WO2020036032A1 - Lens-based optical system and image capture device - Google Patents
Lens-based optical system and image capture device Download PDFInfo
- Publication number
- WO2020036032A1 WO2020036032A1 PCT/JP2019/027771 JP2019027771W WO2020036032A1 WO 2020036032 A1 WO2020036032 A1 WO 2020036032A1 JP 2019027771 W JP2019027771 W JP 2019027771W WO 2020036032 A1 WO2020036032 A1 WO 2020036032A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical system
- lens optical
- wavelength
- conditional expression
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/14—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
Definitions
- the present invention relates to a lens optical system and an imaging device used for a light beam having a specific wavelength and having high performance for a light beam having a specific wavelength.
- a lens group composed of three lenses and an interference filter that transmits light in a specific wavelength band in the near infrared region are connected from the object side to the image side.
- the lens group includes a first meniscus lens convex to the object side having positive power, and a convex lens convex to the image side having positive power from the object side to the image side.
- An infrared lens unit provided in order has been proposed (for example, see Patent Document 1).
- a wide-angle lens is configured with a small number of lenses of three or less.
- the Fno is dark and the angle of incidence on the image sensor is large, the amount of light incident on the image sensor is small. There is a problem that it is not enough.
- the present invention has been made in view of the above-described problem, and has as its object to provide a lens optical system and an image pickup apparatus that efficiently input reflected light or scattered light from an object to an image pickup device.
- a first invention is a lens optical system used only within a wavelength range of wavelength N ⁇ 50 nm, wherein the lens optical system has a band-pass filter transmitting only within a wavelength range of wavelength N ⁇ 50 nm,
- a lens optical system characterized in that the system has at least one surface having negative refractive power and satisfies the following conditional expression. -2.00 ⁇ fn / f ⁇ -0.45 (1) 0.10 ⁇ Y / f ⁇ 0.60 (2) However, fn: focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system f: focal length Y at the wavelength Nnm of the lens optical system Y: maximum at the wavelength Nnm of the lens optical system The image height.
- the second invention is An image pickup apparatus comprising: the lens optical system according to the first invention; and an image pickup device that converts an optical image formed by the lens optical system into an electric signal.
- the present invention it is possible to configure a lens optical system and an imaging device that efficiently input reflected light or scattered light from an object to an imaging device.
- FIG. 4 is an explanatory diagram of a term “light incident angle B”. It is explanatory drawing of a term “ray incident angle C”. It is explanatory drawing of a term “ray incident angle D”. It is explanatory drawing of the term "tangent angle of a lens surface.”
- FIG. 2 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to a first example of the present invention.
- FIG. 3 is a longitudinal aberration diagram of the lens optical system according to the first example of the present invention. It is a lens sectional view showing the lens composition of the lens optical system of the 2nd example of the present invention.
- FIG. 10 is a longitudinal aberration diagram of the lens optical system according to Example 2 of the present invention.
- FIG. 1 is an explanatory diagram illustrating a configuration of an imaging device according to an embodiment of the present invention.
- the lens optical system according to the first embodiment includes: In a lens optical system used only within a wavelength range of wavelength N ⁇ 50 nm, the lens optical system has a band-pass filter that transmits only within a wavelength range of wavelength N ⁇ 50 nm, and the lens optical system is negative.
- fn focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system
- f focal length Y at the wavelength Nnm of the lens optical system
- Y maximum at the wavelength Nnm of the lens optical system
- the lens optical system according to the first embodiment is a lens optical system used only within a wavelength range of wavelength N ⁇ 50 nm, wherein the lens optical system has a band-pass filter that transmits only the wavelength range of wavelength N ⁇ 50 nm. It is characterized by the following.
- the band-pass filter is an interference filter formed by forming a multilayer film on the surface of the substrate, and has a function of increasing the transmittance of light in a specific wavelength band and decreasing the transmittance of other wavelength bands.
- the position of the bandpass filter in the direction of the optical axis does not matter. However, since the transmission spectrum of the interference filter shifts to the shorter wavelength side as the incident light beam angle departs from 0 °, it is preferable to dispose the bandpass filter at a position where the light incident angle to the bandpass filter is not large. In addition, the curvature of the base of the band-pass filter does not matter. However, it is preferable that the substrate is a parallel plate because the light enters the bandpass filter at various angles and the angle of incidence of the light varies depending on the incident position when the substrate is spherical.
- the lens optical system according to the first embodiment is characterized in that at least one surface having negative refractive power is provided.
- at least one surface having negative refractive power is provided.
- at least one surface has a negative refractive power.
- the lens optical system according to the first embodiment satisfies the following conditional expression. ⁇ 2.00 ⁇ fn / f ⁇ 0.45 (1)
- fn focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system
- f focal length at the wavelength Nnm of the lens optical system
- conditional expression (1) is an expression for defining the focal length of the surface having the negative refractive power.
- the focal length of the surface having the negative refractive power falls within an appropriate range, and the image surface property can be corrected with a lens configuration that does not require a large number of lenses. If the lower limit of conditional expression (1) is exceeded, the negative refractive power becomes too weak, making it difficult to correct the image surface properties, which is not preferable.
- the value exceeds the upper limit of the conditional expression (1) the negative refractive power becomes too strong and the image surface property is excessively deteriorated, which is not preferable in terms of performance. Further, it is difficult to correct the image plane property with a small number of lenses, which is not preferable in terms of cost reduction.
- the lower limit of conditional expression (1) is more preferably -1.80, further preferably -1.60, further preferably -1.50, and still more preferably -1.40, More preferably, it is ⁇ 1.30, and still more preferably ⁇ 1.20.
- the upper limit of conditional expression (1) is preferably -0.50, more preferably -0.55, further preferably -0.60, further preferably -0.65, and- More preferably, it is 0.70.
- the lens optical system according to the first embodiment satisfies the following conditional expression. 0.10 ⁇ Y / f ⁇ 0.60 (2) However, Y: maximum image height at the wavelength Nnm of the lens optical system f: focal length at the wavelength Nnm of the lens optical system
- conditional expression (2) is an expression that defines the ratio between the maximum image height of the lens optical system and the focal length.
- the lower limit of conditional expression (2) is more preferably 0.12, further preferably 0.14, further preferably 0.16, and even more preferably 0.20. Further, the upper limit of conditional expression (2) is preferably 0.55, more preferably 0.50, further preferably 0.45, further preferably 0.40, and more preferably 0.35. Is more preferable.
- the imaging optical system of the first embodiment is not limited to this lens configuration. Regardless of the number of lenses and the arrangement of the lenses, these effects can be obtained by applying the present embodiment. In addition, from the viewpoint of cost reduction and miniaturization, it is more preferable to configure the camera with seven or less lenses. Regarding the shape of the lens, it is preferable that the outermost object side surface is a convex surface. The number and shape of the lenses can be appropriately changed according to the required focal length, size, F number, and image height.
- the lens optical system according to the second embodiment has at least one resin lens Lp.
- a resin lens weight reduction and cost reduction can be achieved.
- the resin lens Lp has an aspheric surface.
- an aspherical surface for the resin lens Lp Aberrations can be effectively corrected while realizing cost reduction, so that high performance is also achieved.
- the resin lens Lp be an aspherical surface having a shape that reduces paraxial refracting power in order to correct aberration.
- the lens optical system according to the third embodiment is characterized in that the resin lens Lp satisfies the following conditional expression. 1.5 ⁇
- fLp Focal length at the wavelength Nnm of the resin lens
- f Focal length at the wavelength Nnm of the lens optical system (if there are a plurality of resin lenses Lp, fLp is the one with the largest refractive power).
- the conditional expression (3) is an expression for defining the focal length of the resin lens Lp at the wavelength Nnm.
- the resin lens Lp since the change in optical characteristics with respect to a temperature change is large, it is better that the resin lens Lp does not have a very large refractive power.
- conditional expression (3) it is possible to improve the optical performance with a small number of lenses while minimizing the change in the optical characteristics with respect to the temperature change. If the lower limit of conditional expression (3) is exceeded, the refractive power of the resin lens Lp becomes too large, and the change in the optical characteristics with respect to the temperature change becomes undesirably large. If the value exceeds the upper limit of conditional expression (3), the refractive power of the resin lens Lp is too small, so that the effect of aberration correction is reduced, and it is not possible to configure the lens with a small number of lenses.
- the lower limit of conditional expression (3) is more preferably 1.7, still more preferably 1.9, even more preferably 2.1, even more preferably 2.4, and 2.8. It is more preferable that there is.
- the upper limit of conditional expression (3) is preferably 1000.0, more preferably 500.0, further preferably 200.0, further preferably 100.0, and most preferably 50.0. Is more preferably, 20.0 is more preferable, 10.0 is more preferable, and 8.0 is more preferable.
- one positive lens and one negative lens are arranged for the resin lens.
- one resin lens having a positive refractive power and one resin lens having a negative refractive power By arranging one resin lens having a positive refractive power and one resin lens having a negative refractive power, a change in optical characteristics due to a temperature change of the resin lens cancels out, and the change in optical characteristics can be reduced, which is preferable. .
- the lens optical system according to the fourth embodiment is characterized in that the lens optical system has at least one biconvex air lens and satisfies the following conditional expression. -0.70 ⁇ (Crpf + Crpr) / (Crpf-Crpr) ⁇ 0.70 (4)
- Crpf radius of curvature of the object side surface of the biconvex air lens
- Crpr radius of curvature of the image side surface of the biconvex air lens
- the above conditional expression (4) is an expression for defining the shape of the biconvex air lens.
- the air lens is an air space formed by an object-side surface and an image-side surface which are arranged adjacent to each other with an air space therebetween.
- conditional expression (4) it is possible to configure a large-aperture lens optical system in which the spherical aberration and the image surface property are corrected by a lens configuration that does not require a large number of lenses.
- the value exceeds the range of the conditional expression (4) the shape of the air lens approaches a plano-convex shape, so that it is not preferable from the viewpoint of high performance that spherical aberration and correction of image surface property are not compatible.
- the lower limit of conditional expression (4) is more preferably ⁇ 0.65, further preferably ⁇ 0.50, further preferably ⁇ 0.35, and still more preferably ⁇ 0.15. More preferably, it is -0.05. Further, the upper limit of conditional expression (4) is preferably 0.65, more preferably 0.60, further preferably 0.50, further preferably 0.45, and more preferably 0.40. Is more preferable.
- the lens optical system according to the fifth embodiment has a lens Lf having the object-side convex surface closest to the object, and satisfies the following conditional expression. 0.35 ⁇ CrLf / f (5)
- CrLf radius of curvature f of the object-side convex surface of the lens
- Lf focal length at a wavelength Nnm of the lens optical system
- the conditional expression (5) is an expression for defining the radius of curvature of the object-side convex surface of the lens Lf having the object-side convex surface. Since the conditional expression (5) takes a positive value, it defines that the surface closest to the object has a shape convex toward the object. By satisfying conditional expression (5), the radius of curvature of the object-side convex surface falls within an appropriate range, and distortion can be corrected with a lens configuration that does not require a large number of lenses. If the lower limit of conditional expression (5) is divided, the radius of curvature of the convex surface on the object side becomes too small, and it becomes difficult to correct distortion, which is not preferable.
- the upper limit of the conditional expression (5) is not limited as long as the object side surface has a convex shape.
- the lower limit of conditional expression (5) is more preferably 0.25, further preferably 0.35, further preferably 0.50, further preferably 0.65, and 0.80. It is more preferable that there is.
- the upper limit of conditional expression (5) is not specified. However, if the radius of curvature is too large, there is a problem that a ghost occurs due to inter-surface reflection between the surface closest to the object and the cover glass, the imaging surface, a band-pass filter of a parallel plate, or the like. Therefore, the upper limit of conditional expression (5) is preferably 5000.00, more preferably 1000.00, further preferably 200.00, further preferably 20.00, and 10.00. Is more preferable, 5.00 is more preferable, 3.0 is more preferable, 1.60 is more preferable, and 1.45 is more preferable.
- the lens optical system according to the sixth embodiment satisfies the following conditional expression. 0.50 ⁇ 1 / tan (
- Bmax the maximum value of the angle between the normal to the lens surface and the incident light beam on all the lens surfaces included in the lens optical system
- the conditional expression (6) is an expression that defines the light incident angle B.
- the light incident angle B is an angle with respect to a normal line B1 of the lens surface in the meridional section of the light beam B2 as shown in FIG.
- the light incident angle B is represented by an absolute value, and all take positive values.
- the lens surface is an aspherical surface
- the normal is calculated not from the paraxial curvature but from the aspherical shape.
- conditional expression (6) By satisfying conditional expression (6), the angle of incidence of the light beam with respect to the normal to the lens surface is in an appropriate range, and a lens configuration having a low reflectance and not requiring a large number of lenses is possible. If the lower limit of conditional expression (6) is exceeded, that is, if the maximum light ray incident angle with respect to the normal to the lens surface becomes large, large aberrations occur, which is not preferable. If the upper limit of conditional expression (6) is exceeded, that is, if the maximum ray incident angle with respect to the normal to the lens surface is small, the aberration correction effect becomes too small, and it becomes difficult to configure a lens optical system with a small number of lenses. It is not preferable in terms of cost reduction.
- the lower limit of conditional expression (6) is more preferably 0.55, further preferably 0.60, further preferably 0.65, and even more preferably 0.70.
- the upper limit of conditional expression (6) is preferably 3.00, more preferably 2.60, further preferably 2.10, and still more preferably 1.80.
- the lens optical system according to the seventh embodiment satisfies the following conditional expression. 1.90 ⁇ 1 / tan (
- Cmax maximum value of the angle between the band-pass filter and the light beam incident on the band-pass filter
- the conditional expression (7) is an expression that specifies the light incident angle C with respect to the normal F1 of the bandpass filter surface F.
- the light incident angle C is defined in the same manner as the light incident angle B in FIG. 1, and the angle is represented by an absolute value, and all take positive values.
- the transmission spectrum shifts to the short wavelength side as the incident ray angle departs from 0 °. Therefore, by satisfying the conditional expression (7), the light incident angle with respect to the normal to the surface of the bandpass filter falls within an appropriate range, and the wavelength shift of the transmission spectrum can be suppressed.
- conditional expression (7) If the lower limit of conditional expression (7) is divided, that is, if the maximum incident angle of the light beam incident on the band-pass filter increases, the transmission spectrum shifts to the shorter wavelength side, and the transmittance at the used wavelength decreases, which is not preferable.
- the value exceeds the upper limit of the conditional expression (7) that is, the maximum incident angle of the light beam incident on the band-pass filter becomes too small, which means that the principal light beam and the upper and lower light beams are all arranged in a telecentric optical path arrangement. This makes it difficult to configure with the number of sheets, which is not preferable in terms of cost reduction.
- conditional expression (7) is more preferably 2.55, furthermore preferably 2.60, furthermore preferably 2.65, furthermore preferably 2.70, and 2.77. It is more preferable that there is.
- the upper limit of conditional expression (7) is preferably 15.00, more preferably 12.00, further preferably 8.00, and still more preferably 7.00.
- the light incident angle C is about 20 degrees. It is preferable not to dispose a bandpass filter closest to the image plane. In a wide-angle lens having a maximum angle of view exceeding 20 degrees, it is preferable not to dispose a bandpass filter closest to the object side.
- the lens optical system according to the eighth embodiment satisfies the following conditional expression. -0.09 ⁇ tan (D) ⁇ 0.27 (8)
- D Angle on the meridional section formed by the principal ray of the most off-axis ray at a wavelength of N nm emitted from the most image-side surface of the lens optical system and incident on the image plane and a line parallel to the optical axis.
- the above conditional expression (8) is an expression that defines the angle at which the most off-axis ray in the lens optical system is incident on the image plane.
- the principal ray is a ray passing through the center of the stop among the off-axis rays at the wavelength Nnm.
- the light incident angle on the meridional section formed by the principal ray and a line parallel to the optical axis is positive in the direction shown in FIG. 2B.
- IMG represents an image plane.
- conditional expression (8) When the value exceeds the upper limit of the conditional expression (8), that is, the angle of the light beam incident on the image plane becomes too large, and the aperture ratio of the on-chip lens of the image pickup device is reduced, and the peripheral light amount is remarkably reduced, which is not preferable. Also, if the lower limit of conditional expression (8) is divided, that is, the angle of incidence on the image plane becomes small, it becomes difficult to reduce the diameter of the final lens, which is not preferable.
- conditional expression (8) is more preferably ⁇ 0.05, further preferably ⁇ 0.02, further preferably ⁇ 0.01, and still more preferably 0.00.
- the upper limit of conditional expression (8) is preferably 0.25, more preferably 0.22, further preferably 0.18, further preferably 0.15, and more preferably 0.12. And more preferably 0.08.
- the lens optical system according to the ninth embodiment is characterized in that the wavelength N is longer than 780 nm. Since the wavelength that can be sensed by human eyes is 400 nm to 750 nm, it is preferable to use a wavelength that cannot be sensed by human eyes in order to project a specific wavelength and receive the scattered light.
- the wavelength N is more preferably longer than 800 nm, further preferably longer than 830 nm, and further preferably longer than 850 nm.
- the lens optical system of the tenth embodiment is characterized by satisfying the following conditional expression. 0.10 ⁇ 1 / tan (
- Amin The minimum value of the angle between the tangent of the lens surface and the optical axis in all the lens surfaces included in the lens optical system.
- the conditional expression (9) is an expression that defines a tangent angle to the lens surface.
- the tangent angle A is represented by an absolute value, and all of the tangent angles take positive values. Therefore, the smaller the tangent angle, the stronger the surface inclination.
- the thickness error of the antireflection coat is reduced and the antireflection coat has an appropriate refractive power, which leads to a reduction in the number of lenses.
- the moldability of the surface is maintained.
- conditional expression (9) When the lower limit of conditional expression (9) is divided, that is, the inclination of the surface approaches a flat surface, the refractive power is weak, the overall length of the lens is increased, and a large number of lenses are required for aberration correction. It is not preferable because it is difficult to reduce the cost and cost.
- conditional expression (9) is more preferably 0.15, further preferably 0.25, further preferably 0.35, and still more preferably 0.50.
- the upper limit of conditional expression (9) is preferably 1.30, more preferably 1.28, further preferably 1.26, and still more preferably 1.20.
- the imaging apparatus includes an imaging device that converts an optical image formed by the lens optical system into an electric signal on an image side of the lens optical system.
- the configuration of the image sensor is not particularly limited, and a solid-state image sensor such as a CCD sensor or a CMOS sensor is exemplified.
- the imaging apparatus of the present invention has an image processing step of electrically processing image data captured by the image sensor to change the shape of the image data.
- image processing performed in the image processing process for example, image processing in which correction data for correcting distortion of an image shape is held, and the image data is corrected using the correction data, or the like is given.
- image processing in which correction data for correcting distortion of an image shape is held, and the image data is corrected using the correction data, or the like is given.
- miniaturizing an optical system including a lens distortion of the image shape becomes a problem, but by performing the image processing as described above, it is possible to form a distortion-free image and achieve miniaturization of the lens optical system. Is preferred.
- the negative refractive power of the lens disposed closest to the image can be increased, and miniaturization of the lens closest to the image can be achieved. Is preferred.
- the chromatic aberration of magnification is corrected by the image processing process, because the number of correction targets for optical aberration correction is reduced, the number of lenses is reduced, and the size of the lens optical system is reduced.
- An image sensor for converting an optical image formed by the optical system into an electric signal is provided on the image side of the lens optical system.
- the imaging device is not particularly limited, and a solid-state imaging device such as a CCD sensor or a CMOS sensor can be used.
- FIG. 4 is a lens cross-sectional view showing the lens configuration of the lens optical system according to Example 1 of the present invention.
- the lens optical system according to the first embodiment uses a light beam having a wavelength N of 905 nm, and in order from the object side, a biconvex first lens L1 and an object-side convex meniscus shape having a positive refractive power on both surfaces.
- a second lens L2 having an aspheric surface, a third meniscus lens L3 having a negative refractive power and convex on the object side, a fourth lens L4 having a positive refractive power and a concave meniscus on the object side, It comprises a fifth meniscus lens L5 having a positive refractive power and convex on the object side, and a sixth lens L6 having a negative refractive power and a concave meniscus on the object side.
- a band-pass filter BPF is arranged on the object side of the lens L1 closest to the object.
- the aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
- the band-pass filter BPF has a wavelength range from 884 nm to 936 nm of a transmittance of 1% or more at an incident angle of 0 ° for a light beam having a wavelength N of 905 nm, and a transmittance range of half of the maximum transmittance, that is, a half-value width of 890 nm. 927 nm.
- the second lens L2 and the fourth lens L4 are resin lenses.
- All lenses have an anti-reflection coating on their lens surfaces.
- the object side surface of the fifth lens L5 is provided with an antireflection coating in which the wavelength at which the reflectance becomes the smallest in the wavelength range of N ⁇ 100 nm exists in the range of N ⁇ 50 nm.
- a layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five.
- a layer containing SiO 2 as a material is provided, and the total number of layers is three.
- the band-pass filter BPF is disposed closest to the object side. Instead, the band-pass filter BPF based on a parallel plate is replaced by the fourth lens L4 and the fifth lens L5. , And Cmax in that case is 24.953 degrees.
- IMG indicates an image plane.
- the IMG specifically corresponds to an imaging surface of a solid-state imaging device such as a CCD sensor or a CMOS sensor.
- Table 1 is a specification table of the lens optical system.
- the specification table shows the focal length “f”, the F number “Fno.”, The half angle of view “ ⁇ ”, the image height “Y”, and the total optical length “TL” of the lens optical system at a wavelength of 905 nm.
- Table 1 f 30.658 Fno 1.095 ⁇ 12.000 Y 6.492 TL 49.917
- Table 2 shows the surface data of the lens optical system of the first example.
- surface number is the order of the lens surface counted from the object side
- r is the radius of curvature of the lens surface
- d is the distance between the lens surfaces on the optical axis
- ⁇ d indicates Abbe number for d-line
- H indicates effective radius.
- ASP displayed in the column next to the surface number indicates that the lens surface is aspheric
- S indicates an aperture stop.
- the units of length in each table are all “mm”, and the units of angle are all “°”.
- the radius of curvature “0” means a plane.
- the first and second surfaces in Table 2 are bandpass filters BPF, and the fifteenth and sixteenth surfaces are surface data of the cover glass CG.
- Table 2 Surface number r d Nd ⁇ d H 1 0.0000 1.100 1.50892 64.20 14.153 2 STOP 0.0000 0.200 14.000 3 30.7024 7.000 1.97213 29.13 14.858 4 -808.7238 0.200 14.348 5 ASP 32.5340 5.908 1.63641 20.37 13.770 6 ASP 40.7623 0.880 12.975 7 114.1620 1.700 1.55932 56.04 12.234 8 14.3799 10.423 10.342 9 ASP -11.3293 4.904 1.63641 20.37 10.321 10 ASP -13.0587 0.200 11.932 11 19.0455 7.900 1.92859 32.32 11.916 12 88.7164 2.862 10.357 13 -50.7286 1.600 1.55932 56.04 9.484 14 -400.0008 4.101 8.823 15 0.0000 0.400 1.508
- Table 3 shows the aspheric coefficient of each aspheric surface.
- the aspheric coefficient is a value when each aspheric shape is defined by the following equation.
- X (Y) CY 2 / [1+ ⁇ 1 ⁇ (1 + ⁇ ) ⁇ C 2 Y 2 ⁇ 1/2 ] + A4 ⁇ Y 4 + A6 ⁇ Y 6 + A8 ⁇ Y 8 + A10 ⁇ Y 10 + A12 ⁇ Y 12
- Ea indicates “ ⁇ 10 ⁇ a ”.
