[go: up one dir, main page]

WO2019244724A1 - Photosensitive resin composition and resist pattern formation method - Google Patents

Photosensitive resin composition and resist pattern formation method Download PDF

Info

Publication number
WO2019244724A1
WO2019244724A1 PCT/JP2019/023149 JP2019023149W WO2019244724A1 WO 2019244724 A1 WO2019244724 A1 WO 2019244724A1 JP 2019023149 W JP2019023149 W JP 2019023149W WO 2019244724 A1 WO2019244724 A1 WO 2019244724A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin composition
mass
alkali
soluble polymer
Prior art date
Application number
PCT/JP2019/023149
Other languages
French (fr)
Japanese (ja)
Inventor
義貴 加持
真一 国松
隆之 松田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2020525595A priority Critical patent/JP7169351B2/en
Priority to CN201980041589.0A priority patent/CN112352197A/en
Priority to KR1020247010981A priority patent/KR20240046924A/en
Priority to KR1020207036582A priority patent/KR102655468B1/en
Priority to CN202410867812.XA priority patent/CN118778362A/en
Publication of WO2019244724A1 publication Critical patent/WO2019244724A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a photosensitive resin composition, a method for forming a resist pattern, and the like.
  • a resist for manufacturing a printed wiring board or the like it has a support layer, a photosensitive resin layer laminated on the support layer, and a protective layer laminated as necessary on the photosensitive resin layer.
  • a photosensitive resin laminate a so-called dry film photoresist (hereinafter sometimes referred to as “DF”) is used.
  • DF dry film photoresist
  • the photosensitive resin layer is generally of an alkali developing type using a weak alkaline aqueous solution as a developing solution.
  • the following method can be mentioned.
  • the protective layer is first peeled off.
  • the DF is laminated on a substrate such as a copper-clad laminate or a substrate for permanent circuit production such as a flexible substrate using a laminator or the like.
  • the laminated DF is exposed through a wiring pattern mask film or the like.
  • the support layer is peeled off, and the photosensitive resin layer of the uncured portion (e.g., corresponding to the unexposed portion in the negative type) is dissolved or dispersed and removed with a developer, and a cured resist pattern (hereinafter, simply referred to as This may be referred to as a “resist pattern.”
  • the first method involves etching away the substrate surface not covered by the resist pattern (for example, the copper surface of the copper-clad laminate) and removing the resist pattern portion with an alkaline aqueous solution stronger than the developing solution. Including the etching method.
  • the second method involves plating the substrate surface with copper, solder, nickel, tin, or the like, removing the resist pattern in the same manner as in the first method, and then removing the exposed substrate surface (eg, copper). Etching the copper surface of the clad laminate).
  • a cupric chloride, a ferric chloride, a copper-ammonia complex solution or the like is used as a solution for the etching.
  • Patent Literature 1 describes a photosensitive resin composition whose resolution is enhanced by a specific thermoplastic resin, a monomer, and a photopolymerizable initiator.
  • Patent Document 2 describes a method for forming a resist pattern, which includes a step of heating both the exposed photosensitive resin composition layer and the substrate under pressure using a pressure heating mechanism.
  • Patent Literature 3 describes a method for forming a resist pattern including a step of exposing, heating, and developing a laminate in which (a) a photosensitive layer and (b) a resin layer are formed on a base material. ing.
  • Patent Literature 4 describes a method for forming a resist pattern, which includes a step of leaving a laminate under a reduced-pressure atmosphere or a low-oxygen-concentration atmosphere at least between exposure and heat treatment.
  • Patent Document 5 describes various additives optionally contained in the photosensitive resin layer of DF.
  • Patent Document 6 describes a protective layer preferably applied to DF.
  • a heating step (post-exposure heating: PEB) is performed on the photosensitive resin layer, followed by development.
  • PEB post-exposure heating
  • high resolution and high adhesion can be further improved.
  • the conventional photosensitive resin composition has not sufficiently improved the adhesion.
  • good adhesion may not be obtained even after the post-exposure heating step.
  • an object of the present invention is to provide a photosensitive resin composition that can significantly improve the adhesion when developed after heating after exposure.
  • One of the purposes is to provide
  • an object is to provide a photosensitive resin composition that exhibits good adhesion even when a long time has elapsed from exposure to heating.
  • the inventors of the present application have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that an alkali-soluble polymer having an inorganic value (I value) in a specific range; and an alkali-soluble polymer having a solubility parameter (sp value) in a specific range. It has been found that the above problem can be solved by a photosensitive resin composition containing a molecule; or an alkali-soluble polymer (A-1) having a specific structural unit, and the present invention has been completed. Examples of the embodiment of the present invention are listed in the following examples [1] to [29] of the embodiment.
  • a photosensitive resin composition for obtaining a cured resin by heating and developing after heating, the photosensitive resin composition, based on the total solid content mass of the photosensitive resin composition, the following Ingredients: (A) 10% to 90% by mass of an alkali-soluble polymer; (B) 5% to 70% by mass of a compound having an ethylenically unsaturated double bond, (C) 0.01 to 20% by mass of a photopolymerization initiator, A photosensitive resin composition, wherein the alkali-soluble polymer (A) has an inorganic value (I value) of 720 or less.
  • Item 2 The photosensitive resin composition according to item 1, wherein the alkali-soluble polymer (A) has an I value of 635 or less.
  • Item 3 The photosensitive resin composition according to Item 2, wherein the alkali-soluble polymer (A) has an I value of 600 or less.
  • 4 The photosensitive resin composition according to any one of items 1 to 3, wherein the alkali-soluble polymer (A) has an I value of 300 or more.
  • Item 5 The photosensitive resin composition according to item 4, wherein the alkali-soluble polymer (A) has an I value of 400 or more.
  • Item 6 The photosensitive resin composition according to item 5, wherein the alkali-soluble polymer (A) has an I value of 450 or more.
  • Item 7 The photosensitive resin composition according to Item 6, wherein the alkali-soluble polymer (A) has an I value of 500 or more.
  • Item 8 The photosensitive resin composition according to Item 7, wherein the alkali-soluble polymer (A) has an I value of 550 or more.
  • Item 10 The photosensitive resin composition according to item 9, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 21.40 MPa 1/2 or less.
  • Item 11 The photosensitive resin composition according to item 10, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 21.20 MPa 1/2 or less.
  • 12 The photosensitive resin composition according to any one of items 9 to 11, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 19.00 MPa 1/2 or more.
  • Item 13 Item 13.
  • the photosensitive resin composition according to Item 12 wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 19.50 MPa 1/2 or more.
  • Item 14 The photosensitive resin composition according to item 13, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 20.00 MPa 1/2 or more.
  • Item 15 The photosensitive resin composition according to item 14, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 20.50 MPa 1/2 or more.
  • a photosensitive resin composition for obtaining a cured resin by heating and developing after heating, the photosensitive resin composition, based on the total solid content mass of the photosensitive resin composition, the following Ingredients: (A) 10% to 90% by mass of an alkali-soluble polymer; (B) 5% to 70% by mass of a compound having an ethylenically unsaturated double bond, (C) 0.01 to 20% by mass of a photopolymerization initiator,
  • the photosensitive resin composition includes, as the alkali-soluble polymer (A), an alkali-soluble polymer (A-1) containing 52% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component.
  • a photosensitive resin composition comprising 3% by mass or more based on the total solid content in the photosensitive resin composition.
  • Item 17 The photosensitive resin composition according to item 16, wherein the photosensitive resin composition contains the alkali-soluble polymer (A-1) in an amount of 10% by mass or more based on the total solid content in the photosensitive resin composition. .
  • Item 18 The photosensitive resin composition according to item 16 or 17, wherein the alkali-soluble polymer (A-1) contains 55% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component.
  • Item 19 Item 19.
  • the alkali-soluble polymer (A-1) further includes a structural unit derived from benzyl (meth) acrylate as a monomer component.
  • the method for forming a resist pattern according to Item 25 wherein the exposing step is performed by an exposure method based on direct drawing of a drawing pattern.
  • the method of forming a resist pattern according to item 26 wherein the exposing step is performed by a method of exposing with a first laser beam having a center wavelength of less than 390 nm and a second laser beam having a center wavelength of 390 nm or more.
  • a circuit comprising forming a resist pattern on a substrate by the method according to any one of items 22 to 28, and forming a circuit board by etching or plating the substrate having the resist pattern. Substrate manufacturing method.
  • the adhesiveness of the resist pattern when heated (PEB) after exposure and then developed can be significantly improved.
  • the photosensitive resin composition of the present embodiment is a photosensitive resin composition for obtaining a cured resin by heating and developing after exposure.
  • the photosensitive resin composition comprises (A) 10% to 90% by mass of an alkali-soluble polymer, and (B) 5% to 70% by mass based on the total solid content of the photosensitive resin composition. It contains a compound having an ethylenically unsaturated double bond and (C) 0.01 to 20% by mass of a photopolymerization initiator.
  • the photosensitive resin composition may have an inorganic value (I value) of the alkali-soluble polymer (A) of 720 or less.
  • I value is also referred to as “inorganic value” and indicates a degree of physical property mainly due to electric affinity.
  • the “O value” is also called “organic value” and mainly indicates the degree of physical properties according to van der Waalska.
  • the I / O value is a parameter indicating a measure of lipophilicity / hydrophilicity of a compound or a substituent, and is determined based on an I value and an O value specific to the compound or the substituent. The higher the I / O value, the higher the inorganicity. For details of the I / O value, see Yoshio Koda, “Organic Conceptual Diagram”, Sankyo Publishing, 1984 and the like.
  • the photosensitive resin composition may have a solubility parameter (sp value) of the alkali-soluble polymer (A) of 21.45 MPa 1/2 or less.
  • the solubility parameter (sp value) is the square root of the cohesive energy density of a substance.
  • SP solubility parameter
  • the SP value means a value calculated by the Okitsu method.
  • the photosensitive resin composition is an alkali-soluble polymer (A) containing 52% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component. 1) may be contained in an amount of 3% by mass or more based on the total solid content in the photosensitive resin composition.
  • the photosensitive resin composition of the present embodiment has at least one characteristic of the inorganic value (I value), the solubility parameter (sp value), or the alkali-soluble polymer (A-1). Thereby, adhesion after heating after exposure and development can be significantly improved.
  • the alkali-soluble polymer (A) has an inorganic value (I value) of 720 or less and a solubility parameter (sp value) of 21.45 MPa 1/2 or less.
  • the alkali-soluble polymer (A) has an inorganic value (I value) of 720 or less and contains the alkali-soluble polymer (A-1) in an amount of 3% by mass or more based on the total solid content.
  • the solubility parameter (sp value) of the alkali-soluble polymer (A) is 21.45 MPa 1/2 or less, and the alkali-soluble polymer (A-1) is 3% by mass relative to the total solid content.
  • the alkali-soluble polymer (A) may have an inorganic value (I value) of 720 or less, a solubility parameter (sp value) of 21.45 MPa 1/2 or less, and a high alkali-soluble property.
  • Molecule (A- ) may contain 3 wt% or more based on the total solid mass.
  • a dry film resist obtained from a photosensitive resin composition tends to be hardly improved in adhesion unless heated immediately after exposure.
  • the dry film resist obtained from the photosensitive resin composition of the present embodiment can exhibit good adhesiveness even if a long time elapses from exposure to heating, and a thin resist pattern is obtained. be able to.
  • the reason why the adhesion when heated and developed after exposure is improved is not limited to theory, but the inventors presume as follows.
  • the inorganic value (I value) of the alkali-soluble polymer is 720 or less, the electric affinity of the alkali-soluble polymer is low, the permeability during development is suppressed, and the swelling / dissolution resistance is increased. As a result, it is considered that even a fine resist pattern is retained without being damaged by development.
  • the elapsed time from exposure to heating is long, radicals generated during exposure collide with oxygen in the alkali-soluble polymer and are deactivated, so that the effect of PEB is reduced.
  • an alkali-soluble polymer having a low electrical affinity does not easily contain water molecules because water is not easily ionized, and the movement of oxygen is prevented. Therefore, even if the elapsed time is long, the effect of PEB is maintained. Conceivable.
  • the solubility parameter (sp value) of the alkali-soluble polymer is 21.45 MPa 1/2 or less, the hydrophobicity of the alkali-soluble polymer is high, and the swelling / dissolution resistance during development is high. It is considered that the pattern is retained without being damaged by development.
  • alkali-soluble polymers having high hydrophobicity have low hygroscopicity and hinder the transfer of oxygen through water molecules, so that even if the elapsed time from exposure to heating is long, the effect of PEB is maintained. Conceivable. Since the photosensitive resin composition contains the alkali-soluble polymer (A-1) in an amount of 3% by mass or more based on the total solid content in the photosensitive resin composition, the mobility of the resin is greatly improved by heating after exposure. However, the hydrophobicity of the styrene skeleton and the reactivity of the carbon-carbon double bond can both be highly compatible. As a result, the adhesion can be significantly improved. And, since the adhesiveness is remarkably improved, good adhesiveness can be obtained even if a long time has elapsed after the exposure.
  • the upper limit of the inorganic value (I value) of the alkali-soluble polymer is preferably 635 or less, or 600 or less, and the lower limit is preferably 300 or more, 350 or more, 400 or more, 450 or more, 500 or more, or 550 or more.
  • the inorganic value (I value) is 350 or more, there is an advantage that a residue of an alkali-soluble polymer hardly remains between fine wirings.
  • the alkali-soluble polymer one kind may be used alone, or two or more kinds may be used in combination.
  • the inorganic value (I value) of the alkali-soluble polymer mixture is preferably within a specific range in the present embodiment.
  • the inorganic value (I value) of the mixture can be determined as the sum of the values obtained by multiplying the I value of each component by the weight fraction, assuming that the mixture is additive.
  • the upper limit of the solubility parameter (sp value) of the alkali-soluble polymer is preferably 21.40 MPa 1/2 or less, or 21.20 MPa 1/2 or less, and the lower limit is preferably 19.00 MPa 1/2 or more. , 19.50 MPa 1/2 or more, 20.00 MPa 1/2 or more, or 20.50 MPa 1/2 or more.
  • the solubility parameter (sp value) is 19.00 MPa 1/2 or more, there is an advantage that a residue of an alkali-soluble polymer hardly remains between fine wirings.
  • the alkali-soluble polymer one kind may be used alone, or two or more kinds may be used in combination.
  • the solubility parameter (sp value) of the alkali-soluble polymer mixture is preferably within a specific range in the present embodiment.
  • the solubility parameter (sp value) as a mixture can be determined as the sum of values obtained by multiplying the sp value of each component by the weight fraction, assuming that there is an additive property.
  • the alkali-soluble polymer refers to a polymer that is easily soluble in an alkaline substance to such an extent that the obtained photosensitive resin layer has developability and releasability in an aqueous alkali solution. More specifically, the amount of the carboxyl group contained in the alkali-soluble polymer is preferably 100 g to 600 g or 250 g to 450 g in terms of acid equivalent.
  • the acid equivalent is the mass (unit: gram) of a polymer having one equivalent of a carboxyl group in the molecule.
  • the carboxyl group in the alkali-soluble polymer gives the photosensitive resin layer developability and releasability to an aqueous alkali solution.
  • the acid equivalent When the acid equivalent is 100 or more, development resistance, resolution, and adhesion are improved.
  • the acid equivalent is more preferably 250 g or more.
  • the acid equivalent When the acid equivalent is 600 g or less, developability and peelability are improved. More preferably, the acid equivalent is 450 g or less.
  • the acid equivalent is a value measured by a potentiometric titration method using a potentiometric titrator and titrating with a 0.1 mol / L NaOH aqueous solution.
  • the weight average molecular weight (Mw) of the alkali-soluble polymer is preferably 5,000 to 500,000. When the weight average molecular weight is 500,000 or less, resolution and developability are improved.
  • the weight average molecular weight is more preferably 100,000 or less, 70,000 or less, 60,000 or less, or 50,000 or less. When the weight average molecular weight is 5,000 or more, it is easier to control the properties of the developed aggregates and the properties of the unexposed film such as the edge fuse property and the cut chip property in the photosensitive resin laminate.
  • the weight average molecular weight is more preferably 10,000 or more, or 20,000 or more.
  • the edge fusing property refers to the degree of ease in which the photosensitive resin layer protrudes from the end face of the roll when the photosensitive resin laminate is wound into a roll.
  • the cut chip property refers to the degree of chip flying when an unexposed film is cut with a cutter. If this chip adheres to the upper surface of the photosensitive resin laminate or the like, it is transferred to a mask in a later exposure step or the like, which causes a defective product.
  • the degree of dispersion defined as the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the alkali-soluble polymer, is preferably from 1.0 to 6.0, and 1.0 to 6.0. It is more preferably from 5.0 to 5.0, further preferably from 1.0 to 4.0, and further preferably from 1.0 to 3.0. Both the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the alkali-soluble polymer are values in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the alkali-soluble polymer is a simple polymer having an aromatic hydrocarbon group. It preferably contains a structural unit derived from a monomer component.
  • the aromatic hydrocarbon group include a substituted or unsubstituted phenyl group and a substituted or unsubstituted aralkyl group.
  • the lower limit of the amount of the monomer component having an aromatic hydrocarbon group in the alkali-soluble polymer is preferably 20% by mass or more, based on the total mass of all the monomer components of the alkali-soluble polymer.
  • % By mass 50% by mass or more, 55% by mass or more, or 60% by mass or more.
  • the upper limit of the amount of the monomer component having an aromatic hydrocarbon group is not limited, but may be, for example, 95% by mass or less, or 80% by mass or less.
  • the amount of the monomer component having an aromatic hydrocarbon group is determined as a weight average value.
  • the monomer having an aromatic hydrocarbon group examples include a monomer having an aralkyl group, styrene, and a styrene derivative.
  • the alkali-soluble polymer contains a structural unit derived from a monomer having an aralkyl group, styrene, or a styrene derivative, higher resolution can be provided.
  • an alkali-soluble polymer for example, a copolymer containing methacrylic acid, benzyl methacrylate and styrene, a copolymer containing methacrylic acid, methyl methacrylate, benzyl methacrylate and styrene, and the like are preferable.
  • Examples of the aralkyl group include a substituted or unsubstituted phenylalkyl group (excluding a benzyl group) and a substituted or unsubstituted benzyl group.
  • a substituted or unsubstituted benzyl group is preferable.
  • Examples of the comonomer having a phenylalkyl group include phenylethyl (meth) acrylate.
  • Examples of the comonomer having a benzyl group include (meth) acrylates having a benzyl group, such as benzyl (meth) acrylate and chlorobenzyl (meth) acrylate; and vinyl monomers having a benzyl group, such as vinylbenzyl chloride and vinyl. Benzyl alcohol and the like.
  • the comonomer having a benzyl group is preferably benzyl (meth) acrylate.
  • the alkali-soluble polymer is preferably a polymer of a first monomer having a polymerizable unsaturated group and a carboxyl group in the molecule, and the first monomer and the polymerizable unsaturated polymer in the molecule are preferably used. More preferably, it is a copolymer with a non-acidic second monomer having a group.
  • the alkali-soluble polymer contains a monomer component having an aromatic hydrocarbon group
  • the alkali-soluble polymer includes at least one of a monomer having an aromatic hydrocarbon group and a first monomer. And / or a copolymer with at least one of the second monomers.
  • the first monomer is a monomer having a polymerizable unsaturated group and a carboxyl group in the molecule.
  • the first monomer include (meth) acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, 4-vinylbenzoic acid, maleic anhydride, and maleic acid half ester. .
  • the first monomer is preferably (meth) acrylic acid.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acryloyl group” means acryloyl group or methacryloyl group
  • “(meth) acrylate” "Acrylate" or "methacrylate”.
  • the amount of the first monomer in the alkali-soluble polymer is preferably 10% by mass to 50% by mass based on the total mass of all monomer components constituting the alkali-soluble polymer.
  • the amount of the first monomer is more preferably 15% by mass or more, or 20% by mass or more.
  • the amount of the first monomer is 50% by mass or less, it is possible to provide higher resolution of the resist pattern, better lithography, and higher chemical resistance.
  • the amount of the first monomer is more preferably 35% by mass or less, 32% by mass or less, or 30% by mass or less.
  • the second monomer is a monomer that is non-acidic and has at least one polymerizable unsaturated group in the molecule.
  • the second monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate (Meth) acrylate compounds such as tert-butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; acetic acid Ester compounds of vinyl alcohol such as vinyl; and (meth) acrylonitrile.
  • the second monomer is preferably at least one selected from the group consisting of methyl (meth) acryl
  • the amount of the second monomer in the alkali-soluble polymer is preferably 10% by mass to 50% by mass based on the total mass of all the monomer components constituting the alkali-soluble polymer.
  • the amount of the second monomer is more preferably 15% by mass or more, or 20% by mass or more.
  • the amount of the second monomer is 50% by mass or less, it is possible to provide higher resolution of the resist pattern, better sedge shape, and higher chemical resistance.
  • the amount of the second monomer is more preferably 35% by mass or less, 32% by mass or less, or 30% by mass or less.
  • the alkali-soluble polymer can be composed of only one alkali-soluble polymer, or may be a mixture of two or more alkali-soluble polymers.
  • the alkali-soluble polymer contains two or more alkali-soluble polymers containing a monomer component having an aromatic hydrocarbon group, or contains an aromatic hydrocarbon. It is preferable to include at least one alkali-soluble polymer containing a monomer component having a group and at least one alkali-soluble polymer not containing a monomer component having an aromatic hydrocarbon group.
  • the amount of the alkali-soluble polymer containing the monomer component having an aromatic hydrocarbon group is preferably 50% by mass or more, 70% by mass or more, % By mass, 90% by mass or more, or 95% by mass or more.
  • the alkali-soluble polymer is more preferably an alkali-soluble polymer (A-1) containing a structural unit of styrene and / or a styrene derivative as a monomer component.
  • A-1 alkali-soluble polymer
  • styrene derivative include methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoic acid, styrene dimer, and styrene trimer.
  • the amount of the alkali-soluble polymer (A-1) contained in the photosensitive resin composition is preferably 3% by mass or more, 5% by mass or more, based on the total solid content in the photosensitive resin composition. It is 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, or 30% by mass or more.
  • the total amount of styrene and / or a styrene derivative that is a constituent unit of the alkali-soluble polymer (A-1) is preferably 52% by mass or more and 55% by mass based on the total mass of the alkali-soluble polymer (A-1). % Or more, 58% by mass or more, or 60% by mass or more. Even if the system contains 52% by mass or more of structural units derived from styrene and / or a styrene derivative, and is heated and developed after exposure, the mobility of the resin is increased by heating even in a system having a high styrene skeleton content.
  • the total amount of styrene and / or a styrene derivative which is a constituent unit of the alkali-soluble polymer (A-1) is preferably 90 mass% based on the total mass of the alkali-soluble polymer (A-1). %, 80% or less, 75% or less, or 70% or less.
  • the alkali-soluble polymer (A-1) is composed of a monomer to provide higher adhesiveness when heated and then developed after exposure, particularly better adhesiveness when a long time has elapsed after exposure. It is preferable to further include a structural unit derived from (meth) acrylic acid as a component.
  • the amount of the structural unit derived from (meth) acrylic acid is preferably 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass based on the total mass of the alkali-soluble polymer (A-1). % Or more, or 29% by mass or more.
  • the amount of the structural unit derived from (meth) acrylic acid is preferably 35% by mass or less, 32% by mass or less, or 30% by mass or less based on the total mass of the alkali-soluble polymer (A-1). % By mass or less.
  • the alkali-soluble polymer (A-1) is composed of a monomer to provide higher adhesiveness when heated and then developed after exposure, particularly better adhesiveness when a long time has elapsed after exposure. It is preferable to further include a structural unit derived from benzyl (meth) acrylate as a component.
  • the amount of the structural unit derived from benzyl (meth) acrylate is preferably 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass based on the total mass of the alkali-soluble polymer (A-1). % By mass or more.
  • the amount of the structural unit derived from benzyl (meth) acrylic acid is preferably 35% by mass or less, 32% by mass or less, based on the total mass of the alkali-soluble polymer (A-1). 30 mass% or less.
  • the weight average value Tg total of the glass transition temperature Tg of the alkali-soluble polymer (A) is preferably 30 ° C. or more and 150 ° C. or less.
  • Tg total of the alkali-soluble polymer is more preferably 135 ° C. or lower, 130 ° C. or lower, 125 ° C. or lower, 120 ° C. or lower, or 110 ° C. or lower.
  • Tg total of the alkali-soluble polymer is more preferably 40 ° C. or more, 50 ° C. or more, or 60 ° C. or more.
  • the amount of the alkali-soluble polymer (A) contained in the photosensitive resin composition is preferably from 10% by mass to 90% by mass, from 30% by mass to 70% by mass, based on the total solid content mass of the photosensitive resin composition. % By mass, or 40% by mass to 60% by mass.
  • the amount of the alkali-soluble polymer in the photosensitive resin composition is 90% by mass or less, it is easier to control the development time.
  • the amount of the alkali-soluble polymer in the photosensitive resin composition is 10% by mass or more, higher edge fuse resistance can be provided.
  • the synthesis of the alkali-soluble polymer (A) is performed by diluting one or more kinds of monomers constituting the alkali-soluble polymer with a solvent, adding an appropriate amount of a radical polymerization initiator, and polymerizing the mixture by heating and stirring. It can be carried out.
  • the solution used for the polymerization include solvents such as acetone, methyl ethyl ketone, and isopropanol.
  • the radical polymerization initiator include benzoyl peroxide and azoisobutyronitrile.
  • the synthesis may be performed while a part of the mixture of the monomers is dropped into the reaction solution. After completion of the reaction, the concentration may be adjusted to a desired concentration by further adding a solvent.
  • the synthesis method include bulk polymerization, suspension polymerization, and emulsion polymerization in addition to solution polymerization.
  • the compound (B) having an ethylenically unsaturated double bond has a (meth) acryloyl group in the molecule in order to provide better curability of the resin composition and higher compatibility with an alkali-soluble polymer. It is preferable to include a compound having the same.
  • the number of the (meth) acryloyl groups may be one or more per one molecule of the compound (B).
  • examples of the compound having one (meth) acryloyl group include, for example, a compound obtained by adding (meth) acrylic acid to one end of a polyalkylene oxide; Compounds in which (meth) acrylic acid is added to one end of polyalkylene oxide and the other end is alkyl-etherified or allyl-etherified; and phthalic acid-based compounds.
  • Examples of the compound having one (meth) acryloyl group include, for example, phenoxyhexaethylene glycol mono (meth) acrylate which is a (meth) acrylate of a compound obtained by adding polyethylene glycol to a phenyl group; 4-normalnonylphenoxyheptaethylene glycol dipropylene glycol (meth) acrylate, which is a (meth) acrylate of a compound obtained by adding a non-phenol to a polypropylene glycol obtained by adding a polyethylene glycol having an average of 7 moles of ethylene oxide and a polyethylene glycol having an ethylene oxide added thereto; an average of 1 mole Of a compound obtained by adding a propylene oxide to a nonylphenol and a polyethylene glycol having an average of 5 moles of ethylene oxide added to nonylphenol 4-Normalonylphenoxypentaethylene glycol monopropylene glycol (meth) acrylate, which is an acrylate; and 4-Normal
  • Octaethylene glycol (meth) acrylate for example, M-114, manufactured by Toagosei Co., Ltd.
  • M-114 manufactured by Toagosei Co., Ltd.
  • ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ ′-methacryloyloxyethyl- réelle-phthalate is also preferable. Also mentioned.
  • Examples of the compound having two (meth) acryloyl groups include a compound having a (meth) acryloyl group at both ends of an alkylene oxide chain, and an alkylene oxide chain in which an ethylene oxide chain and a propylene oxide chain are bonded at random or in a block.
  • Compounds having a (meth) acryloyl group at both ends are exemplified.
  • Examples of the compound having two (meth) acryloyl groups include tetraethylene glycol di (meth) acrylate, pentaethylene glycol di (meth) acrylate, hexaethylene glycol di (meth) acrylate, and heptaethylene glycol di (meth) acrylate.
  • Polyethylene glycols such as octaethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, decaethylene glycol di (meth) acrylate, and compounds having (meth) acryloyl groups at both ends of a 12 mole ethylene oxide chain Poly (meth) acrylate; polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, and an ethylene oxide group and propyleneoxy in the molecule.
  • Polyalkylene oxide di (meth) acrylate compounds, and the like comprising a base.
  • polyalkylene oxide di (meth) acrylate compound containing an ethylene oxide group and a propylene oxide group in the molecule for example, an average of 3 mol of ethylene oxide is further added to both ends of polypropylene glycol having an average of 12 mol of propylene oxide.
  • FA-023M, FA-024M, FA-027M product name, manufactured by Hitachi Chemical Co., Ltd.
  • bisphenol A has (meth) acryloyl groups at both terminals by alkylene oxide modification of bisphenol A.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • A is C 2 H 4
  • B is C 3 H 6
  • n 1 and n 3 are each independently N 1 + n 3 is an integer of 2 to 40
  • n 2 and n 4 are each independently an integer of 0 to 29, and n 2 + n 4 is an integer of 0 to 30
  • the sequence of the repeating units of-(AO)-and-(BO)- may be random or block. In the case of a block, any of-(A-0)-and-(BO)-may be on the bisphenyl group side.
  • Compounds represented by ⁇ are preferred.
  • dimethacrylate of polyethylene glycol having an average of 5 moles of ethylene oxide added to both ends of bisphenol A, and bisphenol A have an average of Dimethacrylate of polyethylene glycol to which ethylene oxide is added in an amount of 2 moles, and dimethacrylate of polyethylene glycol in which an average of 1 mole of ethylene oxide is added to both ends of bisphenol A, respectively, are preferred.
  • the aromatic ring in the general formula (I) may have a hetero atom and / or a substituent.
  • hetero atom examples include a halogen atom and the like.
  • substituent examples include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, a phenacyl group, an amino group, and an alkylamino group having 1 to 10 carbon atoms.
  • substituents may form a condensed ring.
  • a hydrogen atom in these substituents may be substituted with a hetero atom such as a halogen atom.
  • the aromatic ring in the general formula (I) has a plurality of substituents, the plurality of substituents may be the same or different.
  • the compound having three or more (meth) acryloyl groups in the molecule the compound having three or more moles of a group capable of adding an alkylene oxide group in the molecule as a central skeleton, and further having an ethyleneoxy group, a propyleneoxy group, Compounds obtained by subjecting an alcohol obtained by adding an alkyleneoxy group such as a butyleneoxy group to (meth) acrylate conversion are exemplified.
  • examples of the compound capable of forming the central skeleton include glycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, and an isocyanurate ring.
  • Examples of the compound having three or more (meth) acryloyl groups include tri (meth) acrylates such as ethoxylated glycerin tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and tri (meth) acrylate.
  • tri (meth) acrylates such as ethoxylated glycerin tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and tri (meth) acrylate.
  • Tetra (meth) acrylate for example, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, etc .; penta (meth) acrylate, Examples thereof include dipentaerythritol penta (meth) acrylate; and hexa (meth) acrylate, for example, dipentaerythritol hexa (meth) acrylate.
  • the compound having three or more (meth) acryloyl groups is preferable in terms of resolution, adhesion, and resist shape, and more preferably has three or more methacryl groups.
  • trimethylolpropane tri (meth) acrylate from the viewpoint of high flexibility and adhesion, and suppressing bleed-out, for example, trimethacrylate in which 21 mol of ethylene oxide is added to trimethylolpropane on average, and trimethylolpropane Trimethacrylate added with an average of 30 moles of ethylene oxide is preferred.
  • pentaerythritol tetra (meth) acrylate is preferable.
  • the pentaerythritol tetra (meth) acrylate may be, for example, tetra (meth) acrylate in which a total of 1 to 40 mol of alkylene oxide is added to four terminals of pentaerythritol.
  • hexa (meth) acrylate for example, hexa (meth) acrylate in which a total of 1 to 40 mol of ethylene oxide is added to six terminals of dipentaerythritol, and a total of 1 to 20 mol in six terminals of dipentaerythritol And hexa (meth) acrylate to which ⁇ -caprolactone is added.
  • the (meth) acrylate compounds can be used independently or in combination.
  • the photosensitive resin composition may also contain other compounds as the compound (B) having an ethylenically unsaturated bond.
  • Other compounds include a (meth) acrylate having a urethane bond, a compound obtained by reacting an ⁇ , ⁇ -unsaturated carboxylic acid with a polyhydric alcohol, and a reaction of an ⁇ , ⁇ -unsaturated carboxylic acid with a glycidyl group-containing compound.
  • 1,6-hexanediol di (meth) acrylate 1,6-hexanediol di (meth) acrylate.
  • the amount of the compound (B) having an ethylenically unsaturated double bond contained in the photosensitive resin composition is preferably from 5% by mass to 70% by mass based on the total solid content in the photosensitive resin composition. %. It is preferable that the amount of the compound (B) is 5% by mass or more from the viewpoints of sensitivity, resolution, and adhesion. The amount of the compound (B) is more preferably 20% by mass or more, or 30% by mass or more. When the amount of the compound (B) is 70% by mass or less, it is preferable from the viewpoint of suppressing edge fuses and peeling delay of the cured resist. The amount of the compound (B) is more preferably 50% by mass or less.
  • the compound (B) is a compound having an ethylenically unsaturated double bond and has the following general formula (II):
  • A is a divalent hydrocarbon group having 4 or more carbon atoms.
  • the compound (B1) having a structure represented by ⁇ may be used.
  • the compound (B) may be composed of only the compound (B1), or may have an ethylenically unsaturated double bond together with the compound (B1) and have the general formula (II) May further contain a compound (B2) having no structure represented by
  • the number of the ethylenically unsaturated double bonds contained in the compound (B1) may be one or more, and is preferably two or more, from the viewpoint of improving the residual film property at the time of development and the physical properties of the cured product.
  • the number is preferably 2 or more and 6 or less, more preferably 2 or more and 4 or less, and still more preferably 2.
  • the ethylenically unsaturated double bond contained in the compound (B1) is a group selected from an acryloyl group and a methacryloyl group from the viewpoint of compatibility with an alkali-soluble polymer and curability of the photosensitive resin composition (hereinafter, referred to as methacryloyl group). , "(Meth) acryloyl group").
  • the (A—O) moiety corresponds to the above (II), and A is a divalent hydrocarbon group having 4 or more carbon atoms, preferably a divalent hydrocarbon group having 4 to 8 carbon atoms; B 1 and B 2 are each independently an ethylene group or a propylene group, the sequence of (B 1 -O), (AO), and (B 2 -O) may be random or block; It is an integer of 0 to 50, n2 is an integer of 2 to 100, n3 is an integer of 0 to 50, and R 1 and R 2 are each independently a hydrogen atom or a methyl group. And the compound represented by ⁇ .
  • a in the formula (III) is a divalent hydrocarbon group having 4 or more carbon atoms, preferably a divalent hydrocarbon group having 4 to 8 carbon atoms.
  • the divalent hydrocarbon group may be linear, branched, or contain an alicyclic ring.
  • A is preferably a linear or branched alkylene group.
  • A examples include, for example, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, butane-2,3-diyl group, butane-1,2-diyl group, pentane-2,3-diyl group Pentane-1,4-diyl group, 2,2-dimethyl-1,3-propylene group, hexane-1,5-diyl group and the like.
  • A is preferably a divalent hydrocarbon group having 4 carbon atoms, more preferably an alkylene group having 4 carbon atoms, and particularly preferably a tetramethylene group.
  • n2 is an integer of 2 to 100, preferably an integer of 3 to 75, and more preferably an integer of 4 to 50.
  • B 1 and B 2 in the formula (III) may be each independently selected from a 1,2-ethylene group, a 1,2-propylene group, a 1,3-propylene group and the like.
  • n1 and n3 are each independently an integer of 0 to 50, preferably an integer of 0 to 30, an integer of 0 to 20, or an integer of 0 to 10.
  • n1 + n3 is preferably an integer of 0 to 10.
  • the arrangement of (B 1 -O), (AO), and (B 2 -O) may be random or block.
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group.
  • both n1 and n3 are each 0, and in the formula (III), both n1 and n3 are each 1 to 50 (preferably 1 to 30, 1 to 20) Or 1 to 10).
  • examples of the compound in which both n1 and n2 are each 0 include poly (tetramethylene glycol) di (meth) acrylate to which 2 to 100 moles of tetramethylene oxide is added.
  • n1 and n2 are each 1 to 50
  • polytetramethylene glycol to which 2 to 100 mol of tetramethylene oxide is added ethylene oxide or propylene oxide is further added at both ends to 1 And di (meth) acrylate of polyalkylene glycol to which about 50 mol has been added.
  • Compound (B1) may consist of only one compound, or one or more of 1, B 1 , B 2 , R 1 , R 2 , n1, n2 and n3 in formula (III) It may be a mixture of two or more different compounds.
  • Compound (B2) is a compound having an ethylenically unsaturated double bond and not having a structure represented by formula (II).
  • the number of ethylenically unsaturated double bonds contained in the compound (B2) may be one or more, and is preferably two or more, from the viewpoint of improving the residual film property at the time of development and the physical properties of the cured product. Preferably, it is 2 or more and 10 or less, 2 or more and 8 or less, or 2 or more and 6 or less.
  • the ethylenically unsaturated double bond contained in the compound (B2) is preferably a (meth) acryloyl group from the viewpoint of compatibility with the alkali-soluble polymer and curability of the photosensitive resin composition.
  • examples of the compound having two (meth) acryloyl groups include a compound having (meth) acryloyl groups at both ends of an alkylene oxide chain and both alkylene oxide-modified bisphenol A alkylene oxide chains.
  • a compound having a (meth) acryloyl group added to a terminal is exemplified.
  • the alkylene oxide chain in the compound having (meth) acryloyl groups at both ends of the alkylene oxide chain is a group in which two or more alkylene oxides selected from ethylene oxide and propylene oxide are linked. is there.
  • the compound (B2) contains both ethylene oxide and propylene oxide, these may be connected by random or block, or the random connection site and the block connection site may be mixed.
  • Examples of such a compound (B2) include tetraethylene glycol di (meth) acrylate, pentaethylene glycol di (meth) acrylate, hexaethylene glycol di (meth) acrylate, heptaethylene glycol di (meth) acrylate, and octaethylene.
  • Glycol di (meth) acrylate nonaethylene glycol di (meth) acrylate, decaethylene glycol di (meth) acrylate, a compound having (meth) acryloyl groups at both ends of a 12-mol ethylene oxide chain, polypropylene glycol di (meth) Acrylate, polybutylene glycol di (meth) acrylate, and polypropylene glycol to which an average of 12 moles of propylene oxide are added, and an average of 3 moles of ethylene oxide is further added to both ends of each.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • A is C 2 H 4
  • B is C 3 H 6
  • n1 and n3 are each Independently, an integer of 1 to 39
  • n1 + n3 is an integer of 2 to 40
  • n2 and n4 are each independently an integer of 0 to 29, and n2 + n4 is an integer of 0 to 30,
  • the sequence of the repeating units of-(AO)-and-(BO)- may be random or block, and in the case of a block,-(AO)-block and- Any of the (BO) -block may be on the bisphenyl group side. It may be a compound represented by ⁇ .
  • Examples of such a compound (B2) include, for example, dimethacrylate of polyethylene glycol having an average of 5 moles of ethylene oxide added to both ends of bisphenol A; 2 moles of both ends of bisphenol A on average. Dimethacrylate of polyethylene glycol to which ethylene oxide has been added, and dimethacrylate of polyethylene glycol having ethylene oxide added to both ends of bisphenol A in an average of 1 mol each, and the like. It is preferable from the viewpoint of adhesion and the like.
  • the compound having three or more (meth) acryloyl groups has, for example, at least 3 moles of a group capable of adding an alkylene oxide group in the molecule as a central skeleton, and an ethyleneoxy group. Or a compound obtained by converting an alcohol obtained by adding a propyleneoxy group to (meth) acrylate.
  • examples of the compound that can be the central skeleton include glycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, and an isocyanurate ring.
  • tri (meth) acrylate for example, ethoxylated glycerin tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate ) Acrylate and the like.
  • trimethylolpropane tri (meth) acrylates for example, trimethacrylate obtained by adding an average of 21 moles of ethylene oxide to trimethylolpropane, trimethacrylate obtained by adding an average of 30 moles of ethylene oxide to trimethylolpropane, and the like are flexible and adherent. It is preferable from the viewpoints of properties and bleed-out suppression.
  • examples of the tetra (meth) acrylate include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and the like. Of these, pentaerythritol tetra (meth) acrylate is preferred.
  • the pentaerythritol tetra (meth) acrylate is preferably tetra (meth) acrylate in which a total of 1 mol or more and 40 mol or less of alkylene oxide is added to four terminals of pentaerythritol.
  • examples of penta (meth) acrylate include dipentaerythritol penta (meth) acrylate.
  • examples of the hexa (meth) acrylate include hexa (meth) acrylate and dipentaerythritol in which a total of 1 to 40 mol of ethylene oxide is added to six terminals of dipentaerythritol.
