[go: up one dir, main page]

WO2020040471A1 - Freezer - Google Patents

Freezer Download PDF

Info

Publication number
WO2020040471A1
WO2020040471A1 PCT/KR2019/010284 KR2019010284W WO2020040471A1 WO 2020040471 A1 WO2020040471 A1 WO 2020040471A1 KR 2019010284 W KR2019010284 W KR 2019010284W WO 2020040471 A1 WO2020040471 A1 WO 2020040471A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
liquid
evaporator
compressor
state
Prior art date
Application number
PCT/KR2019/010284
Other languages
French (fr)
Korean (ko)
Inventor
윤상국
Original Assignee
한국해양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양대학교 산학협력단 filed Critical 한국해양대학교 산학협력단
Publication of WO2020040471A1 publication Critical patent/WO2020040471A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the following embodiments relate to a refrigerator, and more particularly, to a refrigerator in which the expansion of the refrigerant is performed in two stages.
  • the refrigerator refers to a device that reduces the temperature of one side by taking heat from one side and transferring it to the other side.
  • a refrigerator will be described as a representative example of a refrigerator.
  • the refrigerator described below may be used to mean a refrigerator.
  • FIG. 1 is a view schematically showing the structure of a conventional refrigerator.
  • the conventional refrigerator 10 may include a compressor 11, a condenser 12, a precooling pipe 13, an expansion device 14, and an evaporator 15, according to an embodiment. It may further include a receiver.
  • the compressor 11 compresses the low-temperature, low-pressure gaseous refrigerant provided by the evaporator 15 to a high temperature and high pressure, and delivers the refrigerant to the condenser 12, and the condenser 12 compresses the high-temperature, high-pressure gas in the compressor 11.
  • the refrigerant is condensed to be a liquid refrigerant by heat exchange with external air or water, and transferred to the receiver, and the receiver temporarily stores the liquid refrigerant condensed at high temperature and high pressure in the condenser 12.
  • the expansion device 14 rapidly expands the high-temperature, high-pressure liquid refrigerant supplied from the receiver to transfer the low-temperature low-pressure refrigerant to the evaporator 15, and the evaporator 15 is the low-temperature low pressure supplied from the expansion device 14.
  • the refrigerant of the gas is evaporated by heat exchange with the heat exchange medium such as external air and water to evaporate to generate a gaseous refrigerant having a low temperature and low pressure, and then transferred to the compressor 11.
  • the conventional refrigerator 10 is a mixture of liquid and gas while the condensed high pressure liquid refrigerant of the condenser 12 drops to a low pressure, at which time gas is generated about 30%.
  • the refrigerant liquid ie, the liquid refrigerant in the liquid state
  • the freezing capacity of the evaporator 15 increases, and the generated gas does not play a role of freezing.
  • Both the liquid and gas expanded at low pressure are vaporized in the evaporator 15 and then recompressed to high pressure using power in the compressor 11.
  • Korean Laid-Open Patent Publication No. 2003-0080535 describes a technology related to such an intermediate heat exchange refrigeration apparatus.
  • Embodiments describe a refrigerator having two stages of expansion of a refrigerant, and more particularly, provides a technique in which the medium pressure gas inside the medium expansion liquid separator flows directly into the compressor without flowing to the evaporator.
  • Embodiments of the present invention collect liquid and gaseous refrigerant generated in a liquid separator by expanding the high-pressure liquid refrigerant in a condenser at an intermediate pressure, and the liquid refrigerant, which functions as a freezer, expands to a final pressure and then flows into an evaporator.
  • a medium-pressure gaseous refrigerant in a liquid separator that is independent of the refrigeration function is sent directly to the compressor without being introduced into the evaporator, thereby providing a refrigerator that compresses the medium pressure to a high pressure.
  • a refrigerator includes: a compressor configured to discharge a refrigerant in a gaseous state; A condenser for cooling and liquefying the refrigerant discharged from the compressor; A first expansion device for expanding the refrigerant liquefied in the condenser; A liquid separator for collecting the refrigerant in a liquid state and a gas state passing through the first expansion device; A second expansion device for expanding and guiding the refrigerant in a liquid state discharged from the liquid separator to the evaporator; And an evaporator that cools a predetermined space as the refrigerant in a liquid state passing through the second expansion device sucks heat and vaporizes, and guides the refrigerant in a gas state to the compressor.
  • the liquid separator may guide the refrigerant in a liquid state performing a freezing function to the evaporator, and guide the refrigerant in a gaseous state irrelevant to the freezing function to the compressor.
  • the compressor may include a refrigerant in a first gas state vaporized by flowing into the evaporator after the liquid refrigerant expands to a final pressure from the liquid separator, and a refrigerant in a second gas state moving from the liquid separator to the compressor. Inlet can be recompressed.
  • the refrigerant in the second gas state may be a relatively high pressure than the refrigerant in the first gas state, and may be in an intermediate pressure state having a relatively low pressure than when recompressed in the compressor.
  • the apparatus may further include a precooling pipe configured to subcool the liquid refrigerant discharged from the condenser using the refrigerant in a gas state discharged from the evaporator.
  • the liquid refrigerant of the high pressure liquid state of the condenser is expanded to an intermediate pressure, and the liquid and gaseous refrigerants generated by the liquid separator are collected in the liquid separator.
  • the gaseous refrigerant in the medium pressure of the liquid separator which is not related to the refrigeration function, is sent directly to the compressor without entering the evaporator, thereby providing a refrigerator which can compress the medium pressure to a high pressure and greatly reduce the amount of compression power. have.
  • only 100% of the liquid in the liquid separator of the liquid separator may be expanded to a low pressure, which is the final pressure, and then introduced into the evaporator, thereby providing a refrigerator having an effect of increasing evaporator efficiency and reducing specifications.
  • FIG. 1 is a view schematically showing the structure of a conventional refrigerator.
  • FIG. 2 is a view schematically showing the structure of a refrigerator according to one embodiment.
  • FIG 3 is a view for explaining a change in efficiency according to the intermediate pressure according to an embodiment.
  • Refrigerator efficiency ie, COP (Coefficient Of Performance) is the amount of heat absorbed by the evaporator divided by the power required for the compressor. Therefore, there is a need for a method that can increase efficiency by increasing evaporator suction heat or lowering compressor power.
  • inventions are directed to a refrigerator having two stages of expansion of a refrigerant, and provides a refrigerator in which the medium pressure gas inside the liquid separator of the intermediate expansion flows directly into the compressor without flowing to the evaporator. More specifically, embodiments of the present invention collect liquid and gaseous refrigerant generated in a liquid separator by expanding the high pressure liquid refrigerant in a condenser at an intermediate pressure, and the liquid refrigerant having a refrigerating function at a final pressure at low pressure.
  • the gaseous refrigerant in the medium pressure of the liquid separator which is not related to the freezing function, is sent directly to the compressor without being introduced into the evaporator, thereby providing a freezer which increases the evaporator suction calories and compresses the medium pressure to a high pressure. can do.
  • FIG. 2 is a view schematically showing the structure of a refrigerator according to one embodiment.
  • the refrigerator 100 includes a compressor 110, a condenser 120, a first expansion device 140, a liquid separator 150, a second expansion device 160, and an evaporator ( 170).
  • the refrigerator 100 may further include a precooling pipe 130. It is also possible to further include a receiver according to the embodiment.
  • the compressor 110 sucks the refrigerant as a working fluid, compresses the refrigerant, and discharges the compressed refrigerant.
  • the compressor 110 may discharge the refrigerant in a gaseous state.
  • the condenser 120 may cool and liquefy the refrigerant by condensing the refrigerant discharged from the compressor 110.
  • the first expansion device 140 may expand the liquid liquefied in the condenser 120 to lower the pressure, and guide the liquid expansion separator 150 after expansion. At this time, the refrigerant may be first expanded at an intermediate pressure by the first expansion device 140.
  • the first expansion device 140 may be made of an expansion valve.
  • the liquid separator 150 may expand the refrigerant liquefied in the condenser 120 to collect the refrigerant in a liquid state and a gas state.
  • the liquid separator 150 guides the refrigerant in the liquid state performing the refrigerating function to the evaporator 170 after further expansion, and immediately passes the refrigerant in the gas state irrelevant to the refrigeration function without passing through the evaporator 170. Can be guided.
  • the second expansion device 160 may lower the pressure by expanding the liquid refrigerant discharged from the liquid separator 150 and may guide the evaporator 170 after expansion.
  • the second expansion device 160 may be formed of an expansion valve.
  • the evaporator 170 cools a predetermined space as the liquid refrigerant flows in from the liquid separator 150, sucks heat, and vaporizes the gas, and guides the refrigerant in the gas state to the compressor 110.
  • the compressor 110 moves from the liquid separator 150 to the compressor 110 in the first gas state vaporized with the refrigerant a in a vaporized state by flowing into the evaporator 170 and from the liquid separator 150 to the compressor 110.
  • the refrigerant b in the second gas state may be introduced and recompressed.
  • the refrigerant (b) in the second gas state may be in a relatively high pressure than the refrigerant (a) in the first gas state, and may be in an intermediate pressure state which is relatively low pressure than when recompressed in the compressor (110).
  • the medium pressure gas refrigerant of the liquid separator 150 irrelevant to the freezing function is directly sent to the compressor 110 without being introduced into the evaporator 170, thereby compressing the medium pressure to a high pressure.
  • the liquid refrigerant in the condenser 120 may be subcooled with the cool gas refrigerant exiting the evaporator 150.
  • This may be referred to as a precooling pipe 130 or a precooling pipe function, and the amount of liquid generated during expansion may be increased through the precooling pipe 130 or the precooling pipe function.
  • the refrigerator 100 may further include a pre-cooling pipe 130, the pre-cooling pipe 130 from the condenser 120 by using the refrigerant in the gas state discharged from the evaporator 170.
  • the discharged liquid refrigerant can be subcooled.
  • the low pressure first gaseous state a and the medium pressure second gaseous state b may be mixed and introduced into the compressor 110.
  • the refrigerator 100 first expands the liquefied refrigerant in the condenser 120 to guide the liquid separator 150, and then stores the refrigerant in the liquid state discharged from the liquid separator 150. The expansion may be guided to the evaporator 170 to expand the refrigerant in two stages.
  • the efficiency of various refrigerators such as a refrigerator and an air conditioner may be greatly improved.
  • Interpreting the process according to these embodiments is as follows.
  • the conventional refrigerator 10 becomes a mixture of liquid and gas while the condensed high pressure liquid refrigerant of the condenser 12 drops to a low pressure, and the more refrigerant in the liquid state after expansion, the evaporator ( The freezing capacity of 15) is increased, and the gas produced at this time does not play a freezing role.
  • the liquid and gaseous refrigerant expanded at low pressure are both vaporized in the evaporator 15 and then recompressed to high pressure using power in the compressor 11.
  • Process analysis and COP of the refrigerator to which the conventional refrigerant R134a is applied may be expressed as follows.
  • the COP of the conventional refrigerator is approximately 2.7268.
  • m is the mass flow of refrigerant per hour (kg / h) and the same mass flows through the evaporator and the compressor.
  • the refrigerator 100 has a high-pressure liquid refrigerant of the condenser 120 pre-cooled in the precooling pipe 130, and then, at the first expansion device 140, a medium pressure. It may be expanded and collected in the liquid separator 150. At this time, the gaseous refrigerant (b) of the intermediate pressure of the liquid separator 150 may flow directly into the compressor 110 without going to the evaporator 170.
  • Only the liquid refrigerant in the liquid and gaseous refrigerants of the liquid separator 150 may be introduced into the evaporator 170 at low temperature while being finally expanded by the second expansion device 160 to be vaporized.
  • the vaporized low pressure cool gas coolant may partially increase the temperature of the liquid coolant while lowering the temperature of the liquid coolant condensed by heat exchange in the precooling pipe 130.
  • the low-pressure gaseous refrigerant a may be mixed with the medium-pressure gaseous refrigerant b and then introduced into the compressor 110.
  • the median pressure is 5 bar with a COP of approximately 3.528.
  • the freezing capacity of the evaporator is improved by 2.6% to 138 / 134.46, and the compression work is about 20.7% to 39.1 / 49.31.
  • the efficiency increase rate of the refrigerator according to the present embodiment is 3.5386 / 2.7268, it can be seen that the efficiency is improved by about 30%.
  • the refrigerator according to the present exemplary embodiment may expand the high pressure refrigerant liquid in two stages. At this time, the medium-pressure gas inside the medium-expanded liquid separator does not flow to the evaporator and flows into the compressor, whereby the amount of compression power is greatly reduced.
  • both the liquid and the gas generated after expansion to the low pressure which is the pressure of the evaporator, are evaporated while flowing to the evaporator, and then recompressed in the compressor, thereby increasing the power demand of the compressor.
  • the refrigerator according to the present embodiment may be introduced into the evaporator after only 100% of the liquid of the liquid separator of the liquid separator is expanded to the final pressure low pressure.
  • the refrigerator according to the present embodiment is different from the conventional refrigerator in that the expansion device and the liquid separator are added, but there is an effect of increasing the evaporator efficiency and reducing the size.
  • FIG 3 is a view for explaining a change in efficiency according to the intermediate pressure according to an embodiment.
  • the efficiency change according to the middle pressure of the refrigerator refrigerant R134a is shown, and the COP according to the expansion middle pressure is illustrated.
  • the COP When expanding at a high pressure of 10.166 bar, the COP increases with an increase in the intermediate pressure, up to 30% at about 5 bar. That is, at about 5 bar, the COP has a maximum value.
  • the COP of the refrigerator is increased by two stage expansion.
  • the value of COP may vary depending on the type of refrigerant.
  • the liquid refrigerant in the high pressure liquid state of the condenser is expanded to an intermediate pressure, and the liquid and gaseous refrigerants collected in the liquid separator are collected, and the liquid refrigerant having a freezing function flows into the evaporator.
  • the medium pressure gas refrigerant of the liquid separator which is not related to the refrigeration function, is sent directly to the compressor without entering the evaporator, thereby compressing the medium pressure to a high pressure, which greatly reduces the amount of compression power and increases the evaporator's evaporation capacity. Can be. That is, the low-temperature heat provided by the liquid flowing into the evaporator is increased to improve the freezing capacity.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • ... unit a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A freezer is disclosed. A freezer according to an embodiment comprises: a compressor configured to discharge a refrigerant in the gas state; a condenser configured to cool and liquefy the refrigerant discharged from the compressor; a liquid-gas separator configured to primarily expand the refrigerant liquefied in the condenser to an intermediate pressure to collect the refrigerant in the liquid state and the gas state; and an evaporator which cools a predetermined space as the refrigerant in the liquid state flows from the liquid-gas separator into the evaporator and then is secondarily expanded to a final pressure and thus absorbs heat and is gasified, and which guides the refrigerant in the gas state in the liquid-gas separator to the compressor.

