 4에서 n-펜틸 알코올 대신 2-메틸부틸 알코올을 220g 사용한 것을 제외하고는 실시예 4와 동일하게 제조하여 디(2-메틸부틸) 테레프탈레이트(DMBTP), (2-메틸부틸)(2-에틸헥실)테레프탈레이트(MBEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 2.1 중량%, 25.8 중량% 및 72.1 중량%로 포함하는 조성물을 얻었다.
실시예 6
교반기, 응축기 및 데칸터가 설치된 반응기에 디(2-에틸헥실)테레프탈레이트(GL300, ㈜LG화학) 및 n-헥실 알코올 340g (DEHTP 100 중량부 기준으로 17 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(n-헥실) 테레프탈레이트(DHxTP), (n-헥실)(2-에틸헥실)테레프탈레이트(HxEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 6.8 중량%, 38.8 중량% 및 54.4 중량%로 포함하는 조성물을 얻었다.
실시예 7
교반기, 응축기 및 데칸터가 설치된 반응기에 디(2-에틸헥실)테레프탈레이트(GL300, ㈜LG화학) 및 n-헥실 알코올 340g (DEHTP 100 중량부 기준으로 11 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(n-헥실) 테레프탈레이트(DHxTP), (n-헥실)(2-에틸헥실)테레프탈레이트(HxEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 1.8 중량%, 25.0 중량% 및 73.2 중량%로 포함하는 조성물을 얻었다.
실시예 8
교반기, 응축기 및 데칸터가 설치된 반응기에 디(2-에틸헥실)테레프탈레이트(GL300, ㈜LG화학) 2000g 및 n-헵틸 알코올 360g (DEHTP 100 중량부를 기준으로 18 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(n-헵틸) 테레프탈레이트(DHpTP), (n-헵틸)(2-에틸헥실)테레프탈레이트(HpEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 7.9 중량%, 39.9 중량% 및 52.2 중량%로 포함하는 조성물을 얻었다.
실시예 9
교반기, 응축기 및 데칸터가 설치된 반응기에 디(2-에틸헥실)테레프탈레이트(GL300, ㈜LG화학) 2000g 및 n-헵틸 알코올 360g (DEHTP 100 중량부를 기준으로 11 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(n-헵틸) 테레프탈레이트(DHpTP), (n-헵틸)(2-에틸헥실)테레프탈레이트(HpEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 1.5 중량%, 23.2 중량% 및 75.3 중량%로 포함하는 조성물을 얻었다.
비교예 1
LG화학사 제품으로서 디(2-에틸헥실) 테레프탈레이트(DEHTP, LGflex GL300)를 가소제 조성물로 하였다.
비교예 2
LG화학사 제품으로서 디부틸 테레프탈레이트(DBTP), 부틸(2-에틸헥실)테레프탈레이트(BEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 6.4 중량%, 38.8 중량% 및 54.9 중량%로 포함하는 조성물(LGflex GL500)을 가소제 조성물로 하였다.
비교예 3
LG화학사 제품으로서 디부틸 테레프탈레이트(DBTP), 부틸(2-에틸헥실)테레프탈레이트(BEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 4.1 중량%, 25.7 중량% 및 70.2 중량%로 포함하는 조성물(LGflex GL520)을 가소제 조성물로 하였다.
비교예 4
교반기, 응축기 및 데칸터가 설치된 반응기에 디이소노닐 테레프탈레이트(DINTP) 2000g과, n-펜틸 알코올 360g (DINTP 100 중량부를 기준으로 18 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(n-펜틸) 테레프탈레이트(DPTP), (n-펜틸)(이소노닐)테레프탈레이트(PINTP) 및 디이소노닐 테레프탈레이트(DINTP)를 각각 7.1 중량%, 40.1 중량% 및 52.8 중량%로 포함하는 조성물을 얻었다.
비교예 5
교반기, 응축기 및 데칸터가 설치된 반응기에 디이소노닐 테레프탈레이트(DINTP) 2000g과, n-펜틸 알코올 220g (DINTP 100 중량부를 기준으로 11 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(n-펜틸) 테레프탈레이트(DPTP), (n-펜틸)(이소노닐)테레프탈레이트(PINTP) 및 디이소노닐 테레프탈레이트(DINTP)를 각각 1.6 중량%, 22.7 중량% 및 75.7 중량%로 포함하는 조성물을 얻었다.