- Table 4 shows the focal length of each lens at a wavelength of 905 nm.
- Table 4 Lens surface number Focal length L1 3-4 30.553 L2 5-6 197.965 L3 7-8 -29.595 L4 9-1 1307.890 L5 11-12 24.765 L6 13-14 -104.040
- FIG. 5 shows a longitudinal aberration diagram of the lens optical system of the first example.
- the longitudinal aberration diagrams shown in each figure are spherical aberration (mm), astigmatism (mm), and distortion (%) in order from the left side in the drawings.
- the vertical axis indicates the ratio to the open F value
- the vertical axis is image height
- the horizontal axis is defocused
- the vertical axis represents image height
- Table 17 shows values of the conditional expressions (1) to (9) of the lens optical system of the first example.
- FIG. 6 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to Example 2.
- the lens optical system of the second example includes, in order from the object side, a biconvex first lens L1 and a second lens L2 having a positive refractive power and an object-side convex meniscus and having aspheric surfaces on both surfaces.
- a third lens L3 having a negative refractive power and an object-side convex meniscus shape
- a fourth lens L4 having a negative refractive power and an object-side concave meniscus
- It is composed of
- a band-pass filter BPF is arranged on the object side of the lens L1 closest to the object.
- the aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
- the bandpass filter BPF has a wavelength range of transmittance of 1% or more at an incident angle of 0 ° for light having a wavelength N of 905 nm from 884 nm to 936 nm, and a transmittance range that is half of the maximum transmittance, that is, a half width from 890 nm. 927 nm.
- the second lens L2 and the fourth lens L4 are resin lenses.
- All lenses have an anti-reflection coating on their lens surfaces.
- the object side surface of the fifth lens L5 is provided with an antireflection coating in which the wavelength at which the reflectance becomes the smallest in the wavelength range of N ⁇ 100 nm exists in the range of N ⁇ 50 nm.
- a layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five.
- a layer containing SiO 2 as a material is provided on the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, and the total number of layers is three.
- a band-pass filter BPF is disposed closest to the object side. Instead, a band whose parallel plate is a base between the fourth lens L4 and the fifth lens L5 is used.
- a pass filter BPF may be provided, in which case Cmax is 23.412 degrees.
- Table 5 is a table of specifications of the lens optical system of the second example. (Table 5) f 30.869 Fno 1.200 ⁇ 12.000 Y 6.561 TL 49.441
- Table 6 shows surface data of the lens optical system of the second example.
- the first and second surfaces in Table 6 are bandpass filters BPF, and the thirteenth and fourteenth surfaces are surface data of the cover glass CG.
- Table 6 Surface number r d Nd ⁇ d H 1 0.0000 1.100 1.50892 64.20 13.015 2 STOP 0.0000 0.200 12.862 3 30.4662 6.000 1.97213 29.13 13.584 4 -240.7561 0.100 13.238 5 ASP 38.3859 6.010 1.63641 20.37 12.735 6 ASP 95.0197 1.000 11.974 7 -73.0253 1.770 1.50892 64.20 11.588 8 12.3119 8.922 9.600 9 ASP -12.2585 4.550 1.63641 20.37 9.645 10 ASP -15.6370 0.200 11.678 11 33.2385 6.300 1.97213 29.13 13.585 12 -63.7223 12.207 13.384 13 0.0000 0.500 1.50892 64.17 6.96
- Table 7 shows the aspheric coefficient of each aspheric surface. (Table 7) 5 6 9 10 ⁇ 6.4527 55.5248 -1.2127 -0.6032 A4 -4.1920E-05 -7.1713E-05 -5.7922E-05 -1.3478E-05 A6 -2.2301E-07 -1.3274E-07 9.9430E-07 1.1139E-06 A8 7.1955E-10 1.2655E-09 1.7388E-09 -1.1537E-08 A10 -2.2983E-12 -7.2254E-12 -2.3641E-10 4.6508E-11 A12 -1.0660E-14 1.6334E-15 1.2423E-12 -8.8969E-14
- Table 8 shows the focal length of each lens at a wavelength of 905 nm.
- Table 8 Lens surface number Focal length L1 3-4 28.126 L2 5-6 97.187 L3 7-8 -20.558 L4 9-10 -187.190 L5 11-12 23.214
- FIG. 7 shows a longitudinal aberration diagram of the lens optical system of the second example.
- Table 17 shows values of the conditional expressions (1) to (9) of the second embodiment.
- FIG. 8 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to Example 3.
- the lens optical system of the third example includes, in order from the object side, a biconvex first lens L1 and a second lens L2 having a positive refractive power and an object-side convex meniscus shape and having aspheric surfaces on both surfaces.
- a third lens L3 having a negative refractive power and an object-side convex meniscus shape
- a fourth lens L4 having a negative refractive power and an object-side concave meniscus
- It is composed of
- a band-pass filter BPF is arranged on the object side of the lens L1 closest to the object.
- the aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
- the bandpass filter BPF has a wavelength range of transmittance of 1% or more at an incident angle of 0 ° for light having a wavelength N of 905 nm from 884 nm to 936 nm, and a transmittance range that is half of the maximum transmittance, that is, a half width from 890 nm. 927 nm.
- the second lens L2 and the fourth lens L4 are resin lenses.
- the lens surfaces of all the lenses are provided with an anti-reflection coating, and the object side surface of the fifth lens L5 is such that the wavelength at which the reflectance becomes the smallest in the wavelength range of N ⁇ 100 nm is in the range of N ⁇ 50 nm.
- An anti-reflection coating is present.
- a layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five.
- a layer containing SiO 2 as a material is provided at the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, and the total number of layers is three.
- band-pass filter BPF is disposed closest to the object, but instead, a band-pass filter BPF based on a parallel plate may be disposed between the fourth lens L4 and the fifth lens L5. Cmax in that case is 22.434 degrees.
- Table 9 is a table of specifications of the lens optical system of the third example. (Table 9) f 30.117 Fno 1.205 ⁇ 12.000 Y 6.402 TL 49.634
- Table 10 shows the surface data of the lens optical system.
- the first and second surfaces in Table 10 are bandpass filters BPF, and the thirteenth and fourteenth surfaces are surface data of the cover glass CG.
- Table 10 Surface number r d Nd ⁇ d H 1 0.0000 1.100 1.50892 64.20 12.653 2 STOP 0.0000 0.200 12.500 3 32.9134 6.000 1.97213 29.13 13.123 4 -251.5358 0.010 12.794 5 ASP 42.4007 6.010 1.63641 20.37 12.484 6 ASP 72.4349 1.000 11.761 7 -83.8728 1.770 1.50892 64.20 11.408 8 18.9014 9.359 10.153 9 ASP -8.9611 4.550 1.63641 20.37 10.108 10 ASP -12.2658 0.200 11.264 11 27.2871 6.300 1.97213 29.13 12.772 12 -136.7202 12.207 12.363 13 0.0000 0.500 1.50892 64.17 6.726 14 0.0000 0.429
- Table 11 shows the aspheric coefficient of each aspheric surface. (Table 11) 5 6 9 10 ⁇ 8.9071 29.6816 -0.8880 -0.1389 A4 -4.7241E-05 -9.2351E-05 -7.0871E-05 4.0736E-05 A6 -1.5948E-07 -1.6631E-07 6.0194E-07 7.0414E-07 A8 2.8786E-10 1.3382E-09 1.4888E-08 1.6059E-09 A10 -2.9428E-12 -7.7403E-12 -3.0849E-11 2.2175E-11 A12 -3.4823E-15 3.1449E-14 -3.0183E-13 -8.5723E-14
- Table 12 shows the focal length of each lens at a wavelength of 905 nm.
- Lens surface number Focal length L1 3-4 30.254 L2 5-6 149.080 L3 7-8 -30.135 L4 9-10 -112.507 L5 11-12 23.851
- FIG. 9 shows a longitudinal aberration diagram of the lens optical system of the third example.
- Table 17 shows values of the conditional expressions (1) to (9) of the third embodiment.
- FIG. 10 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to Example 4.
- the lens optical system of the second example includes, in order from the object side, a biconvex first lens L1 and a second lens L2 having a positive refractive power and an object-side convex meniscus and having aspheric surfaces on both surfaces.
- a third lens L3 having a negative refractive power and an object-side convex meniscus shape
- a fourth lens L4 having a negative refractive power and an object-side concave meniscus
- It is composed of
- a band-pass filter BPF is arranged on the object side of the lens L1 closest to the object.
- the aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
- the band-pass filter BPF has a wavelength range from 884 nm to 936 nm of a transmittance of 1% or more at an incident angle of 0 ° for a light beam having a wavelength N of 905 nm, and a transmittance range of half of the maximum transmittance, that is, a half-value width of 890 nm. 927 nm.
- the second lens L2 and the fourth lens L4 are resin lenses.
- All lenses have an anti-reflection coating on the lens surface.
- the object side surface of the fifth lens L5 is provided with an antireflection coating in which the wavelength at which the reflectance becomes the smallest in the wavelength range of N ⁇ 100 nm exists in the range of N ⁇ 50 nm.
- a layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five.
- a layer containing SiO 2 as a material is provided on the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, and the total number of layers is three.
- a band-pass filter BPF is disposed closest to the object side. Instead, a band whose base is a parallel flat plate between the fourth lens L4 and the fifth lens L5 is used.
- a pass filter BPF may be provided, in which case Cmax is 19.448 degrees.
- Table 13 is a table of specifications of the lens optical system of the fourth example. (Table 13) f 30.049 Fno 1.200 ⁇ 10.000 Y 5.297 TL 49.654
- Table 14 shows the surface data of the lens optical system of the fourth example.
- the first and second surfaces in Table 14 are bandpass filters BPF, and the thirteenth and fourteenth surfaces are surface data of the cover glass CG.
- Table 14 Surface number r d Nd ⁇ d H 1 0.0000 1.100 1.50892 64.20 12.627 2 STOP 0.0000 0.200 12.500 3 32.7400 6.000 1.97213 29.13 13.011 4 -234.0000 0.149 12.637 5 ASP 41.2130 6.010 1.63641 20.37 12.220 6 ASP 82.1802 1.000 11.434 7 -69.8000 1.770 1.50892 64.20 11.108 8 16.5500 9.126 9.676 9 ASP -8.8021 4.550 1.63641 20.37 9.644 10 ASP -11.4366 0.200 10.780 11 24.8000 6.300 1.97213 29.13 11.675 12 -800.0000 12.207 11.021 13 0.0000 0.500 1.50892 64.17 5.705 14 0.000
- Table 15 shows the aspheric coefficient of each aspheric surface. (Table 15) 5 6 9 10 ⁇ 8.2203 37.8603 -0.9723 -0.1843 A4 -4.8824E-05 -9.0205E-05 -6.8785E-05 3.7490E-05 A6 -1.5712E-07 -1.3562E-07 5.2603E-07 9.9278E-07 A8 3.8830E-10 1.4792E-09 1.3172E-08 -1.3622E-09 A10 -2.8759E-12 -7.3932E-12 -4.6550E-11 1.0841E-11 A12 -5.8433E-15 2.1091E-14 -3.4978E-14 1.1639E-13
- Table 16 shows the focal length of each lens at a wavelength of 905 nm.
- Lens surface number Focal length L1 3-4 29.876 L2 5-6 122.894 L3 7-8 -26.107 L4 9-10 -182.876 L5 11-12 24.838
- FIG. 11 shows a longitudinal aberration diagram of the lens optical system of the fourth example.
- Table 17 shows values of the conditional expressions (1) to (9) of the lens optical system of the fourth example.
- Table 17 shows the values of the conditional expressions (1) to (9) of the lens optical system of the fourth embodiment in addition to the first to third embodiments.
- Example 1 Example 2
- Example 3 Example 4 Conditional expression (1) fn / f -0.839 -0.784 -0.765 -0.813 Conditional expression (2) Y / f 0.212 0.213 0.213 0.176 Conditional expression (3)
- Conditional expression (6) 1 / tan (
- the imaging apparatus 100 includes a lens optical system 102 according to the present invention and a solid-state imaging device 104 disposed on an imaging plane IMG of the imaging optical system 102.
- the solid-state imaging device 104 has a cover glass CG.
- An image formed by the lens optical system 102 is converted into an image signal via the solid-state image sensor 104.
- the imaging signal is sent to a liquid crystal monitor (not shown) and displayed as an image.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Lenses (AREA)
- Optical Filters (AREA)
Abstract
The purpose of the present invention is to provide a lens-based optical system and an image capture device capable of efficiently introducing the reflective light from an object to an image capture element. The present invention provides a lens-based optical lens system to be used only within a wavelength range of N±50 nm, wherein the lens-based optical system has a band-pass filter that allows only wavelengths within the range of N±50 nm to pass therethrough, the lens-based optical system has at least one or more faces that have a negative refractive power, and a prescribed conditional expression is satisfied.
Description
本発明は、特定の波長の光線に用いられ、特定の波長の光線に対して高性能なレンズ光学系及び撮像装置に関するものである。
{Circle around (1)} The present invention relates to a lens optical system and an imaging device used for a light beam having a specific wavelength and having high performance for a light beam having a specific wavelength.
近年、セキュリティ強化、安全性強化等の実現のため、センシング技術の高度化が求められている。そのため、特定の波長範囲の光線によって対象物である人や物体が存在する領域を広範囲にわたって走査を行う。投光の対象物による反射光や外乱光の拡散光をレンズ光学系によって検知し、対象物の検出を高精度に行うことが要望されている。
In recent years, there has been a demand for advanced sensing technology in order to enhance security and safety. For this reason, a light beam in a specific wavelength range scans a wide area of a region where a person or an object is present. There is a demand for detecting the diffused light of the reflected light or disturbance light by the projection target object with a lens optical system and detecting the target object with high accuracy.
従来の特定波長光を使用するレンズ光学系に関する上述した要望に関し、3枚のレンズから構成されたレンズ群と、近赤外域の特定波長帯域の光線を透過させる干渉フィルターとを物体側から像側に向かってこの順番で有し、前記レンズ群は、正のパワーを持つ物体側に凸の第1メニスカスレンズ、正のパワーを持つ像側に凸の凸レンズを物体側から像側に向かってこの順番に備えた赤外線用レンズユニットが提案されている(例えば、特許文献1参照)。
Concerning the above-mentioned demand for a conventional lens optical system using light of a specific wavelength, a lens group composed of three lenses and an interference filter that transmits light in a specific wavelength band in the near infrared region are connected from the object side to the image side. In this order, the lens group includes a first meniscus lens convex to the object side having positive power, and a convex lens convex to the image side having positive power from the object side to the image side. An infrared lens unit provided in order has been proposed (for example, see Patent Document 1).
しかし、従来の前記レンズユニットにおいては、レンズが3枚以下という少ない枚数で広角レンズを構成しているが、Fnoも暗く、また撮像素子への入射角も大きいため、撮像素子への入射光量が十分ではないという問題がある。特に、本技術分野においては、特定波長帯域の光線を投射し、対象物によるその反射光を撮像素子によって検出するため、僅かな反射光も逃さず受光することが望ましく、該撮像素子の入射光量不足は重要な解決すべき課題である。
However, in the conventional lens unit, a wide-angle lens is configured with a small number of lenses of three or less. However, since the Fno is dark and the angle of incidence on the image sensor is large, the amount of light incident on the image sensor is small. There is a problem that it is not enough. In particular, in the present technical field, it is desirable to project light rays of a specific wavelength band and to detect light reflected by an object by an image sensor without receiving any reflected light. Lack is an important issue to be resolved.
(発明の目的)
本発明は、上述した問題に鑑みてなされたものであって、対象物による反射光もしくは散乱光を効率よく撮像素子に入力させるレンズ光学系及び撮像装置を提供することを目的とする。 (Object of the invention)
The present invention has been made in view of the above-described problem, and has as its object to provide a lens optical system and an image pickup apparatus that efficiently input reflected light or scattered light from an object to an image pickup device.
本発明は、上述した問題に鑑みてなされたものであって、対象物による反射光もしくは散乱光を効率よく撮像素子に入力させるレンズ光学系及び撮像装置を提供することを目的とする。 (Object of the invention)
The present invention has been made in view of the above-described problem, and has as its object to provide a lens optical system and an image pickup apparatus that efficiently input reflected light or scattered light from an object to an image pickup device.
第1発明は
波長N±50nmの波長範囲以内でのみに使用されるレンズ光学系において、前記レンズ光学系は波長N±50nmの波長範囲以内のみを透過するバンドパスフィルターを有し、前記レンズ光学系は負の屈折力を有する面が少なくとも1面以上有し、以下の条件式を満足していることを特徴とするレンズ光学系。
-2.00<fn/f<-0.45 ・・・(1)
0.10< Y/f< 0.60 ・・・(2)
但し、
fn : 前記レンズ光学系のすべての面の中で最も負の屈折力の大きい面の波長Nnmにおける焦点距離
f : 前記レンズ光学系の波長Nnmにおける焦点距離
Y : 前記レンズ光学系の波長Nnmにおける最大像高
である。 A first invention is a lens optical system used only within a wavelength range of wavelength N ± 50 nm, wherein the lens optical system has a band-pass filter transmitting only within a wavelength range of wavelength N ± 50 nm, A lens optical system characterized in that the system has at least one surface having negative refractive power and satisfies the following conditional expression.
-2.00 <fn / f <-0.45 (1)
0.10 <Y / f <0.60 (2)
However,
fn: focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system f: focal length Y at the wavelength Nnm of the lens optical system Y: maximum at the wavelength Nnm of the lens optical system The image height.
波長N±50nmの波長範囲以内でのみに使用されるレンズ光学系において、前記レンズ光学系は波長N±50nmの波長範囲以内のみを透過するバンドパスフィルターを有し、前記レンズ光学系は負の屈折力を有する面が少なくとも1面以上有し、以下の条件式を満足していることを特徴とするレンズ光学系。
-2.00<fn/f<-0.45 ・・・(1)
0.10< Y/f< 0.60 ・・・(2)
但し、
fn : 前記レンズ光学系のすべての面の中で最も負の屈折力の大きい面の波長Nnmにおける焦点距離
f : 前記レンズ光学系の波長Nnmにおける焦点距離
Y : 前記レンズ光学系の波長Nnmにおける最大像高
である。 A first invention is a lens optical system used only within a wavelength range of wavelength N ± 50 nm, wherein the lens optical system has a band-pass filter transmitting only within a wavelength range of wavelength N ± 50 nm, A lens optical system characterized in that the system has at least one surface having negative refractive power and satisfies the following conditional expression.
-2.00 <fn / f <-0.45 (1)
0.10 <Y / f <0.60 (2)
However,
fn: focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system f: focal length Y at the wavelength Nnm of the lens optical system Y: maximum at the wavelength Nnm of the lens optical system The image height.
第2発明は、
第1発明のレンズ光学系と、前記レンズ光学系によって形成された光学像を電気的信号に変換する撮像素子を備えたことを特徴とする撮像装置
である。 The second invention is
An image pickup apparatus comprising: the lens optical system according to the first invention; and an image pickup device that converts an optical image formed by the lens optical system into an electric signal.
第1発明のレンズ光学系と、前記レンズ光学系によって形成された光学像を電気的信号に変換する撮像素子を備えたことを特徴とする撮像装置
である。 The second invention is
An image pickup apparatus comprising: the lens optical system according to the first invention; and an image pickup device that converts an optical image formed by the lens optical system into an electric signal.
本発明によれば、対象物による反射光もしくは散乱光を効率よく撮像素子に入力させるレンズ光学系及び撮像装置を構成することができる。
According to the present invention, it is possible to configure a lens optical system and an imaging device that efficiently input reflected light or scattered light from an object to an imaging device.
以下に、本発明のレンズ光学系及び撮像装置の実施形態について説明する。ただし、以下に説明するものは当該レンズ光学系及び撮像装置の一態様であって、本発明は以下の態様に限定されるものではない。
Hereinafter, embodiments of the lens optical system and the imaging apparatus according to the present invention will be described. However, what is described below is one embodiment of the lens optical system and the imaging device, and the present invention is not limited to the following embodiment.
第1実施形態のレンズ光学系は、
波長N±50nmの波長範囲以内でのみに使用されるレンズ光学系において、前記レンズ光学系は波長N±50nmの波長範囲以内のみを透過するバンドパスフィルターを有し、前記レンズ光学系は負の屈折力を有する面が少なくとも1面以上有し、以下の条件式を満足していることを特徴とするレンズ光学系。
-2.00<fn/f<-0.45 ・・・(1)
0.10< Y/f< 0.60 ・・・(2)
但し、
fn : 前記レンズ光学系のすべての面の中で最も負の屈折力の大きい面の波長Nnmにおける焦点距離
f : 前記レンズ光学系の波長Nnmにおける焦点距離
Y : 前記レンズ光学系の波長Nnmにおける最大像高
である。 The lens optical system according to the first embodiment includes:
In a lens optical system used only within a wavelength range of wavelength N ± 50 nm, the lens optical system has a band-pass filter that transmits only within a wavelength range of wavelength N ± 50 nm, and the lens optical system is negative. A lens optical system having at least one surface having a refractive power and satisfying the following conditional expression.
-2.00 <fn / f <-0.45 (1)
0.10 <Y / f <0.60 (2)
However,
fn: focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system f: focal length Y at the wavelength Nnm of the lens optical system Y: maximum at the wavelength Nnm of the lens optical system The image height.
波長N±50nmの波長範囲以内でのみに使用されるレンズ光学系において、前記レンズ光学系は波長N±50nmの波長範囲以内のみを透過するバンドパスフィルターを有し、前記レンズ光学系は負の屈折力を有する面が少なくとも1面以上有し、以下の条件式を満足していることを特徴とするレンズ光学系。
-2.00<fn/f<-0.45 ・・・(1)
0.10< Y/f< 0.60 ・・・(2)
但し、
fn : 前記レンズ光学系のすべての面の中で最も負の屈折力の大きい面の波長Nnmにおける焦点距離
f : 前記レンズ光学系の波長Nnmにおける焦点距離
Y : 前記レンズ光学系の波長Nnmにおける最大像高
である。 The lens optical system according to the first embodiment includes:
In a lens optical system used only within a wavelength range of wavelength N ± 50 nm, the lens optical system has a band-pass filter that transmits only within a wavelength range of wavelength N ± 50 nm, and the lens optical system is negative. A lens optical system having at least one surface having a refractive power and satisfying the following conditional expression.
-2.00 <fn / f <-0.45 (1)
0.10 <Y / f <0.60 (2)
However,
fn: focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system f: focal length Y at the wavelength Nnm of the lens optical system Y: maximum at the wavelength Nnm of the lens optical system The image height.
第1実施形態のレンズ光学系は、波長N±50nmの波長範囲以内でのみに使用されるレンズ光学系において、前記レンズ光学系は波長N±50nmの波長範囲のみを透過するバンドパスフィルターを有することを特徴とする。バンドパスフィルターを有することにより、特定の波長領域のみ収差補正すればよく、少ないレンズ枚数でレンズ光学系を構成することが可能となり、高性能化と低コスト化が達成できる。
ちなみに、バンドパスフィルターは基板の表面上に多層膜を形成してなる干渉フィルターであり、特定の波長帯域の光線の透過率を高く、それ以外の波長帯域の透過率を低くする作用を有する。
バンドパスフィルターを配置する光軸方向の位置はどこでも構わない。しかしながら、干渉フィルターは、入射光線角が0°から離れるに従って透過スペクトルが短波長側にシフトするため、バンドパスフィルターへの光線入射角が大きくない位置にバンドパスフィルターを配置することが好ましい。また、バンドパスフィルターの基盤の曲率は問わない。しかし、バンドパスフィルターには光線が色々異なった角度で入射し、かつ基盤が球面の場合には入射位置によって光線入射角が変化するため、基盤は平行平板であることが好ましい。 The lens optical system according to the first embodiment is a lens optical system used only within a wavelength range of wavelength N ± 50 nm, wherein the lens optical system has a band-pass filter that transmits only the wavelength range of wavelength N ± 50 nm. It is characterized by the following. By having the band-pass filter, it is only necessary to correct aberration in a specific wavelength region, and it is possible to configure a lens optical system with a small number of lenses, thereby achieving high performance and low cost.