Description

냉동기Freezer
아래의 실시예들은 냉동기에 관한 것으로, 더욱 상세하게는 냉매의 팽창이 2단계로 이루어지는 냉동기에 관한 것이다.The following embodiments relate to a refrigerator, and more particularly, to a refrigerator in which the expansion of the refrigerant is performed in two stages.
냉동기는 일측의 열을 빼앗아 타측으로 전달함으로써 일측의 온도를 감소시키는 장치를 말한다. The refrigerator refers to a device that reduces the temperature of one side by taking heat from one side and transferring it to the other side.
아래에서는 냉동기의 대표적인 예로써 냉장고를 예를 들어 설명한다. 이하에서 설명되는 냉동기는 냉장고를 포함하는 의미로 사용될 수 있다. Hereinafter, a refrigerator will be described as a representative example of a refrigerator. The refrigerator described below may be used to mean a refrigerator.
도 1은 종래의 냉동기의 구조를 개략적으로 나타내는 도면이다. 1 is a view schematically showing the structure of a conventional refrigerator.
도 1을 참조하면, 종래의 냉동기(10)는 압축기(11), 응축기(12), 예냉 배관(13), 팽창장치(14) 및 증발기(15)를 포함하여 이루어질 수 있으며, 실시예에 따라 수액기를 더 포함할 수 있다. Referring to FIG. 1, the conventional refrigerator 10 may include a compressor 11, a condenser 12, a precooling pipe 13, an expansion device 14, and an evaporator 15, according to an embodiment. It may further include a receiver.
압축기(11)는 증발기(15)에서 제공된 저온 저압의 기체 상태의 냉매를 고온 고압으로 압축하여 응축기(12)로 전달하고, 응축기(12)는 압축기(11)에서 압축된 고온 고압의 기체 상태의 냉매를 외부 공기 또는 물과의 열교환 작용으로 액체 상태의 냉매가 되도록 응축시켜 수액기로 전달하며, 수액기는 응축기(12)에서 고온 고압으로 응축된 액체 상태의 냉매를 일시 저장한다. 팽창장치(14)는 수액기에서 공급되는 고온 고압의 액체 상태의 냉매를 급속 팽창시켜 저온 저압의 냉매를 증발기(15)로 전달하고, 증발기(15)는 팽창장치(14)에서 공급되는 저온 저압의 냉매를 외부의 공기 및 물 등 열교환 매체와의 열교환 작용으로 열을 빼앗아 증발하도록 하여 저온 저압의 기체 상태의 냉매를 생성한 후 압축기(11)로 전달한다. The compressor 11 compresses the low-temperature, low-pressure gaseous refrigerant provided by the evaporator 15 to a high temperature and high pressure, and delivers the refrigerant to the condenser 12, and the condenser 12 compresses the high-temperature, high-pressure gas in the compressor 11. The refrigerant is condensed to be a liquid refrigerant by heat exchange with external air or water, and transferred to the receiver, and the receiver temporarily stores the liquid refrigerant condensed at high temperature and high pressure in the condenser 12. The expansion device 14 rapidly expands the high-temperature, high-pressure liquid refrigerant supplied from the receiver to transfer the low-temperature low-pressure refrigerant to the evaporator 15, and the evaporator 15 is the low-temperature low pressure supplied from the expansion device 14. The refrigerant of the gas is evaporated by heat exchange with the heat exchange medium such as external air and water to evaporate to generate a gaseous refrigerant having a low temperature and low pressure, and then transferred to the compressor 11.
종래의 냉동기(10)는 응축기(12)의 응축된 고압의 액체 상태의 냉매가 저압으로 강하하면서 액체와 기체의 혼합물이 되고, 이 때 기체가 약 30% 발생한다. 팽창 후 냉매액(즉, 액체 상태의 냉매)이 많을수록 증발기(15)의 냉동 능력이 증가하게 되며, 이 때 생성된 기체는 냉동 역할을 하지 못한다. 저압으로 팽창된 액체와 기체는 모두 증발기(15)에서 기화된 후, 압축기(11)에서 동력을 이용하여 모두 고압으로 재압축된다. The conventional refrigerator 10 is a mixture of liquid and gas while the condensed high pressure liquid refrigerant of the condenser 12 drops to a low pressure, at which time gas is generated about 30%. As the refrigerant liquid (ie, the liquid refrigerant in the liquid state) increases after expansion, the freezing capacity of the evaporator 15 increases, and the generated gas does not play a role of freezing. Both the liquid and gas expanded at low pressure are vaporized in the evaporator 15 and then recompressed to high pressure using power in the compressor 11.
한국공개특허 특2003-0080535호는 이러한 중간 열교환방식 냉동장치에 관한 기술을 기재하고 있다.Korean Laid-Open Patent Publication No. 2003-0080535 describes a technology related to such an intermediate heat exchange refrigeration apparatus.
실시예들은 냉매의 팽창이 2단계로 이루어지는 냉동기에 관하여 기술하며, 보다 구체적으로 중간 팽창의 액기 분리기 내부의 중압 기체가 증발기로 흐르지 않고 압축기로 바로 유입되는 기술을 제공한다. Embodiments describe a refrigerator having two stages of expansion of a refrigerant, and more particularly, provides a technique in which the medium pressure gas inside the medium expansion liquid separator flows directly into the compressor without flowing to the evaporator.
실시예들은 응축기의 고압의 액체 상태의 냉매가 중간 압력으로 팽창되어 생성된 액체와 기체 상태의 냉매를 액기 분리기에서 포집하고, 냉동 기능을 하는 액체 상태의 냉매는 최종 압력으로 팽창 후 증발기로 유입시키고, 냉동 기능과 무관한 액기 분리기의 중간 압력의 기체 상태의 냉매는 증발기에 유입시키지 않고 바로 압축기로 보냄으로써, 중간 압력을 고압으로 압축하는 냉동기를 제공하는데 있다. Embodiments of the present invention collect liquid and gaseous refrigerant generated in a liquid separator by expanding the high-pressure liquid refrigerant in a condenser at an intermediate pressure, and the liquid refrigerant, which functions as a freezer, expands to a final pressure and then flows into an evaporator. In the present invention, a medium-pressure gaseous refrigerant in a liquid separator that is independent of the refrigeration function is sent directly to the compressor without being introduced into the evaporator, thereby providing a refrigerator that compresses the medium pressure to a high pressure.
일 실시예에 따른 냉동기는, 기체 상태의 냉매를 토출하는 압축기; 상기 압축기에서 토출된 상기 냉매를 냉각하여 액화시키는 응축기; 상기 응축기에서 액화된 상기 냉매를 팽창시키는 제1 팽창장치; 상기 제1 팽창장치를 통과한 액체 상태 및 기체 상태의 상기 냉매를 포집하는 액기 분리기; 상기 액기 분리기로부터 토출된 액체 상태의 상기 냉매를 팽창시켜 상기 증발기로 안내하는 제2 팽창장치; 및 상기 제2 팽창장치를 통과한 액체 상태의 상기 냉매가 유입되어 열을 흡입하고 기화됨에 따라 소정 공간을 냉각시키며, 기체 상태의 상기 냉매를 상기 압축기로 안내하는 증발기를 포함하여 이루어질 수 있다. In one embodiment, a refrigerator includes: a compressor configured to discharge a refrigerant in a gaseous state; A condenser for cooling and liquefying the refrigerant discharged from the compressor; A first expansion device for expanding the refrigerant liquefied in the condenser; A liquid separator for collecting the refrigerant in a liquid state and a gas state passing through the first expansion device; A second expansion device for expanding and guiding the refrigerant in a liquid state discharged from the liquid separator to the evaporator; And an evaporator that cools a predetermined space as the refrigerant in a liquid state passing through the second expansion device sucks heat and vaporizes, and guides the refrigerant in a gas state to the compressor.