실험예 1: 경질 시트 성능 평가
실시예 및 비교예의 가소제를 사용하여, ASTM D638에 따라 다음과 같은 처방 및 제작 조건으로 시편을 제작하였다.
(1) 처방: 스트레이트 염화비닐 중합체(LS100S) 100 중량부, 가소제 30 중량부 및 안정제(BZ-153T) 3 중량부
(2) 배합: 98℃에서 700 rpm으로 믹싱
(3) 시편 제작: 롤 밀(Roll mill)로 160℃에서 4 분, 프레스(press)로 180℃에서 2.5분(저압) 및 2분(고압) 작업하여 1T 및 3T 시트를 제작
(4) 평가 항목
1) 경도(hardness): ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "A" 및 “D”)를 3T 시편으로 10초 동안 측정하였다. 수치가 작을수록 가소화 효율이 우수한 것으로 평가된다.
2) 인장강도(tensile strength): ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
3) 신율(elongation rate) 측정: ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
4) 이행 손실(migration loss) 측정: KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻었고, 1T 시편 양면에 Glass Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
5) 가열 감량(volatile loss) 측정: 상기 제작된 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (80℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 x 100으로 계산하였다.
6) 흡수 속도 측정
흡수속도는 77℃, 60rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 에스터 화합물이 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데 까지 소요된 시간(mm:ss)을 측정하여 평가하였다.
(5) 평가 결과
상기 항목의 평가 결과를 하기 표 1에 나타내었다.
경도(Shore A) 경도(Shore D) 이행손실(%) 가열감량(%) 인장강도(kgf/cm2) 신율(%)
실시예 1 97.5 59.6 1.65 0.98 268.3 308.7
실시예 2 97.8 60.0 1.78 1.23 267.9 293.1
실시예 3 97.6 59.6 1.67 0.99 268.0 305.7
실시예 4 97.8 59.8 1.88 0.86 268.9 310.5
실시예 5 98.0 59.6 1.69 0.90 268.2 305.4
실시예 6 98.2 59.6 2.12 0.91 265.6 301.2
실시예 7 98.4 59.7 2.10 0.80 268.4 305.2
실시예 8 98.6 59.9 2.25 0.80 266.2 294.1
실시예 9 98.7 59.9 2.37 0.79 266.7 298.6
비교예 1 99.8 61.6 3.81 0.78 264.7 296.9
비교예 2 97.4 59.4 3.12 2.54 248.5 287.7
비교예 3 98.2 59.8 3.54 2.01 250.3 281.4
비교예 4 99.6 61.5 4.62 1.16 257.0 274.3
비교예 5 99.9 61.9 4.41 0.80 253.2 270.2
상기 표 1을 참조하면, 실시예 1 내지 9의 경우, 비교예 1 내지 5에 비하여 전체적인 물성이 균형잡혀 있음을 확인할 수 있다. 기존 제품으로서 비교예 1의 GL300인 디(2-에틸헥실) 테레프탈레이트의 경우 가소화 효율이 좋지 못하고 이행성이 열악하다는 문제가 있고, GL500의 비교예 2 및 GL520의 비교예 3의 경우 가소화 효율은 개선되나 신율과 인장강도가 열악하다는 문제가 있으며, 저급알킬 및 고급알킬 탄소수를 각각 5 및 9로 적용한 비교예 4 및 5는 비교예 1 대비 가소화 효율의 개선은 전혀 없고 오히려 이행성과 신율 및 인장강도가 더 악화된 결과를 나타내고 있음을 알 수 있다. 그러나, 실시예 1 내지 9의 경우 이행성에서 상당한 효과를 보였고, 신율과 인장강도가 크게 개선되었으며, 가소화 효율 역시 동등 수준을 유지하고 있음을 확인할 수 있다.
이를 통해서, 기존 제품 대비 우수한 물성의 열화 없이 열악한 물성으로서 이행성과 기계적 물성을 향상시킬 수 있는 대체 물질이 될 수 있다는 점을 확인하였다.