  • Hexa (meth) acrylate in which ⁇ -caprolactone in a total of 1 mol or more and 20 mol or less is added to six terminals is preferable.
  • the compound (B2) may be composed of only one type of compound, or may be a mixture of two or more types of compounds.
  • the amount of the compound (B1) is preferably 5% by mass or more, 7% by mass or more based on the total mass of the compound (B). , 8% by mass or more, 9% by mass or more, or 10% by mass or more.
  • the amount of the compound (B1) is preferably 50% by mass or less, 30% by mass or less, and 20% by mass or less based on the total mass of the compound (B).
  • the photosensitive resin composition has the following components based on the total solid content mass of the photosensitive resin composition: (A) from 10% by weight to 90% by weight of an alkali-soluble polymer; (B) a compound having an ethylenically unsaturated double bond of 5% by mass or more and 70% by mass or less; (C) 0.01% by mass or more and 20% by mass or less of a photopolymerization initiator, and
  • the compound (B) having an ethylenically unsaturated double bond is represented by the following general formula (II):
  • A is a divalent hydrocarbon group having 4 or more carbon atoms.
  • the compound (B1) has the following general formula (III): ⁇ In the formula (III), A is a divalent hydrocarbon group having 4 to 8 carbon atoms, B 1 and B 2 are each independently an ethylene group or a propylene group, (B 1 -O), The sequence of (AO) and (B 2 -O) may be random or block, wherein n1 is an integer of 0 to 50, n2 is an integer of 2 to 100, and n3 is an integer of 0 to 50.
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group.
  • the photosensitive resin composition according to aspect 1 or 2 which is a compound represented by ⁇ .
  • a in the general formula (III) is a divalent hydrocarbon group having 4 carbon atoms.
  • the compound (B) having an ethylenically unsaturated double bond further includes a compound (B2) having an ethylenically unsaturated double bond and not having a structure represented by the general formula (II). 7.
  • Aspect 11 The photosensitive resin composition according to any one of aspects 1 to 10, wherein the photopolymerization initiator (C) contains an imidazole compound.
  • a support layer, 12. A photosensitive resin laminate having a layer of the photosensitive resin composition according to any one of aspects 1 to 11 on the support layer.
  • the method for forming a resist pattern according to aspect 16 wherein the exposing step is performed by a method of exposing with a first laser beam having a center wavelength of less than 390 nm and a second laser beam having a center wavelength of 390 nm or more.
  • the center wavelength of the first laser light is 350 nm or more and 380 nm or less
  • the center wavelength of the second laser light is 400 nm or more and 410 nm or less.
  • the photopolymerization initiator (C) is a compound that polymerizes a monomer by light, and may be a photopolymerization initiator generally known in the art.
  • the amount of the photopolymerization initiator in the photosensitive resin composition is preferably 0.01 to 20% by mass, 0.05 to 10% by mass, based on the total solid content of the photosensitive resin composition. It is 0.1% by mass to 7% by mass, or 0.1% by mass to 6% by mass. When the total amount of the photopolymerization initiator is 0.01% by mass or more, sufficient sensitivity can be obtained, and when the total amount is 20% by mass or less, light can be sufficiently transmitted to the bottom of the resist, resulting in good high resolution. Sex can be obtained.
  • quinone compounds As the photopolymerization initiator, quinone compounds, aromatic ketone compounds, acetophenone compounds, acylphosphine oxide compounds, benzoin or benzoin ether compounds, dialkyl ketal compounds, thioxanthone compounds, dialkylaminobenzoic acid ester compounds, oxime ester compounds, acridine compounds , Hexaarylbiimidazole, pyrazoline compounds, anthracene compounds, coumarin compounds, N-aryl amino acids or their ester compounds, and halogen compounds.
  • aromatic ketone compound examples include benzophenone, Michler's ketone [4,4'-bis (dimethylamino) benzophenone], 4,4'-bis (diethylamino) benzophenone, and 4-methoxy-4'-dimethylaminobenzophenone. Can be. Among these, 4,4'-bis (diethylamino) benzophenone is preferable from the viewpoint of adhesion. From the viewpoint of transmittance, the content of the aromatic ketone compound in the photosensitive resin composition is preferably 0.01% by mass to 0.5% by mass based on the total solid content of the photosensitive resin composition. Or 0.02% by mass to 0.3% by mass.
  • Examples of the acridine compound include 9-phenylacridine, bisacridinylheptane, 9- (p-methylphenyl) acridine, and 9- (m-methylphenyl) acridine, and have sensitivity, resolution, and adhesion properties. It is preferred in that respect.
  • anthracene compound an optionally substituted alkoxy group having 1 to 40 carbon atoms and / or an optionally substituted aryl group having 6 to 40 carbon atoms at the 9-position and / or the 10-position.
  • 9,10-diphenylanthracene, 9,10-dibutoxyanthracene, and 9,10-diethoxyanthracene are preferable in terms of sensitivity, resolution, and adhesion.
  • the coumarin compound for example, 7-diethylamino-4-methylcoumarin is preferable in terms of sensitivity, resolution, and adhesion.
  • N-arylamino acid or its ester compound for example, N-phenylglycine is preferable in terms of sensitivity, resolution, and adhesion.
  • halogen compound for example, tribromomethylphenylsulfone is preferable.
  • photopolymerization initiators include 2,2-dimethoxy-1,2-diphenylethan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 4,4,6-Trimethylbenzoyldiphenyl-phosphine oxide, triphenylphosphine oxide are also included.
  • Hexaarylbiimidazoles include 2- (o-chlorophenyl) -4,5-diphenylbiimidazole, 2,2 ′, 5-tris- (o-chlorophenyl) -4- (3,4-dimethoxyphenyl) -4 ', 5'-diphenylbiimidazole, 2,4-bis- (o-chlorophenyl) -5- (3,4-dimethoxyphenyl) -diphenylbiimidazole, 2,4,5-tris- (o-chlorophenyl)- Diphenylbiimidazole, 2- (o-chlorophenyl) -bis-4,5- (3,4-dimethoxyphenyl) -biimidazole, 2,2′-bis- (2-fluorophenyl) -4,4 ′, 5 , 5'-Tetrakis- (3-methoxyphenyl) -biimidazole, 2,2
  • 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer is preferred as hexaarylbiimidazole.
  • the amount of the hexaarylbisimidazole compound in the photosensitive resin composition is preferably 0.05% by mass to 7% by mass, and 0.1% by mass from the viewpoint of improving the peeling property and / or sensitivity of the photosensitive resin layer. % To 6% by mass, or 1% to 5% by mass.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • the photosensitive resin composition may further contain a photosensitizer from the viewpoint of improving the high transmittance, the peeling property of the photosensitive resin layer, and / or the sensitivity.
  • the photosensitizer include a pyrazoline compound and an anthracene compound.
  • the content of the photosensitizer in the photosensitive resin composition is preferably 0.01% by mass to 10% by mass, more preferably 0.05% by mass or less, based on the total solid content of the photosensitive resin composition. 5% by mass, 0.1% by mass to 3% by mass, 0.1% by mass to 1% by mass, or 0.1% by mass to 0.7% by mass.
  • the amount of the photosensitizer is 0.01% by mass or more, the release characteristics and sensitivity of the photosensitive resin layer can be further improved.
  • the amount of the photosensitizer is 10% by mass or less, the light transmittance of the photosensitive resin layer is maintained at a high level, which is preferable from the viewpoint of exposure efficiency.
  • Examples of the pyrazoline compound include 1-phenyl-3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazolin, 1- (4- (benzoxazol-2-yl) Phenyl) -3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-butyl- Phenyl) -pyrazolin, 1-phenyl-3- (4-biphenyl) -5- (4-tert-octyl-phenyl) -pyrazolin, 1-phenyl-3- (4-isopropylstyryl) -5- (4-isopropyl Phenyl) -pyrazolin, 1-phenyl-3- (4-methoxystyryl) -5- (4-methoxyphenyl
  • sialkoxyanthracene compounds such as 9,10-diphenylanthracene, 9,10-dibutoxyanthracene and 9,10-diethoxyanthracene can be used in view of sensitivity, resolution and adhesion. Is preferred.
  • the photosensitive resin composition preferably further contains a phenol derivative.
  • the phenol derivative include p-methoxyphenol, hydroquinone, pyrogallol, tert-butylcatechol, 2,6-di-tert-butyl-p-cresol, and 2,2′-methylenebis (4-methyl-6-tert- Butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,5-di-tert-amylhydroquinone, 2,5 -Di-tert-butylhydroquinone, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), bis (2-hydroxy-3-t-butyl-5-ethylphenyl) methane, triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxypheny
  • the amount of the phenol derivative in the photosensitive resin composition is preferably 0.001% by mass to 10% by mass based on the total solid content of the photosensitive resin composition.
  • the lower limit of the amount of the phenol derivative is more preferably 0.005% by mass or more, 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass. That is all.
  • the lower limit of the amount of the phenol derivative is more preferably 5% by mass or less, 2% by mass or less, 1% by mass or less, and 0.5% by mass or less in terms of a small decrease in sensitivity and an improvement in resolution. Or it is 0.3 mass% or less.
  • the photosensitive resin composition may optionally contain additives such as a coloring agent, a stabilizer, an adhesion aid, and a plasticizer.
  • additives such as a coloring agent, a stabilizer, an adhesion aid, and a plasticizer.
  • the additives listed in JP-A-2013-156369 may be used.
  • the photosensitive resin composition may further contain a coloring agent, for example, at least one selected from the group consisting of a dye and a coloring substance, if desired.
  • a coloring agent for example, at least one selected from the group consisting of a dye and a coloring substance, if desired.
  • the amount of the coloring substance in the photosensitive resin composition is preferably 0.001% by mass to 1% by mass based on the total solid content of the photosensitive resin composition.
  • the amount of the coloring substance is 0.001% by mass or more, the handleability of the photosensitive resin composition is improved.
  • the amount of the coloring substance is 1% by mass or less, the storage stability of the photosensitive resin composition is easily maintained.
  • the photosensitive resin composition is preferable from the viewpoint of visibility since the exposed portion is colored by containing a dye.
  • preferred dyes include leuco dyes and fluoran dyes.
  • the leuco dye include tris (4-dimethylaminophenyl) methane [leuco crystal violet], bis (4-dimethylaminophenyl) phenylmethane [leucomalachite green] and the like. From the viewpoint of improving the contrast, the leuco dye is more preferably leuco crystal violet.
  • the amount of the dye in the photosensitive resin composition is preferably from 0.1% by mass to 10% by mass based on the total solid content of the photosensitive resin composition. When the amount of the dye is 0.1% by mass or more, the contrast between the exposed part and the unexposed part becomes better.
  • the amount of the dye is more preferably 0.2% by mass or more, or 0.4% by mass or more. When the amount of the dye is 10% by mass or less, the storage stability of the photosensitive resin composition is easily maintained.
  • the amount of the dye is more preferably 5% by mass or less, or 2% by mass or less.
  • the photosensitive resin composition preferably contains a combination of a leuco dye and the halogen compound described in the section “(C) Photopolymerization initiator” above.
  • the amount of the halogen compound in the photosensitive resin composition is preferably 0.01% by mass to 3% by mass based on the total solid content of the photosensitive resin composition. The storage stability of the hue in the layer is easily maintained.
  • the photosensitive resin composition may further contain a stabilizer in order to improve thermal stability and storage stability.
  • the stabilizer may be, for example, at least one compound selected from the group consisting of a radical polymerization inhibitor, a benzotriazole compound, and a carboxybenzotriazole compound.
  • radical polymerization inhibitor examples include naphthylamine, cuprous chloride, nitrosophenylhydroxyamine aluminum salt, diphenylnitrosamine and the like. In order not to impair the sensitivity of the photosensitive resin composition, nitrosophenylhydroxyamine aluminum salt is preferred.
  • benzotriazole compound examples include 1,2,3-benzotriazole, 1-chloro-1,2,3-benzotriazole, bis (N-2-ethylhexyl) aminomethylene-1,2,3-benzotriazole, Bis (N-2-ethylhexyl) aminomethylene-1,2,3-tolyltriazole, bis (N-2-hydroxyethyl) aminomethylene-1,2,3-benzotriazole and the like can be mentioned.
  • carboxybenzotriazole compound examples include 4-carboxy-1,2,3-benzotriazole, 5-carboxy-1,2,3-benzotriazole, N- (N, N-di-2-ethylhexyl) aminomethylene Carboxybenzotriazole, N- (N, N-di-2-hydroxyethyl) aminomethylenecarboxybenzotriazole, N- (N, N-di-2-ethylhexyl) aminoethylenecarboxybenzotriazole and the like can be mentioned.
  • the total amount of the stabilizer in the photosensitive resin composition is preferably 0.01% by mass to 3% by mass, or 0.05% by mass to 1% by mass, based on the total mass of the solid content of the photosensitive resin composition. %.
  • the total amount of the stabilizer is 0.01% by mass or more, high storage stability can be imparted to the photosensitive resin composition. It is preferable that the total amount of the stabilizer is 3% by mass or less from the viewpoint of maintaining the sensitivity and suppressing the decolorization of the dye.
  • Decolorization of the dye can be measured at a transmittance of 630 nm. A high transmittance at a wavelength of 630 nm indicates that the dye has been decolorized.
  • the transmittance of the laminate of the support layer and the photosensitive resin composition layer at a wavelength of 630 nm is preferably 80% or less, 78% or less, 75% or less, 72% or less, 70% or less, 68% or less, 65%. Below, it is 62% or less, 60% or less, 58% or less, 55% or less, 52% or less, or 50% or less.
  • This transmittance is a transmittance as a laminate of the support layer and the photosensitive resin composition layer, and does not include the protective layer.
  • the photosensitive resin composition may further contain an epoxy compound of bisphenol A.
  • the bisphenol A epoxy compound include a compound obtained by modifying bisphenol A with polypropylene glycol and epoxidizing the terminal.
  • the photosensitive resin composition may further contain a plasticizer.
  • the plasticizer include a phthalic acid ester compound (eg, diethyl phthalate), o-toluenesulfonic acid amide, p-toluenesulfonic acid amide, tributyl citrate, triethyl citrate, acetyl triethyl citrate, triacetyl citrate -N-propyl, tri-n-butyl acetylcitrate, polyethylene glycol, polypropylene glycol, polyethylene glycol alkyl ether, polypropylene glycol alkyl ether and the like.
  • ADEKANOL SDX-1569, ADEKANOL SDX-1570, ADEKANOL SDX-1571, and ADEKANOL SDX-479 (manufactured by Asahi Denka Co., Ltd.); Newpole BP-23P, Newpole BP-3P, Newpole BP -5P, Newpole BPE-20T, Newpole BPE-60, Newpole BPE-100, and Newpole BPE-180 (manufactured by Sanyo Chemical Co., Ltd.); Uniall DB-400, Uniall DAB-800, Uniall DA-350F And Uniol DA-400 and Uniol DA-700 (manufactured by NOF Corporation); and compounds having a bisphenol skeleton such as BA-P4U glycol and BA-P8 glycol (manufactured by Nippon Emulsifier Co., Ltd.).
  • the amount of the plasticizer in the photosensitive resin composition is preferably 1% by mass to 50% by mass, or 1% by mass to 30% by mass, based on the total solid content of the photosensitive resin composition.
  • the amount of the plasticizer is 1% by mass or more, it is preferable from the viewpoint of suppressing the delay of the development time and imparting flexibility to the cured film. It is preferable that the amount of the plasticizer is 50% by mass or less from the viewpoint of suppressing insufficient curing and cold flow.
  • the photosensitive resin composition can be used in the production of a photosensitive resin laminate in the form of a photosensitive resin composition prepared by dissolving it in a solvent.
  • the solvent include ketone compounds and alcohol compounds.
  • Ketone compounds include methyl ethyl ketone (MEK) and acetone.
  • Alcohol compounds include methanol, ethanol, and isopropanol.
  • the amount of the solvent to be added to the photosensitive resin composition is such that the viscosity at 25 ° C. of the photosensitive resin composition preparation liquid applied on the support layer is 500 mPa ⁇ s to 4,000 mPa ⁇ s. Is preferred.
  • the amount of water in the photosensitive resin composition is determined based on the mass of the photosensitive resin composition after the preparation of the photosensitive resin composition is applied to the support layer and dried (water content after drying). It is preferable that the amount is 7% by mass or less.
  • the water content after drying in the photosensitive resin composition is more preferably 0.65% by mass or less, 0.6% by mass or less, 0.55% by mass or less, 0.5% by mass or less, 0.45% by mass or less. Hereinafter, it is 0.4 mass% or less, 0.35 mass% or less, 0.3 mass% or less, 0.25 mass% or less, or 0.2 mass% or less.
  • the photosensitive resin laminate of the present invention includes a support layer and a layer of the photosensitive resin composition of the present embodiment (hereinafter, also referred to as “photosensitive resin layer”) on the support layer. Have. A protective layer may be further provided on the photosensitive resin layer.
  • a transparent support film that transmits light emitted from an exposure light source is preferable.
  • the support film for example, polyethylene terephthalate film, polyvinyl alcohol film, polyvinyl chloride film, vinyl chloride copolymer film, polyvinylidene chloride film, vinylidene chloride copolymer film, polymethyl methacrylate copolymer film, polystyrene film, Examples include a polyacrylonitrile film, a styrene copolymer film, a polyamide film, and a cellulose derivative film.
  • a stretched support film may be used as necessary.
  • the support layer preferably has a haze of 5% or less, 2% or less, 1.5% or less, or 1.0% or less.
  • the surface roughness Ra of the surface of the support layer in contact with the photosensitive layer is preferably 30 nm or less, 20 nm or less, or 10 nm or less. The thinner the thickness of the support layer is, the more advantageous it is for improving image formability and economy. However, in order to maintain the strength of the photosensitive resin laminate, it is preferably 10 ⁇ m to 30 ⁇ m.
  • the support layer may contain fine particles such as a lubricant, if desired. The size of the fine particles is preferably less than 5 ⁇ m.
  • the support layer may have a single-layer structure or a multilayer structure in which resin layers formed from a plurality of compositions are laminated.
  • a multilayer structure there may be an antistatic layer.
  • the multilayer structure include, for example, a two-layered support layer having a resin layer on one surface of a substrate, and a three-layered support layer having a resin layer on both surfaces of the substrate.
  • the support layer having a three-layer structure for example, the support film exemplified above is used as a base material, and one surface A has a resin layer containing fine particles, and the other surface B has (1) having a resin layer containing substantially the same amount of fine particles as the resin layer on the surface A side; (2) having a resin layer containing a smaller amount of fine particles than the resin layer on the surface A side; (3) having a resin layer containing fine particles finer than the fine particles contained in the resin layer on the surface A side; and (4) having a resin layer containing no fine particles.
  • the size of the fine particles contained in the resin layer is preferably less than 1.5 ⁇ m.
  • the photosensitive resin laminate has a photosensitive resin layer on a support layer.
  • the photosensitive resin layer is a layer formed from the photosensitive resin composition of the present embodiment.
  • the thickness of the photosensitive resin layer in the photosensitive resin laminate varies depending on the application, but is preferably 1 ⁇ m to 300 ⁇ m, 3 ⁇ m to 100 ⁇ m, 5 ⁇ m to 60 ⁇ m, or 10 ⁇ m to 30 ⁇ m. When the thickness of the photosensitive resin layer is 1 ⁇ m or more, the film strength becomes higher. When the thickness of the photosensitive resin layer is 300 ⁇ m or less, the resolution becomes higher.
  • the photosensitive resin laminate may have a photosensitive resin layer on a support layer, and may further have a protective layer on the photosensitive resin layer.
  • An important characteristic of the protective layer used in the photosensitive resin laminate is that the adhesion to the photosensitive resin layer is sufficiently smaller than that of the support layer, and the protective layer can be easily peeled off.
  • a protective film such as a polyethylene film or a polypropylene film can be used.
  • a film having excellent releasability described in JP-A-59-202457 can also be used.
  • the thickness of the protective layer is preferably from 10 ⁇ m to 100 ⁇ m, more preferably from 10 ⁇ m to 50 ⁇ m.
  • a gel called fisheye may be present on the surface of the polyethylene film.
  • the fish eyes may be transferred to the photosensitive resin layer.
  • the material of the protective layer is preferably stretched polypropylene.
  • the photosensitive resin laminate can be manufactured by sequentially laminating a support layer, a photosensitive resin layer, and, if necessary, a protective layer.
  • the photosensitive resin composition of the present embodiment is first mixed with a solvent that dissolves the photosensitive resin composition to prepare a uniform photosensitive resin composition mixture.
  • the prepared solution of the photosensitive resin composition is applied to the support layer using a bar coater or a roll coater, and then dried to remove the solvent, so that the photosensitive resin comprising the photosensitive resin composition is formed on the support layer.
  • the layers can be stacked.
  • a protective layer is laminated on the photosensitive resin layer, whereby a photosensitive resin laminate can be manufactured.
  • the method for manufacturing a resist pattern according to the present embodiment includes the following steps: Exposing a layer of the photosensitive resin composition of the present embodiment (photosensitive resin layer); A heating step of heating the exposed photosensitive resin layer; and a developing step of developing the heated photosensitive resin layer.
  • the photosensitive resin layer exposed in the exposure step is typically laminated on a substrate.
  • the method for forming a resist pattern according to the present embodiment may include a laminating step of laminating a photosensitive resin layer on a substrate prior to the exposing step.
  • the resist pattern examples include a printed wiring board, a semiconductor element, a printing plate, a liquid crystal display panel, a touch panel, a flexible substrate, a lead frame substrate, a COF (chip-on-film) substrate, a semiconductor package substrate, a liquid crystal transparent electrode, and a liquid crystal.
  • a photosensitive resin layer is formed on the substrate using a laminator. Specifically, when the photosensitive resin laminate has a protective layer, the protective layer is peeled off, and then the photosensitive resin layer is laminated on the substrate surface by heating and pressing with a laminator.
  • the material of the substrate include copper, stainless steel (SUS), glass, indium tin oxide (ITO), and the like.
  • the photosensitive resin layer may be laminated on only one side of the substrate surface, or may be laminated on both sides as necessary.
  • the heating temperature during lamination is generally from 40 ° C to 160 ° C.
  • the photosensitive resin layer is exposed.
  • the exposure method an exposure method in which a mask film having a desired wiring pattern is brought into close contact with a support layer and using an active light source; an exposure method by directly drawing a drawing pattern as a desired wiring pattern; An exposure method by projecting an image through a lens is exemplified.
  • an exposure method by direct drawing of a drawing pattern or an exposure method of projecting an image of a photomask through a lens is preferable, and an exposure method by direct drawing of a drawing pattern is more preferable.
  • the advantage of the photosensitive resin composition according to the present embodiment is more remarkable in the exposure method by direct drawing of a drawing pattern, or the exposure method of projecting an image of a photomask through a lens, and in the exposure method by direct drawing of a drawing pattern. This is particularly noticeable.
  • the exposure step is an exposure method using direct writing
  • the laser light has a center wavelength of 350 nm or more and 380 nm or less, or has a center wavelength of 400 nm or more and 410 nm or less.
  • the exposure is preferably performed by a method of exposing with a first laser light having a center wavelength of less than 390 nm and a second laser light having a center wavelength of 390 nm or more. More preferably, the center wavelength of the first laser light is 350 nm or more and 380 nm or less, and the center wavelength of the second laser light is 400 nm or more and 410 nm or less.
  • the exposed photosensitive resin is heated (post-exposure heating).
  • the heating temperature is preferably 30 ° C to 150 ° C, more preferably 60 ° C to 120 ° C.
  • the resolution and the adhesion are improved.
  • a heating method hot air, infrared rays, far infrared rays, a thermostat, a hot plate, a hot air dryer, an infrared dryer, a hot roll, or the like can be used.
  • the heating method is a hot roll, the treatment can be performed in a short time, so that a hot roll having two or more hot rolls is more preferable.
  • the elapsed time from exposure to heating is preferably within 15 minutes or within 10 minutes.
  • the elapsed time from when the exposure was stopped to when the temperature was started was 10 seconds or more, 20 seconds or more, 30 seconds or more, 1 minute or more, 3 minutes or more, 4 minutes or more, or 5 minutes or more. It may be.
  • the photosensitive resin layer is developed. For example, after exposure, the support layer on the photosensitive resin layer is peeled off, and then the unexposed portion is developed and removed using a developing solution of an alkaline aqueous solution, whereby a resist pattern can be formed on the substrate.
  • an aqueous solution of Na 2 CO 3 or K 2 CO 3 is used as the alkaline aqueous solution.
  • the alkaline aqueous solution is appropriately selected according to the characteristics of the photosensitive resin layer, but is preferably a Na 2 CO 3 aqueous solution having a concentration of about 0.2% by mass to about 2% by mass and about 20 ° C. to about 40 ° C.
  • a circuit board can be manufactured using a substrate having a resist pattern formed by the above method.
  • the method of manufacturing a circuit board according to the present embodiment includes a circuit forming step of forming a circuit board by etching or plating a substrate having the resist pattern of the present embodiment.
  • a circuit is formed by etching or plating a substrate having a resist pattern.
  • a conductive pattern is manufactured by etching or plating the surface of the substrate exposed by development (for example, the copper surface of the copper-clad laminate).
  • the method for manufacturing a circuit board according to the present embodiment may further include, typically after the circuit forming step, a peeling step of peeling the resist pattern from the substrate.
  • the resist pattern is stripped from the substrate using an appropriate stripper.
  • the stripping solution include an alkaline aqueous solution and an amine-based stripping solution.
  • the resist pattern formed from the photosensitive resin composition of the present invention through post-exposure baking exhibits good releasability to an amine-based release liquid, and suppresses excessively fine release pieces. Therefore, when an amine-based stripping solution is used as the stripping solution, the advantageous effects of the present invention are more favorably exhibited.
  • the amine contained in the amine-based stripping solution may be an inorganic amine or an organic amine.
  • the inorganic amine include ammonia, hydroxylamine, hydrazine and the like.
  • the organic amine include ethanolamine, propanolamine, alkylamine, cyclic amine, and quaternary ammonium salt.
  • Examples of the ethanolamine include monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N-ethylethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, and aminoethoxyethanol.
  • Examples of propanolamine include 1-amino-2-propanol, 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, and the like.
  • Examples of the alkylamine include monomethylamine, dimethylamine, trimethylamine, ethyleneamine, ethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenetetramine, tetraethylenepentamine and the like.
  • Examples of the cyclic amine include choline, morpholine and the like.
  • Examples of the quaternary ammonium salt include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, N, N, N-triethyl-N- (2-hydroxyethyl) ammonium hydroxide, N, N -Diethyl-N, N-di (2-hydroxyethyl) ammonium hydroxide and the like.
  • the amine-based release agent used in the present invention may be an aqueous solution containing one or more of the amines exemplified above.
  • the concentration of the amine in the aqueous solution may be appropriately set depending on the purpose, the composition of the photosensitive resin layer, the development conditions, and the like.
  • the amine-based release agent used in the present invention may further contain additives usually used for the release agent, such as a surfactant, an antifoaming agent, a pH adjuster, a preservative, and an anti-redeposition agent. Good.
  • the peeling step is performed at a temperature of, for example, 0 ° C. or more and 100 ° C. or less, preferably room temperature (23 ° C.) or more and 50 ° C. or less, for example, for 1 second to 1 hour, preferably 10 seconds to 10 minutes.
  • the substrate from which the resist pattern has been removed may be washed with pure water or the like, if desired.
  • the photosensitive resin laminate of the present embodiment includes a printed wiring board, a flexible substrate, a lead frame substrate, a touch panel substrate, a COF substrate, a semiconductor package substrate, a liquid crystal transparent electrode, a liquid crystal TFT wiring, a PDP electrode, and the like. It is a photosensitive resin laminate suitable for producing a conductor pattern.
  • each component (however, the amount of each component indicates the blending amount (parts by mass) as a solid content) is sufficiently stirred and mixed to obtain a photosensitive resin composition. A mixture was obtained.
  • the I value of the binder indicates the I value as a mixture of alkali-soluble polymers represented by symbols A-1 to A-3.
  • a 16 ⁇ m-thick polyethylene terephthalate film (FB-40, manufactured by Toray Industries, Inc.) was used as a support film, and the prepared liquid was uniformly applied to the surface thereof using a bar coater.
  • a photosensitive resin composition layer was formed.
  • the dry thickness of the photosensitive resin composition layer was 25 ⁇ m.
  • a 19 ⁇ m-thick polyethylene film (manufactured by Tamapoly Corporation, GF-818) is laminated as a protective layer on the surface of the photosensitive resin composition layer on the side where the polyethylene terephthalate film is not laminated. A laminate was obtained.
  • ⁇ Substrate surface preparation> As a substrate for evaluation of image quality, a 0.4 mm thick copper-clad laminate obtained by laminating 35 ⁇ m rolled copper foil was jetted with a spraying agent (# 400, manufactured by Uji Denka Kogyo KK) at a spray pressure of 0.2 MPa. After scrub polishing, the substrate surface was washed with a 10% by mass H 2 SO 4 aqueous solution.
  • a spraying agent # 400, manufactured by Uji Denka Kogyo KK
  • ⁇ laminate> While peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, roll the photosensitive resin laminate on a copper-clad laminate preheated to 50 ° C. using a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). Lamination was performed at a temperature of 105 ° C. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.
  • AL-700 hot roll laminator
  • the evaluation substrate was exposed with a direct drawing exposure machine (Nuvogo 1000, manufactured by Orbotech Co., Ltd., light source: 375 nm (30%) + 405 nm (70%)) using a 41-step Stoffer tablet. .
  • the exposure was performed with an exposure amount such that the maximum number of remaining film steps was 18 when exposed and developed using the 41-step stofer step tablet as a mask.
  • the evaluation substrate was heated by a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation).
  • the roll temperature was 105 ° C.
  • the air pressure was 0.30 MPa
  • the laminating speed was 1.5 m / min.
  • heating was performed in the same manner. Note that if the elapsed time after exposure is increased, the effect of heating is reduced, so that heating is usually performed about 1 minute after exposure. For this reason, heating after 7 minutes of exposure in this embodiment is a very severe condition.
  • ⁇ developing> After peeling off the polyethylene terephthalate film (support layer), a 1% by mass aqueous solution of Na 2 CO 3 at 30 ° C. is sprayed for a predetermined period of time using an alkali developing machine (developing machine for dry film manufactured by Fuji Kiko Co., Ltd.) for development. Was done.
  • the time of the developing spray was twice the shortest developing time, and the time of the water spray after the developing was three times the shortest developing time. At this time, the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve was taken as the shortest development time.
  • D The minimum adhesion line width of the independent pattern is 11 ⁇ m or more
  • each component (however, the amount of each component indicates a blending amount (parts by mass) as a solid content) is sufficiently stirred and mixed to obtain a photosensitive resin composition. A mixture was obtained.
  • the sp value (MPa 1/2 ) of the binder indicates the sp value as a mixture of alkali-soluble polymers represented by symbols A-1 to A-3.
  • a 16 ⁇ m-thick polyethylene terephthalate film (FB-40, manufactured by Toray Industries, Inc.) was used as a support film, and the prepared liquid was uniformly applied to the surface thereof using a bar coater.
  • a photosensitive resin composition layer was formed.
  • the dry thickness of the photosensitive resin composition layer was 25 ⁇ m.
  • a 19 ⁇ m-thick polyethylene film (manufactured by Tamapoly Corporation, GF-818) is laminated as a protective layer on the surface of the photosensitive resin composition layer on the side where the polyethylene terephthalate film is not laminated. A laminate was obtained.
  • a substrate for evaluation of image quality As a substrate for evaluation of image quality, a 0.4 mm thick copper-clad laminate obtained by laminating 35 ⁇ m rolled copper foil was jetted with a spraying agent (# 400, manufactured by Uji Denka Kogyo KK) at a spray pressure of 0.2 MPa. After scrub polishing, the substrate surface was washed with a 10% by mass H 2 SO 4 aqueous solution.
  • a spraying agent # 400, manufactured by Uji Denka Kogyo KK
  • ⁇ laminate> While peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, roll the photosensitive resin laminate on a copper-clad laminate preheated to 50 ° C. using a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). Lamination was performed at a temperature of 105 ° C. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.
  • AL-700 hot roll laminator
  • the evaluation substrate was exposed with a direct drawing exposure machine (Nuvogo 1000, manufactured by Orbotech Co., Ltd., light source: 375 nm (30%) + 405 nm (70%)) using a 41-step Stoffer tablet. .
  • the exposure was performed with an exposure amount such that the maximum number of remaining film steps was 18 when exposed and developed using the 41-step stofer step tablet as a mask.
  • the evaluation substrate was heated by a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation).
  • the roll temperature was 105 ° C.
  • the air pressure was 0.30 MPa
  • the laminating speed was 1.5 m / min.
  • heating was performed in the same manner. Note that if the elapsed time after exposure is increased, the effect of heating is reduced, so that heating is usually performed about 1 minute after exposure. For this reason, heating after 7 minutes of exposure in this embodiment is a very severe condition.
  • ⁇ developing> After peeling off the polyethylene terephthalate film (support layer), a 1% by mass aqueous solution of Na 2 CO 3 at 30 ° C. is sprayed for a predetermined period of time using an alkali developing machine (developing machine for dry film manufactured by Fuji Kiko Co., Ltd.) for development. Was done.
  • the time of the developing spray was twice the shortest developing time, and the time of the water spray after the developing was three times the shortest developing time. At this time, the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve was taken as the shortest development time.
  • D The minimum adhesion line width of the independent pattern is 11 ⁇ m or more
  • the weight average molecular weight (Mw) or number average molecular weight (Mn) of the polymer is determined by gel permeation chromatography (GPC) manufactured by JASCO Corporation (pump: Gulliver, PU-1580 type, column: manufactured by Showa Denko KK) Shodex (registered trademark) (KF-807, KF-806M, KF-806M, KF-802.5) 4 in series, moving bed solvent: tetrahydrofuran, polystyrene standard sample (Showex STANDARD SM-105 manufactured by Showa Denko KK) Using a calibration curve according to the standard) in terms of polystyrene. The degree of dispersion of the polymer was calculated as the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn).
  • each component (however, the amount of each component indicates a blending amount (parts by mass) as a solid content.
  • the “A-1 content” refers to the component A shown in Table 7. -1 relative to the solid content in the photosensitive resin composition (% by mass)) and the solvent were sufficiently stirred and mixed to obtain a photosensitive resin composition preparation.
  • a 16 ⁇ m-thick polyethylene terephthalate film (FB-40, manufactured by Toray Industries, Inc.) was used as a support film, and the prepared liquid was uniformly applied to the surface thereof using a bar coater. After drying for a minute, a photosensitive resin composition layer was formed.
  • the dry thickness of the photosensitive resin composition layer was 25 ⁇ m. Then, a 19 ⁇ m-thick polyethylene film (manufactured by Tamapoly Corporation, GF-818) is laminated as a protective layer on the surface of the photosensitive resin composition layer on the side where the polyethylene terephthalate film is not laminated. A laminate was obtained.
  • a substrate for evaluation of image quality As a substrate for evaluation of image quality, a 0.4 mm thick copper-clad laminate obtained by laminating 35 ⁇ m rolled copper foil was jetted with a spraying agent (# 400, manufactured by Uji Denka Kogyo KK) at a spray pressure of 0.2 MPa. After scrub polishing, the substrate surface was washed with a 10% by mass H 2 SO 4 aqueous solution.
  • a spraying agent # 400, manufactured by Uji Denka Kogyo KK
  • the photosensitive resin laminate was applied to a copper-clad laminate preheated to 50 ° C. using a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). Lamination was performed at a roll temperature of 105 ° C. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.
  • A-700 hot roll laminator
  • the evaluation substrate was exposed with a direct drawing exposure machine (Nuvogo 1000, manufactured by Orbotech Co., Ltd., light source: 375 nm (30%) + 405 nm (70%)) using a 41-step Stoffer tablet. .
  • the exposure was performed with an exposure amount such that the maximum number of remaining film steps was 18 when exposed and developed using the 41-step stofer step tablet as a mask.
  • the evaluation substrate 7 minutes after the exposure was heated by a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation).
  • the roll temperature was 105 ° C.
  • the air pressure was 0.30 MPa
  • the laminating speed was 1 m / min. Note that if the elapsed time after the exposure is lengthened, the effect of the heating is lost, so that the heating is usually performed for about one minute after the exposure. For this reason, heating after 7 minutes of exposure in this embodiment is a very severe condition.
  • ⁇ developing> After peeling off the polyethylene terephthalate film (support layer), a 1% by mass aqueous solution of Na 2 CO 3 at 30 ° C. is sprayed for a predetermined period of time using an alkali developing machine (developing machine for dry film manufactured by Fuji Kiko Co., Ltd.) for development. Was done.
  • the time of the developing spray was twice the shortest developing time, and the time of the water spray after the developing was three times the shortest developing time. At this time, the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve was taken as the shortest development time.
  • the heating conditions after exposure in this example are very strict conditions because heating is performed 7 minutes after exposure.
  • the adhesiveness when the compositions of Example 17 and Comparative Example 9 were developed without heating after exposure was 10.6 ⁇ m. That is, in the composition of Comparative Example 9, no effect was observed by heating after 7 minutes of exposure, but in Example 23, the adhesion could be improved even under extremely severe conditions.
  • adhesion of 9.0 ⁇ m was obtained.
  • Measurement device JASCO Corporation, Gel Permeation Chromatography (GPC) Pump: Gulliver PU-1580 type, manufactured by JASCO Corporation Column: Showa Denko KK, Shodex (registered trademark) KF-807, KF-806M, KF-806M, and KF-802.5
  • Mobile phase solvent tetrahydrofuran Standard sample: Shodex STANDARD SM-105 manufactured by Showa Denko KK
  • ⁇ Preparation of photosensitive resin laminate> The photosensitive resin composition prepared in each of Examples and Comparative Examples was uniformly coated on a surface of a polyethylene terephthalate film (FB-40, manufactured by Toray Industries, Inc., 16 ⁇ m thick) as a support layer using a bar coater. It was applied and dried in a drier at 95 ° C. for 3 minutes to form a photosensitive resin layer. The dry thickness of the photosensitive resin layer was 25 ⁇ m.
  • a polyethylene film manufactured by Tamapoly Co., Ltd., GF-818, 19 ⁇ m thick
  • a protective layer is laminated on the surface of the photosensitive resin layer on the side where the polyethylene terephthalate film is not laminated. I got a body.
  • ⁇ Surface preparation> As a substrate, a 0.4 mm-thick copper-clad laminate in which rolled copper foil having a thickness of 35 ⁇ m was laminated was used. The copper-clad laminate is jet scrub polished at a spray pressure of 0.2 MPa using a grinding agent (# 400 manufactured by Uji Denka Kogyo Co., Ltd.), and then the surface is washed with a 10% by mass aqueous H 2 SO 4 solution. The surface of the substrate was adjusted.
  • ⁇ laminate> Using a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation), a photosensitive resin laminate is laminated on a copper-clad laminate preheated to 50 ° C. while peeling off a polyethylene film (protective layer). Thus, a substrate for evaluation was obtained. At this time, the roll temperature was 105 ° C., the air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.
  • a direct drawing exposure machine (Nuvogo Fine 10, manufactured by Orbotech Co., Ltd., light source: 375 nm (30%) + 405 nm (70%)) was used on the evaluation substrate 2 hours after lamination, using a 41-step stofer tablet. Exposure. The exposure was performed using the above-mentioned 41-step stofer step tablet as a mask, and at an exposure amount such that the maximum number of remaining film steps when developing was 19 steps.
  • the evaluation substrate was heated by a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation), and the photosensitive resin layer in the exposed area was formed into a cured film.
  • the roll temperature was 105 ° C.
  • the air pressure was 0.30 MPa
  • the laminating speed was 1.5 m / min.
  • ⁇ developing> After peeling off the polyethylene terephthalate film (support layer) from the evaluation substrate after exposure and heating, using an alkali developing machine (manufactured by Fuji Kiko Co., a developing machine for dry film), a 1% by mass aqueous solution of Na 2 CO 3 at 30 ° C. and Pure water was sequentially sprayed for each predetermined time to perform development.
  • the time of the developing spray was twice the shortest developing time, and the time of the water spray after the developing was three times the shortest developing time.
  • the shortest development time means the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve.
  • ⁇ Peeling time evaluation> The evaluation substrate 2 hours after the lamination was exposed to a solid pattern of 5 cm in length and 3 cm in width. One minute after the exposure, the evaluation substrate was heated with a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). Next, the sample was developed with twice the minimum development time, and the time of spraying with water after the development was set to be three times the minimum development time to obtain an evaluation sample.
  • As the stripping solution a mixed aqueous solution of R-100S (12 vol%) and R-101 (4 vol%) manufactured by Ryoko Chemical Co., Ltd. was used by adjusting the temperature to 50 ° C.
  • the evaluation sample was immersed in a stripping solution, the time required for the cured film to be stripped from the substrate was recorded, and this time was evaluated as the stripping time according to the following criteria.
  • A an alkali-soluble polymer
  • B a compound having an ethylenically unsaturated double bond
  • C a photopolymerization initiator
  • D a photosensitizer, a colorant, and a stabilizer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Provided is a photosensitive resin composition which is exposed to light and then heated and developed into a resin cured product. This photosensitive resin composition contains, on the basis of the total mass of solids thereof: (A) 10-90% by mass of an alkali-soluble polymer; (B) 5-70% by mass of a compound having an ethylenically unsaturated double bond; and (C) 0.01-20% by mass of a photoinitiator. The alkali-soluble polymer (A) has an inorganic value (I value) of 720 or less or a solubility parameter (sp value) of 21.45 MPa1/2 or less. Alternatively, the photosensitive resin composition contains an alkali-soluble polymer (A1) in an amount of 3% by mass or more on the basis of the total mass of solids of the photosensitive resin composition, the alkali-soluble polymer (A1) containing 52% by mass or more of constituent units derived from styrene and/or a styrene derivative as a monomer component.