여기서, 상기 액기 분리기는 냉동 기능을 수행하는 액체 상태의 상기 냉매를 상기 증발기로 안내하고, 냉동 기능과 무관한 기체 상태의 상기 냉매를 상기 압축기로 안내할 수 있다. Here, the liquid separator may guide the refrigerant in a liquid state performing a freezing function to the evaporator, and guide the refrigerant in a gaseous state irrelevant to the freezing function to the compressor.
상기 압축기는, 상기 액기 분리기로부터 액체 상태의 상기 냉매가 최종 압력으로 팽창 후 상기 증발기로 유입되어 기화된 제1 기체 상태의 냉매와, 상기 액기 분리기로부터 상기 압축기로 이동하는 제2 기체 상태의 냉매를 유입하여 재압축시킬 수 있다. The compressor may include a refrigerant in a first gas state vaporized by flowing into the evaporator after the liquid refrigerant expands to a final pressure from the liquid separator, and a refrigerant in a second gas state moving from the liquid separator to the compressor. Inlet can be recompressed.
그리고 상기 제2 기체 상태의 냉매는 상기 제1 기체 상태의 냉매보다 상대적으로 고압이며, 상기 압축기에서 재압축 시보다 상대적으로 저압인 중간 압력 상태일 수 있다. The refrigerant in the second gas state may be a relatively high pressure than the refrigerant in the first gas state, and may be in an intermediate pressure state having a relatively low pressure than when recompressed in the compressor.
그리고 상기 증발기에서 토출된 기체 상태의 상기 냉매를 이용하여 상기 응축기로부터 토출되는 액체 상태의 상기 냉매를 과냉(subcooling)시키는 예냉 배관을 더 포함할 수 있다. The apparatus may further include a precooling pipe configured to subcool the liquid refrigerant discharged from the condenser using the refrigerant in a gas state discharged from the evaporator.
상기 응축기에서 액화된 상기 냉매를 1차 팽창시켜 상기 액기 분리기로 안내한 후, 상기 액기 분리기로부터 토출된 액체 상태의 상기 냉매를 2차 팽창시켜 상기 증발기로 안내하여 상기 냉매를 2단계로 팽창시키게 된다.After first expanding the refrigerant liquefied in the condenser to guide the liquid separator, and secondly expands the refrigerant in the liquid state discharged from the liquid separator to guide the evaporator to expand the refrigerant in two stages. .
실시예들에 따르면 응축기의 고압의 액체 상태의 냉매가 중간 압력으로 팽창되어 생성된 액체와 기체 상태의 냉매를 액기 분리기에서 포집하고, 냉동 기능을 하는 액체 상태의 냉매는 2차 팽창 후 증발기로 유입시키고, 냉동 기능과 무관한 액기 분리기의 중간 압력의 기체 상태의 냉매는 증발기에 유입시키지 않고 바로 압축기로 보냄으로써, 중간 압력을 고압으로 압축하여 압축 동력량을 크게 감소시킬 수 있는 냉동기를 제공할 수 있다. According to the embodiments, the liquid refrigerant of the high pressure liquid state of the condenser is expanded to an intermediate pressure, and the liquid and gaseous refrigerants generated by the liquid separator are collected in the liquid separator. And the gaseous refrigerant in the medium pressure of the liquid separator, which is not related to the refrigeration function, is sent directly to the compressor without entering the evaporator, thereby providing a refrigerator which can compress the medium pressure to a high pressure and greatly reduce the amount of compression power. have.
또한, 증발기에 유입되는 액체가 제공하는 저온 열량, 즉 냉동 능력이 증가하는 효과를 제공한다. In addition, it provides the effect of increasing the low-temperature heat, that is, the freezing capacity provided by the liquid entering the evaporator.
실시예들에 따르면 증발기에는 액기 분리기의 액기 중 100% 액체만이 최종 압력인 저압까지 팽창된 후 증발기에 유입될 수 있어, 증발기 효율 증대와 규격의 감소 효과가 있는 냉동기를 제공할 수 있다.According to the embodiments, only 100% of the liquid in the liquid separator of the liquid separator may be expanded to a low pressure, which is the final pressure, and then introduced into the evaporator, thereby providing a refrigerator having an effect of increasing evaporator efficiency and reducing specifications.
도 1은 종래의 냉동기의 구조를 개략적으로 나타내는 도면이다. 1 is a view schematically showing the structure of a conventional refrigerator.
도 2는 일 실시예에 따른 냉동기의 구조를 개략적으로 나타내는 도면이다. 2 is a view schematically showing the structure of a refrigerator according to one embodiment.
도 3은 일 실시예에 따른 중간 압력에 따른 효율 변화를 설명하기 위한 도면이다. 3 is a view for explaining a change in efficiency according to the intermediate pressure according to an embodiment.
이하, 첨부된 도면을 참조하여 실시예들을 설명한다. 그러나, 기술되는 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명되는 실시예들에 의하여 한정되는 것은 아니다. 또한, 여러 실시예들은 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.Hereinafter, exemplary embodiments will be described with reference to the accompanying drawings. However, the described embodiments may be modified in many different forms, and the scope of the present invention is not limited to the embodiments described below. In addition, various embodiments are provided to more fully describe the present invention to those skilled in the art. Shapes and sizes of elements in the drawings may be exaggerated for clarity.
냉장고를 포함한 모든 냉동기는 팽창 과정에서 기체가 약 30% 정도 발생한다. 이 때, 팽창 후 기체가 많을수록 증발기의 냉동 능력이 저하하게 되며 생성된 기체는 냉동 기능이 전혀 없다. 증발기에는 액체와 기체가 유입되어 액체만이 기체로 바뀌면서 외부 열을 흡입하여 저온을 제공하게 된다. 저압으로 팽창된 액체와 기체는 모두 증발기에서 기화된 후, 압축기에서 모두 고압으로 동력을 소비하여 재압축된다. All freezers, including refrigerators, produce about 30% of their gas during expansion. At this time, the more gas after expansion, the lower the freezing capacity of the evaporator and the generated gas has no freezing function. Liquid and gas are introduced into the evaporator so that only the liquid is converted into gas, which absorbs external heat to provide a low temperature. The liquid and gas expanded at low pressure are both vaporized in the evaporator and then recompressed by both consuming power at high pressure in the compressor.
냉동기 효율, 즉, COP(Coefficient Of Performance)는 증발기의 흡입 열량을 압축기 소요 동력으로 나눈 값이다. 따라서 증발기 흡입 열량을 증가시키거나 압축기 소요 동력을 낮추어 효율을 향상시킬 수 있는 방법이 요구된다. Refrigerator efficiency, ie, COP (Coefficient Of Performance), is the amount of heat absorbed by the evaporator divided by the power required for the compressor. Therefore, there is a need for a method that can increase efficiency by increasing evaporator suction heat or lowering compressor power.