실험예 2: 연질 시트 성능 평가
실시예 및 비교예의 가소제를 사용하여, ASTM D638에 따라 다음과 같은 처방 및 제작 조건으로 시편을 제작하였다.
(1) 처방: 스트레이트 염화비닐 중합체(LS100S) 100 중량부, 가소제 60 중량부 및 안정제(BZ-153T) 3 중량부
(2) 배합: 98℃에서 700 rpm으로 믹싱
(3) 시편 제작: 롤 밀(Roll mill)로 160℃에서 4 분, 프레스(press)로 180℃에서 2.5분(저압) 및 2분(고압) 작업하여 1T 및 3T 시트를 제작
(4) 평가 항목
1) 경도(가소화 효율)(hardness): ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "A" 및 “D”)를 3T 시편으로 10초 동안 측정하였다. 수치가 작을수록 가소화 효율이 우수한 것으로 평가된다.
2) 인장강도(tensile strength): ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
3) 신율(elongation rate) 측정: ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
4) 이행 손실(migration loss) 측정: 1T 시편 양면에 Glass Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
5) 가열 감량(volatile loss) 측정: 상기 제작된 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (80℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 x 100으로 계산하였다.
6) 스트레스 테스트(내스트레스성): 두께 2 ㎜인 시편을 구부린 상태로 23℃에서 168 시간 동안 방치한 후, 이행 정도(배어나오는 정도)를 관찰하고, 그 결과를 수치로 기재하였으며, 0에 가까울 수록 우수한 특성을 나타내었다.
(5) 평가 결과
상기 항목의 평가 결과를 하기 표 2에 나타내었다.
경도(Shore A) 경도(Shore D) 이행손실(%) 가열감량(%) 인장강도kgf/cm2 신율(%) 내스트레스성
실시예 1 78.1 33.0 5.33 0.92 194.1 359.9 0
실시예 2 79.0 33.5 5.80 1.48 189.0 349.8 0
실시예 3 78.3 33.1 5.40 0.98 194.2 356.2 0
실시예 4 79.0 33.4 5.23 0.76 198.6 346.7 0
실시예 5 79.4 33.5 5.25 0.84 192.5 348.2 0
실시예 6 79.3 33.4 5.87 0.83 191.9 349.3 0.5
실시예 7 79.8 33.6 5.64 0.78 196.4 345.7 0.5
실시예 8 80.0 33.9 6.07 0.71 194.7 339.4 1.0
실시예 9 80.6 34.2 5.89 0.65 199.2 340.5 1.5
비교예 1 81.0 34.7 8.29 0.76 190.7 319.7 3
비교예 2 77.9 32.3 6.57 2.55 178.0 325.2 0
비교예 3 79.0 33.5 6.89 2.20 180.3 324.5 0
비교예 4 82.0 35.8 7.68 0.53 182.3 324.9 2.5
비교예 5 83.3 36.7 7.89 0.50 184.5 321.4 3
상기 표 2를 참조하면, 실시예 1 내지 9의 경우, 비교예 1 내지 5에 비하여 전체적인 물성이 균형잡혀 있음을 확인할 수 있다. 기존 제품으로서 비교예 1의 GL300인 디(2-에틸헥실) 테레프탈레이트의 경우 가소화 효율이 좋지 못하고 이행성이 열악하다는 문제가 있고, GL500의 비교예 2 및 GL520의 비교예 3의 경우 가소화 효율은 개선되나 신율과 인장강도가 열악하다는 문제가 있으며, 저급알킬 및 고급알킬 탄소수를 각각 5 및 9로 적용한 비교예 4 및 5는 비교예 1 대비 가소화 효율의 개선은 전혀 없고 오히려 이행성과 신율 및 인장강도에서 더 악화된 결과를 나타내며, 내스트레스성 또한 기존 제품 대비 전혀 개선이 없다는 점을 알 수 있다. 그러나, 실시예 1 내지 9의 경우 이행성에서 상당한 효과를 보였고, 신율과 인장강도가 크게 개선되었으며, 내스트레스성 또한 개선이 확인되고, 가소화 효율 역시 동등 수준을 유지하고 있음을 확인할 수 있다.
이를 통해서, 기존 제품 대비 우수한 물성의 열화 없이 열악한 물성으로서 이행성과 기계적 물성, 그리고 내스트레스성을 향상시킬 수 있는 대체 물질이 될 수 있다는 점을 확인하였다.
실험예 3: 장갑용 플라스티졸 성능 평가
실시예 및 비교예의 가소제를 사용하여, ASTM D638에 따라 다음과 같은 처방 및 제작 조건으로 시편을 제작하였다.
