WO2020045853A1 - Aqueous electrolyte and pseudocapacitor comprising same - Google Patents
Aqueous electrolyte and pseudocapacitor comprising same Download PDFInfo
- Publication number
- WO2020045853A1 WO2020045853A1 PCT/KR2019/010188 KR2019010188W WO2020045853A1 WO 2020045853 A1 WO2020045853 A1 WO 2020045853A1 KR 2019010188 W KR2019010188 W KR 2019010188W WO 2020045853 A1 WO2020045853 A1 WO 2020045853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aqueous electrolyte
- lithium salt
- concentration
- electrolyte
- pseudo
- Prior art date
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 116
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 50
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 50
- 150000001875 compounds Chemical class 0.000 claims abstract description 39
- 239000003125 aqueous solvent Substances 0.000 claims abstract description 10
- 239000003990 capacitor Substances 0.000 claims description 69
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims description 46
- 229960003237 betaine Drugs 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 229910013553 LiNO Inorganic materials 0.000 claims description 17
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 15
- 150000008040 ionic compounds Chemical class 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- -1 quaternary ammonium alkyl carboxylate compound Chemical class 0.000 claims description 9
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 6
- 239000012498 ultrapure water Substances 0.000 claims description 6
- 229960004592 isopropanol Drugs 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- QEJORCUFWWJJPP-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO.CCCCOCCO QEJORCUFWWJJPP-UHFFFAOYSA-N 0.000 claims 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 45
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 17
- 230000008014 freezing Effects 0.000 description 9
- 238000007710 freezing Methods 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 8
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 6
- DQKGOGJIOHUEGK-UHFFFAOYSA-M hydron;2-hydroxyethyl(trimethyl)azanium;carbonate Chemical compound OC([O-])=O.C[N+](C)(C)CCO DQKGOGJIOHUEGK-UHFFFAOYSA-M 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- 229910012465 LiTi Inorganic materials 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229960002885 histidine Drugs 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- RHVUIKVRBXDJSX-ZLELNMGESA-N (2s)-2-azanyl-3-(1h-imidazol-5-yl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CNC=N1.OC(=O)[C@@H](N)CC1=CNC=N1 RHVUIKVRBXDJSX-ZLELNMGESA-N 0.000 description 1
- 101100317222 Borrelia hermsii vsp3 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- MKLSLVKLQOIPCY-BXRBKJIMSA-N l-alanin-l-alanin Chemical compound C[C@H](N)C(O)=O.C[C@H](N)C(O)=O MKLSLVKLQOIPCY-BXRBKJIMSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to an aqueous electrolyte for a pseudo capacitor comprising a lithium salt and an amphoteric ionic compound of a certain concentration or more, and a pseudo capacitor including the aqueous electrolyte, in order to improve the low temperature stability of the electrolyte.
- next generation energy storage systems that have been recently developed are all based on electrochemical principles, such as lithium (Li) secondary batteries and electrochemical capacitors.
- Secondary batteries are excellent in terms of the amount of energy (energy density) that can be accumulated per unit weight or volume, but there is still much room for improvement in terms of the period of use, charging time, and the amount of energy (output density) that can be used per unit time. .
- the electrochemical capacitor is smaller than the secondary battery in terms of energy density, the electrochemical capacitor is very superior to the secondary battery in terms of use time, charging time, and output density. Therefore, in the case of electrochemical capacitors, research and development are being actively conducted to improve energy density.
- supercapacitors are energy storage power source devices that have inherent performance characteristics in areas that conventional electrolytic capacitors and new secondary batteries do not have.
- These supercapacitors are electrical double layer capacitors (EDLC) using the principle of electrical double layer and pseudocapacitors using the principle of electrochemical faradaic reaction according to the electrochemical storage mechanism. Are distinguished.
- the electric double layer capacitor uses ions of the electrolyte solution to be physically adsorbed and desorbed while forming an electric double layer on the electrode surface.
- the electric double layer capacitor exhibits excellent power density due to the development of pores on the carbon surface used as the electrode.
- charges are accumulated only on the surface of the electrical double layer, there is a disadvantage in that the energy density is lower because the storage capacity is lower than that of the metal oxide-based or electrically conductive polymer-based supercapacitor using the Faraday reaction.
- Metal oxide-based supercapacitors using pseudo capacitors are capacitors using metal oxides having several valences that can be oxidized and reduced.
- the reason why it is called a pseudo capacitor is that the characteristics of the capacitor are generally due to the formation of the electric double layer like the electric double layer capacitor, and the characteristics of the capacitor are shown in some metal oxides instead of the characteristics of the battery even though the characteristics of the capacitor are hard to come out by the electrochemical reaction. to be.
- the supercapacitor of the metal oxide electrode using such a pseudo capacitor has a higher specific capacitance than the electric double layer capacitor because the supercapacitor exhibits an accumulation mechanism in which protons move by oxidation and reduction of the metal oxide.
- the electrode active material of the metal oxide-based supercapacitor is required to have a high specific surface area, and the electrode active material has a high specific surface area because the ions and electrons required for oxidation and reduction during charge and discharge must move at a high speed in the electrolyte and the electrode. Conductivity is required.
- electrolytes used in capacitors are classified into aqueous electrolytes, non-aqueous electrolytes, and solid electrolytes.
- Non-aqueous electrolytes generally have a higher viscosity than aqueous electrolytes and have conductivity as low as 1/10 to 1/100 times. Therefore, when the aqueous electrolyte is used, the internal resistance of the electrolyte is reduced and the output characteristics of the capacitor are improved.
- the freezing point of the electrolyte (melting point) of the electrolyte is relatively higher than that of the non-aqueous electrolyte, the electrolyte may freeze when exposed to a low temperature environment, there is a problem that the utilization range is significantly reduced.
- the inventors of the present invention after conducting various studies to improve the low temperature stability of the pseudo capacitor, add a lithium salt and an amphoteric ionic compound of a certain concentration to the aqueous electrolyte of the capacitor, The present invention was completed by confirming that stable operation of the capacitor is possible without the electrolyte being frozen.
- an object of the present invention is to provide an aqueous electrolyte for pseudo capacitors with improved low temperature stability.
- an object of the present invention is to provide a pseudo capacitor having excellent cryogenic stability and excellent charge and discharge efficiency, energy density and power density including the aqueous electrolyte.
- An aqueous electrolyte for a pseudo capacitor comprising an aqueous solvent, a lithium salt, and an amphoteric ionic compound is provided.
- the aqueous solvent is at least one selected from the group consisting of ultra pure water (DI water), 2-butoxy ethanol and isopropyl alcohol (iso-propyl alcohol).
- the zwitterionic compound is a quaternary ammonium alkyl carboxylate compound represented by the following formula (1).
- R 1 to R 3 are each independently the same or different linear or branched alkyl groups
- One embodiment of the present invention is that the zwitterionic compound is betaine (betaine) represented by the following formula (2).
- the lithium salt and the zwitterionic compound are each included in a concentration of 1 to 10 mol (m).
- the lithium salt and the zwitterionic compound are each included in a concentration of 3 to 10 mol (m).
- the lithium salt and the zwitterionic compound are included in a ratio of 9: 1 to 1: 9.
- One embodiment of the present invention is that the lithium salt and the zwitterionic compound is contained in a ratio of 2: 1 to 1: 2.
- One embodiment of the present invention is that the lithium salt is contained in 6 mol (m) concentration, the zwitterionic compound is contained in a concentration of 3 to 10 mol (m).
- One embodiment of the invention is made by any one of the lithium salt is Li (OH), Li 2 O , LiCO 3, LiNO 3, Li 2 SO 4, LiNO 3 , and CH 3 COOLi.
- One embodiment of the present invention is that the melting point of the electrolyte is -30 °C or less.
- a pseudo capacitor comprising the electrolyte described above.
- the present invention by including a lithium salt and an amphoteric ionic compound of a certain concentration or more in the aqueous electrolyte, it is possible to improve the freezing problem of the electrolyte in the cryogenic environment, the specific capacitance, charge and discharge efficiency, energy density of the pseudo capacitor comprising the same And the output density can be greatly improved.
- FIG. 1 shows a Ragone Plot in which an electrolyte according to Example 2 of the present invention is measured by three electrodes with respect to LiMn 2 O 4 (anode).
- FIG. 2 shows discharge capacities of three electrodes measured on LiMn 2 O 4 (anode) of the electrolyte according to Example 2 of the present invention.
- FIG. 3 shows specific capacitance, energy density, and cyclic voltage current curve (CV curve) measured by three electrodes of an electrolyte according to Example 2 of LiMn 2 O 4 (anode).
- Example 4 is a two-electrode measured lifetime for a full-cell capacitor (on glassy carbon electrode) composed of an electrolyte, LiMn 2 O 4 (anode) and LiTi 2 (PO 4 ) 3 (cathode) according to Example 2 of the present invention. It is characteristic.
- FIG. 5 shows a Ragone Plot obtained by measuring an electrode according to Comparative Example 1 of the present invention with respect to LiMn 2 O 4 (anode).
- FIG. 6 shows discharge capacities of three electrodes measured for LiMn 2 O 4 (anode) of an electrolyte according to Comparative Example 1 of the present invention.
- FIG. 7 shows specific capacitance, energy density, and cyclic voltage current curve (CV curve) measured by three electrodes of an electrolyte according to Comparative Example 1 of the present invention with respect to LiMn 2 O 4 (anode).
- FIG. 8 illustrates a Ragone Plot obtained by measuring an electrode according to Comparative Example 2 of the present invention with respect to LiMn 2 O 4 (anode).
- FIG. 10 shows specific capacitance, energy density, and cyclic voltage current curve (CV curve) of three electrodes measured with respect to LiMn 2 O 4 (anode) of an electrolyte according to Comparative Example 2 of the present invention.
- Figure 11 shows the image of the cryogenic freezing experiment results of the electrolyte according to Comparative Example 2 of the present invention.
- FIG. 12 shows a cyclic voltage current curve (CV curve) obtained by measuring three electrodes with respect to LiMn 2 O 4 (anode) according to Examples 1 to 4 of the present invention under 10 mV / sec.
- FIG. 13 shows a cyclic voltammogram (CV curve) of three electrodes measured for LiMn 2 O 4 (anode) of an electrolyte according to Comparative Examples 3 to 5 of the present invention under 10 mV / sec.
- CV curve 14 is a cyclic voltage current curve (CV curve) of three electrolytes measured at 1 mV / sec with respect to LiMn 2 O 4 (anode) of an electrolyte according to Examples 1 to 4 and Comparative Examples 3 to 5 of the present invention. It is shown.
- FIG. 15 shows a cyclic voltage current curve (CV curve) of three electrolytes of LiMn 2 O 4 (anode) according to Comparative Examples 3 to 5 of the present invention under 1 mV / sec.
- the present invention provides an aqueous electrolyte containing an aqueous solvent, a lithium salt, and an amphoteric ionic compound as an aqueous electrolyte for a pseudo capacitor.