아래의 실시예들은 냉매의 팽창이 2단계로 이루어지는 냉동기에 관한 것으로, 중간 팽창의 액기 분리기 내부의 중압 기체가 증발기로 흐르지 않고 압축기로 바로 유입되는 냉동기를 제공한다. 보다 구체적으로, 실시예들은 응축기의 고압의 액체 상태의 냉매가 중간 압력으로 팽창되어 생성된 액체와 기체 상태의 냉매를 액기 분리기에서 포집하고, 냉동 기능을 하는 액체 상태의 냉매는 저압인 최종 압력으로 팽창 후 증발기로 유입시키고, 냉동 기능과 무관한 액기 분리기의 중간 압력의 기체 상태의 냉매는 증발기에 유입시키지 않고 바로 압축기로 보냄으로써, 증발기 흡입 열량의 증가와 중간 압력을 고압으로 압축하는 냉동기를 제공할 수 있다. The following embodiments are directed to a refrigerator having two stages of expansion of a refrigerant, and provides a refrigerator in which the medium pressure gas inside the liquid separator of the intermediate expansion flows directly into the compressor without flowing to the evaporator. More specifically, embodiments of the present invention collect liquid and gaseous refrigerant generated in a liquid separator by expanding the high pressure liquid refrigerant in a condenser at an intermediate pressure, and the liquid refrigerant having a refrigerating function at a final pressure at low pressure. After expansion, it is introduced into the evaporator, and the gaseous refrigerant in the medium pressure of the liquid separator, which is not related to the freezing function, is sent directly to the compressor without being introduced into the evaporator, thereby providing a freezer which increases the evaporator suction calories and compresses the medium pressure to a high pressure. can do.
도 2는 일 실시예에 따른 냉동기의 구조를 개략적으로 나타내는 도면이다. 2 is a view schematically showing the structure of a refrigerator according to one embodiment.
도 2를 참조하면, 일 실시예에 따른 냉동기(100)는 압축기(110), 응축기(120), 제1 팽창장치(140), 액기 분리기(150), 제2 팽창장치(160) 및 증발기(170)를 포함하여 이루어질 수 있다. 실시예에 따라 냉동기(100)는 예냉 배관(130)을 더 포함할 수 있다. 또한 실시예에 따라 수액기를 더 포함하는 것도 가능하다.Referring to FIG. 2, the refrigerator 100 according to an embodiment includes a compressor 110, a condenser 120, a first expansion device 140, a liquid separator 150, a second expansion device 160, and an evaporator ( 170). According to an embodiment, the refrigerator 100 may further include a precooling pipe 130. It is also possible to further include a receiver according to the embodiment.
압축기(110)는 작동유체로서 냉매를 흡입하여, 압축한 후 토출되도록 하는 것으로, 기체 상태의 냉매를 토출할 수 있다. The compressor 110 sucks the refrigerant as a working fluid, compresses the refrigerant, and discharges the compressed refrigerant. The compressor 110 may discharge the refrigerant in a gaseous state.
응축기(120)는 압축기(110)에서 토출된 냉매를 응축시킴으로써 냉매를 냉각하여 액화시킬 수 있다. The condenser 120 may cool and liquefy the refrigerant by condensing the refrigerant discharged from the compressor 110.
제1 팽창장치(140)는 응축기(120)에서 액화된 냉매를 팽창시켜 압력을 저하시킬 수 있으며, 팽창 후 액기 분리기(150)로 안내할 수 있다. 이 때, 제1 팽창장치(140)에 의해 냉매는 중간 압력으로 1차 팽창될 수 있다. 제1 팽창장치(140)는 팽창밸브로 이루어질 수 있다. The first expansion device 140 may expand the liquid liquefied in the condenser 120 to lower the pressure, and guide the liquid expansion separator 150 after expansion. At this time, the refrigerant may be first expanded at an intermediate pressure by the first expansion device 140. The first expansion device 140 may be made of an expansion valve.
액기 분리기(150)는 응축기(120)에서 액화된 상기 냉매를 팽창시켜 액체 상태 및 기체 상태로 된 상기 냉매를 포집할 수 있다. 특히, 액기 분리기(150)는 냉동 기능을 수행하는 액체 상태의 냉매를 추가 팽창 후 증발기(170)로 안내하고, 냉동 기능과 무관한 기체 상태의 냉매를 증발기(170)를 거치지 않고 바로 압축기(110)로 안내할 수 있다. The liquid separator 150 may expand the refrigerant liquefied in the condenser 120 to collect the refrigerant in a liquid state and a gas state. In particular, the liquid separator 150 guides the refrigerant in the liquid state performing the refrigerating function to the evaporator 170 after further expansion, and immediately passes the refrigerant in the gas state irrelevant to the refrigeration function without passing through the evaporator 170. Can be guided.
제2 팽창장치(160)는 액기 분리기(150)로부터 토출된 액체 상태의 냉매를 팽창시켜 압력을 저하시킬 수 있으며, 팽창 후 증발기(170)로 안내할 수 있다. 여기서, 제2 팽창장치(160)는 팽창밸브로 이루어질 수 있다.The second expansion device 160 may lower the pressure by expanding the liquid refrigerant discharged from the liquid separator 150 and may guide the evaporator 170 after expansion. Here, the second expansion device 160 may be formed of an expansion valve.
증발기(170)는 액기 분리기(150)로부터 액체 상태의 냉매가 유입되어 열을 흡입하고 기화됨에 따라 소정 공간을 냉각시키며, 기체 상태의 냉매를 압축기(110)로 안내할 수 있다. The evaporator 170 cools a predetermined space as the liquid refrigerant flows in from the liquid separator 150, sucks heat, and vaporizes the gas, and guides the refrigerant in the gas state to the compressor 110.
여기서, 압축기(110)는 액기 분리기(150)로부터 액체 상태의 냉매가 증발기(170)로 유입되어 기화된 제1 기체 상태의 냉매(a)와, 액기 분리기(150)로부터 압축기(110)로 이동하는 제2 기체 상태의 냉매(b)를 유입하여 재압축시킬 수 있다. 이 때, 제2 기체 상태의 냉매(b)는 제1 기체 상태의 냉매(a)보다 상대적으로 고압이며, 압축기(110)에서 재압축 시보다 상대적으로 저압인 중간 압력 상태일 수 있다.Here, the compressor 110 moves from the liquid separator 150 to the compressor 110 in the first gas state vaporized with the refrigerant a in a vaporized state by flowing into the evaporator 170 and from the liquid separator 150 to the compressor 110. The refrigerant b in the second gas state may be introduced and recompressed. At this time, the refrigerant (b) in the second gas state may be in a relatively high pressure than the refrigerant (a) in the first gas state, and may be in an intermediate pressure state which is relatively low pressure than when recompressed in the compressor (110).
이와 같이 냉동 기능과 무관한 액기 분리기(150)의 중간 압력의 기체 상태의 냉매는 증발기(170)에 유입시키지 않고 바로 압축기(110)로 보냄으로써, 중간 압력을 고압으로 압축할 수 있다. As such, the medium pressure gas refrigerant of the liquid separator 150 irrelevant to the freezing function is directly sent to the compressor 110 without being introduced into the evaporator 170, thereby compressing the medium pressure to a high pressure.
한편, 증발기(150)에서 나오는 차가운 기체 상태의 냉매로 응축기(120)의 액체 상태의 냉매를 과냉(subcooling)시킬 수 있다. 이를 예냉 배관(130) 또는 예냉 배관 기능이라고 할 수 있으며, 이러한 예냉 배관(130) 또는 예냉 배관 기능을 통해 팽창 중 액체 발생량을 증가시킬 수 있다. Meanwhile, the liquid refrigerant in the condenser 120 may be subcooled with the cool gas refrigerant exiting the evaporator 150. This may be referred to as a precooling pipe 130 or a precooling pipe function, and the amount of liquid generated during expansion may be increased through the precooling pipe 130 or the precooling pipe function.
다시 말하면, 일 실시예에 따른 냉동기(100)는 예냉 배관(130)을 더 포함할 수 있으며, 예냉 배관(130)은 증발기(170)에서 토출된 기체 상태의 냉매를 이용하여 응축기(120)로부터 토출되는 액체 상태의 냉매를 과냉시킬 수 있다. In other words, the refrigerator 100 according to an embodiment may further include a pre-cooling pipe 130, the pre-cooling pipe 130 from the condenser 120 by using the refrigerant in the gas state discharged from the evaporator 170. The discharged liquid refrigerant can be subcooled.