(1) 처방: 페이스트 염화비닐 중합체(LS170G) 100 중량부, 가소제 75 중량부, 점도저하제(YKD80) 20 중량부 및 안정제(CZ400) 1 중량부
(2) 배합: 1500 rpm에서 20분, 1000 rpm에서 20분 믹싱
(3) 시편 제작: 배합된 플라스티졸을 0.3 mm 두께로 펼치고, 오븐을 이용하여 230℃에서 2분간 경화시켜 시편을 제작
(4) 평가 항목
1) 점도: 브룩필드(Brookfield) 점도로서, Brookfield (LV type) 점도계를 이용하여 측정되며, 스핀들(spinde)로는 #62를 사용하였으며, 측정 속도는 6 rpm으로, 측정온도는 25℃및 60℃로 하여 측정하였다.
2) 인장강도(tensile strength): ASTM D412 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 100 ㎜/min으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
3) 신율(elongation rate) 측정: ASTM D412 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 100 ㎜/min으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
4) 이행 손실(migration loss) 측정: 시편 양면에 Glass Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시편을 열풍 순환식 오븐(60℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
(5) 평가 결과
상기 항목의 평가 결과를 하기 표 3에 나타내었다.
25℃ 점도 (cP)1 hr 25℃ 점도 (cP)1day 25℃ 점도 (cP)변화율(%) 60℃ 점도 (cP)1 hr 60℃ 점도 (cP)1day 60℃ 점도 (cP)변화율(%) 이행손실(%) 인장강도(MPa) 신율(%)
실시예 1 235 250 6.4 160 205 28.1 9.36 13.2 364.8
실시예 2 240 265 10.4 155 215 38.7 9.13 13.9 370.3
실시예 3 235 255 8.5 155 210 35.5 9.21 13.5 368.9
실시예 4 205 215 4.9 150 175 16.7 9.53 13.3 363.5
실시예 5 215 235 9.3 155 185 19.4 9.76 13.5 365.2
실시예 6 210 245 16.7 135 170 25.9 10.91 12.5 360.3
실시예 7 220 255 15.9 140 170 21.4 10.90 12.8 362.8
실시예 8 225 260 15.6 135 160 18.5 10.96 13.4 368.0
실시예 9 230 270 17.4 125 160 28.0 10.84 13.5 359.4
비교예 1 225 300 33.3 120 190 58.3 11.34 11.9 320.5
비교예 2 190 240 26.3 130 290 123.0 8.23 11.0 335.5
비교예 3 200 255 27.5 110 190 72.7 10.91 11.6 340.3
비교예 4 225 290 28.9 105 180 71.4 10.96 12.2 348.0
비교예 5 240 300 25.0 110 200 81.8 11.56 12.3 350.3
상기 표 3을 참조하면, 상기 실시예 1 내지 9의 경우 점도의 경시 변화가 상온 및 고온에서 모두 상당한 안정성을 띄고 있음을 확인할 수 있다. 반면에, 비교예 1 내지 5의 경우, 기존 제품인 GL300인 비교예 1의 경우 실시예들 대비 2배 이상의 경시 변화 정도를 보여 안정성이 다소 떨어짐을 확인할 수 있었으며, 비교예 1의 개선 제품인 비교예 2 내지 5의 경우에도 점도의 경시 변화는 상당히 열악한 수준임을 확인할 수 있다.
또한, 인장강도와 신율의 경우 비교예 1 내지 5는 실시예 1 내지 9 대비하여 상당히 열악하다는 것을 확인할 수 있고, 특히 신율은 10% 이상 저조한 물성을 나타내고 있다는 것을 확인할 수 있다.
즉, 상기 실험예 1 내지 3을 살펴보면, 본 발명의 일 실시예에 따른 가소제 조성물로서 탄소수 동일 타입의 테레프탈레이트와 탄소수 상이 타입의 테레프탈레이트를 포함하되, 탄소수 상이 타입 테레프탈레이트의 2개의 에스터기에 결합된 알킬기가 각각 탄소수 5 내지 7 및 탄소수 8인 것을 적용하는 경우, 그렇지 않은 경우 대비하여 상당히 우수한 효과가 달성될 수 있다는 점을 알 수 있고, 상기 알킬기의 탄소수 차이가 3 이하인 것과, 이를 초과하는 4인 것과의 차이는 상당히 유의한 차이임을 확인할 수 있다.