- the aqueous electrolyte according to the present invention includes an aqueous solvent as an electrolyte, and further includes a lithium salt and an amphoteric ionic compound to prevent freezing of the electrolyte in a cryogenic environment, thereby providing stable driving of the pseudo capacitor including the electrolyte. make it possible. Therefore, the capacitor including the electrolyte including the aqueous solvent, the lithium salt and the zwitterionic compound can improve the low temperature stability and exhibit excellent charge and discharge efficiency, energy density and output density.
- the aqueous solvent is not particularly limited, but at least one of ultrapure water (DI water), 2-butoxy ethanol, and isopropyl alcohol may be used.
- DI water ultrapure water
- 2-butoxy ethanol 2-butoxy ethanol
- isopropyl alcohol isopropyl alcohol
- lithium salt As the lithium salt. If you are not particularly limited to a lithium salt which can be applied to pseudo-capacitors can be used without limitation, Li (OH), Li 2 O, LiCO 3, LiNO 3, Li 2 SO 4, LiNO 3 , and CH It may be any one of 3 COOLi, preferably LiNO 3 .
- the zwitterionic compound is a compound that is electrically positive and negative at the same time and is neutral in the compound, and is commonly referred to as 'zwitterion'.
- amphoteric ionic compound according to the present invention may be a quaternary ammonium alkyl carboxylate compound represented by the following formula (1).
- R 1 to R 3 are each independently the same or different linear or branched alkyl groups
- the compound represented by Chemical Formula 1 may be a compound that is generally neutral by forming a quaternary ammonium on one side and cationicity on the other side, and simultaneously having anionicity of the carboxylate.
- the zwitterionic compound according to the present invention may be preferably betaine (betaine) represented by the following formula (2) wherein R 1 to R 3 are all methyl (-CH 3 ).
- the portion containing quaternary ammonium shows cationicity
- the portion containing carboxylate group shows anionicity at the same time, corresponding to 'zwitterion' showing neutrality on the basis of all betaine molecules.
- the lithium salt and the zwitterionic compound may be included in a concentration of 1 to 10 mol (m), preferably 3 to 10 mol (m) based on the aqueous electrolyte It may be included in a concentration, more preferably may be included in a concentration of 3 to 6 mol (m).
- one embodiment of the present invention is that the lithium salt is contained in a concentration of 6 mol (m) based on the aqueous electrolyte, the zwitterionic compound is included in a concentration of 3 mol (m) based on the aqueous electrolyte.
- the concentration of the lithium salt and the zwitterionic compound is less than the above range, low temperature stability may not be sufficiently secured, and if the concentration exceeds the range, the lithium salt and the zwitterionic compound may not be sufficiently dissolved in the electrolyte. It is preferable that the concentration of the lithium salt and the zwitterionic compound satisfy the above range.
- one side of the charged beta is surrounded by a cluster of water molecules due to the structural characteristics of the betaine having a structure of zwitter ions, and thus surrounded by betaine
- the water molecule clusters are reduced in bonding strength with each other, so that the structure of the so-called 'water cluster in salt' has the effect of preventing the freezing of the aqueous electrolyte even in cryogenic environments.
- the structure of 'water in salt' refers to the principle that the excess salt is added to the electrolyte, thereby preventing the freezing of the water by interfering with the bonds between the water molecules, thereby reducing the activity of the water and inhibiting the decomposition of the water. It is possible to exhibit the effect of increasing the driving voltage range of the capacitor.
- the concentration of the zwitterionic compound is less than 1 mol (m) concentration, it may not surround the water molecule cluster sufficiently, the low temperature stability may decrease, and the concentration of 10 mol (m) If exceeded, it may not be sufficiently dissolved in the aqueous electrolyte, and in addition, the ionic conductivity of the aqueous electrolyte may decrease, so it is appropriately adjusted within the above range.
- the lithium salt and the zwitterionic compound may be included in a molar (m) concentration ratio of 9: 1 to 1: 9, preferably in a molar ratio (m) of 2: 1 to 1: 2, More preferably, it may be included in a molar (m) concentration ratio of 2: 1 to 3: 5. According to one embodiment of the present invention, the lithium salt and the zwitterionic compound are included in a molar ratio of 2: 1.
- the ratio of the molal (m) concentration of the lithium salt and the zwitterionic compound exceeds the above range, there is a problem that the electrochemical performance of the capacitor is greatly reduced, and the molal (m) concentration of the lithium salt and the zwitterionic compound If the ratio is less than the above range, there is a problem that the electrolyte can be frozen in the cryogenic environment, it is preferable that the ratio of the molar (m) concentration of the lithium salt and the zwitterionic compound satisfy the above range.
- the aqueous electrolyte according to the present invention may prevent freezing of the aqueous electrolyte in a cryogenic environment, including the lithium salt and the zwitterionic compound of the same concentration and ratio, the melting point of the electrolyte may be -30 °C or less, Pseudo-capacitors also have the advantage of being able to drive stably in cryogenic environments below -30 °C.
- the pseudo capacitor according to the present invention may be composed of a first current collector, a first electrode, an electrolyte, a separator, a second electrode, a second current collector and a case, and include a first current collector, an electrolyte, a separator, a second current collector, and Since the case may use existing known techniques, detailed description thereof will be omitted.
- the ampholytic ion compound is a beta (betaine, (CH 3) 3 N + CH 2 CO 2 -, Sigma -Aldrich Co., Ltd. was dissolved at a concentration of 3 mol (m), and stirred for 30 minutes to prepare an aqueous electrolyte for a pseudo capacitor.
- lithium salt LiNO 3 (Junsei) and the zwitterionic compound betaine (CH 3 ) 3 N + CH 2 CO 2 - and Sigma-Aldrich) were each used.
- the ampholytic ion compound is a beta (betaine, (CH 3) 3 N + CH 2 CO 2 -, Sigma -Aldrich Co., Ltd. was dissolved at a concentration of 10 mol (m) and stirred for 30 minutes to prepare an aqueous electrolyte for a pseudo capacitor.
- the ampholytic ion compound is a beta (betaine, (CH 3) 3 N + CH 2 CO 2 -, Sigma -Aldrich Co., Ltd. was dissolved at a concentration of 6 molal (m) and stirred for 30 minutes to prepare an aqueous electrolyte for a pseudo capacitor.
- Aqueous electrolyte for pseudocapacitors was prepared in the same manner as in Example 2, except that LiNO 3 , a lithium salt, was set at a concentration of 2 mol (m) based on 50 ml of ultra pure water (DI Water).
- aqueous electrolyte for pseudocapacitors was prepared, which did not contain an amphoteric ionic compound and contained only lithium salt LiNO 3 having a concentration of 2 mol (m) based on 50 ml of ultra pure water (DI Water).
- An aqueous electrolyte for the pseudo capacitor was prepared.
- L-histidine L-Histidine
- m 1 molal (m) concentration instead of the zwitterionic compound betaine (CH 3 ) 3 N + CH 2 CO 2 - and Sigma-Aldrich Co., Ltd.
- CH 3 zwitterionic compound betaine
- Sigma-Aldrich Co., Ltd. was prepared in the same manner as in Example 1 to prepare an aqueous electrolyte for a pseudo capacitor.
- Table 1 summarizes the additives and the contents of the aqueous electrolyte for the pseudo capacitor.
- VSP cyclic voltammetry
- VSP cyclic voltammetry
- Measuring method is using the working electrode (LiMn 2 O 4 ) comprising a working electrode, a platinum plate counter electrode (Counter Electrode), Ag / AgCl reference electrode (Reference Electrode) using the Examples 1 to 4 and Comparative Example 1 It was measured according to different scanning rates in the aqueous electrolyte of 5 to 5.
- Cyclic voltammetry was used to measure the voltage under positive conditions of -0.2 to 1.1V, 10 mV / sec and 1 mV / sec for the positive electrode.
- LiMn 2 O 4 was used as the working electrode and LiTi 2 (PO 4 ) 3 was used as the counter and reference electrode.
- Discharge Capacity (F / g) 10mV / s Discharge Energy (Wh / kg) 10mV / s Discharge Capacity (F / g) 1mV / s Discharge Energy (Wh / kg) 1mV / s
- Example 1 314.82 108.80 340.60 121.85
- Example 2 271.09 86.28 329.29 115.27
- the electrolytes according to Examples 1 to 4 were found to have excellent overall discharge capacity and energy density.
- the lithium salt concentration (2 mol (m) concentration) is low
- the comparative example of a high ratio (1: 3) of the mol mol (m) concentration of the lithium salt and the zwitterionic compound It can be seen that it has an overall superior output density, discharge capacity, specific capacitance and energy density compared to 1.
- the electrolyte according to Example 2 in terms of output density, discharge capacity, specific capacitance and energy density.
- Comparative Example 3 the discharge capacity appears to be high due to the redox peak generated due to the side reaction, but the energy density is relatively very low, so the electrochemical characteristics are poor, and lithium salt and choline bicarbonate are Precipitation occurred and it was found that it was not suitable as an aqueous electrolyte of a pseudo capacitor.
- Comparative Example 4 also showed a high discharge capacity, but relatively low energy density, the electrochemical properties were poor, it was found that it is not suitable as an aqueous electrolyte of a pseudo capacitor.
- a cathode including LiMn 2 O 4 , a cathode including LiTi 2 (PO 4 ) 3 and the aqueous electrolyte of Examples 2 and Comparative Examples 1 to 2 A pseudo capacitor was fabricated and the driving characteristics of the capacitor were evaluated in a cryogenic (-30 ° C.) environment.
- Ion conductivity of the aqueous electrolyte prepared in Examples 1 to 4 and Comparative Examples 1 to 5 was measured by an ion conductivity meter (Mettler Toledo, Inc.), and the results are shown in Table 3 below.
- Example 1 Ion Conductivity (mS / cm) Example 1 79.69 Example 2 43.09 Example 3 32.30 Example 4 17.89 Comparative Example 1 23.51 Comparative Example 2 108.4 Comparative Example 3 106.8 Comparative Example 4 85.14 Comparative Example 5 115.8
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
The present invention relates to an aqueous electrolyte for a pseudocapacitor and a pesudocapacitor comprising same and, more specifically, to an aqueous electrolyte for a pseudocapacitor and a pseudocapacitor comprising the aqueous electrolyte, the aqueous electrolyte comprising: an aqueous solvent; a lithium salt, of which the concentration is not less than a predetermined concentration; and a zwitterionic compound.
Description
본 출원은 2018년 8월 29일자 한국 특허출원 제10-2018-0101953호 및 2019년 8월 9일자 한국 특허출원 제10-2019-0097202호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0101953 dated August 29, 2018 and Korean Patent Application No. 10-2019-0097202 dated August 9, 2019. All content disclosed in the literature is included as part of this specification.
본 발명은 전해질의 저온 안정성을 개선하기 위해, 특정 농도 이상의 리튬염 및 양쪽성 이온 화합물을 포함하는 의사 커패시터용 수계 전해질 및 상기 수계 전해질을 포함하는 의사 커패시터에 관한 것이다.The present invention relates to an aqueous electrolyte for a pseudo capacitor comprising a lithium salt and an amphoteric ionic compound of a certain concentration or more, and a pseudo capacitor including the aqueous electrolyte, in order to improve the low temperature stability of the electrolyte.