이에 따라 저압의 제1 기체 상태의 냉매(a)와 중간 압력의 제2 기체 상태의 냉매(b)가 혼합되어 압축기(110)에 유입될 수 있다. 이와 같이, 일 실시예에 따른 냉동기(100)는 응축기(120)에서 액화된 냉매를 1차 팽창시켜 액기 분리기(150)로 안내한 후, 액기 분리기(150)로부터 토출된 액체 상태의 냉매를 2차 팽창시켜 증발기(170)로 안내하여 냉매를 2단계로 팽창시킬 수 있다. Accordingly, the low pressure first gaseous state a and the medium pressure second gaseous state b may be mixed and introduced into the compressor 110. As such, the refrigerator 100 according to an embodiment first expands the liquefied refrigerant in the condenser 120 to guide the liquid separator 150, and then stores the refrigerant in the liquid state discharged from the liquid separator 150. The expansion may be guided to the evaporator 170 to expand the refrigerant in two stages.
실시예들에 따르면 냉장고, 에어컨 등 다양한 냉동기의 효율을 크게 향상시킬 수 있다. 이러한 실시예들에 따른 공정을 해석하면 다음과 같다. According to embodiments, the efficiency of various refrigerators such as a refrigerator and an air conditioner may be greatly improved. Interpreting the process according to these embodiments is as follows.
아래에서는 냉동기의 예로써 냉장고의 공정을 비교하기로 한다. In the following, as an example of a refrigerator, a process of a refrigerator will be compared.
도 1에서 설명한 바와 같이, 종래의 냉동기(10)는 응축기(12)의 응축된 고압의 액체 상태의 냉매가 저압으로 강하하면서 액체와 기체의 혼합물이 되고, 팽창 후 액체 상태의 냉매가 많을수록 증발기(15)의 냉동 능력이 증가하게 되며, 이 때 생성된 기체는 냉동 역할을 하지 못한다. 저압으로 팽창된 액체와 기체 냉매는 모두 증발기(15)에서 기화된 후, 압축기(11)에서 동력을 이용하여 모두 고압으로 재압축된다. As described with reference to FIG. 1, the conventional refrigerator 10 becomes a mixture of liquid and gas while the condensed high pressure liquid refrigerant of the condenser 12 drops to a low pressure, and the more refrigerant in the liquid state after expansion, the evaporator ( The freezing capacity of 15) is increased, and the gas produced at this time does not play a freezing role. The liquid and gaseous refrigerant expanded at low pressure are both vaporized in the evaporator 15 and then recompressed to high pressure using power in the compressor 11.
이러한 종래의 냉매 R134a를 적용하는 냉장고의 공정 해석 및 COP는 다음과 같이 나타낼 수 있다. Process analysis and COP of the refrigerator to which the conventional refrigerant R134a is applied may be expressed as follows.
[표 1]TABLE 1
Figure PCTKR2019010284-appb-img-000001
Figure PCTKR2019010284-appb-img-000001
COP = Qe/W = m (h4-h3) / m (h6- h5) COP = Qe / W = m (h4-h3) / m (h6- h5)
= (383.45-248.99) / (440.18 - 390.87)             = (383.45-248.99) / (440.18-390.87)
= 134.46 / 49.31             = 134.46 / 49.31
= 2.7268             = 2.7268
이와 같이 종래의 냉장고의 COP는 대략 2.7268인 것을 확인할 수 있다. 여기서 m은 시간당 냉매의 질량 흐름 (kg/h) 이며 증발기와 압축기에는 동일 질량이 흐르게 된다. Thus, it can be seen that the COP of the conventional refrigerator is approximately 2.7268. Where m is the mass flow of refrigerant per hour (kg / h) and the same mass flows through the evaporator and the compressor.
도 2에서 설명한 바와 같이, 일 실시예에 따른 냉동기(100)는 응축기(120)의 고압의 액체 상태의 냉매가 예냉 배관(130)에서 예냉된 후, 제1 팽창장치(140)에서 중간 압력으로 팽창되어 액기 분리기(150)에 포집될 수 있다. 이 때, 액기 분리기(150)의 중간 압력의 기체 상태의 냉매(b)는 증발기(170)로 가지 않고 바로 압축기(110)로 유입될 수 있다. As described above with reference to FIG. 2, the refrigerator 100 according to the exemplary embodiment has a high-pressure liquid refrigerant of the condenser 120 pre-cooled in the precooling pipe 130, and then, at the first expansion device 140, a medium pressure. It may be expanded and collected in the liquid separator 150. At this time, the gaseous refrigerant (b) of the intermediate pressure of the liquid separator 150 may flow directly into the compressor 110 without going to the evaporator 170.
액기 분리기(150)의 액체와 기체 상태의 냉매 중 액체 상태의 냉매만이 제2 팽창장치(160)에서 최종 팽창되면서 저온으로 증발기(170)에 유입되어 기화될 수 있다. 기화된 저압의 차가운 기체 상태의 냉매는 예냉 배관(130)에서 열교환으로 응축된 액체 상태의 냉매의 온도를 보다 저하시키면서 액체 상태의 냉매의 온도가 일부 상승할 수 있다.Only the liquid refrigerant in the liquid and gaseous refrigerants of the liquid separator 150 may be introduced into the evaporator 170 at low temperature while being finally expanded by the second expansion device 160 to be vaporized. The vaporized low pressure cool gas coolant may partially increase the temperature of the liquid coolant while lowering the temperature of the liquid coolant condensed by heat exchange in the precooling pipe 130.
이후, 저압의 기체 상태의 냉매(a)는 중간 압력의 기체 상태의 냉매(b)와 혼합된 후 압축기(110)에 유입될 수 있다. Thereafter, the low-pressure gaseous refrigerant a may be mixed with the medium-pressure gaseous refrigerant b and then introduced into the compressor 110.
이러한 본 실시예에 따른 냉장고의 동일 조건에서 공정 해석 및 COP는 다음과 같이 나타낼 수 있다. Process analysis and COP under the same conditions of the refrigerator according to this embodiment can be expressed as follows.
[표 2]TABLE 2
Figure PCTKR2019010284-appb-img-000002
Figure PCTKR2019010284-appb-img-000002
COP = Qe/W = m4(h6-h5) / (m3+m4)(h10- h9) COP = Qe / W = m4 (h6-h5) / (m3 + m4) (h10- h9)
= (0.85219)(383.45-221.51) / (1) (433.53 - 394.42)    = (0.85219) (383.45-221.51) / (1) (433.53-394.42)
= 138.0 / 39.1096    = 138.0 / 39.1096
= 3.528    = 3.528
일례로써 중간 압력은 5 bar이며, 이 때 COP는 대략 3.528이다. As an example the median pressure is 5 bar with a COP of approximately 3.528.
종래의 냉장고와 본 실시예에 따른 냉장고의 효율을 비교하면, 증발기의 냉동 능력은 138 / 134.46로 2.6% 향상, 압축일은 39.1/49.31로 대략 20.7% 감소하게 된다.Comparing the efficiency of the conventional refrigerator and the refrigerator according to the present embodiment, the freezing capacity of the evaporator is improved by 2.6% to 138 / 134.46, and the compression work is about 20.7% to 39.1 / 49.31.
본 실시예에 따른 냉동기의 효율 증가율은 3.5386/2.7268로, 대략 30% 정도 효율이 향상되는 것을 확인할 수 있다. The efficiency increase rate of the refrigerator according to the present embodiment is 3.5386 / 2.7268, it can be seen that the efficiency is improved by about 30%.
