WO2020036183A1 - がん幹細胞マーカー及びがん幹細胞標的薬 - Google Patents
がん幹細胞マーカー及びがん幹細胞標的薬 Download PDFInfo
- Publication number
- WO2020036183A1 WO2020036183A1 PCT/JP2019/031894 JP2019031894W WO2020036183A1 WO 2020036183 A1 WO2020036183 A1 WO 2020036183A1 JP 2019031894 W JP2019031894 W JP 2019031894W WO 2020036183 A1 WO2020036183 A1 WO 2020036183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sdc4
- cancer
- cells
- cancer stem
- cell
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7008—Compounds having an amino group directly attached to a carbon atom of the saccharide radical, e.g. D-galactosamine, ranimustine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4725—Proteoglycans, e.g. aggreccan
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1138—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57492—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2207/00—Modified animals
- A01K2207/12—Animals modified by administration of exogenous cells
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0331—Animal model for proliferative diseases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/31—Combination therapy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
- G01N2333/4701—Details
- G01N2333/4722—Proteoglycans, e.g. aggreccan
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2400/00—Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
- G01N2400/10—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- G01N2400/38—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence, e.g. gluco- or galactomannans, Konjac gum, Locust bean gum or Guar gum
- G01N2400/40—Glycosaminoglycans, i.e. GAG or mucopolysaccharides, e.g. chondroitin sulfate, dermatan sulfate, hyaluronic acid, heparin, heparan sulfate, and related sulfated polysaccharides
Definitions
- the present invention provides a cancer stem cell marker, Syndecan4 (SDC4) as a cancer stem cell-specific drug discovery target, a method for detecting cancer stem cells using the same as an index, and a cancer stem cell specific targeting the same Related to anticancer drugs.
- SDC4 Syndecan4
- cancer stem cells In recent years, it has been found that only a subset of cancer cells, called cancer stem cells, can reconstitute cancer tissue, causing both recurrence and metastasis. Cancer stem cells are slow to divide and therefore are resistant to anticancer drugs and radiation treatment, and are thought to be a factor in the poor prognosis of various types of cancer. Conversely, if a cancer stem cell is hit, a cure can be expected, and therefore, a marker search for identifying the cancer stem cell and a characteristic analysis of the identified cancer stem cell are actively performed.
- Non-Patent Document 1 Non-Patent Document 1
- ODC ornithine decarboxylase
- ZsGreen fluorescent protein
- non-cancer stem cells dZsG-
- cancer stem cells dZsG +
- non-cancer stem cells dZsG +
- CD44v9 dZsG- / CD44v9 high
- dZsG + / CD44v9 high dZsG + / CD44v9 high formed tumors.
- tumor group 1 10 6 dZsG- / CD44v9- transplanted into immunodeficient mice to form tumors (tumor group 1), dZsG + / CD44v9- and dZsG + / CD44v9 high transplanted (both 150 tumor transplants
- Gene expression analysis was performed for each of the tumor group 3 and the tumor group 4) using a next-generation sequencer.
- principal component analysis revealed that there was a genetic difference among the three.
- the pathway activated in the tumor group 4 with respect to the tumor group 1 contains tumor tissue growth / progression. Some of the pathways associated with metastasis, differentiation and proliferation of tumor cells were observed, but there were no tumor-related pathways activated in tumor group 3 relative to tumor group 1. Therefore, it was revealed that tumor group 4 was a very active tumor cell population.
- the tumor of the tumor group 4 was converted into a single cell to establish a cell line (super Panc-1 CSC).
- a cell line (super Panc-1 CSC).
- the dZsG + / CD44v9 high population was sorted from this super Panc-1 CSC and transplanted one by one into immunodeficient mice, tumor formation was observed on day 45, and explosive tumor growth was observed during the following two weeks.
- the present inventors have succeeded in obtaining a cancer stem cell capable of forming tumors from a single cell.
- CD44v9 a splicing variant of CD44, is known as a cancer stem cell marker in various cancers such as colon cancer, pancreatic cancer, breast cancer, stomach cancer, and prostate cancer. It has also been reported to be involved in tissue growth and in obtaining resistance to treatment.
- An object of the present invention is to provide a novel marker molecule that can not only serve as a marker molecule capable of specifically detecting cancer stem cells but also serve as a therapeutic target for killing cancer stem cells.
- An object of the present invention is to provide a novel method for detecting stem cells, and a therapeutic agent targeting cancer stem cells.
- Syndecan-4 belonging to the Syndecan family, which is a heparan sulfate proteoglycan, is Panc-1 dZsG-, a non-cancer stem cell of pancreatic cancer. It was found that the expression was higher in cancer stem cells Panc-1 dZsG + / CD44v9 high than in / CD44v9-.
- SDC4 Western blot analysis was performed on cultured cells from a tumor formed by transplantation of 10 6 non-cancerous stem cells and cultured cells from a tumor formed by transplantation of 150 cancer stem cells, SDC4 was found to be greater in the latter than in the former. And CD44v9 were both highly expressed, indicating that both were proteinically linked. Co-localization of the two was also confirmed by cell immunostaining.
- dZsG + / CD44v9 high and dZsG + / SDC4 high cells were sorted, respectively, and transplanted into immunodeficient mice to compare tumorigenic potential. The latter had a higher tumorigenicity, indicating that SDC4 was superior to CD44v9 as a cancer stem cell marker.
- transplantation of dZsG + / SDC4 high cells with the SDC4 ligand FGF2 increased tumorigenicity by a factor of about two, suggesting that SDC4 signaling contributes to cancer stem cell properties.
- siRNAs for SDC4 and three types of commercially available SDC4 siRNAs were designed three types of siRNAs for SDC4 and three types of commercially available SDC4 siRNAs, respectively, using super Panc
- two types of siRNA showed remarkable antitumor effects.
- Combination with chemotherapeutic agents and mTOR inhibitors further increased the antitumor effects of these siRNAs.
- one siRNA showed a marked antitumor effect.
- SDC4 siRNAs did not show toxicity to normal cells, and showed high selective toxicity to cancer stem cells.
- SDC4 siRNA exhibited an antitumor effect not only in vitro but also in vivo.
- upstream regulatory factors such as mTOR, PPAR ⁇ 1A, Jnk, ERK1 / 2, ERK, and Creb was predicted.
- HIF1 ⁇ nuclear staining positive Many SDC4 positive cells were confirmed in the hypoxic region), which was consistent with the finding that cancer stem cells were localized in the hypoxic region.
- the antibody against SDC4 showed a remarkable antitumor effect on various cancer cells and cancer stem cells both in vitro and in vivo.
- the anti-SDC4 antibody also showed no toxicity on normal cells, and showed high selective toxicity on cancer stem cells.
- SDC4 is a better cancer stem cell marker than the known cancer stem cell marker CD44v9, and that it becomes a drug discovery target for cancer stem cells.
- the present inventor has succeeded in developing a drug capable of efficiently removing cancer stem cells by suppressing the expression of SDC4, and has completed the present invention.
- a cancer stem cell removing agent comprising a substance that suppresses the expression or function of SDC4.
- a substance that suppresses the expression of SDC4 (A) a nucleic acid having RNAi activity against a transcript of the SDC4 gene or a precursor thereof,
- the agent according to [1] which is (b) an antisense nucleic acid against a transcript of the SDC4 gene, or (c) a ribozyme nucleic acid against a transcript of the SDC4 gene.
- [3] a nucleotide complementary to a sequence consisting of at least 15 consecutive nucleotides in a region represented by nucleotide numbers 41 to 637 in the nucleotide sequence represented by SEQ ID NO: 1,
- [4] a nucleotide complementary to a sequence consisting of at least 15 consecutive nucleotides in the region represented by nucleotides 475 to 606 in the nucleotide sequence represented by SEQ ID NO: 1,
- [6] The substance that suppresses the function of SDC4 The agent according to [1], which is (a) an antibody against SDC4 or (b) an antagonist against SDC4.
- an antitumor drug targeting cancer stem cells can be provided, so that the recurrence and metastasis of cancer can be suppressed and the cancer can be cured. Further, according to the present invention, a cancer stem cell marker that is superior to a known cancer stem cell marker is provided, so that the detection and selection of cancer stem cells is facilitated.
- FIG. 4 shows the expression of SDC4 and CD44v9 in 1-1: dZsG- / CD44v9-, 1-2: dZsG- / CD44v9 high , 3-3: dZsG + / CD44v9-, and 3-4: dZsG + / CD44v9 high .
- FIG. 9 shows the results of cell immunostaining showing the expression of SDC4 and CD44v9 in cells of dZsG + / CD44v9 high of super Panc-1 CSC. Red: CD44v9 Green: SDC4 Blue: Cell nucleus
- FIG. 11 is a view showing that SDC4 is a cancer stem cell marker superior to CD44v9, using tumorigenicity at the single-cell level as an index.
- FIG. 3 is a view showing the results of tissue mechanism immunostaining of a tumor formed from a single cell.
- HE Hematoxylin-eosin staining
- FIG. 9 is a diagram showing that SDC4 is a cancer stem cell marker superior to CD44v9 using tumorigenicity by intraperitoneal administration as an index (super Panc-1 CSC).
- FIG. 9 is a graph showing that SDC4 is a cancer stem cell marker superior to CD44v9 using tumorigenicity by intraperitoneal administration as an index (Bxpc3).
- FIG. 9 shows that SDC4 is a cancer stem cell marker superior to CD44v9, using tumorigenicity by subcutaneous injection as an index (Panc-1).
- FIG. 9 shows that SDC4 is a better cancer stem cell marker than CD44v9 using tumorigenicity by subcutaneous injection as an index (Bxpc3).
- FIG. 7 is a view showing the results of immunofluorescent staining of CD44v9 and SDC4 in a cancer tissue extracted from a colon cancer patient (No. # 2 specimen). In the high-grade region, no CD44v9-positive cells were found, and many Sdc4-positive cells were found.
- FIG. 7 shows the results of immunofluorescent staining of CD44v9 and SDC4 in a colorectal cancer patient-excised cancer tissue (No. # 4 specimen). No CD44v9-positive cells were found, and many Sdc4-positive cells were found.
- FIG. 7 shows the results of immunofluorescent staining of CD44v9 and SDC4 in a cancer tissue removed from a colon cancer patient (No. # 6 specimen).
- FIG. 7 shows the results of immunofluorescent staining of CD44v9 and SDC4 in a cancer tissue removed from a colon cancer patient (No. # 8 specimen).
- FIG. 4 is a view showing the results of tissue fluorescent immunostaining of CD44v9 and SDC4 in a PDX model of a cancer tissue extracted from a colorectal cancer patient (No. 2 specimen). No CD44v9-positive cells were found, and many Sdc4-positive cells were found.
- FIG. 7 is a view showing the results of immunofluorescence staining of CD44v9 and SDC4 in a cell line (PDX # No. # 2) derived from a PDX model of a cancer tissue extracted from a colorectal cancer patient.
- FIG. 2 is a graph showing that SDC4 is an excellent cancer stem cell marker for colorectal cancer, using tumorigenicity by intraperitoneal administration as an index (PDX No. 2).
- FIG. 2 is a graph showing that SDC4 is an excellent cancer stem cell marker for colorectal cancer, using tumorigenicity by intraperitoneal administration as an index (PDX No. 2).
- FIG. 9 is a diagram showing that SDC4 is an excellent cancer stem cell marker for esophageal cancer, using tumorigenicity by intraperitoneal administration as an index (TE4). It is a figure which shows the anti-tumor cell effect by SDC4 target siRNA.
- FIG. 2 is a diagram showing the antitumor cell effect of a combination of an SDC4 target siRNA and a Wnt inhibitor FH535.
- FIG. 2 is a view showing the antitumor cell effect of a combination of an SDC4 target siRNA and a Wnt inhibitor PNU.
- FIG. 2 is a view showing an antitumor cell effect obtained by using a combination of an SDC4 target siRNA and an mTOR inhibitor.
- FIG. 9 shows the results of toxicity tests of SDC4 target siRNA on normal cells and cancer stem cells.
- FIG. 3 is a view showing the expression of SDC4 in normal cells and cancer stem cells.
- FIG. 3 is a view showing the antitumor effect of SDC4 target siRNA in a mouse subcutaneous solid tumor model.
- FIG. 4 is a view showing the relationship between the antitumor cell effect of SDC4 target siRNA and SDC4 expression level.
- FIG. 9 shows the results of analyzing the mechanism of the antitumor cell effect by SDC4 target siRNA by upstream analysis of IPA.
- FIG. 2 shows that Wnt inhibitors induce SDC4 expression in super Panc-1 CSC.
- FIG. 2 is a view showing that SDC4 is expressed in a hypoxic region in a tumor formed from one cancer stem cell.
- FIG. 3 is a view showing the antitumor effect of Sdc4 antibody on colorectal cancer.
- FIG. 3 is a view showing the antitumor effect of Sdc4 antibody on colorectal cancer.
- FIG. 3 is a view showing the antitumor effect of Sdc4 antibody on colorectal cancer.
- FIG. 3 is a view showing the antitumor effect of Sdc4 antibody on pancreatic cancer.
- FIG. 3 is a view showing the antitumor effect of Sdc4 antibody on pancreatic cancer.
- FIG. 9 shows the results of a toxicity test of Sdc4 antibody on normal cells.
- FIG. 9 shows the results of a toxicity test of Sdc4 antibody on normal cells.
- FIG. 2 is a view showing the antitumor effect of an SDC4 antibody in a mouse subcutaneous solid tumor model.
- FIG. 2 is a view showing an antitumor cell effect of an SDC4 target siRNA on a mesothelioma cell line.
- FIG. 3 is a view showing an antitumor cell effect of an SDC4 antibody on a mesothelioma cell line.
- FIG. 3 is a view showing an antitumor cell effect of an SDC4 antibody on mesothelioma cancer stem cells.
- the present invention provides a cancer stem cell removing agent (hereinafter, also referred to as “the CSC removing agent of the present invention”) containing a substance that suppresses the expression or function of Syndecan-4 (SDC4).