최근 개발되고 있는 차세대 에너지 저장시스템은 모두 전기 화학적인 원리를 이용한 것으로 리튬 (Li)계 이차전지와 전기화학적 커패시터(electrochemical capacitor)가 대표적이다. 이차전지는 단위 무게 혹은 부피당 축적할 수 있는 에너지 량(에너지 밀도)의 측면에서는 우수하나 사용기간, 충전시간, 단위시간당 사용할 수 있는 에너지의 량(출력 밀도) 측면에서는 아직 많은 개선의 여지를 보이고 있다. The next generation energy storage systems that have been recently developed are all based on electrochemical principles, such as lithium (Li) secondary batteries and electrochemical capacitors. Secondary batteries are excellent in terms of the amount of energy (energy density) that can be accumulated per unit weight or volume, but there is still much room for improvement in terms of the period of use, charging time, and the amount of energy (output density) that can be used per unit time. .
그러나, 전기화학적 커패시터(electrochemical capacitor)는 에너지 밀도 면에서 이차전지에 비해 작으나 사용시간, 충전시간, 출력 밀도가 큰 면에서는 이차 전지에 비해 매우 우수한 특성을 보이고 있다. 따라서 전기화학적 커패시터(electrochemical capacitor)의 경우 에너지 밀도를 향상시키기 위한 연구 개발이 활발히 진행되고 있다. However, although the electrochemical capacitor is smaller than the secondary battery in terms of energy density, the electrochemical capacitor is very superior to the secondary battery in terms of use time, charging time, and output density. Therefore, in the case of electrochemical capacitors, research and development are being actively conducted to improve energy density.
특히 슈퍼 커패시터(supercapacitor)는 재래식 전해콘덴서와 신형 2차 전지가 갖지 못하는 영역에서 고유한 성능 특성을 가지는 에너지 저장 동력원(power source) 기기이다. 이러한 슈퍼 커패시터는 전기화학적 축전 메커니즘에 따라 전기 이중층(electrical double layer)의 원리를 이용한 전기 이중층 커패시터 (electrical double layer capacitor: EDLC)와 전기화학적 패러데이 반응 (faradaic reation) 원리를 이용한 의사 커패시터 (pseudocapacitor)로 구분된다. In particular, supercapacitors are energy storage power source devices that have inherent performance characteristics in areas that conventional electrolytic capacitors and new secondary batteries do not have. These supercapacitors are electrical double layer capacitors (EDLC) using the principle of electrical double layer and pseudocapacitors using the principle of electrochemical faradaic reaction according to the electrochemical storage mechanism. Are distinguished.
전기 이중층 커패시터는 전해질 용액의 이온이 전극 표면에서 전기 이중층(Electric Double Layer)을 형성하면서 물리적으로 흡탈착되는 것을 이용하며, 전극으로 사용되는 탄소 표면에 세공이 발달되어 있어 우수한 동력 밀도를 나타낸다. 그러나 표면의 전기 이중층에만 전하가 축적되므로 패러데이 반응을 이용하는 금속산화물계 또는 전기 전도성 고분자계 슈퍼 커패시터보다 축전 용량이 낮아 에너지 밀도가 낮은 단점이 있다. The electric double layer capacitor uses ions of the electrolyte solution to be physically adsorbed and desorbed while forming an electric double layer on the electrode surface. The electric double layer capacitor exhibits excellent power density due to the development of pores on the carbon surface used as the electrode. However, since charges are accumulated only on the surface of the electrical double layer, there is a disadvantage in that the energy density is lower because the storage capacity is lower than that of the metal oxide-based or electrically conductive polymer-based supercapacitor using the Faraday reaction.
의사 커패시터를 사용하는 금속산화물계 슈퍼 커패시터는 산화, 환원이 가능한 여러 개의 원자가(valence)를 가지는 금속산화물을 사용하는 커패시터이다. 의사 커패시터라고 칭하는 이유는 커패시터의 특성이 전기 이중층 커패시터처럼 전기 이중층의 형성에 의한 것이 일반적이고 전기화학 반응에 의해서는 커패시터적인 특성이 나오기 힘든데도 일부 금속산화물에서는 전지의 특성 대신 커패시터의 특성이 나오기 때문이다. 이러한 의사 커패시터를 사용하는 금속산화물 전극의 슈퍼 커패시터는 금속산화물의 산화, 환원반응으로 양성자가 이동하는 축적 메카니즘을 나타내므로 전기 이중층 커패시터보다 높은 비축전용량을 갖는다. 또한 금속산화물계 슈퍼 커패시터의 전극 활물질은 충방전시 산화, 환원에 필요한 이온과 전자가 전해질과 전극에서 빠른 속도로 이동하여야 하므로, 전극 계면이 고 비표면적을 가지는 것이 바람직하며, 전극 활물질은 높은 전기전도도가 요구된다.Metal oxide-based supercapacitors using pseudo capacitors are capacitors using metal oxides having several valences that can be oxidized and reduced. The reason why it is called a pseudo capacitor is that the characteristics of the capacitor are generally due to the formation of the electric double layer like the electric double layer capacitor, and the characteristics of the capacitor are shown in some metal oxides instead of the characteristics of the battery even though the characteristics of the capacitor are hard to come out by the electrochemical reaction. to be. The supercapacitor of the metal oxide electrode using such a pseudo capacitor has a higher specific capacitance than the electric double layer capacitor because the supercapacitor exhibits an accumulation mechanism in which protons move by oxidation and reduction of the metal oxide. In addition, the electrode active material of the metal oxide-based supercapacitor is required to have a high specific surface area, and the electrode active material has a high specific surface area because the ions and electrons required for oxidation and reduction during charge and discharge must move at a high speed in the electrolyte and the electrode. Conductivity is required.
한편, 일반적으로 커패시터에 사용되는 전해질은 수계 전해질, 비수계 전해질 및 고체 전해질로 분류가 된다. 비수계 전해질은 일반적으로 수계 전해질보다 점도가 높고, 1/10 ~ 1/100 배 정도 낮은 전도도를 갖는다. 따라서 수계 전해질을 사용하는 경우 전해질의 내부저항이 줄어들고 커패시터의 출력 특성이 향상되는 장점이 있다. 그러나 수계 전해질은 비수계 전해질에 비해 전해질의 어는점(melting point)이 상대적으로 높기 때문에, 저온의 환경에 노출될 경우 전해질의 동결이 일어날 수 있어 그 활용 범위가 상당히 줄어드는 문제가 있다.In general, electrolytes used in capacitors are classified into aqueous electrolytes, non-aqueous electrolytes, and solid electrolytes. Non-aqueous electrolytes generally have a higher viscosity than aqueous electrolytes and have conductivity as low as 1/10 to 1/100 times. Therefore, when the aqueous electrolyte is used, the internal resistance of the electrolyte is reduced and the output characteristics of the capacitor are improved. However, since the freezing point of the electrolyte (melting point) of the electrolyte is relatively higher than that of the non-aqueous electrolyte, the electrolyte may freeze when exposed to a low temperature environment, there is a problem that the utilization range is significantly reduced.
[선행기술문헌] [Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 공개특허 제2014-0081276호(2014.07.01), "리튬이온커패시터"Republic of Korea Patent Publication No. 2014-0081276 (2014.07.01), "Lithium ion capacitor"
상술한 문제점을 해결하기 위하여, 본 발명의 발명자들은 의사 커패시터의 저온 안정성을 개선하기 위한 다각적인 연구를 수행한 끝에, 커패시터의 수계 전해질에 특정 농도 이상의 리튬염 및 양쪽성 이온 화합물을 첨가하면, 극저온 환경에서도 전해질이 동결되지 않고 커패시터의 안정적인 구동이 가능하다는 것을 확인하여 본 발명을 완성하였다.In order to solve the above-mentioned problems, the inventors of the present invention, after conducting various studies to improve the low temperature stability of the pseudo capacitor, add a lithium salt and an amphoteric ionic compound of a certain concentration to the aqueous electrolyte of the capacitor, The present invention was completed by confirming that stable operation of the capacitor is possible without the electrolyte being frozen.
따라서, 본 발명은 저온 안정성이 개선된 의사 커패시터용 수계 전해질을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide an aqueous electrolyte for pseudo capacitors with improved low temperature stability.
또한, 본 발명은 상기 수계 전해질을 포함하는 극저온 안정성이 개선되고 충방전 효율, 에너지 밀도 및 출력 밀도가 우수한 의사 커패시터를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a pseudo capacitor having excellent cryogenic stability and excellent charge and discharge efficiency, energy density and power density including the aqueous electrolyte.
상기 목적을 달성하기 위해, 본 발명은,In order to achieve the above object, the present invention,
수계 용매, 리튬염 및 양쪽성 이온 화합물을 포함하는 의사 커패시터용 수계 전해질을 제공한다.An aqueous electrolyte for a pseudo capacitor comprising an aqueous solvent, a lithium salt, and an amphoteric ionic compound is provided.
본 발명의 일 구체예는 상기 수계 용매가 초순수(DI water), 2-부톡시에탄올(2-butoxy ethanol) 및 아이소프로필알코올(iso-propyl alcohol)로 이루어진 군으로부터 선택된 1종 이상인 것이다.One embodiment of the present invention is that the aqueous solvent is at least one selected from the group consisting of ultra pure water (DI water), 2-butoxy ethanol and isopropyl alcohol (iso-propyl alcohol).
본 발명의 일 구체예는 상기 양쪽성 이온 화합물이 하기 화학식 1로 표시되는 4급 암모늄 알킬 카복실레이트 화합물인 것이다.One embodiment of the present invention is that the zwitterionic compound is a quaternary ammonium alkyl carboxylate compound represented by the following formula (1).
[화학식 1][Formula 1]
(단, R1 내지 R3는 각각 독립적으로 같거나 다른 직쇄 또는 분지쇄의 알킬기임)(Wherein R 1 to R 3 are each independently the same or different linear or branched alkyl groups)
본 발명의 일 구체예는 상기 양쪽성 이온 화합물이 하기 화학식 2로 표시되는 베타인(betaine)인 것이다.One embodiment of the present invention is that the zwitterionic compound is betaine (betaine) represented by the following formula (2).
[화학식 2][Formula 2]
본 발명의 일 구체예는 상기 리튬염 및 양쪽성 이온 화합물이 각각 1 내지 10 몰랄(m) 농도로 포함되는 것이다.In one embodiment of the present invention, the lithium salt and the zwitterionic compound are each included in a concentration of 1 to 10 mol (m).
본 발명의 일 구체예는 상기 리튬염 및 양쪽성 이온 화합물이 각각 3 내지 10 몰랄(m) 농도로 포함되는 것이다.In one embodiment of the present invention, the lithium salt and the zwitterionic compound are each included in a concentration of 3 to 10 mol (m).
본 발명의 일 구체예는 상기 리튬염 및 양쪽성 이온 화합물이 9:1 내지 1:9의 비율로 포함되는 것이다.In one embodiment of the present invention, the lithium salt and the zwitterionic compound are included in a ratio of 9: 1 to 1: 9.