Description

感光性樹脂組成物およびレジストパターンの形成方法Photosensitive resin composition and method for forming resist pattern

 本発明は感光性樹脂組成物およびレジストパターンの形成方法等に関する。 << The present invention relates to a photosensitive resin composition, a method for forming a resist pattern, and the like.

 パソコン、携帯電話等の電子機器には、部品、半導体等を実装するためにプリント配線板等が用いられる。プリント配線板等の製造用レジストとしては、従来、支持層と、該支持層上に積層された感光性樹脂層と、該感光性樹脂層上に必要に応じて積層された保護層とを有する感光性樹脂積層体、いわゆるドライフィルムフォトレジスト(以下、「DF」と呼ぶこともある。)が用いられている。感光性樹脂層としては、現在、現像液として弱アルカリ水溶液を用いるアルカリ現像型のものが一般的である。 電子 In electronic devices such as personal computers and mobile phones, printed wiring boards and the like are used to mount components, semiconductors, and the like. Conventionally, as a resist for manufacturing a printed wiring board or the like, it has a support layer, a photosensitive resin layer laminated on the support layer, and a protective layer laminated as necessary on the photosensitive resin layer. A photosensitive resin laminate, a so-called dry film photoresist (hereinafter sometimes referred to as “DF”) is used. At present, the photosensitive resin layer is generally of an alkali developing type using a weak alkaline aqueous solution as a developing solution.

 DFを用いてプリント配線板等を作製する方法としては、例えば、以下の方法が挙げられる。DFが保護層を有する場合、まず保護層を剥離する。その後、銅張積層板又はフレキシブル基板等の永久回路作製用基板などの基板上にラミネーター等を用いてDFをラミネートする。ラミネートされたDFを、配線パターンマスクフィルム等を介して露光する。必要に応じて支持層を剥離し、現像液により未硬化部分(例えば、ネガ型では未露光部分に相当)の感光性樹脂層を溶解又は分散除去し、基板上に硬化レジストパターン(以下、単に「レジストパターン」と呼ぶこともある。)を形成させる。 方法 As a method of manufacturing a printed wiring board or the like using the DF, for example, the following method can be mentioned. When the DF has a protective layer, the protective layer is first peeled off. Thereafter, the DF is laminated on a substrate such as a copper-clad laminate or a substrate for permanent circuit production such as a flexible substrate using a laminator or the like. The laminated DF is exposed through a wiring pattern mask film or the like. If necessary, the support layer is peeled off, and the photosensitive resin layer of the uncured portion (e.g., corresponding to the unexposed portion in the negative type) is dissolved or dispersed and removed with a developer, and a cured resist pattern (hereinafter, simply referred to as This may be referred to as a “resist pattern.”

 レジストパターン形成後、回路を形成させる方法は、大きく2つの方法が挙げられる。第一の方法は、レジストパターンによって覆われていない基板面(例えば、銅張積層板の銅面)をエッチング除去することと、レジストパターン部分を現像液よりも強いアルカリ水溶液で除去することとを含む、エッチング法である。第二の方法は、基板面に、銅、半田、ニッケル、スズ等のメッキ処理を行うことと、第一の方法と同様にしてレジストパターン部分を除去し、そして、現れた基板面(例えば銅張積層板の銅面)をエッチングすることとを含む、メッキ法である。エッチングにおける溶液としては、塩化第二銅、塩化第二鉄、又は銅アンモニア錯体溶液等が用いられる。 (4) There are roughly two methods for forming a circuit after forming a resist pattern. The first method involves etching away the substrate surface not covered by the resist pattern (for example, the copper surface of the copper-clad laminate) and removing the resist pattern portion with an alkaline aqueous solution stronger than the developing solution. Including the etching method. The second method involves plating the substrate surface with copper, solder, nickel, tin, or the like, removing the resist pattern in the same manner as in the first method, and then removing the exposed substrate surface (eg, copper). Etching the copper surface of the clad laminate). As a solution for the etching, a cupric chloride, a ferric chloride, a copper-ammonia complex solution or the like is used.

 近年では、電子機器の小型化及び軽量化に伴い、プリント配線板の微細化及び高密度化が進んでおり、上記のような製造工程において高解像性、高密着性を与える高性能DFが求められている。例えば、特許文献1には、特定の熱可塑性樹脂、モノマー、及び光重合性開始剤により解像性を高めた感光性樹脂組成物が記載されている。特許文献2は、露光された感光性樹脂組成物層と基板とを共に押圧加熱機構を用いて押圧下で加熱する工程を含む、レジストパターンの形成方法を記載している。特許文献3は、基材上に、(a)感光層、(b)樹脂層が形成された積層体を、露光し、加熱処理し、現像する工程を含む、レジストパターンの形成方法を記載している。特許文献4は、少なくとも露光から加熱処理の間に積層体を減圧雰囲気下又は低酸素濃度雰囲気下に放置する工程を備える、レジストパターンの形成方法を記載している。特許文献5には、DFの感光性樹脂層に任意的に含まれる種々の添加剤が記載されている。特許文献6には、DFに好ましく適用される保護層が記載されている。 In recent years, with the miniaturization and weight reduction of electronic devices, printed wiring boards have been miniaturized and densified, and high-performance DFs that provide high resolution and high adhesion in the above manufacturing process have been developed. It has been demanded. For example, Patent Literature 1 describes a photosensitive resin composition whose resolution is enhanced by a specific thermoplastic resin, a monomer, and a photopolymerizable initiator. Patent Document 2 describes a method for forming a resist pattern, which includes a step of heating both the exposed photosensitive resin composition layer and the substrate under pressure using a pressure heating mechanism. Patent Literature 3 describes a method for forming a resist pattern including a step of exposing, heating, and developing a laminate in which (a) a photosensitive layer and (b) a resin layer are formed on a base material. ing. Patent Literature 4 describes a method for forming a resist pattern, which includes a step of leaving a laminate under a reduced-pressure atmosphere or a low-oxygen-concentration atmosphere at least between exposure and heat treatment. Patent Document 5 describes various additives optionally contained in the photosensitive resin layer of DF. Patent Document 6 describes a protective layer preferably applied to DF.

特開2010-249884号公報JP 2010-249888 A 特開2014-191318号公報JP 2014-191318 A 特開2016-224161号公報JP 2016-224161 A 特開2016-224162号公報JP 2016-224162 A 特開2013-156369号公報JP 2013-156369 A 特開昭59-202457号公報JP-A-59-202457

 露光工程の後、場合により、感光性樹脂層に対し加熱工程(露光後加熱:PEB)を行い、その後に現像を行うことがある。この加熱工程を実施することにより、高解像性や高密着性の更なる向上が可能となる。しかしながら、露光後加熱工程を行っても、従来の感光性樹脂組成物では密着性の向上が不十分であった。また、露光後の長時間が経過すると、露光後加熱工程を行っても、良好な密着性が得られないことがあった。 (4) After the exposure step, in some cases, a heating step (post-exposure heating: PEB) is performed on the photosensitive resin layer, followed by development. By performing this heating step, high resolution and high adhesion can be further improved. However, even if the post-exposure heating step is performed, the conventional photosensitive resin composition has not sufficiently improved the adhesion. In addition, if a long time after exposure has elapsed, good adhesion may not be obtained even after the post-exposure heating step.

 本発明は、このような従来の実情に鑑みて提案されたものであり、本発明の目的は、露光後加熱してから現像したときの密着性を著しく向上させることができる感光性樹脂組成物を提供することを目的の一つとする。特に、好ましい実施形態において、露光から加熱まで長時間が経過した場合であっても良好な密着性を発現する感光性樹脂組成物を提供することを目的の一つとする。 The present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide a photosensitive resin composition that can significantly improve the adhesion when developed after heating after exposure. One of the purposes is to provide In particular, in a preferred embodiment, an object is to provide a photosensitive resin composition that exhibits good adhesion even when a long time has elapsed from exposure to heating.

 本願発明者らは、上記課題を解決するため鋭意検討を重ねた結果、特定範囲の無機性値(I値)を有するアルカリ可溶性高分子;特定範囲の溶解度パラメータ(sp値)を有するアルカリ可溶性高分子;又は特定構造の構成単位を有するアルカリ可溶性高分子(A-1)を含む感光性樹脂組成物によって上記課題を解決できることを見いだし、本発明を完成するに至った。本発明の実施形態の例を以下の実施形態の例[1]~[29]に列記する。
[1]
 露光後、加熱してから現像して樹脂硬化物を得るための感光性樹脂組成物であって、上記感光性樹脂組成物が、上記感光性樹脂組成物の全固形分質量を基準として、以下の成分:
  (A)10質量%~90質量%の、アルカリ可溶性高分子と、
  (B)5質量%~70質量%の、エチレン性不飽和二重結合を有する化合物と、
  (C)0.01質量%~20質量%の、光重合開始剤と
を含み、
 上記アルカリ可溶性高分子(A)の無機性値(I値)が720以下である、感光性樹脂組成物。
[2]
 上記アルカリ可溶性高分子(A)のI値が635以下である、項目1に記載の感光性樹脂組成物。
[3]
 上記アルカリ可溶性高分子(A)のI値が600以下である、項目2に記載の感光性樹脂組成物。
[4]
 上記アルカリ可溶性高分子(A)のI値が300以上である、項目1~3のいずれか一項に記載の感光性樹脂組成物。
[5]
 上記アルカリ可溶性高分子(A)のI値が400以上である、項目4に記載の感光性樹脂組成物。
[6]
 上記アルカリ可溶性高分子(A)のI値が450以上である、項目5に記載の感光性樹脂組成物。
[7]
 上記アルカリ可溶性高分子(A)のI値が500以上である、項目6に記載の感光性樹脂組成物。
[8]
 上記アルカリ可溶性高分子(A)のI値が550以上である、項目7に記載の感光性樹脂組成物。
[9]
 露光後、加熱してから現像して樹脂硬化物を得るための感光性樹脂組成物であって、上記感光性樹脂組成物が、上記感光性樹脂組成物の全固形分質量を基準として、以下の成分:
  (A)10質量%~90質量%の、アルカリ可溶性高分子と、
  (B)5質量%~70質量%の、エチレン性不飽和二重結合を有する化合物と、
  (C)0.01質量%~20質量%の、光重合開始剤と
を含み、
 上記(A)アルカリ可溶性高分子の溶解度パラメータ(sp値)が21.45MPa1/2以下である、感光性樹脂組成物。
[10]
 上記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が21.40MPa1/2以下である、項目9に記載の感光性樹脂組成物。
[11]
 上記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が21.20MPa1/2以下である、項目10に記載の感光性樹脂組成物。
[12]
 上記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が19.00MPa1/2以上である、項目9~11のいずれか一項に記載の感光性樹脂組成物。
[13]
 上記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が19.50MPa1/2以上である、項目12に記載の感光性樹脂組成物。
[14]
 上記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が20.00MPa1/2以上である、項目13に記載の感光性樹脂組成物。
[15]
 上記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が20.50MPa1/2以上である、項目14に記載の感光性樹脂組成物。
[16]
 露光後、加熱してから現像して樹脂硬化物を得るための感光性樹脂組成物であって、上記感光性樹脂組成物が、上記感光性樹脂組成物の全固形分質量を基準として、以下の成分:
  (A)10質量%~90質量%の、アルカリ可溶性高分子と、
  (B)5質量%~70質量%の、エチレン性不飽和二重結合を有する化合物と、
  (C)0.01質量%~20質量%の、光重合開始剤と
を含み、
 上記感光性樹脂組成物は、上記アルカリ可溶性高分子(A)として、単量体成分としてスチレン及び/又はスチレン誘導体に由来する構成単位を52質量%以上含むアルカリ可溶性高分子(A-1)を、上記感光性樹脂組成物中の全固形分質量を基準として3質量%以上含む、感光性樹脂組成物。
[17]
 上記感光性樹脂組成物は、上記アルカリ可溶性高分子(A-1)を上記感光性樹脂組成物中の全固形分質量に対して10質量%以上含む、項目16に記載の感光性樹脂組成物。
[18]
 上記アルカリ可溶性高分子(A-1)が、単量体成分としてスチレン及び/又はスチレン誘導体に由来する構成単位を55質量%以上含む、項目16又は17に記載の感光性樹脂組成物。
[19]
 上記アルカリ可溶性高分子(A-1)が、単量体成分としてスチレン及び/又はスチレン誘導体に由来する構成単位を58質量%以上含む、項目18に記載の感光性樹脂組成物。
[20]
 上記アルカリ可溶性高分子(A-1)が、単量体成分として(メタ)アクリル酸に由来する構成単位を27質量%以上含む、項目16~19のいずれか一項に記載の感光性樹脂組成物。
[21]
 上記アルカリ可溶性高分子(A-1)が、単量体成分としてベンジル(メタ)アクリレートに由来する構成単位を更に含む、項目16~19のいずれか一項に記載の感光性樹脂組成物。
[22]
 以下の工程:
 項目1~21のいずれか一項に記載の感光性樹脂組成物の層を露光する工程;
 露光された上記感光性樹脂組成物の層を加熱する加熱工程;及び
 加熱された上記感光性樹脂組成物の層を現像する現像工程
を含む、レジストパターンの形成方法。
[23]
 上記加熱工程における加熱温度が30℃~150℃の範囲である、項目22に記載のレジストパターンの形成方法。
[24]
 上記加熱工程を、露光停止から15分以内に行う、項目22又は23に記載のレジストパターンの形成方法。
[25]
 上記露光工程を、描画パターンの直接描画による露光方法か、又はフォトマスクの像を、レンズを通して投影させる露光方法により行う、項目22~24のいずれか一項に記載のレジストパターンの形成方法。
[26]
 上記露光工程を、描画パターンの直接描画による露光方法により行う、項目25に記載のレジストパターンの形成方法。
[27]
 上記露光工程を、中心波長390nm未満の第1のレーザー光と、中心波長390nm以上の第2のレーザー光とで露光する方法により行う、項目26に記載のレジストパターンの形成方法。
[28]
 上記第1のレーザー光の中心波長が350nm以上380nm以下であり、上記第2のレーザー光の中心波長が400nm以上410nm以下である、項目27に記載のレジストパターンの形成方法。
[29]
 項目22~28のいずれか一項に記載の方法により基板上にレジストパターンを製造し、上記レジストパターンを有する上記基板に対してエッチング又はめっきを施すことにより回路基板を形成することを含む、回路基板の製造方法。
The inventors of the present application have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that an alkali-soluble polymer having an inorganic value (I value) in a specific range; and an alkali-soluble polymer having a solubility parameter (sp value) in a specific range. It has been found that the above problem can be solved by a photosensitive resin composition containing a molecule; or an alkali-soluble polymer (A-1) having a specific structural unit, and the present invention has been completed. Examples of the embodiment of the present invention are listed in the following examples [1] to [29] of the embodiment.
[1]
After exposure, a photosensitive resin composition for obtaining a cured resin by heating and developing after heating, the photosensitive resin composition, based on the total solid content mass of the photosensitive resin composition, the following Ingredients:
(A) 10% to 90% by mass of an alkali-soluble polymer;
(B) 5% to 70% by mass of a compound having an ethylenically unsaturated double bond,
(C) 0.01 to 20% by mass of a photopolymerization initiator,
A photosensitive resin composition, wherein the alkali-soluble polymer (A) has an inorganic value (I value) of 720 or less.
[2]
Item 2. The photosensitive resin composition according to item 1, wherein the alkali-soluble polymer (A) has an I value of 635 or less.
[3]
Item 3. The photosensitive resin composition according to Item 2, wherein the alkali-soluble polymer (A) has an I value of 600 or less.
[4]
4. The photosensitive resin composition according to any one of items 1 to 3, wherein the alkali-soluble polymer (A) has an I value of 300 or more.
[5]
Item 5. The photosensitive resin composition according to item 4, wherein the alkali-soluble polymer (A) has an I value of 400 or more.
[6]
Item 6. The photosensitive resin composition according to item 5, wherein the alkali-soluble polymer (A) has an I value of 450 or more.
[7]
Item 7. The photosensitive resin composition according to Item 6, wherein the alkali-soluble polymer (A) has an I value of 500 or more.
[8]
Item 8. The photosensitive resin composition according to Item 7, wherein the alkali-soluble polymer (A) has an I value of 550 or more.
[9]
After exposure, a photosensitive resin composition for obtaining a cured resin by heating and developing after heating, the photosensitive resin composition, based on the total solid content mass of the photosensitive resin composition, the following Ingredients:
(A) 10% to 90% by mass of an alkali-soluble polymer;
(B) 5% to 70% by mass of a compound having an ethylenically unsaturated double bond,
(C) 0.01 to 20% by mass of a photopolymerization initiator,
(A) The photosensitive resin composition, wherein the solubility parameter (sp value) of the alkali-soluble polymer is 21.45 MPa 1/2 or less.
[10]
Item 10. The photosensitive resin composition according to item 9, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 21.40 MPa 1/2 or less.
[11]
Item 11. The photosensitive resin composition according to item 10, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 21.20 MPa 1/2 or less.
[12]
12. The photosensitive resin composition according to any one of items 9 to 11, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 19.00 MPa 1/2 or more.
[13]
Item 13. The photosensitive resin composition according to Item 12, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 19.50 MPa 1/2 or more.
[14]
Item 14. The photosensitive resin composition according to item 13, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 20.00 MPa 1/2 or more.
[15]
Item 15. The photosensitive resin composition according to item 14, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 20.50 MPa 1/2 or more.
[16]
After exposure, a photosensitive resin composition for obtaining a cured resin by heating and developing after heating, the photosensitive resin composition, based on the total solid content mass of the photosensitive resin composition, the following Ingredients:
(A) 10% to 90% by mass of an alkali-soluble polymer;
(B) 5% to 70% by mass of a compound having an ethylenically unsaturated double bond,
(C) 0.01 to 20% by mass of a photopolymerization initiator,
The photosensitive resin composition includes, as the alkali-soluble polymer (A), an alkali-soluble polymer (A-1) containing 52% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component. , A photosensitive resin composition comprising 3% by mass or more based on the total solid content in the photosensitive resin composition.
[17]
Item 17. The photosensitive resin composition according to item 16, wherein the photosensitive resin composition contains the alkali-soluble polymer (A-1) in an amount of 10% by mass or more based on the total solid content in the photosensitive resin composition. .
[18]
Item 18. The photosensitive resin composition according to item 16 or 17, wherein the alkali-soluble polymer (A-1) contains 55% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component.
[19]
Item 19. The photosensitive resin composition according to Item 18, wherein the alkali-soluble polymer (A-1) contains 58% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component.
[20]
Item 20. The photosensitive resin composition according to any one of items 16 to 19, wherein the alkali-soluble polymer (A-1) contains at least 27% by mass of a structural unit derived from (meth) acrylic acid as a monomer component. object.
[21]
20. The photosensitive resin composition according to any one of items 16 to 19, wherein the alkali-soluble polymer (A-1) further includes a structural unit derived from benzyl (meth) acrylate as a monomer component.
[22]
The following steps:
Exposing the layer of the photosensitive resin composition according to any one of items 1 to 21 to light;
A method of forming a resist pattern, comprising: a heating step of heating the exposed layer of the photosensitive resin composition; and a developing step of developing the heated layer of the photosensitive resin composition.
[23]
23. The method for forming a resist pattern according to item 22, wherein the heating temperature in the heating step is in a range of 30 ° C. to 150 ° C.
[24]
24. The method for forming a resist pattern according to item 22 or 23, wherein the heating step is performed within 15 minutes after stopping the exposure.
[25]
25. The method of forming a resist pattern according to any one of items 22 to 24, wherein the exposing step is performed by an exposing method by direct drawing of a drawing pattern or by an exposing method of projecting a photomask image through a lens.
[26]
26. The method for forming a resist pattern according to Item 25, wherein the exposing step is performed by an exposure method based on direct drawing of a drawing pattern.
[27]
27. The method of forming a resist pattern according to item 26, wherein the exposing step is performed by a method of exposing with a first laser beam having a center wavelength of less than 390 nm and a second laser beam having a center wavelength of 390 nm or more.
[28]
28. The method of forming a resist pattern according to Item 27, wherein the center wavelength of the first laser light is 350 nm or more and 380 nm or less, and the center wavelength of the second laser light is 400 nm or more and 410 nm or less.
[29]
29. A circuit comprising forming a resist pattern on a substrate by the method according to any one of items 22 to 28, and forming a circuit board by etching or plating the substrate having the resist pattern. Substrate manufacturing method.