- the CSC removing agent of the present invention a cancer stem cell removing agent containing a substance that suppresses the expression or function of Syndecan-4 (SDC4).
- cancer stem cell is a cancer cell having self-renewal ability and pluripotency, having high tumorigenicity and metastatic potential, and being resistant to chemotherapeutic agents and radiation therapy. Cells that are characterized by asymmetric division from stem cells into stem cells and non-stem cells.
- the type of cancer stem cancer cell is not particularly limited, and includes any cancer.
- the cancer may be derived from epithelial cells, but may be non-epithelial sarcoma or blood cancer.
- gastrointestinal cancer for example, esophageal cancer, stomach cancer, duodenal cancer, colon cancer (colon cancer, rectal cancer), liver cancer (hepatocellular carcinoma, bile duct cell Cancer), gallbladder cancer, bile duct cancer, pancreatic cancer, anal cancer), urinary cancer (eg, kidney cancer, ureteral cancer, bladder cancer, prostate cancer, penis cancer, testis) (Testicle) cancer, breast cancer (eg, breast cancer, lung cancer (non-small cell lung cancer, small cell lung cancer)), genital cancer (eg, uterine cancer (cervical cancer, endometrial cancer) , Ovarian, vulvar, vaginal, head and neck (eg, maxillary, pharyngeal, laryngeal, tongue, thyroid), skin (eg, Basal cell carcinoma, squamous cell carcinoma) and mesothelial cell carcinoma (mesothelioma).
- urinary cancer eg, kidney cancer, ureteral cancer
- colon cancer Preferably, colon cancer, pancreatic cancer, esophageal cancer, mesothelioma, breast cancer, stomach cancer, prostate cancer, etc., and more preferably, colon cancer, pancreatic cancer, mesothelioma, etc.
- SDC4 which is a target molecule of the CSC remover of the present invention, is a single transmembrane protein belonging to the Syndecan family of heparan sulfate proteoglycans. In humans, it has an amino acid sequence consisting of 198 amino acids represented by SEQ ID NO: 2. Positions 1-18 are signal peptides, positions 19-145 are extracellular regions, positions 146-170 are transmembrane regions, and positions 171-198 are intracellular regions.
- SDC4 is a protein containing the same or substantially the same amino acid sequence as the amino acid sequence represented by SEQ ID NO: 2.
- proteins and peptides are described according to the convention of peptide labeling, with the left end being the N-terminus (amino terminus) and the right end being the C-terminus (carboxyl terminus).
- A Ortholog of human SDC4 consisting of the amino acid sequence represented by SEQ ID NO: 2 in other warm-blooded animals (eg, guinea pig, rat, mouse, chicken, rabbit, dog, pig, sheep, cow, monkey, etc.) Amino acid sequence; or (b) human SDC4 consisting of the amino acid sequence represented by SEQ ID NO: 2 or a natural allelic variant of the ortholog of (a) or a genetic polymorphism.
- SDC4 is human SDC4 consisting of the amino acid sequence represented by SEQ ID NO: 2, or a natural allelic variant or polymorphism thereof. Examples of the gene polymorphism include, but are not limited to, an SNP registered at dbSNP as rs2228384, in which Phe (TTC) at position 12 replaces Leu (CTC).
- the ⁇ substance that suppresses the expression of SDC4 '' refers to any substance that acts at any stage such as the level of transcription of the SDC4 gene, the level of post-transcriptional regulation, the level of translation into protein, and the level of post-translational modification.
- examples of the substance that suppresses the expression of SDC4 include a substance that inhibits the transcription of the SDC4 gene (eg, antigene), a substance that inhibits the processing of the initial transcript to mRNA, and that inhibits the transport of mRNA to the cytoplasm.
- Substances that inhibit the translation of mRNA into protein eg, antisense nucleic acid, miRNA
- degrade mRNA eg, siRNA, ribozyme, miRNA
- substances that inhibit post-translational modification of early translation products etc.
- Any substance that acts at any stage can be used, but a substance that binds complementarily to mRNA and inhibits translation into protein or degrades mRNA is preferable.
- the substance that specifically inhibits the translation of mRNA of SDC4 gene into protein (or degrades mRNA) preferably includes a nucleic acid containing a nucleotide sequence complementary to the nucleotide sequence of the mRNA or a part thereof.
- the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the SDC4 gene is a nucleotide sequence that is capable of binding to the target sequence of the mRNA and inhibiting its translation (or cleaving the target sequence) under physiological conditions.
- nucleotide sequence completely complementary to the nucleotide sequence of the mRNA i.e., the nucleotide sequence of the complementary strand of the mRNA
- it is a nucleotide sequence having a homology of 95% or more, more preferably 97% or more, particularly preferably 98% or more.
- a nucleotide sequence complementary to the nucleotide sequence of the mRNA of the SDC4 gene is a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence represented by SEQ ID NO: 1.
- stringent conditions refers to, for example, conditions described in Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.1-6.3.6, 1999, such as 6 ⁇ SSC (sodium chloride / sodium citrate). ) / 45 ° C., followed by one or more washes at 0.2 ⁇ SSC / 0.1% SDS / 50-65 ° C., although those skilled in the art will recognize that Hybridization conditions can be appropriately selected.
- mRNA of the SDC4 gene examples include human SDC4A (RefSeq Accession No. NM_002999) containing the nucleotide sequence represented by SEQ ID NO: 1, or its orthologs in other warm-blooded animals, and natural allele variants thereof.
- mRNA such as a gene polymorphism can be used.
- Part of a nucleotide sequence complementary to the nucleotide sequence of the mRNA of the SDC4 gene refers to a fragment capable of specifically binding to the mRNA of the SDC4 gene and inhibiting the translation of a protein from the mRNA (or There is no particular limitation on the length and position of the target sequence as long as it can be decomposed, but from the viewpoint of sequence specificity, a portion complementary to the target sequence is at least 10 bases or more, preferably 15 bases or more, more preferably 19 bases or more. It contains more than a base.
- any one of the following (a) to (c) is preferably exemplified.
- RNAi activity against SDC4 gene mRNA or a precursor thereof a double-stranded RNA consisting of an oligo RNA complementary to SDC4 gene mRNA and its complementary strand, so-called siRNA is , A nucleotide sequence complementary to the nucleotide sequence of the mRNA of the SDC4 gene, or a nucleic acid comprising a part thereof.
- the siRNA can be designed based on the cDNA sequence information of the target gene, for example, according to the rules proposed by Elbashir et al. (Genes Dev., 15, 188-200 (2001)).
- Examples of the target sequence of the siRNA include, but are not limited to, AA + (N) 19 , AA + (N) 21 or NA + (N) 21 (N is any base).
- the position of the target sequence is not particularly limited.
- BLAST http://www.ncbi.nlm.nih.gov/BLAST/ )
- BLAST http://www.ncbi.nlm.nih.gov/BLAST/
- the target sequence is AA + (N) 19 , AA + (N) 21 or NA + (N) 21 (N is an arbitrary base)
- the target sequence for which specificity has been confirmed Two strands consisting of a sense strand having a TT or UU 3′-terminal overhang at 19-21 bases and an antisense strand having a sequence complementary to the 19-21 base and a TT or UU 3′-terminal overhang Strand RNA may be designed as siRNA.
- siRNA short hairpin RNA
- an arbitrary linker sequence for example, about 5 to 25 bases
- sense strand and antisense strand are combined. It can be designed by linking via a linker sequence.
- siRNA and / or shRNA can be searched using search software provided free of charge on various web sites.
- siRNA or shRNA synthesized based on the hit siRNA sequence information can actually suppress the expression of SDC4 in cancer stem cells to a therapeutically effective level is described, for example, in Example 2 (4-1) described later.
- verification can be performed by measuring the expression level of SDC4 protein in cancer stem cells three days after introduction of the nucleic acid.
- the effect of suppressing the expression of SDC4 protein is attenuated within 3 days after introduction, by adding various modifications to the constituent nucleotides of siRNA or shRNA as described below, By improving the in vivo stability, the effect of suppressing the expression of SDC4 can be further sustained, and a desired therapeutic effect can be obtained.
- the siRNA and shRNA of the present invention are complementary to a sequence consisting of at least 15 contiguous nucleotides in the region represented by nucleotide numbers 41 to 637 in the nucleotide sequence represented by SEQ ID NO: 1. Includes nucleotide sequence.
- the siRNA and shRNA of the present invention comprise at least 15 contiguous nucleotides in the region represented by nucleotide numbers 475 to 606, more preferably 564 to 594, in the nucleotide sequence represented by SEQ ID NO: 1. And a nucleotide sequence complementary to the sequence consisting of
- a microRNA (miRNA) targeting the mRNA of the SDC4 gene is also defined as being encompassed by a nucleic acid comprising a nucleotide sequence complementary to or a part of the nucleotide sequence of the mRNA of the SDC4 gene.
- miRNAs are involved in post-transcriptional control of gene expression by binding to the target mRNA complementarily to suppress translation of the mRNA or by degrading the mRNA.
- miRNA is first transcribed from the gene encoding it, primary transcript primary-microRNA (pri-miRNA), and then Drosha has a characteristic hairpin structure of about 70 bases precursor-microRNA ⁇ (pre-miRNA) ) Is transported from the nucleus to the cytoplasm, and further processed by Dicer to become a mature miRNA that is taken up by RISC and acts on the target mRNA. Therefore, pre-miRNA or pri-miRNA, preferably pre-miRNA can be used as a precursor of miRNA.
- TargetScan http://www.targetscan.org/vert_72/
- miRNAs targeting SDC4 mRNA For example, among the miRNAs against SDC4 mRNA hit on the database, those with a high score in the target prediction software, for example, hsa-miR-1277-5p, hsa-miR-140-3p, hsa-miR-224-5p , Hsa-miR-936 and the like.
- the sequence information of these miRNAs and / or pre-miRNAs can be obtained using, for example, miRBase (http://www.mirbase.org/search.shtml) published by University of Manchester, UK.
- Nucleotide molecules constituting siRNA and / or shRNA, or miRNA and / or pre-miRNA may be naturally occurring RNA or DNA, but may have stability (chemical and / or counterpart enzyme) or specific activity (affinity with RNA).
- Various chemical modifications can be included in order to improve the properties.
- a phosphate residue (phosphate) of each nucleotide constituting an antisense nucleic acid is chemically modified with, for example, phosphorothioate (PS), methylphosphonate, phosphorodithionate, or the like. It can be replaced with a phosphate residue.
- PS phosphorothioate
- methylphosphonate methylphosphonate
- phosphorodithionate or the like. It can be replaced with a phosphate residue.
- the base moiety pyrimidine, purine
- BNA LNA
- the siRNA is obtained by synthesizing the sense strand and the antisense strand of the target sequence on the mRNA with a DNA / RNA automatic synthesizer and denaturing them in a suitable annealing buffer at about 90 to about 95 ° C. for about 1 minute. It can be prepared by annealing at about 30 to about 70 ° C. for about 1 to about 8 hours. Alternatively, it can be prepared by synthesizing shRNA which is a precursor of siRNA and cleaving it using a dicer. miRNA and pre-miRNA can be synthesized by a DNA / RNA automatic synthesizer based on their sequence information.
- a nucleic acid designed to be able to produce siRNA or miRNA against SDC4 gene mRNA in a living body is also a nucleic acid comprising a nucleotide sequence complementary to the nucleotide sequence of SDC4 gene mRNA or a part thereof.
- a nucleic acid comprising an expression vector constructed to express the above shRNA or siRNA or miRNA or pre-miRNA.
- An shRNA is an oligonucleotide comprising a nucleotide sequence in which the sense and antisense strands of a target sequence on an mRNA are linked by inserting a spacer sequence (for example, about 5 to 25 bases) long enough to form an appropriate loop structure.
- Vectors expressing shRNA include a tandem type and a stem loop (hairpin) type.
- the former is a tandem linkage of an expression cassette for the sense strand of the siRNA and an expression cassette for the antisense strand.
- Each strand is expressed and annealed in cells to form a double-stranded siRNA (dsRNA).
- dsRNA double-stranded siRNA
- the latter is one in which an shRNA expression cassette is inserted into a vector, in which shRNA is expressed in cells and processed by dicer to form dsRNA.
- a polII promoter for example, a CMV immediate-early promoter
- a polIII promoter is generally used.
- the polIII-based promoter include a mouse and human U6-snRNA promoter, a human H1-RNase P RNA promoter, a human valine-tRNA promoter, and the like.
- a sequence in which four or more Ts are continuous is used as a transcription termination signal.
- Expression cassettes for miRNA and pre-miRNA can also be prepared in the same manner as shRNA. The siRNA or shRNA or miRNA or pre-miRNA expression cassette thus constructed is then inserted into a plasmid vector or a viral vector.
- a viral vector such as a retrovirus, a lentivirus, an adenovirus, an adeno-associated virus, a herpes virus, a Sendai virus, or an animal cell expression plasmid is used.
- the ⁇ antisense nucleic acid against SDC4 gene mRNA '' in the present invention is a nucleic acid containing a nucleotide sequence complementary to the nucleotide sequence of the mRNA or a part thereof, and It has a function of suppressing protein synthesis by forming a specific and stable duplex with and binding to mRNA.
- Antisense nucleic acids are polydeoxyribonucleotides containing 2-deoxy-D-ribose, polyribonucleotides containing D-ribose, other types of polynucleotides that are N-glycosides of purine or pyrimidine bases, Other polymers with non-nucleotide backbones (eg, commercially available protein nucleic acids and synthetic sequence-specific nucleic acid polymers) or other polymers containing special bonds, provided that the polymer is a base such as found in DNA or RNA And nucleotides having a configuration permitting the attachment of a base).
- They may be double-stranded DNA, single-stranded DNA, double-stranded RNA, single-stranded RNA, DNA: RNA hybrids, and may further comprise unmodified polynucleotides (or unmodified oligonucleotides), known modifications.