본 발명의 일 구체예는 상기 리튬염 및 양쪽성 이온 화합물이 2: 1 내지 1:2 의 비율로 포함되는 것이다.One embodiment of the present invention is that the lithium salt and the zwitterionic compound is contained in a ratio of 2: 1 to 1: 2.
본 발명의 일 구체예는 상기 리튬염이 6 몰랄(m) 농도로 포함되고, 상기 양쪽성 이온 화합물이 3 내지 10 몰랄(m) 농도로 포함되는 것이다.One embodiment of the present invention is that the lithium salt is contained in 6 mol (m) concentration, the zwitterionic compound is contained in a concentration of 3 to 10 mol (m).
본 발명의 일 구체예는 상기 리튬염이 Li(OH), Li2O, LiCO3, LiNO3, Li2SO4, LiNO3 및 CH3COOLi 중 어느 하나로 이루어지는 것이다.One embodiment of the invention is made by any one of the lithium salt is Li (OH), Li 2 O , LiCO 3, LiNO 3, Li 2 SO 4, LiNO 3 , and CH 3 COOLi.
본 발명의 일 구체예는 상기 전해질의 융점이 -30 ℃ 이하인 것이다.One embodiment of the present invention is that the melting point of the electrolyte is -30 ℃ or less.
또한 본 발명은,In addition, the present invention,
양극; 음극; 및anode; cathode; And
상술한 전해질을 포함하는 의사 커패시터를 제공한다.Provided is a pseudo capacitor comprising the electrolyte described above.
본 발명에 따르면, 수계 전해질에 특정 농도 이상의 리튬염 및 양쪽성 이온 화합물을 포함함으로써, 극저온 환경에서 전해질의 동결 문제를 개선할 수 있으며, 이를 포함하는 의사 커패시터의 비정전용량, 충방전효율, 에너지 밀도 및 출력 밀도를 크게 향상시킬 수 있다.According to the present invention, by including a lithium salt and an amphoteric ionic compound of a certain concentration or more in the aqueous electrolyte, it is possible to improve the freezing problem of the electrolyte in the cryogenic environment, the specific capacitance, charge and discharge efficiency, energy density of the pseudo capacitor comprising the same And the output density can be greatly improved.
도 1은 본 발명의 실시예 2에 따른 전해질을 LiMn2O4(양극)에 대해서 3전극 측정한 Ragone Plot을 나타낸 것이다.FIG. 1 shows a Ragone Plot in which an electrolyte according to Example 2 of the present invention is measured by three electrodes with respect to LiMn 2 O 4 (anode).
도 2는 본 발명의 실시예 2에 따른 전해질을 LiMn2O4(양극)에 대해서 3전극 측정한 방전 용량을 나타낸 것이다.FIG. 2 shows discharge capacities of three electrodes measured on LiMn 2 O 4 (anode) of the electrolyte according to Example 2 of the present invention.
도 3은 본 발명의 실시예 2에 따른 전해질을 LiMn2O4(양극)에 대해서 3전극 측정한 비정전용량, 에너지 밀도 및 순환전압전류곡선(CV곡선)을 나타낸 것이다.FIG. 3 shows specific capacitance, energy density, and cyclic voltage current curve (CV curve) measured by three electrodes of an electrolyte according to Example 2 of LiMn 2 O 4 (anode).
도 4는 본 발명의 실시예 2에 따른 전해질, LiMn2O4(양극) 및 LiTi2(PO4)3(음극)로 구성된 full-cell 커패시터(on glassy carbon 전극)에 대해 2전극 측정한 수명특성을 나타낸 것이다.4 is a two-electrode measured lifetime for a full-cell capacitor (on glassy carbon electrode) composed of an electrolyte, LiMn 2 O 4 (anode) and LiTi 2 (PO 4 ) 3 (cathode) according to Example 2 of the present invention. It is characteristic.
도 5는 본 발명의 비교예 1에 따른 전해질을 LiMn2O4(양극)에 대해서 3전극 측정한 Ragone Plot을 나타낸 것이다.FIG. 5 shows a Ragone Plot obtained by measuring an electrode according to Comparative Example 1 of the present invention with respect to LiMn 2 O 4 (anode).
도 6은 본 발명의 비교예 1에 따른 전해질을 LiMn2O4(양극)에 대해서 3전극 측정한 방전 용량을 나타낸 것이다.FIG. 6 shows discharge capacities of three electrodes measured for LiMn 2 O 4 (anode) of an electrolyte according to Comparative Example 1 of the present invention.
도 7은 본 발명의 비교예 1에 따른 전해질을 LiMn2O4(양극)에 대해서 3전극 측정한 비정전용량, 에너지 밀도 및 순환전압전류곡선(CV곡선)을 나타낸 것이다.FIG. 7 shows specific capacitance, energy density, and cyclic voltage current curve (CV curve) measured by three electrodes of an electrolyte according to Comparative Example 1 of the present invention with respect to LiMn 2 O 4 (anode).
도 8은 본 발명의 비교예 2에 따른 전해질을 LiMn2O4(양극)에 대해서 3전극 측정한 Ragone Plot을 나타낸 것이다.FIG. 8 illustrates a Ragone Plot obtained by measuring an electrode according to Comparative Example 2 of the present invention with respect to LiMn 2 O 4 (anode).
도 9는 본 발명의 비교예 2에 따른 전해질을 LiMn2O4(양극)에 대해서 3전극 측정한 방전 용량을 나타낸 것이다.9 shows discharge capacities of three electrolytes of LiMn 2 O 4 (anode) of an electrolyte according to Comparative Example 2 of the present invention.
도 10은 본 발명의 비교예 2에 따른 전해질을 LiMn2O4(양극)에 대해서 3전극 측정한 비정전용량, 에너지 밀도 및 순환전압전류곡선(CV곡선)을 나타낸 것이다.FIG. 10 shows specific capacitance, energy density, and cyclic voltage current curve (CV curve) of three electrodes measured with respect to LiMn 2 O 4 (anode) of an electrolyte according to Comparative Example 2 of the present invention.
도 11은 본 발명의 비교예 2에 따른 전해질의 극저온 동결 실험 결과에 대한 이미지를 나타낸 것이다.Figure 11 shows the image of the cryogenic freezing experiment results of the electrolyte according to Comparative Example 2 of the present invention.
도 12는 본 발명의 실시예 1 내지 4에 따른 전해질을 LiMn2O4(양극)에 대해서, 10 mV/sec 조건 하에서 3전극 측정한 순환전압전류곡선(CV곡선)을 나타낸 것이다.FIG. 12 shows a cyclic voltage current curve (CV curve) obtained by measuring three electrodes with respect to LiMn 2 O 4 (anode) according to Examples 1 to 4 of the present invention under 10 mV / sec.
도 13은 본 발명의 비교예 3 내지 5에 따른 전해질을 LiMn2O4(양극)에 대해서, 10 mV/sec 조건 하에서 3전극 측정한 순환전압전류곡선(CV곡선)을 나타낸 것이다.FIG. 13 shows a cyclic voltammogram (CV curve) of three electrodes measured for LiMn 2 O 4 (anode) of an electrolyte according to Comparative Examples 3 to 5 of the present invention under 10 mV / sec.
도 14는 본 발명의 실시예 1 내지 4 및 비교예 3 내지 5에 따른 전해질을 LiMn2O4(양극)에 대해서, 1 mV/sec 조건 하에서 3전극 측정한 순환전압전류곡선(CV곡선)을 나타낸 것이다. 14 is a cyclic voltage current curve (CV curve) of three electrolytes measured at 1 mV / sec with respect to LiMn 2 O 4 (anode) of an electrolyte according to Examples 1 to 4 and Comparative Examples 3 to 5 of the present invention. It is shown.
도 15는 본 발명의 비교예 3 내지 5에 따른 전해질을 LiMn2O4(양극)에 대해서, 1 mV/sec 조건 하에서 3전극 측정한 순환전압전류곡선(CV곡선)을 나타낸 것이다.FIG. 15 shows a cyclic voltage current curve (CV curve) of three electrolytes of LiMn 2 O 4 (anode) according to Comparative Examples 3 to 5 of the present invention under 1 mV / sec.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.Hereinafter, with reference to the accompanying drawings to be easily carried out by those skilled in the art will be described in detail. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the scope of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to the common or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meanings and concepts corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명은 의사 커패시터용 수계 전해질로서, 수계 용매, 리튬염 및 양쪽성 이온 화합물을 포함하는 수계 전해질을 제공한다.The present invention provides an aqueous electrolyte containing an aqueous solvent, a lithium salt, and an amphoteric ionic compound as an aqueous electrolyte for a pseudo capacitor.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 수계 전해질은 전해액으로 수계 용매를 포함하며, 여기에 리튬염 및 양쪽성 이온 화합물을 추가로 포함하여 극저온 환경에서 전해액의 동결을 방지하여, 상기 전해질을 포함하는 의사 커패시터의 안정적인 구동을 가능하게 한다. 따라서 상기 수계 용매, 리튬염 및 양쪽성 이온 화합물을 포함하는 전해질을 포함하는 커패시터는 저온 안정성이 개선되고 우수한 충방전 효율, 에너지 밀도 및 출력 밀도를 나타낼 수 있게 된다.The aqueous electrolyte according to the present invention includes an aqueous solvent as an electrolyte, and further includes a lithium salt and an amphoteric ionic compound to prevent freezing of the electrolyte in a cryogenic environment, thereby providing stable driving of the pseudo capacitor including the electrolyte. Make it possible. Therefore, the capacitor including the electrolyte including the aqueous solvent, the lithium salt and the zwitterionic compound can improve the low temperature stability and exhibit excellent charge and discharge efficiency, energy density and output density.
상기 수계 용매로는 특별히 한정되는 것은 아니나 초순수(DI water), 2-부톡시에탄올(2-butoxy ethanol) 및 아이소프로필알코올(iso-propyl alcohol) 중 적어도 어느 하나를 사용할 수 있다.The aqueous solvent is not particularly limited, but at least one of ultrapure water (DI water), 2-butoxy ethanol, and isopropyl alcohol may be used.
상기 리튬염으로는 특별히 한정되는 것은 아니나 의사 커패시터에 적용할 수 있는 리튬염이라면 제한 없이 사용할 수 있으며, Li(OH), Li2O, LiCO3, LiNO3, Li2SO4, LiNO3 및 CH3COOLi 중 어느 하나일 수 있고, 바람직하게는 LiNO3일 수 있다.As the lithium salt. If you are not particularly limited to a lithium salt which can be applied to pseudo-capacitors can be used without limitation, Li (OH), Li 2 O, LiCO 3, LiNO 3, Li 2 SO 4, LiNO 3 , and CH It may be any one of 3 COOLi, preferably LiNO 3 .
상기 양쪽성 이온 화합물은, 화합물 내에 전기적으로 양성과 음성을 동시에 가져 중성인 화합물을 나타내는 것으로, 통상적으로 '쯔비터 이온'(zwitterion)이라 불리운다.The zwitterionic compound is a compound that is electrically positive and negative at the same time and is neutral in the compound, and is commonly referred to as 'zwitterion'.