Claims (10)

  1. 테레프탈레이트로서 2 개의 에스터기에 결합된 알킬기의 탄소수가 서로 동일한 탄소수 동일 타입;을 2종 이상 포함하고,
    테레프탈레이트로서 2 개의 에스터기에 결합된 알킬기의 탄소수가 서로 다른 탄소수 상이 타입;을 1종 이상 포함하며,
    상기 탄소수 상이 타입은 고급알킬 및 저급알킬을 모두 포함하며,
    상기 고급알킬은 탄소수가 8 이하인 것에서 선택되고, 저급알킬은 탄소수가 5 이상인 것에서 선택되는 것인 가소제 조성물.
  2. 제1항에 있어서,
    상기 탄소수 동일 타입은 1종의 고급알킬 테레프탈레이트 및 1종 이상의 저급알킬 테레프탈레이트를 포함하는 것인 가소제 조성물.
  3. 제1항에 있어서,
    상기 고급알킬 및 저급알킬의 탄소수 차이는 3 이하인 것인 가소제 조성물.
  4. 제1항에 있어서,
    상기 고급알킬은 탄소수가 6 내지 8에서 선택된 알킬기이고,
    상기 저급알킬은 탄소수가 5 내지 7에서 선택된 알킬기인 것인 가소제 조성물.
  5. 제1항에 있어서,
    상기 탄소수 상이 타입은, 고급알킬의 탄소수가 8인 것을 포함하는 것인 가소제 조성물.
  6. 제1항에 있어서,
    상기 탄소수 상이 타입은, 고급알킬의 탄소수가 8인 것; 및 고급알킬의 탄소수가 6 또는 7인 것;을 포함하는 것인 가소제 조성물.
  7. 제1항에 있어서,
    상기 가소제 조성물은 조성물 내 탄소수가 동일한 알킬기 전체를 기준으로 한 분지화도가 2.0 이하인 것인 가소제 조성물.
  8. 제1항에 있어서,
    상기 탄소수 동일 타입은 디(2-에틸헥실) 테레프탈레이트, 디(n-펜틸) 테레프탈레이트, 디이소펜틸 테레프탈레이트, (n-펜틸)이소펜틸 테레프탈레이트, 디(n-헥실) 테레프탈레이트, 디이소헥실 테레프탈레이트, (n-헥실)이소헥실 테레프탈레이트, 디(n-헵틸) 테레프탈레이트, 디이소헵틸 테레프탈레이트 및 (n-헵틸)이소헵틸 테레프탈레이트로 이루어진 군에서 선택된 2 종 이상을 포함하는 것인 가소제 조성물.
  9. 제1항에 있어서,
    상기 탄소수 상이 타입은 (n-펜틸)(2-에틸헥실) 테레프탈레이트, (이소펜틸)(2-에틸헥실) 테레프탈레이트, (n-헥실)(2-에틸헥실) 테레프탈레이트, 이소헥실(2-에틸헥실) 테레프탈레이트, (n-헵틸)(2-에틸헥실) 테레프탈레이트 및 이소헵틸(2-에틸헥실) 테레프탈레이트로 이루어진 군에서 선택된 1 종 이상을 포함하는 것인 가소제 조성물.
  10. 제2항에 있어서,
    가소제 조성물 총 중량에 대하여,
    저급알킬 테레프탈레이트 0.5 내지 50 중량%;
    탄소수 상이 타입의 테레프탈레이트 3.0 내지 70 중량%; 및
    고급알킬 테레프탈레이트 0.5 내지 95 중량%;로 포함되는 것인 가소제 조성물.
PCT/KR2019/010743 2018-08-27 2019-08-23 가소제 조성물 및 이를 포함하는 수지 조성물 WO2020045901A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2020560445A JP7095216B2 (ja) 2018-08-27 2019-08-23 可塑剤組成物及びこれを含む樹脂組成物
CA3097991A CA3097991A1 (en) 2018-08-27 2019-08-23 Plasticizer composition and resin composition comprising the same
BR112020023157-6A BR112020023157B1 (pt) 2018-08-27 2019-08-23 Composição plastificante compreendendo tereftalatos
EP19853680.7A EP3845589B1 (en) 2018-08-27 2019-08-23 Plasticizer composition and resin composition including the same
US17/052,156 US12122895B2 (en) 2018-08-27 2019-08-23 Plasticizer composition and resin composition including the same
CN201980028635.3A CN112041384B (zh) 2018-08-27 2019-08-23 增塑剂组合物和包含该增塑剂组合物的树脂组合物
ES19853680T ES2984087T3 (es) 2018-08-27 2019-08-23 Composición plastificante y composición de resina que incluye la misma
MX2020012129A MX2020012129A (es) 2018-08-27 2019-08-23 Composiciones de plastificante y composicion de resina que la incluye.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0100356 2018-08-27
KR20180100356 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020045901A1 true WO2020045901A1 (ko) 2020-03-05