 本発明によれば、露光後加熱(PEB)してから現像したときのレジストパターンの密着性を著しく向上させることができる。好ましい実施形態においては、露光から加熱まで長時間が経過した場合であっても良好な密着性を発現する感光性樹脂組成物を提供することができる。なお、上述の記載は、本発明の全ての実施形態及び本発明に関する全ての利点を開示したものとみなしてはならない。本発明の更なる実施形態及びその利点は、以下の記載を参照することにより明らかとなる。 According to the present invention, the adhesiveness of the resist pattern when heated (PEB) after exposure and then developed can be significantly improved. In a preferred embodiment, it is possible to provide a photosensitive resin composition that exhibits good adhesion even when a long time has elapsed from exposure to heating. The above description should not be construed as disclosing all the embodiments of the present invention and all the advantages relating to the present invention. Further embodiments of the present invention and their advantages will become apparent by reference to the following description.

 以下、本発明の実施形態を例示する目的で詳細に説明するが、本発明は本実施形態に限定されるものではない。本願明細書において、各数値範囲の上限値及び下限値は任意に組み合わせることができる。 Hereinafter, the present invention will be described in detail for the purpose of illustrating embodiments of the present invention, but the present invention is not limited to the embodiments. In the present specification, the upper limit and the lower limit of each numerical range can be arbitrarily combined.

[感光性樹脂組成物]
 本実施形態の感光性樹脂組成物は、露光後、加熱してから現像して樹脂硬化物を得るための感光性樹脂組成物である。感光性樹脂組成物は、該感光性樹脂組成物の全固形分質量を基準として、(A)10質量%~90質量%のアルカリ可溶性高分子と、(B)5質量%~70質量%のエチレン性不飽和二重結合を有する化合物と、(C)0.01質量%~20質量%の光重合開始剤とを含む。
[Photosensitive resin composition]
The photosensitive resin composition of the present embodiment is a photosensitive resin composition for obtaining a cured resin by heating and developing after exposure. The photosensitive resin composition comprises (A) 10% to 90% by mass of an alkali-soluble polymer, and (B) 5% to 70% by mass based on the total solid content of the photosensitive resin composition. It contains a compound having an ethylenically unsaturated double bond and (C) 0.01 to 20% by mass of a photopolymerization initiator.

〈(A)アルカリ可溶性高分子〉
 本実施形態において、感光性樹脂組成物は、アルカリ可溶性高分子(A)の無機性値(I値)が720以下であってよい。ここで、「I値」とは、「無機性値(Inorganic Value)」とも呼ばれ、主に電気的親和力による物性の程度を示す。「O値」は、「有機性値(Organic Value)」とも呼ばれ、主にファンデルワールスカによる物性の程度を示す。I/O値は、化合物あるいは置換基の親油性/親水性の尺度を表すパラメータであり、その化合物あるいは置換基に固有のI値及びO値に基づいて決定される。I/O値が大きいほど無機性が高いことを表す。I/O値について詳細は、甲田善生著、「有機概念図」、三共出版、1984年等を参照されたい。
<(A) Alkali-soluble polymer>
In the present embodiment, the photosensitive resin composition may have an inorganic value (I value) of the alkali-soluble polymer (A) of 720 or less. Here, the “I value” is also referred to as “inorganic value” and indicates a degree of physical property mainly due to electric affinity. The “O value” is also called “organic value” and mainly indicates the degree of physical properties according to van der Waalska. The I / O value is a parameter indicating a measure of lipophilicity / hydrophilicity of a compound or a substituent, and is determined based on an I value and an O value specific to the compound or the substituent. The higher the I / O value, the higher the inorganicity. For details of the I / O value, see Yoshio Koda, “Organic Conceptual Diagram”, Sankyo Publishing, 1984 and the like.

 本実施形態において、感光性樹脂組成物は、アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が21.45MPa1/2以下であってよい。溶解度パラメータ(sp値)とは、物質の凝集エネルギー密度の平方根であり、その詳細や、算出方法等については、沖津俊直、「溶解性理論における溶解性パラメータ(SP)の役割(第1報)」、日本接着学会誌、1993年、vol.29,No.5,pp.8-15等を参照されたい。本願明細書において、SP値は、沖津法で算出した値を意味する。 In the present embodiment, the photosensitive resin composition may have a solubility parameter (sp value) of the alkali-soluble polymer (A) of 21.45 MPa 1/2 or less. The solubility parameter (sp value) is the square root of the cohesive energy density of a substance. For details and the calculation method, see Toshinao Okitsu, "Role of solubility parameter (SP) in solubility theory (1st report)""Journal of the Adhesion Society of Japan, 1993, vol. 29, No. 5, pp. See, for example, 8-15. In the present specification, the SP value means a value calculated by the Okitsu method.

 本実施形態において、感光性樹脂組成物は、アルカリ可溶性高分子(A)として、単量体成分としてスチレン及び/又はスチレン誘導体に由来する構成単位を52質量%以上含むアルカリ可溶性高分子(A-1)を、感光性樹脂組成物中の全固形分質量に対して3質量%以上含んでよい。 In the present embodiment, the photosensitive resin composition is an alkali-soluble polymer (A) containing 52% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component. 1) may be contained in an amount of 3% by mass or more based on the total solid content in the photosensitive resin composition.

 本実施形態の感光性樹脂組成物は、上記無機性値(I値)、上記溶解度パラメータ(sp値)、又は上記アルカリ可溶性高分子(A-1)のいずれか一つ以上の特徴を有することによって、露光後加熱してから現像したときの密着性を著しく向上させることができる。本実施形態の感光性樹脂組成物は、例えば、アルカリ可溶性高分子(A)の無機性値(I値)が720以下であり、かつ、溶解度パラメータ(sp値)が21.45MPa1/2以下であってよく;アルカリ可溶性高分子(A)の無機性値(I値)が720以下であり、かつ、アルカリ可溶性高分子(A-1)を全固形分質量に対して3質量%以上含んでもよく;アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が21.45MPa1/2以下であり、かつ、アルカリ可溶性高分子(A-1)を全固形分質量に対して3質量%以上含んでもよく;あるいは、アルカリ可溶性高分子(A)の無機性値(I値)が720以下であり、溶解度パラメータ(sp値)が21.45MPa1/2以下であり、かつ、アルカリ可溶性高分子(A-1)を全固形分質量に対して3質量%以上含んでもよい。 The photosensitive resin composition of the present embodiment has at least one characteristic of the inorganic value (I value), the solubility parameter (sp value), or the alkali-soluble polymer (A-1). Thereby, adhesion after heating after exposure and development can be significantly improved. In the photosensitive resin composition of the present embodiment, for example, the alkali-soluble polymer (A) has an inorganic value (I value) of 720 or less and a solubility parameter (sp value) of 21.45 MPa 1/2 or less. The alkali-soluble polymer (A) has an inorganic value (I value) of 720 or less and contains the alkali-soluble polymer (A-1) in an amount of 3% by mass or more based on the total solid content. The solubility parameter (sp value) of the alkali-soluble polymer (A) is 21.45 MPa 1/2 or less, and the alkali-soluble polymer (A-1) is 3% by mass relative to the total solid content. Alternatively, the alkali-soluble polymer (A) may have an inorganic value (I value) of 720 or less, a solubility parameter (sp value) of 21.45 MPa 1/2 or less, and a high alkali-soluble property. Molecule (A- ) And it may contain 3 wt% or more based on the total solid mass.

 一般に、感光性樹脂組成物から得られるドライフィルムレジストは、露光した直後に加熱をしないと密着性が向上しにくい傾向がある。これに対して、本実施形態の感光性樹脂組成物から得られるドライフィルムレジストは、露光後から加熱まで長時間が経過したとしても良好な密着性を発現することができ、細いレジストパターンを得ることができる。 Generally, a dry film resist obtained from a photosensitive resin composition tends to be hardly improved in adhesion unless heated immediately after exposure. On the other hand, the dry film resist obtained from the photosensitive resin composition of the present embodiment can exhibit good adhesiveness even if a long time elapses from exposure to heating, and a thin resist pattern is obtained. be able to.

 露光後加熱してから現像したときの密着性が向上する理由としては、理論に限定されないが、発明者らは以下のように推定している。アルカリ可溶性高分子の無機性値(I値)が720以下であると、アルカリ可溶性高分子の電気的親和力が低く、現像時の浸透性が抑制されて膨潤・溶解耐性が高くなる。その結果、微細なレジストパターンであっても現像によってダメージを負うことなく保持されると考えられる。また、露光から加熱までの経過時間が長くなると、露光時に発生したラジカルがアルカリ可溶性高分子中の酸素と衝突して失活してしまうため、PEBの効果が低減される。しかしながら、電気的親和力の低いアルカリ可溶性高分子は、水が電離しにくいために水分子を含みにくく、酸素の移動が妨げられるため、たとえ経過時間が長くなってもPEBの効果が保持されると考えられる。アルカリ可溶性高分子の溶解度パラメータ(sp値)が21.45MPa1/2以下であると、アルカリ可溶性高分子の疎水性が高く、現像時の膨潤・溶解耐性が高くなり、その結果、微細なレジストパターンであっても現像によってダメージを負うことなく保持されると考えられる。また、疎水性の高いアルカリ可溶性高分子は吸湿性が低く、水分子を介した酸素の移動が妨げられるため、たとえ露光から加熱までの経過時間が長くなってもPEBの効果が保持されると考えられる。感光性樹脂組成物は、アルカリ可溶性高分子(A-1)を感光性樹脂組成物中の全固形分質量に対して3質量%以上含むことで、露光後加熱により樹脂のモビリティが大幅に向上し、スチレン骨格の疎水性と炭素-炭素二重結合の反応性を高度に両立さることができる。その結果、密着性を著しく向上させることができる。そして、密着性が著しく向上することにより、露光後に長時間が経過したとしても良好な密着性を得ることができる。 The reason why the adhesion when heated and developed after exposure is improved is not limited to theory, but the inventors presume as follows. When the inorganic value (I value) of the alkali-soluble polymer is 720 or less, the electric affinity of the alkali-soluble polymer is low, the permeability during development is suppressed, and the swelling / dissolution resistance is increased. As a result, it is considered that even a fine resist pattern is retained without being damaged by development. In addition, when the elapsed time from exposure to heating is long, radicals generated during exposure collide with oxygen in the alkali-soluble polymer and are deactivated, so that the effect of PEB is reduced. However, an alkali-soluble polymer having a low electrical affinity does not easily contain water molecules because water is not easily ionized, and the movement of oxygen is prevented. Therefore, even if the elapsed time is long, the effect of PEB is maintained. Conceivable. When the solubility parameter (sp value) of the alkali-soluble polymer is 21.45 MPa 1/2 or less, the hydrophobicity of the alkali-soluble polymer is high, and the swelling / dissolution resistance during development is high. It is considered that the pattern is retained without being damaged by development. In addition, alkali-soluble polymers having high hydrophobicity have low hygroscopicity and hinder the transfer of oxygen through water molecules, so that even if the elapsed time from exposure to heating is long, the effect of PEB is maintained. Conceivable. Since the photosensitive resin composition contains the alkali-soluble polymer (A-1) in an amount of 3% by mass or more based on the total solid content in the photosensitive resin composition, the mobility of the resin is greatly improved by heating after exposure. However, the hydrophobicity of the styrene skeleton and the reactivity of the carbon-carbon double bond can both be highly compatible. As a result, the adhesion can be significantly improved. And, since the adhesiveness is remarkably improved, good adhesiveness can be obtained even if a long time has elapsed after the exposure.

 アルカリ可溶性高分子の無機性値(I値)の上限値は、好ましくは635以下、又は600以下であり、下限値は、好ましくは300以上、350以上、400以上、450以上、500以上、又は550以上である。無機性値(I値)が350以上であることにより、微細な配線間にアルカリ可溶性高分子の残渣が残り難いという利点がある。アルカリ可溶性高分子は、1種を単独で使用することができ、或いは2種以上を混合して使用してもよい。2種以上を混合して使用する場合には、アルカリ可溶性高分子混合物としての無機性値(I値)が、本実施形態における特定の範囲内であることが好ましい。混合物の無機性値(I値)は、加成性があると仮定し、それぞれの成分のI値に重量分率を掛け合わせた値の和として求めることができる。 The upper limit of the inorganic value (I value) of the alkali-soluble polymer is preferably 635 or less, or 600 or less, and the lower limit is preferably 300 or more, 350 or more, 400 or more, 450 or more, 500 or more, or 550 or more. When the inorganic value (I value) is 350 or more, there is an advantage that a residue of an alkali-soluble polymer hardly remains between fine wirings. As the alkali-soluble polymer, one kind may be used alone, or two or more kinds may be used in combination. When two or more kinds are used as a mixture, the inorganic value (I value) of the alkali-soluble polymer mixture is preferably within a specific range in the present embodiment. The inorganic value (I value) of the mixture can be determined as the sum of the values obtained by multiplying the I value of each component by the weight fraction, assuming that the mixture is additive.

 アルカリ可溶性高分子の溶解度パラメータ(sp値)の上限値は、好ましくは21.40MPa1/2以下、又は21.20MPa1/2以下であり、下限値は、好ましくは19.00MPa1/2以上、19.50MPa1/2以上、20.00MPa1/2以上、又は20.50MPa1/2以上である。溶解度パラメータ(sp値)が19.00MPa1/2以上であることにより、微細な配線間にアルカリ可溶性高分子の残渣が残りにくいという利点がある。アルカリ可溶性高分子は、1種を単独で使用することができ、或いは2種以上を混合して使用してもよい。2種以上を混合して使用する場合には、アルカリ可溶性高分子混合物としての溶解度パラメータ(sp値)が、本実施形態における特定の範囲内であることが好ましい。混合物としての溶解度パラメータ(sp値)は、加成性があると仮定し、それぞれの成分のsp値に重量分率を掛け合わせた値の和として求めることができる。 The upper limit of the solubility parameter (sp value) of the alkali-soluble polymer is preferably 21.40 MPa 1/2 or less, or 21.20 MPa 1/2 or less, and the lower limit is preferably 19.00 MPa 1/2 or more. , 19.50 MPa 1/2 or more, 20.00 MPa 1/2 or more, or 20.50 MPa 1/2 or more. When the solubility parameter (sp value) is 19.00 MPa 1/2 or more, there is an advantage that a residue of an alkali-soluble polymer hardly remains between fine wirings. As the alkali-soluble polymer, one kind may be used alone, or two or more kinds may be used in combination. When two or more kinds are used as a mixture, the solubility parameter (sp value) of the alkali-soluble polymer mixture is preferably within a specific range in the present embodiment. The solubility parameter (sp value) as a mixture can be determined as the sum of values obtained by multiplying the sp value of each component by the weight fraction, assuming that there is an additive property.

 本実施形態において、アルカリ可溶性高分子とは、得られる感光性樹脂層がアルカリ水溶液に対する現像性及び剥離性を有する程度に、アルカリ物質に溶け易い高分子をいう。より具体的には、アルカリ可溶性高分子に含まれるカルボキシル基の量は、酸当量で好ましくは100g~600g、又は250g~450gである。酸当量とは、その分子中に1当量のカルボキシル基を有する重合体の質量(単位:グラム)である。アルカリ可溶性高分子中のカルボキシル基は、感光性樹脂層に、アルカリ水溶液に対する現像性及び剥離性を与える。酸当量が100以上であると、現像耐性、解像性、及び密着性が向上する。酸当量は、250g以上であることがより好ましい。酸当量が600g以下であると、現像性及び剥離性が向上する。酸当量は、450g以下であることがより好ましい。本願明細書において、酸当量は、電位差滴定装置を用い、0.1mol/LのNaOH水溶液で滴定する電位差滴定法により測定される値である。 ア ル カ リ In the present embodiment, the alkali-soluble polymer refers to a polymer that is easily soluble in an alkaline substance to such an extent that the obtained photosensitive resin layer has developability and releasability in an aqueous alkali solution. More specifically, the amount of the carboxyl group contained in the alkali-soluble polymer is preferably 100 g to 600 g or 250 g to 450 g in terms of acid equivalent. The acid equivalent is the mass (unit: gram) of a polymer having one equivalent of a carboxyl group in the molecule. The carboxyl group in the alkali-soluble polymer gives the photosensitive resin layer developability and releasability to an aqueous alkali solution. When the acid equivalent is 100 or more, development resistance, resolution, and adhesion are improved. The acid equivalent is more preferably 250 g or more. When the acid equivalent is 600 g or less, developability and peelability are improved. More preferably, the acid equivalent is 450 g or less. In the present specification, the acid equivalent is a value measured by a potentiometric titration method using a potentiometric titrator and titrating with a 0.1 mol / L NaOH aqueous solution.

 アルカリ可溶性高分子の重量平均分子量(Mw)は、5,000~500,000であることが好ましい。重量平均分子量が500,000以下であると、解像性及び現像性が向上する。重量平均分子量は、より好ましくは100,000以下、70,000以下、60,000以下、又は50,000以下である。重量平均分子量が5,000以上であると、現像凝集物の性状、並びに感光性樹脂積層体におけるエッジフューズ性及びカットチップ性等の未露光膜の性状を制御することがより容易である。重量平均分子量は、より好ましくは10,000以上、又は20,000以上である。エッジフューズ性とは、感光性樹脂積層体をロール状に巻き取った場合の、ロールの端面からの感光性樹脂層のはみ出し易さの程度をいう。カットチップ性とは、未露光膜をカッターで切断した場合の、チップの飛び易さの程度をいう。このチップが感光性樹脂積層体の上面等に付着すると、後の露光工程等でマスクに転写して、不良品の原因となる。 重量 The weight average molecular weight (Mw) of the alkali-soluble polymer is preferably 5,000 to 500,000. When the weight average molecular weight is 500,000 or less, resolution and developability are improved. The weight average molecular weight is more preferably 100,000 or less, 70,000 or less, 60,000 or less, or 50,000 or less. When the weight average molecular weight is 5,000 or more, it is easier to control the properties of the developed aggregates and the properties of the unexposed film such as the edge fuse property and the cut chip property in the photosensitive resin laminate. The weight average molecular weight is more preferably 10,000 or more, or 20,000 or more. The edge fusing property refers to the degree of ease in which the photosensitive resin layer protrudes from the end face of the roll when the photosensitive resin laminate is wound into a roll. The cut chip property refers to the degree of chip flying when an unexposed film is cut with a cutter. If this chip adheres to the upper surface of the photosensitive resin laminate or the like, it is transferred to a mask in a later exposure step or the like, which causes a defective product.

 アルカリ可溶性高分子の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)として定義される分散度は、1.0~6.0であることが好ましく、1.0~5.0であることがより好ましく、1.0~4.0であることが更に好ましく、1.0~3.0であることが更に好ましい。アルカリ可溶性高分子の重量平均分子量(Mw)及び数平均分子量(Mn)は、いずれも、ゲルパーミエーションクロマトグラフィー(GPC)で測定されたポリスチレン換算の値である。 The degree of dispersion, defined as the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the alkali-soluble polymer, is preferably from 1.0 to 6.0, and 1.0 to 6.0. It is more preferably from 5.0 to 5.0, further preferably from 1.0 to 4.0, and further preferably from 1.0 to 3.0. Both the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the alkali-soluble polymer are values in terms of polystyrene measured by gel permeation chromatography (GPC).

 露光後加熱してから現像したときのより高い密着性、特に、露光後に長時間が経過した場合のより良好な密着性を提供するため、アルカリ可溶性高分子は、芳香族炭化水素基を有する単量体成分に由来する構成単位を含むことが好ましい。芳香族炭化水素基としては、例えば、置換又は非置換のフェニル基、及び置換又は非置換のアラルキル基等が挙げられる。アルカリ可溶性高分子における、芳香族炭化水素基を有する単量体成分の量の下限値は、アルカリ可溶性高分子の全単量体成分の合計質量を基準として、好ましくは、20質量%以上、40質量%以上、50質量%以上、55質量%以上、又は60質量%以上である。芳香族炭化水素基を有する単量体成分の量の上限値は、限定されないが、例えば95質量%以下、又は80質量%以下であってよい。感光性樹脂組成物が、複数種類のアルカリ可溶性高分子を含有する場合、芳香族炭化水素基を有する単量体成分の量は、重量平均値として求める。 In order to provide higher adhesiveness when heated and developed after exposure, and in particular, better adhesiveness when a long period of time has elapsed after exposure, the alkali-soluble polymer is a simple polymer having an aromatic hydrocarbon group. It preferably contains a structural unit derived from a monomer component. Examples of the aromatic hydrocarbon group include a substituted or unsubstituted phenyl group and a substituted or unsubstituted aralkyl group. The lower limit of the amount of the monomer component having an aromatic hydrocarbon group in the alkali-soluble polymer is preferably 20% by mass or more, based on the total mass of all the monomer components of the alkali-soluble polymer. % By mass, 50% by mass or more, 55% by mass or more, or 60% by mass or more. The upper limit of the amount of the monomer component having an aromatic hydrocarbon group is not limited, but may be, for example, 95% by mass or less, or 80% by mass or less. When the photosensitive resin composition contains a plurality of types of alkali-soluble polymers, the amount of the monomer component having an aromatic hydrocarbon group is determined as a weight average value.

 芳香族炭化水素基を有する単量体としては、例えば、アラルキル基を有するモノマー、スチレン、及びスチレン誘導体が挙げられる。アルカリ可溶性高分子が、アラルキル基を有する単量体、スチレン、又はスチレン誘導体に由来する構成単位を含有する場合、より高い解像性を提供することができる。そのようなアルカリ可溶性高分子としては、例えば、メタクリル酸とベンジルメタクリレートとスチレンを含む共重合体、メタクリル酸とメチルメタクリレートとベンジルメタクリレートとスチレンを含む共重合体等が好ましい。 Examples of the monomer having an aromatic hydrocarbon group include a monomer having an aralkyl group, styrene, and a styrene derivative. When the alkali-soluble polymer contains a structural unit derived from a monomer having an aralkyl group, styrene, or a styrene derivative, higher resolution can be provided. As such an alkali-soluble polymer, for example, a copolymer containing methacrylic acid, benzyl methacrylate and styrene, a copolymer containing methacrylic acid, methyl methacrylate, benzyl methacrylate and styrene, and the like are preferable.

 アラルキル基としては、置換又は非置換のフェニルアルキル基(ただし、ベンジル基を除く)、及び置換又は非置換のベンジル基等が挙げられ、置換又は非置換のベンジル基が好ましい。フェニルアルキル基を有するコモノマーとしては、フェニルエチル(メタ)アクリレート等が挙げられる。ベンジル基を有するコモノマーとしては、ベンジル基を有する(メタ)アクリレート、例えば、ベンジル(メタ)アクリレート、及びクロロベンジル(メタ)アクリレート等;並びにベンジル基を有するビニルモノマー、例えば、ビニルベンジルクロライド、及びビニルベンジルアルコール等が挙げられる。ベンジル基を有するコモノマーとしては、好ましくは、ベンジル(メタ)アクリレートである。 Examples of the aralkyl group include a substituted or unsubstituted phenylalkyl group (excluding a benzyl group) and a substituted or unsubstituted benzyl group. A substituted or unsubstituted benzyl group is preferable. Examples of the comonomer having a phenylalkyl group include phenylethyl (meth) acrylate. Examples of the comonomer having a benzyl group include (meth) acrylates having a benzyl group, such as benzyl (meth) acrylate and chlorobenzyl (meth) acrylate; and vinyl monomers having a benzyl group, such as vinylbenzyl chloride and vinyl. Benzyl alcohol and the like. The comonomer having a benzyl group is preferably benzyl (meth) acrylate.

 アルカリ可溶性高分子は、分子中に重合性不飽和基とカルボキシル基とを有する第一の単量体の重合体であることが好ましく、第一の単量体と、分子中に重合性不飽和基を有する非酸性の第二の単量体との共重合体であることがより好ましい。アルカリ可溶性高分子が、芳香族炭化水素基を有する単量体成分を含有する場合、アルカリ可溶性高分子は、芳香族炭化水素基を有する単量体と、第一の単量体の少なくとも1種及び/又は第二の単量体の少なくとも1種との共重合体であることが好ましい。 The alkali-soluble polymer is preferably a polymer of a first monomer having a polymerizable unsaturated group and a carboxyl group in the molecule, and the first monomer and the polymerizable unsaturated polymer in the molecule are preferably used. More preferably, it is a copolymer with a non-acidic second monomer having a group. When the alkali-soluble polymer contains a monomer component having an aromatic hydrocarbon group, the alkali-soluble polymer includes at least one of a monomer having an aromatic hydrocarbon group and a first monomer. And / or a copolymer with at least one of the second monomers.

 第一の単量体は、分子中に重合性不飽和基とカルボキシル基とを有する単量体である。第一の単量体としては、例えば、(メタ)アクリル酸、フマル酸、ケイ皮酸、クロトン酸、イタコン酸、4-ビニル安息香酸、マレイン酸無水物、及びマレイン酸半エステル等が挙げられる。第一の単量体は、好ましくは(メタ)アクリル酸である。本願明細書において「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリロイル基」とは、アクリロイル基又はメタクリロイル基を意味し、「(メタ)アクリレート」とは、「アクリレート」又は「メタクリレート」を意味する。 The first monomer is a monomer having a polymerizable unsaturated group and a carboxyl group in the molecule. Examples of the first monomer include (meth) acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, 4-vinylbenzoic acid, maleic anhydride, and maleic acid half ester. . The first monomer is preferably (meth) acrylic acid. In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, “(meth) acryloyl group” means acryloyl group or methacryloyl group, and “(meth) acrylate” , "Acrylate" or "methacrylate".

 アルカリ可溶性高分子中の第一の単量体の量は、アルカリ可溶性高分子を構成する全単量体成分の合計質量を基準として、10質量%~50質量%であることが好ましい。第一の単量体の量が10質量%以上であると、より良好な現像性を提供すること、及びエッジフューズ性をより容易に制御することができる。第一の単量体の量は、より好ましくは、15質量%以上、又は20質量%以上である。第一の単量体の量が50質量%以下であると、レジストパターンのより高い解像性、より良好なスソ形状、及びより高い耐薬品性を提供することができる。第一の単量体の量は、より好ましくは、35質量%以下、32質量%以下、又は30質量%以下である。 量 The amount of the first monomer in the alkali-soluble polymer is preferably 10% by mass to 50% by mass based on the total mass of all monomer components constituting the alkali-soluble polymer. When the amount of the first monomer is 10% by mass or more, it is possible to provide better developability and more easily control the edge fuse property. The amount of the first monomer is more preferably 15% by mass or more, or 20% by mass or more. When the amount of the first monomer is 50% by mass or less, it is possible to provide higher resolution of the resist pattern, better lithography, and higher chemical resistance. The amount of the first monomer is more preferably 35% by mass or less, 32% by mass or less, or 30% by mass or less.

 第二の単量体は、非酸性であり、かつ分子中に重合性不飽和基を少なくとも1個有する単量体である。第二の単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及び2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリレート化合物;酢酸ビニル等のビニルアルコールのエステル化合物;並びに(メタ)アクリロニトリル等が挙げられる。第二の単量体としては、好ましくは、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、及びn-ブチル(メタ)アクリレートからなる群から選択される少なくとも一つである。 The second monomer is a monomer that is non-acidic and has at least one polymerizable unsaturated group in the molecule. Examples of the second monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate (Meth) acrylate compounds such as tert-butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; acetic acid Ester compounds of vinyl alcohol such as vinyl; and (meth) acrylonitrile. The second monomer is preferably at least one selected from the group consisting of methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and n-butyl (meth) acrylate.

 アルカリ可溶性高分子中の第二の単量体の量は、アルカリ可溶性高分子を構成する全単量体成分の合計質量を基準として、10質量%~50質量%であることが好ましい。第二の単量体の量が10質量%以上であると、より良好な現像性を提供すること、及びエッジフューズ性をより容易に制御することができる。第二の単量体の量は、より好ましくは、15質量%以上、又は20質量%以上である。第二の単量体の量が50質量%以下であると、レジストパターンのより高い解像性、より良好なスソ形状、及びより高い耐薬品性を提供することができる。第二の単量体の量は、より好ましくは、35質量%以下、32質量%以下、又は30質量%以下である。 量 The amount of the second monomer in the alkali-soluble polymer is preferably 10% by mass to 50% by mass based on the total mass of all the monomer components constituting the alkali-soluble polymer. When the amount of the second monomer is 10% by mass or more, it is possible to provide better developability and more easily control the edge fuse property. The amount of the second monomer is more preferably 15% by mass or more, or 20% by mass or more. When the amount of the second monomer is 50% by mass or less, it is possible to provide higher resolution of the resist pattern, better sedge shape, and higher chemical resistance. The amount of the second monomer is more preferably 35% by mass or less, 32% by mass or less, or 30% by mass or less.