Incidentally, the band-pass filter is an interference filter formed by forming a multilayer film on the surface of the substrate, and has a function of increasing the transmittance of light in a specific wavelength band and decreasing the transmittance of other wavelength bands.
The position of the bandpass filter in the direction of the optical axis does not matter. However, since the transmission spectrum of the interference filter shifts to the shorter wavelength side as the incident light beam angle departs from 0 °, it is preferable to dispose the bandpass filter at a position where the light incident angle to the bandpass filter is not large. In addition, the curvature of the base of the band-pass filter does not matter. However, it is preferable that the substrate is a parallel plate because the light enters the bandpass filter at various angles and the angle of incidence of the light varies depending on the incident position when the substrate is spherical.
ちなみに、バンドパスフィルターは基板の表面上に多層膜を形成してなる干渉フィルターであり、特定の波長帯域の光線の透過率を高く、それ以外の波長帯域の透過率を低くする作用を有する。
バンドパスフィルターを配置する光軸方向の位置はどこでも構わない。しかしながら、干渉フィルターは、入射光線角が0°から離れるに従って透過スペクトルが短波長側にシフトするため、バンドパスフィルターへの光線入射角が大きくない位置にバンドパスフィルターを配置することが好ましい。また、バンドパスフィルターの基盤の曲率は問わない。しかし、バンドパスフィルターには光線が色々異なった角度で入射し、かつ基盤が球面の場合には入射位置によって光線入射角が変化するため、基盤は平行平板であることが好ましい。 The lens optical system according to the first embodiment is a lens optical system used only within a wavelength range of wavelength N ± 50 nm, wherein the lens optical system has a band-pass filter that transmits only the wavelength range of wavelength N ± 50 nm. It is characterized by the following. By having the band-pass filter, it is only necessary to correct aberration in a specific wavelength region, and it is possible to configure a lens optical system with a small number of lenses, thereby achieving high performance and low cost.
Incidentally, the band-pass filter is an interference filter formed by forming a multilayer film on the surface of the substrate, and has a function of increasing the transmittance of light in a specific wavelength band and decreasing the transmittance of other wavelength bands.
The position of the bandpass filter in the direction of the optical axis does not matter. However, since the transmission spectrum of the interference filter shifts to the shorter wavelength side as the incident light beam angle departs from 0 °, it is preferable to dispose the bandpass filter at a position where the light incident angle to the bandpass filter is not large. In addition, the curvature of the base of the band-pass filter does not matter. However, it is preferable that the substrate is a parallel plate because the light enters the bandpass filter at various angles and the angle of incidence of the light varies depending on the incident position when the substrate is spherical.
第1実施形態のレンズ光学系は、負の屈折力を有する面が少なくとも1面以上有することを特徴とする。特定の狭い波長領域のみに使用される光学系の場合、色収差補正の必要性がないため、すべて正の屈折力を有するレンズのみで構成しても、高性能なレンズ光学系を構成することができる。しかし、像面性をよりよくするためにはペッツバール和を補正する必要があり、そのため少なくとも1面以上の負の屈折力を有する面があることが好ましい。
レ ン ズ The lens optical system according to the first embodiment is characterized in that at least one surface having negative refractive power is provided. In the case of an optical system that is used only in a specific narrow wavelength region, there is no need to correct chromatic aberration. it can. However, in order to improve image quality, it is necessary to correct the Petzval sum. Therefore, it is preferable that at least one surface has a negative refractive power.
第1実施形態のレンズ光学系は、以下の条件式を満足することを特徴とする。
-2.00 < fn/f < -0.45 ・・・(1)
但し、
fn : 前記レンズ光学系のすべての面の中で最も負の屈折力の大きい面の波長Nnmにおける焦点距離
f : 前記レンズ光学系の波長Nnmにおける焦点距離 The lens optical system according to the first embodiment satisfies the following conditional expression.
−2.00 <fn / f <−0.45 (1)
However,
fn: focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system f: focal length at the wavelength Nnm of the lens optical system
-2.00 < fn/f < -0.45 ・・・(1)
但し、
fn : 前記レンズ光学系のすべての面の中で最も負の屈折力の大きい面の波長Nnmにおける焦点距離
f : 前記レンズ光学系の波長Nnmにおける焦点距離 The lens optical system according to the first embodiment satisfies the following conditional expression.
−2.00 <fn / f <−0.45 (1)
However,
fn: focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system f: focal length at the wavelength Nnm of the lens optical system
上記条件式(1)は、前記負の屈折力を有する面の焦点距離を規定するための式である。
条件式(1)を満足することにより前記負の屈折力を有する面の焦点距離が適切な範囲となり、多くのレンズ枚数を必要としないレンズ構成で像面性の補正が可能となる。
条件式(1)の下限を割ると、負の屈折力が弱くなり過ぎて、像面性の補正が困難となり好ましくない。
また条件式(1)の上限を超えると、負の屈折力が強くなり過ぎて像面性が過大に倒れるため、性能の点で好ましくない。また像面性を補正しようとすると少ないレンズ枚数で構成することが困難となり、低コスト化の点で好ましくない。 The conditional expression (1) is an expression for defining the focal length of the surface having the negative refractive power.
By satisfying conditional expression (1), the focal length of the surface having the negative refractive power falls within an appropriate range, and the image surface property can be corrected with a lens configuration that does not require a large number of lenses.
If the lower limit of conditional expression (1) is exceeded, the negative refractive power becomes too weak, making it difficult to correct the image surface properties, which is not preferable.
When the value exceeds the upper limit of the conditional expression (1), the negative refractive power becomes too strong and the image surface property is excessively deteriorated, which is not preferable in terms of performance. Further, it is difficult to correct the image plane property with a small number of lenses, which is not preferable in terms of cost reduction.
条件式(1)を満足することにより前記負の屈折力を有する面の焦点距離が適切な範囲となり、多くのレンズ枚数を必要としないレンズ構成で像面性の補正が可能となる。
条件式(1)の下限を割ると、負の屈折力が弱くなり過ぎて、像面性の補正が困難となり好ましくない。
また条件式(1)の上限を超えると、負の屈折力が強くなり過ぎて像面性が過大に倒れるため、性能の点で好ましくない。また像面性を補正しようとすると少ないレンズ枚数で構成することが困難となり、低コスト化の点で好ましくない。 The conditional expression (1) is an expression for defining the focal length of the surface having the negative refractive power.
By satisfying conditional expression (1), the focal length of the surface having the negative refractive power falls within an appropriate range, and the image surface property can be corrected with a lens configuration that does not require a large number of lenses.
If the lower limit of conditional expression (1) is exceeded, the negative refractive power becomes too weak, making it difficult to correct the image surface properties, which is not preferable.
When the value exceeds the upper limit of the conditional expression (1), the negative refractive power becomes too strong and the image surface property is excessively deteriorated, which is not preferable in terms of performance. Further, it is difficult to correct the image plane property with a small number of lenses, which is not preferable in terms of cost reduction.
なお、条件式(1)の下限は-1.80であるとより好ましく、-1.60であると更に好ましく、-1.50であると更に好ましく、-1.40であると更に好ましく、-1.30であると更に好ましく、-1.20であると更に好ましい。
また、条件式(1)の上限は-0.50であると好ましく、-0.55であると更に好ましく、-0.60であると更に好ましく、-0.65であると更に好ましく、-0.70であると更に好ましい。 The lower limit of conditional expression (1) is more preferably -1.80, further preferably -1.60, further preferably -1.50, and still more preferably -1.40, More preferably, it is −1.30, and still more preferably −1.20.
Also, the upper limit of conditional expression (1) is preferably -0.50, more preferably -0.55, further preferably -0.60, further preferably -0.65, and- More preferably, it is 0.70.
また、条件式(1)の上限は-0.50であると好ましく、-0.55であると更に好ましく、-0.60であると更に好ましく、-0.65であると更に好ましく、-0.70であると更に好ましい。 The lower limit of conditional expression (1) is more preferably -1.80, further preferably -1.60, further preferably -1.50, and still more preferably -1.40, More preferably, it is −1.30, and still more preferably −1.20.
Also, the upper limit of conditional expression (1) is preferably -0.50, more preferably -0.55, further preferably -0.60, further preferably -0.65, and- More preferably, it is 0.70.
第1実施形態のレンズ光学系は、以下の条件式を満足することを特徴とする。
0.10 < Y/f < 0.60 ・・・(2)
但し、
Y : 前記レンズ光学系の波長Nnmにおける最大像高
f : 前記レンズ光学系の波長Nnmにおける焦点距離 The lens optical system according to the first embodiment satisfies the following conditional expression.
0.10 <Y / f <0.60 (2)
However,
Y: maximum image height at the wavelength Nnm of the lens optical system f: focal length at the wavelength Nnm of the lens optical system
0.10 < Y/f < 0.60 ・・・(2)
但し、
Y : 前記レンズ光学系の波長Nnmにおける最大像高
f : 前記レンズ光学系の波長Nnmにおける焦点距離 The lens optical system according to the first embodiment satisfies the following conditional expression.
0.10 <Y / f <0.60 (2)
However,
Y: maximum image height at the wavelength Nnm of the lens optical system f: focal length at the wavelength Nnm of the lens optical system
上記条件式(2)は、レンズ光学系最大像高と焦点距離の比を規定する式である。
条件式(2)を満足することでレンズ光学系の画角が適切な範囲となり、多くのレンズ枚数を必要としないレンズ構成で高性能化が可能となる。
条件式(2)の下限を割ると、最大画角が狭くなり過ぎるため広い範囲を撮影することが困難となり好ましくない。
また条件式(2)の上限を超えると、最大画角が広くなるため少ないレンズ枚数で構成しながら高性能化することが困難となり、低コスト化の点で好ましくない。 The conditional expression (2) is an expression that defines the ratio between the maximum image height of the lens optical system and the focal length.
By satisfying conditional expression (2), the angle of view of the lens optical system falls within an appropriate range, and high performance can be achieved with a lens configuration that does not require a large number of lenses.
If the lower limit of conditional expression (2) is exceeded, the maximum angle of view becomes too narrow, so that it becomes difficult to capture a wide range, which is not preferable.
When the value exceeds the upper limit of conditional expression (2), the maximum angle of view is widened, so that it is difficult to achieve high performance with a small number of lenses, which is not preferable in terms of cost reduction.
条件式(2)を満足することでレンズ光学系の画角が適切な範囲となり、多くのレンズ枚数を必要としないレンズ構成で高性能化が可能となる。
条件式(2)の下限を割ると、最大画角が狭くなり過ぎるため広い範囲を撮影することが困難となり好ましくない。
また条件式(2)の上限を超えると、最大画角が広くなるため少ないレンズ枚数で構成しながら高性能化することが困難となり、低コスト化の点で好ましくない。 The conditional expression (2) is an expression that defines the ratio between the maximum image height of the lens optical system and the focal length.
By satisfying conditional expression (2), the angle of view of the lens optical system falls within an appropriate range, and high performance can be achieved with a lens configuration that does not require a large number of lenses.
If the lower limit of conditional expression (2) is exceeded, the maximum angle of view becomes too narrow, so that it becomes difficult to capture a wide range, which is not preferable.
When the value exceeds the upper limit of conditional expression (2), the maximum angle of view is widened, so that it is difficult to achieve high performance with a small number of lenses, which is not preferable in terms of cost reduction.
なお、条件式(2)の下限は0.12であるとより好ましく、0.14であると更に好ましく、0.16であると更に好ましく、0.20であると更に好ましい。また、条件式(2)の上限は0.55であると好ましく、0.50であると更に好ましく、0.45であると更に好ましく、0.40であると更に好ましく、0.35であると更に好ましい。
The lower limit of conditional expression (2) is more preferably 0.12, further preferably 0.14, further preferably 0.16, and even more preferably 0.20. Further, the upper limit of conditional expression (2) is preferably 0.55, more preferably 0.50, further preferably 0.45, further preferably 0.40, and more preferably 0.35. Is more preferable.
第1実施形態の撮像光学系は、このレンズ構成に限定されない。いずれのレンズ枚数、及び、レンズ配置においても、本実施形態を適用することによって、これらの効果を得ることが可能である。また、低コスト化及び小型化の観点から、より好ましくは、7枚以下のレンズで構成されることが好ましい。レンズの形状に関しては、最物体側面が凸面であることが好ましい。レンズ枚数や形状は、求められる焦点距離、大きさ、Fナンバーや像高によって適宜変更することが可能である。
撮 像 The imaging optical system of the first embodiment is not limited to this lens configuration. Regardless of the number of lenses and the arrangement of the lenses, these effects can be obtained by applying the present embodiment. In addition, from the viewpoint of cost reduction and miniaturization, it is more preferable to configure the camera with seven or less lenses. Regarding the shape of the lens, it is preferable that the outermost object side surface is a convex surface. The number and shape of the lenses can be appropriately changed according to the required focal length, size, F number, and image height.
第2実施形態のレンズ光学系は、少なくとも1枚の樹脂レンズLpを有することを特徴とする。
樹脂レンズを用いることにより軽量化と低コスト化が達成できる。
また、前記樹脂レンズLpには非球面を有することが好ましい。樹脂レンズLpに非球面を用いることで低コスト化を実現しながら収差補正が効果的に達成できるため、高性能化も同時に達成される。なお、前記樹脂レンズLpに非球面を使用する場合、近軸的な屈折力を弱める形状の非球面であることが収差補正上好ましい。 The lens optical system according to the second embodiment has at least one resin lens Lp.
By using a resin lens, weight reduction and cost reduction can be achieved.
Preferably, the resin lens Lp has an aspheric surface. By using an aspherical surface for the resin lens Lp, aberrations can be effectively corrected while realizing cost reduction, so that high performance is also achieved. When an aspherical surface is used for the resin lens Lp, it is preferable that the resin lens Lp be an aspherical surface having a shape that reduces paraxial refracting power in order to correct aberration.
樹脂レンズを用いることにより軽量化と低コスト化が達成できる。
また、前記樹脂レンズLpには非球面を有することが好ましい。樹脂レンズLpに非球面を用いることで低コスト化を実現しながら収差補正が効果的に達成できるため、高性能化も同時に達成される。なお、前記樹脂レンズLpに非球面を使用する場合、近軸的な屈折力を弱める形状の非球面であることが収差補正上好ましい。 The lens optical system according to the second embodiment has at least one resin lens Lp.
By using a resin lens, weight reduction and cost reduction can be achieved.
Preferably, the resin lens Lp has an aspheric surface. By using an aspherical surface for the resin lens Lp, aberrations can be effectively corrected while realizing cost reduction, so that high performance is also achieved. When an aspherical surface is used for the resin lens Lp, it is preferable that the resin lens Lp be an aspherical surface having a shape that reduces paraxial refracting power in order to correct aberration.
第3実施形態のレンズ光学系は、前記樹脂レンズLpが、以下の条件式を満足することを特徴とする。
1.5 < |fLp|/f < 2000.0 ・・・(3)
但し、
fLp: 前記樹脂レンズLpの波長Nnmにおける焦点距離
f : 前記レンズ光学系の波長Nnmにおける焦点距離
(樹脂レンズLpが複数ある場合は、最も屈折力が大きいものをfLpとする) The lens optical system according to the third embodiment is characterized in that the resin lens Lp satisfies the following conditional expression.
1.5 <| fLp | / f <2000.0 (3)
However,
fLp: Focal length at the wavelength Nnm of the resin lens Lp f: Focal length at the wavelength Nnm of the lens optical system (if there are a plurality of resin lenses Lp, fLp is the one with the largest refractive power).
1.5 < |fLp|/f < 2000.0 ・・・(3)
但し、
fLp: 前記樹脂レンズLpの波長Nnmにおける焦点距離
f : 前記レンズ光学系の波長Nnmにおける焦点距離
(樹脂レンズLpが複数ある場合は、最も屈折力が大きいものをfLpとする) The lens optical system according to the third embodiment is characterized in that the resin lens Lp satisfies the following conditional expression.
1.5 <| fLp | / f <2000.0 (3)
However,
fLp: Focal length at the wavelength Nnm of the resin lens Lp f: Focal length at the wavelength Nnm of the lens optical system (if there are a plurality of resin lenses Lp, fLp is the one with the largest refractive power).
上記条件式(3)は、前記樹脂レンズLpの波長Nnmにおける焦点距離を規定するための式である。樹脂レンズの場合、温度変化に対する光学特性の変化が大きいため、前記樹脂レンズLpはあまり大きな屈折力を有さない方が良い。
The conditional expression (3) is an expression for defining the focal length of the resin lens Lp at the wavelength Nnm. In the case of a resin lens, since the change in optical characteristics with respect to a temperature change is large, it is better that the resin lens Lp does not have a very large refractive power.
条件式(3)を満足することにより、温度変化に対する光学特性の変化を小さくしながら、少ないレンズ枚数で光学性能の向上を図ることができる。
条件式(3)の下限を割ると、前記樹脂レンズLpの屈折力が大きくなり過ぎて、温度変化に対する光学特性の変化が大きくなるため好ましくない。
また条件式(3)の上限を超えると、前記樹脂レンズLpの屈折力が小さ過ぎるため、収差補正の効果が薄くなり、少ないレンズ枚数で構成できなくなるため、コストの点で好ましくない。 By satisfying conditional expression (3), it is possible to improve the optical performance with a small number of lenses while minimizing the change in the optical characteristics with respect to the temperature change.
If the lower limit of conditional expression (3) is exceeded, the refractive power of the resin lens Lp becomes too large, and the change in the optical characteristics with respect to the temperature change becomes undesirably large.
If the value exceeds the upper limit of conditional expression (3), the refractive power of the resin lens Lp is too small, so that the effect of aberration correction is reduced, and it is not possible to configure the lens with a small number of lenses.
条件式(3)の下限を割ると、前記樹脂レンズLpの屈折力が大きくなり過ぎて、温度変化に対する光学特性の変化が大きくなるため好ましくない。
また条件式(3)の上限を超えると、前記樹脂レンズLpの屈折力が小さ過ぎるため、収差補正の効果が薄くなり、少ないレンズ枚数で構成できなくなるため、コストの点で好ましくない。 By satisfying conditional expression (3), it is possible to improve the optical performance with a small number of lenses while minimizing the change in the optical characteristics with respect to the temperature change.
If the lower limit of conditional expression (3) is exceeded, the refractive power of the resin lens Lp becomes too large, and the change in the optical characteristics with respect to the temperature change becomes undesirably large.
If the value exceeds the upper limit of conditional expression (3), the refractive power of the resin lens Lp is too small, so that the effect of aberration correction is reduced, and it is not possible to configure the lens with a small number of lenses.
なお、条件式(3)の下限は1.7であるとより好ましく、1.9であると更に好ましく、2.1であると更に好ましく、2.4であると更に好ましく、2.8であると更に好ましい。また、条件式(3)の上限は1000.0であると好ましく、500.0であると更に好ましく、200.0であると更に好ましく、100.0であると更に好ましく、50.0であると更に好ましく、20.0であると更に好ましく、10.0であると更に好ましく、8.0であると更に好ましい。
The lower limit of conditional expression (3) is more preferably 1.7, still more preferably 1.9, even more preferably 2.1, even more preferably 2.4, and 2.8. It is more preferable that there is. Further, the upper limit of conditional expression (3) is preferably 1000.0, more preferably 500.0, further preferably 200.0, further preferably 100.0, and most preferably 50.0. Is more preferably, 20.0 is more preferable, 10.0 is more preferable, and 8.0 is more preferable.
なお、前記樹脂レンズは、正レンズと負レンズをそれぞれ1枚ずつ配置することが好ましい。正の屈折力と負の屈折力を有する樹脂レンズが各々1枚ずつ配置することにより、樹脂レンズの温度変化による光学特性変化の打ち消し合いが起き、光学特性変化を小さくすることができるため、好ましい。
樹脂 In addition, it is preferable that one positive lens and one negative lens are arranged for the resin lens. By arranging one resin lens having a positive refractive power and one resin lens having a negative refractive power, a change in optical characteristics due to a temperature change of the resin lens cancels out, and the change in optical characteristics can be reduced, which is preferable. .
第4実施形態のレンズ光学系は、前記レンズ光学系は両凸形状の空気レンズを少なくとも1つ有し、以下の条件式を満足することを特徴としている。
-0.70<(Crpf+Crpr)/(Crpf-Crpr)<0.70 ・・・(4)
但し、
Crpf: 前記両凸形状の空気レンズの物体側面の曲率半径
Crpr: 前記両凸形状の空気レンズの像側面の曲率半径 The lens optical system according to the fourth embodiment is characterized in that the lens optical system has at least one biconvex air lens and satisfies the following conditional expression.
-0.70 <(Crpf + Crpr) / (Crpf-Crpr) <0.70 (4)
However,
Crpf: radius of curvature of the object side surface of the biconvex air lens Crpr: radius of curvature of the image side surface of the biconvex air lens
-0.70<(Crpf+Crpr)/(Crpf-Crpr)<0.70 ・・・(4)
但し、
Crpf: 前記両凸形状の空気レンズの物体側面の曲率半径
Crpr: 前記両凸形状の空気レンズの像側面の曲率半径 The lens optical system according to the fourth embodiment is characterized in that the lens optical system has at least one biconvex air lens and satisfies the following conditional expression.
-0.70 <(Crpf + Crpr) / (Crpf-Crpr) <0.70 (4)
However,
Crpf: radius of curvature of the object side surface of the biconvex air lens Crpr: radius of curvature of the image side surface of the biconvex air lens
上記条件式(4)は、前記両凸形状の空気レンズの形状を規定するための式である。ここで、空気レンズとは、空気間隔を隔て隣接して配置される物体側の面と像側の面で構成される空気間隔のことである。
The above conditional expression (4) is an expression for defining the shape of the biconvex air lens. Here, the air lens is an air space formed by an object-side surface and an image-side surface which are arranged adjacent to each other with an air space therebetween.
条件式(4)を満足することにより多くのレンズ枚数を必要としないレンズ構成で球面収差と像面性が補正された大口径のレンズ光学系を構成することができる。
条件式(4)の範囲を超えると、前記空気レンズの形状が平凸形状に近づいていくため、球面収差と像面性の補正が両立しなくなり、高性能化の点で好ましくない。 By satisfying conditional expression (4), it is possible to configure a large-aperture lens optical system in which the spherical aberration and the image surface property are corrected by a lens configuration that does not require a large number of lenses.
When the value exceeds the range of the conditional expression (4), the shape of the air lens approaches a plano-convex shape, so that it is not preferable from the viewpoint of high performance that spherical aberration and correction of image surface property are not compatible.
条件式(4)の範囲を超えると、前記空気レンズの形状が平凸形状に近づいていくため、球面収差と像面性の補正が両立しなくなり、高性能化の点で好ましくない。 By satisfying conditional expression (4), it is possible to configure a large-aperture lens optical system in which the spherical aberration and the image surface property are corrected by a lens configuration that does not require a large number of lenses.