본 발명에 따른 양쪽성 이온 화합물은 하기 화학식 1로 표시되는 4급 암모늄 알킬 카복실레이트 화합물일 수 있다.The amphoteric ionic compound according to the present invention may be a quaternary ammonium alkyl carboxylate compound represented by the following formula (1).
[화학식 1][Formula 1]
(단, R1 내지 R3는 각각 독립적으로 같거나 다른 직쇄 또는 분지쇄의 알킬기임)(Wherein R 1 to R 3 are each independently the same or different linear or branched alkyl groups)
상기 화학식 1로 표시되는 화합물은 일측이 4차 암모늄을 이루어 양이온성을 나타내며, 다른 일측이 카복실레이트의 음이온성을 동시에 가짐으로써 전체적으로 중성인 화합물일 수 있다.The compound represented by Chemical Formula 1 may be a compound that is generally neutral by forming a quaternary ammonium on one side and cationicity on the other side, and simultaneously having anionicity of the carboxylate.
본 발명에 따른 상기 양쪽성 이온 화합물은 바람직하게 R1 내지 R3이 모두 메틸(-CH3)인 하기 화학식 2로 표시되는 베타인(betaine)일 수 있다.The zwitterionic compound according to the present invention may be preferably betaine (betaine) represented by the following formula (2) wherein R 1 to R 3 are all methyl (-CH 3 ).
[화학식 2][Formula 2]
상기 베타인의 경우 4급 암모늄을 포함하는 부분이 양이온성을 나타내고, 카복실레이트기를 포함하는 부분이 음이온성을 동시에 나타내어, 베타인 전체 분자 기준으로 중성을 나타내는 '쯔비터이온'에 해당한다.In the case of betaine, the portion containing quaternary ammonium shows cationicity, and the portion containing carboxylate group shows anionicity at the same time, corresponding to 'zwitterion' showing neutrality on the basis of all betaine molecules.
본 발명에 따른 수계 전해질의 극저온 안정성을 향상시키기 위해, 상기 리튬염 및 양쪽성 이온 화합물은 수계 전해질 기준으로 1 내지 10 몰랄(m) 농도로 포함될 수 있고, 바람직하게는 3 내지 10 몰랄(m) 농도로 포함될 수 있고, 보다 바람직하게는 3 내지 6 몰랄(m) 농도로 포함될 수 있다. 또한, 본 발명의 일 구현예는 상기 리튬염이 수계 전해질을 기준으로 6 몰랄(m) 농도로 포함되고, 양쪽성 이온 화합물이 수계 전해질을 기준으로 3 몰랄(m) 농도로 포함되는 것이다. 상기 리튬염 및 양쪽성 이온 화합물의 농도가 상기 범위 미만인 경우, 저온 안정성을 충분히 확보할 수 없고, 상기 범위를 초과하면 상기 리튬염 및 양쪽성 이온 화합물이 전해질에 충분히 용해되지 않는 문제점이 발생할 수 있어, 상기 리튬염 및 양쪽성 이온 화합물의 농도가 상기 범위를 만족하는 것이 바람직하다. In order to improve the cryogenic stability of the aqueous electrolyte according to the present invention, the lithium salt and the zwitterionic compound may be included in a concentration of 1 to 10 mol (m), preferably 3 to 10 mol (m) based on the aqueous electrolyte It may be included in a concentration, more preferably may be included in a concentration of 3 to 6 mol (m). In addition, one embodiment of the present invention is that the lithium salt is contained in a concentration of 6 mol (m) based on the aqueous electrolyte, the zwitterionic compound is included in a concentration of 3 mol (m) based on the aqueous electrolyte. When the concentration of the lithium salt and the zwitterionic compound is less than the above range, low temperature stability may not be sufficiently secured, and if the concentration exceeds the range, the lithium salt and the zwitterionic compound may not be sufficiently dissolved in the electrolyte. It is preferable that the concentration of the lithium salt and the zwitterionic compound satisfy the above range.
본 발명의 일 구현예에 따른 양쪽성 이온 화합물인 베타인의 경우, 쯔비터 이온의 구조를 가지는 베타인의 구조적 특성상 전하를 띈 일측이 물분자 클러스터(cluster)를 둘러싸게 되고, 이렇게 베타인에 의해 둘러 쌓인 물분자 클러스터들은 서로 간의 결합력이 줄어들게 되어, 이른바 'water cluster in salt'의 구조를 가지게 함으로써 극저온 환경에서도 수계 전해질의 동결을 방지할 수 있는 효과가 나타나게 된다. 여기서 'water in salt'의 구조란, 전해질에 과량의 염(salt)가 첨가됨으로써 물 분자 사이의 결합을 방해하여 물이 동결하지 않게 되는 원리를 말하며, 이로써 물의 활성도가 줄어들어 물의 분해가 억제됨에 따라 커패시터의 구동 전압범위를 증가시키는 효과를 나타낼 수 있게 된다.In the case of betaine, which is an amphoteric ionic compound according to an embodiment of the present invention, one side of the charged beta is surrounded by a cluster of water molecules due to the structural characteristics of the betaine having a structure of zwitter ions, and thus surrounded by betaine The water molecule clusters are reduced in bonding strength with each other, so that the structure of the so-called 'water cluster in salt' has the effect of preventing the freezing of the aqueous electrolyte even in cryogenic environments. Herein, the structure of 'water in salt' refers to the principle that the excess salt is added to the electrolyte, thereby preventing the freezing of the water by interfering with the bonds between the water molecules, thereby reducing the activity of the water and inhibiting the decomposition of the water. It is possible to exhibit the effect of increasing the driving voltage range of the capacitor.
만일 리튬염의 양이 고정되어 있을 경우, 양쪽성 이온 화합물의 농도가 1 몰랄(m) 농도 이하인 경우, 물분자 클러스터를 충분히 둘러싸지 못하게 되어 저온 안정성이 감소할 수 있으며, 10 몰랄(m) 농도를 초과하는 경우 수계 전해질에 충분히 용해되지 않을 수 있고, 또한, 수계 전해질의 이온 전도도가 감소할 수 있으므로 상기 범위내에서 적절히 조절한다.If the amount of the lithium salt is fixed, if the concentration of the zwitterionic compound is less than 1 mol (m) concentration, it may not surround the water molecule cluster sufficiently, the low temperature stability may decrease, and the concentration of 10 mol (m) If exceeded, it may not be sufficiently dissolved in the aqueous electrolyte, and in addition, the ionic conductivity of the aqueous electrolyte may decrease, so it is appropriately adjusted within the above range.
상기 리튬염 및 양쪽성 이온 화합물은 9:1 내지 1:9의 몰랄(m) 농도 비율로 포함될 수 있으며, 바람직하게는 2:1 내지 1:2의 몰랄(m) 농도 비율로 포함될 수 있고, 보다 바람직하게는 2:1 내지 3:5의 몰랄(m) 농도 비율로 포함될 수 있다. 본 발명의 일 구현예는 상기 리튬염 및 양쪽성 이온 화합물은 2:1의 몰랄(m) 농도 비율로 포함되는 것이다.The lithium salt and the zwitterionic compound may be included in a molar (m) concentration ratio of 9: 1 to 1: 9, preferably in a molar ratio (m) of 2: 1 to 1: 2, More preferably, it may be included in a molar (m) concentration ratio of 2: 1 to 3: 5. According to one embodiment of the present invention, the lithium salt and the zwitterionic compound are included in a molar ratio of 2: 1.
상기 리튬염 및 양쪽성 이온 화합물의 몰랄(m) 농도의 비율이 상기 범위를 초과하는 경우에는 커패시터의 전기화학적 성능이 크게 감소하는 문제점이 있으며, 리튬염 및 양쪽성 이온 화합물의 몰랄(m) 농도의 비율이 상기 범위 미만인 경우에는 극저온 환경에서 전해질이 동결될 수 있는 문제점이 있으므로, 리튬염 및 양쪽성 이온 화합물의 몰랄(m) 농도 비율은 상기 범위를 만족하는 것이바람직하다.If the ratio of the molal (m) concentration of the lithium salt and the zwitterionic compound exceeds the above range, there is a problem that the electrochemical performance of the capacitor is greatly reduced, and the molal (m) concentration of the lithium salt and the zwitterionic compound If the ratio is less than the above range, there is a problem that the electrolyte can be frozen in the cryogenic environment, it is preferable that the ratio of the molar (m) concentration of the lithium salt and the zwitterionic compound satisfy the above range.
본 발명에 따른 수계 전해질은 상기와 같은 농도와 비율의 리튬염 및 양쪽성 이온 화합물을 포함하여 극저온 환경에서 수계 전해질의 동결을 방지할 수 있으므로 전해질의 융점은 -30 ℃ 이하일 수 있고, 상기 전해질을 포함하는 의사 커패시터 역시 -30 ℃ 이하의 극저온 환경에서 안정적으로 구동이 가능한 장점이 있다.Since the aqueous electrolyte according to the present invention may prevent freezing of the aqueous electrolyte in a cryogenic environment, including the lithium salt and the zwitterionic compound of the same concentration and ratio, the melting point of the electrolyte may be -30 ℃ or less, Pseudo-capacitors also have the advantage of being able to drive stably in cryogenic environments below -30 ℃.
본 발명에 따른 의사 커패시터는 제1 집전체, 제1 전극, 전해질, 분리막, 제2 전극, 제2 집전체 및 케이스로 구성될 수 있고, 제1 집전체, 전해질, 분리막, 제2 집전체 및 케이스는 기존의 공지된 기술을 사용할 수 있기 때문에 그에 대한 상세한 설명은 생략하기로 한다.The pseudo capacitor according to the present invention may be composed of a first current collector, a first electrode, an electrolyte, a separator, a second electrode, a second current collector and a case, and include a first current collector, an electrolyte, a separator, a second current collector, and Since the case may use existing known techniques, detailed description thereof will be omitted.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.Hereinafter, the present invention will be described in more detail with reference to examples and the like, but the scope and contents of the present invention are not limited or interpreted by the following examples. In addition, if it is based on the disclosure of the present invention including the following examples, it will be apparent that those skilled in the art can easily carry out the present invention, the results of which are not specifically presented experimental results, these modifications and modifications are attached to the patent It goes without saying that it belongs to the claims.
[실시예 1] 수계 전해질의 제조Example 1 Preparation of Aqueous Electrolyte
초순수(DI Water) 50ml를 기준으로 리튬염인 LiNO3 (Junsei 社)을 6 몰랄(m) 농도, 양쪽성 이온 화합물인 베타인(betaine, (CH3)3N+CH2CO2
-, Sigma-Aldrich 社)을 3 몰랄(m) 농도로 용해하고, 30분간 교반하여 의사 커패시터용 수계 전해질을 제조하였다.Deionized water (DI Water) in a the LiNO 3 (Junsei社) lithium salt relative to 50ml 6 molal (m) the concentration, the ampholytic ion compound is a beta (betaine, (CH 3) 3 N + CH 2 CO 2 -, Sigma -Aldrich Co., Ltd. was dissolved at a concentration of 3 mol (m), and stirred for 30 minutes to prepare an aqueous electrolyte for a pseudo capacitor.