 アルカリ可溶性高分子は、1種のアルカリ可溶性高分子のみからなることができ、或いは2種以上のアルカリ可溶性高分子の混合物であってもよい。2種以上のアルカリ可溶性高分子の混合物である場合、アルカリ可溶性高分子は、芳香族炭化水素基を有する単量体成分を含むアルカリ可溶性高分子を2種以上含むこと、又は、芳香族炭化水素基を有する単量体成分を含むアルカリ可溶性高分子を1種以上と、芳香族炭化水素基を有する単量体成分を含まないアルカリ可溶性高分子を1種以上とを含むことが好ましい。後者の場合、芳香族炭化水素基を有する単量体成分を含むアルカリ可溶性高分子の量は、アルカリ可溶性高分子の全質量に対して、好ましくは、50質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上である。 The alkali-soluble polymer can be composed of only one alkali-soluble polymer, or may be a mixture of two or more alkali-soluble polymers. When the mixture is a mixture of two or more alkali-soluble polymers, the alkali-soluble polymer contains two or more alkali-soluble polymers containing a monomer component having an aromatic hydrocarbon group, or contains an aromatic hydrocarbon. It is preferable to include at least one alkali-soluble polymer containing a monomer component having a group and at least one alkali-soluble polymer not containing a monomer component having an aromatic hydrocarbon group. In the latter case, the amount of the alkali-soluble polymer containing the monomer component having an aromatic hydrocarbon group is preferably 50% by mass or more, 70% by mass or more, % By mass, 90% by mass or more, or 95% by mass or more.

 アルカリ可溶性高分子は、単量体成分としてスチレン及び/又はスチレン誘導体の構成単位を含む、アルカリ可溶性高分子(A-1)であることがより好ましい。スチレン誘導体としては、例えば、メチルスチレン、ビニルトルエン、tert-ブトキシスチレン、アセトキシスチレン、4-ビニル安息香酸、スチレンダイマー、及びスチレントリマー等が挙げられる。 The alkali-soluble polymer is more preferably an alkali-soluble polymer (A-1) containing a structural unit of styrene and / or a styrene derivative as a monomer component. Examples of the styrene derivative include methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoic acid, styrene dimer, and styrene trimer.

 感光性樹脂組成物中に含まれるアルカリ可溶性高分子(A-1)の量は、感光性樹脂組成物中の全固形分質量を基準として、好ましくは、3質量%以上、5質量%以上、10質量%以上、15質量%以上、20質量%以上、25質量%以上、又は30質量%以上である。 The amount of the alkali-soluble polymer (A-1) contained in the photosensitive resin composition is preferably 3% by mass or more, 5% by mass or more, based on the total solid content in the photosensitive resin composition. It is 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, or 30% by mass or more.

 アルカリ可溶性高分子(A-1)の構成単位であるスチレン及び/又はスチレン誘導体の総量は、アルカリ可溶性高分子(A-1)の全質量を基準として、好ましくは、52質量%以上、55質量%以上、58質量%以上、又は60質量%以上である。スチレン及び/又はスチレン誘導体に由来する構成単位を52質量%以上含み、かつ、露光後に加熱してから現像することにより、スチレン骨格の含有量が多い系であっても、加熱により樹脂のモビリティが大幅に向上し、スチレン骨格の疎水性と炭素-炭素二重結合の反応性を高度に両立することができる。その結果、密着性を著しく向上させることができる。そして、密着性が著しく向上することにより、露光後の経過時間が長くなったときにおいても良好な密着性を得ることができる。 The total amount of styrene and / or a styrene derivative that is a constituent unit of the alkali-soluble polymer (A-1) is preferably 52% by mass or more and 55% by mass based on the total mass of the alkali-soluble polymer (A-1). % Or more, 58% by mass or more, or 60% by mass or more. Even if the system contains 52% by mass or more of structural units derived from styrene and / or a styrene derivative, and is heated and developed after exposure, the mobility of the resin is increased by heating even in a system having a high styrene skeleton content. This greatly improves the compatibility between the hydrophobicity of the styrene skeleton and the reactivity of the carbon-carbon double bond. As a result, the adhesion can be significantly improved. And, since the adhesiveness is remarkably improved, good adhesiveness can be obtained even when the elapsed time after exposure is long.

 スチレン骨格の含有量が少ないと、樹脂(得られる樹脂硬化物)のモビリティが低下しすぎることなく、所望の反応性及び密着性を得ることがより容易である。また、露光後に長時間が経過すると系内のラジカルが失活していくため、時間経過に伴い、露光後加熱による密着性向上の効果が低減していく。これらの観点から、アルカリ可溶性高分子(A-1)の構成単位であるスチレン及び/又はスチレン誘導体の総量は、アルカリ可溶性高分子(A-1)の全質量を基準として、好ましくは、90質量%以下、80質量%以下、75質量%以下、又は70質量%以下である。 (4) When the content of the styrene skeleton is small, it is easier to obtain desired reactivity and adhesion without excessively decreasing the mobility of the resin (the cured resin obtained). In addition, radicals in the system deactivate over a long period of time after exposure, so that the effect of improving adhesion by heating after exposure decreases with time. From these viewpoints, the total amount of styrene and / or a styrene derivative which is a constituent unit of the alkali-soluble polymer (A-1) is preferably 90 mass% based on the total mass of the alkali-soluble polymer (A-1). %, 80% or less, 75% or less, or 70% or less.

 露光後に加熱してから現像したときのより高い密着性、特に、露光後に長時間が経過したときのより良好な密着性を提供するため、アルカリ可溶性高分子(A-1)は、単量体成分として(メタ)アクリル酸に由来する構成単位を更に含むことが好ましい。(メタ)アクリル酸に由来する構成単位の量は、アルカリ可溶性高分子(A-1)の全質量を基準として、好ましくは、25質量%以上、26質量%以上、27質量%以上、28質量%以上、又は29質量%以上である。同様の観点から、(メタ)アクリル酸に由来する構成単位の量は、アルカリ可溶性高分子(A-1)の全質量を基準として、好ましくは、35質量%以下、32質量%以下、又は30質量%以下である。 The alkali-soluble polymer (A-1) is composed of a monomer to provide higher adhesiveness when heated and then developed after exposure, particularly better adhesiveness when a long time has elapsed after exposure. It is preferable to further include a structural unit derived from (meth) acrylic acid as a component. The amount of the structural unit derived from (meth) acrylic acid is preferably 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass based on the total mass of the alkali-soluble polymer (A-1). % Or more, or 29% by mass or more. From the same viewpoint, the amount of the structural unit derived from (meth) acrylic acid is preferably 35% by mass or less, 32% by mass or less, or 30% by mass or less based on the total mass of the alkali-soluble polymer (A-1). % By mass or less.

 露光後に加熱してから現像したときのより高い密着性、特に、露光後に長時間が経過したときのより良好な密着性を提供するため、アルカリ可溶性高分子(A-1)は、単量体成分としてベンジル(メタ)アクリレートに由来する構成単位を更に含むことが好ましい。ベンジル(メタ)アクリレートに由来する構成単位の量は、アルカリ可溶性高分子(A-1)の全質量を基準として、好ましくは、5質量%以上、10質量%以上、15質量%以上、又は20質量%以上である。同様の観点から、ベンジル(メタ)アクリル酸に由来する構成単位の量は、アルカリ可溶性高分子(A-1)の全質量を基準として、好ましくは、35質量%以下、32質量%以下、又は30質量%以下である。 The alkali-soluble polymer (A-1) is composed of a monomer to provide higher adhesiveness when heated and then developed after exposure, particularly better adhesiveness when a long time has elapsed after exposure. It is preferable to further include a structural unit derived from benzyl (meth) acrylate as a component. The amount of the structural unit derived from benzyl (meth) acrylate is preferably 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass based on the total mass of the alkali-soluble polymer (A-1). % By mass or more. From the same viewpoint, the amount of the structural unit derived from benzyl (meth) acrylic acid is preferably 35% by mass or less, 32% by mass or less, based on the total mass of the alkali-soluble polymer (A-1). 30 mass% or less.

 アルカリ可溶性高分子(A)のガラス転移温度Tgの重量平均値Tgtotalは、30℃以上150℃以下であることが好ましい。アルカリ可溶性高分子のTgtotalが150℃以下であることにより、露光後に加熱してから現像したときのより高い密着性、特に、露光後に長時間が経過したときのより良好な密着性を提供することができる。アルカリ可溶性高分子のTgtotalは、より好ましくは、135℃以下、130℃以下、125℃以下、120℃以下、又は110℃以下である。アルカリ可溶性高分子のTgtotalが30℃以上であることにより、より高い耐エッジフューズ性を提供することができる。アルカリ可溶性高分子のTgtotalは、より好ましくは、40℃以上、50℃以上、又は60℃以上である。 The weight average value Tg total of the glass transition temperature Tg of the alkali-soluble polymer (A) is preferably 30 ° C. or more and 150 ° C. or less. When the Tg total of the alkali-soluble polymer is 150 ° C. or less, it provides higher adhesion when heated and developed after exposure, particularly better adhesion when a long time has elapsed after exposure. be able to. Tg total of the alkali-soluble polymer is more preferably 135 ° C. or lower, 130 ° C. or lower, 125 ° C. or lower, 120 ° C. or lower, or 110 ° C. or lower. When the Tg total of the alkali-soluble polymer is 30 ° C. or higher, higher edge fuse resistance can be provided. Tg total of the alkali-soluble polymer is more preferably 40 ° C. or more, 50 ° C. or more, or 60 ° C. or more.

 感光性樹脂組成物中に含まれるアルカリ可溶性高分子(A)の量は、感光性樹脂組成物の全固形分質量を基準として、好ましくは、10質量%~90質量%、30質量%~70質量%、又は40質量%~60質量%である。感光性樹脂組成物中のアルカリ可溶性高分子の量が90質量%以下であると、現像時間を制御することがより容易である。感光性樹脂組成物中のアルカリ可溶性高分子の量が10質量%以上であると、より高い耐エッジフューズ性を提供することができる。 The amount of the alkali-soluble polymer (A) contained in the photosensitive resin composition is preferably from 10% by mass to 90% by mass, from 30% by mass to 70% by mass, based on the total solid content mass of the photosensitive resin composition. % By mass, or 40% by mass to 60% by mass. When the amount of the alkali-soluble polymer in the photosensitive resin composition is 90% by mass or less, it is easier to control the development time. When the amount of the alkali-soluble polymer in the photosensitive resin composition is 10% by mass or more, higher edge fuse resistance can be provided.

 アルカリ可溶性高分子(A)の合成は、アルカリ可溶性高分子を構成する単数又は複数種類の単量体を溶剤で希釈し、ラジカル重合開始剤を適量添加し、加熱攪拌することにより重合させることにより行うことができる。重合に用いる溶液としては、アセトン、メチルエチルケトン、及びイソプロパノール等の溶剤が挙げられる。ラジカル重合開始剤としては、過酸化ベンゾイル、及びアゾイソブチロニトリル等が挙げられる。単量体の全部を一度に溶液で希釈する代わりに、単量体の混合物の一部を反応液に滴下しながら合成を行ってもよい。反応終了後、さらに溶剤を加えて、所望の濃度に調整してもよい。合成方法としては、溶液重合以外に、塊状重合、懸濁重合、及び乳化重合が挙げられる。 The synthesis of the alkali-soluble polymer (A) is performed by diluting one or more kinds of monomers constituting the alkali-soluble polymer with a solvent, adding an appropriate amount of a radical polymerization initiator, and polymerizing the mixture by heating and stirring. It can be carried out. Examples of the solution used for the polymerization include solvents such as acetone, methyl ethyl ketone, and isopropanol. Examples of the radical polymerization initiator include benzoyl peroxide and azoisobutyronitrile. Instead of diluting all of the monomers with the solution at once, the synthesis may be performed while a part of the mixture of the monomers is dropped into the reaction solution. After completion of the reaction, the concentration may be adjusted to a desired concentration by further adding a solvent. Examples of the synthesis method include bulk polymerization, suspension polymerization, and emulsion polymerization in addition to solution polymerization.

〈(B)エチレン性不飽和二重結合を有する化合物〉
 エチレン性不飽和二重結合を有する化合物(B)は、樹脂組成物のより良好な硬化性、及びアルカリ可溶性高分子とのより高い相溶性を提供するため、分子内に(メタ)アクリロイル基を有する化合物を含むことが好ましい。(メタ)アクリロイル基の数は、化合物(B)1分子当たり1個以上であればよい。より良好な剥離性及び硬化膜の柔軟性を提供する観点で、(メタ)アクリロイル基を1個有する化合物としては、例えば、ポリアルキレンオキシドの片方の末端に(メタ)アクリル酸を付加した化合物;ポリアルキレンオキシドの片方の末端に(メタ)アクリル酸を付加し、他方の末端をアルキルエーテル化若しくはアリルエーテル化した化合物;及びフタル酸系化合物等が挙げられる。
<(B) Compound having an ethylenically unsaturated double bond>
The compound (B) having an ethylenically unsaturated double bond has a (meth) acryloyl group in the molecule in order to provide better curability of the resin composition and higher compatibility with an alkali-soluble polymer. It is preferable to include a compound having the same. The number of the (meth) acryloyl groups may be one or more per one molecule of the compound (B). From the viewpoint of providing better releasability and flexibility of the cured film, examples of the compound having one (meth) acryloyl group include, for example, a compound obtained by adding (meth) acrylic acid to one end of a polyalkylene oxide; Compounds in which (meth) acrylic acid is added to one end of polyalkylene oxide and the other end is alkyl-etherified or allyl-etherified; and phthalic acid-based compounds.

 (メタ)アクリロイル基を1個有する化合物としては、例えば、ポリエチレングリコールをフェニル基に付加した化合物の(メタ)アクリレートである、フェノキシヘキサエチレングリコールモノ(メタ)アクリレート;平均2モルのプロピレンオキサイドを付加したポリプロピレングリコールと、平均7モルのエチレンオキサイドを付加したポリエチレングリコールとをノニルフェノールに付加した化合物の(メタ)アクリレートである、4-ノルマルノニルフェノキシヘプタエチレングリコールジプロピレングリコール(メタ)アクリレート;平均1モルのプロピレンオキサイドを付加したポリプロピレングリコールと、平均5モルのエチレンオキサイドを付加したポリエチレングリコールとをノニルフェノールに付加した化合物の(メタ)アクリレートである、4-ノルマルノニルフェノキシペンタエチレングリコールモノプロピレングリコール(メタ)アクリレート;並びに平均8モルのエチレンオキサイドを付加したポリエチレングリコールをノニルフェノールに付加した化合物のアクリレートである、4-ノルマルノニルフェノキシオクタエチレングリコール(メタ)アクリレート(例えば、東亞合成(株)製、M-114)等が挙げられる。より高い感度、解像性、及び密着性を提供する観点で、(メタ)アクリロイル基を1個有する化合物としては、γ-クロロ-β-ヒドロキシプロピル-β'-メタクリロイルオキシエチル-о-フタレートもまた挙げられる。 Examples of the compound having one (meth) acryloyl group include, for example, phenoxyhexaethylene glycol mono (meth) acrylate which is a (meth) acrylate of a compound obtained by adding polyethylene glycol to a phenyl group; 4-normalnonylphenoxyheptaethylene glycol dipropylene glycol (meth) acrylate, which is a (meth) acrylate of a compound obtained by adding a non-phenol to a polypropylene glycol obtained by adding a polyethylene glycol having an average of 7 moles of ethylene oxide and a polyethylene glycol having an ethylene oxide added thereto; an average of 1 mole Of a compound obtained by adding a propylene oxide to a nonylphenol and a polyethylene glycol having an average of 5 moles of ethylene oxide added to nonylphenol 4-Normalonylphenoxypentaethylene glycol monopropylene glycol (meth) acrylate, which is an acrylate; and 4-Normalonylphenoxy, which is an acrylate of a compound obtained by adding polyethylene glycol having an average of 8 moles of ethylene oxide added to nonylphenol. Octaethylene glycol (meth) acrylate (for example, M-114, manufactured by Toagosei Co., Ltd.) and the like can be mentioned. From the viewpoint of providing higher sensitivity, resolution, and adhesion, as a compound having one (meth) acryloyl group, γ-chloro-β-hydroxypropyl-β′-methacryloyloxyethyl-о-phthalate is also preferable. Also mentioned.

 (メタ)アクリロイル基を2個有する化合物としては、例えば、アルキレンオキシド鎖の両末端に(メタ)アクリロイル基を有する化合物、及びエチレンオキシド鎖とプロピレンオキシド鎖とがランダム若しくはブロックで結合したアルキレンオキシド鎖の両末端に(メタ)アクリロイル基を有する化合物等が挙げられる。 Examples of the compound having two (meth) acryloyl groups include a compound having a (meth) acryloyl group at both ends of an alkylene oxide chain, and an alkylene oxide chain in which an ethylene oxide chain and a propylene oxide chain are bonded at random or in a block. Compounds having a (meth) acryloyl group at both ends are exemplified.

 (メタ)アクリロイル基を2個有する化合物としては、例えば、テトラエチレングリコールジ(メタ)アクリレート、ペンタエチレングリコールジ(メタ)アクリレート、ヘキサエチレングリコールジ(メタ)アクリレート、ヘプタエチレングリコールジ(メタ)アクリレート、オクタエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、及び12モルのエチレンオキシド鎖の両末端に(メタ)アクリロイル基を有する化合物等のポリエチレングリコ-ル(メタ)アクリレ-ト;並びにポリプロピレングリコ-ルジ(メタ)アクリレ-ト、ポリブチレングリコ-ルジ(メタ)アクリレ-ト、及び分子内にエチレンオキシド基とプロピレンオキシド基とを含むポリアルキレンオキシドジ(メタ)アクリレート化合物等が挙げられる。分子内にエチレンオキシド基とプロピレンオキシド基とを含むポリアルキレンオキシドジ(メタ)アクリレート化合物としては、例えば、平均12モルのプロピレンオキシドを付加したポリプロピレングリコールの両末端にそれぞれ平均3モルのエチレンオキシドを更に付加したグリコールのジメタクリレート;平均18モルのプロピレンオキシドを付加したポリプロピレングリコールの両末端にそれぞれ平均15モルのエチレンオキシドを更に付加したグリコールのジメタクリレート等が挙げられる。より具体的には、FA-023M、FA-024M、FA-027M(製品名、日立化成工業製)等が挙げられる。これらは、より高い柔軟性、解像性、及び密着性を提供することができるため好ましい。 Examples of the compound having two (meth) acryloyl groups include tetraethylene glycol di (meth) acrylate, pentaethylene glycol di (meth) acrylate, hexaethylene glycol di (meth) acrylate, and heptaethylene glycol di (meth) acrylate. Polyethylene glycols such as octaethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, decaethylene glycol di (meth) acrylate, and compounds having (meth) acryloyl groups at both ends of a 12 mole ethylene oxide chain Poly (meth) acrylate; polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, and an ethylene oxide group and propyleneoxy in the molecule. Polyalkylene oxide di (meth) acrylate compounds, and the like comprising a base. As the polyalkylene oxide di (meth) acrylate compound containing an ethylene oxide group and a propylene oxide group in the molecule, for example, an average of 3 mol of ethylene oxide is further added to both ends of polypropylene glycol having an average of 12 mol of propylene oxide. Dimethacrylate of glycol; dimethacrylate of glycol in which an average of 15 moles of ethylene oxide is further added to both ends of polypropylene glycol to which an average of 18 moles of propylene oxide is added. More specifically, FA-023M, FA-024M, FA-027M (product name, manufactured by Hitachi Chemical Co., Ltd.) and the like can be mentioned. These are preferable because they can provide higher flexibility, resolution, and adhesion.

 分子内に(メタ)アクリロイル基を2個有する化合物の一例として、より高い解像性及び密着性を提供する観点で、ビスフェノールAをアルキレンオキシド変性することにより両末端に(メタ)アクリロイル基を有する化合物が挙げられる。具体的には、下記一般式(I):

Figure JPOXMLDOC01-appb-C000001
{式中、R及びRは、それぞれ独立に、水素原子又はメチル基を表し、AはCであり、BはCであり、n及びnは各々独立に1~39の整数であり、かつn+nは2~40の整数であり、n及びnは各々独立に0~29の整数であり、かつn+nは0~30の整数であり、-(A-O)-及び-(B-O)-の繰り返し単位の配列は、ランダムであってもブロックであってもよい。そして、ブロックの場合、-(A-O)-と-(B-O)-とのいずれがビスフェニル基側でもよい。}で表される化合物が好ましい。 As an example of a compound having two (meth) acryloyl groups in the molecule, from the viewpoint of providing higher resolution and adhesion, bisphenol A has (meth) acryloyl groups at both terminals by alkylene oxide modification of bisphenol A. Compounds. Specifically, the following general formula (I):
Figure JPOXMLDOC01-appb-C000001
In the formula, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, A is C 2 H 4 , B is C 3 H 6 , and n 1 and n 3 are each independently N 1 + n 3 is an integer of 2 to 40, n 2 and n 4 are each independently an integer of 0 to 29, and n 2 + n 4 is an integer of 0 to 30 And the sequence of the repeating units of-(AO)-and-(BO)-may be random or block. In the case of a block, any of-(A-0)-and-(BO)-may be on the bisphenyl group side. Compounds represented by} are preferred.

 より高い解像性及び密着性を提供する観点で、ビスフェノ-ルAの両端にそれぞれ平均5モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト、ビスフェノ-ルAの両端にそれぞれ平均2モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト、ビスフェノ-ルAの両端にそれぞれ平均1モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-トが好ましい。上記一般式(I)中の芳香環は、ヘテロ原子及び/又は置換基を有してもよい。 From the viewpoint of providing higher resolution and adhesion, dimethacrylate of polyethylene glycol having an average of 5 moles of ethylene oxide added to both ends of bisphenol A, and bisphenol A have an average of Dimethacrylate of polyethylene glycol to which ethylene oxide is added in an amount of 2 moles, and dimethacrylate of polyethylene glycol in which an average of 1 mole of ethylene oxide is added to both ends of bisphenol A, respectively, are preferred. The aromatic ring in the general formula (I) may have a hetero atom and / or a substituent.

 ヘテロ原子としては、例えば、ハロゲン原子等が挙げられる。置換基としては、例えば、炭素数1~20のアルキル基、炭素数3~10のシクロアルキル基、炭素数6~18のアリール基、フェナシル基、アミノ基、炭素数1~10のアルキルアミノ基、炭素数2~20のジアルキルアミノ基、ニトロ基、シアノ基、カルボニル基、メルカプト基、炭素数1~10のアルキルメルカプト基、アリール基、水酸基、炭素数1~20のヒドロキシアルキル基、カルボキシル基、アルキル基の炭素数が1~10のカルボキシアルキル基、アルキル基の炭素数が1~10のアシル基、炭素数1~20のアルコキシ基、炭素数1~20のアルコキシカルボニル基、炭素数2~10のアルキルカルボニル基、炭素数2~10のアルケニル基、炭素数2~10のN-アルキルカルバモイル基若しくは複素環を含む基、及びこれらの置換基で置換されたアリール基等が挙げられる。これらの置換基は縮合環を形成していてもよい。これらの置換基中の水素原子は、ハロゲン原子等のヘテロ原子に置換されていてもよい。一般式(I)中の芳香環が複数の置換基を有する場合には、複数の置換基は同一であるか、又は異なってもよい。 Examples of the hetero atom include a halogen atom and the like. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, a phenacyl group, an amino group, and an alkylamino group having 1 to 10 carbon atoms. A dialkylamino group having 2 to 20 carbon atoms, a nitro group, a cyano group, a carbonyl group, a mercapto group, an alkylmercapto group having 1 to 10 carbon atoms, an aryl group, a hydroxyl group, a hydroxyalkyl group having 1 to 20 carbon atoms, a carboxyl group A carboxyalkyl group having 1 to 10 carbon atoms in an alkyl group, an acyl group having 1 to 10 carbon atoms in the alkyl group, an alkoxy group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 20 carbon atoms, A C10-C10 alkylcarbonyl group, a C2-C10 alkenyl group, a C2-C10 N-alkylcarbamoyl group or a group containing a heterocyclic ring; Aryl groups substituted with these substituents. These substituents may form a condensed ring. A hydrogen atom in these substituents may be substituted with a hetero atom such as a halogen atom. When the aromatic ring in the general formula (I) has a plurality of substituents, the plurality of substituents may be the same or different.

 分子内に(メタ)アクリロイル基を3個以上有する化合物としては、中心骨格として分子内にアルキレンオキシド基を付加させることができる基を3モル以上有し、これにエチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基等のアルキレンオキシ基を付加させて得られたアルコールを(メタ)アクリレート化することにより得られる化合物が挙げられる。この場合、中心骨格になることができる化合物としては、例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、イソシアヌレート環等を挙げることができる。(メタ)アクリロイル基を3個以上有する化合物としては、トリ(メタ)アクリレート、例えば、エトキシ化グリセリントリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等;テトラ(メタ)アクリレート、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート等;ペンタ(メタ)アクリレート、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート等;並びにヘキサ(メタ)アクリレート、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。(メタ)アクリロイル基を3個以上有する化合物は、解像性、密着性、レジストスソ形状の観点で好ましく、より好ましくは、メタクリル基を3個以上有する。 As the compound having three or more (meth) acryloyl groups in the molecule, the compound having three or more moles of a group capable of adding an alkylene oxide group in the molecule as a central skeleton, and further having an ethyleneoxy group, a propyleneoxy group, Compounds obtained by subjecting an alcohol obtained by adding an alkyleneoxy group such as a butyleneoxy group to (meth) acrylate conversion are exemplified. In this case, examples of the compound capable of forming the central skeleton include glycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, and an isocyanurate ring. Examples of the compound having three or more (meth) acryloyl groups include tri (meth) acrylates such as ethoxylated glycerin tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and tri (meth) acrylate. Tetra (meth) acrylate, for example, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, etc .; penta (meth) acrylate, Examples thereof include dipentaerythritol penta (meth) acrylate; and hexa (meth) acrylate, for example, dipentaerythritol hexa (meth) acrylate. The compound having three or more (meth) acryloyl groups is preferable in terms of resolution, adhesion, and resist shape, and more preferably has three or more methacryl groups.

 トリメチロールプロパントリ(メタ)アクリレートとしては、高い柔軟性及び密着性、並びにブリードアウトを抑制する観点で、例えば、トリメチロールプロパンに平均21モルのエチレンオキサイドを付加したトリメタクリレート、及びトリメチロールプロパンに平均30モルのエチレンオキサイドを付加したトリメタクリレートが好ましい。 As trimethylolpropane tri (meth) acrylate, from the viewpoint of high flexibility and adhesion, and suppressing bleed-out, for example, trimethacrylate in which 21 mol of ethylene oxide is added to trimethylolpropane on average, and trimethylolpropane Trimethacrylate added with an average of 30 moles of ethylene oxide is preferred.

 テトラ(メタ)アクリレートとしては、ペンタエリスリトールテトラ(メタ)アクリレートが好ましい。ペンタエリスリトールテトラ(メタ)アクリレートは、例えば、ペンタエリスリトールの4つの末端に合計1~40モルのアルキレンオキサイドが付加されているテトラ(メタ)アクリレート等でよい。ヘキサ(メタ)アクリレートとしては、例えば、ジペンタエリスリトールの6つの末端に合計1~40モルのエチレンオキサイドが付加されているヘキサ(メタ)アクリレート、ジペンタエリスリトールの6つの末端に合計1~20モルのε-カプロラクトンが付加されているヘキサ(メタ)アクリレートが好ましい。 ペ ン タ As the tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate is preferable. The pentaerythritol tetra (meth) acrylate may be, for example, tetra (meth) acrylate in which a total of 1 to 40 mol of alkylene oxide is added to four terminals of pentaerythritol. As the hexa (meth) acrylate, for example, hexa (meth) acrylate in which a total of 1 to 40 mol of ethylene oxide is added to six terminals of dipentaerythritol, and a total of 1 to 20 mol in six terminals of dipentaerythritol And hexa (meth) acrylate to which ε-caprolactone is added.

 (メタ)アクリレート化合物は、それぞれ独立に、又は組み合わせて使用されることができる。感光性樹脂組成物は、エチレン性不飽和結合を有する化合物(B)として、その他の化合物も含んでよい。その他の化合物としては、ウレタン結合を有する(メタ)アクリレート、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させて得られる化合物、及び1,6-ヘキサンジオールジ(メタ)アクリレート等が挙げられる。 The (meth) acrylate compounds can be used independently or in combination. The photosensitive resin composition may also contain other compounds as the compound (B) having an ethylenically unsaturated bond. Other compounds include a (meth) acrylate having a urethane bond, a compound obtained by reacting an α, β-unsaturated carboxylic acid with a polyhydric alcohol, and a reaction of an α, β-unsaturated carboxylic acid with a glycidyl group-containing compound. And 1,6-hexanediol di (meth) acrylate.

 感光性樹脂組成物中に含まれる、エチレン性不飽和二重結合を有する化合物(B)の量は、感光性樹脂組成物中の全固形分質量を基準として、好ましくは5質量%~70質量%である。化合物(B)の量が5質量%以上であると、感度、解像性及び密着性の観点から好ましい。化合物(B)の量は、より好ましくは20質量%以上、又は30質量%以上である。化合物(B)の量が70質量%以下であると、エッジフューズ及び硬化レジストの剥離遅延を抑えるという観点から好ましい。化合物(B)の量は、より好ましくは50質量%以下である。 The amount of the compound (B) having an ethylenically unsaturated double bond contained in the photosensitive resin composition is preferably from 5% by mass to 70% by mass based on the total solid content in the photosensitive resin composition. %. It is preferable that the amount of the compound (B) is 5% by mass or more from the viewpoints of sensitivity, resolution, and adhesion. The amount of the compound (B) is more preferably 20% by mass or more, or 30% by mass or more. When the amount of the compound (B) is 70% by mass or less, it is preferable from the viewpoint of suppressing edge fuses and peeling delay of the cured resist. The amount of the compound (B) is more preferably 50% by mass or less.

 本実施形態において、化合物(B)は、エチレン性不飽和二重結合を有する化合物であって、下記一般式(II):

Figure JPOXMLDOC01-appb-C000002
{式(II)中、Aは炭素数4以上の2価の炭化水素基である。}で表される構造を有する化合物(B1)であってもよい。化合物(B)が化合物(B1)を含む場合、化合物(B1)のみから成ってもよく、又は、化合物(B1)とともに、エチレン性不飽和二重結合を有し、かつ上記一般式(II)で表される構造を有さない化合物(B2)を更に含んでいてもよい。 In this embodiment, the compound (B) is a compound having an ethylenically unsaturated double bond and has the following general formula (II):
Figure JPOXMLDOC01-appb-C000002
A In the formula (II), A is a divalent hydrocarbon group having 4 or more carbon atoms. The compound (B1) having a structure represented by} may be used. When the compound (B) includes the compound (B1), the compound (B1) may be composed of only the compound (B1), or may have an ethylenically unsaturated double bond together with the compound (B1) and have the general formula (II) May further contain a compound (B2) having no structure represented by

[化合物(B1)]
 化合物(B1)に含まれるエチレン性不飽和二重結合の数は、1個以上であればよく、現像時の残膜性及び硬化物の物性を向上する観点から、好ましくは2個以上、より好ましくは2個以上6個以下、更に好ましくは2個以上4個以下、より更に好ましくは2個である。化合物(B1)に含まれるエチレン性不飽和二重結合は、アルカリ可溶性高分子との相溶性、及び感光性樹脂組成物の硬化性の観点から、アクリロイル基及びメタクリロイル基から選択される基(以下、「(メタ)アクリロイル基」ともいう。)が好ましい。
[Compound (B1)]
The number of the ethylenically unsaturated double bonds contained in the compound (B1) may be one or more, and is preferably two or more, from the viewpoint of improving the residual film property at the time of development and the physical properties of the cured product. The number is preferably 2 or more and 6 or less, more preferably 2 or more and 4 or less, and still more preferably 2. The ethylenically unsaturated double bond contained in the compound (B1) is a group selected from an acryloyl group and a methacryloyl group from the viewpoint of compatibility with an alkali-soluble polymer and curability of the photosensitive resin composition (hereinafter, referred to as methacryloyl group). , "(Meth) acryloyl group").