이와 같이, 본 실시예에 따른 냉동기는 고압 냉매액의 팽창이 2단계로 이루어질 수 있다. 이 때, 중간 팽창의 액기 분리기 내부의 중압 기체가 증발기로 흐르지 않고 압축기로 유입됨으로써, 압축 동력량이 크게 감소하게 된다. As such, the refrigerator according to the present exemplary embodiment may expand the high pressure refrigerant liquid in two stages. At this time, the medium-pressure gas inside the medium-expanded liquid separator does not flow to the evaporator and flows into the compressor, whereby the amount of compression power is greatly reduced.
즉, 종래의 냉동기의 경우에는 증발기의 압력인 저압으로 팽창 후 발생한 액체와 기체 모두가 증발기로 흐르면서 기화된 후 압축기에서 재압축됨으로써 압축기의 동력 소요가 크다. That is, in the case of the conventional refrigerator, both the liquid and the gas generated after expansion to the low pressure, which is the pressure of the evaporator, are evaporated while flowing to the evaporator, and then recompressed in the compressor, thereby increasing the power demand of the compressor.
또한, 본 실시예에 따른 냉동기는 증발기에는 액기 분리기의 액기 중 100% 액체만이 최종 압력인 저압까지 팽창된 후 증발기에 유입될 수 있다. In addition, the refrigerator according to the present embodiment may be introduced into the evaporator after only 100% of the liquid of the liquid separator of the liquid separator is expanded to the final pressure low pressure.
본 실시예에 따른 냉동기는 종래의 냉동기와의 설비 차이는 팽창 장치와 액기 분리기 등이 추가되나, 증발기 효율 증대와 규격의 감소 효과가 있다.The refrigerator according to the present embodiment is different from the conventional refrigerator in that the expansion device and the liquid separator are added, but there is an effect of increasing the evaporator efficiency and reducing the size.
도 3은 일 실시예에 따른 중간 압력에 따른 효율 변화를 설명하기 위한 도면이다. 3 is a view for explaining a change in efficiency according to the intermediate pressure according to an embodiment.
도 3을 참조하면, 냉장고 냉매 R134a의 중간 압력에 따른 효율 변화를 나타내는 것으로, 팽창 중간 압력(Expansion Middle Pressure)에 따른 COP를 나타낸다. Referring to FIG. 3, the efficiency change according to the middle pressure of the refrigerator refrigerant R134a is shown, and the COP according to the expansion middle pressure is illustrated.
고압 10.166 bar에서 팽창할 때, 중간 압력의 증가와 함께 COP가 증가하며, 5 bar 정도에서 최대 30%가 증가되는 것을 확인할 수 있다. 즉, 5 bar 정도에서 COP는 최대값을 가지게 된다. When expanding at a high pressure of 10.166 bar, the COP increases with an increase in the intermediate pressure, up to 30% at about 5 bar. That is, at about 5 bar, the COP has a maximum value.
COP의 최대값을 지나면 다시 감소하며, 종래의 단일 팽창 압력인 1.066 bar가 되면 종래 효율과 같게 된다. It decreases again after the maximum value of COP, and becomes the same as the conventional efficiency when the conventional single expansion pressure of 1.066 bar is reached.
이와 같이 실시예들에 따르면 2단 팽창으로 냉동기의 COP 증가되는 것을 확인할 수 있다. 이 때, COP의 값은 냉매의 종류에 따라 변할 수 있다. As such, it can be seen that the COP of the refrigerator is increased by two stage expansion. At this time, the value of COP may vary depending on the type of refrigerant.
이상과 같이, 실시예들에 따르면 응축기의 고압의 액체 상태의 냉매가 중간 압력으로 팽창되어 생성된 액체와 기체 상태의 냉매를 액기 분리기에서 포집하고, 냉동 기능을 하는 액체 상태의 냉매는 증발기로 유입시키고, 냉동 기능과 무관한 액기 분리기의 중간 압력의 기체 상태의 냉매는 증발기에 유입시키지 않고 바로 압축기로 보냄으로써, 중간 압력을 고압으로 압축하여 압축 동력량을 크게 감소시키고 증발기의 증발 능력을 증가시킬 수 있다. 즉, 증발기에 유입되는 액체가 제공하는 저온 열량이 증가하여 냉동 능력이 좋아진다. As described above, according to the embodiments, the liquid refrigerant in the high pressure liquid state of the condenser is expanded to an intermediate pressure, and the liquid and gaseous refrigerants collected in the liquid separator are collected, and the liquid refrigerant having a freezing function flows into the evaporator. The medium pressure gas refrigerant of the liquid separator, which is not related to the refrigeration function, is sent directly to the compressor without entering the evaporator, thereby compressing the medium pressure to a high pressure, which greatly reduces the amount of compression power and increases the evaporator's evaporation capacity. Can be. That is, the low-temperature heat provided by the liquid flowing into the evaporator is increased to improve the freezing capacity.
이상에서 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being "connected" or "connected" to another component, the component may be directly connected to or connected to the other component, but another component may be present in between. It should be understood that. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
또한, 명세서에 기재된 "…부", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, the terms “… unit”, “… module”, etc. described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
또한, 각 도면을 참조하여 설명하는 실시예의 구성 요소가 해당 실시예에만 제한적으로 적용되는 것은 아니며, 본 발명의 기술적 사상이 유지되는 범위 내에서 다른 실시예에 포함되도록 구현될 수 있으며, 또한 별도의 설명이 생략될지라도 복수의 실시예가 통합된 하나의 실시예로 다시 구현될 수도 있음은 당연하다.In addition, the components of the embodiments described with reference to the drawings are not limited to the corresponding embodiments, and may be implemented to be included in other embodiments within the scope of the technical idea of the present invention. Although the description is omitted, it is obvious that a plurality of embodiments may be reimplemented into one integrated embodiment.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일하거나 관련된 참조 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. In addition, in the description with reference to the accompanying drawings, the same components regardless of reference numerals will be given the same or related reference numerals and redundant description thereof will be omitted. In the following description of the present invention, when it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.Although the embodiments have been described by the limited embodiments and the drawings as described above, various modifications and variations are possible to those skilled in the art from the above description. For example, the described techniques may be performed in a different order than the described method, and / or components of the described systems, structures, devices, circuits, etc. may be combined or combined in a different form than the described method, or other components. Or, even if replaced or substituted by equivalents, an appropriate result can be achieved.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents to the claims are within the scope of the claims that follow.

Claims (4)

  1. 기체 상태의 냉매를 토출하는 압축기; A compressor for discharging a gaseous refrigerant;
    상기 압축기에서 토출된 상기 냉매를 냉각하여 액화시키는 응축기; A condenser for cooling and liquefying the refrigerant discharged from the compressor;
    상기 응축기에서 액화된 상기 냉매를 팽창시키는 제1 팽창장치; A first expansion device for expanding the refrigerant liquefied in the condenser;
    상기 제1 팽창장치를 통과한 액체 상태 및 기체 상태의 상기 냉매를 포집하는 액기 분리기; A liquid separator for collecting the refrigerant in a liquid state and a gas state passing through the first expansion device;
    상기 액기 분리기로부터 토출된 액체 상태의 상기 냉매를 팽창시켜 상기 증발기로 안내하는 제2 팽창장치; 및 A second expansion device for expanding and guiding the refrigerant in a liquid state discharged from the liquid separator to the evaporator; And
    상기 제2 팽창장치를 통과한 액체 상태의 상기 냉매가 유입되어 열을 흡입하고 기화됨에 따라 소정 공간을 냉각시키며, 기체 상태의 상기 냉매를 상기 압축기로 안내하는 증발기The evaporator which cools a predetermined space as the refrigerant in the liquid state passing through the second expansion device sucks heat and vaporizes, and guides the refrigerant in the gas state to the compressor.
    를 포함하는, 냉동기. Including, a freezer.
  2. 제1항에 있어서, The method of claim 1,
    상기 압축기는, The compressor,
    상기 액기 분리기로부터 액체 상태의 상기 냉매가 상기 증발기로 유입되어 기화된 제1 기체 상태의 냉매와, 상기 액기 분리기로부터 상기 압축기로 이동하는 제2 기체 상태의 냉매를 유입하여 재압축시키는 것Recompressing and introducing a refrigerant in a first gas state vaporized by flowing into the evaporator from the liquid separator and a refrigerant in a second gas state moving from the liquid separator to the compressor
    을 특징으로 하는, 냉동기.Characterized in that, the freezer.
  3. 제2항에 있어서, The method of claim 2,
    상기 제2 기체 상태의 냉매는, The refrigerant in the second gas state,
    상기 제1 기체 상태의 냉매보다 상대적으로 고압이며, 상기 압축기에서 재압축 시보다 상대적으로 저압인 중간 압력 상태인 것Relatively high pressure than the refrigerant in the first gas state, a relatively low pressure medium pressure state than when recompression in the compressor
    을 특징으로 하는, 냉동기.Characterized in that, the freezer.
  4. 제1항에 있어서, The method of claim 1,
    상기 응축기에서 액화된 상기 냉매를 1차 팽창시켜 상기 액기 분리기로 안내한 후, 상기 액기 분리기로부터 토출된 액체 상태의 상기 냉매를 2차 팽창시켜 상기 증발기로 안내하여 상기 냉매를 2단계로 팽창시키는 것Primary expansion of the refrigerant liquefied in the condenser to guide the liquid separator; second expansion of the refrigerant in a liquid state discharged from the liquid separator to guide the evaporator to expand the refrigerant in two stages;
    을 포함하는, 냉동기.Including, a freezer.
PCT/KR2019/010284 2018-08-22 2019-08-13 Freezer WO2020040471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0097837 2018-08-22
KR1020180097837A KR20200022116A (en) 2018-08-22 2018-08-22 Refrigerator

Publications (1)

Publication Number Publication Date
WO2020040471A1 true WO2020040471A1 (en) 2020-02-27

Family

ID=69592515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010284 WO2020040471A1 (en) 2018-08-22 2019-08-13 Freezer

Country Status (2)

Country Link
KR (1) KR20200022116A (en)
WO (1) WO2020040471A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752391A (en) * 1996-01-23 1998-05-19 Nippon Soken, Inc. Refrigerating system
JP3257044B2 (en) * 1992-07-15 2002-02-18 株式会社デンソー Injection type refrigeration equipment
JP3719273B2 (en) * 1995-06-20 2005-11-24 株式会社デンソー Compressor and refrigeration cycle
KR20080106311A (en) * 2006-03-29 2008-12-04 산요덴키가부시키가이샤 Refrigeration unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030080535A (en) 2002-04-09 2003-10-17 김승섭 Heating-exchange type refrigerating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257044B2 (en) * 1992-07-15 2002-02-18 株式会社デンソー Injection type refrigeration equipment
JP3719273B2 (en) * 1995-06-20 2005-11-24 株式会社デンソー Compressor and refrigeration cycle
US5752391A (en) * 1996-01-23 1998-05-19 Nippon Soken, Inc. Refrigerating system
KR20080106311A (en) * 2006-03-29 2008-12-04 산요덴키가부시키가이샤 Refrigeration unit

Also Published As

Publication number Publication date
KR20200022116A (en) 2020-03-03

Similar Documents

Publication Publication Date Title
CN100483042C (en) Air-cooled condensor unit and cmpressor unit for refrigeration device
US5899091A (en) Refrigeration system with integrated economizer/oil cooler
CN101845340A (en) Alternative pre-cooled configuration
KR100408960B1 (en) Multistage compression refrigerating machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil
WO2010131918A2 (en) Multi-evaporation system
US9845973B2 (en) Cascade refrigeration system
WO2006009790A3 (en) Integrated heat exchanger for use in a refrigeration system
WO2014081162A1 (en) Natural gas liquefaction process
JPH0331981B2 (en)
WO2011105662A1 (en) Chiller
WO2017222138A1 (en) Fluid cooling apparatus
JP2003130477A (en) Refrigeration equipment
WO2020040471A1 (en) Freezer
JPH04320762A (en) Freezing cycle
KR20080012638A (en) Refrigeration system
JPH03125863A (en) Refrigerating cycle unit with two stage compression
WO2016103296A1 (en) Refrigeration device
KR102042353B1 (en) Refrigerator
CN110030754B (en) Refrigerating system for improving distribution uniformity of refrigerant at inlet of multichannel evaporator
KR20120062144A (en) A refrigerant system
KR100208132B1 (en) Refrigerating cycle and coolant control apparatus for air conditioner
JPS58145859A (en) Two-stage screw refrigeration equipment
SU1490400A1 (en) Cascade/regenerative system for precooling
CN108592436B (en) Self-overlapping condensing unit
WO2021034132A1 (en) Non-azeotropic mixed refrigerant and refrigerating apparatus using non-azeotropic mixed refrigerant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852875

Country of ref document: EP

Kind code of ref document: A1