[실시예2] 수계 전해질의 제조Example 2 Preparation of Aqueous Electrolyte
초순수(DI Water) 50ml를 기준으로 리튬염인 LiNO3 (Junsei 社), 양쪽성 이온 화합물인 베타인(betaine, (CH3)3N+CH2CO2
-, Sigma-Aldrich 社)을 각각 6 몰랄(m) 농도로 용해하고, 30분간 교반하여 의사 커패시터용 수계 전해질을 제조하였다.Based on 50 ml of DI water, lithium salt LiNO 3 (Junsei) and the zwitterionic compound betaine (CH 3 ) 3 N + CH 2 CO 2 - and Sigma-Aldrich) were each used. An aqueous electrolyte for pseudocapacitors was prepared by dissolving at a molar (m) concentration and stirring for 30 minutes.
[실시예 3] 수계 전해질의 제조Example 3 Preparation of Aqueous Electrolyte
초순수(DI Water) 50ml를 기준으로 리튬염인 LiNO3 (Junsei 社)을 6 몰랄(m) 농도, 양쪽성 이온 화합물인 베타인(betaine, (CH3)3N+CH2CO2
-, Sigma-Aldrich 社)을 10 몰랄(m) 농도로 용해하고, 30분간 교반하여 의사 커패시터용 수계 전해질을 제조하였다.Deionized water (DI Water) in a the LiNO 3 (Junsei社) lithium salt relative to 50ml 6 molal (m) the concentration, the ampholytic ion compound is a beta (betaine, (CH 3) 3 N + CH 2 CO 2 -, Sigma -Aldrich Co., Ltd. was dissolved at a concentration of 10 mol (m) and stirred for 30 minutes to prepare an aqueous electrolyte for a pseudo capacitor.
[실시예 4] 수계 전해질의 제조Example 4 Preparation of Aqueous Electrolyte
초순수(DI Water) 50ml를 기준으로 리튬염인 LiNO3 (Junsei 社)을 3 몰랄(m) 농도, 양쪽성 이온 화합물인 베타인(betaine, (CH3)3N+CH2CO2
-, Sigma-Aldrich 社)을 6 몰랄(m) 농도로 용해하고, 30분간 교반하여 의사 커패시터용 수계 전해질을 제조하였다.Deionized water (DI Water) in a the LiNO 3 (Junsei社) lithium salt relative to the 50ml 3 molal (m) the concentration, the ampholytic ion compound is a beta (betaine, (CH 3) 3 N + CH 2 CO 2 -, Sigma -Aldrich Co., Ltd. was dissolved at a concentration of 6 molal (m) and stirred for 30 minutes to prepare an aqueous electrolyte for a pseudo capacitor.
[비교예 1] 수계 전해질의 제조Comparative Example 1 Preparation of an Aqueous Electrolyte
초순수(DI Water) 50ml를 기준으로 리튬염인 LiNO3를 2 몰랄(m) 농도로 한 것을 제외하고는 실시예 2과 동일하게 하여 의사 커패시터용 수계 전해질을 제조하였다.Aqueous electrolyte for pseudocapacitors was prepared in the same manner as in Example 2, except that LiNO 3 , a lithium salt, was set at a concentration of 2 mol (m) based on 50 ml of ultra pure water (DI Water).
[비교예 2] 수계 전해질의 제조Comparative Example 2 Preparation of an Aqueous Electrolyte
양쪽성 이온 화합물을 포함하지 않고, 초순수(DI Water) 50ml를 기준으로 2 몰랄(m) 농도의 리튬염 LiNO3만을 포함하는 의사 커패시터용 수계 전해질을 제조하였다.An aqueous electrolyte for pseudocapacitors was prepared, which did not contain an amphoteric ionic compound and contained only lithium salt LiNO 3 having a concentration of 2 mol (m) based on 50 ml of ultra pure water (DI Water).
[비교예 3] 수계 전해질의 제조Comparative Example 3 Preparation of Aqueous Electrolyte
양쪽성 이온 화합물인 베타인(betaine, (CH3)3N+CH2CO2
-, Sigma-Aldrich 社) 대신 하기 콜린 바이카보네이트(Choline bicarbonate)를 사용한 것을 제외하고는 실시예 1과 동일하게 하여 의사 커패시터용 수계 전해질을 제조하였다.A zwitterion compound, beta (betaine, (CH 3) 3 N + CH 2 CO 2 -, Sigma-Aldrich社) and is in the same manner as in Example 1 except for using a substitute choline bicarbonate (Choline bicarbonate) An aqueous electrolyte for the pseudo capacitor was prepared.
[비교예 4] 수계 전해질의 제조Comparative Example 4 Preparation of an Aqueous Electrolyte
양쪽성 이온 화합물인 베타인(betaine, (CH3)3N+CH2CO2
-, Sigma-Aldrich 社) 대신 하기 L-알라닌(L-Alanine)을 사용한 것을 제외하고는 실시예 1과 동일하게 하여 의사 커패시터용 수계 전해질을 제조하였다.And it is in the same manner as in Example 1 except for using instead of to L- alanine (L-Alanine) - a zwitterion compound, beta (, Sigma-Aldrich社betaine, (CH 3) 3 N + CH 2 CO 2) To prepare an aqueous electrolyte for the pseudo capacitor.
[비교예 5] 수계 전해질의 제조Comparative Example 5 Preparation of Aqueous Electrolyte
양쪽성 이온 화합물인 베타인(betaine, (CH3)3N+CH2CO2
-, Sigma-Aldrich 社) 대신 하기 L-히스티딘(L-Histidine)을 1 몰랄(m) 농도로 용해한 것을 제외하고는 실시예 1과 동일하게 하여 의사 커패시터용 수계 전해질을 제조하였다.The following L-histidine (L-Histidine) was dissolved in 1 molal (m) concentration instead of the zwitterionic compound betaine (CH 3 ) 3 N + CH 2 CO 2 - and Sigma-Aldrich Co., Ltd. Was prepared in the same manner as in Example 1 to prepare an aqueous electrolyte for a pseudo capacitor.
표 1은 상기 의사 커패시터용 수계 전해질의 첨가물 및 함량을 요약한 것이다.Table 1 summarizes the additives and the contents of the aqueous electrolyte for the pseudo capacitor.
수계 전해질 첨가제Aqueous Electrolyte Additive | ||||
초순수(DI Water, ml)Ultrapure Water (DI Water, ml) | 리튬염(LiNO3)(몰랄(m) 농도)Lithium salt (LiNO 3 ) (molar (m) concentration) | 양쪽성 이온 화합물Amphoteric ionic compounds | 몰랄(m) 농도Molal (m) concentration | |
실시예 1Example 1 | 5050 | 66 |
베타인1
|
33 |
실시예 2Example 2 | 5050 | 66 |
베타인1
|
66 |
실시예 3Example 3 | 5050 | 66 |
베타인1
|
1010 |
실시예 4Example 4 | 5050 | 33 |
베타인1
|
66 |
비교예 1Comparative Example 1 | 5050 | 22 |
베타인1
|
66 |
비교예 2Comparative Example 2 | 5050 | 22 | -- | -- |
비교예 3Comparative Example 3 | 5050 | 66 |
콜린 바이카보네이트 |
33 |
비교예 4Comparative Example 4 | 5050 | 66 |
L-알라닌L- |
33 |
비교예 5Comparative Example 5 | 5050 | 66 | L-히스티딘L-histidine | 1One |
(1: 베타인 (CH3)3N+CH2CO2
-)(1: Betaine (CH 3) 3 N + CH 2 CO 2 -)
[실험예 1] 의사 커패시터의 전기화학적 특성 평가Experimental Example 1 Evaluation of Electrochemical Characteristics of Pseudo Capacitors
상기 실시예 1 내지 4 및 비교예 1 내지 5의 수계 전해질에 대하여 3전극 방식의 의사 커패시터를 제작한 후, 사이클릭 볼타메트리(cyclic voltammetry, Bio-Logics 社 VSP/VMP3)를 이용하여 아래와 같은 방법으로 물성을 측정하여 도 1 내지 3, 5 내지 10, 12 내지 15 및 표 2에 나타내었다. 측정방법은 LiMn2O4를 포함하는 양극 작용 전극(Working electrode), 백금판을 상대 전극(Counter Electrode), Ag/AgCl 기준 전극(Reference Electrode)을 이용하여 상기 실시예 1 내지 4 및 비교예 1 내지 5의 수계 전해질에서 서로 다른 주사 속도(Scan rate)에 따라 측정하였다.After fabricating a three-electrode pseudo capacitor for the aqueous electrolytes of Examples 1 to 4 and Comparative Examples 1 to 5, cyclic voltammetry (VSP / VMP3, Bio-Logics, Inc.) was used as follows. Physical properties were measured by the method, and are shown in FIGS. 1 to 3, 5 to 10, 12 to 15, and Table 2. Measuring method is using the working electrode (LiMn 2 O 4 ) comprising a working electrode, a platinum plate counter electrode (Counter Electrode), Ag / AgCl reference electrode (Reference Electrode) using the Examples 1 to 4 and Comparative Example 1 It was measured according to different scanning rates in the aqueous electrolyte of 5 to 5.
(1) 3전극 측정(1) 3-electrode measurement
사이클릭 볼타메트리(cyclic voltammetry)를 이용하여, 양극의 경우 전압 -0.2 내지 1.1V, 10 mV/sec 및 1 mV/sec 조건 하에서 측정하였다.Cyclic voltammetry was used to measure the voltage under positive conditions of -0.2 to 1.1V, 10 mV / sec and 1 mV / sec for the positive electrode.
(2) 2전극 측정(2) 2 electrode measurement
- LiMn2O4는 (working electrode)로, LiTi2(PO4)3는 (counter와 reference electrode)로 사용하였다.LiMn 2 O 4 was used as the working electrode and LiTi 2 (PO 4 ) 3 was used as the counter and reference electrode.
- 사이클릭 볼타메트리(cyclic voltammetry)를 이용하여, 전압 0.3 ~ 2.1 V, 10 mV/sec로 측정하였다.By cyclic voltammetry, the voltage was measured at 0.3 to 2.1 V and 10 mV / sec.
- 정전류 방전(constant-current discharge) 방법을 이용하여, 충/방전 조건(정전류 1.398 mA, 전압 0.3 ~ 2.1 V) 하에서 측정하였다.Measurements were made under charge / discharge conditions (constant current 1.398 mA, voltage 0.3-2.1 V) using the constant-current discharge method.
상기 실시예 1 내지 4 및 비교예 3 내지 5의 수계 전해질에 대하여, 상기와 같이, 10 mV/sec 및 1 mV/sec 조건 하에서 측정한 3전극 측정의 결과를 하기 표 2에 나타내었다. As for the aqueous electrolytes of Examples 1 to 4 and Comparative Examples 3 to 5, the results of the three-electrode measurement measured under the conditions of 10 mV / sec and 1 mV / sec are shown in Table 2 below.