When the value exceeds the range of the conditional expression (4), the shape of the air lens approaches a plano-convex shape, so that it is not preferable from the viewpoint of high performance that spherical aberration and correction of image surface property are not compatible.
なお、条件式(4)の下限は-0.65であるとより好ましく、-0.50であると更に好ましく、-0.35であると更に好ましく、-0.15であると更に好ましく、-0.05であると更に好ましい。また、条件式(4)の上限は0.65であると好ましく、0.60であると更に好ましく、0.50であると更に好ましく、0.45であると更に好ましく、0.40であると更に好ましい。
The lower limit of conditional expression (4) is more preferably −0.65, further preferably −0.50, further preferably −0.35, and still more preferably −0.15. More preferably, it is -0.05. Further, the upper limit of conditional expression (4) is preferably 0.65, more preferably 0.60, further preferably 0.50, further preferably 0.45, and more preferably 0.40. Is more preferable.
第5実施態様のレンズ光学系は、最も物体側に物体側凸面を有するレンズLfを有し、以下の条件式を満足することを特徴としている。
0.35 < CrLf/f ・・・(5)
但し、
CrLf: 前記レンズLfの物体側凸面の曲率半径
f : 前記レンズ光学系の波長Nnmにおける焦点距離 The lens optical system according to the fifth embodiment has a lens Lf having the object-side convex surface closest to the object, and satisfies the following conditional expression.
0.35 <CrLf / f (5)
However,
CrLf: radius of curvature f of the object-side convex surface of the lens Lf: focal length at a wavelength Nnm of the lens optical system
0.35 < CrLf/f ・・・(5)
但し、
CrLf: 前記レンズLfの物体側凸面の曲率半径
f : 前記レンズ光学系の波長Nnmにおける焦点距離 The lens optical system according to the fifth embodiment has a lens Lf having the object-side convex surface closest to the object, and satisfies the following conditional expression.
0.35 <CrLf / f (5)
However,
CrLf: radius of curvature f of the object-side convex surface of the lens Lf: focal length at a wavelength Nnm of the lens optical system
上記条件式(5)は、前記物体側凸面を有するレンズLfの物体側凸面の曲率半径を規定するための式である。条件式(5)が正の値を取ることから、最も物体側の面は物体側に凸の形状であることを規定する。
条件式(5)を満足することで前記物体側凸面の曲率半径が適切な範囲となり、多くのレンズ枚数を必要としないレンズ構成で、歪曲収差の補正が可能となる。
条件式(5)の下限を割ると、物体側凸面の曲率半径が小さくなり過ぎ、歪曲収差の補正が困難となり好ましくない。
また条件式(5)の上限は物体側面が凸の形状であればよく、規定されるものではない。 The conditional expression (5) is an expression for defining the radius of curvature of the object-side convex surface of the lens Lf having the object-side convex surface. Since the conditional expression (5) takes a positive value, it defines that the surface closest to the object has a shape convex toward the object.
By satisfying conditional expression (5), the radius of curvature of the object-side convex surface falls within an appropriate range, and distortion can be corrected with a lens configuration that does not require a large number of lenses.
If the lower limit of conditional expression (5) is divided, the radius of curvature of the convex surface on the object side becomes too small, and it becomes difficult to correct distortion, which is not preferable.
The upper limit of the conditional expression (5) is not limited as long as the object side surface has a convex shape.
条件式(5)を満足することで前記物体側凸面の曲率半径が適切な範囲となり、多くのレンズ枚数を必要としないレンズ構成で、歪曲収差の補正が可能となる。
条件式(5)の下限を割ると、物体側凸面の曲率半径が小さくなり過ぎ、歪曲収差の補正が困難となり好ましくない。
また条件式(5)の上限は物体側面が凸の形状であればよく、規定されるものではない。 The conditional expression (5) is an expression for defining the radius of curvature of the object-side convex surface of the lens Lf having the object-side convex surface. Since the conditional expression (5) takes a positive value, it defines that the surface closest to the object has a shape convex toward the object.
By satisfying conditional expression (5), the radius of curvature of the object-side convex surface falls within an appropriate range, and distortion can be corrected with a lens configuration that does not require a large number of lenses.
If the lower limit of conditional expression (5) is divided, the radius of curvature of the convex surface on the object side becomes too small, and it becomes difficult to correct distortion, which is not preferable.
The upper limit of the conditional expression (5) is not limited as long as the object side surface has a convex shape.
なお、条件式(5)の下限は0.25であるとより好ましく、0.35であると更に好ましく、0.50であると更に好ましく、0.65であると更に好ましく、0.80であると更に好ましい。
また、条件式(5)の上限は規定されるものではない。しかし、曲率半径が大きくなり過ぎると最も物体側の面とカバーガラスや撮像面、平行平板のバンドパスフィルター等との面間反射によりゴーストが発生するという問題が発生する。そのため、条件式(5)の上限値は、5000.00であると好ましく、1000.00であると更に好ましく、200.00であると更に好ましく、20.00であると更に好ましく、10.00であると更に好ましく、5.00であると更に好ましく、3.00であると更に好ましく、1.60であると更に好ましく、1.45であると更に好ましい。 The lower limit of conditional expression (5) is more preferably 0.25, further preferably 0.35, further preferably 0.50, further preferably 0.65, and 0.80. It is more preferable that there is.
The upper limit of conditional expression (5) is not specified. However, if the radius of curvature is too large, there is a problem that a ghost occurs due to inter-surface reflection between the surface closest to the object and the cover glass, the imaging surface, a band-pass filter of a parallel plate, or the like. Therefore, the upper limit of conditional expression (5) is preferably 5000.00, more preferably 1000.00, further preferably 200.00, further preferably 20.00, and 10.00. Is more preferable, 5.00 is more preferable, 3.0 is more preferable, 1.60 is more preferable, and 1.45 is more preferable.
また、条件式(5)の上限は規定されるものではない。しかし、曲率半径が大きくなり過ぎると最も物体側の面とカバーガラスや撮像面、平行平板のバンドパスフィルター等との面間反射によりゴーストが発生するという問題が発生する。そのため、条件式(5)の上限値は、5000.00であると好ましく、1000.00であると更に好ましく、200.00であると更に好ましく、20.00であると更に好ましく、10.00であると更に好ましく、5.00であると更に好ましく、3.00であると更に好ましく、1.60であると更に好ましく、1.45であると更に好ましい。 The lower limit of conditional expression (5) is more preferably 0.25, further preferably 0.35, further preferably 0.50, further preferably 0.65, and 0.80. It is more preferable that there is.
The upper limit of conditional expression (5) is not specified. However, if the radius of curvature is too large, there is a problem that a ghost occurs due to inter-surface reflection between the surface closest to the object and the cover glass, the imaging surface, a band-pass filter of a parallel plate, or the like. Therefore, the upper limit of conditional expression (5) is preferably 5000.00, more preferably 1000.00, further preferably 200.00, further preferably 20.00, and 10.00. Is more preferable, 5.00 is more preferable, 3.0 is more preferable, 1.60 is more preferable, and 1.45 is more preferable.
第6実施形態のレンズ光学系は、以下の条件式を満足することを特徴とする。
0.50<1/tan(|Bmax|)<4.00 ・・・(6)
但し、
Bmax : 前記レンズ光学系に含まれるすべてのレンズ面におけるレンズ面の法線と入射光線のなす角度の最大値 The lens optical system according to the sixth embodiment satisfies the following conditional expression.
0.50 <1 / tan (| Bmax |) <4.00 (6)
However,
Bmax: the maximum value of the angle between the normal to the lens surface and the incident light beam on all the lens surfaces included in the lens optical system
0.50<1/tan(|Bmax|)<4.00 ・・・(6)
但し、
Bmax : 前記レンズ光学系に含まれるすべてのレンズ面におけるレンズ面の法線と入射光線のなす角度の最大値 The lens optical system according to the sixth embodiment satisfies the following conditional expression.
0.50 <1 / tan (| Bmax |) <4.00 (6)
However,
Bmax: the maximum value of the angle between the normal to the lens surface and the incident light beam on all the lens surfaces included in the lens optical system
上記条件式(6)は、光線入射角Bを規定する式である。ここで光線入射角Bは、図1に示すように、光線B2のメリジオナル断面におけるレンズ面の法線B1に対する角度である。該光線入射角Bは絶対値で表され、すべて正の値を取る。なお、レンズ面が非球面の場合、法線は近軸曲率からではなく非球面形状から算出される。
The conditional expression (6) is an expression that defines the light incident angle B. Here, the light incident angle B is an angle with respect to a normal line B1 of the lens surface in the meridional section of the light beam B2 as shown in FIG. The light incident angle B is represented by an absolute value, and all take positive values. When the lens surface is an aspherical surface, the normal is calculated not from the paraxial curvature but from the aspherical shape.
条件式(6)を満足することでレンズ面の法線に対する光線入射角が適切な範囲となり、反射率が低くかつ多くのレンズ枚数を必要としないレンズ構成が可能となる。
条件式(6)の下限を割ると、すなわちレンズ面の法線に対する最大光線入射角が大きくなると、大きな収差が発生し好ましくない。
また条件式(6)の上限を超えると、すなわちレンズ面の法線に対する最大光線入射角が小さくなると、収差補正効果が小さくなり過ぎ、少ないレンズ枚数でレンズ光学系を構成することが困難となり、低コスト化の点で好ましくない。 By satisfying conditional expression (6), the angle of incidence of the light beam with respect to the normal to the lens surface is in an appropriate range, and a lens configuration having a low reflectance and not requiring a large number of lenses is possible.
If the lower limit of conditional expression (6) is exceeded, that is, if the maximum light ray incident angle with respect to the normal to the lens surface becomes large, large aberrations occur, which is not preferable.
If the upper limit of conditional expression (6) is exceeded, that is, if the maximum ray incident angle with respect to the normal to the lens surface is small, the aberration correction effect becomes too small, and it becomes difficult to configure a lens optical system with a small number of lenses. It is not preferable in terms of cost reduction.
条件式(6)の下限を割ると、すなわちレンズ面の法線に対する最大光線入射角が大きくなると、大きな収差が発生し好ましくない。
また条件式(6)の上限を超えると、すなわちレンズ面の法線に対する最大光線入射角が小さくなると、収差補正効果が小さくなり過ぎ、少ないレンズ枚数でレンズ光学系を構成することが困難となり、低コスト化の点で好ましくない。 By satisfying conditional expression (6), the angle of incidence of the light beam with respect to the normal to the lens surface is in an appropriate range, and a lens configuration having a low reflectance and not requiring a large number of lenses is possible.
If the lower limit of conditional expression (6) is exceeded, that is, if the maximum light ray incident angle with respect to the normal to the lens surface becomes large, large aberrations occur, which is not preferable.
If the upper limit of conditional expression (6) is exceeded, that is, if the maximum ray incident angle with respect to the normal to the lens surface is small, the aberration correction effect becomes too small, and it becomes difficult to configure a lens optical system with a small number of lenses. It is not preferable in terms of cost reduction.
なお、条件式(6)の下限は0.55であるとより好ましく、0.60であると更に好ましく、0.65であると更に好ましく、0.70であると更に好ましい。また、条件式(6)の上限は3.00であると好ましく、2.60であると更に好ましく、2.10であると更に好ましく、1.80であると更に好ましい。
The lower limit of conditional expression (6) is more preferably 0.55, further preferably 0.60, further preferably 0.65, and even more preferably 0.70. The upper limit of conditional expression (6) is preferably 3.00, more preferably 2.60, further preferably 2.10, and still more preferably 1.80.
第7実施態様のレンズ光学系は、以下の条件式を満足することを特徴とする。
1.90<1/tan(|Cmax|)<20.00 ・・・(7)
但し、
Cmax : 前記バンドパスフィルターと前記バンドパスフィルターに入射する光線のなす角度の最大値 The lens optical system according to the seventh embodiment satisfies the following conditional expression.
1.90 <1 / tan (| Cmax |) <20.00 (7)
However,
Cmax: maximum value of the angle between the band-pass filter and the light beam incident on the band-pass filter
1.90<1/tan(|Cmax|)<20.00 ・・・(7)
但し、
Cmax : 前記バンドパスフィルターと前記バンドパスフィルターに入射する光線のなす角度の最大値 The lens optical system according to the seventh embodiment satisfies the following conditional expression.
1.90 <1 / tan (| Cmax |) <20.00 (7)
However,
Cmax: maximum value of the angle between the band-pass filter and the light beam incident on the band-pass filter
上記条件式(7)は、前記バンドパスフィルター面Fの法線F1に対する光線入射角Cを規定する式である。ここで光線入射角Cは、図2Aに示すように、図1の光線入射角Bと同様に定義され、角度は絶対値で表され、すべて正の値を取る。
The conditional expression (7) is an expression that specifies the light incident angle C with respect to the normal F1 of the bandpass filter surface F. Here, as shown in FIG. 2A, the light incident angle C is defined in the same manner as the light incident angle B in FIG. 1, and the angle is represented by an absolute value, and all take positive values.
干渉フィルターは、入射光線角が0°から離れるに従って透過スペクトルが短波長側にシフトする。従って、条件式(7)を満足することにより、バンドパスフィルター面の法線に対する光線入射角が適切な範囲となり、透過スペクトルの波長シフトを抑制することができる。
In the interference filter, the transmission spectrum shifts to the short wavelength side as the incident ray angle departs from 0 °. Therefore, by satisfying the conditional expression (7), the light incident angle with respect to the normal to the surface of the bandpass filter falls within an appropriate range, and the wavelength shift of the transmission spectrum can be suppressed.
条件式(7)の下限を割ると、すなわち前記バンドパスフィルターに入射する光線の最大入射角が大きくなると、透過スペクトルが短波長側にシフトし、使用波長の透過率が下がり好ましくない。
また条件式(7)の上限を超えると、すなわち前記バンドパスフィルターに入射する光線の最大入射角が小さくなり過ぎ、主光線及び上下光線がすべてテレセントリックな光路配置となることを意味し、少ないレンズ枚数で構成することが困難となり、低コスト化の点で好ましくない。 If the lower limit of conditional expression (7) is divided, that is, if the maximum incident angle of the light beam incident on the band-pass filter increases, the transmission spectrum shifts to the shorter wavelength side, and the transmittance at the used wavelength decreases, which is not preferable.
When the value exceeds the upper limit of the conditional expression (7), that is, the maximum incident angle of the light beam incident on the band-pass filter becomes too small, which means that the principal light beam and the upper and lower light beams are all arranged in a telecentric optical path arrangement. This makes it difficult to configure with the number of sheets, which is not preferable in terms of cost reduction.
また条件式(7)の上限を超えると、すなわち前記バンドパスフィルターに入射する光線の最大入射角が小さくなり過ぎ、主光線及び上下光線がすべてテレセントリックな光路配置となることを意味し、少ないレンズ枚数で構成することが困難となり、低コスト化の点で好ましくない。 If the lower limit of conditional expression (7) is divided, that is, if the maximum incident angle of the light beam incident on the band-pass filter increases, the transmission spectrum shifts to the shorter wavelength side, and the transmittance at the used wavelength decreases, which is not preferable.
When the value exceeds the upper limit of the conditional expression (7), that is, the maximum incident angle of the light beam incident on the band-pass filter becomes too small, which means that the principal light beam and the upper and lower light beams are all arranged in a telecentric optical path arrangement. This makes it difficult to configure with the number of sheets, which is not preferable in terms of cost reduction.
なお、条件式(7)の下限は2.55であるとより好ましく、2.60であると更に好ましく、2.65であると更に好ましく、2.70であると更に好ましく、2.77であると更に好ましい。また、条件式(7)の上限は15.00であると好ましく、12.00であると更に好ましく、8.00であると更に好ましく、7.00であると更に好ましい。
なお、Fnoが1.4より明るい光学系の場合に、最も像面側にバンドパスフィルターを配置すると、光線入射角Cは約20度となるため、Fnoが1.4より明るい光学系は、最も像面側にバンドパスフィルターを配置しないことが好ましい。
また最大画角が20度を超えるような広角レンズは、最も物体側にバンドパスフィルターを配置しないことが好ましい。 In addition, the lower limit of conditional expression (7) is more preferably 2.55, furthermore preferably 2.60, furthermore preferably 2.65, furthermore preferably 2.70, and 2.77. It is more preferable that there is. The upper limit of conditional expression (7) is preferably 15.00, more preferably 12.00, further preferably 8.00, and still more preferably 7.00.
In the case of an optical system having an Fno higher than 1.4, if a band-pass filter is disposed closest to the image plane, the light incident angle C is about 20 degrees. It is preferable not to dispose a bandpass filter closest to the image plane.
In a wide-angle lens having a maximum angle of view exceeding 20 degrees, it is preferable not to dispose a bandpass filter closest to the object side.
なお、Fnoが1.4より明るい光学系の場合に、最も像面側にバンドパスフィルターを配置すると、光線入射角Cは約20度となるため、Fnoが1.4より明るい光学系は、最も像面側にバンドパスフィルターを配置しないことが好ましい。
また最大画角が20度を超えるような広角レンズは、最も物体側にバンドパスフィルターを配置しないことが好ましい。 In addition, the lower limit of conditional expression (7) is more preferably 2.55, furthermore preferably 2.60, furthermore preferably 2.65, furthermore preferably 2.70, and 2.77. It is more preferable that there is. The upper limit of conditional expression (7) is preferably 15.00, more preferably 12.00, further preferably 8.00, and still more preferably 7.00.
In the case of an optical system having an Fno higher than 1.4, if a band-pass filter is disposed closest to the image plane, the light incident angle C is about 20 degrees. It is preferable not to dispose a bandpass filter closest to the image plane.
In a wide-angle lens having a maximum angle of view exceeding 20 degrees, it is preferable not to dispose a bandpass filter closest to the object side.
第8実施態様のレンズ光学系は、以下の条件式を満足することを特徴する。
-0.09<tan(D)<0.27 ・・・(8)
但し、
D : 前記レンズ光学系の最も像側の面から射出され像面に入射する波長Nnmにおける最軸外光線の主光線と光軸と平行な線がなすメリジオナル断面上の角度 The lens optical system according to the eighth embodiment satisfies the following conditional expression.
-0.09 <tan (D) <0.27 (8)
However,
D: Angle on the meridional section formed by the principal ray of the most off-axis ray at a wavelength of N nm emitted from the most image-side surface of the lens optical system and incident on the image plane and a line parallel to the optical axis.
-0.09<tan(D)<0.27 ・・・(8)
但し、
D : 前記レンズ光学系の最も像側の面から射出され像面に入射する波長Nnmにおける最軸外光線の主光線と光軸と平行な線がなすメリジオナル断面上の角度 The lens optical system according to the eighth embodiment satisfies the following conditional expression.
-0.09 <tan (D) <0.27 (8)
However,
D: Angle on the meridional section formed by the principal ray of the most off-axis ray at a wavelength of N nm emitted from the most image-side surface of the lens optical system and incident on the image plane and a line parallel to the optical axis.
上記条件式(8)は、前記レンズ光学系における最軸外光線が像面に入射する角度を規定する式である。ここで、主光線とは波長Nnmにおける前記最軸外の光線のうち絞りの中心を通過する光線のことである。また、前記主光線と光軸と平行な線がなすメリジオナル断面上における光線入射角は、図2Bに示す方向をプラスとする。なお、図2Bにおいて、IMGは像面を表す。
The above conditional expression (8) is an expression that defines the angle at which the most off-axis ray in the lens optical system is incident on the image plane. Here, the principal ray is a ray passing through the center of the stop among the off-axis rays at the wavelength Nnm. The light incident angle on the meridional section formed by the principal ray and a line parallel to the optical axis is positive in the direction shown in FIG. 2B. In FIG. 2B, IMG represents an image plane.
条件式(8)の上限を超えると、すなわち像面に入射する光線の角度が大きくなり過ぎ、撮像素子のオンチップレンズ開口率における蹴られが生じ、周辺光量落ちが顕著となり、好ましくない。
また条件式(8)の下限を割ると、すなわち像面に入射する角度が小さくなるため、最終レンズの直径の小型化が困難となり、好ましくない。 When the value exceeds the upper limit of the conditional expression (8), that is, the angle of the light beam incident on the image plane becomes too large, and the aperture ratio of the on-chip lens of the image pickup device is reduced, and the peripheral light amount is remarkably reduced, which is not preferable.
Also, if the lower limit of conditional expression (8) is divided, that is, the angle of incidence on the image plane becomes small, it becomes difficult to reduce the diameter of the final lens, which is not preferable.
また条件式(8)の下限を割ると、すなわち像面に入射する角度が小さくなるため、最終レンズの直径の小型化が困難となり、好ましくない。 When the value exceeds the upper limit of the conditional expression (8), that is, the angle of the light beam incident on the image plane becomes too large, and the aperture ratio of the on-chip lens of the image pickup device is reduced, and the peripheral light amount is remarkably reduced, which is not preferable.
Also, if the lower limit of conditional expression (8) is divided, that is, the angle of incidence on the image plane becomes small, it becomes difficult to reduce the diameter of the final lens, which is not preferable.
なお、条件式(8)の下限は-0.05であるとより好ましく、-0.02であると更に好ましく、-0.01であると更に好ましく、0.00であると更に好ましい。また、条件式(8)の上限は0.25であると好ましく、0.22であると更に好ましく、0.18であると更に好ましく、0.15であると更に好ましく、0.12であると更に好ましく、0.08であると更に好ましい。
In addition, the lower limit of conditional expression (8) is more preferably −0.05, further preferably −0.02, further preferably −0.01, and still more preferably 0.00. Further, the upper limit of conditional expression (8) is preferably 0.25, more preferably 0.22, further preferably 0.18, further preferably 0.15, and more preferably 0.12. And more preferably 0.08.
第9実施態様のレンズ光学系は、波長Nが780nmより長いことを特徴とする。人間の目が感じることのできる波長は、400nmから750nmなので、特定の波長を投光し、その散乱光を受光するためには、人間の目が感じることのできない波長を使用することが好ましい。
レ ン ズ The lens optical system according to the ninth embodiment is characterized in that the wavelength N is longer than 780 nm. Since the wavelength that can be sensed by human eyes is 400 nm to 750 nm, it is preferable to use a wavelength that cannot be sensed by human eyes in order to project a specific wavelength and receive the scattered light.
なお、波長Nは800nmより長いことがより好ましく、830nmより長いことが更に好ましく、850nmより長いことが更に好ましい。
The wavelength N is more preferably longer than 800 nm, further preferably longer than 830 nm, and further preferably longer than 850 nm.
第10実施態様のレンズ光学系は、以下の条件式を満足することを特徴とする。
0.10<1/tan(|Amin|)<1.35 ・・・(9)
但し、
Amin : 前記レンズ光学系に含まれるすべてのレンズ面におけるレンズ面の接線と光軸のなす角度の最小値 The lens optical system of the tenth embodiment is characterized by satisfying the following conditional expression.
0.10 <1 / tan (| Amin |) <1.35 (9)
However,
Amin: The minimum value of the angle between the tangent of the lens surface and the optical axis in all the lens surfaces included in the lens optical system.
0.10<1/tan(|Amin|)<1.35 ・・・(9)
但し、
Amin : 前記レンズ光学系に含まれるすべてのレンズ面におけるレンズ面の接線と光軸のなす角度の最小値 The lens optical system of the tenth embodiment is characterized by satisfying the following conditional expression.
0.10 <1 / tan (| Amin |) <1.35 (9)
However,
Amin: The minimum value of the angle between the tangent of the lens surface and the optical axis in all the lens surfaces included in the lens optical system.