 化合物(B1)としては、例えば、下記一般式(III):

Figure JPOXMLDOC01-appb-C000003
{式中、(A-O)部分は上記(II)に対応し、Aは炭素数4以上の2価の炭化水素基、好ましくは炭素数4~8の2価の炭化水素基であり、B及びBは、それぞれ独立に、エチレン基又はプロピレン基であり、(B-O)、(A-O)、及び(B-O)の配列はランダムでもブロックでもよく、n1は0~50の整数であり、n2は2~100の整数であり、n3は0~50の整数であり、R及びRは、それぞれ独立に、水素原子又はメチル基である。}で表される化合物が挙げられる。 As the compound (B1), for example, the following general formula (III):
Figure JPOXMLDOC01-appb-C000003
In the formula, the (A—O) moiety corresponds to the above (II), and A is a divalent hydrocarbon group having 4 or more carbon atoms, preferably a divalent hydrocarbon group having 4 to 8 carbon atoms; B 1 and B 2 are each independently an ethylene group or a propylene group, the sequence of (B 1 -O), (AO), and (B 2 -O) may be random or block; It is an integer of 0 to 50, n2 is an integer of 2 to 100, n3 is an integer of 0 to 50, and R 1 and R 2 are each independently a hydrogen atom or a methyl group. And the compound represented by}.

 式(III)中のAは、炭素数4以上の2価の炭化水素基、好ましくは炭素数4~8の2価の炭化水素基である。この2価の炭化水素基は、直鎖状であっても、分岐鎖状であっても、脂環を含んでいてもよい。Aは、直鎖状又は分岐鎖状のアルキレン基であることが好ましい。Aの具体例として、例えば、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ブタン-2,3-ジイル基、ブタン-1,2-ジイル基、ペンタン-2,3-ジイル基、ペンタン-1,4-ジイル基、2,2-ジメチル-1,3-プロピレン基、ヘキサン-1,5-ジイル基等が挙げられる。Aとして、好ましくは炭素数4の2価の炭化水素基であり、より好ましくは炭素数4のアルキレン基であり、特に好ましくはテトラメチレン基である。n2は2~100の整数であり、好ましくは3~75の整数、より好ましくは4~50の整数である。 A in the formula (III) is a divalent hydrocarbon group having 4 or more carbon atoms, preferably a divalent hydrocarbon group having 4 to 8 carbon atoms. The divalent hydrocarbon group may be linear, branched, or contain an alicyclic ring. A is preferably a linear or branched alkylene group. Specific examples of A include, for example, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, butane-2,3-diyl group, butane-1,2-diyl group, pentane-2,3-diyl group Pentane-1,4-diyl group, 2,2-dimethyl-1,3-propylene group, hexane-1,5-diyl group and the like. A is preferably a divalent hydrocarbon group having 4 carbon atoms, more preferably an alkylene group having 4 carbon atoms, and particularly preferably a tetramethylene group. n2 is an integer of 2 to 100, preferably an integer of 3 to 75, and more preferably an integer of 4 to 50.

 式(III)中のB及びBは、それぞれ独立に、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基等から選択されてよい。n1及びn3は、それぞれ独立に0~50の整数であり、好ましくは0~30の整数、0~20の整数、又は0~10の整数である。n1+n3は、0~10の整数であることが好ましい。(B-O)、(A-O)、及び(B-O)の配列は、ランダムでもブロックでもよい。R及びRは、それぞれ独立に、水素原子又はメチル基である。 B 1 and B 2 in the formula (III) may be each independently selected from a 1,2-ethylene group, a 1,2-propylene group, a 1,3-propylene group and the like. n1 and n3 are each independently an integer of 0 to 50, preferably an integer of 0 to 30, an integer of 0 to 20, or an integer of 0 to 10. n1 + n3 is preferably an integer of 0 to 10. The arrangement of (B 1 -O), (AO), and (B 2 -O) may be random or block. R 1 and R 2 are each independently a hydrogen atom or a methyl group.

 化合物(B1)としては、式(III)においてn1及びn3の両方がそれぞれ0である化合物、並びに式(III)においてn1及びn3の両方がそれぞれ1~50(好ましくは1~30、1~20、又は1~10)である化合物から選択されることが好ましい。式(III)においてn1及びn2の両方がそれぞれ0である化合物として、例えば、2~100モルのテトラメチレンオキサイドを付加したポリテトラメチレングリコールのジ(メタ)アクリレート等が挙げられる。式(III)においてn1及びn2の両方がそれぞれ1~50である化合物として、例えば、2~100モルのテトラメチレンオキサイドを付加したポリテトラメチレングリコールに、エチレンオキサイド又はプロピレンオキサイドを更に両端にそれぞれ1~50モル付加したポリアルキレングリコールのジ(メタ)アクリレート等が挙げられる。 As the compound (B1), in the formula (III), both n1 and n3 are each 0, and in the formula (III), both n1 and n3 are each 1 to 50 (preferably 1 to 30, 1 to 20) Or 1 to 10). In the formula (III), examples of the compound in which both n1 and n2 are each 0 include poly (tetramethylene glycol) di (meth) acrylate to which 2 to 100 moles of tetramethylene oxide is added. In the formula (III), as a compound in which both n1 and n2 are each 1 to 50, for example, polytetramethylene glycol to which 2 to 100 mol of tetramethylene oxide is added, ethylene oxide or propylene oxide is further added at both ends to 1 And di (meth) acrylate of polyalkylene glycol to which about 50 mol has been added.

 化合物(B1)は、1種の化合物のみから成っていてもよく、又は式(III)中の1、B、B、R、R、n1、n2、及びn3の1つ以上が異なる2種以上の化合物の混合物であってもよい。 Compound (B1) may consist of only one compound, or one or more of 1, B 1 , B 2 , R 1 , R 2 , n1, n2 and n3 in formula (III) It may be a mixture of two or more different compounds.

 化合物(B2)は、エチレン性不飽和二重結合を有し、かつ式(II)で表される構造を有さない化合物である。化合物(B2)に含まれるエチレン性不飽和二重結合の数は、1個以上であればよく、現像時の残膜性及び硬化物の物性を向上する観点から、好ましくは2個以上、より好ましくは、2個以上10個以下、2個以上8個以下、又は2個以上6個以下である。化合物(B2)に含まれるエチレン性不飽和二重結合は、アルカリ可溶性高分子との相溶性、及び感光性樹脂組成物の硬化性の観点から、(メタ)アクリロイル基であることが好ましい。 Compound (B2) is a compound having an ethylenically unsaturated double bond and not having a structure represented by formula (II). The number of ethylenically unsaturated double bonds contained in the compound (B2) may be one or more, and is preferably two or more, from the viewpoint of improving the residual film property at the time of development and the physical properties of the cured product. Preferably, it is 2 or more and 10 or less, 2 or more and 8 or less, or 2 or more and 6 or less. The ethylenically unsaturated double bond contained in the compound (B2) is preferably a (meth) acryloyl group from the viewpoint of compatibility with the alkali-soluble polymer and curability of the photosensitive resin composition.

 化合物(B2)のうち、(メタ)アクリロイル基を2個有する化合物としては、例えば、アルキレンオキシド鎖の両末端に(メタ)アクリロイル基を有する化合物、アルキレンオキシド変性したビスフェノールAのアルキレンオキシド鎖の両末端に(メタ)アクリロイル基を付加した化合物等が挙げられる。 Among the compounds (B2), examples of the compound having two (meth) acryloyl groups include a compound having (meth) acryloyl groups at both ends of an alkylene oxide chain and both alkylene oxide-modified bisphenol A alkylene oxide chains. A compound having a (meth) acryloyl group added to a terminal is exemplified.

 化合物(B2)のうち、アルキレンオキシド鎖の両末端に(メタ)アクリロイル基を有する化合物におけるアルキレンオキシド鎖は、エチレンオキシド及びプロピレンオキシドから選択される1種以上のアルキレンオキシドが2つ以上連結した基である。化合物(B2)がエチレンオキシド及びプロピレンオキシドの双方を含むときには、これらはランダム若しくはブロックで連結していてよく、又はランダム連結部位とブロック連結部位とが混合されていてもよい。 In the compound (B2), the alkylene oxide chain in the compound having (meth) acryloyl groups at both ends of the alkylene oxide chain is a group in which two or more alkylene oxides selected from ethylene oxide and propylene oxide are linked. is there. When the compound (B2) contains both ethylene oxide and propylene oxide, these may be connected by random or block, or the random connection site and the block connection site may be mixed.

 このような化合物(B2)としては、例えば、テトラエチレングリコールジ(メタ)アクリレート、ペンタエチレングリコールジ(メタ)アクリレート、ヘキサエチレングリコールジ(メタ)アクリレート、ヘプタエチレングリコールジ(メタ)アクリレート、オクタエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、12モルのエチレンオキシド鎖の両末端に(メタ)アクリロイル基を有する化合物、ポリプロピレングリコ-ルジ(メタ)アクリレ-ト、ポリブチレングリコ-ルジ(メタ)アクリレ-ト、平均12モルのプロピレンオキシドを付加したポリプロピレングリコールの両末端にそれぞれ平均3モルのエチレンオキシドを更に付加したグリコールのジメタクリレート、平均18モルのプロピレンオキシドを付加したポリプロピレングリコールの両末端にそれぞれ平均15モルのエチレンオキシドを更に付加したグリコールのジメタクリレート等が挙げられる。より具体的には、FA-023M、FA-024M、及びFA-027M(日立化成工業製)等が挙げられる。これらは、柔軟性、解像性、及び密着性等の観点から好ましい。 Examples of such a compound (B2) include tetraethylene glycol di (meth) acrylate, pentaethylene glycol di (meth) acrylate, hexaethylene glycol di (meth) acrylate, heptaethylene glycol di (meth) acrylate, and octaethylene. Glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, decaethylene glycol di (meth) acrylate, a compound having (meth) acryloyl groups at both ends of a 12-mol ethylene oxide chain, polypropylene glycol di (meth) Acrylate, polybutylene glycol di (meth) acrylate, and polypropylene glycol to which an average of 12 moles of propylene oxide are added, and an average of 3 moles of ethylene oxide is further added to both ends of each. Dimethacrylate and glycol, dimethacrylate of glycol and further addition of ethylene oxide of average 15 moles respectively to both ends of polypropylene glycol obtained by adding average 18 moles of propylene oxide. More specifically, FA-023M, FA-024M, FA-027M (manufactured by Hitachi Chemical Co., Ltd.) and the like can be mentioned. These are preferable from the viewpoints of flexibility, resolution, adhesion and the like.

 化合物(B2)のうち、アルキレンオキシド変性したビスフェノールAのアルキレンオキシド鎖の両末端に(メタ)アクリロイル基を付加した化合物として、具体的には、例えば、下記一般式(I):

Figure JPOXMLDOC01-appb-C000004
{式(I)中、R及びRは、それぞれ独立に、水素原子又はメチル基を表し、AはCであり、BはCであり、n1及びn3は、それぞれ独立に、1~39の整数であり、かつn1+n3は2~40の整数であり、n2及びn4は、それぞれ独立に、0~29の整数であり、かつn2+n4は0~30の整数であり、-(A-O)-及び-(B-O)-の繰り返し単位の配列は、ランダムであってもブロックであってもよく、そして、ブロックの場合、-(A-O)-ブロックと-(B-O)-ブロックとのいずれがビスフェニル基側でもよい。}で表される化合物であってよい。 Among the compounds (B2), as a compound in which a (meth) acryloyl group is added to both ends of an alkylene oxide chain of an alkylene oxide-modified bisphenol A, specifically, for example, the following general formula (I):
Figure JPOXMLDOC01-appb-C000004
中 In the formula (I), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, A is C 2 H 4 , B is C 3 H 6 , and n1 and n3 are each Independently, an integer of 1 to 39, and n1 + n3 is an integer of 2 to 40, n2 and n4 are each independently an integer of 0 to 29, and n2 + n4 is an integer of 0 to 30, The sequence of the repeating units of-(AO)-and-(BO)-may be random or block, and in the case of a block,-(AO)-block and- Any of the (BO) -block may be on the bisphenyl group side. It may be a compound represented by 化合物.

 このような化合物(B2)としては、例えば、ビスフェノ-ルAの両端にそれぞれ平均5モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト;ビスフェノ-ルAの両端にそれぞれ平均2モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト;及びビスフェノ-ルAの両端にそれぞれ平均1モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト等が、解像性及び密着性等の点から好ましい。 Examples of such a compound (B2) include, for example, dimethacrylate of polyethylene glycol having an average of 5 moles of ethylene oxide added to both ends of bisphenol A; 2 moles of both ends of bisphenol A on average. Dimethacrylate of polyethylene glycol to which ethylene oxide has been added, and dimethacrylate of polyethylene glycol having ethylene oxide added to both ends of bisphenol A in an average of 1 mol each, and the like. It is preferable from the viewpoint of adhesion and the like.

 化合物(B2)のうち、(メタ)アクリロイル基を3個以上有する化合物は、例えば、中心骨格として分子内にアルキレンオキシド基を付加させることができる基を3モル以上有し、これにエチレンオキシ基又はプロピレンオキシ基を付加させて得られたアルコールを(メタ)アクリレートとすることにより得られる化合物が挙げられる。この場合、中心骨格になり得る化合物としては、例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、イソシアヌレート環等を挙げることができる。これらのトリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、ヘキサ(メタ)アクリレート等を、(メタ)アクリロイル基を3個以上有する化合物(B2)として使用することができる。 Among the compounds (B2), the compound having three or more (meth) acryloyl groups has, for example, at least 3 moles of a group capable of adding an alkylene oxide group in the molecule as a central skeleton, and an ethyleneoxy group. Or a compound obtained by converting an alcohol obtained by adding a propyleneoxy group to (meth) acrylate. In this case, examples of the compound that can be the central skeleton include glycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, and an isocyanurate ring. These tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, hexa (meth) acrylate and the like can be used as the compound (B2) having three or more (meth) acryloyl groups.

 化合物(B2)のうち、トリ(メタ)アクリレートとしては、例えば、エトキシ化グリセリントリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。トリメチロールプロパントリ(メタ)アクリレートのうち、例えばトリメチロールプロパンに平均21モルのエチレンオキサイドを付加したトリメタクリレート、トリメチロールプロパンに平均30モルのエチレンオキサイドを付加したトリメタクリレート等は、柔軟性、密着性、ブリードアウト抑制等の観点から好ましい。 Among the compounds (B2), as tri (meth) acrylate, for example, ethoxylated glycerin tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate ) Acrylate and the like. Among trimethylolpropane tri (meth) acrylates, for example, trimethacrylate obtained by adding an average of 21 moles of ethylene oxide to trimethylolpropane, trimethacrylate obtained by adding an average of 30 moles of ethylene oxide to trimethylolpropane, and the like are flexible and adherent. It is preferable from the viewpoints of properties and bleed-out suppression.

 化合物(B2)のうち、テトラ(メタ)アクリレートとしては、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。これらのうち、ペンタエリスリトールテトラ(メタ)アクリレートが好ましい。ペンタエリスリトールテトラ(メタ)アクリレートは、ペンタエリスリトールの4つの末端に合計1モル以上40モル以下のアルキレンオキサイドが付加されているテトラ(メタ)アクリレート等が好ましい。 の う ち Among the compound (B2), examples of the tetra (meth) acrylate include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and the like. Of these, pentaerythritol tetra (meth) acrylate is preferred. The pentaerythritol tetra (meth) acrylate is preferably tetra (meth) acrylate in which a total of 1 mol or more and 40 mol or less of alkylene oxide is added to four terminals of pentaerythritol.

 化合物(B2)のうち、ペンタ(メタ)アクリレートとしては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。 の う ち Among compound (B2), examples of penta (meth) acrylate include dipentaerythritol penta (meth) acrylate.

 化合物(B2)のうち、ヘキサ(メタ)アクリレートとしては、例えば、ジペンタエリスリトールの6つの末端に合計1モル以上40モル以下のエチレンオキサイドが付加されているヘキサ(メタ)アクリレート、ジペンタエリスリトールの6つの末端に合計1モル以上20モル以下のε-カプロラクトンが付加されているヘキサ(メタ)アクリレート等が好ましい。 Among the compounds (B2), examples of the hexa (meth) acrylate include hexa (meth) acrylate and dipentaerythritol in which a total of 1 to 40 mol of ethylene oxide is added to six terminals of dipentaerythritol. Hexa (meth) acrylate in which ε-caprolactone in a total of 1 mol or more and 20 mol or less is added to six terminals is preferable.

 化合物(B2)は、1種の化合物のみから成っていてもよいし、2種以上の化合物の混合物であってもよい。 The compound (B2) may be composed of only one type of compound, or may be a mixture of two or more types of compounds.

 化合物(B)が化合物(B1)と化合物(B2)とを含む場合、化合物(B1)の量は、化合物(B)の全質量を基準として、好ましくは、5質量%以上、7質量%以上、8質量%以上、9質量%以上、又は10質量%以上である。化合物(B1)の量は、化合物(B)の全質量を基準として、好ましくは、50質量%以下、30質量%以下、20質量%以下である。 When the compound (B) includes the compound (B1) and the compound (B2), the amount of the compound (B1) is preferably 5% by mass or more, 7% by mass or more based on the total mass of the compound (B). , 8% by mass or more, 9% by mass or more, or 10% by mass or more. The amount of the compound (B1) is preferably 50% by mass or less, 30% by mass or less, and 20% by mass or less based on the total mass of the compound (B).

 化合物(B)が化合物(B1)を含む場合における、特に好ましい実施形態を、以下の[態様1]~[態様18]に列記する。
 [態様1]
 露光、加熱、及び現像をこの順に行ってレジストパターンを得るための感光性樹脂組成物であって、
 上記感光性樹脂組成物が、上記感光性樹脂組成物の全固形分質量を基準として、以下の成分:
 (A)10質量%以上90質量%以下の、アルカリ可溶性高分子と;
 (B)5質量%以上70質量%以下の、エチレン性不飽和二重結合を有する化合物と;
 (C)0.01質量%以上20質量%以下の、光重合開始剤と
を含み、かつ、
 上記エチレン性不飽和二重結合を有する化合物(B)は、下記一般式(II):

Figure JPOXMLDOC01-appb-C000005
{式(II)中、Aは炭素数4以上の2価の炭化水素基である。}で表される構造を有する化合物(B1)を含む、
感光性樹脂組成物。
[態様2]
 上記化合物(B1)が、エチレン性不飽和二重結合を2個以上有する化合物である、態様1に記載の感光性樹脂組成物。
[態様3]
 上記化合物(B1)が、下記一般式(III):
Figure JPOXMLDOC01-appb-C000006
{式(III)中、Aは炭素数4~8の2価の炭化水素基であり、B及びBは、それぞれ独立に、エチレン基又はプロピレン基であり、(B-O)、(A-O)、及び(B-O)の配列はランダムでもブロックでもよく、n1は0~50の整数であり、n2は2~100の整数であり、n3は0~50の整数であり、R及びRは、それぞれ独立に、水素原子又はメチル基である。}で表される化合物である、態様1又は2に記載の感光性樹脂組成物。
[態様4]
 上記一般式(III)中のn1及びn3が、それぞれ独立に、0~30の整数である、態様3に記載の感光性樹脂組成物。
[態様5]
 上記一般式(III)中、n1+n3が0~10の整数である、態様3又は4に記載の感光性樹脂組成物。
[態様6]
 上記一般式(III)中のAが、炭素数4の2価の炭化水素基である、態様1~5のいずれか一項に記載の感光性樹脂組成物。
[態様7]
 上記エチレン性不飽和二重結合を有する化合物(B)が、エチレン性不飽和二重結合を有し、かつ上記一般式(II)で表される構造を有さない化合物(B2)を更に含む、態様1~6のいずれか一項に記載の感光性樹脂組成物。
[態様8]
 光増感剤を更に含む、態様1~7のいずれか一項に記載の感光性樹脂組成物。
[態様9]
 上記光増感剤がアントラセン化合物を含む、態様8に記載の感光性樹脂組成物。
[態様10]
 上記光増感剤がピラゾリン化合物を含む、態様8又は9に記載の感光性樹脂組成物。
[態様11]
 上記光重合開始剤(C)がイミダゾール化合物を含む、態様1~10のいずれか一項に記載の感光性樹脂組成物。
[態様12]
 支持層と、
 上記支持層上の態様1~11のいずれか一項に記載の感光性樹脂組成物の層と
を有する、感光性樹脂積層体。
[態様13]
 以下の工程:
 態様1~11のいずれか一項に記載の感光性樹脂組成物の層を露光する工程;
 露光工程後の感光性樹脂組成物の層を加熱する加熱工程;及び
 加熱工程後の感光性樹脂組成物の層を現像する現像工程;
を含む、レジストパターンの形成方法。
[態様14]
 上記加熱工程における加熱温度が30℃以上150℃以下の範囲である、態様13に記載のレジストパターンの形成方法。
[態様15]
 上記露光工程を、描画パターンの直接描画による露光方法、又はフォトマスクの像を、レンズを通して投影させる露光方法により行う、態様13又は14に記載のレジストパターンの形成方法。
[態様16]
 上記露光工程を、描画パターンの直接描画による露光方法により行う、態様13又は14に記載のレジストパターンの形成方法。
[態様17]
 上記露光工程を、中心波長390nm未満の第1のレーザー光と、中心波長390nm以上の第2のレーザー光と、により露光する方法により行う、態様16に記載のレジストパターンの形成方法。
[態様18]
 上記第1のレーザー光の中心波長が350nm以上380nm以下であり、上記第2のレーザー光の中心波長が400nm以上410nm以下である、態様17に記載のレジストパターンの形成方法。 Particularly preferred embodiments when the compound (B) includes the compound (B1) are listed in [Aspect 1] to [Aspect 18] below.
[Aspect 1]
Exposure, heating, and photosensitive resin composition for performing a resist pattern in this order to obtain a resist pattern,
The photosensitive resin composition has the following components based on the total solid content mass of the photosensitive resin composition:
(A) from 10% by weight to 90% by weight of an alkali-soluble polymer;
(B) a compound having an ethylenically unsaturated double bond of 5% by mass or more and 70% by mass or less;
(C) 0.01% by mass or more and 20% by mass or less of a photopolymerization initiator, and
The compound (B) having an ethylenically unsaturated double bond is represented by the following general formula (II):
Figure JPOXMLDOC01-appb-C000005
A In the formula (II), A is a divalent hydrocarbon group having 4 or more carbon atoms. Including a compound (B1) having a structure represented by}
Photosensitive resin composition.
[Aspect 2]
The photosensitive resin composition according to aspect 1, wherein the compound (B1) is a compound having two or more ethylenically unsaturated double bonds.
[Aspect 3]
The compound (B1) has the following general formula (III):
Figure JPOXMLDOC01-appb-C000006
中 In the formula (III), A is a divalent hydrocarbon group having 4 to 8 carbon atoms, B 1 and B 2 are each independently an ethylene group or a propylene group, (B 1 -O), The sequence of (AO) and (B 2 -O) may be random or block, wherein n1 is an integer of 0 to 50, n2 is an integer of 2 to 100, and n3 is an integer of 0 to 50. R 1 and R 2 are each independently a hydrogen atom or a methyl group. The photosensitive resin composition according to aspect 1 or 2, which is a compound represented by}.
[Aspect 4]
The photosensitive resin composition according to embodiment 3, wherein n1 and n3 in the general formula (III) are each independently an integer of 0 to 30.
[Aspect 5]
5. The photosensitive resin composition according to aspect 3 or 4, wherein in the general formula (III), n1 + n3 is an integer of 0 to 10.
[Aspect 6]
6. The photosensitive resin composition according to any one of aspects 1 to 5, wherein A in the general formula (III) is a divalent hydrocarbon group having 4 carbon atoms.
[Aspect 7]
The compound (B) having an ethylenically unsaturated double bond further includes a compound (B2) having an ethylenically unsaturated double bond and not having a structure represented by the general formula (II). 7. The photosensitive resin composition according to any one of aspects 1 to 6.
[Aspect 8]
8. The photosensitive resin composition according to any one of aspects 1 to 7, further comprising a photosensitizer.
[Aspect 9]
The photosensitive resin composition according to aspect 8, wherein the photosensitizer includes an anthracene compound.
[Aspect 10]
The photosensitive resin composition according to aspect 8 or 9, wherein the photosensitizer contains a pyrazoline compound.
[Aspect 11]
The photosensitive resin composition according to any one of aspects 1 to 10, wherein the photopolymerization initiator (C) contains an imidazole compound.
[Aspect 12]
A support layer,
12. A photosensitive resin laminate having a layer of the photosensitive resin composition according to any one of aspects 1 to 11 on the support layer.
[Aspect 13]
The following steps:
Exposing the layer of the photosensitive resin composition according to any one of aspects 1 to 11;
A heating step of heating the layer of the photosensitive resin composition after the exposure step; and a developing step of developing the layer of the photosensitive resin composition after the heating step;
And a method of forming a resist pattern.
[Aspect 14]
The method for forming a resist pattern according to aspect 13, wherein a heating temperature in the heating step is in a range of 30 ° C. or more and 150 ° C. or less.
[Aspect 15]
15. The method of forming a resist pattern according to aspect 13 or 14, wherein the exposing step is performed by an exposing method by direct drawing of a drawing pattern or an exposing method of projecting an image of a photomask through a lens.
[Aspect 16]
15. The method for forming a resist pattern according to aspect 13 or 14, wherein the exposure step is performed by an exposure method based on direct drawing of a drawing pattern.
[Aspect 17]
17. The method for forming a resist pattern according to aspect 16, wherein the exposing step is performed by a method of exposing with a first laser beam having a center wavelength of less than 390 nm and a second laser beam having a center wavelength of 390 nm or more.
[Aspect 18]
18. The method for forming a resist pattern according to aspect 17, wherein the center wavelength of the first laser light is 350 nm or more and 380 nm or less, and the center wavelength of the second laser light is 400 nm or more and 410 nm or less.

〈(C)光重合開始剤〉
 光重合開始剤(C)は、光によりモノマーを重合させる化合物であり、本技術分野において一般に知られている光重合開始剤であってよい。
<(C) Photopolymerization initiator>
The photopolymerization initiator (C) is a compound that polymerizes a monomer by light, and may be a photopolymerization initiator generally known in the art.

 感光性樹脂組成物中の光重合開始剤の量は、感光性樹脂組成物の全固形分質量を基準として、好ましくは、0.01~20質量%、0.05質量%~10質量%、0.1質量%~7質量%、又は0.1質量%~6質量%である。光重合開始剤の総量が0.01質量%以上であると、十分な感度を得ることができ、20質量%以下であると、レジスト底面まで光を充分に透過させて、良好な高解像性を得ることができる。 The amount of the photopolymerization initiator in the photosensitive resin composition is preferably 0.01 to 20% by mass, 0.05 to 10% by mass, based on the total solid content of the photosensitive resin composition. It is 0.1% by mass to 7% by mass, or 0.1% by mass to 6% by mass. When the total amount of the photopolymerization initiator is 0.01% by mass or more, sufficient sensitivity can be obtained, and when the total amount is 20% by mass or less, light can be sufficiently transmitted to the bottom of the resist, resulting in good high resolution. Sex can be obtained.

 光重合開始剤としては、キノン化合物、芳香族ケトン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、ベンゾイン又はベンゾインエーテル化合物、ジアルキルケタール化合物、チオキサントン化合物、ジアルキルアミノ安息香酸エステル化合物、オキシムエステル化合物、アクリジン化合物、ヘキサアリールビイミダゾール、ピラゾリン化合物、アントラセン化合物、クマリン化合物、N-アリールアミノ酸又はそのエステル化合物、及びハロゲン化合物等が挙げられる。 As the photopolymerization initiator, quinone compounds, aromatic ketone compounds, acetophenone compounds, acylphosphine oxide compounds, benzoin or benzoin ether compounds, dialkyl ketal compounds, thioxanthone compounds, dialkylaminobenzoic acid ester compounds, oxime ester compounds, acridine compounds , Hexaarylbiimidazole, pyrazoline compounds, anthracene compounds, coumarin compounds, N-aryl amino acids or their ester compounds, and halogen compounds.

 芳香族ケトン化合物としては、例えば、ベンゾフェノン、ミヒラーズケトン[4,4’-ビス(ジメチルアミノ)ベンゾフェノン]、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノンを挙げることができる。これらの中でも、密着性の観点から、4,4’-ビス(ジエチルアミノ)ベンゾフェノンが好ましい。透過率の観点から、感光性樹脂組成物中の芳香族ケトン化合物の含有量は、感光性樹脂組成物の全固形分質量を基準として、好ましくは、0.01質量%~0.5質量%、又は0.02質量%~0.3質量%である。 Examples of the aromatic ketone compound include benzophenone, Michler's ketone [4,4'-bis (dimethylamino) benzophenone], 4,4'-bis (diethylamino) benzophenone, and 4-methoxy-4'-dimethylaminobenzophenone. Can be. Among these, 4,4'-bis (diethylamino) benzophenone is preferable from the viewpoint of adhesion. From the viewpoint of transmittance, the content of the aromatic ketone compound in the photosensitive resin composition is preferably 0.01% by mass to 0.5% by mass based on the total solid content of the photosensitive resin composition. Or 0.02% by mass to 0.3% by mass.

 アクリジン化合物としては、例えば、9-フェニルアクリジン、ビスアクリジニルヘプタン、9-(p-メチルフェニル)アクリジン、及び9-(m-メチルフェニル)アクリジンが、感度、解像性、及び密着性の点で好ましい。アントラセン化合物としては9位及び/又は10位に、置換基を有していても良い炭素数1~40のアルコキシ基及び/又は置換基を有していてもよい炭素数6~40のアリール基を有するアントラセン誘導体が好ましく、例えば、9,10-ジフェニルアントラセン、9,10-ジブトキシアントラセン、9,10-ジエトキシアントラセンが、感度、解像性、及び密着性の点で好ましい。クマリン化合物としては、例えば、7-ジエチルアミノ-4-メチルクマリンが、感度、解像性、及び密着性の点で好ましい。N-アリールアミノ酸又はそのエステル化合物としては、例えば、N-フェニルグリシンが、感度、解像性、及び密着性の点で好ましい。ハロゲン化合物としては、例えば、トリブロモメチルフェニルスルホンが好ましい。その他、光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2,4,6-トリメチルベンゾイルージフェニルーホスフィンオキサイド、トリフェニルホスフィンオキシドもまた挙げられる。 Examples of the acridine compound include 9-phenylacridine, bisacridinylheptane, 9- (p-methylphenyl) acridine, and 9- (m-methylphenyl) acridine, and have sensitivity, resolution, and adhesion properties. It is preferred in that respect. As the anthracene compound, an optionally substituted alkoxy group having 1 to 40 carbon atoms and / or an optionally substituted aryl group having 6 to 40 carbon atoms at the 9-position and / or the 10-position. Are preferable, and for example, 9,10-diphenylanthracene, 9,10-dibutoxyanthracene, and 9,10-diethoxyanthracene are preferable in terms of sensitivity, resolution, and adhesion. As the coumarin compound, for example, 7-diethylamino-4-methylcoumarin is preferable in terms of sensitivity, resolution, and adhesion. As the N-arylamino acid or its ester compound, for example, N-phenylglycine is preferable in terms of sensitivity, resolution, and adhesion. As the halogen compound, for example, tribromomethylphenylsulfone is preferable. Other photopolymerization initiators include 2,2-dimethoxy-1,2-diphenylethan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 4,4,6-Trimethylbenzoyldiphenyl-phosphine oxide, triphenylphosphine oxide are also included.

 ヘキサアリールビイミダゾールとしては、2-(o-クロロフェニル)-4,5-ジフェニルビイミダゾール、2,2’,5-トリス-(o-クロロフェニル)-4-(3,4-ジメトキシフェニル)-4’,5’-ジフェニルビイミダゾール、2,4-ビス-(o-クロロフェニル)-5-(3,4-ジメトキシフェニル)-ジフェニルビイミダゾール、2,4,5-トリス-(o-クロロフェニル)-ジフェニルビイミダゾール、2-(o-クロロフェニル)-ビス-4,5-(3,4-ジメトキシフェニル)-ビイミダゾール、2,2’-ビス-(2-フルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3-ジフルオロメチルフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,4-ジフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,5-ジフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,6-ジフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,4-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,5-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,6-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,4,5-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,4,6-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,4,5-テトラフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,4,6-テトラフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、及び2,2’-ビス-(2,3,4,5,6-ペンタフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール等が挙げられる。高感度、解像性及び密着性の観点から、ヘキサアリールビイミダゾールとしては、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体が好ましい。感光性樹脂組成物中のヘキサアリールビスイミダゾール化合物の量は、感光性樹脂層の剥離特性及び/又は感度を向上させる観点から、好ましくは、0.05質量%~7質量%、0.1質量%~6質量%、又は1質量%~5質量%の範囲内である。 Hexaarylbiimidazoles include 2- (o-chlorophenyl) -4,5-diphenylbiimidazole, 2,2 ′, 5-tris- (o-chlorophenyl) -4- (3,4-dimethoxyphenyl) -4 ', 5'-diphenylbiimidazole, 2,4-bis- (o-chlorophenyl) -5- (3,4-dimethoxyphenyl) -diphenylbiimidazole, 2,4,5-tris- (o-chlorophenyl)- Diphenylbiimidazole, 2- (o-chlorophenyl) -bis-4,5- (3,4-dimethoxyphenyl) -biimidazole, 2,2′-bis- (2-fluorophenyl) -4,4 ′, 5 , 5'-Tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3-difluoromethylphenyl) -4,4 ', 5 '-Tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,4-difluorophenyl) -4,4', 5,5'-tetrakis- (3-methoxyphenyl) -bi Imidazole, 2,2'-bis- (2,5-difluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2, 6-difluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,4-trifluorophenyl) -4,4 ', 5,5'-Tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,5-trifluorophenyl) -4,4', 5,5'-tetrakis- (3-methoxyphenyl)- Imidazole, 2,2'-bis- (2,3,6-trifluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,4,5-trifluorophenyl) -4,4 ′, 5,5′-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2′-bis- (2,4,6-trifluoro Phenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,4,5-tetrafluorophenyl) -4,4' , 5,5'-Tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,4,6-tetrafluorophenyl) -4,4 ', 5,5'-tetrakis -(3-methoxyphenyl) -biimidazole, And 2,2'-bis- (2,3,4,5,6-pentafluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole. From the viewpoints of high sensitivity, resolution and adhesion, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer is preferred as hexaarylbiimidazole. The amount of the hexaarylbisimidazole compound in the photosensitive resin composition is preferably 0.05% by mass to 7% by mass, and 0.1% by mass from the viewpoint of improving the peeling property and / or sensitivity of the photosensitive resin layer. % To 6% by mass, or 1% to 5% by mass.