Family

ID=69644564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010743 WO2020045901A1 (ko) 2018-08-27 2019-08-23 가소제 조성물 및 이를 포함하는 수지 조성물

Country Status (10)

Country Link
US (1) US12122895B2 (ko)
EP (1) EP3845589B1 (ko)
JP (1) JP7095216B2 (ko)
KR (1) KR102195328B1 (ko)
CN (1) CN112041384B (ko)
CA (1) CA3097991A1 (ko)
ES (1) ES2984087T3 (ko)
MX (1) MX2020012129A (ko)
TW (1) TWI722549B (ko)
WO (1) WO2020045901A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253462A4 (en) * 2020-11-24 2024-05-22 Lg Chem, Ltd. PLASTICIZER COMPOSITION BASED ON DIHEXYL BENZENE-DICARBOXYLATE AND RESIN COMPOSITION COMPRISING SAME

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023075475A1 (ko) * 2021-10-29 2023-05-04 주식회사 엘지화학 아코니테이트계 가소제 조성물 및 이를 포함하는 수지 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140212666A1 (en) * 2013-01-28 2014-07-31 Exxonmobil Chemical Patents Inc. Alkyl Aromatic Hydroalkylation for the Production of Plasticizers
WO2016055573A1 (en) * 2014-10-09 2016-04-14 Basf Se Plasticizer composition which comprises cycloalkyl esters of saturated dicarboxylic acids and 1,2-cyclohexanedicarboxylic esters
KR20160130363A (ko) * 2015-02-12 2016-11-11 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR20180028035A (ko) * 2016-09-07 2018-03-15 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물
KR20180092888A (ko) * 2017-02-10 2018-08-20 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868194B1 (ko) 2007-05-11 2008-11-10 주식회사 엘지화학 고분자 수지용 테레프탈산 에스테르 조성물 및 그의 제조방법
JP2011190320A (ja) * 2010-03-12 2011-09-29 Adeka Corp 電線被覆用塩化ビニル系樹脂組成物
US9534104B2 (en) 2013-01-28 2017-01-03 Exxonmobil Chemical Patents Inc. Plasticizer blends and use thereof
US8829093B2 (en) 2013-01-28 2014-09-09 Exxonmobil Chemical Patents Inc. Alkyl aromatic hydroalkylation for the production of plastisizers
US9464166B2 (en) 2013-01-28 2016-10-11 Exxonmobil Chemical Patents Inc. Production and use of 3,4' and 4,4'-dimethylbiphenyl isomers
US20150080546A1 (en) 2013-01-28 2015-03-19 Exxonmobil Chemical Patents Inc. Production and Use of 3,4' and 4,4'-Dimethylbiphenyl Isomers
PL2821431T3 (pl) * 2013-05-08 2017-02-28 Lg Chem, Ltd. Kompozycja na bazie estrów, sposób jej wytwarzania i kompozycja żywicy zawierająca kompozycję estrową
CN104284933B (zh) * 2013-05-08 2016-02-10 Lg化学株式会社 酯类增塑剂的制备方法以及通过该方法制备的酯类增塑剂
EP2927210B1 (en) * 2014-02-07 2020-09-23 LG Chem, Ltd. Plasticizers, resin composition, and method for manufacturing plasticizers and resin composition
LT3059221T (lt) 2015-02-18 2018-01-10 Evonik Degussa Gmbh Pentil-nonilo tereftalatai
KR101939159B1 (ko) * 2015-05-14 2019-04-10 주식회사 엘지화학 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
EP3112409A1 (en) 2015-06-30 2017-01-04 Scg Chemicals Co. Ltd. Plasticizer composition
KR101793383B1 (ko) * 2015-07-24 2017-11-20 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
CN107428992B (zh) * 2015-07-24 2020-02-07 Lg化学株式会社 增塑剂组合物、树脂组合物及其制备方法