방전용량(F/g)10mV/sDischarge Capacity (F / g) 10mV / s | 방전에너지(Wh/kg)10mV/sDischarge Energy (Wh / kg) 10mV / s | 방전용량(F/g)1mV/sDischarge Capacity (F / g) 1mV / s | 방전에너지(Wh/kg)1mV/sDischarge Energy (Wh / kg) 1mV / s | |
실시예 1Example 1 | 314.82314.82 | 108.80108.80 | 340.60340.60 | 121.85121.85 |
실시예 2Example 2 | 271.09271.09 | 86.2886.28 | 329.29329.29 | 115.27115.27 |
실시예 3Example 3 | 270.21270.21 | 83.0983.09 | 319.86319.86 | 110.98110.98 |
실시예 4Example 4 | 294.41294.41 | 91.1291.12 | 305.56305.56 | 103.56103.56 |
비교예 3Comparative Example 3 | 337.43337.43 | 99.7899.78 | 475.02475.02 | 84.7484.74 |
비교예 4Comparative Example 4 | 369.44369.44 | 96.5596.55 | 363.82363.82 | 55.4655.46 |
비교예 5Comparative Example 5 | 300.95300.95 | 80.1180.11 | 198.81198.81 | 23.5523.55 |
실시예 1 내지 4에 따른 전해질은 전반적으로 우수한 방전용량 및 에너지 밀도를 가지는 것을 알 수 있었다. 또한, 실시예 2에 따른 전해질을 사용한 경우, 리튬염의 농도(2 몰랄(m) 농도)가 낮고, 리튬염과 양쪽성 이온 화합물의 몰랄(m) 농도의 비율(1:3)이 높은 비교예 1에 비해 전반적으로 우수한 출력밀도, 방전용량, 비정전용량 및 에너지 밀도를 가지는 것을 알 수 있었다.또한, 비교예 2의 경우 출력밀도, 방전용량, 비정전용량 및 에너지 밀도 면에서 실시예 2에 따른 전해질을 포함한 경우와 비슷한 결과를 나타내기는 하였으나, 후술하는 바와 같이, -30℃에서의 동결 실험을 진행한 결과 극저온 환경(-30℃)에서 수계 전해질이 동결되어, 극저온 구동 특성이 열악하였다. 이에, 비교예 1 및 2의 수계 전해질은 의사 커패시터의 수계 전해질로서 적합하지 않음을 알 수 있었다.The electrolytes according to Examples 1 to 4 were found to have excellent overall discharge capacity and energy density. In addition, when the electrolyte according to Example 2 was used, the lithium salt concentration (2 mol (m) concentration) is low, the comparative example of a high ratio (1: 3) of the mol mol (m) concentration of the lithium salt and the zwitterionic compound. It can be seen that it has an overall superior output density, discharge capacity, specific capacitance and energy density compared to 1. In addition, in Comparative Example 2, the electrolyte according to Example 2 in terms of output density, discharge capacity, specific capacitance and energy density. Although similar results were shown, but as described below, the freezing experiment at -30 ℃ as a result of the freezing of the aqueous electrolyte in the cryogenic environment (-30 ℃), the cryogenic driving characteristics were poor. Thus, it was found that the aqueous electrolytes of Comparative Examples 1 and 2 were not suitable as the aqueous electrolyte of the pseudo capacitor.
이로부터, 리튬염 및 양쪽성 이온 화합물의 몰랄(m) 농도의 비율이 2:1 내지 1:2의 몰랄(m) 농도의 비율을 벗어나는 경우, 의사 커패시터의 수계 전해질로서 적합하지 않음을 알 수 있었다.From this, it can be seen that when the ratio of the molal (m) concentration of the lithium salt and the zwitterionic compound is outside the ratio of the molal (m) concentration of 2: 1 to 1: 2, it is not suitable as an aqueous electrolyte of a pseudo capacitor. there was.
한편, 본 발명에 따른 화학식 1 및 2로 표시되는 화합물과 유사하지만 상이한 구조를 갖는 콜린 바이카보네이트(Choline bicarbonate, 비교예 3), L-알라닌(L-Alanine, 비교예 4) 및 L-히스티딘(L-Histidine, 비교예 5)를 사용한 비교예 3 내지 5의 수계 전해질 역시 의사 커패시터의 수계 전해질로서 적합하지 않음을 알 수 있었다.Meanwhile, Choline bicarbonate (Comparative Example 3), L-Alanine (L-Alanine, Comparative Example 4) and L-Histidine (Choline bicarbonate) having a similar structure to the compounds represented by Formulas 1 and 2 according to the present invention but having different structures It was found that the aqueous electrolytes of Comparative Examples 3 to 5 using L-Histidine, Comparative Example 5) were also not suitable as the aqueous electrolyte of the pseudo capacitor.
구체적으로, 비교예 3의 경우, 부반응으로 인하여 발생하는 Redox peak에 의하여 방전용량은 높은 것으로 보이나, 실질적으로 에너지밀도가 상대적으로 매우 낮아 전기화학적 특성이 열악하고, 측정 중 리튬염과 콜린 바이카보네이트가 석출되는 문제가 발생하여 의사 커패시터의 수계 전해질로서 적합하지 않음을 알 수 있었다. 또한, 비교예 4 역시 방전용량은 높은 것으로 보이나, 에너지밀도가 상대적으로 매우 낮아 전기화학적 특성이 열악하여 의사 커패시터의 수계 전해질로서 적합하지 않음을 알 수 있었다. 또한, 비교예 5의 경우, 본 발명에 따른 실시예에 비하여 방전용량 및 에너지밀도가 모두 낮고, 특히, L-히스티딘은 수계 용매에 대한 용해도가 낮아 1 몰랄(m) 농도 이상 용해되지 않아, 의사 커패시터의 수계 전해질로서 적합하지 않음을 알 수 있었다. Specifically, in the case of Comparative Example 3, the discharge capacity appears to be high due to the redox peak generated due to the side reaction, but the energy density is relatively very low, so the electrochemical characteristics are poor, and lithium salt and choline bicarbonate are Precipitation occurred and it was found that it was not suitable as an aqueous electrolyte of a pseudo capacitor. In addition, Comparative Example 4 also showed a high discharge capacity, but relatively low energy density, the electrochemical properties were poor, it was found that it is not suitable as an aqueous electrolyte of a pseudo capacitor. In addition, in the case of Comparative Example 5, both the discharge capacity and the energy density is lower than the embodiment according to the present invention, in particular, L- histidine is low solubility in an aqueous solvent, so that it does not dissolve more than 1 molal (m) concentration, It was found that it is not suitable as an aqueous electrolyte of a capacitor.
[실험예 2] 의사 커패시터의 극저온 구동 특성 평가Experimental Example 2 Evaluation of Cryogenic Driving Characteristics of Pseudocapacitors
유리탄소질 전극(glassy carbon electrode)을 이용하여, LiMn2O4를 포함하는 양극, LiTi2(PO4)3을 포함하는 음극 및 상기 실시예 2 및 비교예 1 내지 2의 수계 전해질을 포함하는 의사 커패시터를 제작하고, 극저온(-30 ℃) 환경에서 커패시터의 사이클에 따른 구동 특성을 평가하였다.Using a glassy carbon electrode, a cathode including LiMn 2 O 4 , a cathode including LiTi 2 (PO 4 ) 3 and the aqueous electrolyte of Examples 2 and Comparative Examples 1 to 2 A pseudo capacitor was fabricated and the driving characteristics of the capacitor were evaluated in a cryogenic (-30 ° C.) environment.
도 4를 살펴보면 실시예 2에 따른 수계 전해질을 포함하는 의사 커패시터의 경우, 극저온 환경에서도 장기 수명안정성이 유지되는 것을 확인할 수 있었던 반면, 비교예 1의 경우 상기 극저온 환경에서 수계 전해질이 동결하지는 않았으나, 베타인 대비 적은 비율의 리튬염(LiNO3)을 포함하여 도 5 및 6에서와 같이 정전류 측정 결과가 현저히 좋지 않은 것을 알 수 있었다.Referring to FIG. 4, in the case of the pseudocapacitor including the aqueous electrolyte according to Example 2, it was confirmed that long-term life stability was maintained even in a cryogenic environment, whereas in Comparative Example 1, the aqueous electrolyte was not frozen in the cryogenic environment. Including the lithium salt (LiNO 3 ) of the ratio relative to betaine it was found that the constant current measurement results are not very good as shown in Figures 5 and 6.
비교예 2의 경우에는 수계 전해질에 베타인을 포함하지 않고 리튬염(LiNO3)만을 포함하여, -30 ℃ 동결 실험 진행(JEIO TECH 社 TH-KE Temperature & Humidity Chamber)한 결과 상기 극저온 환경에서 수계 전해질이 동결한 것을 확인할 수 있었다. (도 11)In Comparative Example 2, only the lithium salt (LiNO 3 ) was included in the aqueous electrolyte, and only lithium salt (LiNO 3 ) was used. It was confirmed that this was frozen. (Figure 11)
[실험예 3] 수계 전해질의 이온전도도 측정 및 평가Experimental Example 3 Measurement and Evaluation of Ion Conductivity of an Aqueous Electrolyte
상기 실시예 1 내지 4 및 비교예 1 내지 5에서 제조된 수계 전해질의 이온전도도를 이온전도도 미터기(Mettler Toledo 社)에 의하여 측정하였고, 그 결과를 하기 표 3에 나타내었다.Ion conductivity of the aqueous electrolyte prepared in Examples 1 to 4 and Comparative Examples 1 to 5 was measured by an ion conductivity meter (Mettler Toledo, Inc.), and the results are shown in Table 3 below.
이온전도도 (mS/cm)Ion Conductivity (mS / cm) | |
실시예 1Example 1 | 79.6979.69 |
실시예 2Example 2 | 43.0943.09 |
실시예 3Example 3 | 32.3032.30 |
실시예 4Example 4 | 17.8917.89 |
비교예 1Comparative Example 1 | 23.5123.51 |
비교예 2Comparative Example 2 | 108.4108.4 |
비교예 3Comparative Example 3 | 106.8106.8 |
비교예 4Comparative Example 4 | 85.1485.14 |
비교예 5Comparative Example 5 | 115.8115.8 |
상기 표 3을 참고하면, 실시예 1 내지 4에서 제조된 수계 전해질의 경우, 높은 함량의 리튬염과 양쪽성 이온 화합물을 포함하고 있음에도 불구하고, 우수한 이온전도도를 나타내는 것을 알 수 있었다.Referring to Table 3, in the case of the aqueous electrolyte prepared in Examples 1 to 4, although it contains a high content of lithium salt and amphoteric ionic compound, it can be seen that it shows excellent ionic conductivity.
상기 실시예 및 실험예를 통하여, 본 발명의 수계 전해질을 이용한 의사 커패시터를 제공함으로써, 극저온 환경에서도 우수한 출력밀도, 방전용량, 비정전용량, 이온전도도, 에너지 밀도 및 장기수명안정성이 크게 향상된 의사 커패시터를 제조할 수 있음을 확인할 수 있었다.Through the above Examples and Experimental Examples, by providing a pseudo capacitor using the aqueous electrolyte of the present invention, a pseudo capacitor having a greatly improved output density, discharge capacity, specific capacitance, ion conductivity, energy density and long-life life stability even in cryogenic environments It could be confirmed that it can be produced.