 光重合開始剤は、1種を単独で、又は2種以上を組み合わせて使用されることができる。 The photopolymerization initiator may be used alone or in combination of two or more.

〈光増感剤〉
 感光性樹脂組成物は、高い透過率、感光性樹脂層の剥離特性、及び/又は感度を向上させる観点から、光増感剤を更に含んでもよい。光増感剤としては、ピラゾリン化合物、及びアントラセン化合物が挙げられる。感光性樹脂組成物中の光増感剤の含有量は、感光性樹脂組成物の全固形分質量を基準として、好ましくは、0.01質量%~10質量%以下、0.05質量%~5質量%、0.1質量%~3質量%、0.1質量%~1質量%、又は0.1質量%~0.7質量%である。光増感剤の量が0.01質量%以上であると、感光性樹脂層の剥離特性及び感度をより向上させることができる。光増感剤の量が10質量%以下であると、感光性樹脂層の光透過性が高いレベルで維持され、露光効率の観点で好ましい。
<Photosensitizer>
The photosensitive resin composition may further contain a photosensitizer from the viewpoint of improving the high transmittance, the peeling property of the photosensitive resin layer, and / or the sensitivity. Examples of the photosensitizer include a pyrazoline compound and an anthracene compound. The content of the photosensitizer in the photosensitive resin composition is preferably 0.01% by mass to 10% by mass, more preferably 0.05% by mass or less, based on the total solid content of the photosensitive resin composition. 5% by mass, 0.1% by mass to 3% by mass, 0.1% by mass to 1% by mass, or 0.1% by mass to 0.7% by mass. When the amount of the photosensitizer is 0.01% by mass or more, the release characteristics and sensitivity of the photosensitive resin layer can be further improved. When the amount of the photosensitizer is 10% by mass or less, the light transmittance of the photosensitive resin layer is maintained at a high level, which is preferable from the viewpoint of exposure efficiency.

 ピラゾリン化合物としては、例えば、1-フェニル-3-(4-tert-ブチル-スチリル)-5-(4-tert-ブチル-フェニル)-ピラゾリン、1-(4-(ベンゾオキサゾール-2-イル)フェニル)-3-(4-tert-ブチル-スチリル)-5-(4-tert-ブチル-フェニル)-ピラゾリン、1-フェニル-3-(4-ビフェニル)-5-(4-tert-ブチル-フェニル)-ピラゾリン、1-フェニル-3-(4-ビフェニル)-5-(4-tert-オクチル-フェニル)-ピラゾリン、1-フェニル-3-(4-イソプロピルスチリル)-5-(4-イソプロピルフェニル)-ピラゾリン、1-フェニル-3-(4-メトキシスチリル)-5-(4-メトキシフェニル)-ピラゾリン、1-フェニル-3-(3,5-ジメトキシスチリル)-5-(3,5-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(3,4-ジメトキシスチリル)-5-(3,4-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,6-ジメトキシスチリル)-5-(2,6-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,5-ジメトキシスチリル)-5-(2,5-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,3-ジメトキシスチリル)-5-(2,3-ジメトキシフェニル)-ピラゾリン、及び1-フェニル-3-(2,4-ジメトキシスチリル)-5-(2,4-ジメトキシフェニル)-ピラゾリン等が挙げられる。ピラゾリン化合物としては、1-フェニル-3-(4-ビフェニル)-5-(4-tert-ブチル-フェニル)-ピラゾリンがより好ましい。 Examples of the pyrazoline compound include 1-phenyl-3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazolin, 1- (4- (benzoxazol-2-yl) Phenyl) -3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-butyl- Phenyl) -pyrazolin, 1-phenyl-3- (4-biphenyl) -5- (4-tert-octyl-phenyl) -pyrazolin, 1-phenyl-3- (4-isopropylstyryl) -5- (4-isopropyl Phenyl) -pyrazolin, 1-phenyl-3- (4-methoxystyryl) -5- (4-methoxyphenyl) -pyrazolin, 1-phenyl-3 (3,5-dimethoxystyryl) -5- (3,5-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (3,4-dimethoxystyryl) -5- (3,4-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,6-dimethoxystyryl) -5- (2,6-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,5-dimethoxystyryl) -5- (2,5- Dimethoxyphenyl) -pyrazolin, 1-phenyl-3- (2,3-dimethoxystyryl) -5- (2,3-dimethoxyphenyl) -pyrazoline, and 1-phenyl-3- (2,4-dimethoxystyryl)- 5- (2,4-dimethoxyphenyl) -pyrazoline and the like. As the pyrazoline compound, 1-phenyl-3- (4-biphenyl) -5- (4-tert-butyl-phenyl) -pyrazolin is more preferred.

 アントラセン化合物としては、例えば、9,10-ジフェニルアントラセン、9,10-ジブトキシアントラセン、及び9,10-ジエトキシアントラセンのようなシアルコキシアントラセン化合物が、感度、解像性、及び密着性の点で好ましい。 As the anthracene compound, for example, sialkoxyanthracene compounds such as 9,10-diphenylanthracene, 9,10-dibutoxyanthracene and 9,10-diethoxyanthracene can be used in view of sensitivity, resolution and adhesion. Is preferred.

〈フェノール誘導体〉
 解像性及び密着性の観点から、感光性樹脂組成物は、フェノール誘導体を更に含むことが好ましい。フェノール誘導体としては、例えば、p-メトキシフェノール、ハイドロキノン、ピロガロール、tert-ブチルカテコール、2,6-ジ-tert-ブチル-p-クレゾール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,6-ジ-tert-ブチル-4-メチルフェノール、2,5-ジ-tert-アミルヒドロキノン、2,5-ジ-tert-ブチルヒドロキノン、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、ビス(2-ヒドロキシ-3-t-ブチル-5-エチルフェニル)メタン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、スチレン化フェノール(例えば川口化学工業(株)製、アンテージSP)、トリベンジルフェノール(例えば川口化学工業(株)製、TBP、ベンジル基を1~3個有するフェノール)、及びビフェノール等が挙げられる。
<Phenol derivative>
From the viewpoint of resolution and adhesion, the photosensitive resin composition preferably further contains a phenol derivative. Examples of the phenol derivative include p-methoxyphenol, hydroquinone, pyrogallol, tert-butylcatechol, 2,6-di-tert-butyl-p-cresol, and 2,2′-methylenebis (4-methyl-6-tert- Butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,5-di-tert-amylhydroquinone, 2,5 -Di-tert-butylhydroquinone, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), bis (2-hydroxy-3-t-butyl-5-ethylphenyl) methane, triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propio ), 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], pentaerythrityl tetrakis [3- (3,5-di-t -Butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5- Di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamide), 3,5-di-t- Butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl Benzene, tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, 4,4′-thiobis (6-tert-butyl-m-cresol), 4,4′-butylidenebis (3 -Methyl-6-tert-butylphenol), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, styrenated phenol (for example, Antage SP manufactured by Kawaguchi Chemical Industry Co., Ltd.) ), Tribenzylphenol (for example, TBP, phenol having 1 to 3 benzyl groups, manufactured by Kawaguchi Chemical Industry Co., Ltd.), and biphenol.

 感光性樹脂組成物中のフェノール誘導体の量は、感光性樹脂組成物の全固形分質量を基準として、0.001質量%~10質量%であることが好ましい。解像性、密着性の観点から、フェノール誘導体の量の下限値は、より好ましくは、0.005質量%以上、0.01質量%以上、0.05質量%以上、又は0.1質量%以上である。感度低下が少ない点及び解像性の向上の点で、フェノール誘導体の量の下限値は、より好ましくは、5質量%以下、2質量%以下、1質量%以下、0.5質量%以下、又は0.3質量%以下である。 量 The amount of the phenol derivative in the photosensitive resin composition is preferably 0.001% by mass to 10% by mass based on the total solid content of the photosensitive resin composition. From the viewpoints of resolution and adhesion, the lower limit of the amount of the phenol derivative is more preferably 0.005% by mass or more, 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass. That is all. The lower limit of the amount of the phenol derivative is more preferably 5% by mass or less, 2% by mass or less, 1% by mass or less, and 0.5% by mass or less in terms of a small decrease in sensitivity and an improvement in resolution. Or it is 0.3 mass% or less.

〈添加剤〉
 感光性樹脂組成物は、所望により、着色剤、安定化剤、接着助剤、及び可塑剤等の添加剤を含んでよい。例えば、特開2013-156369号公報に列挙されている添加剤を使用してよい。
<Additive>
The photosensitive resin composition may optionally contain additives such as a coloring agent, a stabilizer, an adhesion aid, and a plasticizer. For example, the additives listed in JP-A-2013-156369 may be used.

(着色剤)
 本実施形態では、感光性樹脂組成物は、所望により、着色剤、例えば染料及び着色物質から成る群より選ばれる少なくとも1種を更に含有してもよい。
(Colorant)
In the present embodiment, the photosensitive resin composition may further contain a coloring agent, for example, at least one selected from the group consisting of a dye and a coloring substance, if desired.

 着色物質としては、例えば、フクシン、フタロシアニングリーン、オーラミン塩基、パラマジエンタ、クリスタルバイオレット、メチルオレンジ、ナイルブルー2B、ビクトリアブルー、マラカイトグリーン(例えば、保土ヶ谷化学(株)製、アイゼン(登録商標) MALACHITE GREEN)、ベイシックブルー20、及びダイアモンドグリーン(例えば、保土ヶ谷化学(株)製、アイゼン(登録商標) DIAMOND GREEN GH)が挙げられる。感光性樹脂組成物中の着色物質の量は、感光性樹脂組成物の全固形分質量を基準として、0.001質量%~1質量%であることが好ましい。着色物質の量が0.001質量%以上であると、感光性樹脂組成物の取扱い性が向上する。着色物質の量が1質量%以下であると、感光性樹脂組成物の保存安定性が維持され易い。 As a coloring substance, for example, fuchsin, phthalocyanine green, auramine base, paramagenta, crystal violet, methyl orange, Nile blue 2B, Victoria blue, malachite green (for example, Hodogaya Chemical Co., Ltd., Eisen (registered trademark) @ MALACHITE @ GREEN) , Basic Blue 20, and Diamond Green (for example, Eizen (registered trademark) DIAMOND GREEN GH manufactured by Hodogaya Chemical Co., Ltd.). The amount of the coloring substance in the photosensitive resin composition is preferably 0.001% by mass to 1% by mass based on the total solid content of the photosensitive resin composition. When the amount of the coloring substance is 0.001% by mass or more, the handleability of the photosensitive resin composition is improved. When the amount of the coloring substance is 1% by mass or less, the storage stability of the photosensitive resin composition is easily maintained.

 感光性樹脂組成物は、染料を含有することにより露光部分が発色するので視認性の点で好ましい。検査機等が露光のための位置合わせマーカーを読み取る場合、露光部と未露光部とのコントラストが大きい方が認識し易く有利である。これらの観点で、好ましい染料としては、ロイコ染料及びフルオラン染料が挙げられる。ロイコ染料としては、トリス(4-ジメチルアミノフェニル)メタン[ロイコクリスタルバイオレット]、ビス(4-ジメチルアミノフェニル)フェニルメタン[ロイコマラカイトグリーン]等が挙げられる。コントラストが良好となる観点から、ロイコ染料としては、ロイコクリスタルバイオレットがより好ましい。感光性樹脂組成物中の染料の量は、感光性樹脂組成物の全固形分質量を基準として、0.1質量%~10質量%であることが好ましい。染料の量が0.1質量%以上であると、露光部分と未露光部分とのコントラストがより良好になる。染料の量は、より好ましくは0.2質量%以上、又は0.4質量%以上である。染料の量が10質量%以下であると、感光性樹脂組成物の保存安定性が維持され易い。染料の量は、より好ましくは5質量%以下、又は2質量%以下である。 (4) The photosensitive resin composition is preferable from the viewpoint of visibility since the exposed portion is colored by containing a dye. When an inspection machine or the like reads an alignment marker for exposure, it is advantageous that the contrast between the exposed portion and the unexposed portion is larger because it is easier to recognize. From these viewpoints, preferred dyes include leuco dyes and fluoran dyes. Examples of the leuco dye include tris (4-dimethylaminophenyl) methane [leuco crystal violet], bis (4-dimethylaminophenyl) phenylmethane [leucomalachite green] and the like. From the viewpoint of improving the contrast, the leuco dye is more preferably leuco crystal violet. The amount of the dye in the photosensitive resin composition is preferably from 0.1% by mass to 10% by mass based on the total solid content of the photosensitive resin composition. When the amount of the dye is 0.1% by mass or more, the contrast between the exposed part and the unexposed part becomes better. The amount of the dye is more preferably 0.2% by mass or more, or 0.4% by mass or more. When the amount of the dye is 10% by mass or less, the storage stability of the photosensitive resin composition is easily maintained. The amount of the dye is more preferably 5% by mass or less, or 2% by mass or less.

 感光性樹脂組成物は、密着性及びコントラストを最適化する観点から、ロイコ染料と、上記の「(C)光重合開始剤」の欄で説明したハロゲン化合物との組み合わせを含むことが好ましい。ロイコ染料をハロゲン化合物と併用する場合、感光性樹脂組成物中のハロゲン化合物の量は、感光性樹脂組成物の全固形分質量を基準として0.01質量%~3質量%であると、感光層における色相の保存安定性が維持され易い。 From the viewpoint of optimizing the adhesiveness and contrast, the photosensitive resin composition preferably contains a combination of a leuco dye and the halogen compound described in the section “(C) Photopolymerization initiator” above. When the leuco dye is used in combination with a halogen compound, the amount of the halogen compound in the photosensitive resin composition is preferably 0.01% by mass to 3% by mass based on the total solid content of the photosensitive resin composition. The storage stability of the hue in the layer is easily maintained.

(安定化剤)
 感光性樹脂組成物は、熱安定性及び保存安定性を向上させるために、安定化剤を更に含有してもよい。安定化剤としては、例えば、ラジカル重合禁止剤、ベンゾトリアゾール化合物、及びカルボキシベンゾトリアゾール化合物から成る群より選ばれる少なくとも1種の化合物であってよい。
(Stabilizer)
The photosensitive resin composition may further contain a stabilizer in order to improve thermal stability and storage stability. The stabilizer may be, for example, at least one compound selected from the group consisting of a radical polymerization inhibitor, a benzotriazole compound, and a carboxybenzotriazole compound.

 ラジカル重合禁止剤としては、例えば、ナフチルアミン、塩化第一銅、ニトロソフェニルヒドロキシアミンアルミニウム塩、ジフェニルニトロソアミン等が挙げられる。感光性樹脂組成物の感度を損なわないために、ニトロソフェニルヒドロキシアミンアルミニウム塩が好ましい。 Examples of the radical polymerization inhibitor include naphthylamine, cuprous chloride, nitrosophenylhydroxyamine aluminum salt, diphenylnitrosamine and the like. In order not to impair the sensitivity of the photosensitive resin composition, nitrosophenylhydroxyamine aluminum salt is preferred.

 ベンゾトリアゾール化合物としては、例えば、1,2,3-ベンゾトリアゾール、1-クロロ-1,2,3-ベンゾトリアゾール、ビス(N-2-エチルヘキシル)アミノメチレン-1,2,3-ベンゾトリアゾール、ビス(N-2-エチルヘキシル)アミノメチレン-1,2,3-トリルトリアゾール、ビス(N-2-ヒドロキシエチル)アミノメチレン-1,2,3-ベンゾトリアゾール等が挙げられる。 Examples of the benzotriazole compound include 1,2,3-benzotriazole, 1-chloro-1,2,3-benzotriazole, bis (N-2-ethylhexyl) aminomethylene-1,2,3-benzotriazole, Bis (N-2-ethylhexyl) aminomethylene-1,2,3-tolyltriazole, bis (N-2-hydroxyethyl) aminomethylene-1,2,3-benzotriazole and the like can be mentioned.

 カルボキシベンゾトリアゾール化合物としては、例えば、4-カルボキシ-1,2,3-ベンゾトリアゾール、5-カルボキシ-1,2,3-ベンゾトリアゾール、N-(N,N-ジ-2-エチルヘキシル)アミノメチレンカルボキシベンゾトリアゾール、N-(N,N-ジ-2-ヒドロキシエチル)アミノメチレンカルボキシベンゾトリアゾール、N-(N,N-ジ-2-エチルヘキシル)アミノエチレンカルボキシベンゾトリアゾール等が挙げられる。 Examples of the carboxybenzotriazole compound include 4-carboxy-1,2,3-benzotriazole, 5-carboxy-1,2,3-benzotriazole, N- (N, N-di-2-ethylhexyl) aminomethylene Carboxybenzotriazole, N- (N, N-di-2-hydroxyethyl) aminomethylenecarboxybenzotriazole, N- (N, N-di-2-ethylhexyl) aminoethylenecarboxybenzotriazole and the like can be mentioned.

 感光性樹脂組成物中の安定化剤の総量は、感光性樹脂組成物の全固形分質量を基準として、好ましくは、0.01質量%~3質量%、又は0.05質量%~1質量%である。安定化剤の総量が0.01質量%以上であると、感光性樹脂組成物に高い保存安定性を付与することができる。安定化剤の総量が3質量%以下であると、感度を維持し、染料の脱色を抑える観点から好ましい。染料の脱色は、波長630nmの透過率で測定することが可能である。波長630nmの透過率が高いことは染料が脱色されていることを示す。支持層と感光性樹脂組成物層の積層体の、波長630nmにおける透過率は、好ましくは、80%以下、78%以下、75%以下、72%以下、70%以下、68%以下、65%以下、62%以下、60%以下、58%以下、55%以下、52%以下、又は50%以下である。この透過率は、支持層と感光性樹脂組成物層の積層体としての透過率であり、保護層は含まれない。 The total amount of the stabilizer in the photosensitive resin composition is preferably 0.01% by mass to 3% by mass, or 0.05% by mass to 1% by mass, based on the total mass of the solid content of the photosensitive resin composition. %. When the total amount of the stabilizer is 0.01% by mass or more, high storage stability can be imparted to the photosensitive resin composition. It is preferable that the total amount of the stabilizer is 3% by mass or less from the viewpoint of maintaining the sensitivity and suppressing the decolorization of the dye. Decolorization of the dye can be measured at a transmittance of 630 nm. A high transmittance at a wavelength of 630 nm indicates that the dye has been decolorized. The transmittance of the laminate of the support layer and the photosensitive resin composition layer at a wavelength of 630 nm is preferably 80% or less, 78% or less, 75% or less, 72% or less, 70% or less, 68% or less, 65%. Below, it is 62% or less, 60% or less, 58% or less, 55% or less, 52% or less, or 50% or less. This transmittance is a transmittance as a laminate of the support layer and the photosensitive resin composition layer, and does not include the protective layer.

(接着助剤)
 感光性樹脂組成物は、ビスフェノールAのエポキシ化合物を更に含有してもよい。ビスフェノールAのエポキシ化合物としては、例えば、ビスフェノールAをポリプロピレングリコールで修飾し末端をエポキシ化した化合物等が挙げられる。
(Adhesion aid)
The photosensitive resin composition may further contain an epoxy compound of bisphenol A. Examples of the bisphenol A epoxy compound include a compound obtained by modifying bisphenol A with polypropylene glycol and epoxidizing the terminal.

(可塑剤)
 感光性樹脂組成物は、可塑剤を更に含有してもよい。可塑剤としては、例えば、フタル酸エステル化合物(例えば、ジエチルフレート等)、o-トルエンスルホン酸アミド、p-トルエンスルホン酸アミド、クエン酸トリブチル、クエン酸トリエチル、アセチルクエン酸トリエチル、アセチルクエン酸トリ-n-プロピル、アセチルクエン酸トリ-n-ブチル、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールアルキルエ-テル、及びポリプロプレンレングリコールアルキルエーテル等が挙げられる。より具体的には、アデカノールSDX-1569、アデカノールSDX-1570、アデカノールSDX-1571、及びアデカノールSDX-479(旭電化(株)製);ニューポールBP-23P、ニューポールBP-3P、ニューポールBP-5P、ニューポールBPE-20T、ニューポールBPE-60、ニューポールBPE-100、及びニューポールBPE-180(三洋化成(株)製);ユニオールDB-400、ユニオールDAB-800、ユニオールDA-350F、ユニオールDA-400、及びユニオールDA-700(日本油脂(株)製);並びにBA-P4Uグリコール、及びBA-P8グリコール(日本乳化剤(株)製)等のビスフェノール骨格を有する化合物が挙げられる。
(Plasticizer)
The photosensitive resin composition may further contain a plasticizer. Examples of the plasticizer include a phthalic acid ester compound (eg, diethyl phthalate), o-toluenesulfonic acid amide, p-toluenesulfonic acid amide, tributyl citrate, triethyl citrate, acetyl triethyl citrate, triacetyl citrate -N-propyl, tri-n-butyl acetylcitrate, polyethylene glycol, polypropylene glycol, polyethylene glycol alkyl ether, polypropylene glycol alkyl ether and the like. More specifically, ADEKANOL SDX-1569, ADEKANOL SDX-1570, ADEKANOL SDX-1571, and ADEKANOL SDX-479 (manufactured by Asahi Denka Co., Ltd.); Newpole BP-23P, Newpole BP-3P, Newpole BP -5P, Newpole BPE-20T, Newpole BPE-60, Newpole BPE-100, and Newpole BPE-180 (manufactured by Sanyo Chemical Co., Ltd.); Uniall DB-400, Uniall DAB-800, Uniall DA-350F And Uniol DA-400 and Uniol DA-700 (manufactured by NOF Corporation); and compounds having a bisphenol skeleton such as BA-P4U glycol and BA-P8 glycol (manufactured by Nippon Emulsifier Co., Ltd.).

 感光性樹脂組成物中の可塑剤の量は、感光性樹脂組成物の全固形分質量を基準として、好ましくは、1質量%~50質量%、又は1質量%~30質量%である。可塑剤の量が1質量%以上であると、現像時間の遅延を抑え、かつ硬化膜に柔軟性を付与する観点から好ましい。可塑剤の量が50質量%以下であると、硬化不足及びコールドフローを抑える観点から好ましい。 量 The amount of the plasticizer in the photosensitive resin composition is preferably 1% by mass to 50% by mass, or 1% by mass to 30% by mass, based on the total solid content of the photosensitive resin composition. When the amount of the plasticizer is 1% by mass or more, it is preferable from the viewpoint of suppressing the delay of the development time and imparting flexibility to the cured film. It is preferable that the amount of the plasticizer is 50% by mass or less from the viewpoint of suppressing insufficient curing and cold flow.

〈溶剤〉
 感光性樹脂組成物は、溶剤に溶解させて感光性樹脂組成物調合液の形態で、感光性樹脂積層体の製造に使用できる。溶剤としては、ケトン化合物、及びアルコール化合物等が挙げられる。ケトン化合物としては、メチルエチルケトン(MEK)、及びアセトンが挙げられる。アルコール化合物としては、メタノール、エタノール、及びイソプロパノール
が挙げられる。感光性樹脂組成物に添加する溶剤の量は、支持層上に塗布する感光性樹脂組成物調合液の25℃における粘度が、500mPa・s~4,000mPa・sとなるような量であることが好ましい。
<solvent>
The photosensitive resin composition can be used in the production of a photosensitive resin laminate in the form of a photosensitive resin composition prepared by dissolving it in a solvent. Examples of the solvent include ketone compounds and alcohol compounds. Ketone compounds include methyl ethyl ketone (MEK) and acetone. Alcohol compounds include methanol, ethanol, and isopropanol. The amount of the solvent to be added to the photosensitive resin composition is such that the viscosity at 25 ° C. of the photosensitive resin composition preparation liquid applied on the support layer is 500 mPa · s to 4,000 mPa · s. Is preferred.

 感光性樹脂組成物中の水分量が多いと、感光性樹脂組成物の局所的な可塑化が急激に促進され、エッジフューズが発生することがあるため、エッジフューズを抑制する観点から、感光性樹脂組成物中の水分量は少ないことが好ましい。感光性樹脂組成物中の水分量は、感光性樹脂組成物の調合液を支持層に塗布して乾燥させた後の感光性樹脂組成物の質量を基準として(乾燥後水分量)、0.7質量%以下になるような量であることが好ましい。感光性樹脂組成物中の乾燥後水分量は、より好ましくは、0.65質量%以下、0.6質量%以下、0.55質量%以下、0.5質量%以下、0.45質量%以下、0.4質量%以下、0.35質量%以下、0.3質量%以下、0.25質量%以下、又は0.2質量%以下である。 When the amount of water in the photosensitive resin composition is large, local plasticization of the photosensitive resin composition is rapidly promoted, and an edge fuse may be generated. It is preferable that the amount of water in the resin composition is small. The amount of water in the photosensitive resin composition is determined based on the mass of the photosensitive resin composition after the preparation of the photosensitive resin composition is applied to the support layer and dried (water content after drying). It is preferable that the amount is 7% by mass or less. The water content after drying in the photosensitive resin composition is more preferably 0.65% by mass or less, 0.6% by mass or less, 0.55% by mass or less, 0.5% by mass or less, 0.45% by mass or less. Hereinafter, it is 0.4 mass% or less, 0.35 mass% or less, 0.3 mass% or less, 0.25 mass% or less, or 0.2 mass% or less.

[感光性樹脂積層体]
 本実施形態において、本発明の感光性樹脂積層体は、支持層と、該支持層上に本実施形態の感光性樹脂組成物の層(以下、「感光性樹脂層」ともいう。)とを有する。該感光性樹脂層の上に、更に保護層を有していてもよい。
[Photosensitive resin laminate]
In the present embodiment, the photosensitive resin laminate of the present invention includes a support layer and a layer of the photosensitive resin composition of the present embodiment (hereinafter, also referred to as “photosensitive resin layer”) on the support layer. Have. A protective layer may be further provided on the photosensitive resin layer.

〈支持層〉
 支持層としては、露光光源から放射される光を透過する透明な支持フィルムが好ましい。支持フィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリビニルアルコールフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリ塩化ビニリデンフィルム、塩化ビニリデン共重合フィルム、ポリメタクリル酸メチル共重合体フィルム、ポリスチレンフィルム、ポリアクリロニトリルフィルム、スチレン共重合体フィルム、ポリアミドフィルム、及びセルロース誘導体フィルム等が挙げられる。支持層としては、必要に応じて延伸された支持フィルムを使用してもよい。
<Support layer>
As the support layer, a transparent support film that transmits light emitted from an exposure light source is preferable. As the support film, for example, polyethylene terephthalate film, polyvinyl alcohol film, polyvinyl chloride film, vinyl chloride copolymer film, polyvinylidene chloride film, vinylidene chloride copolymer film, polymethyl methacrylate copolymer film, polystyrene film, Examples include a polyacrylonitrile film, a styrene copolymer film, a polyamide film, and a cellulose derivative film. As the support layer, a stretched support film may be used as necessary.

 支持層は、露光時の光散乱を抑制する観点から、好ましくはヘイズが5%以下、2%以下、1.5%以下、又は1.0%以下である。同様の観点から、支持層の、感光層と接する面の表面粗さRaは、好ましくは、30nm以下、20nm以下、又は10nm以下である。支持層の厚みは、薄いほど画像形成性及び経済性を向上させるため有利であるが、しかしながら、感光性樹脂積層体の強度を維持するために、好ましくは10μm~30μmである。支持層は、所望により、滑剤等の微粒子を含有してもよい。微粒子の大きさは、5μm未満であることが好ましい。 From the viewpoint of suppressing light scattering during exposure, the support layer preferably has a haze of 5% or less, 2% or less, 1.5% or less, or 1.0% or less. From the same viewpoint, the surface roughness Ra of the surface of the support layer in contact with the photosensitive layer is preferably 30 nm or less, 20 nm or less, or 10 nm or less. The thinner the thickness of the support layer is, the more advantageous it is for improving image formability and economy. However, in order to maintain the strength of the photosensitive resin laminate, it is preferably 10 μm to 30 μm. The support layer may contain fine particles such as a lubricant, if desired. The size of the fine particles is preferably less than 5 μm.

 支持層は単層構造であってもよく、複数の組成から形成される樹脂層を積層した多層構造であってもよい。多層構造の場合、帯電防止層があってもよい。多層構造の一例として、例えば、基材の片面に樹脂層を有する2層構成の支持層、及び基材の両面にそれぞれ樹脂層を有する3層構成の支持層等が挙げられる。3層構成の支持層の態様として、例えば、基材として、上記に例示した支持フィルムを用い、その一方の面Aに微粒子を含有する樹脂層を有し、もう一方の面Bには、
(1)面A側の樹脂層と略同量の微粒子を含有する樹脂層を有する;
(2)面A側の樹脂層より少量の微粒子を含有する樹脂層を有する;
(3)面A側の樹脂層に含有される微粒子よりも細かい微粒子を含有する樹脂層を有する;及び
(4)微粒子を含有しない樹脂層を有する
などの態様が挙げられる。上記(2)、(3)、(4)の構造の場合は、面B側に感光性樹脂層を有することが好ましい。この場合、感光性樹脂層とは反対側の面A側に、微粒子を含有する樹脂層があると、フィルムの滑り性等の観点から好ましい。樹脂層に含有される微粒子の大きさは、1.5μm未満であることが好ましい。
The support layer may have a single-layer structure or a multilayer structure in which resin layers formed from a plurality of compositions are laminated. In the case of a multilayer structure, there may be an antistatic layer. Examples of the multilayer structure include, for example, a two-layered support layer having a resin layer on one surface of a substrate, and a three-layered support layer having a resin layer on both surfaces of the substrate. As an embodiment of the support layer having a three-layer structure, for example, the support film exemplified above is used as a base material, and one surface A has a resin layer containing fine particles, and the other surface B has
(1) having a resin layer containing substantially the same amount of fine particles as the resin layer on the surface A side;
(2) having a resin layer containing a smaller amount of fine particles than the resin layer on the surface A side;
(3) having a resin layer containing fine particles finer than the fine particles contained in the resin layer on the surface A side; and (4) having a resin layer containing no fine particles. In the case of the above structures (2), (3) and (4), it is preferable to have a photosensitive resin layer on the surface B side. In this case, it is preferable that there is a resin layer containing fine particles on the surface A side opposite to the photosensitive resin layer from the viewpoint of the slipperiness of the film. The size of the fine particles contained in the resin layer is preferably less than 1.5 μm.

〈感光性樹脂層〉
 感光性樹脂積層体は、支持層上に感光性樹脂層を有する。感光性樹脂層は、本実施形態の感光性樹脂組成物から形成される層である。感光性樹脂積層体における感光性樹脂層の厚さは、用途によって異なるが、好ましくは、1μm~300μm、3μm~100μm、5μm~60μm、又は10μm~30μmである。感光性樹脂層の厚みが1μm以上であると、膜強度がより高くなる。感光性樹脂層の厚みが300μm以下であると、解像度がより高くなる。
<Photosensitive resin layer>
The photosensitive resin laminate has a photosensitive resin layer on a support layer. The photosensitive resin layer is a layer formed from the photosensitive resin composition of the present embodiment. The thickness of the photosensitive resin layer in the photosensitive resin laminate varies depending on the application, but is preferably 1 μm to 300 μm, 3 μm to 100 μm, 5 μm to 60 μm, or 10 μm to 30 μm. When the thickness of the photosensitive resin layer is 1 μm or more, the film strength becomes higher. When the thickness of the photosensitive resin layer is 300 μm or less, the resolution becomes higher.