RU2633963C2 (ru) 2015-12-29 2017-10-20 Публичное акционерное общество "СИБУР Холдинг" Композиция пластификатора для поливинилхлорида, пластизоль и пластификат на ее основе
KR101731366B1 (ko) 2016-09-20 2017-04-28 애경유화주식회사 복합 가소제 조성물, 이의 제조방법, 및 이를 이용한 고분자 수지 조성물
KR102236923B1 (ko) 2017-12-04 2021-04-07 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물
KR102236924B1 (ko) 2017-12-04 2021-04-07 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140212666A1 (en) * 2013-01-28 2014-07-31 Exxonmobil Chemical Patents Inc. Alkyl Aromatic Hydroalkylation for the Production of Plasticizers
WO2016055573A1 (en) * 2014-10-09 2016-04-14 Basf Se Plasticizer composition which comprises cycloalkyl esters of saturated dicarboxylic acids and 1,2-cyclohexanedicarboxylic esters
KR20160130363A (ko) * 2015-02-12 2016-11-11 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR20180028035A (ko) * 2016-09-07 2018-03-15 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물
KR20180092888A (ko) * 2017-02-10 2018-08-20 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3845589A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253462A4 (en) * 2020-11-24 2024-05-22 Lg Chem, Ltd. PLASTICIZER COMPOSITION BASED ON DIHEXYL BENZENE-DICARBOXYLATE AND RESIN COMPOSITION COMPRISING SAME

Also Published As

Publication number Publication date
ES2984087T3 (es) 2024-10-28
US12122895B2 (en) 2024-10-22
US20210363324A1 (en) 2021-11-25
EP3845589A1 (en) 2021-07-07
CN112041384B (zh) 2022-06-07
MX2020012129A (es) 2021-01-29
KR102195328B1 (ko) 2020-12-28
CN112041384A (zh) 2020-12-04
JP2021520436A (ja) 2021-08-19
JP7095216B2 (ja) 2022-07-05
TW202024018A (zh) 2020-07-01
EP3845589A4 (en) 2021-09-29
KR20200024108A (ko) 2020-03-06
CA3097991A1 (en) 2020-03-05
EP3845589B1 (en) 2024-05-01
TWI722549B (zh) 2021-03-21
BR112020023157A2 (pt) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222500A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2016129876A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019240418A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020045901A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017018740A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019074300A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019240409A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2023075472A1 (ko) 프로판 트리카복실레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022114744A1 (ko) 이소프탈레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021145643A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2022270910A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022270911A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3097991

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020560445

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020023157

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019853680

Country of ref document: EP

Effective date: 20210329

ENP Entry into the national phase

Ref document number: 112020023157

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201112