Claims (12)
- 수계 용매, 리튬염 및 양쪽성 이온 화합물을 포함하는 의사 커패시터용 수계 전해질.An aqueous electrolyte for pseudo capacitors comprising an aqueous solvent, a lithium salt, and an amphoteric ionic compound.
- 제1항에 있어서, The method of claim 1,상기 수계 용매는 초순수(DI water), 2-부톡시에탄올(2-butoxy ethanol) 및 아이소프로필알코올(iso-propyl alcohol)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 의사 커패시터용 수계 전해질.The aqueous solvent is an aqueous electrolyte for pseudo capacitors, characterized in that at least one selected from the group consisting of ultra pure water (DI water), 2-butoxy ethanol (2-butoxy ethanol) and isopropyl alcohol (iso-propyl alcohol).
- 제1항에 있어서,The method of claim 1,상기 양쪽성 이온 화합물은 하기 화학식 1로 표시되는 4급 암모늄 알킬 카복실레이트 화합물인 의사 커패시터용 수계 전해질.The amphoteric ionic compound is a quaternary ammonium alkyl carboxylate compound represented by the following formula (1).[화학식 1][Formula 1](단, R1 내지 R3는 각각 독립적으로 같거나 다른 직쇄 또는 분지쇄의 알킬기임)(Wherein R 1 to R 3 are each independently the same or different linear or branched alkyl groups)
- 제1항에 있어서,The method of claim 1,상기 리튬염 및 양쪽성 이온 화합물은 각각 1 내지 10 몰랄(m) 농도로 포함되는 것을 특징으로 하는 의사 커패시터용 수계 전해질.The lithium salt and the zwitterionic compound are each an aqueous electrolyte for a pseudo capacitor, characterized in that contained in a concentration of 1 to 10 mol (m).
- 제1항에 있어서,The method of claim 1,상기 리튬염 및 양쪽성 이온 화합물은 각각 3 내지 10 몰랄(m) 농도로 포함되는 것을 특징으로 하는 의사 커패시터용 수계 전해질.The lithium salt and the zwitterionic compound are each an aqueous electrolyte for a pseudo capacitor, characterized in that it comprises a concentration of 3 to 10 mol (m).
- 제6항에 있어서,The method of claim 6,상기 리튬염 및 양쪽성 이온 화합물은 9:1 내지 1:9 의 몰랄(m) 농도 비율로 포함되는 것을 특징으로 하는 의사 커패시터용 수계 전해질.The lithium salt and the zwitterionic compound is an aqueous electrolyte for a pseudo capacitor, characterized in that contained in a molar (m) concentration ratio of 9: 1 to 1: 9.
- 제6항에 있어서,The method of claim 6,상기 리튬염 및 양쪽성 이온 화합물은 2:1 내지 1:2 의 몰랄(m) 농도 비율로 포함되는 것을 특징으로 하는 의사 커패시터용 수계 전해질.The lithium salt and the zwitterionic compound are aqueous electrolytes for pseudo capacitors, characterized in that contained in a molar (m) concentration ratio of 2: 1 to 1: 2.
- 제1항에 있어서,The method of claim 1,상기 리튬염은 6 몰랄(m) 농도로 포함되고, 상기 양쪽성 이온 화합물은 3 내지 10 몰랄(m) 농도로 포함되는 것을 특징으로 하는 의사 커패시터용 수계 전해질.The lithium salt is contained in a concentration of 6 mol (m), the amphoteric ionic compound is an aqueous electrolyte for a pseudo capacitor, characterized in that it is contained in a concentration of 3 to 10 mol (m).
- 제1항에 있어서,The method of claim 1,상기 리튬염은 Li(OH), Li2O, LiCO3, LiNO3, Li2SO4, LiNO3 및 CH3COOLi 중 어느 하나로 이루어지는 것을 특징으로 하는 의사 커패시터용 수계 전해질.The lithium salt is an aqueous electrolyte for a pseudo capacitor, characterized in that made of any one of Li (OH), Li 2 O, LiCO 3 , LiNO 3 , Li 2 SO 4 , LiNO 3 and CH 3 COOLi.
- 제1항에 있어서,The method of claim 1,상기 전해질은 융점이 -30 ℃ 이하인 것인 의사 커패시터용 수계 전해질.The electrolyte is an aqueous electrolyte for a pseudo capacitor that has a melting point of -30 ° C or less.
- 양극; 음극; 및anode; cathode; And제1항 내지 제11항에 따른 전해질을 포함하는 의사 커패시터.A pseudo capacitor comprising the electrolyte according to claim 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980006077.0A CN111418037B (en) | 2018-08-29 | 2019-08-12 | Aqueous electrolyte and pseudo capacitor comprising same |
JP2020530375A JP7080323B2 (en) | 2018-08-29 | 2019-08-12 | Aqueous electrolyte and pseudo-capacitor containing it |
US16/764,811 US11177079B2 (en) | 2018-08-29 | 2019-08-12 | Aqueous electrolyte and pseudocapacitor comprising same |
EP19855132.7A EP3703090B1 (en) | 2018-08-29 | 2019-08-12 | Aqueous electrolyte and pseudocapacitor comprising same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180101953 | 2018-08-29 | ||
KR10-2018-0101953 | 2018-08-29 | ||
KR1020190097202A KR102302558B1 (en) | 2018-08-29 | 2019-08-09 | Aqueous electrolyte and a pseudocapacitor comprising the same |
KR10-2019-0097202 | 2019-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045853A1 true WO2020045853A1 (en) | 2020-03-05 |
Family
ID=69644573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/010188 WO2020045853A1 (en) | 2018-08-29 | 2019-08-12 | Aqueous electrolyte and pseudocapacitor comprising same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020045853A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001155541A (en) * | 1999-11-25 | 2001-06-08 | Canon Inc | Gel electrolyte |
KR20140081276A (en) | 2012-12-21 | 2014-07-01 | 삼성전기주식회사 | Lithium ion capacitor |
KR20150104100A (en) * | 2012-12-12 | 2015-09-14 | 아퀴온 에너지 인코포레이티드 | Composite anode structure for aqueous electrolyte energy storage and device containing same |
KR20150135207A (en) * | 2013-03-27 | 2015-12-02 | 제이에스알 가부시끼가이샤 | Binder composition for electricity storage devices |
KR20170116314A (en) * | 2016-04-08 | 2017-10-19 | 한국화학연구원 | Crosslinker for ion exchangable polymer for vanadium redox flow battery, ion exchangable-crosslinked polymer for vanadium redox flow battery crosslinked by the crosslinker and use thereof |
JP2018520497A (en) * | 2015-05-18 | 2018-07-26 | 恩力能源科技(南通)有限公司 | Recoverable electrochemical energy storage device |
KR20180101953A (en) | 2017-03-06 | 2018-09-14 | 삼성전자주식회사 | Integrated circuit device |
KR20190097202A (en) | 2017-01-05 | 2019-08-20 | 텔레폰악티에볼라겟엘엠에릭슨(펍) | Narrowband Physical Random Access Channel (NPRACH) for Extended Range |
-
2019
- 2019-08-12 WO PCT/KR2019/010188 patent/WO2020045853A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001155541A (en) * | 1999-11-25 | 2001-06-08 | Canon Inc | Gel electrolyte |
KR20150104100A (en) * | 2012-12-12 | 2015-09-14 | 아퀴온 에너지 인코포레이티드 | Composite anode structure for aqueous electrolyte energy storage and device containing same |
KR20140081276A (en) | 2012-12-21 | 2014-07-01 | 삼성전기주식회사 | Lithium ion capacitor |
KR20150135207A (en) * | 2013-03-27 | 2015-12-02 | 제이에스알 가부시끼가이샤 | Binder composition for electricity storage devices |
JP2018520497A (en) * | 2015-05-18 | 2018-07-26 | 恩力能源科技(南通)有限公司 | Recoverable electrochemical energy storage device |
KR20170116314A (en) * | 2016-04-08 | 2017-10-19 | 한국화학연구원 | Crosslinker for ion exchangable polymer for vanadium redox flow battery, ion exchangable-crosslinked polymer for vanadium redox flow battery crosslinked by the crosslinker and use thereof |
KR20190097202A (en) | 2017-01-05 | 2019-08-20 | 텔레폰악티에볼라겟엘엠에릭슨(펍) | Narrowband Physical Random Access Channel (NPRACH) for Extended Range |
KR20180101953A (en) | 2017-03-06 | 2018-09-14 | 삼성전자주식회사 | Integrated circuit device |
Non-Patent Citations (1)
Title |
---|
See also references of EP3703090A4 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015053588A1 (en) | Electrolyte solution for redox flow battery and redox flow battery comprising same | |
US6728096B1 (en) | Non-aqueous electrolyte | |
EP0731477B1 (en) | Electric double layer capacitor | |
WO2019035575A1 (en) | Electrolyte for secondary battery and secondary battery comprising same | |
US7082027B2 (en) | Proton-conducting electric double layer capacitor using electrolytic solution | |
JP2006210331A (en) | Ionic conductive material with good corrosion resistance | |
WO2020149682A1 (en) | Anode and lithium secondary battery comprising same | |
WO2022071704A1 (en) | Electrode | |
WO2019103434A1 (en) | Additive, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery comprising same | |
WO2010011110A2 (en) | Electrolyte comprising eutectic mixture and electrochemical device equipped with same | |
US20230327204A1 (en) | Lithium ion electrolyte, preparation method and application thereof | |
WO2020105981A1 (en) | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same | |
WO2020045853A1 (en) | Aqueous electrolyte and pseudocapacitor comprising same | |
US8936882B2 (en) | Electrolyte compositions for lithium and lithium-ion batteries | |
KR102302558B1 (en) | Aqueous electrolyte and a pseudocapacitor comprising the same | |
WO2020204286A1 (en) | Electrolyte composition for hybrid lithium redox flow battery, having improved ionic conductivity and comprising ester group-substituted ionic liquid | |
WO2018030564A1 (en) | Method for preparing electrolyte ionic liquid containing ether group and having high ion conductivity | |
WO2022149877A1 (en) | Electrolyte for lithium-sulfur battery, and lithium-sulfur battery comprising same | |
WO2020091479A1 (en) | Lithium electrode and lithium secondary battery comprising same | |
WO2021060939A1 (en) | Nucleic acid-based solid-state single ion conductor, electrolyte comprising same, and lithium ion battery comprising same | |
KR20200025106A (en) | Aqueous electrolyte and a pseudocapacitor comprising the same | |
WO2013147435A1 (en) | Electrolyte having enhanced high-rate charge/discharge properties and capacitor comprising same | |
WO2014046346A1 (en) | Lithium air battery | |
WO2019139397A1 (en) | Cathode slurry composition, cathode manufactured using same, and battery including same | |
WO2024122746A1 (en) | Ion gel, comprising ionic liquid, for flexible supercapacitor electrolyte and flexible supercapacitor comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19855132 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020530375 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019855132 Country of ref document: EP Effective date: 20200526 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |