[go: up one dir, main page]

WO2020004673A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2020004673A1
WO2020004673A1 PCT/JP2019/026198 JP2019026198W WO2020004673A1 WO 2020004673 A1 WO2020004673 A1 WO 2020004673A1 JP 2019026198 W JP2019026198 W JP 2019026198W WO 2020004673 A1 WO2020004673 A1 WO 2020004673A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
gradient
current value
control
solenoid valve
Prior art date
Application number
PCT/JP2019/026198
Other languages
French (fr)
Japanese (ja)
Inventor
優至 木野村
恵光 尾関
淳次 石村
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2020004673A1 publication Critical patent/WO2020004673A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to a vehicle control device.
  • the vehicle control device is a device that controls the opening and closing of a solenoid valve provided in a hydraulic circuit of the vehicle braking device.
  • control is performed to reduce the gradient of the control current in order to suppress the tapping sound when the solenoid valve is opened and closed.
  • the electromagnetic valve to be controlled is an electromagnetic valve capable of linearly controlling the fluid pressure, and a current value serving as a reference for switching between opening and closing is determined by a differential pressure between input and output ports.
  • the solenoid valve includes a valve seat and a valve element (for example, a plunger) driven according to a control current. A state in which the valve body is seated on the valve seat is a closed state, and a state in which the valve body is separated from the valve seat is an open state.
  • a tapping sound when the valve body and the valve seat come into contact is considered, but a self-excited vibration of the valve body which may occur when the solenoid valve opens is also considered. Not. Self-excited vibration of the valve element causes abnormal noise. As described above, the vehicle control device has room for improvement in terms of suppressing abnormal noise.
  • the present invention has been made in view of such circumstances, and has as its object to provide a vehicle control device capable of suppressing generation of abnormal noise due to self-excited vibration of a valve body of an electromagnetic valve.
  • a vehicle control device provides a vehicle brake including a normally closed solenoid valve provided in a hydraulic circuit for controlling a braking force applied to a vehicle and closed when power is not supplied.
  • a current applied to the device which is a reference current value at which the normally closed solenoid valve switches from a closed state to an open state, and a current set based on a magnitude of a differential pressure between input and output ports of the normally closed solenoid valve.
  • a switching current value that is a value, a vehicle control device that opens the normally-closed solenoid valve by applying a control current having a larger current value to the normally-closed solenoid valve.
  • the current value of the control current is increased at a first current gradient to a current value smaller by a first predetermined amount than the switching current value, and then at least A control unit that performs valve-opening control to increase the current value of the control current with a second current gradient smaller than the first current gradient until the current value of the control current becomes larger than the switching current value; A setting unit that reduces the second current gradient as the target change gradient increases.
  • a vehicle control device provides a vehicle brake including a normally open solenoid valve provided in a hydraulic circuit for controlling a braking force applied to a vehicle and opened when power is not supplied.
  • a current applied to the device which is a reference current value at which the normally open solenoid valve switches from a closed state to an open state, and a current set based on a magnitude of a differential pressure between input and output ports of the normally open solenoid valve.
  • a switching current value that is a value a vehicle control device that opens the normally open solenoid valve by applying a control current of a smaller current value to the normally open solenoid valve, wherein the normally open solenoid valve is closed from the closed state.
  • the current value of the control current is reduced by a first current gradient to a current value larger by a first predetermined amount than the switching current value
  • a control unit that performs valve-opening control to reduce the current value of the control current with a second current gradient smaller than the first current gradient until the current value of the control current becomes smaller than the switching current value
  • a setting unit that reduces the second current gradient as the target change gradient increases.
  • the change rate of the electromagnetic force applied to the valve body of the solenoid valve increases as the target change gradient of the differential pressure increases, and the acceleration of the valve body also increases.
  • the acceleration of the valve body increases, self-excited vibration is likely to occur.
  • the current gradient that is, the second current gradient
  • the current value of the control current crosses the switching current value decreases as the target change gradient of the differential pressure increases.
  • 1 is a configuration diagram of a vehicle braking device according to a first embodiment. It is a conceptual diagram which shows the structure of a solenoid valve. 5 is a time chart for explaining valve opening control of the first embodiment. It is a block diagram of the vehicle braking device of 2nd Embodiment. It is a time chart for explaining valve opening control of a 2nd embodiment. It is a lineblock diagram of a vehicle control device of a third embodiment.
  • the vehicle control device 1 of the first embodiment includes a pressure reducing valve (“normal”) that is closed when power is not supplied to a hydraulic circuit 6 for controlling a braking force applied to a vehicle.
  • a pressure reducing valve (“normal”) that is closed when power is not supplied to a hydraulic circuit 6 for controlling a braking force applied to a vehicle.
  • the vehicle braking device 9 includes a cylinder mechanism 2, a reservoir 3, a stroke simulator 4, a hydraulic control mechanism 5, a hydraulic circuit 6 for connecting each member with a flow path, wheel cylinders 71 and 72, 73 and 74 and the vehicle control device 1.
  • the cylinder mechanism 2 includes a master cylinder 21, master pistons 22 and 23 that are driven according to the operation of the brake operation member 29 by the driver, master chambers 24 and 25, and a stroke sensor 26.
  • the master pistons 22 and 23 define master chambers 24 and 25 in the master cylinder 21.
  • master pressures As the master pistons 22, 23 advance, the fluid pressures in the master chambers 24, 25 (hereinafter, referred to as master pressures) increase.
  • the operation amount of the brake operation member 29 (hereinafter, also referred to as a stroke) is detected by the stroke sensor 26.
  • the master pistons 22 and 23 are urged toward an initial position by a spring (not shown).
  • the reservoir 3 is a tank (at atmospheric pressure) opened to the outside air, and stores the hydraulic fluid.
  • the reservoir 3 is connected to the master cylinder 21, the pressure reducing valves 501 to 504, and the pump 513.
  • the flow path between the reservoir 3 and the master chambers 24, 25 communicates when the master pistons 22, 23 are at the initial position, and is shut off when the master pistons 22, 23 advance by a predetermined amount.
  • the stroke simulator 4 is a device that applies a reaction force to the brake operation member 29.
  • the stroke simulator 4 is connected to the master chamber 24 via a simulator cut valve 41.
  • the simulator cut valve 41 is a normally closed solenoid valve that is closed when no power is supplied, and opens when the brake operation is started.
  • the hydraulic pressure control mechanism 5 is a device that controls the hydraulic pressure of the wheel cylinders 71 to 74 (hereinafter, referred to as wheel pressure) based on a command from the vehicle control device 1.
  • the hydraulic control mechanism 5 includes pressure reducing valves 501 to 504, pressure increasing valves 505, 506, 507, 508, master cut valves 509, 510, an accumulator 511, a motor 512, a pump 513, and pressure sensors 514 to 520. And Each part is connected by a hydraulic circuit 6.
  • the hydraulic circuit 6 includes a plurality of flow paths through which the working fluid can flow.
  • the pressure reducing valves 501 to 504 are normally closed type solenoid valves that are closed when power is not supplied.
  • the pressure reducing valve 501 is provided in a flow path connecting the wheel cylinder 71 and the reservoir 3.
  • a pressure reducing valve 502 is provided in a flow path connecting the wheel cylinder 72 and the reservoir 3
  • a pressure reducing valve 503 is provided in a flow path connecting the wheel cylinder 73 and the reservoir 3
  • a pressure reducing valve 504 is provided in the flow path connecting the wheel cylinder 74 and the reservoir 3.
  • 3 is provided in the flow path connecting the first and second channels.
  • the pressure-intensifying valves 505 to 508 are normally closed solenoid valves that are closed when power is not supplied.
  • the pressure increasing valve 505 is provided in a flow path connecting the wheel cylinder 71 and the accumulator 511.
  • a pressure increasing valve 506 is provided in a flow path connecting the wheel cylinder 72 and the accumulator 511
  • a pressure increasing valve 507 is provided in a flow path connecting the wheel cylinder 73 and the accumulator 511
  • the pressure increasing valve 508 is provided in the wheel cylinder 74 and the accumulator 511.
  • 511 is provided in the flow path.
  • the ports on the accumulator 511 side of the pressure increasing valves 505 to 508 are connected to each other by a flow path.
  • the wheel pressure can be increased by opening the pressure increasing valves 505 to 508.
  • the master cut valves 509 and 510 are normally open solenoid valves that are opened when power is not supplied.
  • the master cut valve 509 is provided in a flow path that connects a port on the wheel cylinder 71 side of the pressure increasing valve 505 and the master chamber 25.
  • the master cut valve 510 is provided in a flow path connecting the port on the wheel cylinder 74 side of the pressure increasing valve 508 and the master chamber 24.
  • the master cut valves 509 and 510 are valves for cutting off the supply of the master pressure to the downstream as necessary.
  • the accumulator 511 is a pressure accumulator that stores a high-pressure hydraulic fluid.
  • the motor 512 is an electric motor and drives the pump 513.
  • the pump 513 has a suction port connected to the reservoir 3 and a discharge port connected to the accumulator 511.
  • the hydraulic pressure of the accumulator 511 (hereinafter, referred to as accumulator pressure) is maintained at a high pressure by driving the pump 513.
  • the pressure sensor 514 detects the hydraulic pressure (master pressure) in the master chamber 25.
  • the pressure sensor 515 detects the hydraulic pressure (master pressure) of the master chamber 24.
  • Pressure sensor 516 detects the accumulator pressure.
  • Pressure sensors 517, 518, 519, and 520 detect wheel pressures of corresponding wheel cylinders 71 to 74. Each wheel is provided with a wheel speed sensor S.
  • the wheel pressure may be estimated (calculated) from, for example, the master pressure and the control state. In this case, the pressure sensors 517 to 520 can be omitted.
  • the vehicle control device 1 is an electronic control unit (ECU) including a CPU, a memory, and the like, and is a device that controls the simulator cut valve 41 and the hydraulic control mechanism 5 based on information from the various sensors described above.
  • the vehicle control device 1 determines a target deceleration of the vehicle according to the stroke, and determines a target wheel pressure based on the target deceleration.
  • the vehicle control device 1 controls opening and closing of each of the solenoid valves 41, 501 to 510 and driving of the motor 512 based on the target wheel pressure.
  • the change per unit time of the target wheel pressure becomes the target change gradient of the wheel pressure.
  • the pressure reducing valve 501 is not an on / off valve (binary control valve) but an electromagnetic valve that can be linearly controlled, and has a known configuration of a normally closed type.
  • the pressure reducing valve 501 includes a plunger 5011 that is a valve body (movable core) driven by application of a control current, a valve seat 5012 on which the plunger 5011 is seated in a closed state, and a valve seat 5012 And a solenoid mechanism 5014 for urging the actuator in the direction of.
  • the switching current value is a reference current value at which the normally closed pressure reducing valves 501 to 504 switch from a closed state to an open state, and a differential pressure between the input / output ports of the pressure reducing valves 501 to 504 (hereinafter referred to as “first pressure reducing valve”). (Referred to as “differential pressure”).
  • the vehicle control device 1 opens the pressure reducing valve 501 by supplying a control current having a current value larger than the switching current value to the pressure reducing valves 501 to 504.
  • the vehicle control device 1 includes a control unit 11 and a setting unit 12 as functions when opening the pressure reducing valves 501 to 504.
  • the control unit 11 changes the normally closed pressure reducing valves 501 to 504 from the closed state to the open state with a first current gradient up to a current value smaller by a first predetermined amount than the switching current value.
  • Valve opening control for increasing the current value of the control current and subsequently increasing the current value of the control current at a second current gradient smaller than the first current gradient until at least the current value of the control current becomes larger than the switching current value It is configured to perform.
  • the control unit 11 executes the current increase with the second current gradient, for example, until the current value of the control current becomes the valve-opening holding current value larger than the switching current value.
  • the valve opening holding current value is a value that is larger by a second predetermined amount than the switching current value.
  • the setting unit 12 is configured to reduce the second current gradient as the target change gradient of the first differential pressure increases.
  • the first differential pressure is the difference between the wheel pressure and the atmospheric pressure (the pressure of the reservoir 3), and has the same value as the wheel pressure in calculation. Therefore, the target change gradient of the first differential pressure is the same as the target change gradient of the wheel pressure. That is, the setting unit 12 sets the second current gradient based on the target change gradient of the wheel pressure (change gradient of the target wheel pressure).
  • the decreasing change of the second current gradient with respect to the increase of the target changing gradient of the first differential pressure may be stepwise, linear, or quadratic.
  • the setting unit 12 sets a predetermined threshold value for the target change gradient of the first differential pressure, and when the target change gradient of the first differential pressure at the start of the valve opening control is equal to or larger than the predetermined threshold value, the second current gradient May be set to be small (see “second current gradient before change” and “second current gradient after change” in FIG. 3).
  • a plurality of the predetermined thresholds may be set.
  • the valve opening control can also be referred to as current gradient limiting control.
  • a situation where the target change gradient of the first differential pressure is large means a situation where the target pressure reduction gradient of the wheel pressure is large because the control target is the pressure reducing valves 501 to 504.
  • the target pressure reduction gradient is large, from the viewpoint of responsiveness, there has been a tendency to perform control to increase the control current to the pressure reduction valves 501 to 504 at once.
  • the increasing gradient of the control current increases, the increasing gradient of the electromagnetic force applied to the plunger 5011 increases, and the acceleration of the movement of the plunger 5011 increases. This is one cause of the self-excited vibration of the plunger 5011.
  • the current gradient (that is, the second current gradient) when the current value of the control current crosses the switching current value is larger as the target change gradient of the first differential pressure is larger. Become smaller. Accordingly, it is possible to suppress an increase in the acceleration of the plunger 5011 when the valve is opened, and to suppress the occurrence of self-excited vibration depending on the situation. That is, according to the first embodiment, generation of abnormal noise due to self-excited vibration can be suppressed.
  • the threshold value for reducing the second current gradient (the threshold value of the target change gradient) is determined in a specific situation, for example, sudden operation, ABS control (anti-skid control), ESC control (side skid prevention control), or It is set assuming a sudden pressure reduction in the automatic brake control. That is, at the time of pressure reduction in the normal operation, the second current gradient is relatively large, and the responsiveness is secured.
  • the first predetermined amount is set to a minimum value in consideration of hardware variation and response delay. As a result, even in a specific situation, a decrease in responsiveness is minimized.
  • the vehicle control device is different from the first embodiment in that the control target is a normally open solenoid valve.
  • the control target is a normally open solenoid valve.
  • the vehicle control device 10 of the second embodiment is a normally open type electromagnetic electromagnetic valve which is provided in a hydraulic circuit 6 for controlling a braking force applied to a vehicle and which is opened when power is not supplied.
  • the present invention is applied to a vehicle braking device 91 having a valve (corresponding to a “normally open solenoid valve”) 81.
  • the vehicle braking device 91 includes a cylinder mechanism 20, a reservoir 3, a stroke simulator 4, an actuator 5A, a hydraulic circuit 6 for connecting various parts with flow paths, wheel cylinders 71 to 74, a hydraulic pressure control mechanism 8, , A vehicle control device 10.
  • the cylinder mechanism 20 includes a master cylinder 201, an input piston 202 connected to the brake operating member 29, a master piston 203, an input chamber 204, a servo chamber 205, and a master chamber 206.
  • the cylinder mechanism 20 has a by-wire structure in which the input piston 202 and the master piston 203 are separated from each other.
  • the master chamber 206 is connected to the wheel cylinders 71 and 72 via the actuator 5A.
  • the connection between the reservoir 3 and the master chamber 206 is cut off when the master piston 203 advances by a predetermined amount from the initial position.
  • the stroke simulator 4 is connected to the cylinder mechanism 20 so as to generate a reaction force hydraulic pressure in a room in front of the input chamber 204 and the servo chamber 205.
  • the actuator 5A is a so-called ESC actuator, and is configured to be able to increase wheel pressure by a pump (not shown) and a solenoid valve (differential pressure control valve) that can be linearly controlled.
  • a solenoid valve differential pressure control valve
  • the actuator 5A based on a command from the vehicle control device 10, the actuator 5A does not perform the hydraulic pressure adjustment during a normal brake operation, but performs the hydraulic pressure adjustment at a specific time such as during ABS control or ESC control. .
  • the hydraulic control mechanism 8 includes an electromagnetic valve 81, a motor 82, and a pump 83.
  • the solenoid valve 81 is a solenoid valve that can be linearly controlled, and has a known configuration of a normally open type.
  • the solenoid valve 81 includes a plunger (valve element), a valve seat, a spring mechanism, and a solenoid, like the pressure reducing valves 501 to 504. That is, the electromagnetic valve 81 is an electromagnetic valve in which self-excited vibration may occur.
  • the motor 82 is an electric motor that drives the pump 83.
  • the pump 83 has a suction port connected to the reservoir 3 and the output port of the solenoid valve 81, and a discharge port connected to the input port of the solenoid valve 81, the servo chamber 205, and the wheel cylinders 73 and 74 (via the actuator 5A). Pump.
  • a part of the hydraulic circuit 6 forms an annular flow path 61 that connects the electromagnetic valve 81 and the pump 83 in an annular shape.
  • the vehicle control device 10 normally controls the electromagnetic valve 81 and the motor 82 so that a small amount of hydraulic fluid flows through the annular flow path 61.
  • the vehicle control device 10 drives the pump 83 according to the target wheel pressure and adjusts the amount of restriction of the flow path by the solenoid valve 81, so that the pressure difference between the input and output ports of the solenoid valve 81 (hereinafter referred to as the “second Pressure).
  • the hydraulic pressure at the output port side of the solenoid valve 81 is atmospheric pressure, and the change gradient of the target wheel pressure is the target change gradient of the second differential pressure.
  • the vehicle control device 10 increases the current value of the control current applied to the electromagnetic valve 81, and controls the electromagnetic valve 81 to a throttle amount corresponding to the target differential pressure.
  • the second differential pressure increases toward the target differential pressure by driving the pump 83 with the flow path narrowed.
  • the high-pressure hydraulic fluid is supplied to the wheel cylinders 73 and 74 via the actuator 5A and also to the servo chamber 205.
  • the master pressure increases, and high-pressure hydraulic fluid is also supplied to the wheel cylinders 71 and 72 via the actuator 5A.
  • the vehicle control device 10 opens the solenoid valve 81 to reduce the second differential pressure.
  • the vehicle control device 10 When reducing the wheel pressure, the vehicle control device 10 opens the electromagnetic valve 81 by supplying a control current having a current value smaller than the switching current value to the electromagnetic valve 81. Specifically, as shown in FIG. 5, the control unit 11 of the vehicle control device 10 sets a current larger than the switching current value by a first predetermined amount when the normally open solenoid valve 81 is changed from the closed state to the open state. Value of the control current at the first current gradient until the current value of the control current decreases to at least the current value of the control current at least until the current value of the control current becomes smaller than the switching current value. It is configured to perform valve opening control for decreasing the value. As in the first embodiment, the setting unit 12 reduces the second current gradient as the target change gradient of the second differential pressure increases. Thereby, the same effect as in the first embodiment is exerted.
  • the vehicle braking device 91 performs control to close the electromagnetic valve 81 and stop the motor 82 in a limited state such as when the vehicle is stopped, from the viewpoint of suppressing motor operating noise and energy loss. It may be configured to be performed.
  • the solenoid valve 81 is in the closed state and the second differential pressure is in a large state, and the possibility that self-excited vibration occurs in the plunger of the solenoid valve 81 with the opening is relatively high. Particularly in such a situation, the effect of the valve opening control is increased.
  • the vehicle control device 100 of the third embodiment is applied to, for example, the vehicle braking device 9 of the first embodiment or the vehicle braking device 91 of the second embodiment, and is different from the first and second embodiments.
  • the difference is that the temperature of the hydraulic fluid is reflected in the valve opening control. Therefore, different parts will be described.
  • the description of the first and second embodiments and the drawings can be appropriately referred to.
  • the vehicle control device 100 includes a control unit 11, a setting unit 12, and a temperature calculation unit 13 as functions.
  • the temperature calculation unit 13 is configured to calculate (estimate) the temperature of the working fluid filled in the hydraulic circuit 6 based on, for example, the outside air temperature and the control state.
  • the temperature of the working fluid can be calculated by a known method.
  • the vehicle is provided with a temperature sensor (not shown) for detecting the temperature of outside air, and the detection result can be used for temperature estimation.
  • the temperature calculation unit 13 may calculate (determine) the temperature of the hydraulic fluid based on the detection result. Good.
  • the setting unit 12 sets the second current gradient according to the temperature of the working fluid filled in the hydraulic circuit 6 (calculation result of the temperature calculation unit 13).
  • the setting unit 12 reduces the second current gradient according to the temperature of the working fluid.
  • An example of a setting example will be described.
  • the setting unit 12 of the third embodiment reduces the second current gradient as the temperature of the working fluid decreases.
  • the change in the second current gradient may be stepwise, linear, or quadratic in relation to a change in the temperature of the working fluid.
  • the setting unit 12 reduces the second current gradient.
  • the setting unit 12 may reduce the second current gradient as the temperature of the hydraulic fluid is higher.
  • the setting unit 12 when the temperature of the hydraulic fluid is lower than the first predetermined temperature or higher than the second predetermined temperature (first predetermined temperature ⁇ second predetermined temperature), the setting unit 12 reduces the second current gradient. May be.
  • the setting unit 12 stores a plurality of values of the second current gradient, for example, a normal gradient, a low temperature gradient, and / or a high temperature gradient (specific gradient), and selects a gradient value according to the temperature of the hydraulic fluid. Is also good.
  • the valve opening control of the third embodiment can be applied to a normally closed solenoid valve and a normally open solenoid valve.
  • the setting unit 12 may be configured to reduce at least one of the first predetermined amount and the second current gradient according to the temperature of the working fluid filled in the hydraulic circuit 6. Good. For example, depending on the temperature of the hydraulic fluid, when the setting unit 12 reduces the second current gradient, when it is highly possible that the setting unit 12 reduces the second current gradient, or when the viscosity of the hydraulic fluid is extremely high, etc. By setting the first predetermined amount smaller by the setting unit 12, the responsiveness can be improved.
  • the setting unit 12 may reduce the second current gradient and also reduce the first predetermined amount. That is, the setting unit 12 may reduce the first predetermined amount as the target change gradient of the differential pressure increases.
  • the change in the first predetermined amount may be stepwise, linear, or quadratic with respect to the change in the target change gradient. Thereby, the deterioration of the responsiveness is further suppressed.
  • the setting unit 12 may be configured to decrease at least one of the first predetermined amount and the second current gradient as the actual first differential pressure or the second differential pressure increases.
  • the relationship between these changes may be stepwise, linear, or quadratic, as described above.
  • the setting unit 12 reduces the second current gradient.
  • the fluid pressure pushing the plunger toward the valve opening side increases, and self-excited vibration is more likely to occur.
  • valve opening control according to the situation can be performed.
  • the responsiveness can be improved by reducing the first predetermined amount.
  • the control unit 11 increases the switching current value by a second predetermined amount in the case of the normally closed type in order to maintain the open state after the solenoid valve is opened.
  • a control current of a value (valve-opening holding current value) smaller by a second predetermined amount is applied to the solenoid valve.
  • the setting unit 12 sets the current gradient of the control current. May be configured to be larger than the second current gradient.
  • the control unit 11 may change the control current with a current gradient larger than the second current gradient to quickly reach the valve opening holding current value. If the first pressure difference or the second pressure difference becomes smaller than a predetermined value due to the pressure reduction control, the possibility of the occurrence of self-excited vibration is almost eliminated, so that the current gradient is increased, for example, the original gradient (the first current gradient) is reduced. There is no problem to return to). However, the second current gradient may be left as it is. In particular, in a specific situation where the setting unit 12 is assumed to reduce the second current gradient, there is no problem even if the current gradient is not changed to the valve-opening holding current value. Also, the setting unit 12 may be configured to change the current gradient from the second current gradient when a predetermined amount has changed or a predetermined time has elapsed after the switching current value has been crossed.
  • the setting unit 12 of the third embodiment does not reduce the second current gradient as the target change gradient of the differential pressure increases, but decreases the second current gradient in accordance with the temperature of the hydraulic fluid. May be done.
  • a check valve is appropriately disposed in the hydraulic circuit 6 such as a flow path connected to the discharge ports of the pumps 513 and 83, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The present invention pertains to a vehicle control device which causes an electromagnetic valve 501 to be in an opened state by applying to the electromagnetic valve 501 a control current having a current value larger than a switching current value which is a current value set on the basis of the magnitude of the differential pressure between input and output ports of the electromagnetic valve 501. This vehicle control device is provided with: a control unit 11 that executes, in order to switch the electromagnetic valve 501 to the opened state from a closed state, valve-opening control for increasing the current value of the control current by a first current gradient up to a current value which is smaller than the switching current value by a first prescribed amount, and then increasing the current value of the control current by a second current gradient smaller than the first current gradient up until at least the current value of the control current exceeds the switching current value; and a setting unit 12 that sets the second current gradient to be smaller as the target change gradient of the differential pressure becomes larger.

Description

車両制御装置Vehicle control device
 本発明は、車両制御装置に関する。 The present invention relates to a vehicle control device.
 車両制御装置は、車両用制動装置の液圧回路に設けられた電磁弁の開閉を制御する装置である。例えば特開2015-199456号公報に記載の車両制御装置では、電磁弁の開閉時の打音を抑制するために、制御電流の勾配を小さくする制御が行われている。制御される電磁弁は、液圧をリニア制御可能な電磁弁であって、開閉の切り替えの基準となる電流値が入出力ポート間の差圧によって決定されるものである。電磁弁は、弁座と、制御電流に応じて駆動する弁体(例えばプランジャ)と、を備えている。弁体が弁座に着座している状態が閉状態であり、弁体が弁座から離座している状態が開状態である。 The vehicle control device is a device that controls the opening and closing of a solenoid valve provided in a hydraulic circuit of the vehicle braking device. For example, in the vehicle control device described in Japanese Patent Application Laid-Open No. 2015-199456, control is performed to reduce the gradient of the control current in order to suppress the tapping sound when the solenoid valve is opened and closed. The electromagnetic valve to be controlled is an electromagnetic valve capable of linearly controlling the fluid pressure, and a current value serving as a reference for switching between opening and closing is determined by a differential pressure between input and output ports. The solenoid valve includes a valve seat and a valve element (for example, a plunger) driven according to a control current. A state in which the valve body is seated on the valve seat is a closed state, and a state in which the valve body is separated from the valve seat is an open state.
特開2015-199456号公報JP-A-2015-456
 ここで、上記車両制御装置では、弁体と弁座とが当接する際の打音については考慮されているが、電磁弁が開弁する際に生じ得る弁体の自励振動については考慮されていない。弁体の自励振動は、異音の原因となる。このように、上記車両制御装置には、異音抑制の点で改良の余地がある。 Here, in the above-described vehicle control device, a tapping sound when the valve body and the valve seat come into contact is considered, but a self-excited vibration of the valve body which may occur when the solenoid valve opens is also considered. Not. Self-excited vibration of the valve element causes abnormal noise. As described above, the vehicle control device has room for improvement in terms of suppressing abnormal noise.
 本発明は、このような事情に鑑みて為されたものであり、電磁弁の弁体の自励振動による異音の発生を抑制することができる車両制御装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and has as its object to provide a vehicle control device capable of suppressing generation of abnormal noise due to self-excited vibration of a valve body of an electromagnetic valve.
 本発明の第1の態様に係る車両制御装置は、車両に付与される制動力を制御するための液圧回路に設けられた非通電時に閉状態となるノーマルクローズ電磁弁を備えた車両用制動装置に適用され、前記ノーマルクローズ電磁弁が閉状態から開状態に切り替わる基準の電流値であり、かつ、前記ノーマルクローズ電磁弁の入出力ポート間の差圧の大きさに基づいて設定される電流値である切替電流値、より大きい電流値の制御電流を前記ノーマルクローズ電磁弁に与えることで前記ノーマルクローズ電磁弁を開状態とする車両制御装置であって、前記ノーマルクローズ電磁弁を閉状態から開状態にするにあたり、前記切替電流値よりも第1所定量だけ小さい電流値まで第1電流勾配で前記制御電流の電流値を増加させ、続いて、少なくとも前記制御電流の電流値が前記切替電流値より大きくなるまで、前記第1電流勾配よりも小さい第2電流勾配で前記制御電流の電流値を増加させる開弁制御を行う制御部と、前記差圧の目標変化勾配が大きいほど前記第2電流勾配を小さくする設定部と、を備える。 A vehicle control device according to a first aspect of the present invention provides a vehicle brake including a normally closed solenoid valve provided in a hydraulic circuit for controlling a braking force applied to a vehicle and closed when power is not supplied. A current applied to the device, which is a reference current value at which the normally closed solenoid valve switches from a closed state to an open state, and a current set based on a magnitude of a differential pressure between input and output ports of the normally closed solenoid valve. A switching current value that is a value, a vehicle control device that opens the normally-closed solenoid valve by applying a control current having a larger current value to the normally-closed solenoid valve. In the opening state, the current value of the control current is increased at a first current gradient to a current value smaller by a first predetermined amount than the switching current value, and then at least A control unit that performs valve-opening control to increase the current value of the control current with a second current gradient smaller than the first current gradient until the current value of the control current becomes larger than the switching current value; A setting unit that reduces the second current gradient as the target change gradient increases.
 本発明の第2の態様に係る車両制御装置は、車両に付与される制動力を制御するための液圧回路に設けられた非通電時に開状態となるノーマルオープン電磁弁を備えた車両用制動装置に適用され、前記ノーマルオープン電磁弁が閉状態から開状態に切り替わる基準の電流値であり、かつ、前記ノーマルオープン電磁弁の入出力ポート間の差圧の大きさに基づいて設定される電流値である切替電流値、より小さい電流値の制御電流を前記ノーマルオープン電磁弁に与えることで前記ノーマルオープン電磁弁を開状態とする車両制御装置であって、前記ノーマルオープン電磁弁を閉状態から開状態にするにあたり、前記切替電流値よりも第1所定量だけ大きい電流値まで第1電流勾配で前記制御電流の電流値を減少させ、続いて、少なくとも前記制御電流の電流値が前記切替電流値より小さくなるまで、前記第1電流勾配よりも小さい第2電流勾配で前記制御電流の電流値を減少させる開弁制御を行う制御部と、前記差圧の目標変化勾配が大きいほど前記第2電流勾配を小さくする設定部と、を備える。 A vehicle control device according to a second aspect of the present invention provides a vehicle brake including a normally open solenoid valve provided in a hydraulic circuit for controlling a braking force applied to a vehicle and opened when power is not supplied. A current applied to the device, which is a reference current value at which the normally open solenoid valve switches from a closed state to an open state, and a current set based on a magnitude of a differential pressure between input and output ports of the normally open solenoid valve. A switching current value that is a value, a vehicle control device that opens the normally open solenoid valve by applying a control current of a smaller current value to the normally open solenoid valve, wherein the normally open solenoid valve is closed from the closed state. In the opening state, the current value of the control current is reduced by a first current gradient to a current value larger by a first predetermined amount than the switching current value, A control unit that performs valve-opening control to reduce the current value of the control current with a second current gradient smaller than the first current gradient until the current value of the control current becomes smaller than the switching current value; A setting unit that reduces the second current gradient as the target change gradient increases.
 通常の制御では、差圧の目標変化勾配が大きいほど電磁弁の弁体に加わる電磁力の変化速度が大きくなり、弁体の加速度も大きくなる。理論上、弁体の加速度が大きくなると、自励振動が発生しやすくなる。しかし、本発明によれば、開弁制御において、制御電流の電流値が切替電流値をまたぐ際の電流勾配(すなわち第2電流勾配)は、差圧の目標変化勾配が大きいほど小さくなる。これにより、状況に応じて、開弁時の弁体の加速度の増大を抑制し、自励振動の発生を抑制することができる。 In normal control, the change rate of the electromagnetic force applied to the valve body of the solenoid valve increases as the target change gradient of the differential pressure increases, and the acceleration of the valve body also increases. Theoretically, when the acceleration of the valve body increases, self-excited vibration is likely to occur. However, according to the present invention, in the valve opening control, the current gradient (that is, the second current gradient) when the current value of the control current crosses the switching current value decreases as the target change gradient of the differential pressure increases. Thereby, depending on the situation, it is possible to suppress an increase in the acceleration of the valve body when the valve is opened and to suppress the occurrence of self-excited vibration.
第1実施形態の車両用制動装置の構成図である。1 is a configuration diagram of a vehicle braking device according to a first embodiment. 電磁弁の構造を示す概念図である。It is a conceptual diagram which shows the structure of a solenoid valve. 第1実施形態の開弁制御を説明するためのタイムチャートである。5 is a time chart for explaining valve opening control of the first embodiment. 第2実施形態の車両用制動装置の構成図である。It is a block diagram of the vehicle braking device of 2nd Embodiment. 第2実施形態の開弁制御を説明するためのタイムチャートである。It is a time chart for explaining valve opening control of a 2nd embodiment. 第3実施形態の車両制御装置の構成図である。It is a lineblock diagram of a vehicle control device of a third embodiment.
 以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。また、説明に用いる各図は概念図であり、例えば、図1、図2、及び図4では断面のハッチング表示が省略されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, portions that are the same or equivalent are denoted by the same reference numerals in the drawings. Each drawing used in the description is a conceptual diagram. For example, hatching in cross sections is omitted in FIGS. 1, 2, and 4.
<第1実施形態>
 第1実施形態の車両制御装置1は、図1に示すように、車両に付与される制動力を制御するための液圧回路6に設けられた非通電時に閉状態となる減圧弁(「ノーマルクローズ電磁弁」に相当する)501、502、503、504を備えた車両用制動装置9に適用されている。詳細に、車両用制動装置9は、シリンダ機構2と、リザーバ3と、ストロークシミュレータ4と、液圧制御機構5と、各部材を流路でつなぐ液圧回路6と、ホイールシリンダ71、72、73、74と、車両制御装置1と、を備えている。
<First embodiment>
As shown in FIG. 1, the vehicle control device 1 of the first embodiment includes a pressure reducing valve (“normal”) that is closed when power is not supplied to a hydraulic circuit 6 for controlling a braking force applied to a vehicle. (Corresponding to "close solenoid valve") 501, 502, 503, 504. In detail, the vehicle braking device 9 includes a cylinder mechanism 2, a reservoir 3, a stroke simulator 4, a hydraulic control mechanism 5, a hydraulic circuit 6 for connecting each member with a flow path, wheel cylinders 71 and 72, 73 and 74 and the vehicle control device 1.
 シリンダ機構2は、マスタシリンダ21と、運転者によるブレーキ操作部材29の操作に応じて駆動するマスタピストン22、23と、マスタ室24、25と、ストロークセンサ26と、を備えている。マスタピストン22、23は、マスタシリンダ21内で、マスタ室24、25を区画している。マスタピストン22、23の前進によりマスタ室24、25の液圧(以下、マスタ圧と称する)が増大する。ブレーキ操作部材29の操作量(以下、ストロークとも称する)は、ストロークセンサ26により検出される。なお、マスタピストン22、23は図示しないスプリングにより初期位置に向けて付勢されている。 The cylinder mechanism 2 includes a master cylinder 21, master pistons 22 and 23 that are driven according to the operation of the brake operation member 29 by the driver, master chambers 24 and 25, and a stroke sensor 26. The master pistons 22 and 23 define master chambers 24 and 25 in the master cylinder 21. As the master pistons 22, 23 advance, the fluid pressures in the master chambers 24, 25 (hereinafter, referred to as master pressures) increase. The operation amount of the brake operation member 29 (hereinafter, also referred to as a stroke) is detected by the stroke sensor 26. The master pistons 22 and 23 are urged toward an initial position by a spring (not shown).
 リザーバ3は、外気に開放された(大気圧の)タンクであり、作動液を貯留している。リザーバ3は、マスタシリンダ21、減圧弁501~504、及びポンプ513に接続されている。リザーバ3とマスタ室24、25との間の流路は、マスタピストン22、23が初期位置にある際に連通し、マスタピストン22、23が所定量前進すると遮断される。 The reservoir 3 is a tank (at atmospheric pressure) opened to the outside air, and stores the hydraulic fluid. The reservoir 3 is connected to the master cylinder 21, the pressure reducing valves 501 to 504, and the pump 513. The flow path between the reservoir 3 and the master chambers 24, 25 communicates when the master pistons 22, 23 are at the initial position, and is shut off when the master pistons 22, 23 advance by a predetermined amount.
 ストロークシミュレータ4は、ブレーキ操作部材29に反力を付与する装置である。ストロークシミュレータ4は、シミュレータカット弁41を介してマスタ室24に接続されている。なお、シミュレータカット弁41は、非通電時に閉状態となるノーマルクローズ型の電磁弁であって、ブレーキ操作の開始とともに開弁する。 The stroke simulator 4 is a device that applies a reaction force to the brake operation member 29. The stroke simulator 4 is connected to the master chamber 24 via a simulator cut valve 41. Note that the simulator cut valve 41 is a normally closed solenoid valve that is closed when no power is supplied, and opens when the brake operation is started.
 液圧制御機構5は、車両制御装置1の指令に基づいて、ホイールシリンダ71~74の液圧(以下、ホイール圧と称する)を制御する装置である。液圧制御機構5は、減圧弁501~504と、増圧弁505、506、507、508と、マスタカット弁509、510と、アキュムレータ511と、モータ512と、ポンプ513と、圧力センサ514~520と、を備えている。各部は、液圧回路6によって接続されている。液圧回路6は、作動液が流通可能な複数の流路で構成されている。 The hydraulic pressure control mechanism 5 is a device that controls the hydraulic pressure of the wheel cylinders 71 to 74 (hereinafter, referred to as wheel pressure) based on a command from the vehicle control device 1. The hydraulic control mechanism 5 includes pressure reducing valves 501 to 504, pressure increasing valves 505, 506, 507, 508, master cut valves 509, 510, an accumulator 511, a motor 512, a pump 513, and pressure sensors 514 to 520. And Each part is connected by a hydraulic circuit 6. The hydraulic circuit 6 includes a plurality of flow paths through which the working fluid can flow.
 減圧弁501~504は、非通電時に閉状態となるノーマルクローズ型の電磁弁である。減圧弁501は、ホイールシリンダ71とリザーバ3とをつなぐ流路に設けられている。同様に、減圧弁502はホイールシリンダ72とリザーバ3とをつなぐ流路に設けられ、減圧弁503はホイールシリンダ73とリザーバ3とをつなぐ流路に設けられ、減圧弁504はホイールシリンダ74とリザーバ3とをつなぐ流路に設けられている。減圧弁501~504を開弁させることで、ホイール圧を減圧することができる。 (4) The pressure reducing valves 501 to 504 are normally closed type solenoid valves that are closed when power is not supplied. The pressure reducing valve 501 is provided in a flow path connecting the wheel cylinder 71 and the reservoir 3. Similarly, a pressure reducing valve 502 is provided in a flow path connecting the wheel cylinder 72 and the reservoir 3, a pressure reducing valve 503 is provided in a flow path connecting the wheel cylinder 73 and the reservoir 3, and a pressure reducing valve 504 is provided in the flow path connecting the wheel cylinder 74 and the reservoir 3. 3 is provided in the flow path connecting the first and second channels. By opening the pressure reducing valves 501 to 504, the wheel pressure can be reduced.
 増圧弁505~508は、非通電時に閉状態となるノーマルクローズ型の電磁弁である。増圧弁505は、ホイールシリンダ71とアキュムレータ511とをつなぐ流路に設けられている。同様に、増圧弁506はホイールシリンダ72とアキュムレータ511とをつなぐ流路に設けられ、増圧弁507はホイールシリンダ73とアキュムレータ511とをつなぐ流路に設けられ、増圧弁508はホイールシリンダ74とアキュムレータ511とをつなぐ流路に設けられている。増圧弁505~508のアキュムレータ511側のポートは、流路により互いに接続されている。増圧弁505~508を開弁させることで、ホイール圧を増圧することができる。 (4) The pressure-intensifying valves 505 to 508 are normally closed solenoid valves that are closed when power is not supplied. The pressure increasing valve 505 is provided in a flow path connecting the wheel cylinder 71 and the accumulator 511. Similarly, a pressure increasing valve 506 is provided in a flow path connecting the wheel cylinder 72 and the accumulator 511, a pressure increasing valve 507 is provided in a flow path connecting the wheel cylinder 73 and the accumulator 511, and the pressure increasing valve 508 is provided in the wheel cylinder 74 and the accumulator 511. 511 is provided in the flow path. The ports on the accumulator 511 side of the pressure increasing valves 505 to 508 are connected to each other by a flow path. The wheel pressure can be increased by opening the pressure increasing valves 505 to 508.
 マスタカット弁509、510は、非通電時に開状態となるノーマルオープン型の電磁弁である。マスタカット弁509は、増圧弁505のホイールシリンダ71側のポートとマスタ室25とを接続する流路に設けられている。マスタカット弁510は、増圧弁508のホイールシリンダ74側のポートとマスタ室24とを接続する流路に設けられている。マスタカット弁509、510は、必要に応じて下流へのマスタ圧の供給をカットするための弁である。 The master cut valves 509 and 510 are normally open solenoid valves that are opened when power is not supplied. The master cut valve 509 is provided in a flow path that connects a port on the wheel cylinder 71 side of the pressure increasing valve 505 and the master chamber 25. The master cut valve 510 is provided in a flow path connecting the port on the wheel cylinder 74 side of the pressure increasing valve 508 and the master chamber 24. The master cut valves 509 and 510 are valves for cutting off the supply of the master pressure to the downstream as necessary.
 アキュムレータ511は、高圧の作動液を貯留する蓄圧装置である。モータ512は、電動モータであって、ポンプ513を駆動する。ポンプ513は、吸入ポートがリザーバ3に接続され、吐出ポートがアキュムレータ511に接続されたポンプである。アキュムレータ511の液圧(以下、アキュムレータ圧と称する)は、ポンプ513の駆動により高圧に維持される。 The accumulator 511 is a pressure accumulator that stores a high-pressure hydraulic fluid. The motor 512 is an electric motor and drives the pump 513. The pump 513 has a suction port connected to the reservoir 3 and a discharge port connected to the accumulator 511. The hydraulic pressure of the accumulator 511 (hereinafter, referred to as accumulator pressure) is maintained at a high pressure by driving the pump 513.
 圧力センサ514は、マスタ室25の液圧(マスタ圧)を検出する。圧力センサ515は、マスタ室24の液圧(マスタ圧)を検出する。圧力センサ516は、アキュムレータ圧を検出する。圧力センサ517、518、519、520は、対応するホイールシリンダ71~74のホイール圧を検出する。また、各車輪には、車輪速度センサSが設置されている。なお、ホイール圧は、例えばマスタ圧と制御状態から推定(演算)してもよく、この場合、圧力センサ517~520は省略できる。 The pressure sensor 514 detects the hydraulic pressure (master pressure) in the master chamber 25. The pressure sensor 515 detects the hydraulic pressure (master pressure) of the master chamber 24. Pressure sensor 516 detects the accumulator pressure. Pressure sensors 517, 518, 519, and 520 detect wheel pressures of corresponding wheel cylinders 71 to 74. Each wheel is provided with a wheel speed sensor S. The wheel pressure may be estimated (calculated) from, for example, the master pressure and the control state. In this case, the pressure sensors 517 to 520 can be omitted.
 車両制御装置1は、CPUやメモリ等を備える電子制御ユニット(ECU)であって、上記した各種センサからの情報に基づき、シミュレータカット弁41及び液圧制御機構5を制御する装置である。車両制御装置1は、ストロークに応じて車両の目標減速度を決定し、目標減速度に基づいて目標ホイール圧を決定する。車両制御装置1は、目標ホイール圧に基づいて、各電磁弁41、501~510の開閉及びモータ512の駆動を制御する。目標ホイール圧の単位時間あたりの変化が、ホイール圧の目標変化勾配となる。 The vehicle control device 1 is an electronic control unit (ECU) including a CPU, a memory, and the like, and is a device that controls the simulator cut valve 41 and the hydraulic control mechanism 5 based on information from the various sensors described above. The vehicle control device 1 determines a target deceleration of the vehicle according to the stroke, and determines a target wheel pressure based on the target deceleration. The vehicle control device 1 controls opening and closing of each of the solenoid valves 41, 501 to 510 and driving of the motor 512 based on the target wheel pressure. The change per unit time of the target wheel pressure becomes the target change gradient of the wheel pressure.
 ここで、車両制御装置1の制御対象である減圧弁501~504の構成について、減圧弁501を例に説明する。減圧弁501は、オンオフ弁(2値制御弁)でなく、リニア制御可能な電磁弁であって、ノーマルクローズ型にかかる公知の構成を有している。減圧弁501は、図2に示すように、制御電流の印加により駆動する弁体(可動コア)であるプランジャ5011と、閉状態でプランジャ5011が着座する弁座5012と、プランジャ5011を弁座5012に向けて付勢するバネ機構5013と、ソレノイド部5014と、を備えている。ソレノイド部5014に制御電流が印加されると、その電流値に応じてプランジャ5011に弁座5012から遠ざかる方向(すなわちバネ力に逆らう方向)の電磁力が加わる。この電磁力と入出力ポート間501a、501bの差圧による流体力との合計が、バネ力と摩擦力の合計を超えることで、プランジャ5011が弁座5012から離れて、減圧弁501が開状態となる。この減圧弁501の状態が閉状態から開状態に切り替わる制御電流の電流値を「切替電流値」と称する。 Here, the configuration of the pressure reducing valves 501 to 504 to be controlled by the vehicle control device 1 will be described using the pressure reducing valve 501 as an example. The pressure reducing valve 501 is not an on / off valve (binary control valve) but an electromagnetic valve that can be linearly controlled, and has a known configuration of a normally closed type. As shown in FIG. 2, the pressure reducing valve 501 includes a plunger 5011 that is a valve body (movable core) driven by application of a control current, a valve seat 5012 on which the plunger 5011 is seated in a closed state, and a valve seat 5012 And a solenoid mechanism 5014 for urging the actuator in the direction of. When a control current is applied to the solenoid unit 5014, an electromagnetic force is applied to the plunger 5011 in a direction away from the valve seat 5012 (that is, a direction against the spring force) according to the current value. When the sum of the electromagnetic force and the fluid force due to the differential pressure between the input / output ports 501a and 501b exceeds the sum of the spring force and the friction force, the plunger 5011 is separated from the valve seat 5012, and the pressure reducing valve 501 is opened. It becomes. The current value of the control current at which the state of the pressure reducing valve 501 switches from the closed state to the open state is referred to as a “switching current value”.
 切替電流値は、ノーマルクローズ型の減圧弁501~504が閉状態から開状態に切り替わる基準の電流値であり、かつ、減圧弁501~504の入出力ポート間の差圧(以下、「第1差圧」と称する)の大きさに基づいて設定される電流値である。車両制御装置1は、切替電流値より大きい電流値の制御電流を減圧弁501~504に与えることで減圧弁501を開状態とする。 The switching current value is a reference current value at which the normally closed pressure reducing valves 501 to 504 switch from a closed state to an open state, and a differential pressure between the input / output ports of the pressure reducing valves 501 to 504 (hereinafter referred to as “first pressure reducing valve”). (Referred to as "differential pressure"). The vehicle control device 1 opens the pressure reducing valve 501 by supplying a control current having a current value larger than the switching current value to the pressure reducing valves 501 to 504.
 車両制御装置1は、減圧弁501~504を開弁するにあたり、機能として、制御部11と、設定部12と、を備えている。制御部11は、図3に示すように、ノーマルクローズ型の減圧弁501~504を閉状態から開状態にするにあたり、切替電流値よりも第1所定量だけ小さい電流値まで第1電流勾配で制御電流の電流値を増加させ、続いて、少なくとも制御電流の電流値が切替電流値より大きくなるまで、第1電流勾配よりも小さい第2電流勾配で制御電流の電流値を増加させる開弁制御を行うように構成されている。 The vehicle control device 1 includes a control unit 11 and a setting unit 12 as functions when opening the pressure reducing valves 501 to 504. As shown in FIG. 3, the control unit 11 changes the normally closed pressure reducing valves 501 to 504 from the closed state to the open state with a first current gradient up to a current value smaller by a first predetermined amount than the switching current value. Valve opening control for increasing the current value of the control current and subsequently increasing the current value of the control current at a second current gradient smaller than the first current gradient until at least the current value of the control current becomes larger than the switching current value It is configured to perform.
 制御部11は、例えば、制御電流の電流値が切替電流値より大きい開弁保持電流値になるまで第2電流勾配での電流増加を実行する。開弁保持電流値は、切替電流値よりも第2所定量大きい値である。 The control unit 11 executes the current increase with the second current gradient, for example, until the current value of the control current becomes the valve-opening holding current value larger than the switching current value. The valve opening holding current value is a value that is larger by a second predetermined amount than the switching current value.
 設定部12は、第1差圧の目標変化勾配が大きいほど、第2電流勾配を小さくするように構成されている。第1実施形態において、第1差圧は、ホイール圧と大気圧(リザーバ3の圧力)との差であり、計算上、ホイール圧と同じ値となる。したがって、第1差圧の目標変化勾配は、ホイール圧の目標変化勾配と同じである。つまり、設定部12は、ホイール圧の目標変化勾配(目標ホイール圧の変化勾配)に基づいて、第2電流勾配を設定している。第1差圧の目標変化勾配の増大に対する第2電流勾配の減少変化は、段階的でも、リニアでも、又は二次関数的でもよい。例えば、設定部12は、第1差圧の目標変化勾配に対して所定閾値を設定し、開弁制御開始時の第1差圧の目標変化勾配が所定閾値以上である場合、第2電流勾配を小さくように設定されてもよい(図3の「変更前の第2電流勾配」と「変更後の第2電流勾配」を参照)。この所定閾値は、複数設定されてもよい。開弁制御は、電流勾配制限制御ともいえる。 The setting unit 12 is configured to reduce the second current gradient as the target change gradient of the first differential pressure increases. In the first embodiment, the first differential pressure is the difference between the wheel pressure and the atmospheric pressure (the pressure of the reservoir 3), and has the same value as the wheel pressure in calculation. Therefore, the target change gradient of the first differential pressure is the same as the target change gradient of the wheel pressure. That is, the setting unit 12 sets the second current gradient based on the target change gradient of the wheel pressure (change gradient of the target wheel pressure). The decreasing change of the second current gradient with respect to the increase of the target changing gradient of the first differential pressure may be stepwise, linear, or quadratic. For example, the setting unit 12 sets a predetermined threshold value for the target change gradient of the first differential pressure, and when the target change gradient of the first differential pressure at the start of the valve opening control is equal to or larger than the predetermined threshold value, the second current gradient May be set to be small (see “second current gradient before change” and “second current gradient after change” in FIG. 3). A plurality of the predetermined thresholds may be set. The valve opening control can also be referred to as current gradient limiting control.
 開弁制御が実行されるまでの流れの例として、運転者がブレーキ操作部材29の操作を解除した際、ホイール圧が所定圧以上であるか否かが判定される。そして、ホイール圧が所定圧以上である場合には、切替電流値が現在減圧弁501~504に印加している制御電流の電流値より大きいか否かが判定される。そして、切替電流値が現在の制御電流の電流値より大きい場合、上記の開弁制御が実行される。 と し て As an example of the flow up to the execution of the valve opening control, when the driver releases the operation of the brake operation member 29, it is determined whether or not the wheel pressure is equal to or higher than a predetermined pressure. If the wheel pressure is equal to or higher than the predetermined pressure, it is determined whether or not the switching current value is larger than the current value of the control current currently applied to the pressure reducing valves 501 to 504. Then, when the switching current value is larger than the current value of the control current, the above-described valve opening control is executed.
 第1実施形態において、第1差圧の目標変化勾配が大きい状況とは、制御対象が減圧弁501~504であるため、ホイール圧の目標減圧勾配が大きい状況を意味する。従来、目標減圧勾配が大きい状況では、応答性の観点から、減圧弁501~504への制御電流を一気に増加させる制御が行われる傾向にあった。しかし、制御電流の増加勾配が大きいほど、プランジャ5011に加わる電磁力の増加勾配も大きくなり、プランジャ5011の移動時の加速度が大きくなる。これがプランジャ5011の自励振動の1つの原因となっていた。 に お い て In the first embodiment, a situation where the target change gradient of the first differential pressure is large means a situation where the target pressure reduction gradient of the wheel pressure is large because the control target is the pressure reducing valves 501 to 504. Conventionally, in a situation where the target pressure reduction gradient is large, from the viewpoint of responsiveness, there has been a tendency to perform control to increase the control current to the pressure reduction valves 501 to 504 at once. However, as the increasing gradient of the control current increases, the increasing gradient of the electromagnetic force applied to the plunger 5011 increases, and the acceleration of the movement of the plunger 5011 increases. This is one cause of the self-excited vibration of the plunger 5011.
 しかし、第1実施形態によれば、開弁制御において、制御電流の電流値が切替電流値をまたぐ際の電流勾配(すなわち第2電流勾配)は、第1差圧の目標変化勾配が大きいほど小さくなる。これにより、状況に応じて、開弁時のプランジャ5011の加速度の増大を抑制し、自励振動の発生を抑制することができる。つまり、第1実施形態によれば、自励振動による異音の発生を抑制することができる。 However, according to the first embodiment, in the valve opening control, the current gradient (that is, the second current gradient) when the current value of the control current crosses the switching current value is larger as the target change gradient of the first differential pressure is larger. Become smaller. Accordingly, it is possible to suppress an increase in the acceleration of the plunger 5011 when the valve is opened, and to suppress the occurrence of self-excited vibration depending on the situation. That is, according to the first embodiment, generation of abnormal noise due to self-excited vibration can be suppressed.
 また、第1実施形態では、第2電流勾配を小さくする閾値(目標変化勾配の閾値)は、特定の状況、例えば急操作、ABS制御(アンチスキッド制御)、ESC制御(横滑り防止制御)、又は自動ブレーキ制御における急な減圧時を想定して設定されている。つまり、通常操作における減圧時には、第2電流勾配が比較的大きく、応答性は確保される。また、第1所定量は、ハードのばらつき及び応答遅れを考慮して最小の値に設定されている。これにより、特定の状況においても応答性の低下を最小限に抑えられている。 Further, in the first embodiment, the threshold value for reducing the second current gradient (the threshold value of the target change gradient) is determined in a specific situation, for example, sudden operation, ABS control (anti-skid control), ESC control (side skid prevention control), or It is set assuming a sudden pressure reduction in the automatic brake control. That is, at the time of pressure reduction in the normal operation, the second current gradient is relatively large, and the responsiveness is secured. The first predetermined amount is set to a minimum value in consideration of hardware variation and response delay. As a result, even in a specific situation, a decrease in responsiveness is minimized.
<第2実施形態>
 第2実施形態の車両制御装置は、第1実施形態に比べて、制御対象がノーマルオープン型の電磁弁である点で異なっている。以下、主に異なる点について説明する。なお、第2実施形態の説明において、第1実施形態の説明及び図面を適宜参照できる。
<Second embodiment>
The vehicle control device according to the second embodiment is different from the first embodiment in that the control target is a normally open solenoid valve. Hereinafter, different points will be mainly described. In the description of the second embodiment, the description of the first embodiment and the drawings can be appropriately referred to.
 第2実施形態の車両制御装置10は、図4に示すように、車両に付与される制動力を制御するための液圧回路6に設けられた非通電時に開状態となるノーマルオープン型の電磁弁(「ノーマルオープン電磁弁」に相当する)81を備えた車両用制動装置91に適用されている。車両用制動装置91は、シリンダ機構20と、リザーバ3と、ストロークシミュレータ4と、アクチュエータ5Aと、各部を流路でつなぐ液圧回路6と、ホイールシリンダ71~74と、液圧制御機構8と、車両制御装置10と、を備えている。 As shown in FIG. 4, the vehicle control device 10 of the second embodiment is a normally open type electromagnetic electromagnetic valve which is provided in a hydraulic circuit 6 for controlling a braking force applied to a vehicle and which is opened when power is not supplied. The present invention is applied to a vehicle braking device 91 having a valve (corresponding to a “normally open solenoid valve”) 81. The vehicle braking device 91 includes a cylinder mechanism 20, a reservoir 3, a stroke simulator 4, an actuator 5A, a hydraulic circuit 6 for connecting various parts with flow paths, wheel cylinders 71 to 74, a hydraulic pressure control mechanism 8, , A vehicle control device 10.
 シリンダ機構20は、マスタシリンダ201と、ブレーキ操作部材29に接続された入力ピストン202と、マスタピストン203と、入力室204と、サーボ室205と、マスタ室206と、を備えている。シリンダ機構20は、入力ピストン202とマスタピストン203とが離間しているバイワイヤ構造となっている。ブレーキ操作部材29が操作され入力ピストン202が前進すると、ストロークに応じて液圧制御機構8から作動液がサーボ室205に流入し、サーボ室205の液圧(以下「サーボ圧」と称する)が増大し、マスタピストン203が前進する。そして、マスタ圧(マスタ室206の液圧)が増大する。マスタ室206は、アクチュエータ5Aを介してホイールシリンダ71、72に接続されている。リザーバ3とマスタ室206との接続は、マスタピストン203が初期位置から所定量前進することで遮断される。ストロークシミュレータ4は、図示しないが、入力室204及びサーボ室205の前方の部屋に反力液圧を発生させるように、シリンダ機構20に接続されている。 The cylinder mechanism 20 includes a master cylinder 201, an input piston 202 connected to the brake operating member 29, a master piston 203, an input chamber 204, a servo chamber 205, and a master chamber 206. The cylinder mechanism 20 has a by-wire structure in which the input piston 202 and the master piston 203 are separated from each other. When the brake operating member 29 is operated and the input piston 202 moves forward, the hydraulic fluid flows from the hydraulic pressure control mechanism 8 into the servo chamber 205 according to the stroke, and the hydraulic pressure in the servo chamber 205 (hereinafter, referred to as “servo pressure”). The master piston 203 moves forward. Then, the master pressure (the fluid pressure in the master chamber 206) increases. The master chamber 206 is connected to the wheel cylinders 71 and 72 via the actuator 5A. The connection between the reservoir 3 and the master chamber 206 is cut off when the master piston 203 advances by a predetermined amount from the initial position. Although not shown, the stroke simulator 4 is connected to the cylinder mechanism 20 so as to generate a reaction force hydraulic pressure in a room in front of the input chamber 204 and the servo chamber 205.
 アクチュエータ5Aは、いわゆるESCアクチュエータであって、図示しないポンプ及びリニア制御可能な電磁弁(差圧制御弁)によりホイール圧を加圧可能に構成されている。ただし、第2実施形態では、アクチュエータ5Aは、車両制御装置10の指令に基づき、通常のブレーキ操作時には液圧調整をせず、ABS制御時又はESC制御などの特定の時に液圧調整を実行する。 The actuator 5A is a so-called ESC actuator, and is configured to be able to increase wheel pressure by a pump (not shown) and a solenoid valve (differential pressure control valve) that can be linearly controlled. However, in the second embodiment, based on a command from the vehicle control device 10, the actuator 5A does not perform the hydraulic pressure adjustment during a normal brake operation, but performs the hydraulic pressure adjustment at a specific time such as during ABS control or ESC control. .
 液圧制御機構8は、電磁弁81と、モータ82と、ポンプ83と、を備えている。電磁弁81は、リニア制御可能な電磁弁であって、ノーマルオープン型にかかる公知の構成を有している。電磁弁81は、減圧弁501~504同様、プランジャ(弁体)と、弁座と、バネ機構と、ソレノイド部と、を備えている。つまり、電磁弁81は、自励振動が生じる可能性がある電磁弁である。モータ82は、ポンプ83を駆動する電動モータである。 The hydraulic control mechanism 8 includes an electromagnetic valve 81, a motor 82, and a pump 83. The solenoid valve 81 is a solenoid valve that can be linearly controlled, and has a known configuration of a normally open type. The solenoid valve 81 includes a plunger (valve element), a valve seat, a spring mechanism, and a solenoid, like the pressure reducing valves 501 to 504. That is, the electromagnetic valve 81 is an electromagnetic valve in which self-excited vibration may occur. The motor 82 is an electric motor that drives the pump 83.
 ポンプ83は、吸入ポートがリザーバ3及び電磁弁81の出力ポートに接続され、吐出ポートが電磁弁81の入力ポート、サーボ室205、及び(アクチュエータ5Aを介して)ホイールシリンダ73、74に接続されたポンプである。液圧回路6の一部が、電磁弁81とポンプ83とを環状につなぐ環状流路61を形成している。車両制御装置10は、通常、環状流路61を少量の作動液が流通するように、電磁弁81及びモータ82を制御している。 The pump 83 has a suction port connected to the reservoir 3 and the output port of the solenoid valve 81, and a discharge port connected to the input port of the solenoid valve 81, the servo chamber 205, and the wheel cylinders 73 and 74 (via the actuator 5A). Pump. A part of the hydraulic circuit 6 forms an annular flow path 61 that connects the electromagnetic valve 81 and the pump 83 in an annular shape. The vehicle control device 10 normally controls the electromagnetic valve 81 and the motor 82 so that a small amount of hydraulic fluid flows through the annular flow path 61.
 車両制御装置10は、目標ホイール圧に応じて、ポンプ83を駆動するとともに電磁弁81による流路の絞り量を調整し、電磁弁81の入出力ポート間の差圧(以下、「第2差圧」とも称する)を調整する。電磁弁81の出力ポート側の液圧は大気圧であり、目標ホイール圧の変化勾配が第2差圧の目標変化勾配となる。目標ホイール圧が増大すると目標差圧が増大し、車両制御装置10は、電磁弁81に付与する制御電流の電流値を大きくして、目標差圧に応じた絞り量に電磁弁81を制御する。流路が絞られてポンプ83が駆動することにより、第2差圧が目標差圧に向けて大きくなる。そして、高圧の作動液は、アクチュエータ5Aを介してホイールシリンダ73、74に供給されるとともに、サーボ室205に供給される。これにより、マスタ圧が上昇し、アクチュエータ5Aを介して高圧の作動液がホイールシリンダ71、72にも供給される。減圧時には、車両制御装置10は、電磁弁81を開状態として、第2差圧を小さくする。 The vehicle control device 10 drives the pump 83 according to the target wheel pressure and adjusts the amount of restriction of the flow path by the solenoid valve 81, so that the pressure difference between the input and output ports of the solenoid valve 81 (hereinafter referred to as the “second Pressure). The hydraulic pressure at the output port side of the solenoid valve 81 is atmospheric pressure, and the change gradient of the target wheel pressure is the target change gradient of the second differential pressure. When the target wheel pressure increases, the target differential pressure increases, and the vehicle control device 10 increases the current value of the control current applied to the electromagnetic valve 81, and controls the electromagnetic valve 81 to a throttle amount corresponding to the target differential pressure. . The second differential pressure increases toward the target differential pressure by driving the pump 83 with the flow path narrowed. Then, the high-pressure hydraulic fluid is supplied to the wheel cylinders 73 and 74 via the actuator 5A and also to the servo chamber 205. As a result, the master pressure increases, and high-pressure hydraulic fluid is also supplied to the wheel cylinders 71 and 72 via the actuator 5A. At the time of pressure reduction, the vehicle control device 10 opens the solenoid valve 81 to reduce the second differential pressure.
 車両制御装置10は、ホイール圧を減圧する際、切替電流値より小さい電流値の制御電流を電磁弁81に与えることで電磁弁81を開状態とする。具体的に、車両制御装置10の制御部11は、図5に示すように、ノーマルオープン型の電磁弁81を閉状態から開状態にするにあたり、切替電流値よりも第1所定量だけ大きい電流値まで第1電流勾配で制御電流の電流値を減少させ、続いて、少なくとも制御電流の電流値が切替電流値より小さくなるまで、第1電流勾配よりも小さい第2電流勾配で制御電流の電流値を減少させる開弁制御を行うように構成されている。設定部12は、第1実施形態同様、第2差圧の目標変化勾配が大きいほど第2電流勾配を小さくする。これにより、第1実施形態同様の効果が発揮される。 When reducing the wheel pressure, the vehicle control device 10 opens the electromagnetic valve 81 by supplying a control current having a current value smaller than the switching current value to the electromagnetic valve 81. Specifically, as shown in FIG. 5, the control unit 11 of the vehicle control device 10 sets a current larger than the switching current value by a first predetermined amount when the normally open solenoid valve 81 is changed from the closed state to the open state. Value of the control current at the first current gradient until the current value of the control current decreases to at least the current value of the control current at least until the current value of the control current becomes smaller than the switching current value. It is configured to perform valve opening control for decreasing the value. As in the first embodiment, the setting unit 12 reduces the second current gradient as the target change gradient of the second differential pressure increases. Thereby, the same effect as in the first embodiment is exerted.
 第2実施形態の車両用制動装置91は、例えば停車中などの限定された状態において、モータ作動音及びエネルギーロスの抑制の観点から、電磁弁81を閉弁し、モータ82を停止する制御が行われるように構成されてもよい。この場合、電磁弁81が閉状態でかつ第2差圧が大きい状態となり、開弁に伴い電磁弁81のプランジャに自励振動が発生する可能性が比較的高くなる。特にこのような状況において、上記開弁制御の効果が大きくなる。 The vehicle braking device 91 according to the second embodiment performs control to close the electromagnetic valve 81 and stop the motor 82 in a limited state such as when the vehicle is stopped, from the viewpoint of suppressing motor operating noise and energy loss. It may be configured to be performed. In this case, the solenoid valve 81 is in the closed state and the second differential pressure is in a large state, and the possibility that self-excited vibration occurs in the plunger of the solenoid valve 81 with the opening is relatively high. Particularly in such a situation, the effect of the valve opening control is increased.
<第3実施形態>
 第3実施形態の車両制御装置100は、例えば第1実施形態の車両用制動装置9又は第2実施形態の車両用制動装置91に適用され、第1実施形態及び第2実施形態に比べて、作動液の温度を開弁制御に反映させる点で異なっている。したがって異なっている部分について説明する。なお、第3実施形態の説明において、第1、2実施形態の説明及び図面を適宜参照できる。
<Third embodiment>
The vehicle control device 100 of the third embodiment is applied to, for example, the vehicle braking device 9 of the first embodiment or the vehicle braking device 91 of the second embodiment, and is different from the first and second embodiments. The difference is that the temperature of the hydraulic fluid is reflected in the valve opening control. Therefore, different parts will be described. In the description of the third embodiment, the description of the first and second embodiments and the drawings can be appropriately referred to.
 車両制御装置100は、図6に示すように、機能として、制御部11と、設定部12と、温度算出部13と、を備えている。温度算出部13は、例えば外気温度及び制御状態に基づいて、液圧回路6に充填される作動液の温度を算出(推定)するように構成されている。作動液の温度は、公知の方法で算出することができる。車両には、外気の温度を検出する温度センサ(図示せず)が設けられており、温度推定にこの検出結果を利用することができる。また、作動液の温度を直接的に計測する温度センサが液圧回路6に設けられている場合、温度算出部13は、その検出結果に基づいて作動液の温度を算出(決定)してもよい。 As shown in FIG. 6, the vehicle control device 100 includes a control unit 11, a setting unit 12, and a temperature calculation unit 13 as functions. The temperature calculation unit 13 is configured to calculate (estimate) the temperature of the working fluid filled in the hydraulic circuit 6 based on, for example, the outside air temperature and the control state. The temperature of the working fluid can be calculated by a known method. The vehicle is provided with a temperature sensor (not shown) for detecting the temperature of outside air, and the detection result can be used for temperature estimation. When a temperature sensor for directly measuring the temperature of the hydraulic fluid is provided in the hydraulic circuit 6, the temperature calculation unit 13 may calculate (determine) the temperature of the hydraulic fluid based on the detection result. Good.
 設定部12は、液圧回路6に充填される作動液の温度(温度算出部13の算出結果)に応じて第2電流勾配を設定する。設定部12は、作動液の温度に応じて第2電流勾配を小さくする。設定例の一例を説明する。作動液が第1所定温度未満となると、作動液中に気泡(空気)が発生し始める。ここで、電磁弁(501~504、81)のプランジャのバネ機構側に気泡が集まると、開弁時のプランジャの移動に対する抵抗が小さくなり、プランジャが移動しやすくなる。つまり、作動液中に空気が発生することで、開弁時にプランジャのスピードが高くなりやすくなり、自励振動が発生しやすくなる。 The setting unit 12 sets the second current gradient according to the temperature of the working fluid filled in the hydraulic circuit 6 (calculation result of the temperature calculation unit 13). The setting unit 12 reduces the second current gradient according to the temperature of the working fluid. An example of a setting example will be described. When the working fluid becomes lower than the first predetermined temperature, bubbles (air) start to be generated in the working fluid. Here, when air bubbles collect on the spring mechanism side of the plungers of the solenoid valves (501 to 504, 81), the resistance to the movement of the plunger when the valve is opened is reduced, and the plunger is easily moved. That is, the generation of air in the working fluid tends to increase the speed of the plunger when the valve is opened, and self-excited vibration is likely to occur.
 そこで、第3実施形態の設定部12は、開弁制御を実行するにあたり、作動液の温度が低いほど、第2電流勾配を小さくする。この第2電流勾配の変化は、作動液の温度変化に対して、段階的でも、リニアでも、二次関数的なものでもよい。例えば、設定部12は、温度算出部13の算出結果が第1所定温度未満であった場合、第2電流勾配を小さくする。これにより、自励振動を抑制するための制御を、より状況に応じた形で行うことができる。 Therefore, when performing the valve opening control, the setting unit 12 of the third embodiment reduces the second current gradient as the temperature of the working fluid decreases. The change in the second current gradient may be stepwise, linear, or quadratic in relation to a change in the temperature of the working fluid. For example, when the calculation result of the temperature calculation unit 13 is lower than the first predetermined temperature, the setting unit 12 reduces the second current gradient. Thereby, the control for suppressing the self-excited vibration can be performed in a form more suited to the situation.
 また別の例として、作動液の粘性に着目し、設定部12は、作動液の温度が高いほど、第2電流勾配を小さくしてもよい。作動液の温度が高いほどその粘性が小さくなり、開弁時のプランジャの移動に対する抵抗が小さくなり得る。そこで、例えば、設定部12は、温度算出部13の算出結果が第2所定温度以上であった場合、第2電流勾配を小さくする。これによっても、より状況に応じた制御が可能となる。 As yet another example, focusing on the viscosity of the hydraulic fluid, the setting unit 12 may reduce the second current gradient as the temperature of the hydraulic fluid is higher. The higher the temperature of the hydraulic fluid, the lower its viscosity, and the lower the resistance to movement of the plunger when the valve is opened. Therefore, for example, when the calculation result of the temperature calculation unit 13 is equal to or higher than the second predetermined temperature, the setting unit 12 reduces the second current gradient. This also enables control according to the situation.
 さらに、設定部12は、例えば、作動液の温度が、第1所定温度未満である場合又は第2所定温度以上である場合(第1所定温度<第2所定温度)、第2電流勾配を小さくしてもよい。設定部12には、複数の第2電流勾配の値、例えば通常勾配と低温時勾配及び/又は高温時勾配(特定勾配)とが記憶され、作動液の温度に応じて勾配値を選択してもよい。第3実施形態の開弁制御は、ノーマルクローズ型の電磁弁にも、ノーマルオープン型の電磁弁にも適用できる。 Further, for example, when the temperature of the hydraulic fluid is lower than the first predetermined temperature or higher than the second predetermined temperature (first predetermined temperature <second predetermined temperature), the setting unit 12 reduces the second current gradient. May be. The setting unit 12 stores a plurality of values of the second current gradient, for example, a normal gradient, a low temperature gradient, and / or a high temperature gradient (specific gradient), and selects a gradient value according to the temperature of the hydraulic fluid. Is also good. The valve opening control of the third embodiment can be applied to a normally closed solenoid valve and a normally open solenoid valve.
 また、第3実施形態において、設定部12は、液圧回路6に充填される作動液の温度に応じて第1所定量及び第2電流勾配のうち少なくとも一方を小さくするように構成されてもよい。例えば、作動液の温度により、設定部12が第2電流勾配を小さくする場合、設定部12が第2電流勾配を小さくする可能性が高い場合、又は作動液の粘性が極度に高い場合などに、設定部12が第1所定量を小さくすることで、応答性を改善することができる。 Further, in the third embodiment, the setting unit 12 may be configured to reduce at least one of the first predetermined amount and the second current gradient according to the temperature of the working fluid filled in the hydraulic circuit 6. Good. For example, depending on the temperature of the hydraulic fluid, when the setting unit 12 reduces the second current gradient, when it is highly possible that the setting unit 12 reduces the second current gradient, or when the viscosity of the hydraulic fluid is extremely high, etc. By setting the first predetermined amount smaller by the setting unit 12, the responsiveness can be improved.
<その他>
 本発明は、上記実施形態に限られない。例えば、設定部12は、応答性維持の観点から、第2電流勾配を小さくするとともに、第1所定量も小さくしてもよい。つまり、設定部12は、差圧の目標変化勾配が大きいほど、第1所定量を小さくしてもよい。第1所定量の変化は、目標変化勾配の変化に対して、段階的でも、リニアでも、二次関数的でもよい。これにより、応答性の劣化はさらに抑制される。
<Others>
The present invention is not limited to the above embodiment. For example, from the viewpoint of maintaining responsiveness, the setting unit 12 may reduce the second current gradient and also reduce the first predetermined amount. That is, the setting unit 12 may reduce the first predetermined amount as the target change gradient of the differential pressure increases. The change in the first predetermined amount may be stepwise, linear, or quadratic with respect to the change in the target change gradient. Thereby, the deterioration of the responsiveness is further suppressed.
 また、設定部12は、実際の第1差圧又は第2差圧が大きいほど、第1所定量及び第2電流勾配の少なくとも一方を小さくするように構成されてもよい。これらの変化の関係は、上記同様、段階的でも、リニアでも、二次関数的でもよい。例えば、設定部12は、開弁制御時の第1差圧又は第2差圧が所定差圧以上である場合、第2電流勾配を小さくする。実際の差圧が大きいほど、プランジャを開弁側に押す流体圧が大きくなり、自励振動が発生しやすい。しかし、この構成によれば、より状況に応じた開弁制御が可能となる。また、第1差圧又は第2差圧が大きいほど、第1所定量を小さくすることでも応答性の改善が可能となる。 The setting unit 12 may be configured to decrease at least one of the first predetermined amount and the second current gradient as the actual first differential pressure or the second differential pressure increases. The relationship between these changes may be stepwise, linear, or quadratic, as described above. For example, when the first differential pressure or the second differential pressure during the valve opening control is equal to or greater than a predetermined differential pressure, the setting unit 12 reduces the second current gradient. As the actual pressure difference increases, the fluid pressure pushing the plunger toward the valve opening side increases, and self-excited vibration is more likely to occur. However, according to this configuration, valve opening control according to the situation can be performed. In addition, as the first differential pressure or the second differential pressure increases, the responsiveness can be improved by reducing the first predetermined amount.
 また、第1~第3実施形態において、制御部11は、電磁弁開弁後は当該開状態を維持するために、切替電流値に対して、ノーマルクローズ型の場合、第2所定量だけ大きい値(開弁保持電流値)、ノーマルオープン型の場合、第2所定量だけ小さい値(開弁保持電流値)の制御電流を電磁弁に印加する。ここで、設定部12は、開弁制御において制御電流の電流勾配が第2電流勾配である際に、第1差圧又は第2差圧が所定値未満となった場合、制御電流の電流勾配を第2電流勾配よりも大きくするように構成されてもよい。つまり、開弁により対象差圧が小さくなった場合、制御部11は、制御電流を第2電流勾配より大きい電流勾配で変化させ、すばやく開弁保持電流値に到達させてもよい。減圧制御により、第1差圧又は第2差圧が小さくなって所定値未満となると、自励振動発生の可能性がほぼなくなるため、電流勾配を大きくし、例えば元の勾配(第1電流勾配)に戻しても問題ない。ただし、第2電流勾配のままでもよく、特に設定部12が第2電流勾配を小さくすることが想定される特定の状況では、開弁保持電流値まで電流勾配を変えなくても何ら問題ない。また、設定部12は、切替電流値をまたいでから所定量変化したら又は所定時間経過したら、電流勾配を第2電流勾配から変化させるように構成されてもよい。 In the first to third embodiments, the control unit 11 increases the switching current value by a second predetermined amount in the case of the normally closed type in order to maintain the open state after the solenoid valve is opened. In the case of the normally open type, a control current of a value (valve-opening holding current value) smaller by a second predetermined amount is applied to the solenoid valve. Here, when the current gradient of the control current is the second current gradient in the valve opening control, and the first differential pressure or the second differential pressure is less than a predetermined value, the setting unit 12 sets the current gradient of the control current. May be configured to be larger than the second current gradient. That is, when the target differential pressure decreases due to the opening of the valve, the control unit 11 may change the control current with a current gradient larger than the second current gradient to quickly reach the valve opening holding current value. If the first pressure difference or the second pressure difference becomes smaller than a predetermined value due to the pressure reduction control, the possibility of the occurrence of self-excited vibration is almost eliminated, so that the current gradient is increased, for example, the original gradient (the first current gradient) is reduced. There is no problem to return to). However, the second current gradient may be left as it is. In particular, in a specific situation where the setting unit 12 is assumed to reduce the second current gradient, there is no problem even if the current gradient is not changed to the valve-opening holding current value. Also, the setting unit 12 may be configured to change the current gradient from the second current gradient when a predetermined amount has changed or a predetermined time has elapsed after the switching current value has been crossed.
 また、第3実施形態の設定部12は、差圧の目標変化勾配が大きいほど第2電流勾配を小さくすることをせず、作動液の温度に応じて第2電流勾配を小さくするように構成されてもよい。また、説明は省略したが、例えばポンプ513、83の吐出ポートに接続された流路など、液圧回路6には、適宜逆止弁が配置されている。 Further, the setting unit 12 of the third embodiment does not reduce the second current gradient as the target change gradient of the differential pressure increases, but decreases the second current gradient in accordance with the temperature of the hydraulic fluid. May be done. Although not described, a check valve is appropriately disposed in the hydraulic circuit 6 such as a flow path connected to the discharge ports of the pumps 513 and 83, for example.

Claims (6)

  1.  車両に付与される制動力を制御するための液圧回路に設けられた非通電時に閉状態となるノーマルクローズ電磁弁を備えた車両用制動装置に適用され、
     前記ノーマルクローズ電磁弁が閉状態から開状態に切り替わる基準の電流値であり、かつ、前記ノーマルクローズ電磁弁の入出力ポート間の差圧の大きさに基づいて設定される電流値である切替電流値、より大きい電流値の制御電流を前記ノーマルクローズ電磁弁に与えることで前記ノーマルクローズ電磁弁を開状態とする車両制御装置であって、
     前記ノーマルクローズ電磁弁を閉状態から開状態にするにあたり、前記切替電流値よりも第1所定量だけ小さい電流値まで第1電流勾配で前記制御電流の電流値を増加させ、続いて、少なくとも前記制御電流の電流値が前記切替電流値より大きくなるまで、前記第1電流勾配よりも小さい第2電流勾配で前記制御電流の電流値を増加させる開弁制御を行う制御部と、
     前記差圧の目標変化勾配が大きいほど前記第2電流勾配を小さくする設定部と、
     を備える車両制御装置。
    Applied to a vehicle braking device having a normally closed solenoid valve that is closed when not energized provided in a hydraulic circuit for controlling a braking force applied to a vehicle,
    A switching current that is a reference current value at which the normally closed solenoid valve switches from a closed state to an open state, and is a current value set based on the magnitude of a differential pressure between input and output ports of the normally closed solenoid valve. Value, a vehicle control device that opens the normally closed solenoid valve by applying a control current having a larger current value to the normally closed solenoid valve,
    When the normally closed solenoid valve is changed from the closed state to the open state, the current value of the control current is increased at a first current gradient to a current value smaller than the switching current value by a first predetermined amount, and then at least the A control unit that performs valve-opening control to increase the current value of the control current with a second current gradient smaller than the first current gradient until the current value of the control current becomes larger than the switching current value;
    A setting unit that reduces the second current gradient as the target change gradient of the differential pressure is greater;
    A vehicle control device comprising:
  2.  車両に付与される制動力を制御するための液圧回路に設けられた非通電時に開状態となるノーマルオープン電磁弁を備えた車両用制動装置に適用され、
     前記ノーマルオープン電磁弁が閉状態から開状態に切り替わる基準の電流値であり、かつ、前記ノーマルオープン電磁弁の入出力ポート間の差圧の大きさに基づいて設定される電流値である切替電流値、より小さい電流値の制御電流を前記ノーマルオープン電磁弁に与えることで前記ノーマルオープン電磁弁を開状態とする車両制御装置であって、
     前記ノーマルオープン電磁弁を閉状態から開状態にするにあたり、前記切替電流値よりも第1所定量だけ大きい電流値まで第1電流勾配で前記制御電流の電流値を減少させ、続いて、少なくとも前記制御電流の電流値が前記切替電流値より小さくなるまで、前記第1電流勾配よりも小さい第2電流勾配で前記制御電流の電流値を減少させる開弁制御を行う制御部と、
     前記差圧の目標変化勾配が大きいほど前記第2電流勾配を小さくする設定部と、
     を備える車両制御装置。
    The present invention is applied to a vehicle braking device having a normally open solenoid valve that is opened when power is not supplied provided to a hydraulic circuit for controlling a braking force applied to a vehicle,
    A switching current that is a reference current value at which the normally open solenoid valve switches from a closed state to an open state, and is a current value set based on the magnitude of a differential pressure between input and output ports of the normally open solenoid valve. Value, a vehicle control device that opens the normally open solenoid valve by providing a control current having a smaller current value to the normally open solenoid valve,
    In changing the normally open solenoid valve from the closed state to the open state, the control current is decreased at a first current gradient to a current value larger than the switching current value by a first predetermined amount, and then at least the A control unit that performs valve-opening control to reduce the current value of the control current with a second current gradient smaller than the first current gradient until the current value of the control current becomes smaller than the switching current value;
    A setting unit that reduces the second current gradient as the target change gradient of the differential pressure is greater;
    A vehicle control device comprising:
  3.  前記設定部は、前記液圧回路に充填される作動液の温度に応じて、前記第1所定量及び前記第2電流勾配のうち少なくとも一方を小さくする請求項1又は2に記載の車両制御装置。 3. The vehicle control device according to claim 1, wherein the setting unit reduces at least one of the first predetermined amount and the second current gradient in accordance with a temperature of the hydraulic fluid filled in the hydraulic circuit. 4. .
  4.  前記設定部は、前記差圧の目標変化勾配が大きいほど、前記第1所定量を小さくする請求項1~3の何れか一項に記載の車両制御装置。 The vehicle control device according to any one of claims 1 to 3, wherein the setting unit decreases the first predetermined amount as the target change gradient of the differential pressure increases.
  5.  前記設定部は、前記差圧が大きいほど、前記第1所定量及び前記第2電流勾配のうち少なくとも一方を小さくする請求項1~4の何れか一項に記載の車両制御装置。 The vehicle control device according to any one of claims 1 to 4, wherein the setting unit reduces at least one of the first predetermined amount and the second current gradient as the differential pressure increases.
  6.  前記設定部は、前記開弁制御において前記制御電流の電流勾配が前記第2電流勾配である際に、前記差圧が所定値未満となった場合、前記制御電流の電流勾配を前記第2電流勾配よりも大きくする請求項1~5の何れか一項に記載の車両制御装置。 When the differential pressure is less than a predetermined value when the current gradient of the control current is the second current gradient in the valve opening control, the setting unit sets the current gradient of the control current to the second current gradient. The vehicle control device according to any one of claims 1 to 5, wherein the vehicle control device is set to be larger than the gradient.
PCT/JP2019/026198 2018-06-29 2019-07-01 Vehicle control device WO2020004673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-123989 2018-06-29
JP2018123989A JP7047635B2 (en) 2018-06-29 2018-06-29 Vehicle control unit

Publications (1)

Publication Number Publication Date
WO2020004673A1 true WO2020004673A1 (en) 2020-01-02

Family

ID=68987259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026198 WO2020004673A1 (en) 2018-06-29 2019-07-01 Vehicle control device

Country Status (2)

Country Link
JP (1) JP7047635B2 (en)
WO (1) WO2020004673A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027453A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Electromagnetic control valve control device and brake fluid pressure control device
JP2012236460A (en) * 2011-05-10 2012-12-06 Nissin Kogyo Co Ltd Vehicular brake fluid pressure control apparatus
JP2015199456A (en) * 2014-04-09 2015-11-12 株式会社アドヴィックス Vehicle control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027453A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Electromagnetic control valve control device and brake fluid pressure control device
JP2012236460A (en) * 2011-05-10 2012-12-06 Nissin Kogyo Co Ltd Vehicular brake fluid pressure control apparatus
JP2015199456A (en) * 2014-04-09 2015-11-12 株式会社アドヴィックス Vehicle control device

Also Published As

Publication number Publication date
JP2020001587A (en) 2020-01-09
JP7047635B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
CN109789856B (en) Vehicle brake device
US9505388B2 (en) Hydraulic brake system and hydraulic pressure controller
CN108698573B (en) Vehicle brake device
KR20170028393A (en) Braking system
WO2018096978A1 (en) Brake device and brake device control method
JP7206834B2 (en) vehicle braking device
JP6470703B2 (en) Braking device for vehicle
JP5407107B2 (en) Brake device
WO2017098856A1 (en) Brake device, brake system, and method for controlling brake device
US12194977B2 (en) Braking control device
WO2021132510A1 (en) Braking control device
JP7255388B2 (en) Braking control device
WO2020004673A1 (en) Vehicle control device
JP7167656B2 (en) vehicle braking device
US12257997B2 (en) Vehicle braking device
US20230356703A1 (en) Braking device for vehicle
JP7491001B2 (en) Vehicle Braking Device
JP5006243B2 (en) Brake control device
JP7247506B2 (en) Braking control device
WO2020027064A1 (en) Brake control device
JP6781580B2 (en) Vehicle braking device
JP6512550B2 (en) Brake device
JP7444010B2 (en) Vehicle braking device
JP2020019300A (en) Vehicle braking device
JP7172585B2 (en) vehicle braking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824444

Country of ref document: EP

Kind code of ref document: A1