上記条件式(9)は、レンズ面に対する接線角を規定する式である。ここで接線角Aは、図3に示すように、角度は絶対値で表され、すべて正の値を取る。よって接線角が小さくなるほど面の傾きが強くなることを意味する。
条件式(9)を満足することにより反射防止コートの層厚誤差が小さくなると共に適切な屈折力を有することとなり、レンズ枚数の削減につながる。またレンズを樹脂で成型する場合に面の成型性が保たれる。 The conditional expression (9) is an expression that defines a tangent angle to the lens surface. Here, as shown in FIG. 3, the tangent angle A is represented by an absolute value, and all of the tangent angles take positive values. Therefore, the smaller the tangent angle, the stronger the surface inclination.
By satisfying the conditional expression (9), the thickness error of the antireflection coat is reduced and the antireflection coat has an appropriate refractive power, which leads to a reduction in the number of lenses. In addition, when the lens is molded with resin, the moldability of the surface is maintained.
条件式(9)を満足することにより反射防止コートの層厚誤差が小さくなると共に適切な屈折力を有することとなり、レンズ枚数の削減につながる。またレンズを樹脂で成型する場合に面の成型性が保たれる。 The conditional expression (9) is an expression that defines a tangent angle to the lens surface. Here, as shown in FIG. 3, the tangent angle A is represented by an absolute value, and all of the tangent angles take positive values. Therefore, the smaller the tangent angle, the stronger the surface inclination.
By satisfying the conditional expression (9), the thickness error of the antireflection coat is reduced and the antireflection coat has an appropriate refractive power, which leads to a reduction in the number of lenses. In addition, when the lens is molded with resin, the moldability of the surface is maintained.
条件式(9)の下限を割ると、すなわち面の傾きが平面に近付いていくことになり、屈折力が弱くレンズ全長が大型化するとともに、収差補正のために多くのレンズが必要となり、小型化と低コスト化が困難となるため好ましくない。
また条件式(9)の上限を超えると、すなわち面の傾きが強くなっていくこととなり、反射防止コーティングを蒸着する際にレンズ中心部とレンズ周辺部で膜の厚みが異なってしまう。そのためレンズの中心部と周辺部で反射率特性が変化してしまい、透過率を高めることが困難となり好ましくない。また、樹脂レンズの場合、金型との離型性が悪くなることから、面の成型性が悪くなり、高性能化を図るうえで好ましくない。 When the lower limit of conditional expression (9) is divided, that is, the inclination of the surface approaches a flat surface, the refractive power is weak, the overall length of the lens is increased, and a large number of lenses are required for aberration correction. It is not preferable because it is difficult to reduce the cost and cost.
When the value exceeds the upper limit of the conditional expression (9), that is, the inclination of the surface is increased, and the thickness of the film is different between the lens central portion and the lens peripheral portion when the antireflection coating is deposited. For this reason, the reflectance characteristics change between the central portion and the peripheral portion of the lens, and it is difficult to increase the transmittance, which is not preferable. Further, in the case of a resin lens, the mold releasability from the mold is deteriorated, so that the moldability of the surface is deteriorated, which is not preferable in achieving high performance.
また条件式(9)の上限を超えると、すなわち面の傾きが強くなっていくこととなり、反射防止コーティングを蒸着する際にレンズ中心部とレンズ周辺部で膜の厚みが異なってしまう。そのためレンズの中心部と周辺部で反射率特性が変化してしまい、透過率を高めることが困難となり好ましくない。また、樹脂レンズの場合、金型との離型性が悪くなることから、面の成型性が悪くなり、高性能化を図るうえで好ましくない。 When the lower limit of conditional expression (9) is divided, that is, the inclination of the surface approaches a flat surface, the refractive power is weak, the overall length of the lens is increased, and a large number of lenses are required for aberration correction. It is not preferable because it is difficult to reduce the cost and cost.
When the value exceeds the upper limit of the conditional expression (9), that is, the inclination of the surface is increased, and the thickness of the film is different between the lens central portion and the lens peripheral portion when the antireflection coating is deposited. For this reason, the reflectance characteristics change between the central portion and the peripheral portion of the lens, and it is difficult to increase the transmittance, which is not preferable. Further, in the case of a resin lens, the mold releasability from the mold is deteriorated, so that the moldability of the surface is deteriorated, which is not preferable in achieving high performance.
なお、条件式(9)の下限は0.15であるとより好ましく、0.25であると更に好ましく、0.35であると更に好ましく、0.50であると更に好ましい。また、条件式(9)の上限は1.30であると好ましく、1.28であると更に好ましく、1.26であると更に好ましく、1.20であると更に好ましい。
In addition, the lower limit of conditional expression (9) is more preferably 0.15, further preferably 0.25, further preferably 0.35, and still more preferably 0.50. Further, the upper limit of conditional expression (9) is preferably 1.30, more preferably 1.28, further preferably 1.26, and still more preferably 1.20.
第11実施態様の撮像装置は、前記レンズ光学系の像側に前記レンズ光学系によって形成された光学像を電気的信号に変換する撮像素子を備える。ここで、前記撮像素子は特にその構成が限定されるものではなく、CCDセンサやCMOSセンサなどの固体撮像素子が例示される。
The imaging apparatus according to the eleventh embodiment includes an imaging device that converts an optical image formed by the lens optical system into an electric signal on an image side of the lens optical system. Here, the configuration of the image sensor is not particularly limited, and a solid-state image sensor such as a CCD sensor or a CMOS sensor is exemplified.
また、本発明の撮像装置は、前記撮像素子で撮影した画像データを電気的に加工してその形状を変化させる画像処理過程を有することがより好ましい。画像処理過程にて施される画像処理の一例としては、例えば、像形状のゆがみを補正するための補正データを保持しておき、補正データを用いて画像データを補正する画像処理などが挙げられる。レンズを含む光学系の小型化をする場合、像形状のゆがみが問題となるが、上述のような画像処理を行うことで、ゆがみのない像の形成とともにレンズ光学系の小型化が達成することができ、好ましい。
It is more preferable that the imaging apparatus of the present invention has an image processing step of electrically processing image data captured by the image sensor to change the shape of the image data. As an example of the image processing performed in the image processing process, for example, image processing in which correction data for correcting distortion of an image shape is held, and the image data is corrected using the correction data, or the like is given. . When miniaturizing an optical system including a lens, distortion of the image shape becomes a problem, but by performing the image processing as described above, it is possible to form a distortion-free image and achieve miniaturization of the lens optical system. Is preferred.
本発明の撮像装置において、前記画像処理過程によって歪曲を補正する場合には、最も像側に配置されたレンズの負の屈折力を強くすることができ、最も像側のレンズの小型化が達成されるため好ましい。
In the image pickup apparatus of the present invention, when distortion is corrected by the image processing process, the negative refractive power of the lens disposed closest to the image can be increased, and miniaturization of the lens closest to the image can be achieved. Is preferred.
本発明の撮像装置において、前記画像処理過程によって倍率色収差を補正する場合には、光学収差補正の補正対象が減り、レンズ枚数の削減につながり、レンズ光学系の小型化が達成されるため好ましい。
In the imaging apparatus of the present invention, it is preferable that the chromatic aberration of magnification is corrected by the image processing process, because the number of correction targets for optical aberration correction is reduced, the number of lenses is reduced, and the size of the lens optical system is reduced.
前記レンズ光学系の像側に前記光学系によって形成された光学像を電気的信号に変換する撮像素子を備える。ここで、撮像素子等に特に限定はなく、CCDセンサやCMOSセンサなどの固体撮像素子等も用いることができる。
。 An image sensor for converting an optical image formed by the optical system into an electric signal is provided on the image side of the lens optical system. Here, the imaging device is not particularly limited, and a solid-state imaging device such as a CCD sensor or a CMOS sensor can be used.
(第1実施例)
図4は、本件発明に係る第1実施例のレンズ光学系のレンズ構成を示すレンズ断面図である。実施例1のレンズ光学系は、波長Nが905nmの光線を使用し、物体側から順に、両凸形状の第1レンズL1と、正の屈折力を有し物体側凸のメニスカス形状で両面に非球面を有する第2レンズL2と、負の屈折力を有し物体側凸のメニスカス形状の第3レンズL3と、正の屈折力を有し物体側凹のメニスカス形状の第4レンズL4と、正の屈折力を有し物体側凸のメニスカス形状の第5レンズL5と、負の屈折力を有し物体側凹のメニスカス形状の第6レンズL6とから構成されている。最も物体側のレンズL1の物体側にバンドパスフィルターBPFが配置されている。開口絞りSは最も物体側のバンドパスフィルターBPFの像側に配置されている。 (First embodiment)
FIG. 4 is a lens cross-sectional view showing the lens configuration of the lens optical system according to Example 1 of the present invention. The lens optical system according to the first embodiment uses a light beam having a wavelength N of 905 nm, and in order from the object side, a biconvex first lens L1 and an object-side convex meniscus shape having a positive refractive power on both surfaces. A second lens L2 having an aspheric surface, a third meniscus lens L3 having a negative refractive power and convex on the object side, a fourth lens L4 having a positive refractive power and a concave meniscus on the object side, It comprises a fifth meniscus lens L5 having a positive refractive power and convex on the object side, and a sixth lens L6 having a negative refractive power and a concave meniscus on the object side. A band-pass filter BPF is arranged on the object side of the lens L1 closest to the object. The aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
図4は、本件発明に係る第1実施例のレンズ光学系のレンズ構成を示すレンズ断面図である。実施例1のレンズ光学系は、波長Nが905nmの光線を使用し、物体側から順に、両凸形状の第1レンズL1と、正の屈折力を有し物体側凸のメニスカス形状で両面に非球面を有する第2レンズL2と、負の屈折力を有し物体側凸のメニスカス形状の第3レンズL3と、正の屈折力を有し物体側凹のメニスカス形状の第4レンズL4と、正の屈折力を有し物体側凸のメニスカス形状の第5レンズL5と、負の屈折力を有し物体側凹のメニスカス形状の第6レンズL6とから構成されている。最も物体側のレンズL1の物体側にバンドパスフィルターBPFが配置されている。開口絞りSは最も物体側のバンドパスフィルターBPFの像側に配置されている。 (First embodiment)
FIG. 4 is a lens cross-sectional view showing the lens configuration of the lens optical system according to Example 1 of the present invention. The lens optical system according to the first embodiment uses a light beam having a wavelength N of 905 nm, and in order from the object side, a biconvex first lens L1 and an object-side convex meniscus shape having a positive refractive power on both surfaces. A second lens L2 having an aspheric surface, a third meniscus lens L3 having a negative refractive power and convex on the object side, a fourth lens L4 having a positive refractive power and a concave meniscus on the object side, It comprises a fifth meniscus lens L5 having a positive refractive power and convex on the object side, and a sixth lens L6 having a negative refractive power and a concave meniscus on the object side. A band-pass filter BPF is arranged on the object side of the lens L1 closest to the object. The aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
バンドパスフィルターBPFは、波長Nが905nmの光線について、入射角0°における透過率1%以上の波長範囲が884nmから936nmであり、最大透過率の半分の透過率範囲、すなわち半値幅は890nmから927nmである。
第2レンズL2と第4レンズL4は、樹脂レンズである。 The band-pass filter BPF has a wavelength range from 884 nm to 936 nm of a transmittance of 1% or more at an incident angle of 0 ° for a light beam having a wavelength N of 905 nm, and a transmittance range of half of the maximum transmittance, that is, a half-value width of 890 nm. 927 nm.
The second lens L2 and the fourth lens L4 are resin lenses.
第2レンズL2と第4レンズL4は、樹脂レンズである。 The band-pass filter BPF has a wavelength range from 884 nm to 936 nm of a transmittance of 1% or more at an incident angle of 0 ° for a light beam having a wavelength N of 905 nm, and a transmittance range of half of the maximum transmittance, that is, a half-value width of 890 nm. 927 nm.
The second lens L2 and the fourth lens L4 are resin lenses.
すべてのレンズのレンズ面には、反射防止コートがなされている。第5レンズL5の物体側面には、波長N±100nmの波長範囲の中で最も反射率が小さくなる波長がN±50nmの範囲に存在する反射防止コーティングがなされている。
さらに、第5レンズL5の物体側面の前記反射防止コートの空気界面には、MgF2を材料に含む層が設けられ、層数は全部で5層である。樹脂レンズである第2レンズL2と第4レンズL4の反射防止コートの空気界面には、SiO2を材料に含む層が設けられ、層数は全部で3層である。 All lenses have an anti-reflection coating on their lens surfaces. The object side surface of the fifth lens L5 is provided with an antireflection coating in which the wavelength at which the reflectance becomes the smallest in the wavelength range of N ± 100 nm exists in the range of N ± 50 nm.
Further, a layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five. At the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, a layer containing SiO 2 as a material is provided, and the total number of layers is three.
さらに、第5レンズL5の物体側面の前記反射防止コートの空気界面には、MgF2を材料に含む層が設けられ、層数は全部で5層である。樹脂レンズである第2レンズL2と第4レンズL4の反射防止コートの空気界面には、SiO2を材料に含む層が設けられ、層数は全部で3層である。 All lenses have an anti-reflection coating on their lens surfaces. The object side surface of the fifth lens L5 is provided with an antireflection coating in which the wavelength at which the reflectance becomes the smallest in the wavelength range of N ± 100 nm exists in the range of N ± 50 nm.
Further, a layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five. At the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, a layer containing SiO 2 as a material is provided, and the total number of layers is three.
また、実施例1のレンズ光学系において、バンドパスフィルターBPFを最も物体側に配置しているが、これに換えて平行平板が基盤であるバンドパスフィルターBPFを第4レンズL4と第5レンズL5の間に配置してもよく、その場合のCmaxは、24.953度である。
In the lens optical system of the first embodiment, the band-pass filter BPF is disposed closest to the object side. Instead, the band-pass filter BPF based on a parallel plate is replaced by the fourth lens L4 and the fifth lens L5. , And Cmax in that case is 24.953 degrees.
図4において、IMGは結像面を示す。IMGは、具体的にはCCDセンサ、CMOSセンサ等の固体撮像素子の撮像面に一致する。また、結像面IMGの物体側には、カバーガラスCG等の実質的な屈折力を有さない平行平板を備える。これらの点は、他の実施例で示す各レンズ断面図においても同様であるため、以下では説明を省略する。
IMIn FIG. 4, IMG indicates an image plane. The IMG specifically corresponds to an imaging surface of a solid-state imaging device such as a CCD sensor or a CMOS sensor. A parallel flat plate having no substantial refractive power, such as a cover glass CG, is provided on the object side of the imaging plane IMG. These points are the same in each lens cross-sectional view shown in the other examples, and the description thereof will be omitted below.
次に、第1実施例のレンズ光学系の具体的数値を適用した数値実施例について説明する。表1は、当該レンズ光学系の諸元表である。当該諸元表には、当該レンズ光学系の波長905nmにおける焦点距離「f」、Fナンバー「Fno.」、半画角「ω」、像高「Y」、光学全長「TL」を示す。
(表1)
f 30.658
Fno 1.095
ω 12.000
Y 6.492
TL 49.917 Next, a numerical example in which specific numerical values of the lens optical system of the first example are applied will be described. Table 1 is a specification table of the lens optical system. The specification table shows the focal length “f”, the F number “Fno.”, The half angle of view “ω”, the image height “Y”, and the total optical length “TL” of the lens optical system at a wavelength of 905 nm.
(Table 1)
f 30.658
Fno 1.095
ω 12.000
Y 6.492
TL 49.917
(表1)
f 30.658
Fno 1.095
ω 12.000
Y 6.492
TL 49.917 Next, a numerical example in which specific numerical values of the lens optical system of the first example are applied will be described. Table 1 is a specification table of the lens optical system. The specification table shows the focal length “f”, the F number “Fno.”, The half angle of view “ω”, the image height “Y”, and the total optical length “TL” of the lens optical system at a wavelength of 905 nm.
(Table 1)
f 30.658
Fno 1.095
ω 12.000
Y 6.492
TL 49.917
表2は、第1実施例のレンズ光学系の面データである。表2において、「面番号」は物体側から数えたレンズ面の順番、「r」はレンズ面の曲率半径、「d」はレンズ面の光軸上の間隔、「Nd」はd線(波長λ=587.6nm)に対する屈折率、「νd」はd線に対するアッベ数、「H」は有効半径を示している。また、面番号の次の欄に表示する「ASP」は当該レンズ面が非球面であることを表し、「S」は開口絞りを表している。なお、各表中の長さの単位は全て「mm」であり、角度の単位は全て「°」である。また、曲率半径の「0」は平面を意味する。なお、表2における第1面及び第2面はバンドパスフィルターBPFであり、第15面及び第16面はカバーガラスCGの面データである。
(表2)
面番号 r d Nd νd H
1 0.0000 1.100 1.50892 64.20 14.153
2 STOP 0.0000 0.200 14.000
3 30.7024 7.000 1.97213 29.13 14.858
4 -808.7238 0.200 14.348
5 ASP 32.5340 5.908 1.63641 20.37 13.770
6 ASP 40.7623 0.880 12.975
7 114.1620 1.700 1.55932 56.04 12.234
8 14.3799 10.423 10.342
9 ASP -11.3293 4.904 1.63641 20.37 10.321
10 ASP -13.0587 0.200 11.932
11 19.0455 7.900 1.92859 32.32 11.916
12 88.7164 2.862 10.357
13 -50.7286 1.600 1.55932 56.04 9.484
14 -400.0008 4.101 8.823
15 0.0000 0.400 1.50892 64.17 6.838
16 0.0000 0.539 6.720 Table 2 shows the surface data of the lens optical system of the first example. In Table 2, “surface number” is the order of the lens surface counted from the object side, “r” is the radius of curvature of the lens surface, “d” is the distance between the lens surfaces on the optical axis, and “Nd” is the d-line (wavelength λ = 587.6 nm), “νd” indicates Abbe number for d-line, and “H” indicates effective radius. “ASP” displayed in the column next to the surface number indicates that the lens surface is aspheric, and “S” indicates an aperture stop. The units of length in each table are all “mm”, and the units of angle are all “°”. The radius of curvature “0” means a plane. The first and second surfaces in Table 2 are bandpass filters BPF, and the fifteenth and sixteenth surfaces are surface data of the cover glass CG.
(Table 2)
Surface number r d Nd νd H
1 0.0000 1.100 1.50892 64.20 14.153
2 STOP 0.0000 0.200 14.000
3 30.7024 7.000 1.97213 29.13 14.858
4 -808.7238 0.200 14.348
5 ASP 32.5340 5.908 1.63641 20.37 13.770
6 ASP 40.7623 0.880 12.975
7 114.1620 1.700 1.55932 56.04 12.234
8 14.3799 10.423 10.342
9 ASP -11.3293 4.904 1.63641 20.37 10.321
10 ASP -13.0587 0.200 11.932
11 19.0455 7.900 1.92859 32.32 11.916
12 88.7164 2.862 10.357
13 -50.7286 1.600 1.55932 56.04 9.484
14 -400.0008 4.101 8.823
15 0.0000 0.400 1.50892 64.17 6.838
16 0.0000 0.539 6.720
(表2)
面番号 r d Nd νd H
1 0.0000 1.100 1.50892 64.20 14.153
2 STOP 0.0000 0.200 14.000
3 30.7024 7.000 1.97213 29.13 14.858
4 -808.7238 0.200 14.348
5 ASP 32.5340 5.908 1.63641 20.37 13.770
6 ASP 40.7623 0.880 12.975
7 114.1620 1.700 1.55932 56.04 12.234
8 14.3799 10.423 10.342
9 ASP -11.3293 4.904 1.63641 20.37 10.321
10 ASP -13.0587 0.200 11.932
11 19.0455 7.900 1.92859 32.32 11.916
12 88.7164 2.862 10.357
13 -50.7286 1.600 1.55932 56.04 9.484
14 -400.0008 4.101 8.823
15 0.0000 0.400 1.50892 64.17 6.838
16 0.0000 0.539 6.720 Table 2 shows the surface data of the lens optical system of the first example. In Table 2, “surface number” is the order of the lens surface counted from the object side, “r” is the radius of curvature of the lens surface, “d” is the distance between the lens surfaces on the optical axis, and “Nd” is the d-line (wavelength λ = 587.6 nm), “νd” indicates Abbe number for d-line, and “H” indicates effective radius. “ASP” displayed in the column next to the surface number indicates that the lens surface is aspheric, and “S” indicates an aperture stop. The units of length in each table are all “mm”, and the units of angle are all “°”. The radius of curvature “0” means a plane. The first and second surfaces in Table 2 are bandpass filters BPF, and the fifteenth and sixteenth surfaces are surface data of the cover glass CG.
(Table 2)
Surface number r d Nd νd H
1 0.0000 1.100 1.50892 64.20 14.153
2 STOP 0.0000 0.200 14.000
3 30.7024 7.000 1.97213 29.13 14.858
4 -808.7238 0.200 14.348
5 ASP 32.5340 5.908 1.63641 20.37 13.770
6 ASP 40.7623 0.880 12.975
7 114.1620 1.700 1.55932 56.04 12.234
8 14.3799 10.423 10.342
9 ASP -11.3293 4.904 1.63641 20.37 10.321
10 ASP -13.0587 0.200 11.932
11 19.0455 7.900 1.92859 32.32 11.916
12 88.7164 2.862 10.357
13 -50.7286 1.600 1.55932 56.04 9.484
14 -400.0008 4.101 8.823
15 0.0000 0.400 1.50892 64.17 6.838
16 0.0000 0.539 6.720
表3は、各非球面の非球面係数である。当該非球面係数は、各非球面形状を下記式で定義したときの値である。
X(Y)=CY2/[1+{1-(1+Κ)・C2Y2}1/2]+A4・Y4+A6・Y6+A8・Y8+A10・Y10+A12・Y12
但し、表3において、「E-a」は「×10-a」を示す。また、上記式において、「X」は光軸方向の基準面からの変位量、「C」は面頂点での曲率、「Y」は光軸に垂直な方向の光軸からの高さ、「Κ」はコーニック係数、「An」はn次の非球面係数とする。
これらの表に関する事項は他の実施例で示す各表においても同様であるため、以下では説明を省略する。
(表3)
5 6 9 10
Κ 1.2351 -6.2405 -1.9119 -0.8763
A4 -3.5693E-05 -5.4180E-05 -1.1207E-04 -7.0156E-06
A6 -1.8233E-07 -2.5994E-07 4.0654E-07 1.0549E-07
A8 7.7233E-10 2.2271E-09 -6.2718E-09 -2.4940E-09
A10 -3.4714E-12 -8.1079E-12 8.5243E-11 2.5602E-11
A12 7.3369E-15 1.3452E-14 -4.4259E-13 -9.6409E-14 Table 3 shows the aspheric coefficient of each aspheric surface. The aspheric coefficient is a value when each aspheric shape is defined by the following equation.
X (Y) = CY 2 / [1+ {1− (1 + Κ) · C 2 Y 2 } 1/2 ] + A4 · Y 4 + A6 · Y 6 + A8 · Y 8 + A10 · Y 10 + A12 · Y 12
However, in Table 3, “ Ea ” indicates “× 10 −a ”. In the above equation, “X” is the displacement amount from the reference plane in the optical axis direction, “C” is the curvature at the surface vertex, “Y” is the height from the optical axis in a direction perpendicular to the optical axis, “ “Κ” is a conic coefficient, and “An” is an nth-order aspherical coefficient.
Matters relating to these tables are the same in each table shown in the other embodiments, and therefore description thereof is omitted below.
(Table 3)
5 6 9 10
Κ 1.2351 -6.2405 -1.9119 -0.8763
A4 -3.5693E-05 -5.4180E-05 -1.1207E-04 -7.0156E-06
A6 -1.8233E-07 -2.5994E-07 4.0654E-07 1.0549E-07
A8 7.7233E-10 2.2271E-09 -6.2718E-09 -2.4940E-09
A10 -3.4714E-12 -8.1079E-12 8.5243E-11 2.5602E-11
A12 7.3369E-15 1.3452E-14 -4.4259E-13 -9.6409E-14
X(Y)=CY2/[1+{1-(1+Κ)・C2Y2}1/2]+A4・Y4+A6・Y6+A8・Y8+A10・Y10+A12・Y12
但し、表3において、「E-a」は「×10-a」を示す。また、上記式において、「X」は光軸方向の基準面からの変位量、「C」は面頂点での曲率、「Y」は光軸に垂直な方向の光軸からの高さ、「Κ」はコーニック係数、「An」はn次の非球面係数とする。
これらの表に関する事項は他の実施例で示す各表においても同様であるため、以下では説明を省略する。
(表3)
5 6 9 10
Κ 1.2351 -6.2405 -1.9119 -0.8763
A4 -3.5693E-05 -5.4180E-05 -1.1207E-04 -7.0156E-06
A6 -1.8233E-07 -2.5994E-07 4.0654E-07 1.0549E-07
A8 7.7233E-10 2.2271E-09 -6.2718E-09 -2.4940E-09
A10 -3.4714E-12 -8.1079E-12 8.5243E-11 2.5602E-11
A12 7.3369E-15 1.3452E-14 -4.4259E-13 -9.6409E-14 Table 3 shows the aspheric coefficient of each aspheric surface. The aspheric coefficient is a value when each aspheric shape is defined by the following equation.
X (Y) = CY 2 / [1+ {1− (1 + Κ) · C 2 Y 2 } 1/2 ] + A4 · Y 4 + A6 · Y 6 + A8 · Y 8 + A10 · Y 10 + A12 · Y 12
However, in Table 3, “ Ea ” indicates “× 10 −a ”. In the above equation, “X” is the displacement amount from the reference plane in the optical axis direction, “C” is the curvature at the surface vertex, “Y” is the height from the optical axis in a direction perpendicular to the optical axis, “ “Κ” is a conic coefficient, and “An” is an nth-order aspherical coefficient.
Matters relating to these tables are the same in each table shown in the other embodiments, and therefore description thereof is omitted below.
(Table 3)
5 6 9 10
Κ 1.2351 -6.2405 -1.9119 -0.8763
A4 -3.5693E-05 -5.4180E-05 -1.1207E-04 -7.0156E-06
A6 -1.8233E-07 -2.5994E-07 4.0654E-07 1.0549E-07
A8 7.7233E-10 2.2271E-09 -6.2718E-09 -2.4940E-09
A10 -3.4714E-12 -8.1079E-12 8.5243E-11 2.5602E-11
A12 7.3369E-15 1.3452E-14 -4.4259E-13 -9.6409E-14
表4は、各レンズの波長905nmにおける焦点距離である。
(表4)
レンズ 面番号 焦点距離
L1 3-4 30.553
L2 5-6 197.965
L3 7-8 -29.595
L4 9-1 1307.890
L5 11-12 24.765
L6 13-14 -104.040 Table 4 shows the focal length of each lens at a wavelength of 905 nm.
(Table 4)
Lens surface number Focal length
L1 3-4 30.553
L2 5-6 197.965
L3 7-8 -29.595
L4 9-1 1307.890
L5 11-12 24.765
L6 13-14 -104.040
(表4)
レンズ 面番号 焦点距離
L1 3-4 30.553
L2 5-6 197.965
L3 7-8 -29.595
L4 9-1 1307.890
L5 11-12 24.765
L6 13-14 -104.040 Table 4 shows the focal length of each lens at a wavelength of 905 nm.
(Table 4)
Lens surface number Focal length
L1 3-4 30.553
L2 5-6 197.965
L3 7-8 -29.595
L4 9-1 1307.890
L5 11-12 24.765
L6 13-14 -104.040
図5は、第1実施例のレンズ光学系の縦収差図を示す。各図に示す縦収差図は、図面に向かって左側から順に、球面収差(mm)、非点収差(mm)、歪曲収差(%)である。
球面収差を表す図では、縦軸は開放F値との割合、横軸にデフォーカスをとり、波長λ=905nmにおける球面収差を示す。
非点収差を表す図では、縦軸は像高、横軸にデフォーカスをとり、実線が波長λ=905nmにおけるサジタル像面(ds)、点線が波長λ=905nmにおけるメリジオナル像面(dm)を示す。
歪曲収差を表す図では、縦軸は像高、横軸に%をとり、波長λ=905nmにおける歪曲収差を表す。これらの縦収差図に関する事項は、他の実施例で示す縦収差図においても同様であるため、以下では説明を省略する。 FIG. 5 shows a longitudinal aberration diagram of the lens optical system of the first example. The longitudinal aberration diagrams shown in each figure are spherical aberration (mm), astigmatism (mm), and distortion (%) in order from the left side in the drawings.
In the figure showing the spherical aberration, the vertical axis indicates the ratio to the open F value, and the horizontal axis indicates defocus, and indicates the spherical aberration at a wavelength λ = 905 nm.
In the figure showing astigmatism, the vertical axis is image height, the horizontal axis is defocused, the solid line is a sagittal image plane (ds) at a wavelength λ = 905 nm, and the dotted line is a meridional image plane (dm) at a wavelength λ = 905 nm. Show.
In the figure showing distortion, the vertical axis represents image height and the horizontal axis represents%, and represents distortion at a wavelength λ = 905 nm. The matters relating to these longitudinal aberration diagrams are the same in the longitudinal aberration diagrams shown in the other examples, and therefore description thereof is omitted below.
球面収差を表す図では、縦軸は開放F値との割合、横軸にデフォーカスをとり、波長λ=905nmにおける球面収差を示す。
非点収差を表す図では、縦軸は像高、横軸にデフォーカスをとり、実線が波長λ=905nmにおけるサジタル像面(ds)、点線が波長λ=905nmにおけるメリジオナル像面(dm)を示す。
歪曲収差を表す図では、縦軸は像高、横軸に%をとり、波長λ=905nmにおける歪曲収差を表す。これらの縦収差図に関する事項は、他の実施例で示す縦収差図においても同様であるため、以下では説明を省略する。 FIG. 5 shows a longitudinal aberration diagram of the lens optical system of the first example. The longitudinal aberration diagrams shown in each figure are spherical aberration (mm), astigmatism (mm), and distortion (%) in order from the left side in the drawings.
In the figure showing the spherical aberration, the vertical axis indicates the ratio to the open F value, and the horizontal axis indicates defocus, and indicates the spherical aberration at a wavelength λ = 905 nm.
In the figure showing astigmatism, the vertical axis is image height, the horizontal axis is defocused, the solid line is a sagittal image plane (ds) at a wavelength λ = 905 nm, and the dotted line is a meridional image plane (dm) at a wavelength λ = 905 nm. Show.
In the figure showing distortion, the vertical axis represents image height and the horizontal axis represents%, and represents distortion at a wavelength λ = 905 nm. The matters relating to these longitudinal aberration diagrams are the same in the longitudinal aberration diagrams shown in the other examples, and therefore description thereof is omitted below.
また、第1実施例のレンズ光学系の波長λ=905nmにおけるバックフォーカス「fb」は以下のとおりである。但し、以下の値は、カバーガラス(Nd=1.50892)を含まない値であり、他の実施例に示すバックフォーカスも同様である。
fb= 4.9049(mm) The back focus “fb” at the wavelength λ = 905 nm of the lens optical system according to the first example is as follows. However, the following values do not include the cover glass (Nd = 1.50892), and the same applies to the back focus shown in other examples.
fb = 4.9904 (mm)
fb= 4.9049(mm) The back focus “fb” at the wavelength λ = 905 nm of the lens optical system according to the first example is as follows. However, the following values do not include the cover glass (Nd = 1.50892), and the same applies to the back focus shown in other examples.
fb = 4.9904 (mm)
第1実施例のレンズ光学系の条件式(1)~条件式(9)の値を表17に示す。
Table 17 shows values of the conditional expressions (1) to (9) of the lens optical system of the first example.
(第2実施例)
図6は、第2実施例のレンズ光学系のレンズ構成を示すレンズ断面図である。第2実施例のレンズ光学系は、物体側から順に、両凸形状の第1レンズL1と、正の屈折力を有し物体側凸のメニスカス形状で両面に非球面を有する第2レンズL2と、負の屈折力を有し物体側凸のメニスカス形状の第3レンズL3と、負の屈折力を有し物体側凹のメニスカス形状の第4レンズL4と、両凸形状の第5レンズL5とから構成されている。最も物体側のレンズL1の物体側にバンドパスフィルターBPFが配置されている。開口絞りSは最も物体側のバンドパスフィルターBPFの像側に配置されている。 (Second embodiment)
FIG. 6 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to Example 2. The lens optical system of the second example includes, in order from the object side, a biconvex first lens L1 and a second lens L2 having a positive refractive power and an object-side convex meniscus and having aspheric surfaces on both surfaces. A third lens L3 having a negative refractive power and an object-side convex meniscus shape, a fourth lens L4 having a negative refractive power and an object-side concave meniscus, and a biconvex fifth lens L5. It is composed of A band-pass filter BPF is arranged on the object side of the lens L1 closest to the object. The aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
図6は、第2実施例のレンズ光学系のレンズ構成を示すレンズ断面図である。第2実施例のレンズ光学系は、物体側から順に、両凸形状の第1レンズL1と、正の屈折力を有し物体側凸のメニスカス形状で両面に非球面を有する第2レンズL2と、負の屈折力を有し物体側凸のメニスカス形状の第3レンズL3と、負の屈折力を有し物体側凹のメニスカス形状の第4レンズL4と、両凸形状の第5レンズL5とから構成されている。最も物体側のレンズL1の物体側にバンドパスフィルターBPFが配置されている。開口絞りSは最も物体側のバンドパスフィルターBPFの像側に配置されている。 (Second embodiment)
FIG. 6 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to Example 2. The lens optical system of the second example includes, in order from the object side, a biconvex first lens L1 and a second lens L2 having a positive refractive power and an object-side convex meniscus and having aspheric surfaces on both surfaces. A third lens L3 having a negative refractive power and an object-side convex meniscus shape, a fourth lens L4 having a negative refractive power and an object-side concave meniscus, and a biconvex fifth lens L5. It is composed of A band-pass filter BPF is arranged on the object side of the lens L1 closest to the object. The aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
バンドパスフィルターBPFは、波長Nが905nmの光線について、入射角0°における透過率1%以上の波長範囲が884nmから936nmであり、最大透過率の半分の透過率範囲、すなわち半値幅は890nmから927nmである。
第2レンズL2と第4レンズL4は、樹脂レンズである。 The bandpass filter BPF has a wavelength range of transmittance of 1% or more at an incident angle of 0 ° for light having a wavelength N of 905 nm from 884 nm to 936 nm, and a transmittance range that is half of the maximum transmittance, that is, a half width from 890 nm. 927 nm.
The second lens L2 and the fourth lens L4 are resin lenses.
第2レンズL2と第4レンズL4は、樹脂レンズである。 The bandpass filter BPF has a wavelength range of transmittance of 1% or more at an incident angle of 0 ° for light having a wavelength N of 905 nm from 884 nm to 936 nm, and a transmittance range that is half of the maximum transmittance, that is, a half width from 890 nm. 927 nm.
The second lens L2 and the fourth lens L4 are resin lenses.
すべてのレンズのレンズ面には、反射防止コートがなされている。第5レンズL5の物体側面には、波長N±100nmの波長範囲の中で最も反射率が小さくなる波長がN±50nmの範囲に存在する反射防止コーティングがなされている。
また、第5レンズL5の物体側面の前記反射防止コートの空気界面にはMgF2を材料に含む層が設けられ、層数は全部で5層である。樹脂レンズである第2レンズL2及び第4レンズL4の反射防止コートの空気界面にはSiO2を材料に含む層が設けられ、層数は全部で3層である。 All lenses have an anti-reflection coating on their lens surfaces. The object side surface of the fifth lens L5 is provided with an antireflection coating in which the wavelength at which the reflectance becomes the smallest in the wavelength range of N ± 100 nm exists in the range of N ± 50 nm.
A layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five. A layer containing SiO 2 as a material is provided on the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, and the total number of layers is three.
また、第5レンズL5の物体側面の前記反射防止コートの空気界面にはMgF2を材料に含む層が設けられ、層数は全部で5層である。樹脂レンズである第2レンズL2及び第4レンズL4の反射防止コートの空気界面にはSiO2を材料に含む層が設けられ、層数は全部で3層である。 All lenses have an anti-reflection coating on their lens surfaces. The object side surface of the fifth lens L5 is provided with an antireflection coating in which the wavelength at which the reflectance becomes the smallest in the wavelength range of N ± 100 nm exists in the range of N ± 50 nm.
A layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five. A layer containing SiO 2 as a material is provided on the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, and the total number of layers is three.
さらに、第2実施例のレンズ光学系において、最も物体側にバンドパスフィルターBPFを配置しているが、これに換えて第4レンズL4と第5レンズL5の間に平行平板が基盤であるバンドパスフィルターBPFを配置してもよく、その場合のCmaxは、23.412度である。
Further, in the lens optical system of the second embodiment, a band-pass filter BPF is disposed closest to the object side. Instead, a band whose parallel plate is a base between the fourth lens L4 and the fifth lens L5 is used. A pass filter BPF may be provided, in which case Cmax is 23.412 degrees.
次に、第2実施例のレンズ光学系の具体的数値を適用した数値実施例について説明する。表5は、第2実施例のレンズ光学系の諸元表である。
(表5)
f 30.869
Fno 1.200
ω 12.000
Y 6.561
TL 49.441 Next, a numerical example in which specific numerical values of the lens optical system of the second example are applied will be described. Table 5 is a table of specifications of the lens optical system of the second example.
(Table 5)
f 30.869
Fno 1.200
ω 12.000
Y 6.561
TL 49.441
(表5)
f 30.869
Fno 1.200
ω 12.000
Y 6.561
TL 49.441 Next, a numerical example in which specific numerical values of the lens optical system of the second example are applied will be described. Table 5 is a table of specifications of the lens optical system of the second example.
(Table 5)
f 30.869
Fno 1.200
ω 12.000
Y 6.561
TL 49.441
表6は、第2実施例のレンズ光学系の面データである。なお、表6における第1面及び第2面はバンドパスフィルターBPFであり、第13面及び第14面はカバーガラスCGの面データである。
(表6)
面番号 r d Nd νd H
1 0.0000 1.100 1.50892 64.20 13.015
2 STOP 0.0000 0.200 12.862
3 30.4662 6.000 1.97213 29.13 13.584
4 -240.7561 0.100 13.238
5 ASP 38.3859 6.010 1.63641 20.37 12.735
6 ASP 95.0197 1.000 11.974
7 -73.0253 1.770 1.50892 64.20 11.588
8 12.3119 8.922 9.600
9 ASP -12.2585 4.550 1.63641 20.37 9.645
10 ASP -15.6370 0.200 11.678
11 33.2385 6.300 1.97213 29.13 13.585
12 -63.7223 12.207 13.384
13 0.0000 0.500 1.50892 64.17 6.962
14 0.0000 0.582 6.815 Table 6 shows surface data of the lens optical system of the second example. The first and second surfaces in Table 6 are bandpass filters BPF, and the thirteenth and fourteenth surfaces are surface data of the cover glass CG.
(Table 6)
Surface number r d Nd νd H
1 0.0000 1.100 1.50892 64.20 13.015
2 STOP 0.0000 0.200 12.862
3 30.4662 6.000 1.97213 29.13 13.584
4 -240.7561 0.100 13.238
5 ASP 38.3859 6.010 1.63641 20.37 12.735
6 ASP 95.0197 1.000 11.974
7 -73.0253 1.770 1.50892 64.20 11.588
8 12.3119 8.922 9.600
9 ASP -12.2585 4.550 1.63641 20.37 9.645
10 ASP -15.6370 0.200 11.678
11 33.2385 6.300 1.97213 29.13 13.585
12 -63.7223 12.207 13.384
13 0.0000 0.500 1.50892 64.17 6.962
14 0.0000 0.582 6.815
(表6)
面番号 r d Nd νd H
1 0.0000 1.100 1.50892 64.20 13.015
2 STOP 0.0000 0.200 12.862
3 30.4662 6.000 1.97213 29.13 13.584
4 -240.7561 0.100 13.238
5 ASP 38.3859 6.010 1.63641 20.37 12.735
6 ASP 95.0197 1.000 11.974
7 -73.0253 1.770 1.50892 64.20 11.588
8 12.3119 8.922 9.600
9 ASP -12.2585 4.550 1.63641 20.37 9.645
10 ASP -15.6370 0.200 11.678
11 33.2385 6.300 1.97213 29.13 13.585
12 -63.7223 12.207 13.384
13 0.0000 0.500 1.50892 64.17 6.962
14 0.0000 0.582 6.815 Table 6 shows surface data of the lens optical system of the second example. The first and second surfaces in Table 6 are bandpass filters BPF, and the thirteenth and fourteenth surfaces are surface data of the cover glass CG.
(Table 6)
Surface number r d Nd νd H
1 0.0000 1.100 1.50892 64.20 13.015
2 STOP 0.0000 0.200 12.862
3 30.4662 6.000 1.97213 29.13 13.584
4 -240.7561 0.100 13.238
5 ASP 38.3859 6.010 1.63641 20.37 12.735
6 ASP 95.0197 1.000 11.974
7 -73.0253 1.770 1.50892 64.20 11.588
8 12.3119 8.922 9.600
9 ASP -12.2585 4.550 1.63641 20.37 9.645
10 ASP -15.6370 0.200 11.678
11 33.2385 6.300 1.97213 29.13 13.585
12 -63.7223 12.207 13.384
13 0.0000 0.500 1.50892 64.17 6.962
14 0.0000 0.582 6.815
表7は、各非球面の非球面係数である。
(表7)
5 6 9 10
Κ 6.4527 55.5248 -1.2127 -0.6032
A4 -4.1920E-05 -7.1713E-05 -5.7922E-05 -1.3478E-05
A6 -2.2301E-07 -1.3274E-07 9.9430E-07 1.1139E-06
A8 7.1955E-10 1.2655E-09 1.7388E-09 -1.1537E-08
A10 -2.2983E-12 -7.2254E-12 -2.3641E-10 4.6508E-11
A12 -1.0660E-14 1.6334E-15 1.2423E-12 -8.8969E-14 Table 7 shows the aspheric coefficient of each aspheric surface.
(Table 7)
5 6 9 10
Κ 6.4527 55.5248 -1.2127 -0.6032
A4 -4.1920E-05 -7.1713E-05 -5.7922E-05 -1.3478E-05
A6 -2.2301E-07 -1.3274E-07 9.9430E-07 1.1139E-06
A8 7.1955E-10 1.2655E-09 1.7388E-09 -1.1537E-08
A10 -2.2983E-12 -7.2254E-12 -2.3641E-10 4.6508E-11
A12 -1.0660E-14 1.6334E-15 1.2423E-12 -8.8969E-14
(表7)
5 6 9 10
Κ 6.4527 55.5248 -1.2127 -0.6032
A4 -4.1920E-05 -7.1713E-05 -5.7922E-05 -1.3478E-05
A6 -2.2301E-07 -1.3274E-07 9.9430E-07 1.1139E-06
A8 7.1955E-10 1.2655E-09 1.7388E-09 -1.1537E-08
A10 -2.2983E-12 -7.2254E-12 -2.3641E-10 4.6508E-11
A12 -1.0660E-14 1.6334E-15 1.2423E-12 -8.8969E-14 Table 7 shows the aspheric coefficient of each aspheric surface.
(Table 7)
5 6 9 10
Κ 6.4527 55.5248 -1.2127 -0.6032
A4 -4.1920E-05 -7.1713E-05 -5.7922E-05 -1.3478E-05
A6 -2.2301E-07 -1.3274E-07 9.9430E-07 1.1139E-06
A8 7.1955E-10 1.2655E-09 1.7388E-09 -1.1537E-08
A10 -2.2983E-12 -7.2254E-12 -2.3641E-10 4.6508E-11
A12 -1.0660E-14 1.6334E-15 1.2423E-12 -8.8969E-14
表8は、各レンズの波長905nmにおける焦点距離である。
(表8)
レンズ 面番号 焦点距離
L1 3-4 28.126
L2 5-6 97.187
L3 7-8 -20.558
L4 9-10 -187.190
L5 11-12 23.214 Table 8 shows the focal length of each lens at a wavelength of 905 nm.
(Table 8)
Lens surface number Focal length
L1 3-4 28.126
L2 5-6 97.187
L3 7-8 -20.558
L4 9-10 -187.190
L5 11-12 23.214
(表8)
レンズ 面番号 焦点距離
L1 3-4 28.126
L2 5-6 97.187
L3 7-8 -20.558
L4 9-10 -187.190
L5 11-12 23.214 Table 8 shows the focal length of each lens at a wavelength of 905 nm.
(Table 8)
Lens surface number Focal length
L1 3-4 28.126
L2 5-6 97.187
L3 7-8 -20.558
L4 9-10 -187.190
L5 11-12 23.214
図7は、第2実施例のレンズ光学系の縦収差図を示す。
また、当該レンズ光学系の波長λ=905nmにおけるバックフォーカス「fb」は以下のとおりである。
fb= 13.1201(mm) FIG. 7 shows a longitudinal aberration diagram of the lens optical system of the second example.
The back focus “fb” of the lens optical system at the wavelength λ = 905 nm is as follows.
fb = 13.1201 (mm)
また、当該レンズ光学系の波長λ=905nmにおけるバックフォーカス「fb」は以下のとおりである。
fb= 13.1201(mm) FIG. 7 shows a longitudinal aberration diagram of the lens optical system of the second example.
The back focus “fb” of the lens optical system at the wavelength λ = 905 nm is as follows.
fb = 13.1201 (mm)
第2実施例の各条件式(1)~条件式(9)の値を表17に示す。
Table 17 shows values of the conditional expressions (1) to (9) of the second embodiment.
(第3実施例)
図8は、第3実施例3のレンズ光学系のレンズ構成を示すレンズ断面図である。第3実施例のレンズ光学系は、物体側から順に、両凸形状の第1レンズL1と、正の屈折力を有し物体側凸のメニスカス形状で両面に非球面を有する第2レンズL2と、負の屈折力を有し物体側凸のメニスカス形状の第3レンズL3と、負の屈折力を有し物体側凹のメニスカス形状の第4レンズL4と、両凸形状の第5レンズL5とから構成されている。最も物体側のレンズL1の物体側にバンドパスフィルターBPFが配置されている。開口絞りSは最も物体側のバンドパスフィルターBPFの像側に配置されている。 (Third embodiment)
FIG. 8 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to Example 3. The lens optical system of the third example includes, in order from the object side, a biconvex first lens L1 and a second lens L2 having a positive refractive power and an object-side convex meniscus shape and having aspheric surfaces on both surfaces. A third lens L3 having a negative refractive power and an object-side convex meniscus shape, a fourth lens L4 having a negative refractive power and an object-side concave meniscus, and a biconvex fifth lens L5. It is composed of A band-pass filter BPF is arranged on the object side of the lens L1 closest to the object. The aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
図8は、第3実施例3のレンズ光学系のレンズ構成を示すレンズ断面図である。第3実施例のレンズ光学系は、物体側から順に、両凸形状の第1レンズL1と、正の屈折力を有し物体側凸のメニスカス形状で両面に非球面を有する第2レンズL2と、負の屈折力を有し物体側凸のメニスカス形状の第3レンズL3と、負の屈折力を有し物体側凹のメニスカス形状の第4レンズL4と、両凸形状の第5レンズL5とから構成されている。最も物体側のレンズL1の物体側にバンドパスフィルターBPFが配置されている。開口絞りSは最も物体側のバンドパスフィルターBPFの像側に配置されている。 (Third embodiment)
FIG. 8 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to Example 3. The lens optical system of the third example includes, in order from the object side, a biconvex first lens L1 and a second lens L2 having a positive refractive power and an object-side convex meniscus shape and having aspheric surfaces on both surfaces. A third lens L3 having a negative refractive power and an object-side convex meniscus shape, a fourth lens L4 having a negative refractive power and an object-side concave meniscus, and a biconvex fifth lens L5. It is composed of A band-pass filter BPF is arranged on the object side of the lens L1 closest to the object. The aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
バンドパスフィルターBPFは、波長Nが905nmの光線について、入射角0°における透過率1%以上の波長範囲が884nmから936nmであり、最大透過率の半分の透過率範囲、すなわち半値幅は890nmから927nmである。
第2レンズL2と第4レンズL4は、樹脂レンズである。 The bandpass filter BPF has a wavelength range of transmittance of 1% or more at an incident angle of 0 ° for light having a wavelength N of 905 nm from 884 nm to 936 nm, and a transmittance range that is half of the maximum transmittance, that is, a half width from 890 nm. 927 nm.
The second lens L2 and the fourth lens L4 are resin lenses.
第2レンズL2と第4レンズL4は、樹脂レンズである。 The bandpass filter BPF has a wavelength range of transmittance of 1% or more at an incident angle of 0 ° for light having a wavelength N of 905 nm from 884 nm to 936 nm, and a transmittance range that is half of the maximum transmittance, that is, a half width from 890 nm. 927 nm.
The second lens L2 and the fourth lens L4 are resin lenses.
すべてのレンズのレンズ面には、反射防止コートがなされていて、第5レンズL5の物体側面には、波長N±100nmの波長範囲の中で最も反射率が小さくなる波長がN±50nmの範囲に存在する反射防止コーティングがなされている。
また、第5レンズL5の物体側面の前記反射防止コートの空気界面にはMgF2を材料に含む層が設けられ、層数は全部で5層である。樹脂レンズである第2レンズL2と第4レンズL4の反射防止コートの空気界面にはSiO2を材料に含む層が設けられ、層数は全部で3層である。 The lens surfaces of all the lenses are provided with an anti-reflection coating, and the object side surface of the fifth lens L5 is such that the wavelength at which the reflectance becomes the smallest in the wavelength range of N ± 100 nm is in the range of N ± 50 nm. An anti-reflection coating is present.
Further, a layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five. A layer containing SiO 2 as a material is provided at the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, and the total number of layers is three.
また、第5レンズL5の物体側面の前記反射防止コートの空気界面にはMgF2を材料に含む層が設けられ、層数は全部で5層である。樹脂レンズである第2レンズL2と第4レンズL4の反射防止コートの空気界面にはSiO2を材料に含む層が設けられ、層数は全部で3層である。 The lens surfaces of all the lenses are provided with an anti-reflection coating, and the object side surface of the fifth lens L5 is such that the wavelength at which the reflectance becomes the smallest in the wavelength range of N ± 100 nm is in the range of N ± 50 nm. An anti-reflection coating is present.
Further, a layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five. A layer containing SiO 2 as a material is provided at the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, and the total number of layers is three.
さらに、最も物体側にバンドパスフィルターBPFが配置されているが、これに換えて第4レンズL4及び第5レンズL5の間に平行平板が基盤であるバンドパスフィルターBPFを配置してもよく、その場合のCmaxは、22.434度である。
Further, the band-pass filter BPF is disposed closest to the object, but instead, a band-pass filter BPF based on a parallel plate may be disposed between the fourth lens L4 and the fifth lens L5. Cmax in that case is 22.434 degrees.
次に、第3実施例のレンズ光学系の具体的数値を適用した数値実施例について説明する。
表9は、第3実施例のレンズ光学系の諸元表である。
(表9)
f 30.117
Fno 1.205
ω 12.000
Y 6.402
TL 49.634 Next, a numerical example in which specific numerical values of the lens optical system of the third example are applied will be described.
Table 9 is a table of specifications of the lens optical system of the third example.
(Table 9)
f 30.117
Fno 1.205
ω 12.000
Y 6.402
TL 49.634
表9は、第3実施例のレンズ光学系の諸元表である。
(表9)
f 30.117
Fno 1.205
ω 12.000
Y 6.402
TL 49.634 Next, a numerical example in which specific numerical values of the lens optical system of the third example are applied will be described.
Table 9 is a table of specifications of the lens optical system of the third example.
(Table 9)
f 30.117
Fno 1.205
ω 12.000
Y 6.402
TL 49.634
表10に当該レンズ光学系の面データを示す。なお、表10における第1面及び第2面はバンドパスフィルターBPFであり、第13面及び第14面はカバーガラスCGの面データである。
(表10)
面番号 r d Nd νd H
1 0.0000 1.100 1.50892 64.20 12.653
2 STOP 0.0000 0.200 12.500
3 32.9134 6.000 1.97213 29.13 13.123
4 -251.5358 0.010 12.794
5 ASP 42.4007 6.010 1.63641 20.37 12.484
6 ASP 72.4349 1.000 11.761
7 -83.8728 1.770 1.50892 64.20 11.408
8 18.9014 9.359 10.153
9 ASP -8.9611 4.550 1.63641 20.37 10.108
10 ASP -12.2658 0.200 11.264
11 27.2871 6.300 1.97213 29.13 12.772
12 -136.7202 12.207 12.363
13 0.0000 0.500 1.50892 64.17 6.726
14 0.0000 0.429 6.587 Table 10 shows the surface data of the lens optical system. The first and second surfaces in Table 10 are bandpass filters BPF, and the thirteenth and fourteenth surfaces are surface data of the cover glass CG.
(Table 10)
Surface number r d Nd νd H
1 0.0000 1.100 1.50892 64.20 12.653
2 STOP 0.0000 0.200 12.500
3 32.9134 6.000 1.97213 29.13 13.123
4 -251.5358 0.010 12.794
5 ASP 42.4007 6.010 1.63641 20.37 12.484
6 ASP 72.4349 1.000 11.761
7 -83.8728 1.770 1.50892 64.20 11.408
8 18.9014 9.359 10.153
9 ASP -8.9611 4.550 1.63641 20.37 10.108
10 ASP -12.2658 0.200 11.264
11 27.2871 6.300 1.97213 29.13 12.772
12 -136.7202 12.207 12.363
13 0.0000 0.500 1.50892 64.17 6.726
14 0.0000 0.429 6.587
(表10)
面番号 r d Nd νd H
1 0.0000 1.100 1.50892 64.20 12.653
2 STOP 0.0000 0.200 12.500
3 32.9134 6.000 1.97213 29.13 13.123
4 -251.5358 0.010 12.794
5 ASP 42.4007 6.010 1.63641 20.37 12.484
6 ASP 72.4349 1.000 11.761
7 -83.8728 1.770 1.50892 64.20 11.408
8 18.9014 9.359 10.153
9 ASP -8.9611 4.550 1.63641 20.37 10.108
10 ASP -12.2658 0.200 11.264
11 27.2871 6.300 1.97213 29.13 12.772
12 -136.7202 12.207 12.363
13 0.0000 0.500 1.50892 64.17 6.726
14 0.0000 0.429 6.587 Table 10 shows the surface data of the lens optical system. The first and second surfaces in Table 10 are bandpass filters BPF, and the thirteenth and fourteenth surfaces are surface data of the cover glass CG.
(Table 10)
Surface number r d Nd νd H
1 0.0000 1.100 1.50892 64.20 12.653
2 STOP 0.0000 0.200 12.500
3 32.9134 6.000 1.97213 29.13 13.123
4 -251.5358 0.010 12.794
5 ASP 42.4007 6.010 1.63641 20.37 12.484
6 ASP 72.4349 1.000 11.761
7 -83.8728 1.770 1.50892 64.20 11.408
8 18.9014 9.359 10.153
9 ASP -8.9611 4.550 1.63641 20.37 10.108
10 ASP -12.2658 0.200 11.264
11 27.2871 6.300 1.97213 29.13 12.772
12 -136.7202 12.207 12.363
13 0.0000 0.500 1.50892 64.17 6.726
14 0.0000 0.429 6.587
表11は、各非球面の非球面係数である。
(表11)
5 6 9 10
Κ 8.9071 29.6816 -0.8880 -0.1389
A4 -4.7241E-05 -9.2351E-05 -7.0871E-05 4.0736E-05
A6 -1.5948E-07 -1.6631E-07 6.0194E-07 7.0414E-07
A8 2.8786E-10 1.3382E-09 1.4888E-08 1.6059E-09
A10 -2.9428E-12 -7.7403E-12 -3.0849E-11 2.2175E-11
A12 -3.4823E-15 3.1449E-14 -3.0183E-13 -8.5723E-14 Table 11 shows the aspheric coefficient of each aspheric surface.
(Table 11)
5 6 9 10
Κ 8.9071 29.6816 -0.8880 -0.1389
A4 -4.7241E-05 -9.2351E-05 -7.0871E-05 4.0736E-05
A6 -1.5948E-07 -1.6631E-07 6.0194E-07 7.0414E-07
A8 2.8786E-10 1.3382E-09 1.4888E-08 1.6059E-09
A10 -2.9428E-12 -7.7403E-12 -3.0849E-11 2.2175E-11
A12 -3.4823E-15 3.1449E-14 -3.0183E-13 -8.5723E-14
(表11)
5 6 9 10
Κ 8.9071 29.6816 -0.8880 -0.1389
A4 -4.7241E-05 -9.2351E-05 -7.0871E-05 4.0736E-05
A6 -1.5948E-07 -1.6631E-07 6.0194E-07 7.0414E-07
A8 2.8786E-10 1.3382E-09 1.4888E-08 1.6059E-09
A10 -2.9428E-12 -7.7403E-12 -3.0849E-11 2.2175E-11
A12 -3.4823E-15 3.1449E-14 -3.0183E-13 -8.5723E-14 Table 11 shows the aspheric coefficient of each aspheric surface.
(Table 11)
5 6 9 10
Κ 8.9071 29.6816 -0.8880 -0.1389
A4 -4.7241E-05 -9.2351E-05 -7.0871E-05 4.0736E-05
A6 -1.5948E-07 -1.6631E-07 6.0194E-07 7.0414E-07
A8 2.8786E-10 1.3382E-09 1.4888E-08 1.6059E-09
A10 -2.9428E-12 -7.7403E-12 -3.0849E-11 2.2175E-11
A12 -3.4823E-15 3.1449E-14 -3.0183E-13 -8.5723E-14
表12は、各レンズの波長905nmにおける焦点距離である。
(表12)
レンズ 面番号 焦点距離
L1 3-4 30.254
L2 5-6 149.080
L3 7-8 -30.135
L4 9-10 -112.507
L5 11-12 23.851 Table 12 shows the focal length of each lens at a wavelength of 905 nm.
(Table 12)
Lens surface number Focal length
L1 3-4 30.254
L2 5-6 149.080
L3 7-8 -30.135
L4 9-10 -112.507
L5 11-12 23.851
(表12)
レンズ 面番号 焦点距離
L1 3-4 30.254
L2 5-6 149.080
L3 7-8 -30.135
L4 9-10 -112.507
L5 11-12 23.851 Table 12 shows the focal length of each lens at a wavelength of 905 nm.
(Table 12)
Lens surface number Focal length
L1 3-4 30.254
L2 5-6 149.080
L3 7-8 -30.135
L4 9-10 -112.507
L5 11-12 23.851
図9は、第3実施例のレンズ光学系の縦収差図を示す。
また、当該レンズ光学系の波長λ=905nmにおけるバックフォーカス「fb」は以下のとおりである。
fb= 12.9669(mm) FIG. 9 shows a longitudinal aberration diagram of the lens optical system of the third example.
The back focus “fb” at the wavelength λ = 905 nm of the lens optical system is as follows.
fb = 12.9669 (mm)
また、当該レンズ光学系の波長λ=905nmにおけるバックフォーカス「fb」は以下のとおりである。
fb= 12.9669(mm) FIG. 9 shows a longitudinal aberration diagram of the lens optical system of the third example.
The back focus “fb” at the wavelength λ = 905 nm of the lens optical system is as follows.
fb = 12.9669 (mm)
第3実施例の各条件式(1)~条件式(9)の値を表17に示す。
Table 17 shows values of the conditional expressions (1) to (9) of the third embodiment.
(第4実施例)
図10は、第4実施例のレンズ光学系のレンズ構成を示すレンズ断面図である。第2実施例のレンズ光学系は、物体側から順に、両凸形状の第1レンズL1と、正の屈折力を有し物体側凸のメニスカス形状で両面に非球面を有する第2レンズL2と、負の屈折力を有し物体側凸のメニスカス形状の第3レンズL3と、負の屈折力を有し物体側凹のメニスカス形状の第4レンズL4と、両凸形状の第5レンズL5とから構成されている。最も物体側のレンズL1の物体側にバンドパスフィルターBPFが配置されている。開口絞りSは最も物体側のバンドパスフィルターBPFの像側に配置されている。 (Fourth embodiment)
FIG. 10 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to Example 4. The lens optical system of the second example includes, in order from the object side, a biconvex first lens L1 and a second lens L2 having a positive refractive power and an object-side convex meniscus and having aspheric surfaces on both surfaces. A third lens L3 having a negative refractive power and an object-side convex meniscus shape, a fourth lens L4 having a negative refractive power and an object-side concave meniscus, and a biconvex fifth lens L5. It is composed of A band-pass filter BPF is arranged on the object side of the lens L1 closest to the object. The aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
図10は、第4実施例のレンズ光学系のレンズ構成を示すレンズ断面図である。第2実施例のレンズ光学系は、物体側から順に、両凸形状の第1レンズL1と、正の屈折力を有し物体側凸のメニスカス形状で両面に非球面を有する第2レンズL2と、負の屈折力を有し物体側凸のメニスカス形状の第3レンズL3と、負の屈折力を有し物体側凹のメニスカス形状の第4レンズL4と、両凸形状の第5レンズL5とから構成されている。最も物体側のレンズL1の物体側にバンドパスフィルターBPFが配置されている。開口絞りSは最も物体側のバンドパスフィルターBPFの像側に配置されている。 (Fourth embodiment)
FIG. 10 is a lens cross-sectional view illustrating a lens configuration of a lens optical system according to Example 4. The lens optical system of the second example includes, in order from the object side, a biconvex first lens L1 and a second lens L2 having a positive refractive power and an object-side convex meniscus and having aspheric surfaces on both surfaces. A third lens L3 having a negative refractive power and an object-side convex meniscus shape, a fourth lens L4 having a negative refractive power and an object-side concave meniscus, and a biconvex fifth lens L5. It is composed of A band-pass filter BPF is arranged on the object side of the lens L1 closest to the object. The aperture stop S is arranged on the image side of the band pass filter BPF closest to the object.
バンドパスフィルターBPFは、波長Nが905nmの光線について、入射角0°における透過率1%以上の波長範囲が884nmから936nmであり、最大透過率の半分の透過率範囲、すなわち半値幅は890nmから927nmである。
第2レンズL2と第4レンズL4は、樹脂レンズである。 The band-pass filter BPF has a wavelength range from 884 nm to 936 nm of a transmittance of 1% or more at an incident angle of 0 ° for a light beam having a wavelength N of 905 nm, and a transmittance range of half of the maximum transmittance, that is, a half-value width of 890 nm. 927 nm.
The second lens L2 and the fourth lens L4 are resin lenses.
第2レンズL2と第4レンズL4は、樹脂レンズである。 The band-pass filter BPF has a wavelength range from 884 nm to 936 nm of a transmittance of 1% or more at an incident angle of 0 ° for a light beam having a wavelength N of 905 nm, and a transmittance range of half of the maximum transmittance, that is, a half-value width of 890 nm. 927 nm.
The second lens L2 and the fourth lens L4 are resin lenses.
すべてのレンズのレンズ面には反射防止コートがなされている。第5レンズL5の物体側面には、波長N±100nmの波長範囲の中で最も反射率が小さくなる波長がN±50nmの範囲に存在する反射防止コーティングがなされている。
また、第5レンズL5の物体側面の前記反射防止コートの空気界面にはMgF2を材料に含む層が設けられ、層数は全部で5層である。樹脂レンズである第2レンズL2及び第4レンズL4の反射防止コートの空気界面にはSiO2を材料に含む層が設けられ、層数は全部で3層である。 All lenses have an anti-reflection coating on the lens surface. The object side surface of the fifth lens L5 is provided with an antireflection coating in which the wavelength at which the reflectance becomes the smallest in the wavelength range of N ± 100 nm exists in the range of N ± 50 nm.
A layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five. A layer containing SiO 2 as a material is provided on the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, and the total number of layers is three.
また、第5レンズL5の物体側面の前記反射防止コートの空気界面にはMgF2を材料に含む層が設けられ、層数は全部で5層である。樹脂レンズである第2レンズL2及び第4レンズL4の反射防止コートの空気界面にはSiO2を材料に含む層が設けられ、層数は全部で3層である。 All lenses have an anti-reflection coating on the lens surface. The object side surface of the fifth lens L5 is provided with an antireflection coating in which the wavelength at which the reflectance becomes the smallest in the wavelength range of N ± 100 nm exists in the range of N ± 50 nm.
A layer containing MgF 2 as a material is provided on the air interface of the antireflection coat on the object side surface of the fifth lens L5, and the total number of layers is five. A layer containing SiO 2 as a material is provided on the air interface of the antireflection coat of the second lens L2 and the fourth lens L4, which are resin lenses, and the total number of layers is three.
さらに、第4実施例のレンズ光学系において、最も物体側にバンドパスフィルターBPFが配置されているが、これに換えて第4レンズL4と第5レンズL5の間に平行平板が基盤であるバンドパスフィルターBPFを配置してもよく、その場合のCmaxは、19.448度である。
Furthermore, in the lens optical system of the fourth embodiment, a band-pass filter BPF is disposed closest to the object side. Instead, a band whose base is a parallel flat plate between the fourth lens L4 and the fifth lens L5 is used. A pass filter BPF may be provided, in which case Cmax is 19.448 degrees.
次に、第4実施例のレンズ光学系の具体的数値を適用した数値実施例について説明する。表13は、第4実施例のレンズ光学系の諸元表である。
(表13)
f 30.049
Fno 1.200
ω 10.000
Y 5.297
TL 49.654 Next, a numerical example in which specific numerical values of the lens optical system of the fourth example are applied will be described. Table 13 is a table of specifications of the lens optical system of the fourth example.
(Table 13)
f 30.049
Fno 1.200
ω 10.000
Y 5.297
TL 49.654
(表13)
f 30.049
Fno 1.200
ω 10.000
Y 5.297
TL 49.654 Next, a numerical example in which specific numerical values of the lens optical system of the fourth example are applied will be described. Table 13 is a table of specifications of the lens optical system of the fourth example.
(Table 13)
f 30.049
Fno 1.200
ω 10.000
Y 5.297
TL 49.654
表14は、第4実施例のレンズ光学系の面データを示す。なお、表14における第1面及び第2面はバンドパスフィルターBPFであり、第13面及び第14面はカバーガラスCGの面データである。
(表14)
面番号 r d Nd νd H
1 0.0000 1.100 1.50892 64.20 12.627
2 STOP 0.0000 0.200 12.500
3 32.7400 6.000 1.97213 29.13 13.011
4 -234.0000 0.149 12.637
5 ASP 41.2130 6.010 1.63641 20.37 12.220
6 ASP 82.1802 1.000 11.434
7 -69.8000 1.770 1.50892 64.20 11.108
8 16.5500 9.126 9.676
9 ASP -8.8021 4.550 1.63641 20.37 9.644
10 ASP -11.4366 0.200 10.780
11 24.8000 6.300 1.97213 29.13 11.675
12 -800.0000 12.207 11.021
13 0.0000 0.500 1.50892 64.17 5.705
14 0.0000 0.542 5.568 Table 14 shows the surface data of the lens optical system of the fourth example. The first and second surfaces in Table 14 are bandpass filters BPF, and the thirteenth and fourteenth surfaces are surface data of the cover glass CG.
(Table 14)
Surface number r d Nd νd H
1 0.0000 1.100 1.50892 64.20 12.627
2 STOP 0.0000 0.200 12.500
3 32.7400 6.000 1.97213 29.13 13.011
4 -234.0000 0.149 12.637
5 ASP 41.2130 6.010 1.63641 20.37 12.220
6 ASP 82.1802 1.000 11.434
7 -69.8000 1.770 1.50892 64.20 11.108
8 16.5500 9.126 9.676
9 ASP -8.8021 4.550 1.63641 20.37 9.644
10 ASP -11.4366 0.200 10.780
11 24.8000 6.300 1.97213 29.13 11.675
12 -800.0000 12.207 11.021
13 0.0000 0.500 1.50892 64.17 5.705
14 0.0000 0.542 5.568
(表14)
面番号 r d Nd νd H
1 0.0000 1.100 1.50892 64.20 12.627
2 STOP 0.0000 0.200 12.500
3 32.7400 6.000 1.97213 29.13 13.011
4 -234.0000 0.149 12.637
5 ASP 41.2130 6.010 1.63641 20.37 12.220
6 ASP 82.1802 1.000 11.434
7 -69.8000 1.770 1.50892 64.20 11.108
8 16.5500 9.126 9.676
9 ASP -8.8021 4.550 1.63641 20.37 9.644
10 ASP -11.4366 0.200 10.780
11 24.8000 6.300 1.97213 29.13 11.675
12 -800.0000 12.207 11.021
13 0.0000 0.500 1.50892 64.17 5.705
14 0.0000 0.542 5.568 Table 14 shows the surface data of the lens optical system of the fourth example. The first and second surfaces in Table 14 are bandpass filters BPF, and the thirteenth and fourteenth surfaces are surface data of the cover glass CG.
(Table 14)
Surface number r d Nd νd H
1 0.0000 1.100 1.50892 64.20 12.627
2 STOP 0.0000 0.200 12.500
3 32.7400 6.000 1.97213 29.13 13.011
4 -234.0000 0.149 12.637
5 ASP 41.2130 6.010 1.63641 20.37 12.220
6 ASP 82.1802 1.000 11.434
7 -69.8000 1.770 1.50892 64.20 11.108
8 16.5500 9.126 9.676
9 ASP -8.8021 4.550 1.63641 20.37 9.644
10 ASP -11.4366 0.200 10.780
11 24.8000 6.300 1.97213 29.13 11.675
12 -800.0000 12.207 11.021
13 0.0000 0.500 1.50892 64.17 5.705
14 0.0000 0.542 5.568
表15は、各非球面の非球面係数である。
(表15)
5 6 9 10
Κ 8.2203 37.8603 -0.9723 -0.1843
A4 -4.8824E-05 -9.0205E-05 -6.8785E-05 3.7490E-05
A6 -1.5712E-07 -1.3562E-07 5.2603E-07 9.9278E-07
A8 3.8830E-10 1.4792E-09 1.3172E-08 -1.3622E-09
A10 -2.8759E-12 -7.3932E-12 -4.6550E-11 1.0841E-11
A12 -5.8433E-15 2.1091E-14 -3.4978E-14 1.1639E-13 Table 15 shows the aspheric coefficient of each aspheric surface.
(Table 15)
5 6 9 10
Κ 8.2203 37.8603 -0.9723 -0.1843
A4 -4.8824E-05 -9.0205E-05 -6.8785E-05 3.7490E-05
A6 -1.5712E-07 -1.3562E-07 5.2603E-07 9.9278E-07
A8 3.8830E-10 1.4792E-09 1.3172E-08 -1.3622E-09
A10 -2.8759E-12 -7.3932E-12 -4.6550E-11 1.0841E-11
A12 -5.8433E-15 2.1091E-14 -3.4978E-14 1.1639E-13
(表15)
5 6 9 10
Κ 8.2203 37.8603 -0.9723 -0.1843
A4 -4.8824E-05 -9.0205E-05 -6.8785E-05 3.7490E-05
A6 -1.5712E-07 -1.3562E-07 5.2603E-07 9.9278E-07
A8 3.8830E-10 1.4792E-09 1.3172E-08 -1.3622E-09
A10 -2.8759E-12 -7.3932E-12 -4.6550E-11 1.0841E-11
A12 -5.8433E-15 2.1091E-14 -3.4978E-14 1.1639E-13 Table 15 shows the aspheric coefficient of each aspheric surface.
(Table 15)
5 6 9 10
Κ 8.2203 37.8603 -0.9723 -0.1843
A4 -4.8824E-05 -9.0205E-05 -6.8785E-05 3.7490E-05
A6 -1.5712E-07 -1.3562E-07 5.2603E-07 9.9278E-07
A8 3.8830E-10 1.4792E-09 1.3172E-08 -1.3622E-09
A10 -2.8759E-12 -7.3932E-12 -4.6550E-11 1.0841E-11
A12 -5.8433E-15 2.1091E-14 -3.4978E-14 1.1639E-13
表16は、各レンズの波長905nmにおける焦点距離である。
(表16)
レンズ 面番号 焦点距離
L1 3-4 29.876
L2 5-6 122.894
L3 7-8 -26.107
L4 9-10 -182.876
L5 11-12 24.838 Table 16 shows the focal length of each lens at a wavelength of 905 nm.
(Table 16)
Lens surface number Focal length
L1 3-4 29.876
L2 5-6 122.894
L3 7-8 -26.107
L4 9-10 -182.876
L5 11-12 24.838
(表16)
レンズ 面番号 焦点距離
L1 3-4 29.876
L2 5-6 122.894
L3 7-8 -26.107
L4 9-10 -182.876
L5 11-12 24.838 Table 16 shows the focal length of each lens at a wavelength of 905 nm.
(Table 16)
Lens surface number Focal length
L1 3-4 29.876
L2 5-6 122.894
L3 7-8 -26.107
L4 9-10 -182.876
L5 11-12 24.838
図11は、第4実施例のレンズ光学系の縦収差図を示す。
また、第4実施例のレンズ光学系の波長λ=905nmにおけるバックフォーカス「fb」は以下のとおりである。
fb= 13.0803(mm) FIG. 11 shows a longitudinal aberration diagram of the lens optical system of the fourth example.
The back focus “fb” at the wavelength λ = 905 nm of the lens optical system of the fourth example is as follows.
fb = 13.0803 (mm)
また、第4実施例のレンズ光学系の波長λ=905nmにおけるバックフォーカス「fb」は以下のとおりである。
fb= 13.0803(mm) FIG. 11 shows a longitudinal aberration diagram of the lens optical system of the fourth example.
The back focus “fb” at the wavelength λ = 905 nm of the lens optical system of the fourth example is as follows.
fb = 13.0803 (mm)
第4実施例のレンズ光学系の各条件式(1)~条件式(9)の値を表17に示す。
Table 17 shows values of the conditional expressions (1) to (9) of the lens optical system of the fourth example.
第1実施例~第3実施例に加えて第4実施例のレンズ光学系の各条件式(1)~条件式(9)の値を表17に示す。
(表17)
実施例1 実施例2 実施例3 実施例4
条件式(1) fn/f -0.839 -0.784 -0.765 -0.813
条件式(2) Y/f 0.212 0.213 0.213 0.176
条件式(3) |fLp|/f 6.457 3.148 3.736 5.015
条件式(4) (Crpf+Crpr)/(Crpf-Crpr) 0.119 0.002 0.357 0.271
条件式(5) CrLf/f 1.001 0.987 1.093 1.090
条件式(6) 1/tan(|Bmax|) 0.837 0.730 0.754 0.899
条件式(7) 1/tan(|Cmax|) 4.706 4.706 4.706 5.674
条件式(8) tan(D) 0.005 -0.003 -0.004 0.001
条件式(9) 1/tan(|Amin|) 1.139 1.245 0.787 0.727
fn -25.710 -24.192 -23.042 -24.424
f 30.658 30.869 30.117 30.049
Y 6.492 6.561 6.402 5.297
fLp 197.965 97.187 -112.507 150.704
Crpf 14.380 12.312 18.901 16.561
Crpr -11.329 -12.258 -8.961 -9.499
CrLf 30.702 30.466 32.913 32.761
|Bmax| 50.067 53.886 52.970 48.049
|Cmax| 11.996 11.996 11.996 9.996
D 0.309 -0.200 -0.252 0.059
|Amin| 41.272 38.765 51.810 53.986 Table 17 shows the values of the conditional expressions (1) to (9) of the lens optical system of the fourth embodiment in addition to the first to third embodiments.
(Table 17)
Example 1 Example 2 Example 3 Example 4
Conditional expression (1) fn / f -0.839 -0.784 -0.765 -0.813
Conditional expression (2) Y / f 0.212 0.213 0.213 0.176
Conditional expression (3) | fLp | / f 6.457 3.148 3.736 5.015
Conditional expression (4) (Crpf + Crpr) / (Crpf-Crpr) 0.119 0.002 0.357 0.271
Conditional expression (5): CrLf / f 1.001 0.987 1.093 1.090
Conditional expression (6) 1 / tan (| Bmax |) 0.837 0.730 0.754 0.899
Conditional expression (7) 1 / tan (| Cmax |) 4.706 4.706 4.706 5.674
Conditional expression (8) tan (D) 0.005 -0.003 -0.004 0.001
Conditional expression (9) 1 / tan (| Amin |) 1.139 1.245 0.787 0.727
fn -25.710 -24.192 -23.042 -24.424
f 30.658 30.869 30.117 30.049
Y 6.492 6.561 6.402 5.297
fLp 197.965 97.187 -112.507 150.704
Crpf 14.380 12.312 18.901 16.561
Crpr -11.329 -12.258 -8.961 -9.499
CrLf 30.702 30.466 32.913 32.761
| Bmax | 50.067 53.886 52.970 48.049
| Cmax | 11.996 11.996 11.996 9.996
D 0.309 -0.200 -0.252 0.059
| Amin | 41.272 38.765 51.810 53.986
(表17)
実施例1 実施例2 実施例3 実施例4
条件式(1) fn/f -0.839 -0.784 -0.765 -0.813
条件式(2) Y/f 0.212 0.213 0.213 0.176
条件式(3) |fLp|/f 6.457 3.148 3.736 5.015
条件式(4) (Crpf+Crpr)/(Crpf-Crpr) 0.119 0.002 0.357 0.271
条件式(5) CrLf/f 1.001 0.987 1.093 1.090
条件式(6) 1/tan(|Bmax|) 0.837 0.730 0.754 0.899
条件式(7) 1/tan(|Cmax|) 4.706 4.706 4.706 5.674
条件式(8) tan(D) 0.005 -0.003 -0.004 0.001
条件式(9) 1/tan(|Amin|) 1.139 1.245 0.787 0.727
fn -25.710 -24.192 -23.042 -24.424
f 30.658 30.869 30.117 30.049
Y 6.492 6.561 6.402 5.297
fLp 197.965 97.187 -112.507 150.704
Crpf 14.380 12.312 18.901 16.561
Crpr -11.329 -12.258 -8.961 -9.499
CrLf 30.702 30.466 32.913 32.761
|Bmax| 50.067 53.886 52.970 48.049
|Cmax| 11.996 11.996 11.996 9.996
D 0.309 -0.200 -0.252 0.059
|Amin| 41.272 38.765 51.810 53.986 Table 17 shows the values of the conditional expressions (1) to (9) of the lens optical system of the fourth embodiment in addition to the first to third embodiments.
(Table 17)
Example 1 Example 2 Example 3 Example 4
Conditional expression (1) fn / f -0.839 -0.784 -0.765 -0.813
Conditional expression (2) Y / f 0.212 0.213 0.213 0.176
Conditional expression (3) | fLp | / f 6.457 3.148 3.736 5.015
Conditional expression (4) (Crpf + Crpr) / (Crpf-Crpr) 0.119 0.002 0.357 0.271
Conditional expression (5): CrLf / f 1.001 0.987 1.093 1.090
Conditional expression (6) 1 / tan (| Bmax |) 0.837 0.730 0.754 0.899
Conditional expression (7) 1 / tan (| Cmax |) 4.706 4.706 4.706 5.674
Conditional expression (8) tan (D) 0.005 -0.003 -0.004 0.001
Conditional expression (9) 1 / tan (| Amin |) 1.139 1.245 0.787 0.727
fn -25.710 -24.192 -23.042 -24.424
f 30.658 30.869 30.117 30.049
Y 6.492 6.561 6.402 5.297
fLp 197.965 97.187 -112.507 150.704
Crpf 14.380 12.312 18.901 16.561
Crpr -11.329 -12.258 -8.961 -9.499
CrLf 30.702 30.466 32.913 32.761
| Bmax | 50.067 53.886 52.970 48.049
| Cmax | 11.996 11.996 11.996 9.996
D 0.309 -0.200 -0.252 0.059
| Amin | 41.272 38.765 51.810 53.986
(実施例の撮像装置)
実施例の撮像装置100は、図12に示すように、本発明のレンズ光学系102と、撮影光学系102の結像面IMGに配置された固体撮像素子104とを有する。固体撮像素子104は、カバーガラスCGを有する。レンズ光学系102によって形成された結像は、固体撮像素子104を介して撮像信号に変換される。該撮像信号は、液晶モニタ(図示せず)に送られて画像表示される。 (Imaging device of embodiment)
As illustrated in FIG. 12, theimaging apparatus 100 according to the embodiment includes a lens optical system 102 according to the present invention and a solid-state imaging device 104 disposed on an imaging plane IMG of the imaging optical system 102. The solid-state imaging device 104 has a cover glass CG. An image formed by the lens optical system 102 is converted into an image signal via the solid-state image sensor 104. The imaging signal is sent to a liquid crystal monitor (not shown) and displayed as an image.
実施例の撮像装置100は、図12に示すように、本発明のレンズ光学系102と、撮影光学系102の結像面IMGに配置された固体撮像素子104とを有する。固体撮像素子104は、カバーガラスCGを有する。レンズ光学系102によって形成された結像は、固体撮像素子104を介して撮像信号に変換される。該撮像信号は、液晶モニタ(図示せず)に送られて画像表示される。 (Imaging device of embodiment)
As illustrated in FIG. 12, the
BPF バンドパスフィルター
IMG 結像面
CG カバーガラス
S 開口絞り
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
L6 第6レンズ
102 レンズ光学系
104 固体撮像素子 BPF Bandpass filter IMG Image plane CG Cover glass S Aperture stop L1 First lens L2 Second lens L3 Third lens L4 Fourth lens L5 Fifth lensL6 Sixth lens 102 Lens optical system 104 Solid-state image sensor
IMG 結像面
CG カバーガラス
S 開口絞り
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
L6 第6レンズ
102 レンズ光学系
104 固体撮像素子 BPF Bandpass filter IMG Image plane CG Cover glass S Aperture stop L1 First lens L2 Second lens L3 Third lens L4 Fourth lens L5 Fifth lens
Claims (11)
- 波長N±50nmの波長範囲以内でのみに使用されるレンズ光学系において、前記レンズ光学系は波長N±50nmの波長範囲以内のみを透過するバンドパスフィルターを有し、前記レンズ光学系は負の屈折力を有する面が少なくとも1面以上有し、以下の条件式を満足していることを特徴とするレンズ光学系。
-2.00<fn/f<-0.45 ・・・(1)
0.10< Y/f< 0.60 ・・・(2)
但し、
fn : 前記レンズ光学系のすべての面の中で最も負の屈折力の大きい面の波長Nnmにおける焦点距離
f : 前記レンズ光学系の波長Nnmにおける焦点距離
Y : 前記レンズ光学系の波長Nnmにおける最大像高 In a lens optical system used only within a wavelength range of wavelength N ± 50 nm, the lens optical system has a band-pass filter that transmits only within a wavelength range of wavelength N ± 50 nm, and the lens optical system is negative. A lens optical system having at least one surface having a refractive power and satisfying the following conditional expression.
-2.00 <fn / f <-0.45 (1)
0.10 <Y / f <0.60 (2)
However,
fn: focal length at the wavelength Nnm of the surface having the largest negative refractive power among all surfaces of the lens optical system f: focal length Y at the wavelength Nnm of the lens optical system Y: maximum at the wavelength Nnm of the lens optical system Image height - 前記レンズ光学系は、少なくとも1枚の樹脂レンズLpを有することを特徴とする請求項1に記載のレンズ光学系。 The lens optical system according to claim 1, wherein the lens optical system has at least one resin lens Lp.
- 前記樹脂レンズLpが、以下の条件式を満足することを特徴とする請求項2に記載のレンズ光学系。
1.5<|fLp|/f<2000.0 ・・・(3)
但し、
fLp: 前記樹脂レンズLpのうち最も屈折力が大きいものの波長Nnmにおける焦点距離 The lens optical system according to claim 2, wherein the resin lens Lp satisfies the following conditional expression.
1.5 <| fLp | / f <2000.0 (3)
However,
fLp: focal length at wavelength Nnm of the resin lens Lp having the largest refractive power - 前記レンズ光学系が両凸形状の空気レンズを少なくとも1つ有し、以下の条件式を満足することを特徴とする請求項1から請求項3のいずれか一項に記載のレンズ光学系。
-0.70<(Crpf+Crpr)/(Crpf-Crpr)<0.70 ・・・(4)
但し、
Crpf: 前記両凸形状の空気レンズの物体側面の曲率半径
Crpr: 前記両凸形状の空気レンズの像側面の曲率半径 4. The lens optical system according to claim 1, wherein the lens optical system has at least one biconvex air lens, and satisfies the following conditional expression. 5.
-0.70 <(Crpf + Crpr) / (Crpf-Crpr) <0.70 (4)
However,
Crpf: radius of curvature of the object side surface of the biconvex air lens Crpr: radius of curvature of the image side surface of the biconvex air lens - 前記レンズ光学系は最も物体側に物体側凸面を有するレンズLfを有し、以下の条件式を満足することを特徴とする請求項1から請求項4のいずれか一項に記載のレンズ光学系。
0.35<CrLf/f ・・・(5)
但し、
CrLf: 前記レンズLfの物体側凸面の曲率半径 The lens optical system according to any one of claims 1 to 4, wherein the lens optical system has a lens Lf having an object-side convex surface closest to the object side, and satisfies the following conditional expression. .
0.35 <CrLf / f (5)
However,
CrLf: radius of curvature of the object-side convex surface of the lens Lf - 以下の条件式を満足することを特徴とする請求項1から請求項5のいずれか一項に記載のレンズ光学系。
0.50<1/tan(|Bmax|)<4.00 ・・・(6)
但し、
Bmax : 前記レンズ光学系に含まれるすべてのレンズ面におけるレンズ面の法線と入射光線のなす角度の最大値 The lens optical system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
0.50 <1 / tan (| Bmax |) <4.00 (6)
However,
Bmax: the maximum value of the angle between the normal to the lens surface and the incident light beam on all the lens surfaces included in the lens optical system - 以下の条件式を満足することを特徴とする請求項1から請求項6のいずれか一項に記載のレンズ光学系。
1.90<1/tan(|Cmax|)<20.00 ・・(7)
但し、
Cmax :前記バンドパスフィルターと前記バンドパスフィルターに入射する光線のなす角度の最大値 The lens optical system according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
1.90 <1 / tan (| Cmax |) <20.00 (7)
However,
Cmax: maximum value of the angle between the band-pass filter and the light beam incident on the band-pass filter - 以下の条件式を満足することを特徴とする請求項1から請求項7のいずれか一項に記載のレンズ光学系。
-0.09<tan(D)<0.27 ・・・(8)
但し、
D : 前記レンズ光学系の最も像側の面から射出され像面に入射する波長Nnmにおける最軸外光線の主光線と光軸と平行な線がなすメリジオナル断面上の角度 The lens optical system according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
-0.09 <tan (D) <0.27 (8)
However,
D: Angle on the meridional section formed by the principal ray of the most off-axis ray at a wavelength of N nm emitted from the most image-side surface of the lens optical system and incident on the image plane and a line parallel to the optical axis. - 波長Nは、780nmより長いことを特徴とする請求項1から請求項8のいずれか一項に記載のレンズ光学系。 The lens optical system according to any one of claims 1 to 8, wherein the wavelength N is longer than 780 nm.
- 以下の条件式を満足することを特徴とする請求項1から請求項9のいずれか一項に記載のレンズ光学系。
0.10<1/tan(|Amin|)<1.35 ・・・(9)
但し、
Amin : 前記レンズ光学系に含まれるすべてのレンズ面におけるレンズ面の接線と光軸のなす角度の最小値 The lens optical system according to any one of claims 1 to 9, wherein the following conditional expression is satisfied.
0.10 <1 / tan (| Amin |) <1.35 (9)
However,
Amin: The minimum value of the angle between the tangent of the lens surface and the optical axis in all the lens surfaces included in the lens optical system. - 請求項1から請求項10のいずれか一項に記載のレンズ光学系の像側に、前記レンズ光学系によって形成された光学像を電気的信号に変換する撮像素子を備えたことを特徴とする撮像装置。 An image pickup device for converting an optical image formed by the lens optical system into an electric signal is provided on an image side of the lens optical system according to any one of claims 1 to 10. Imaging device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018152725A JP7100534B2 (en) | 2018-08-14 | 2018-08-14 | Lens optical system and image pickup device |
JP2018-152725 | 2018-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020036032A1 true WO2020036032A1 (en) | 2020-02-20 |
Family
ID=69525470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/027771 WO2020036032A1 (en) | 2018-08-14 | 2019-07-12 | Lens-based optical system and image capture device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7100534B2 (en) |
WO (1) | WO2020036032A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12287458B2 (en) | 2020-09-18 | 2025-04-29 | Largan Precision Co., Ltd. | Electronic device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113156631B (en) * | 2021-04-30 | 2024-08-02 | 中山联合光电科技股份有限公司 | Imaging lens and mobile device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013021659A1 (en) * | 2011-08-11 | 2013-02-14 | 日立マクセル株式会社 | Infrared lens unit, image capture module, and image capture device |
US20140184880A1 (en) * | 2012-12-31 | 2014-07-03 | Kolen Co., Ltd. | Photographic Lens Optical System |
JP2014167497A (en) * | 2013-01-31 | 2014-09-11 | Hitachi Maxell Ltd | Infrared lens device |
US20150168680A1 (en) * | 2013-12-16 | 2015-06-18 | Sintai Optical (Shenzhen) Co., Ltd. | Near Infrared Lens Assembly |
JP2018084704A (en) * | 2016-11-24 | 2018-05-31 | コニカミノルタ株式会社 | Imaging lens, imaging lens unit and imaging device |
US20180172952A1 (en) * | 2016-12-15 | 2018-06-21 | Largan Precision Co., Ltd. | Optical photographing lens system, image capturing apparatus and electronic device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53107824A (en) * | 1977-03-02 | 1978-09-20 | Canon Inc | Front focusing photographic lens |
JPS5971014A (en) * | 1982-10-15 | 1984-04-21 | Matsushita Electric Ind Co Ltd | Lens for picture enlarged projection |
JP2000330014A (en) * | 1999-05-25 | 2000-11-30 | Cosina Co Ltd | Large-aperture lens |
JP2001281536A (en) * | 2000-03-28 | 2001-10-10 | Fuji Photo Optical Co Ltd | Gauss type lens |
JP5966728B2 (en) * | 2012-07-30 | 2016-08-10 | リコーイメージング株式会社 | Large aperture lens system |
EP2708929A3 (en) * | 2012-09-14 | 2014-10-01 | Samsung Electro-Mechanics Co., Ltd | Imaging lens |
JP6425238B2 (en) * | 2014-07-02 | 2018-11-21 | カンタツ株式会社 | Imaging lens |
-
2018
- 2018-08-14 JP JP2018152725A patent/JP7100534B2/en active Active
-
2019
- 2019-07-12 WO PCT/JP2019/027771 patent/WO2020036032A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013021659A1 (en) * | 2011-08-11 | 2013-02-14 | 日立マクセル株式会社 | Infrared lens unit, image capture module, and image capture device |
US20140184880A1 (en) * | 2012-12-31 | 2014-07-03 | Kolen Co., Ltd. | Photographic Lens Optical System |
JP2014167497A (en) * | 2013-01-31 | 2014-09-11 | Hitachi Maxell Ltd | Infrared lens device |
US20150168680A1 (en) * | 2013-12-16 | 2015-06-18 | Sintai Optical (Shenzhen) Co., Ltd. | Near Infrared Lens Assembly |
JP2018084704A (en) * | 2016-11-24 | 2018-05-31 | コニカミノルタ株式会社 | Imaging lens, imaging lens unit and imaging device |
US20180172952A1 (en) * | 2016-12-15 | 2018-06-21 | Largan Precision Co., Ltd. | Optical photographing lens system, image capturing apparatus and electronic device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12287458B2 (en) | 2020-09-18 | 2025-04-29 | Largan Precision Co., Ltd. | Electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP7100534B2 (en) | 2022-07-13 |
JP2020027206A (en) | 2020-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10877244B1 (en) | Optical photographing system and electronic device | |
CN107255856B (en) | Image capturing optical lens assembly, image capturing device and vehicular photographing device | |
US8379325B2 (en) | Photographing optical lens assembly | |
JP6205034B2 (en) | Imaging lens system and imaging apparatus provided with the same | |
US9348117B1 (en) | Photographing optical lens assembly, image capturing unit and electronic device | |
US8773782B2 (en) | Optical lens assembly with filter member for image taking | |
US8441745B2 (en) | Optical lens assembly for image taking | |
TWI484247B (en) | Camera device and its optical imaging lens | |
JP4977869B2 (en) | Imaging lens, imaging device, and portable terminal | |
US7626768B2 (en) | Zoom lens and camera with zoom lens | |
US8477433B2 (en) | Optical imaging lens assembly | |
US11237362B2 (en) | Electronic device | |
WO2016110883A1 (en) | Image pickup lens and image pickup device | |
CN102681144A (en) | Optical lens group for camera shooting | |
CN110488469B (en) | Optical lens and electronic equipment | |
TWI443405B (en) | Image capturing optical system | |
US10401544B2 (en) | Optical system and optical apparatus including the same | |
US9122038B2 (en) | Imaging lens and imaging apparatus | |
US8390944B2 (en) | Photographing optical lens assembly | |
CN112764201A (en) | Optical system, camera module and electronic equipment | |
CN201917706U (en) | Image pickup lens and pickup device | |
CN116149023B (en) | Optical lens, camera module and electronic equipment | |
WO2011105067A1 (en) | Diffraction lens and photographic device using the same | |
WO2020036032A1 (en) | Lens-based optical system and image capture device | |
JP7178821B2 (en) | Imaging optical system and imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19850264 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19850264 Country of ref document: EP Kind code of ref document: A1 |