- Additions e.g., those with labels known in the art, capped, methylated, substituted for one or more natural nucleotides with analogs, modified with intramolecular nucleotides Having an uncharged bond (eg, methylphosphonate, phosphotriester, phosphoramidate, carbamate, etc.), having a charged or sulfur-containing bond (eg, phosphorothioate, phosphorodithioate, etc.)
- proteins eg, nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, poly-L-lysines
- side-chain groups such as sugars (e.g., monosaccharides, etc.), those having interactive compounds (e.g., acridine, psoralen, etc.), chelating compounds (e.g., metals, radioactive It may be one containing a metal, boron, an oxidizing metal, or the like, one containing an alkylating
- nucleoside may include not only those containing purine and pyrimidine bases but also those having other modified heterocyclic bases. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles.
- the modified nucleosides and modified nucleotides may also be modified at the sugar moiety, e.g., where one or more hydroxyl groups have been replaced with halogens, aliphatic groups, or the like, or functional groups such as ethers, amines, etc. It may have been converted.
- the antisense nucleic acid may be DNA or RNA, or may be a DNA / RNA chimera.
- the antisense nucleic acid is DNA
- an RNA: DNA hybrid formed by the target RNA and the antisense DNA can be recognized by endogenous RNase ⁇ H and cause selective degradation of the target RNA. Therefore, in the case of antisense DNA directed to degradation by RNase H, the target sequence may be not only the sequence in the mRNA but also the sequence of the intron region in the early translation product of the SDC4 gene.
- the intron sequence can be determined by comparing the genomic sequence with the cDNA nucleotide sequence of the SDC4 gene using a homology search program such as BLAST or FASTA.
- the target region of the antisense nucleic acid of the present invention is not particularly limited in length, as long as the antisense nucleic acid hybridizes, and as a result, translation into a protein is inhibited. May be a whole sequence or a partial sequence, such as a short sequence of about 10 bases, and a long sequence of mRNA or initial transcript. Taking into account the ease of synthesis, antigenicity, and the ability to migrate into cells, oligonucleotides consisting of about 10 to about 40 bases, particularly about 15 to about 30 bases, are preferred, but not limited thereto.
- the 5'-end hairpin loop, 5'-end 6-base pair repeat, 5'-end untranslated region, translation initiation codon, protein coding region, ORF translation stop codon, 3'-end untranslated region of the SDC4 gene , A 3 'end palindrome region or a 3' end hairpin loop may be selected as a preferred target region for an antisense nucleic acid, but is not limited thereto.
- the target region of the antisense nucleic acid of the present invention at least 15 contiguous regions in the region represented by nucleotide numbers 41 to 637 in the nucleotide sequence represented by SEQ ID NO: 1 as in the above siRNA. And in particular, a sequence consisting of at least 15 consecutive nucleotides in the region represented by nucleotide numbers 475 to 606, more preferably 564 to 594 in the nucleotide sequence represented by SEQ ID NO: 1. be able to.
- the antisense nucleic acid of the present invention not only hybridizes to the mRNA and early transcript of the SDC4 gene and inhibits translation into proteins, but also binds to these genes, which are double-stranded DNA, to form a triplex ( (Antigene) that can form a triplex) and inhibit transcription into RNA.
- Nucleotide molecules constituting an antisense nucleic acid may also be modified in the same manner as in the case of the above-mentioned siRNA and the like in order to improve stability, specific activity and the like.
- the antisense oligonucleotide of the present invention determines the target sequence of mRNA or early transcript based on the cDNA sequence or genomic DNA sequence of the SDC4 gene, and uses a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman) Etc.) to synthesize a sequence complementary thereto.
- antisense nucleic acids containing the various modifications described above can be chemically synthesized by a method known per se.
- Ribozyme nucleic acid for mRNA of SDC4 gene As another example of a nucleic acid containing a nucleotide sequence complementary to the nucleotide sequence of mRNA of SDC4 gene or a part thereof, the mRNA is specifically cleaved inside the coding region. And the resulting ribozyme nucleic acid. “Ribozyme” in a narrow sense refers to RNA having an enzymatic activity for cleaving a nucleic acid, but is used herein as a concept including DNA as long as it has a sequence-specific nucleic acid cleaving activity.
- the most versatile ribozyme nucleic acids include self-splicing RNAs found in infectious RNAs such as viroids and viruses, and hammerhead and hairpin types are known.
- the hammerhead type exhibits enzymatic activity at about 40 bases, and the bases at both ends adjacent to the hammerhead structure (about 10 bases in total) are converted into a sequence complementary to the desired cleavage site of mRNA. By doing so, it is possible to specifically cleave only the target mRNA.
- This type of ribozyme nucleic acid has the further advantage of not attacking genomic DNA, since it uses only RNA as substrate.
- the target sequence is made single-stranded by using a hybrid ribozyme linked to an RNA motif derived from a viral nucleic acid capable of specifically binding to RNA helicase. Natl. Acad. Sci. USA, 98 (10): 5572-5577 (2001)]. Furthermore, when the ribozyme is used in the form of an expression vector containing the DNA encoding the ribozyme, a hybrid ribozyme in which a sequence modified from tRNA is further linked in order to promote the transfer of a transcript to the cytoplasm. [Nucleic Acids Res., 29 (13): 2780-2788 (2001)].
- the nucleic acid containing the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the SDC4 gene or a part thereof can be provided in a special form such as liposome or microsphere, applied to gene therapy, or provided in an added form.
- polycations such as polylysine, which acts to neutralize the charge of the phosphate skeleton
- lipids which enhance the interaction with cell membranes or increase the uptake of nucleic acids ( Hydrophobic substances such as, for example, phospholipid, cholesterol, etc.).
- Preferred lipids for addition include cholesterol and its derivatives (eg, cholesteryl chloroformate, cholic acid, etc.).
- nucleic acids can be attached to the 3 'or 5' end of the nucleic acid and can be attached via a base, sugar, intramolecular nucleoside linkage.
- Other groups include capping groups specifically located at the 3 'or 5' end of nucleic acids for preventing degradation by nucleases such as exonuclease and RNase.
- capping groups include, but are not limited to, hydroxyl-protecting groups known in the art, including glycols such as polyethylene glycol and tetraethylene glycol.
- SDC4 protein expression inhibitory activity of these nucleic acids can be examined using a transformant into which the SDC4 gene has been introduced, an in vivo or in vitro SDC4 gene expression system, or an in vivo or in vitro SDC4 protein translation system.
- the substance that suppresses the expression of SDC4 in the present invention is not limited to a nucleic acid containing a nucleotide sequence complementary to the nucleotide sequence of the mRNA of the SDC4 gene or a part thereof as described above, and directly or indirectly produces SDC4 protein.
- Other substances such as low molecular weight compounds may be used as long as they inhibit the activity.
- a substance that suppresses the function of SDC4 means a once-functionally produced function of SDC4 that contributes to cancer stem cell properties (eg, signal transduction via FGF2 as a ligand). Any substance may be used, for example, a substance that binds to SDC4 and suppresses the function, a substance that inhibits the binding activity between SDC4 and a ligand, a substance that inhibits the transfer of SDC4 to the cell membrane, and the like.
- a substance that suppresses the function of SDC4 includes, for example, an antibody against SDC4.
- the antibody may be either a polyclonal antibody or a monoclonal antibody. These antibodies can be produced according to a method for producing an antibody or antiserum known per se.
- the isotype of the antibody is not particularly limited, but preferably IgG, IgM or IgA, particularly preferably IgG.
- the antibody is not particularly limited as long as it has at least a complementarity determining region (CDR) for specifically recognizing and binding to SDC4.
- CDR complementarity determining region
- Fab, Fab ′, F ( ab ') fragments of 2, etc. scFv, scFv-Fc, modified with a molecule or the like having minibody, genetically engineered conjugate molecule prepared by such diabody, or a protein stabilizing effect, such as polyethylene glycol (PEG) Derivatives thereof may be used.
- PEG polyethylene glycol
- an antibody against SDC4 is used as a pharmaceutical for human administration, and therefore, the antibody (preferably a monoclonal antibody) is an antibody having a reduced risk of showing antigenicity when administered to humans
- the antibody preferably a monoclonal antibody
- the antibody is an antibody having a reduced risk of showing antigenicity when administered to humans
- Specific examples include fully human antibodies, humanized antibodies, mouse-human chimeric antibodies and the like, and particularly preferred are fully human antibodies.
- Humanized antibodies and chimeric antibodies can be produced by genetic engineering according to conventional methods. Although fully human antibodies can be produced from human-human (or mouse) hybridomas, human antibody-producing mice and phage display methods have been used to stably provide large amounts of antibodies at low cost. It is desirable to manufacture using.
- the substance that suppresses the function of SDC4 may also be, for example, an antagonist that binds to SDC4 competitively with the ligand FGF2.
- an antagonist can be obtained by constructing a competition assay system using SDC4 and FGF2 and screening a compound library.
- substances that suppress the expression or function of SDC4 have the effect of specifically acting on cancer stem cells and killing them. Useful.
- a substance that suppresses the expression or function of SDC4 has a further advantageous effect that it has low toxicity to normal cells and a low risk of side effects. Therefore, a medicament containing a substance that suppresses the expression or function of SDC4 can be used as a drug for removing cancer stem cells and, consequently, a therapeutic drug for cancer.
- the substance that suppresses the expression or function of SDC4 may be used alone or in combination of two or more.
- Two or more substances that suppress the expression or function of SDC4 may be formulated as separate medicaments, respectively, or may be formulated in the same pharmaceutical composition.
- the respective preparations may be administered simultaneously or may be administered at a later time. Further, the administration route may be the same or different.
- the dose described below is one kind, which indicates the dose of a substance that suppresses the expression or function of SDC4, but even when using a combination of two or more substances, as long as it does not adversely affect the administration subject, Similar dosages can be used for each substance.
- the antisense of the present invention capable of binding to a transcript of the SDC4 gene complementarily and suppressing protein translation from the transcript.
- Certain shRNAs, pre-miRNAs, and the like (hereinafter, may be collectively referred to as “nucleic acids of the present invention”) can be used as a cancer stem cell remover and as a therapeutic agent for cancer.
- the medicament containing the nucleic acid of the present invention can be used directly as a solution or as a pharmaceutical composition in an appropriate dosage form, as a human or non-human warm-blooded animal (eg, rat, rabbit, sheep, pig, cow, cat, dog, monkey, It can be administered orally or parenterally (eg, intravascular, subcutaneous, etc.) to chickens.
- a human or non-human warm-blooded animal eg, rat, rabbit, sheep, pig, cow, cat, dog, monkey
- It can be administered orally or parenterally (eg, intravascular, subcutaneous, etc.) to chickens.
- the nucleic acid of the present invention when used as a drug for removing cancer stem cells, it can be formulated and administered according to a method known per se. That is, the nucleic acid of the present invention may be used alone, or may be inserted into a suitable mammalian cell expression vector such as a retrovirus vector, an adenovirus vector, an adenovirus associated virus vector, etc. in a functionally operable manner. Can also.
- the nucleic acid can be administered as it is or together with an auxiliary for promoting uptake by a gene gun or a catheter such as a hydrogel catheter. Alternatively, it can be aerosolized and administered locally into the trachea as an inhalant.
- the nucleic acid may be formulated alone or together with a carrier such as liposome (injection) and administered intravenously, subcutaneously, or the like. .
- the nucleic acid of the present invention may be administered per se or as a suitable pharmaceutical composition.
- the pharmaceutical composition used for administration may contain the nucleic acid of the present invention and a pharmacologically acceptable carrier, diluent or excipient.
- a pharmaceutical composition is provided as a dosage form suitable for oral or parenteral administration.
- compositions for parenteral administration for example, injections, suppositories, intranasal administrations, etc. are used, and the injections are intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, instillation. It may include a dosage form such as an agent.
- Such an injection can be prepared according to a known method. The injection can be prepared, for example, by dissolving, suspending or emulsifying the nucleic acid of the present invention in a sterile aqueous liquid or oily liquid commonly used for injections.
- aqueous liquid for injection for example, physiological saline, isotonic solution containing glucose and other adjuvants and the like are used, and suitable solubilizing agents, for example, alcohol (eg, ethanol), polyalcohol (eg, Propylene glycol, polyethylene glycol), nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)) and the like may be used in combination.
- alcohol eg, ethanol
- polyalcohol eg, Propylene glycol, polyethylene glycol
- nonionic surfactants eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)
- oily liquid for example, sesame oil, soybean oil, and the like are used, and benzyl benzoate, benzyl alcohol, and the like may be used in combination as a solubilizing agent.
- the prepared injection solution is
- compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), syrups Agents, emulsions, suspensions and the like.
- Such compositions are prepared by known methods and may contain carriers, diluents or excipients commonly used in the field of formulation.
- carriers and excipients for tablets for example, lactose, starch, sucrose, and magnesium stearate are used.
- the parenteral or oral pharmaceutical composition described above is conveniently prepared in a unit dosage form adapted to the dosage of the active ingredient.
- dosage unit forms include, for example, tablets, pills, capsules, injections (ampoules), and suppositories.
- the nucleic acid of the present invention is preferably contained, for example, usually in an amount of about 0.01 to 500 mg per dosage unit dosage form.
- the dose of the drug containing the nucleic acid of the present invention varies depending on the administration subject, target disease, symptoms, administration route, and the like.For example, it is used for removing cancer stem cells in the treatment and prevention of recurrence of cancer. In this case, it is convenient to administer the nucleic acid of the present invention in a single dose, usually about 0.0001 to 20 mg / kg body weight, by intravenous injection about once a day to about six months. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If the symptoms are particularly severe, the dose may be increased according to the symptoms.
- compositions may contain other active ingredients as long as the composition does not cause an undesirable interaction with the nucleic acid of the present invention.
- active ingredients for example, various compounds having a therapeutic effect on cancer can be appropriately compounded.
- other active ingredients include alkylating drugs (eg, mustards, nitrosoureas), antimetabolites (eg, folate, pyrimidine, purine), antitumor antibiotics (eg, anthracycline), Hormone analogs (eg, antiestrogens, antiandrogens, LH-RH agonists, progesterone, estradiol), platinum preparations, topoisomerase inhibitors (eg, topoisomerase I inhibitors, topoisomerase II inhibitors), biologics (eg, interferon , Interleukins), molecular targeting drugs (eg, antibodies (eg, trastuzumab, panitumumab), small molecules (gefinitib, erlotini
- alkylating drugs eg
- chemotherapeutic drugs eg, gemcitabine, oxaliplatin, etc.
- Wnt inhibitors eg, FH535, PNU, IWR, etc.
- mTOR inhibitors eg, rapamycin, etc.
- the medicine containing the antibody or the low-molecular compound described above can be used as a solution as it is or as a pharmaceutical composition in an appropriate dosage form, in humans or other warm-blooded animals (eg, rats, rabbits, sheep, pigs, cows, cats, Dogs, monkeys, chickens, etc.) can be administered orally or parenterally (eg, intravascular, subcutaneous, etc.).
- warm-blooded animals eg, rats, rabbits, sheep, pigs, cows, cats, Dogs, monkeys, chickens, etc.
- parenterally eg, intravascular, subcutaneous, etc.
- the above-mentioned antibody or low molecular compound may be administered as it is, or may be administered as a suitable pharmaceutical composition.
- the pharmaceutical composition used for administration may contain the above-mentioned antibody or low-molecular compound or a salt thereof and a pharmacologically acceptable carrier, diluent or excipient.
- Such a pharmaceutical composition is provided as a dosage form suitable for oral or parenteral administration.
- compositions for parenteral administration for example, injections, suppositories, intranasal administrations, etc. are used, and the injections are intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, instillation. It may include a dosage form such as an agent.
- Such an injection can be prepared according to a known method.
- a method for preparing an injection can be prepared, for example, by dissolving, suspending or emulsifying the antibody or low-molecular compound or a salt thereof of the present invention in a sterile aqueous liquid or oily liquid commonly used for injections.
- aqueous liquid for injection for example, physiological saline, isotonic solution containing glucose and other adjuvants and the like are used, and suitable solubilizing agents, for example, alcohol (eg, ethanol), polyalcohol (eg, Propylene glycol, polyethylene glycol), nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)) and the like may be used in combination.
- alcohol eg, ethanol
- polyalcohol eg, Propylene glycol, polyethylene glycol
- nonionic surfactants eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)
- oily liquid for example, sesame oil, soybean oil, and the like are used, and benzyl benzoate, benzyl alcohol, and the like may be used in combination as a solubilizing agent.
- the prepared injection solution is
- compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), syrups Agents, emulsions, suspensions and the like.
- Such compositions are prepared by known methods and may contain carriers, diluents or excipients commonly used in the field of formulation.
- carriers and excipients for tablets for example, lactose, starch, sucrose, and magnesium stearate are used.
- the parenteral or oral pharmaceutical composition described above is conveniently prepared in a unit dosage form adapted to the dosage of the active ingredient.
- dosage unit forms include, for example, tablets, pills, capsules, injections (ampoules), and suppositories.
- the antibody or low-molecular compound is usually contained in an amount of 0.1 to 500 mg, preferably 5 to 100 mg for an injection, and 10 to 250 mg for other dosage forms, per unit dosage form.
- the dose of the drug containing the antibody or low-molecular compound or a salt thereof varies depending on the administration subject, target disease, symptoms, administration route, and the like. It is convenient to administer by intravenous injection about 0.0001 to 20 mg / kg body weight, about 1 to 5 times a day for low molecular weight compounds, orally or parenterally, and once a day to several months for antibodies. is there. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If the symptoms are particularly severe, the dose may be increased according to the symptoms.
- compositions may contain other active ingredients as long as an undesirable interaction is not caused by the combination with the antibody or the low molecular compound.
- other active ingredients include alkylating drugs (eg, mustards, nitrosoureas), antimetabolites (eg, folate, pyrimidine, purine), antitumor antibiotics (eg, anthracycline), Hormone analogs (eg, antiestrogens, antiandrogens, LH-RH agonists, progesterone, estradiol), platinum preparations, topoisomerase inhibitors (eg, topoisomerase I inhibitors, topoisomerase II inhibitors), biologics (eg, interferon , Interleukins), molecular targeting drugs (eg, antibodies (eg, trastuzumab, panitumumab), small molecules (gefinitib, erlotinib, sorafenib), retinoin), and the like.
- alkylating drugs eg, mustards
- the present invention also provides a method for detecting or selecting a cancer stem cell in a cancer cell population using SDC4 expression as an index (hereinafter, also referred to as “the detection / selection method of the present invention”).
- SDC4 is a better cancer stem cell marker than CD44v9, which is a known cancer stem cell marker. Therefore, cancer stem cells can be specifically detected and selected from the cancer cell population using the expression of SDC4 as an index.
- the type of cancer stem cell that can be detected and selected by the detection / selection method of the present invention is not particularly limited, and includes any cancer.
- the cancer may be an epithelial cell-derived cancer, but may be a non-epithelial sarcoma or a hematological cancer.
- gastrointestinal cancers eg, esophageal cancer, gastric cancer, duodenal cancer, colon cancer (colon cancer, rectal cancer), liver cancer (hepatocellular carcinoma, bile duct cells Cancer), gallbladder cancer, bile duct cancer, pancreatic cancer, anal cancer), urinary cancer (eg, kidney cancer, ureter cancer, bladder cancer, prostate cancer, penile cancer, testis) (Testis) cancer, breast cancer (eg, breast cancer, lung cancer (non-small cell lung cancer, small cell lung cancer)), genital cancer (eg, uterine cancer (cervical cancer, endometrial cancer) , Ovarian, vulvar, vaginal, head and neck (eg, maxillary, pharyngeal, laryngeal, tongue, thyroid), skin (eg, Basal cell carcinoma, squamous cell carcinoma) and mesothelial cell carcinoma (mesothelioma).
- urinary cancer eg, kidney cancer, ureter
- colorectal cancer, pancreatic cancer, esophageal cancer, mesothelioma, breast cancer, stomach cancer, prostate cancer, etc. more preferably colorectal cancer, pancreatic cancer, esophageal cancer, mesothelioma, etc. .
- the expression of SDC4 can be detected using various immunochemical techniques, preferably using an antibody against SDC4.
- an antibody used as an active ingredient of the agent for removing a cancer stem cell can be used in the same manner.
- the complete antibody molecule may be used, or any fragment of the antibody molecule such as F (ab ') 2 , Fab', or Fab fraction.
- cancer cell population there is no particular limitation on the cancer cell population to be detected and sorted for cancer stem cells, such as cancer tissues removed from cancer patients or cancer cell lines derived from cancer tissues. Good.
- a labeling agent used in a measurement method using a labeling substance for example, a radioisotope, an enzyme, a fluorescent substance, a luminescent substance and the like are used.
- the radioisotope for example, [ 125 I], [ 131 I], [ 3 H], [ 14 C] and the like are used.
- the enzyme is preferably a stable enzyme having a large specific activity.
- ⁇ -galactosidase, ⁇ -glucosidase, alkaline phosphatase, peroxidase, malate dehydrogenase and the like are used.
- fluorescent substance for example, fluorescamine, fluorescein isothiocyanate (FITC), phycoerythrin (PE) and the like are used.
- luminescent substance for example, luminol, a luminol derivative, luciferin, lucigenin and the like are used.
- the antibody of the present invention may be directly labeled with a labeling substance, or may be labeled indirectly.
- the anti-SDC4 antibody is an unlabeled antibody, and SDC4 can be detected by a labeled secondary antibody such as an antiserum or an anti-Ig antibody against the animal in which the anti-SDC4 antibody was produced.
- a complex of SDC4-anti-SDC4 antibody-secondary antibody may be formed using a biotinylated secondary antibody, and this may be visualized using labeled streptavidin.
- a test cancer cell sample is fixed and permeabilized with glutaraldehyde, paraformaldehyde or the like, washed with a buffer such as PBS, blocked with BSA or the like, and then incubated with the anti-iPS / ES cell antibody of the present invention. After washing with a buffer such as PBS to remove unreacted antibodies, cells that have reacted with the anti-SDC4 antibody are visualized with a labeled secondary antibody, and a confocal laser scanning microscope or IN Cell Analyzer (Amarsham / GE ) Can be analyzed using an automated live cell image analyzer or the like.
- cancer stem cells can be isolated from a cancer cell population containing cancer stem cells using an anti-SDC4 antibody.
- the anti-SDC4 antibody can be immobilized on a solid phase containing any suitable matrix such as agarose, acrylamide, sepharose, Sephadex and the like.
- the solid phase may be any suitable incubator such as a microtiter plate.
- the cancer stem cells in the sample are fixed on the solid phase.
- the cells can be released from the solid phase using a suitable elution buffer.
- the anti-SDC4 antibody can be immobilized on magnetic beads and a magnetic field can cause cancer stem cells to separate from the sample (ie, magnetically activated cell separation (MACS)).
- MCS magnetically activated cell separation
- the anti-SDC4 antibody is directly or indirectly labeled with any suitable fluorescent molecule as described above, and the cancer stem cells are isolated using a fluorescence activated cell sorter (FACS). Can be.
- FACS fluorescence activated cell sorter
- the present invention also provides a reagent for detecting cancer stem cells, which comprises an antibody against SDC4.
- an antibody used as an active ingredient of the agent for removing a cancer stem cell can be used in the same manner.
- the antibody may be a complete antibody molecule, or may be any fragment such as F (ab ′) 2 , Fab ′, or Fab fraction.
- the anti-SDC4 antibody can be dissolved in an appropriate buffer known per se and cryopreserved.
- a kit can be prepared by combining a labeled secondary antibody, a reaction buffer, a blocking solution, a washing solution, and the like.
- Example 1 Search for novel cancer stem cell markers (1) Single cell gene analysis Fusion protein of fluorescent protein ZsGreen and ornithine decarboxylase-degron under control of CMV promoter in human pancreatic cancer cell line Panc-1 (ATCC CRL1469) A retrovirus vector encoding the following was introduced to visualize poorly metabolized cells, and anti-CD44v9 antibody Anti human CD44v9 (obtained from: Cosmo Bio; as a secondary antibody, Mouse Anti-Rat IgG2a (obtained from: BD pharmingen)), Using FACS (device name: SH800Z SONY), a ZsGreen negative (dZsG-) / CD44v9 negative (CD44v9-) cell population and a dZsG + / CD44v9 high expression (CD44v9 high ) cell population were sorted.
- FACS device name: SH800Z SONY
- Panc-1 dZsG- / CD44v9-, Panc-1 dZsG + / CD44v9 high , as well as 150 cells of Panc-1 dZsG + / CD44v9 high cells are transplanted into immunodeficient mice.
- Panc-1 CSC Accession number: NITE BP-02449
- gene analysis was performed using a next-generation sequencer (device name: HiSeq Illumina).
- HiSeq Illumina HiSeq Illumina
- Syndecan-4 a member of the Syndecan family, which is a heparan sulfate proteoglycan.
- Panc-1 dZsG- / CD44v9- 8
- mice were sorted by FACS, and 98,000 cells / 1 ml DMEM were intraperitoneally administered to SCID beige mice, and the mice were administered on September 19, 2017. Were sacrificed to examine the appearance and weight of the mice and the presence or absence of tumors in the abdominal cavity.
- (1) Super Panc-1 CSC secondary antibody only (2) Super Panc-1 CSC CD44v9 high top 5%
- SDC4 high top 3.5% of super Panc-1 CSC The mice of (1) and (2) had no noticeable appearance and weighed 22.0 g and 22.1 g, respectively, while the mouse of (3) weighed 15.1 g and showed jaundice.
- the mice of (1) and (2) did not show any tumor in the abdominal cavity, but the mouse of (3) had tumor formation especially around the hepato-biliary-pancreas, and gall bladder swelling was observed.
- mice On August 14, 2017, the following three groups of cells were sorted by FACS, and 100,000 cells / 1 ml DMEM were intraperitoneally administered to SCID beige mice, respectively. Were sacrificed to examine the appearance and weight of the mice and the presence or absence of tumors in the abdominal cavity.
- (1) Super Panc-1 CSC secondary antibody only (2) Super Panc-1 CSC CD44v9 high top 5%
- mice of (1) and (2) did not show a tumor in the abdominal cavity, but the mouse of (3) showed a solid tumor around the intestinal tract and tumor formation around the hepatobiliary pancreas. A part of the color changed to yellow, and apparent gallbladder hypertrophy was observed.
- mice On August 14, 2017, the following three groups of cells were sorted by FACS, and 50,000 cells / 1 ml DMEM were intraperitoneally administered to SCID beige mice, respectively. Were sacrificed to examine the appearance and weight of the mice and the presence of tumors in the abdominal cavity.
- (1) Super Panc-1 CSC secondary antibody only (2) Super Panc-1 CSC CD44v9 high top 5% (3) SDC4 high top 4.5% of super Panc-1 CSC
- the mice of (1) and (2) had no noticeable appearance, and weighed 18.0 g and 19.4 g, respectively, while the mouse of (3) weighed 15.0 g.
- the mice of (1) and (2) did not show a clear tumor in the abdominal cavity, but the mice of (3) showed tumor formation around the hepatobiliary pancreas.
- Tissue fluorescent immunostaining of CD44v9 and SDC4 in cancer tissues removed from colorectal cancer patients Tissue fluorescent immunostaining was performed on cancer tissues isolated from four colorectal cancer patients in the same manner as in (4) above. . Table 1 shows general information and pathological findings of the four samples used.
- FIG. 6-1 A typical example of the results of tissue fluorescent staining of two samples is shown in FIG. 6-1.
- a moderately differentiated region such as # 14
- SDC4 was not stained, but in a poorly differentiated region such as # 10 or # 9, SDC4 was highly expressed.
- CD44v9 expression was not observed in the cancerous part.
- FIG. 6-2 A representative example of the results of tissue fluorescent staining of four samples is shown in FIG. 6-2. In regions such as # 9 and # 14, SDC4 was highly expressed, but CD44v9 was not expressed.
- FIG. 6-3 A representative example of the results of tissue fluorescent staining of the 6 samples is shown in FIG. 6-3. In regions such as # 6 and # 7, high co-expression of CD44v9 and SDC4 was observed in the cell membrane.
- FIG. 6-4 A representative example of the results of histofluorescence staining of 8 samples is shown in FIG. 6-4.
- # 9 and # 10 the expression of SDC4 was high as a whole, but there were some parts where high coexpression of CD44v9 and SDC4 was observed in the cell membrane.
- a cell line was established using a PDX tumor sample (MP5) of a cancer tissue extracted from No. 2 specimen.
- the obtained cell line PDX # No. 2 was subjected to fluorescent immunostaining in the same manner as in the above (7).
- SDC4 was highly expressed, but CD44v9 was not expressed (FIG. 7-2).
- mice On January 30, 2018, the following three groups of cells were sorted by FACS, and 10,000 cells / 800ul DMEM were intraperitoneally administered to SCID beige mice (male), respectively, on March 21 of the same year. The mice were sacrificed on the day and the appearance and weight of the mice and the presence or absence of tumors in the abdominal cavity were examined.
- SDC4 staining of PDX No.2 Top 1%
- PDX No. 2 secondary antibody only
- mice had no noticeable appearance and weighed 29.6 g and 23.2 g, respectively.
- the mouse of (2) weighed 20.3 g, and jaundice was observed (FIG. 8-2, left).
- Example 2 Antitumor Effect of SDC4 Target siRNA (1) Single Administration Three uniquely designed siRNAs targeting SDC4 # 6, # 7, # 10, commercially available SDC4 target siRNA # 1, # 2, # 3 (obtain First: Applied biosystems) and a cell line PDX No.2 derived from a PDX model of an extirpated cancer tissue from a colorectal cancer patient (No. 2 sample) using seven kinds of siRNAs of a negative control siRNANC, pancreatic cancer stem cell super Panc The antitumor cell effect on -1 CSC was verified. The nucleotide sequences of the seven siRNAs are shown below.
- pancreatic cancer super Panc-1 CSC showed significant anti-tumor cell effect of siRNA7 + GEM and # 2 + GEM, and colorectal cancer PDX No.2 showed siRNA7 + L-OHP and # 2 + L -OHP showed a remarkable antitumor cell effect (FIG. 9-2).
- 6000 cells / well were sorted by FACS in 96 wells, and allowed to stand overnight, after which siRNA 10 pmol / well was introduced with lipofectamine2000, and the Wnt inhibitor PNU was added at the same time. After 72 hours, the viability of the cells was measured by WST8. Then, the medium of all wells was replaced with DMEM containing PNU (FBS 10%), and after 72 hours, the viability of the cells was measured again by WST8. After 72 h + 72 h, siRNA # 7 + PNU showed a remarkable antitumor cell effect (FIG. 9-4).
- SDC4 target siRNA 4-1 Relationship between SDC4 protein level and anti-tumor effect Pancreatic cancer stem cell super of commercially available SDC4 target siRNA # 1, # 2, # 3, negative control siRNANC The mechanism of antitumor cell effect on Panc-1 CSC was verified. After sorting the cells in 96 wells by 6000 cells / well by FACS and allowing them to stand overnight, siRNA 10 pmol / well was introduced with lipofectamine2000, and the viability of the cells after 48 h and 72 hr was measured by WST8. In addition, the protein level of SDC4 was measured by Western blotting.
- Example 4 Anti-tumor effect of anti-SDC4 antibody (1) Anti-tumor effect of anti-SDC4 antibody on pancreatic cancer and colorectal cancer No.2 H16-2490 PDX model-derived cell line PDX No.2 of colorectal cancer isolated from colorectal cancer patient The antitumor cell effects on cancer cell lines HCT116, HT29, SW480, pancreatic cancer stem cell super Panc-1 CSC and pancreatic cancer cell lines miapaca, PSN, Panc-1 were verified. Sorted by FACS at 5,000 cells / well in 96 wells, and allowed to stand overnight.
- SBL4 antibody or IgG antibody (as NC), which is a polyclonal antibody manufactured by IBL, was added at 2.5, 5, 10 and 20 ug / ml.
- cell viability was measured on Day 4 and Day 6 using WST8.
- the anti-SDC4 antibody showed a remarkable anti-tumor cell effect on all cancer cell lines (FIGS. 12-1 to 12-4).
- BJ-5ta normal foreskin-derived fibroblast cell line, HPNE normal pancreatic duct-derived epithelial cells were seeded at 5,000 cells / well in 96 wells, allowed to stand overnight, and then subjected to IBL polyclonal antibody SDC4 antibody.
- an IgG antibody (as NC) was added to a concentration of 20 ug / ml, and the cell viability was measured using WST8 at 48 hr and 72 hr.
- the anti-SDC4 antibody was relatively non-toxic to any normal cells (FIG. 12-6).
- mice were intraperitoneally injected with SDC4 antibody or IgG antibody, which is a polyclonal antibody manufactured by IBL, every 1 day at 100 ug / ml or 25 ug / ml every 1 day.
- SDC4 antibody or IgG antibody which is a polyclonal antibody manufactured by IBL
- Example 5 Antitumor Effect of SDC4 Target Treatment on Mesothelioma (1) Antitumor Cell Effect of Sdc4 Target siRNA on Mesothelioma Cell Line According to the database of Cancer Cell Line Encyclopedia (CCLE), mesothelioma cells (mesothelioma)
- CCLE Cancer Cell Line Encyclopedia
- mesothelioma cells mesothelioma cells
- the SDC4 mRNA expression level is as high as third overall. Therefore, using commercially available SDC4 target siRNA # 2, siRNA # 7 uniquely designed by the present inventors, and negative control siRNA NC, the antitumor cell effect against two types of mesothelioma cell lines MSTO-211H and H2052 was examined. Verified. 5000 cells / well were sorted into 96 wells by FACS, and allowed to stand overnight.
- CD24 is known as a cancer stem cell marker for mesothelioma, and it has been reported in the literature that CD24-positive cells have strong properties as cancer stem cells.
- the CD24 positive rate of H2452 is 3.7%, whereas the CD24 positive rate of H28 is as high as 81.8%.
- the antibody of SDC4 against H28 showed earlier (48hrs than 72h) and more pronounced anti-tumor cell effect.
- the anti-SDC4 antibody was found to have a particularly strong antitumor cell effect on mesothelioma cancer stem cells. Therefore, the mesothelioma cell line H28 was seeded at 10,000 cells / well in 96 wells, and the CD40-positive top 40% cells were sorted by FACS to 10,000 cells in 96 wells, and allowed to stand overnight. After the placement, SDC4 antibody (poly) or IgG antibody (NC), which is a polyclonal antibody manufactured by IBL, was added at a concentration of 20 ug / ml, and after 96 hours, the viability of the cells was measured by WST8. As a result, the anti-SDC4 antibody showed not only a significant antitumor cell effect on unfractionated H28, but also a marked antitumor cell effect on the strongly CD24 strongly positive H28 cell group (FIG. 13-3). .
- SDC4 is a superior cancer stem cell marker than known cancer stem cell markers, detecting and selecting cancer stem cells using SDC4 expression as an index is useful in identifying cancer stem cells and using them in research. is there. Furthermore, since SDC4 is not just a marker but a therapeutic target for cancer stem cells, drugs such as nucleic acids targeting SDC4 can be used for the removal of cancer stem cells, and eventually for cancer root treatment, Extremely useful.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Public Health (AREA)
- Urology & Nephrology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Biophysics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Hospice & Palliative Care (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
Abstract
Description
[1]SDC4の発現又は機能を抑制する物質を含有してなる、がん幹細胞除去剤。
[2]SDC4の発現を抑制する物質が、
(a)SDC4遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体、
(b)SDC4遺伝子の転写産物に対するアンチセンス核酸、又は
(c)SDC4遺伝子の転写産物に対するリボザイム核酸
である、[1]に記載の剤。
[3]SDC4の発現を抑制する物質が、配列番号1で表されるヌクレオチド配列中、ヌクレオチド番号41~637で示される領域内の、連続する少なくとも15個のヌクレオチドからなる配列と相補的なヌクレオチド配列を含む核酸もしくはその前駆体である、[2]に記載の剤。
[4]SDC4の発現を抑制する物質が、配列番号1で表されるヌクレオチド配列中、ヌクレオチド番号475~606で示される領域内の、連続する少なくとも15個のヌクレオチドからなる配列と相補的なヌクレオチド配列を含む核酸もしくはその前駆体である、[2]に記載の剤。
[5]siRNAである、[3]又は[4]に記載の剤。
[6]SDC4の機能を抑制する物質が、
(a)SDC4に対する抗体、又は
(b)SDC4に対するアンタゴニスト
である、[1]に記載の剤。
[7]他の抗腫瘍薬と組み合わせてなる、[1]~[6]のいずれかに記載の剤。
[8]他の抗腫瘍薬が、化学療法薬、Wnt阻害薬及びmTOR阻害薬から選択される1種以上である、[7]に記載の剤。
[9]がん細胞集団において、SDC4の発現を指標としてがん幹細胞を検出又は選別する方法。
[10]SDC4に対する抗体を含有してなる、がん幹細胞の検出用試薬。
「配列番号2で表されるアミノ酸配列と実質的に同一のアミノ酸配列」とは、
(a)配列番号2で表されるアミノ酸配列からなるヒトSDC4の、他の温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、イヌ、ブタ、ヒツジ、ウシ、サルなど)におけるオルソログのアミノ酸配列;又は
(b)配列番号2で表されるアミノ酸配列からなるヒトSDC4もしくは上記(a)のオルソログの天然のアレル変異体もしくは遺伝子多型におけるアミノ酸配列
を意味する。
好ましくは、SDC4は配列番号2で表されるアミノ酸配列からなるヒトSDC4もしくはその天然のアレル変異体もしくは遺伝子多型である。該遺伝子多型としては、例えば、dbSNPにrs2228384として登録されている、12位のPhe(TTC)がLeu(CTC)に置換するSNPが挙げられるが、それに限定されない。
SDC4遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列とは、生理的条件下において、該mRNAの標的配列に結合してその翻訳を阻害し得る(あるいは該標的配列を切断する)程度の相補性を有するヌクレオチド配列を意味し、具体的には、例えば、該mRNAのヌクレオチド配列と完全相補的なヌクレオチド配列(すなわち、mRNAの相補鎖のヌクレオチド配列)と、オーバーラップする領域に関して、90%以上、好ましくは95%以上、より好ましくは97%以上、特に好ましくは98%以上の相同性を有するヌクレオチド配列である。本発明における「ヌクレオチド配列の相同性」は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。
(a) SDC4遺伝子のmRNAに対してRNAi活性を有する核酸もしくはその前駆体
(b) SDC4遺伝子のmRNAに対するアンチセンス核酸
(c) SDC4遺伝子のmRNAに対するリボザイム核酸
本明細書においては、SDC4遺伝子のmRNAに相補的なオリゴRNAとその相補鎖とからなる二本鎖RNA、いわゆるsiRNAは、SDC4遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸に包含されるものとして定義される。
このようにして構築したsiRNAもしくはshRNA又はmiRNAもしくはpre-miRNA発現カセットを、次いでプラスミドベクターやウイルスベクターに挿入する。このようなベクターとしては、レトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、センダイウイルスなどのウイルスベクターや、動物細胞発現プラスミドなどが用いられる。
本発明における「SDC4遺伝子のmRNAに対するアンチセンス核酸」とは、該mRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸であって、標的mRNAと特異的かつ安定した二重鎖を形成して結合することにより、タンパク質合成を抑制する機能を有するものである。
アンチセンス核酸は、2-デオキシ-D-リボースを含有しているポリデオキシリボヌクレオチド、D-リボースを含有しているポリリボヌクレオチド、プリンまたはピリミジン塩基のN-グリコシドであるその他のタイプのポリヌクレオチド、非ヌクレオチド骨格を有するその他のポリマー(例えば、市販のタンパク質核酸および合成配列特異的な核酸ポリマー)または特殊な結合を含有するその他のポリマー(但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する)などが挙げられる。それらは、二本鎖DNA、一本鎖DNA、二本鎖RNA、一本鎖RNA、DNA:RNAハイブリッドであってもよく、さらに非修飾ポリヌクレオチド(または非修飾オリゴヌクレオチド)、公知の修飾の付加されたもの、例えば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合(例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメートなど)を持つもの、電荷を有する結合または硫黄含有結合(例、ホスホロチオエート、ホスホロジチオエートなど)を持つもの、例えばタンパク質(例、ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド、ポリ-L-リジンなど)や糖(例、モノサッカライドなど)などの側鎖基を有しているもの、インターカレント化合物(例、アクリジン、ソラレンなど)を持つもの、キレート化合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など)を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えば、αアノマー型の核酸など)であってもよい。ここで「ヌクレオシド」、「ヌクレオチド」および「核酸」とは、プリンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。このような修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその他の複素環を含むものであってよい。修飾されたヌクレオシドおよび修飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたり、またはエーテル、アミンなどの官能基に変換されていてよい。
SDC4遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸の他の例としては、該mRNAをコード領域の内部で特異的に切断し得るリボザイム核酸が挙げられる。「リボザイム」とは、狭義には、核酸を切断する酵素活性を有するRNAをいうが、本明細書では配列特異的な核酸切断活性を有する限りDNAをも包含する概念として用いるものとする。リボザイム核酸として最も汎用性の高いものとしては、ウイロイドやウイルソイド等の感染性RNAに見られるセルフスプライシングRNAがあり、ハンマーヘッド型やヘアピン型等が知られている。ハンマーヘッド型は約40塩基程度で酵素活性を発揮し、ハンマーヘッド構造をとる部分に隣接する両端の数塩基ずつ(合わせて約10塩基程度)をmRNAの所望の切断部位と相補的な配列にすることにより、標的mRNAのみを特異的に切断することが可能である。このタイプのリボザイム核酸は、RNAのみを基質とするので、ゲノムDNAを攻撃することがないというさらなる利点を有する。SDC4遺伝子のmRNAが自身で二本鎖構造をとる場合には、RNAヘリカーゼと特異的に結合し得るウイルス核酸由来のRNAモチーフを連結したハイブリッドリボザイムを用いることにより、標的配列を一本鎖にすることができる[Proc. Natl. Acad. Sci. USA, 98(10): 5572-5577 (2001)]。さらに、リボザイムを、それをコードするDNAを含む発現ベクターの形態で使用する場合には、転写産物の細胞質への移行を促進するために、tRNAを改変した配列をさらに連結したハイブリッドリボザイムとすることもできる[Nucleic Acids Res., 29(13): 2780-2788 (2001)]。
SDC4遺伝子の転写産物に相補的に結合し、該転写産物からのタンパク質の翻訳を抑制することができる本発明のアンチセンス核酸(もしくはmiRNA)や、SDC4遺伝子の転写産物における相同な(もしくは相補的な)塩基配列を標的として該転写産物を切断し得るsiRNA(もしくはリボザイム、miRNA)、さらに該siRNAやmiRNAの前駆体であるshRNAやpre-miRNAなど(以下、包括的に「本発明の核酸」という場合がある)は、がん幹細胞の除去薬、ひいてはがんの治療薬として使用することができる。
本発明の核酸を含有する医薬はそのまま液剤として、または適当な剤型の医薬組成物として、ヒトまたは非ヒト温血動物(例、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サル、ニワトリなど)に対して経口的または非経口的(例、血管内投与、皮下投与など)に投与することができる。
さらに、体内動態の改良、半減期の長期化、細胞内取り込み効率の改善を目的に、前記核酸を単独またはリポソームなどの担体とともに製剤(注射剤)化し、静脈、皮下等に投与してもよい。
SDC4に対する抗体や、SDC4の発現もしくは機能を抑制する低分子化合物は、SDC4の産生またはそのがん幹細胞特性に寄与する機能を阻害することができる。したがって、これらの物質は、がん幹細胞の除去薬、ひいてはがんの治療薬として使用することができる。
上記の抗体や低分子化合物を含有する医薬は、そのまま液剤として、または適当な剤型の医薬組成物として、ヒトまたは他の温血動物(例、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サル、ニワトリなど)に対して経口的または非経口的(例、血管内投与、皮下投与など)に投与することができる。
後述の実施例に示されるとおり、SDC4は既知のがん幹細胞マーカーであるCD44v9よりも優れたがん幹細胞マーカーである。従って、がん細胞集団から、SDC4の発現を指標としてがん幹細胞を特異的に検出し、選別することができる。
(1)シングルセル遺伝子解析
ヒト膵臓癌細胞株Panc-1(ATCC CRL1469)に、CMVプロモーターの制御下に蛍光タンパク質ZsGreenとオルニチンデカルボキシラーゼ-degronとの融合タンパク質をコードするレトロウイルスベクターを導入して、低代謝細胞を可視化し、抗CD44v9抗体Anti human CD44v9(入手先:コズモバイオ;二次抗体として、Mouse Anti-Rat IgG2a(入手先:BD pharmingen))と、FACS(装置名:SH800Z SONY)を用い、ZsGreen陰性(dZsG-)/CD44v9陰性(CD44v9-)細胞集団と、dZsG+/CD44v9高発現(CD44v9high)細胞集団とを、ソーティングした。これらのPanc-1 dZsG-/CD44v9-、Panc-1 dZsG+/CD44v9high、並びに、150個のPanc-1 dZsG+/CD44v9high細胞を免疫不全マウスに移植して生じた腫瘍由来の培養細胞であるsuper Panc-1 CSC(受託番号:NITE BP-02449)のそれぞれについて、次世代シーケンサー(装置名:HiSeqイルミナ)を用いて遺伝子解析を行った。主成分解析の結果、PC1(70.7%)+PC2(29.3%)の遺伝子群において、三者を遺伝子的に分けることができ、遺伝子的に相違があることが明らかとなった(図1-1)。
(2-1)ウェスタンブロッティング
以下の4種類の細胞を用いたウェスタンブロッティングを行った。抗CD44v9抗体としてAnti human CD44v9(入手先:コズモバイオ)、二次抗体として、Mouse Anti-Rat IgG2a(入手先:BD pharmingen))を用い、抗SDC4抗体としてSyndecan-4 (5G9) sc-12766(入手先:Santa Cruz)、二次抗体としてAlexa Fluor 647(入手先:invitrogen)を用いた。
1-1: dZsG-/CD44v9- (1×106個の非癌幹細胞でできた腫瘍からの培養細胞)
1-2: dZsG-/CD44v9high(1×106個の非癌幹細胞でできた腫瘍からの培養細胞)
3-3: dZsG+/ CD44v9- (150個の癌幹細胞でできた腫瘍からの培養細胞)
3-4: dZsG+/ CD44v9high(150個の癌幹細胞でできた腫瘍からの培養細胞)
結果を図2-1に示す。1-1及び1-2よりも、3-3及び3-4でSDC4の発現が高く、同時にCD44v9の発現も高かった。両者はタンパク的に連動していることがわかった。
膵臓癌幹細胞super Panc-1 CSCを用い、上記(1)と同様の方法で、FACSにてsuper Panc-1 CSCのdZsG+/CD44v9highの細胞をソーティングし、24時間培養後にSDC4とCD44v9の細胞共染色を行なった。SDC4の染色は、抗SDC4抗体(入手先:Santa Cruz)と二次抗体として、Alexa Fluor 647(入手先:Invotrogen)とを用いて行った。Keyecnce all-in-one蛍光顕微鏡(装置名:BZ-X700)にて観察したところ、SDC4とCD44v9とが共局在している領域が観察できた(図2-2)。
膵臓癌幹細胞super Panc-1 CSCを用い、上記(1)と同様の方法で、FACSにてsuper Panc-1 CSCのdZsG+/CD44v9highの細胞をソーティングして、図3-1に示すように、SCID beigeマウス(入手先:オリエンタル酵母)の背中9カ所に、それぞれ一個ずつ皮下移植した(50μl DMEM+50μl matrigel中に1細胞)。184個皮下移植して、1~2ヶ月後に21個の固形腫瘍の形成が確認できた。その造腫瘍率が11.4%であった(図3-1)。
一方、同様に膵臓癌幹細胞super Panc-1 CSCを用い、FACSにてsuper Panc-1 CSCのdZsG+/SDC4highの細胞をソーティングした。抗SDC4抗体としてSyndecan-4 (5G9) sc-12766(入手先:Santa Cruz)、二次抗体としてAlexa Fluor 647(入手先:Invotrogen)を用いた。得られた細胞を、SCID beigeマウスの背中9カ所に、それぞれ一個ずつ皮下移植した(50μl DMEM+50μl matrigel中に1細胞)。64個皮下移植して、1~2ヶ月後に11個の固形腫瘍の形成が確認できた。その造腫瘍率が17.2%であった(図3-1)。
以上より、がん幹細胞マーカーとして、SDC4は既知マーカーであるCD44v9より優れていることがわかった。
super Panc-1 CSCのdZsG+/CD44v9highの1個の細胞からできた腫瘍について、CD44v9およびSDC4の組織蛍光免疫染色を行った。CD44v9の染色には、抗CD44v9抗体(入手先:コスモバイオ;二次抗体として、Mouse Anti-Rat IgG2a(入手先:BD pharmingen))を用い、SDC4の染色には、抗SDC4抗体としてSyndecan-4 (5G9) sc-12766(入手先:Santa Cruz)、二次抗体としてAlexa Fluor 647(入手先:Invotrogen)を用いた。その結果、CD44v9陽性細胞(緑)はほとんどないが、SDC4陽性細胞(赤)は高頻度で認めた(図3-2)。
(5-1)2017年5月14日に、以下の3群の細胞をFACSにてソーティング後、それぞれ100,000個細胞/1ml DMEMをSCID beigeマウスに腹腔内投与し、同年7月5日にマウスをサクリファイスして、マウスの外見・体重、腹腔内の腫瘍の有無を調べた。
(1)super Panc-1 CSCの2次抗体のみ
(2)super Panc-1 CSCのCD44v9high 上位4%
(3)super Panc-1 CSCのSDC4high 上位4%
(1)のマウスは、外見に特記すべき事項はなく、体重も22.1gと正常だったが、(2)(3)のマウスの体重がそれぞれ16.6gと17.1gで、特に(3)のマウスには黄疸を認めた(図4-1左)。また、(1)のマウスは腹腔内に腫瘍を認めなかったが、(2)のマウスでは腸管周辺に数個の腫瘍形成を認めた。一方、(3)マウスには、腸管周辺により多くの固形腫瘍を認め、更に肝胆膵臓周辺にも腫瘍形成があり、肝臓一部が黄色に変色し、明らかな胆嚢肥大を認めた(図4-1右)。
(1)super Panc-1 CSCの2次抗体のみ
(2)super Panc-1 CSCのCD44v9high上位5%
(3)super Panc-1 CSCのSDC4high 上位3.5%
(1)(2)のマウスは、外見に特記すべき事項はなく、体重もそれぞれ22.0gと22.1gと正常だったが、(3)のマウスの体重は15.1gで、黄疸を認めた。また、(1)(2)のマウスは腹腔内に腫瘍を認めなかったが、(3)のマウスには、特に肝胆膵臓周辺に腫瘍形成があり、胆嚢腫大を認めた。
(1)super Panc-1 CSCの2次抗体のみ
(2)super Panc-1 CSCのCD44v9high 上位5%
(3)super Panc-1 CSCのSDC4high 上位4%
(1)(2)のマウスは、外見に特記すべき事項はなく、体重もそれぞれ21.2gと21.0gと正常だったが、(3)のマウスの体重は16.7gで、黄疸を認めた。また、(1)(2)のマウスは腹腔内に腫瘍を認めなかったが、(3)のマウスには、腸管周辺一部に固形腫瘍を認め、肝胆膵臓周辺にも腫瘍形成があり、肝臓一部が黄色に変色し、明らかな胆嚢肥大を認めた。
(1)super Panc-1 CSCの2次抗体のみ
(2)super Panc-1 CSCのCD44v9high 上位5%
(3)super Panc-1 CSCのSDC4high 上位4.5%
(1)(2)のマウスは、外見に特記すべき事項はなく、体重もそれぞれ18.0と19.4gと正常だったが、(3)のマウスの体重は15.0gであった。また、(1)(2)のマウスは腹腔内に明らかな腫瘍を認めなかったが、(3)のマウスには、肝胆膵臓周辺に腫瘍形成を認めた。
(1)Bxpc3 2次抗体のみ
(2)Bxpc3 CD44v9high上位4%
(3)Bxpc3 SDC4high上位5%
(1)(2)のマウスは、外見に特記すべき事項はなく、体重もそれぞれ21.5と21.3gと正常だったが、(3)のマウスの体重は15.2gであった(図4-2左)。また、(1)(2)のマウスは腹腔内に明らかな腫瘍を認めなかったが、(3)のマウスには、肝胆膵臓周辺に腫瘍形成を認め、腸閉塞を起こし、胃の著明な拡張を認めた(図4-2右)。
(6-1)Panc-1
1st 実験:2017年1月27日に、以下の3群の細胞をFACSにてソーティング後、それぞれ50個細胞/100ul (DMEM:matrigel = 1:1)を、図5-1のようにSCID beigeマウスの背中に皮下注射し、同年3月21日までの腫瘍形成を観察した。
2nd 実験:2017年2月28日に、以下の3群の細胞をFACSにてソーティング後、それぞれ50個細胞/100ul (DMEM:matrigel = 1:1)を図5-1のようにSCID beigeマウスの背中に皮下注射し、同年4月13日までの腫瘍形成を観察した。
(1)Panc-1
(2)Panc-1 CD44v9high上位8.5%
(3)Panc-1 SDC4high上位1%
結果を図5-1に示す。(3)の細胞が最も造腫瘍能が高かった。
別の膵臓癌細胞株Bxcp3を用いて(6-1)と同様の実験を行った。2017年3月5日に、以下の3群の細胞をFACSにてソーティング後、それぞれ75個細胞/100ul (DMEM:matrigel = 1:1)を図5-2のようにSCID beigeマウスの背中に皮下注射し、同年6月12日までの腫瘍形成を観察した。
(1)Bxpc3
(2)Bxpc3 CD44v9high上位4%
(3)Bxpc3 SDC4high上位5%
結果を図5-2に示す。(3)の細胞が最も造腫瘍能が高かった。
4人の大腸癌患者から摘出した癌組織について、上記(4)と同様の方法で、組織蛍光免疫染色を行った。用いられた4サンプルの一般情報・病理所見を表1に示す。
(8-1)No.2検体から摘出した癌組織を、図7-1に示すようにSCID beigeマウスに移植し、5回継続移植した腫瘍サンプル(MP5)を用いて、上記(7)と同様に蛍光免疫染色を行なった。その結果、癌部では、SDC4は高発現であったが、CD44v9の発現は認められなかった(図7-1)。
(9-1)2017年9月10日に、以下の2群の細胞をFACSにてソーティング後、それぞれ10,000個細胞/1ml DMEMをSCID beigeマウスに腹腔内投与し、同年12月2日にマウスをサクリファイズして、マウスの外見・体重、腹腔内の腫瘍の有無を調べた。
(1)PDX No.2 のSDC4染色 下位12%
(2)PDX No.2 のSDC4染色 上位1.2%
(1)(2)のマウスは、外見に特記すべき事項はなく、体重はそれぞれ22.9と21.4gであった。しかし、(2)のマウスは腹腔内に明らかな腫瘍を認め、肝胆膵臓周辺、横隔膜、更に胸腔内壁側胸膜に腫瘍形成を認めた(図8-1)。
(1)PDX No.2 のSDC4染色 下位12%
(2)PDX No.2 のSDC4染色 上位1%
(3)PDX No.2 の2次抗体のみ
(1)(3)のマウスは、外見に特記すべき事項はなく、体重もそれぞれ29.6gと23.2gであった。一方、(2)のマウスの体重は20.3gで、黄疸を認めた(図8-2左)。また、(2)のマウスは、腸管周辺一部に腫瘍形成、肝胆膵臓周辺に明らかな腫瘍形成があり、肝臓一部が黄色に変色し、胆嚢肥大を認めた。(3)のマウスは、肝胆膵臓周辺一部に腫瘍形成のみを認めた。(1)のマウスには腫瘍形成を認めなかった(図8-2右)。
2018年3月31日に、以下の2群の細胞をFACSにてソーティングした後、それぞれ10,000個細胞/800ul DMEMをSCID beigeマウス(オス)に腹腔内投与し、同年6月26日にマウスをサクリファイズして、マウスの外見・体重、腹腔内の腫瘍の有無を調べた。
(1)TE4 のSDC4 陽性 上位2%
(2)TE4 の2次抗体のみ
(2)のマウスは体重が20.1gであったのに対して、(1)のマウスの体重は17.9gであった。(2)のマウスに比べて、(1)のマウスには腫瘍形成を認めた(図8-3)。
(1)単独投与
SDC4を標的とする独自に設計したsiRNA3種類#6, #7, #10、市販のSDC4標的siRNA#1, #2, #3(入手先:applied biosystems)、並びにネガティブコントロールsiRNANCの、7種類のsiRNAを用いて、大腸癌患者(No. 2検体)からの摘出癌組織のPDXモデル由来細胞株PDX No.2、膵臓癌幹細胞super Panc-1 CSCに対する抗腫瘍細胞効果を検証した。7種のsiRNAのヌクレオチド配列を以下に示す。
#6:(sense)5’-GGUCCUGGCAGCUCUGAUUdTdT(配列番号3)
(anti-sense) 5’-AAUCAGAGCUGCCAGGACCdTdT(配列番号4)
#7:(sense)5’-AGGAUGAAGGCAGCUAUGAdTdT(配列番号5)
(anti-sense) 5’-UCAUAGCUGCCUUCAUCCUdTdT(配列番号6)
#10:(sense)5’-GCAAGAAACCCAUCUACAAdTdT(配列番号7)
(anti-sense) 5’-UUGUAGAUGGGUUUCUUGCdTdT(配列番号8)
#1:(sense)5’-CUACUGCUCAUGUACCGUAtt(配列番号9)
(anti-sense) 5’-UACGGUACAUGAGCAGUAGga(配列番号10)
#2:(sense)5’-GCUAUGACCUGGGCAAGAAtt(配列番号11)
(anti-sense) 5’-UUCUUGCCCAGGUCAUAGCtg(配列番号12)
#3:(sense)5’-CCAAGAAACUAGAGGAGAAtt(配列番号13)
(anti-sense) 5’-UUCUCCUCUAGUUUCUUGGgt(配列番号14)
NC:(sense)5’-AUCCGCGCGAUAGUACGUA(配列番号15)
(anti-sense) 5’-AUCCGCGCGAUAGUACGUA(配列番号16)
96 wellに細胞を6000個/wellずつFACSにてソーティングして一晩静置後、siRNA 10 pmol/wellをlipofectamin200(入手先:Invitrogen)にて導入して、72h後にWST8(入手先:DojinDo)にて細胞の生存度を測定した。更に全wellをDMEM(FBS10%)に培地交換して、72h後に再度WST8にて細胞の生存度を測定した。72h+72h後では、siRNA#7および#2が著しい抗腫瘍細胞効果を示した(図9-1)。
(2-1)化学療法剤との併用
上記(1)と同様にして、7種類のsiRNAと化学療法剤との併用効果を調べた。96 wellに細胞を6000個/wellずつFACSにてソーティングして一晩静置後、siRNA 10 pmol/wellをlipofectamine2000にて導入して、72h後にWST8にて細胞の生存度を測定し、次いで膵臓癌super Panc-1 CSCには全wellをジェムシタビン(GEM)含有DMEM(FBS10%)に培地交換し、大腸癌PDX No.2には全wellをオキサリプラチン(L-OHP)含有DMEM(FBS10%)に培地交換して、72h後に再度WST8にて細胞の生存度を測定した。72h+72h後では、膵臓癌super Panc-1 CSCは、siRNA7+GEMおよび#2+GEMが著しい抗腫瘍細胞効果を示し、大腸癌PDX No.2にはsiRNA7+L-OHPおよび#2+L-OHPが著しい抗腫瘍細胞効果を示した(図9-2)。
上記(1)と同様にして、7種類のsiRNAとWnt阻害剤との併用効果を調べた。96 wellに細胞を6000個/wellずつFACSにてソーティングして一晩静置後、siRNA 10 pmol/wellをlipofectamine2000にて導入して、72h後にWST8にて細胞の生存度を測定し、次いで全wellをWnt阻害剤(FH535)含有DMEM(FBS10%)に培地交換して、72h後に再度WST8にて細胞の生存度を測定した。72h+72h後では、siRNA#7+FH535が著しい抗腫瘍細胞効果を示した(図9-3)。
上記(1)と同様にして、7種類のsiRNAとmTOR阻害剤との併用効果を調べた。96 wellに細胞を6000個/wellずつFACSにてソーティングして一晩静置後、siRNA 10 pmol/wellをlipofectamine2000にて導入して、72h後にWST8にて細胞の生存度を測定し、次いで全wellをmTOR阻害剤(ラパマイシン)含有DMEM(FBS10%)に培地交換して、72h後に再度WST8にて細胞の生存度を測定した。72h+72h後では、siRNA#7+ラパマイシン及びsiRNA#2+ラパマイシンが著しい抗腫瘍細胞効果を示した(図9-5)。
(3-1)正常細胞及びがん幹細胞対するSDC4標的siRNAの毒性試験
市販のSDC4標的siRNA#2と、ネガティブコントロールsiRNA NCを用 いて、BJ-5ta正常包皮由来線維芽細胞株、HPNE正常膵管由来上皮細胞 株、3-4膵臓癌癌幹細胞、No.2 H16-2490 大腸癌患者摘出癌組織の PDXモデル由来細胞株PDX No.2に対する毒性を検証した。6 wellに 200,000個/wellずつ播き一晩培養後、siRNA 100 pmol/wellを lipofectamine2000にて導入し、96h後にWST8にて細胞の生存度を測定した。その結果、2つの正常細胞に対しては毒性を認めず、2種類の癌細胞に対しては著しい毒性を認めた(図9-6)。
BJ-5ta正常包皮由来線維芽細胞株、HPNE正常膵管由来上皮細胞株、super Panc-1 CSC 膵臓癌癌幹細胞、No.2 H16-2490 大腸癌患者摘出癌組織のPDXモデル由来細胞株PDX No.2に対して、SDC4抗体による細胞免疫染色を行い、FACSにて解析した。その結果、2つの正常細胞では、SDC4の発現を認めず、2種類の癌細胞では著しいSDC4発現を認めた(図9-7)。
ヌードマウスの皮下にsuper Panc-1 CSC 膵臓癌癌幹細胞 3×106個/Tumorを移植し、体積が約70 mm3に達したら、毎日一回、SDC4標的siRNA#7、又はネガティブコントロールsiRNA NCを、核酸デリバリーシステムであるスーパーアパタイトを用いて20 ug/回、マウス尾静脈より静脈注射した。未処置群(control)及びネガティブコントロール投与群(NC)と比較して、#7投与群では著しい抗腫瘍効果を認めた。Day5およびDay9では、#7投与群はcontrol 及びNCと比較して腫瘍の体積が有意に小さかった(図9-8)。
(4-1)SDC4のタンパクレベルと抗腫瘍効果との関係
市販のSDC4標的siRNA#1, #2, #3、ネガティブコントロールsiRNANCの膵臓癌幹細胞super Panc-1 CSCに対する抗腫瘍細胞効果メカニズムを検証した。96 wellに細胞を6000個/wellずつFACSにてソーティングして一晩静置後、siRNA 10 pmol/wellをlipofectamine2000にて導入し、48hおよび72hr後の細胞の生存度をWST8にて測定し、また、ウェスタンブロッティングにより、SDC4のタンパクレベルを測定した。その結果、48hrでは、ネガティブコントロールsiRNANCに比べて、siRNA#1, #2, #3によるSDC4タンパクの減少がみられるが、細胞の生存度に変化はなかった。72hrでは、SDC4標的siRNA #2によってのみ、SDC4のタンパクおよび細胞の生存度の減少を認めた(図10-1)。
市販のSDC4標的siRNA#2の、膵臓癌幹細胞super Panc-1 CSCに対する抗腫瘍細胞効果メカニズムを検証した。96 wellに細胞を6000個/wellずつFACSにてソーティングして一晩静置後、siRNA 10 pmol/wellをlipofectamine2000にて導入し、36h後に回収してRNAを抽出し、RNA-sequencingを行なった。その結果、ネガティブコントロールsiRNANCに対して、siRNA#2において、Fold Change 2.0以上, p<0.05で変動する遺伝子が172個あった。この172個の変動遺伝子セットを、Ingenuity Pathways Analysis(IPA)のUpstream解析を行なった結果、mTOR, PPARG1A, Jnk, ERK1/2, ERK, CrebなどのUpstream regulatorの抑制が予測された(図10-2)。
膵臓癌幹細胞super Panc-1 CSCを、96 wellに6000個/wellずつFACSにてソーティングして一晩培養後、セツキシマブ(Cmab)、ラパマイシン(Rapamycin)、2種類のWnt阻害剤(IWR、FH535)を添加して、48時間後に、SDC4の細胞免疫染色、およびウェスタンブロッティングを行なった。ウェスタンブロッティングではWnt阻害剤IWR、FH535の添加によって、SDC4のタンパク発現が増加した。細胞蛍光免疫染色でも、FH535によるSDC4発現増加が見られた(図10-3)。
実施例1(3)で得られた、super Panc-1 CSCのdZsG+/CD44v9highシングルセル由来の21個の固形腫瘍、及びsuper Panc-1 CSCのdZsG+/SDC4highシングルセル由来の11個の固形腫瘍のうち、それぞれ6個(n=6)について、HIF1αとSDC4の免疫蛍光染色を行なった。HIF1αは低酸素状態で安定・蓄積し、細胞質から核へ移行することから、HIF1αとDAPIの二重染色により、細胞核がHIF1α陽性の領域が低酸素領域、細胞核がHIF1α陰性の領域が非低酸素領域に相当する。結果を図11に示す。図11(a)~(c)(dZsG+/CD44v9highシングルセル由来)において、白実線で囲んでいる部分は細胞核がHIF1α陽性で、白点線で囲んでいる部分は細胞核がHIF1α陰性である。従って、低酸素領域においてSDC4(+)細胞が多数確認できた。dZsG+/SDC4highシングルセル由来の固形腫瘍(図11(d)~(f))でも、同様に、HIF1α核染色陽性(白実線で囲んでいる部分)の低酸素領域では、SDC4(+)が確認できた。一方、非低酸素領域では、SDC4の発現が確認できなかった。
(1)膵臓癌及び大腸癌に対する抗SDC4抗体の抗腫瘍効果
No.2 H16-2490 大腸癌患者摘出癌組織のPDXモデル由来細胞株PDX No.2及び大腸癌細胞株HCT116, HT29, SW480、更に膵臓癌幹細胞super Panc-1 CSC及び膵臓癌細胞株miapaca, PSN, Panc-1に対する抗腫瘍細胞効果を検証した。96 wellに5000個/wellずつFACSにてソーティングし、一晩静置した後、IBL社製ポリクロナール抗体であるSDC4抗体又はIgG抗体(NCとして)を、2.5, 5, 10及び20 ug/mlとなるように加え、Day4及びDay6にWST8にて細胞の生存度を測定した。その結果、抗SDC4抗体は、いずれの癌細胞株に対しても著しい抗腫瘍細胞効果を示した(図12-1~図12-4)。
BJ-5ta正常包皮由来線維芽細胞株、HPNE正常膵管由来上皮細胞、MRC5ヒト胎児肺正常線維芽細胞、及びHEK293ヒト 胎児腎細胞を、96 wellに5000個/wellずつFACSにてソーティングし、一晩静置した後、IBL社製ポリクロナール抗体であるSDC4抗体を、10 ug/mlとなるように加え、Day4にWST8にて細胞の生存度を測定した。その結果、抗SDC4抗体は、いずれの正常細胞にも比較的毒性を示さなかった(図12-5)。
また、BJ-5ta正常包皮由来線維芽細胞株、HPNE正常膵管由来上皮細胞を、96 wellに5000個/wellとなるように播き、一晩静置した後、IBL社製ポリクロナール抗体であるSDC4抗体又はIgG抗体(NCとして)を、20 ug/mlとなるように加え、48hr, 72hrにWST8にて細胞の生存度を測定した。その結果、抗SDC4抗体は、いずれの正常細胞にも比較的毒性を示さなかった(図12-6)。
ヌードマウスの皮下にsuper Panc-1 CSC 膵臓癌癌幹細胞 3×106個/Tumorを移植し、体積が約70 mm3に達した時点で、IBL社製ポリクロナール抗体であるSDC4抗体又はIgG抗体を、2日に一回、毎回100 ug/mlあるいは25 ug/mlを1 mlにてマウスに腹腔内注射した。その結果、未処置群(control)及びネガティブコントロール投与群(IgG 100ug)と比較して、SDC4 100 ug及びSDC4 25 ug投与群では著しい抗腫瘍効果を認めた。Day5及びDay9では、SDC4投与群はcontrol及びNCと比較して腫瘍の体積が有意に小さかった(図12-7)。
(1)中皮腫細胞株に対するSdc4標的siRNAの抗腫瘍細胞効果
Cancer Cell Line Encyclopedia(CCLE)のデータベースによると、中皮腫細胞(mesothelioma)のSDC4 mRNA発現量は全体3位と高い。そこで、市販のSDC4標的siRNA#2、本発明者らが独自に設計したsiRNA#7、ネガティブコントロールsiRNA NCを用いて、2種類の中皮腫細胞株MSTO-211HとH2052に対する抗腫瘍細胞効果を検証した。96 wellに5000個/wellずつFACSにてソーティングし、一晩静置した後、siRNA 10 pmol/wellをlipofectamine2000にて導入して、72h後にWST8にて細胞の生存度を測定した。その結果、SDC4標的siRNAは著しい抗腫瘍細胞効果を示した(図13-1)。
(2)中皮腫細胞株及びそのがん幹細胞分画に対する抗SDC4抗体の抗腫瘍細胞効果
中皮腫細胞株H2452とH28に対する抗腫瘍細胞効果を検証した。96 wellに5000個/wellずつFACSにてソーティングし、一晩静置した後、IBL社製ポリクロナール抗体であるSDC4抗体(poly)又はIgG抗体(NC)を、10及び20 ug/mlとなるように加え、48hr, 72hr後にWST8にて細胞の生存度を測定した。その結果、抗SDC4抗体は著しい抗腫瘍細胞効果を示した(図13-2)。
CD24は中皮腫の癌幹細胞マーカーとして知られており、CD24陽性細胞はがん幹細胞としての性質が強いと文献報告されている。H2452のCD24陽性率が3.7%であるのに対し、H28のCD24陽性率は81.8%と高い。H2452と比較して、H28に対するSDC4の抗体は、より早期に(72hより48hr)かつより著しい抗腫瘍細胞効果を示した。従って、抗SDC4抗体は、中皮腫癌幹細胞にはとりわけ強い抗腫瘍細胞効果があることがわかった。
そこで、中皮腫細胞株H28を96 wellに10000個/wellとなるように撒き、更にCD24陽性上位40%の細胞を、FACSにて96 wellに10000個となるようにソーティングし、一晩静置した後、IBL社製ポリクロナール抗体であるSDC4抗体(poly)又はIgG抗体(NC)を、20 ug/mlとなるように加え、96hr後にWST8にて細胞の生存度を測定した。その結果、抗SDC4抗体は、未分画のH28に対して著しい抗腫瘍細胞効果を示したのみならず、CD24強陽性のH28細胞群により著しい抗腫瘍細胞効果を示した(図13-3)。
さらに、SDC4は単なるマーカーではなく、がん幹細胞に対する治療の標的となるため、SDC4を標的とする核酸等の薬剤は、がん幹細胞の除去、ひいてはがんの根治療法に利用することができ、極めて有用である。
Claims (10)
- SDC4の発現又は機能を抑制する物質を含有してなる、がん幹細胞除去剤。
- SDC4の発現を抑制する物質が、
(a)SDC4遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体、
(b)SDC4遺伝子の転写産物に対するアンチセンス核酸、又は
(c)SDC4遺伝子の転写産物に対するリボザイム核酸
である、請求項1に記載の剤。 - SDC4の発現を抑制する物質が、配列番号1で表されるヌクレオチド配列中、ヌクレオチド番号41~637で示される領域内の、連続する少なくとも15個のヌクレオチドからなる配列と相補的なヌクレオチド配列を含む核酸もしくはその前駆体である、請求項2に記載の剤。
- SDC4の発現を抑制する物質が、配列番号1で表されるヌクレオチド配列中、ヌクレオチド番号475~606で示される領域内の、連続する少なくとも15個のヌクレオチドからなる配列と相補的なヌクレオチド配列を含む核酸もしくはその前駆体である、請求項2に記載の剤。
- siRNAである、請求項3又は4に記載の剤。
- SDC4の機能を抑制する物質が、
(a)SDC4に対する抗体、又は
(b)SDC4に対するアンタゴニスト
である、請求項1に記載の剤。 - 他の抗腫瘍薬と組み合わせてなる、請求項1~6のいずれか1項に記載の剤。
- 他の抗腫瘍薬が、化学療法薬、Wnt阻害薬及びmTOR阻害薬から選択される1種以上である、請求項7に記載の剤。
- がん細胞集団において、SDC4の発現を指標としてがん幹細胞を検出又は選別する方法。
- SDC4に対する抗体を含有してなる、がん幹細胞の検出用試薬。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980052797.0A CN114025798B (zh) | 2018-08-13 | 2019-08-13 | 癌干细胞标记物以及癌干细胞靶向药物 |
JP2020537086A JP7450268B2 (ja) | 2018-08-13 | 2019-08-13 | がん幹細胞マーカー及びがん幹細胞標的薬 |
SG11202101425WA SG11202101425WA (en) | 2018-08-13 | 2019-08-13 | Cancer stem cell marker and cancer stem cell targeting drug |
EP19849381.9A EP3838291A4 (en) | 2018-08-13 | 2019-08-13 | Cancer stem cell marker and cancer stem cell targeting drug |
US17/268,174 US20210317453A1 (en) | 2018-08-13 | 2019-08-13 | Cancer stem cell marker and cancer stem cell targeting drug |
US19/067,248 US20250188467A1 (en) | 2018-08-13 | 2025-02-28 | Cancer stem cell marker and cancer stem cell targeting drug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018152526 | 2018-08-13 | ||
JP2018-152526 | 2018-08-13 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/268,174 A-371-Of-International US20210317453A1 (en) | 2018-08-13 | 2019-08-13 | Cancer stem cell marker and cancer stem cell targeting drug |
US19/067,248 Division US20250188467A1 (en) | 2018-08-13 | 2025-02-28 | Cancer stem cell marker and cancer stem cell targeting drug |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020036183A1 true WO2020036183A1 (ja) | 2020-02-20 |
Family
ID=69525418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/031894 WO2020036183A1 (ja) | 2018-08-13 | 2019-08-13 | がん幹細胞マーカー及びがん幹細胞標的薬 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20210317453A1 (ja) |
EP (1) | EP3838291A4 (ja) |
JP (1) | JP7450268B2 (ja) |
CN (1) | CN114025798B (ja) |
SG (1) | SG11202101425WA (ja) |
WO (1) | WO2020036183A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022158440A1 (ja) | 2021-01-19 | 2022-07-28 | 浩文 山本 | 薬物送達用組成物、その製造方法及びその用途 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117554618B (zh) * | 2023-11-24 | 2024-07-19 | 唐山市人民医院 | CD44v9蛋白在胃癌诊断和预后中的用途 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8173103B2 (en) * | 2006-03-31 | 2012-05-08 | The Board Of Trustees Of The University Of Arkansa | Inhibition of cancer metastasis |
CN101641119A (zh) * | 2006-12-20 | 2010-02-03 | 通用电气医疗集团股份有限公司 | 造影剂 |
HU0800464D0 (en) * | 2008-07-24 | 2008-09-29 | Szilak Labor Bioinformatikai E | Syndecan-4 a modulator of rac1-gtp |
WO2015014376A1 (en) * | 2013-07-31 | 2015-02-05 | Biontech Ag | Diagnosis and therapy of cancer involving cancer stem cells |
JP2017118841A (ja) * | 2015-12-28 | 2017-07-06 | 国立大学法人大阪大学 | 免疫療法の効果予測マーカー |
-
2019
- 2019-08-13 US US17/268,174 patent/US20210317453A1/en not_active Abandoned
- 2019-08-13 CN CN201980052797.0A patent/CN114025798B/zh active Active
- 2019-08-13 WO PCT/JP2019/031894 patent/WO2020036183A1/ja not_active Application Discontinuation
- 2019-08-13 EP EP19849381.9A patent/EP3838291A4/en not_active Withdrawn
- 2019-08-13 SG SG11202101425WA patent/SG11202101425WA/en unknown
- 2019-08-13 JP JP2020537086A patent/JP7450268B2/ja active Active
-
2025
- 2025-02-28 US US19/067,248 patent/US20250188467A1/en active Pending
Non-Patent Citations (16)
Title |
---|
"Current Protocols in Molecular Biology", 1999, JOHN WILEY & SONS, pages: 6.3.1 - 6.3.6 |
ADIKRISNA, R. ET AL., GASTROENTEROLOGY, vol. 143, 2012, pages 234 - 245 |
BRULE S. ET AL.: "Glycosaminoglycans and syndecan-4 are involved in SDF-1/CXCL12-mediated invasion of human epitheloid carcinoma HeLa cells", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1790, 2009, pages 1643 - 1650, XP026754282, DOI: 10.1016/j.bbagen.2009.08.001 * |
DOU J. ET AL.: "Isolation and Identification of Cancer Stem-Like Cells from Murine Melanoma Cell Lines", CELLULAR & MOLECULAR IMMUNOLOGY, vol. 4, no. 6, December 2007 (2007-12-01), pages 467 - 472, XP055688646 * |
ELBASHIR ET AL., GENES DEV., vol. 15, 2001, pages 188 - 200 |
IMANISHI, T. ET AL., CHEM. COMMUN., 2002, pages 1653 - 9 |
JEPSEN, J.S. ET AL., OLIGONUCLEOTIDES, vol. 14, 2004, pages 130 - 46 |
KIM S. ET AL.: "FGFR2 Promotes Breast Tumorigenicity through Maintenance of Breast Tumor-Initiating Cells", PLOS ONE, vol. 8, no. 1, 8 January 2013 (2013-01-08), pages e51671, XP009517267 * |
LABROPOULOU VT ET AL.: "Expression of Syndecan-4 and Correlation with Metastatic Potential in Testicular Germ Cell Tumours", BIOMED RESEARCH INTERNATIONAL, vol. 2013, 2013, pages 1 - 10, XP055688643 * |
MCDONALD AI ET AL.: "380: DELETION OF SYNDECAN-4 REDUCES B16-F10 MELANOMA TUMOR SIZE, DELAYS TUMOR GROWTH, AND INCREASES TUMOR VASCULAR DENSITY IN C57/BL6 MICE", JOURNAL OF INVESTIGATIVE MEDICINE, vol. 60, no. 1, 2012, pages 1 - 232, XP009526318, DOI: 10.2310/JIM.0b013e318240c940 * |
MORITA, K. ET AL., NUCLEOSIDES NUCLEOTIDES NUCLEIC ACIDS, vol. 22, 2003, pages 1619 - 21 |
NUCLEIC ACIDS RES., vol. 29, no. 13, 2001, pages 2780 - 2788 |
PROC. NATL. ACAD. SCI. USA, vol. 98, no. 10, 2001, pages 5572 - 5577 |
RIDGWAY LD ET AL.: "Modulation of GEF-H1 Induced Signaling by Heparanase in Brain Metastatic Melanoma Cells", JOURNAL OF CELLULAR BIOCHEMISTRY, vol. 111, no. 5, 1 December 2010 (2010-12-01), pages 1299 - 1309, XP055688613 * |
TANG MR. ET AL.: "Identification of CD 24 as a marker for tumorigenesis of melanoma", ONCO TARGETS AND THERAPY, vol. 11, June 2018 (2018-06-01), pages 3401 - 3406, XP055688711 * |
VLASHI, E. ET AL., J. NATL. CANCER INST., vol. 101, 2009, pages 350 - 359 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022158440A1 (ja) | 2021-01-19 | 2022-07-28 | 浩文 山本 | 薬物送達用組成物、その製造方法及びその用途 |
Also Published As
Publication number | Publication date |
---|---|
SG11202101425WA (en) | 2021-03-30 |
US20210317453A1 (en) | 2021-10-14 |
JP7450268B2 (ja) | 2024-03-15 |
US20250188467A1 (en) | 2025-06-12 |
CN114025798A (zh) | 2022-02-08 |
CN114025798B (zh) | 2023-08-18 |
EP3838291A4 (en) | 2022-05-11 |
JPWO2020036183A1 (ja) | 2021-08-26 |
EP3838291A1 (en) | 2021-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101605560B (zh) | 治疗胆管癌的药物组合物 | |
JP4505749B2 (ja) | Bcl−2の発現抑制をするオリゴ二本鎖RNAとそれを含有する医薬組成物 | |
US20250188467A1 (en) | Cancer stem cell marker and cancer stem cell targeting drug | |
JP5933010B2 (ja) | 癌治療剤 | |
WO2012121178A1 (ja) | 腫瘍血管形成阻害剤 | |
JP2016101167A (ja) | がん幹細胞を含むまたはそれに由来するがんの治療、予防および診断のための方法および組成物 | |
JP2011032236A (ja) | 腫瘍血管新生阻害剤 | |
JP5794514B2 (ja) | 腫瘍血管新生阻害剤 | |
EP2810655A1 (en) | Novel antitumor agent and method for screening same | |
WO2011040421A1 (ja) | スクリーニング方法 | |
CA2932910A1 (en) | Methods for diagnosing and treating metastatic cancer | |
HK40052075A (en) | Cancer stem cell marker and cancer stem cell targeting drug | |
JP7231917B2 (ja) | 癌細胞における免疫チェックポイント因子の発現抑制剤及び癌治療用医薬組成物 | |
JP5669271B2 (ja) | 腫瘍血管新生阻害剤 | |
KR102727594B1 (ko) | 육종의 진단 및 치료를 위한 tjp1의 용도 | |
WO2011115271A1 (ja) | 腫瘍血管新生阻害剤 | |
JP7226763B2 (ja) | 癌幹細胞における薬物耐性の低減剤、癌幹細胞における転移能の抑制剤及び癌の転移性再発リスクを予測する方法 | |
WO2011019065A1 (ja) | 腫瘍血管新生阻害剤 | |
WO2024101406A1 (ja) | 非アルコール性脂肪性肝疾患/非アルコール性脂肪肝炎及び肝がんの予防・治療剤 | |
KR100992239B1 (ko) | Mig12 유전자의 신규한 용도 | |
JP5382746B2 (ja) | 抗癌剤耐性を獲得した癌細胞の抗癌剤感受性を回復する方法 | |
WO2011115268A1 (ja) | 腫瘍血管新生阻害剤 | |
CN112891544A (zh) | H基因或其表达产物在制备抑制肝癌细胞或肝癌干细胞耐药能力的药物中的应用 | |
JP2011105669A (ja) | 抗腫瘍剤および抗腫瘍剤のスクリーニング方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19849381 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020537086 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019849381 Country of ref document: EP Effective date: 20210315 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2019849381 Country of ref document: EP |