〈保護層〉
 感光性樹脂積層体は、支持層上に感光性樹脂層を有し、この感光性樹脂層の上に、更に保護層を有していてもよい。感光性樹脂積層体に用いられる保護層の重要な特性は、感光性樹脂層との密着力が支持層よりも充分小さく、容易に剥離できることである。保護層としては、例えば、ポリエチレンフィルム又はポリプロピレンフィルムなどの保護フィルムを使用することができる。特開昭59-202457号公報に記載されている、剥離性の優れたフィルムを用いることもできる。保護層の膜厚は、10μm~100μmが好ましく、10μm~50μmがより好ましい。
<Protective layer>
The photosensitive resin laminate may have a photosensitive resin layer on a support layer, and may further have a protective layer on the photosensitive resin layer. An important characteristic of the protective layer used in the photosensitive resin laminate is that the adhesion to the photosensitive resin layer is sufficiently smaller than that of the support layer, and the protective layer can be easily peeled off. As the protective layer, for example, a protective film such as a polyethylene film or a polypropylene film can be used. A film having excellent releasability described in JP-A-59-202457 can also be used. The thickness of the protective layer is preferably from 10 μm to 100 μm, more preferably from 10 μm to 50 μm.

 ポリエチレンフィルムの表面には、フィッシュアイと呼ばれるゲルが存在する場合がある。フィッシュアイを有するポリエチレンフィルムを保護フィルムとして用いた場合には、該フィッシュアイが感光性樹脂層に転写されることがある。フィッシュアイが感光性樹脂層に転写されると、ラミネート時に空気を巻き込んで空隙になることがあり、レジストパターンの欠損につながる。フィッシュアイを防ぐ観点から、保護層の材質としては、延伸ポリプロピレンが好ましい。具体例としては、王子製紙(株)製、アルファンE-200Aを挙げることができる。 ゲ ル A gel called fisheye may be present on the surface of the polyethylene film. When a polyethylene film having fish eyes is used as a protective film, the fish eyes may be transferred to the photosensitive resin layer. When the fish eyes are transferred to the photosensitive resin layer, air may be entrained during lamination to form voids, leading to loss of the resist pattern. From the viewpoint of preventing fish eyes, the material of the protective layer is preferably stretched polypropylene. As a specific example, there may be mentioned Alphan E-200A manufactured by Oji Paper Co., Ltd.

[感光性樹脂積層体の製造方法]
 本実施形態の感光性樹脂組成物を用いて、感光性樹脂積層体を製造する方法の一例を説明する。感光性樹脂積層体は、支持層及び感光性樹脂層、並びに必要により保護層を順次積層することにより製造することができる。例えば、まず本実施形態の感光性樹脂組成物を、これを溶解する溶剤と混ぜ合わせ、均一な感光性樹脂組成物の調合液を調製する。感光性樹脂組成物の調合液を、支持層上にバーコーター又はロールコーターを用いて塗布し、次いで乾燥して溶剤を除去することにより、支持層上に感光性樹脂組成物から成る感光性樹脂層を積層することができる。次いで、必要により、感光性樹脂層上に保護層をラミネートすることにより、感光性樹脂積層体を製造することができる。
[Method for producing photosensitive resin laminate]
An example of a method for producing a photosensitive resin laminate using the photosensitive resin composition of the present embodiment will be described. The photosensitive resin laminate can be manufactured by sequentially laminating a support layer, a photosensitive resin layer, and, if necessary, a protective layer. For example, the photosensitive resin composition of the present embodiment is first mixed with a solvent that dissolves the photosensitive resin composition to prepare a uniform photosensitive resin composition mixture. The prepared solution of the photosensitive resin composition is applied to the support layer using a bar coater or a roll coater, and then dried to remove the solvent, so that the photosensitive resin comprising the photosensitive resin composition is formed on the support layer. The layers can be stacked. Next, if necessary, a protective layer is laminated on the photosensitive resin layer, whereby a photosensitive resin laminate can be manufactured.

[レジストパターンの製造方法]
 本実施形態の感光性樹脂積層体を用いてレジストパターンを製造する方法の一例を説明する。本実施形態のレジストパターンの製造方法は、以下の工程:
本実施形態の感光性樹脂組成物の層(感光性樹脂層)を露光する工程;
露光された上記感光性樹脂層を加熱する加熱工程;及び
加熱された上記感光性樹脂層を現像する現像工程を含む。
[Resist pattern manufacturing method]
An example of a method for manufacturing a resist pattern using the photosensitive resin laminate of the present embodiment will be described. The method for manufacturing a resist pattern according to the present embodiment includes the following steps:
Exposing a layer of the photosensitive resin composition of the present embodiment (photosensitive resin layer);
A heating step of heating the exposed photosensitive resin layer; and a developing step of developing the heated photosensitive resin layer.

 露光工程において露光される感光性樹脂層は、典型的には基板上に積層されている。本実施形態のレジストパターンの形成方法は、露光工程に先立って、基板上に感光性樹脂層をラミネートする、ラミネート工程を含んでもよい。 感光 The photosensitive resin layer exposed in the exposure step is typically laminated on a substrate. The method for forming a resist pattern according to the present embodiment may include a laminating step of laminating a photosensitive resin layer on a substrate prior to the exposing step.

 レジストパターンとしては、例えば、プリント配線板、半導体素子、印刷版、液晶ディスプレイパネル、タッチパネル、フレキシブル基板、リードフレーム基板、COF(チップオンフィルム)用基板、半導体パッケージ用基板、液晶用透明電極、液晶用TFT用配線、PDP(プラズマディスプレイパネル)用電極等のパターンが挙げられる。 Examples of the resist pattern include a printed wiring board, a semiconductor element, a printing plate, a liquid crystal display panel, a touch panel, a flexible substrate, a lead frame substrate, a COF (chip-on-film) substrate, a semiconductor package substrate, a liquid crystal transparent electrode, and a liquid crystal. Pattern for TFT wiring, PDP (plasma display panel) electrode, and the like.

〈ラミネート工程〉
 ラミネート工程では、ラミネーターを用いて基板上に感光性樹脂層を形成する。具体的には、感光性樹脂積層体が保護層を有する場合には保護層を剥離した後、ラミネーターで感光性樹脂層を基板表面に加熱圧着しラミネートする。基板の材料としては、例えば、銅、ステンレス鋼(SUS)、ガラス、酸化インジウムスズ(ITO)等が挙げられる。
<Lamination process>
In the laminating step, a photosensitive resin layer is formed on the substrate using a laminator. Specifically, when the photosensitive resin laminate has a protective layer, the protective layer is peeled off, and then the photosensitive resin layer is laminated on the substrate surface by heating and pressing with a laminator. Examples of the material of the substrate include copper, stainless steel (SUS), glass, indium tin oxide (ITO), and the like.

 感光性樹脂層は、基板表面の片面だけにラミネートしてもよく、又は必要に応じて両面にラミネートしてもよい。ラミネート時の加熱温度は、一般的に40℃~160℃である。ラミネート時の加熱圧着を2回以上行うことにより、得られるレジストパターンの基板に対する密着性を向上させてもよい。加熱圧着時には、二連のロールを備えた二段式ラミネーターを使用してもよく、又は基板と感光性樹脂層との積層物を数回繰り返してロールに通すことにより圧着してもよい。 (4) The photosensitive resin layer may be laminated on only one side of the substrate surface, or may be laminated on both sides as necessary. The heating temperature during lamination is generally from 40 ° C to 160 ° C. By performing the thermocompression bonding at the time of lamination at least twice, the adhesiveness of the obtained resist pattern to the substrate may be improved. At the time of thermocompression bonding, a two-stage laminator provided with two rolls may be used, or the laminate of the substrate and the photosensitive resin layer may be repeatedly pressed several times and passed through the rolls.

〈露光工程〉
 露光工程では、感光性樹脂層を露光する。露光方法としては、所望の配線パターンを有するマスクフィルムを支持層上に密着させて活性光源を用いて行う露光方法;所望の配線パターンである描画パターンの直接描画による露光方法;及び、フォトマスクの像を、レンズを通して投影させることによる露光方法等が挙げられる。
<Exposure process>
In the exposure step, the photosensitive resin layer is exposed. As the exposure method, an exposure method in which a mask film having a desired wiring pattern is brought into close contact with a support layer and using an active light source; an exposure method by directly drawing a drawing pattern as a desired wiring pattern; An exposure method by projecting an image through a lens is exemplified.

 露光方法としては、描画パターンの直接描画による露光方法、又はフォトマスクの像を、レンズを通して投影させる露光方法が好ましく、描画パターンの直接描画による露光方法がより好ましい。本実施形態による感光性樹脂組成物の利点は、描画パターンの直接描画による露光方法、又はフォトマスクの像を、レンズを通して投影させる露光方法においてより顕著であり、描画パターンの直接描画による露光方法において特に顕著である。 As the exposure method, an exposure method by direct drawing of a drawing pattern or an exposure method of projecting an image of a photomask through a lens is preferable, and an exposure method by direct drawing of a drawing pattern is more preferable. The advantage of the photosensitive resin composition according to the present embodiment is more remarkable in the exposure method by direct drawing of a drawing pattern, or the exposure method of projecting an image of a photomask through a lens, and in the exposure method by direct drawing of a drawing pattern. This is particularly noticeable.

 露光工程が直接描画による露光方法の場合、中心波長390nm未満のレーザー光または、中心波長390nm以上のレーザー光であることが好ましい。中心波長350nm以上380nm以下のレーザー光または、中心波長400nm以上410nm以下のレーザー光であることがより好ましい。中心波長390nm未満の第1のレーザー光と、中心波長390nm以上の第2のレーザー光とで露光する方法により行うことが好ましい。また、第1のレーザー光の中心波長が350nm以上380nm以下であり、第2のレーザー光の中心波長が400nm以上410nm以下であることがより好ましい。 (4) In the case where the exposure step is an exposure method using direct writing, it is preferable to use laser light having a center wavelength of less than 390 nm or laser light having a center wavelength of 390 nm or more. More preferably, the laser light has a center wavelength of 350 nm or more and 380 nm or less, or has a center wavelength of 400 nm or more and 410 nm or less. The exposure is preferably performed by a method of exposing with a first laser light having a center wavelength of less than 390 nm and a second laser light having a center wavelength of 390 nm or more. More preferably, the center wavelength of the first laser light is 350 nm or more and 380 nm or less, and the center wavelength of the second laser light is 400 nm or more and 410 nm or less.

〈加熱工程〉
 加熱工程では、露光された感光性樹脂を加熱する(露光後加熱)。加熱温度は、好ましくは30℃~150℃、より好ましくは60℃~120℃である。この加熱工程を実施することにより、解像性及び密着性が向上する。加熱方法としては、熱風、赤外線、遠赤外線、恒温槽、ホットプレート、熱風乾燥機、赤外線乾燥機、又はホットロールなどを用いることができる。加熱方法がホットロールであると短時間で処理することができるため好ましく、2連以上のホットロールがより好ましい。
<Heating process>
In the heating step, the exposed photosensitive resin is heated (post-exposure heating). The heating temperature is preferably 30 ° C to 150 ° C, more preferably 60 ° C to 120 ° C. By performing this heating step, the resolution and the adhesion are improved. As a heating method, hot air, infrared rays, far infrared rays, a thermostat, a hot plate, a hot air dryer, an infrared dryer, a hot roll, or the like can be used. When the heating method is a hot roll, the treatment can be performed in a short time, so that a hot roll having two or more hot rolls is more preferable.

 露光後から加熱までの経過時間、より厳密には露光を停止した時点から昇温を開始する時点までの経過時間は、好ましくは、15分以内、又は10分以内である。露光を停止した時点から昇温を開始する時点までの経過時間は、10秒以上、20秒以上、30秒以上、1分以上、2分以上、3分以上、4分以上、又は5分以上であってもよい。 (4) The elapsed time from exposure to heating, more strictly, the elapsed time from the time when exposure is stopped to the time when temperature rise is started, is preferably within 15 minutes or within 10 minutes. The elapsed time from when the exposure was stopped to when the temperature was started was 10 seconds or more, 20 seconds or more, 30 seconds or more, 1 minute or more, 3 minutes or more, 4 minutes or more, or 5 minutes or more. It may be.

〈現像工程〉
 現像工程では、感光性樹脂層の現像を行う。例えば、露光後、感光性樹脂層上の支持層を剥離し、続いてアルカリ水溶液の現像液を用いて未露光部を現像除去することにより、レジストパターンを基板上に形成することができる。
<Development process>
In the developing step, the photosensitive resin layer is developed. For example, after exposure, the support layer on the photosensitive resin layer is peeled off, and then the unexposed portion is developed and removed using a developing solution of an alkaline aqueous solution, whereby a resist pattern can be formed on the substrate.

 アルカリ水溶液としては、Na2CO3又はK2CO3の水溶液を用いる。アルカリ水溶液は、感光性樹脂層の特性に合わせて適宜選択されるが、約0.2質量%~約2質量%の濃度、かつ約20℃~約40℃のNa2CO3水溶液が好ましい。 As the alkaline aqueous solution, an aqueous solution of Na 2 CO 3 or K 2 CO 3 is used. The alkaline aqueous solution is appropriately selected according to the characteristics of the photosensitive resin layer, but is preferably a Na 2 CO 3 aqueous solution having a concentration of about 0.2% by mass to about 2% by mass and about 20 ° C. to about 40 ° C.

[回路基板の製造方法]
 上記の方法によって形成されたレジストパターンを有する基板を用いて、回路基板を製造することができる。本実施形態の回路基板の製造方法は、本実施形態のレジストパターンを有する基板に対してエッチング又はめっきを施すことにより回路基板を形成する、回路形成工程を含む。
[Circuit board manufacturing method]
A circuit board can be manufactured using a substrate having a resist pattern formed by the above method. The method of manufacturing a circuit board according to the present embodiment includes a circuit forming step of forming a circuit board by etching or plating a substrate having the resist pattern of the present embodiment.

〈回路形成工程〉
 回路形成工程では、レジストパターンを有する基板に対してエッチング又はめっきを施すことにより回路を形成する。具体的には、現像により露出した基板表面(例えば銅張積層板の銅面)をエッチング又はめっきし、導体パターンを製造する。
<Circuit formation process>
In the circuit forming step, a circuit is formed by etching or plating a substrate having a resist pattern. Specifically, a conductive pattern is manufactured by etching or plating the surface of the substrate exposed by development (for example, the copper surface of the copper-clad laminate).

〈剥離工程〉
 本実施形態の回路基板の製造方法は、回路形成工程の後、典型的には、レジストパターンを基板から剥離する、剥離工程を更に含んでもよい。レジストパターンを、適当な剥離液を用いて基板から剥離する。剥離液としては、例えば、アルカリ水溶液、及びアミン系剥離液等を挙げることができる。しかしながら、本発明の感光性樹脂組成物から露光後加熱を経て形成されたレジストパターンは、アミン系剥離液に対して良好な剥離性を示すとともに、剥離片の過度な微細化が抑制される。したがって、剥離液としてアミン系剥離液を用いると、本発明の有利な効果がより良好に発揮される。
<Peeling process>
The method for manufacturing a circuit board according to the present embodiment may further include, typically after the circuit forming step, a peeling step of peeling the resist pattern from the substrate. The resist pattern is stripped from the substrate using an appropriate stripper. Examples of the stripping solution include an alkaline aqueous solution and an amine-based stripping solution. However, the resist pattern formed from the photosensitive resin composition of the present invention through post-exposure baking exhibits good releasability to an amine-based release liquid, and suppresses excessively fine release pieces. Therefore, when an amine-based stripping solution is used as the stripping solution, the advantageous effects of the present invention are more favorably exhibited.

 アミン系剥離液に含有されるアミンは、無機アミンであっても有機アミンであってもよい。無機アミンとしては、例えば、アンモニア、ヒドロキシルアミン、ヒドラジン等が挙げられる。有機アミンとしては、例えば、エタノールアミン、プロパノールアミン、アルキルアミン、環状アミン、第4級アンモニウム塩等が挙げられる。 ア ミ ン The amine contained in the amine-based stripping solution may be an inorganic amine or an organic amine. Examples of the inorganic amine include ammonia, hydroxylamine, hydrazine and the like. Examples of the organic amine include ethanolamine, propanolamine, alkylamine, cyclic amine, and quaternary ammonium salt.

 エタノールアミンとしては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、N、N-ジメチルエタノールアミン、N、N-ジエチルエタノールアミン、アミノエトキシエタノール等が挙げられる。プロパノールアミンとしては、例えば、1-アミノ-2-プロパノール、2-アミノ-2-メチル-1-プロパノール、2-アミノ-2-メチル-1,3-プロパンジオール等が挙げられる。アルキルアミンとしては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチレンアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサメチレンテトラミン、テトラエチレンペンタミン等が挙げられる。環状アミンとしては、例えば、コリン、モルホリン等が挙げられる。第4級アンモニウム塩としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、N、N、N-トリエチル-N-(2-ヒドロキシエチル)アンモニウムヒドロキシド、N、N-ジエチル-N、N-ジ(2-ヒドロキシエチル)アンモニウムヒドロキシド等が挙げられる。 Examples of the ethanolamine include monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N-ethylethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, and aminoethoxyethanol. No. Examples of propanolamine include 1-amino-2-propanol, 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, and the like. Examples of the alkylamine include monomethylamine, dimethylamine, trimethylamine, ethyleneamine, ethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenetetramine, tetraethylenepentamine and the like. Examples of the cyclic amine include choline, morpholine and the like. Examples of the quaternary ammonium salt include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, N, N, N-triethyl-N- (2-hydroxyethyl) ammonium hydroxide, N, N -Diethyl-N, N-di (2-hydroxyethyl) ammonium hydroxide and the like.

 本発明で用いられるアミン系剥離剤は、上記に例示したアミンの1種以上を含む水溶液であってよい。水溶液中のアミンの濃度は、目的、感光性樹脂層の組成、現像条件等によって適宜に設定されてよい。 ア ミ ン The amine-based release agent used in the present invention may be an aqueous solution containing one or more of the amines exemplified above. The concentration of the amine in the aqueous solution may be appropriately set depending on the purpose, the composition of the photosensitive resin layer, the development conditions, and the like.

 本発明で用いられるアミン系剥離剤は、剥離剤に通常用いられる添加剤、例えば、界面活性剤、消泡剤、pH調整剤、防腐剤、再付着防止剤等を、更に含有していてもよい。 The amine-based release agent used in the present invention may further contain additives usually used for the release agent, such as a surfactant, an antifoaming agent, a pH adjuster, a preservative, and an anti-redeposition agent. Good.

 剥離工程は、例えば0℃以上100℃以下、好ましくは室温(23℃)以上50℃以下の温度において、例えば、1秒以上1時間以下、好ましくは10秒以上10分以下の時間、行われる。 The peeling step is performed at a temperature of, for example, 0 ° C. or more and 100 ° C. or less, preferably room temperature (23 ° C.) or more and 50 ° C. or less, for example, for 1 second to 1 hour, preferably 10 seconds to 10 minutes.

 剥離工程の後、所望により、レジストパターンを除去した後の基板を、例えば純水等によって洗浄してもよい。 After the peeling step, the substrate from which the resist pattern has been removed may be washed with pure water or the like, if desired.

 本実施形態の感光性樹脂積層体は、プリント配線板、フレキシブル基板、リードフレーム基板、タッチパネル基板、COF用基板、半導体パッケージ用基板、液晶用透明電極、液晶用TFT用配線、PDP用電極等の導体パターンの製造に適した感光性樹脂積層体である。 The photosensitive resin laminate of the present embodiment includes a printed wiring board, a flexible substrate, a lead frame substrate, a touch panel substrate, a COF substrate, a semiconductor package substrate, a liquid crystal transparent electrode, a liquid crystal TFT wiring, a PDP electrode, and the like. It is a photosensitive resin laminate suitable for producing a conductor pattern.

 以下、実施例及び比較例により本発明の実施形態を具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples.

[実施例1~8及び比較例1~4]
〈感光性樹脂積層体の作製〉
 後掲する表1~3に示すように、各成分(但し、各成分の量は固形分としての配合量(質量部)を示す。)を十分に攪拌、混合して、感光性樹脂組成物調合液を得た。表2及び3中、バインダーのI値とは、記号A-1~A-3で示すアルカリ可溶性高分子の混合物としてのI値を示す。支持フィルムとして16μm厚のポリエチレンテレフタラートフィルム(東レ(株)製、FB-40)を用い、その表面にバーコーターを用いて、この調合液を均一に塗布し、95℃の乾燥機中で3分間乾燥して、感光性樹脂組成物層を形成した。感光性樹脂組成物層の乾燥厚みは25μmであった。次いで、感光性樹脂組成物層のポリエチレンテレフタラートフィルムを積層していない側の表面上に、保護層として19μm厚のポリエチレンフィルム(タマポリ(株)製、GF-818)を貼り合わせて感光性樹脂積層体を得た。
[Examples 1 to 8 and Comparative Examples 1 to 4]
<Preparation of photosensitive resin laminate>
As shown in Tables 1 to 3 below, each component (however, the amount of each component indicates the blending amount (parts by mass) as a solid content) is sufficiently stirred and mixed to obtain a photosensitive resin composition. A mixture was obtained. In Tables 2 and 3, the I value of the binder indicates the I value as a mixture of alkali-soluble polymers represented by symbols A-1 to A-3. A 16 μm-thick polyethylene terephthalate film (FB-40, manufactured by Toray Industries, Inc.) was used as a support film, and the prepared liquid was uniformly applied to the surface thereof using a bar coater. After drying for a minute, a photosensitive resin composition layer was formed. The dry thickness of the photosensitive resin composition layer was 25 μm. Then, a 19 μm-thick polyethylene film (manufactured by Tamapoly Corporation, GF-818) is laminated as a protective layer on the surface of the photosensitive resin composition layer on the side where the polyethylene terephthalate film is not laminated. A laminate was obtained.

〈基板整面〉
 画像性の評価基板として、35μm圧延銅箔を積層した0.4mm厚の銅張積層板を、スプレー圧0.2MPaで研削剤(宇治電化学工業(株)製、#400)を用いてジェットスクラブ研磨した後、10質量%HSO水溶液で基板表面を洗浄した。
<Substrate surface preparation>
As a substrate for evaluation of image quality, a 0.4 mm thick copper-clad laminate obtained by laminating 35 μm rolled copper foil was jetted with a spraying agent (# 400, manufactured by Uji Denka Kogyo KK) at a spray pressure of 0.2 MPa. After scrub polishing, the substrate surface was washed with a 10% by mass H 2 SO 4 aqueous solution.

〈ラミネート〉
 感光性樹脂積層体のポリエチレンフィルム(保護層)を剥がしながら、50℃に予熱した銅張積層板に、ホットロールラミネーター(旭化成(株)製、AL-700)により、感光性樹脂積層体をロール温度105℃でラミネートした。エアー圧は0.35MPaとし、ラミネート速度は1.5m/minとした。
<laminate>
While peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, roll the photosensitive resin laminate on a copper-clad laminate preheated to 50 ° C. using a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). Lamination was performed at a temperature of 105 ° C. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.

〈露光〉
 ラミネート後2時間経過した評価用基板に、直接描画露光機(オルボテック(株)製、Nuvogo1000、光源:375nm(30%)+405nm(70%))により、ストーファー41段ステップタブレットを用いて露光した。露光は、上記ストーファー41段ステップタブレットをマスクとして露光、現像したときの最高残膜段数が18段となる露光量で行った。
<exposure>
Two hours after the lamination, the evaluation substrate was exposed with a direct drawing exposure machine (Nuvogo 1000, manufactured by Orbotech Co., Ltd., light source: 375 nm (30%) + 405 nm (70%)) using a 41-step Stoffer tablet. . The exposure was performed with an exposure amount such that the maximum number of remaining film steps was 18 when exposed and developed using the 41-step stofer step tablet as a mask.

〈露光後加熱〉
 露光後1分経過した評価用基板を、ホットロールラミネーター(旭化成(株)製、AL-700)により加熱した。ロール温度は105℃、エアー圧は0.30MPa、ラミネート速度は1.5m/minとした。また、別途準備した評価用基板を用い、露光後7分経過した後、同様に加熱した。なお、露光後の経過時間を長くすると加熱の効果が低減されるため、通常は露光後1分程度で加熱を行う。そのため、本実施例の露光7分後の加熱は非常に厳しい条件である。
<Heating after exposure>
One minute after the exposure, the evaluation substrate was heated by a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). The roll temperature was 105 ° C., the air pressure was 0.30 MPa, and the laminating speed was 1.5 m / min. Using a separately prepared evaluation substrate, 7 minutes after exposure, heating was performed in the same manner. Note that if the elapsed time after exposure is increased, the effect of heating is reduced, so that heating is usually performed about 1 minute after exposure. For this reason, heating after 7 minutes of exposure in this embodiment is a very severe condition.

〈現像〉
 ポリエチレンテレフタレートフィルム(支持層)を剥離した後、アルカリ現像機(フジ機工製、ドライフィルム用現像機)を用い、30℃の1質量%NaCO水溶液を所定時間に亘ってスプレーして現像を行った。現像スプレーの時間は最短現像時間の2倍の時間とし、現像後の水洗スプレーの時間は最短現像時間の3倍の時間とした。この際、未露光部分の感光性樹脂層が完全に溶解するのに要する最も短い時間を最短現像時間とした。
<developing>
After peeling off the polyethylene terephthalate film (support layer), a 1% by mass aqueous solution of Na 2 CO 3 at 30 ° C. is sprayed for a predetermined period of time using an alkali developing machine (developing machine for dry film manufactured by Fuji Kiko Co., Ltd.) for development. Was done. The time of the developing spray was twice the shortest developing time, and the time of the water spray after the developing was three times the shortest developing time. At this time, the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve was taken as the shortest development time.

〈画像性評価〉
 マスクパターンL/S=Xμm/200μmのパターンが正常に形成されている最小ライン幅を光学顕微鏡により測定した。この測定を8本のラインについて行い、その8つの線幅の平均値を密着性の指標として求めた。以下基準に基づき密着性を評価した。
A:独立パターンの最少密着線幅が9μm未満
B:独立パターンの最少密着線幅が9μm以上10μm未満
C:独立パターンの最少密着線幅が10μm以上11μm未満
D:独立パターンの最少密着線幅が11μm以上
<Evaluation of image quality>
The minimum line width at which a pattern of mask pattern L / S = X μm / 200 μm was normally formed was measured with an optical microscope. This measurement was performed for eight lines, and the average value of the eight line widths was determined as an index of adhesion. The adhesion was evaluated based on the following criteria.
A: The minimum adhesion line width of the independent pattern is less than 9 μm B: The minimum adhesion line width of the independent pattern is 9 μm or more and less than 10 μm C: The minimum adhesion line width of the independent pattern is 10 μm or more and less than 11 μm D: The minimum adhesion line width of the independent pattern is 11 μm or more

 実施例1~8及び比較例1~4で使用した材料を下表1に、結果を下表2及び3に示す。 材料 The materials used in Examples 1 to 8 and Comparative Examples 1 to 4 are shown in Table 1 below, and the results are shown in Tables 2 and 3 below.

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

[実施例9~16及び比較例5~8]
〈感光性樹脂積層体の作製〉
 後掲する表4~6に示すように、各成分(但し、各成分の量は固形分としての配合量(質量部)を示す。)を十分に攪拌、混合して、感光性樹脂組成物調合液を得た。表5及び6中、バインダーのsp値(MPa1/2)とは、記号A-1~A-3で示すアルカリ可溶性高分子の混合物としてのsp値を示す。支持フィルムとして16μm厚のポリエチレンテレフタラートフィルム(東レ(株)製、FB-40)を用い、その表面にバーコーターを用いて、この調合液を均一に塗布し、95℃の乾燥機中で3分間乾燥して、感光性樹脂組成物層を形成した。感光性樹脂組成物層の乾燥厚みは25μmであった。次いで、感光性樹脂組成物層のポリエチレンテレフタラートフィルムを積層していない側の表面上に、保護層として19μm厚のポリエチレンフィルム(タマポリ(株)製、GF-818)を貼り合わせて感光性樹脂積層体を得た。
[Examples 9 to 16 and Comparative Examples 5 to 8]
<Preparation of photosensitive resin laminate>
As shown in Tables 4 to 6 below, each component (however, the amount of each component indicates a blending amount (parts by mass) as a solid content) is sufficiently stirred and mixed to obtain a photosensitive resin composition. A mixture was obtained. In Tables 5 and 6, the sp value (MPa 1/2 ) of the binder indicates the sp value as a mixture of alkali-soluble polymers represented by symbols A-1 to A-3. A 16 μm-thick polyethylene terephthalate film (FB-40, manufactured by Toray Industries, Inc.) was used as a support film, and the prepared liquid was uniformly applied to the surface thereof using a bar coater. After drying for a minute, a photosensitive resin composition layer was formed. The dry thickness of the photosensitive resin composition layer was 25 μm. Then, a 19 μm-thick polyethylene film (manufactured by Tamapoly Corporation, GF-818) is laminated as a protective layer on the surface of the photosensitive resin composition layer on the side where the polyethylene terephthalate film is not laminated. A laminate was obtained.

〈基板整面〉
 画像性の評価基板として、35μm圧延銅箔を積層した0.4mm厚の銅張積層板を、スプレー圧0.2MPaで研削剤(宇治電化学工業(株)製、#400)を用いてジェットスクラブ研磨した後、10質量%HSO水溶液で基板表面を洗浄した。
<Surface preparation>
As a substrate for evaluation of image quality, a 0.4 mm thick copper-clad laminate obtained by laminating 35 μm rolled copper foil was jetted with a spraying agent (# 400, manufactured by Uji Denka Kogyo KK) at a spray pressure of 0.2 MPa. After scrub polishing, the substrate surface was washed with a 10% by mass H 2 SO 4 aqueous solution.

〈ラミネート〉
 感光性樹脂積層体のポリエチレンフィルム(保護層)を剥がしながら、50℃に予熱した銅張積層板に、ホットロールラミネーター(旭化成(株)製、AL-700)により、感光性樹脂積層体をロール温度105℃でラミネートした。エアー圧は0.35MPaとし、ラミネート速度は1.5m/minとした。
<laminate>
While peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, roll the photosensitive resin laminate on a copper-clad laminate preheated to 50 ° C. using a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). Lamination was performed at a temperature of 105 ° C. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.

〈露光〉
 ラミネート後2時間経過した評価用基板に、直接描画露光機(オルボテック(株)製、Nuvogo1000、光源:375nm(30%)+405nm(70%))により、ストーファー41段ステップタブレットを用いて露光した。露光は、上記ストーファー41段ステップタブレットをマスクとして露光、現像したときの最高残膜段数が18段となる露光量で行った。
<exposure>
Two hours after the lamination, the evaluation substrate was exposed with a direct drawing exposure machine (Nuvogo 1000, manufactured by Orbotech Co., Ltd., light source: 375 nm (30%) + 405 nm (70%)) using a 41-step Stoffer tablet. . The exposure was performed with an exposure amount such that the maximum number of remaining film steps was 18 when exposed and developed using the 41-step stofer step tablet as a mask.

〈露光後加熱〉
 露光後1分経過した評価用基板を、ホットロールラミネーター(旭化成(株)製、AL-700)により加熱した。ロール温度は105℃、エアー圧は0.30MPa、ラミネート速度は1.5m/minとした。また、別途準備した評価用基板を用い、露光後7分経過した後、同様に加熱した。なお、露光後の経過時間を長くすると加熱の効果が低減されるため、通常は露光後1分程度で加熱を行う。そのため、本実施例の露光7分後の加熱は非常に厳しい条件である。
<Heating after exposure>
One minute after the exposure, the evaluation substrate was heated by a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). The roll temperature was 105 ° C., the air pressure was 0.30 MPa, and the laminating speed was 1.5 m / min. Using a separately prepared evaluation substrate, 7 minutes after exposure, heating was performed in the same manner. Note that if the elapsed time after exposure is increased, the effect of heating is reduced, so that heating is usually performed about 1 minute after exposure. For this reason, heating after 7 minutes of exposure in this embodiment is a very severe condition.

〈現像〉
 ポリエチレンテレフタレートフィルム(支持層)を剥離した後、アルカリ現像機(フジ機工製、ドライフィルム用現像機)を用い、30℃の1質量%NaCO水溶液を所定時間に亘ってスプレーして現像を行った。現像スプレーの時間は最短現像時間の2倍の時間とし、現像後の水洗スプレーの時間は最短現像時間の3倍の時間とした。この際、未露光部分の感光性樹脂層が完全に溶解するのに要する最も短い時間を最短現像時間とした。
<developing>
After peeling off the polyethylene terephthalate film (support layer), a 1% by mass aqueous solution of Na 2 CO 3 at 30 ° C. is sprayed for a predetermined period of time using an alkali developing machine (developing machine for dry film manufactured by Fuji Kiko Co., Ltd.) for development. Was done. The time of the developing spray was twice the shortest developing time, and the time of the water spray after the developing was three times the shortest developing time. At this time, the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve was taken as the shortest development time.

〈画像性評価〉
 マスクパターンL/S=Xμm/200μmのパターンが正常に形成されている最小ライン幅を光学顕微鏡により測定した。この測定を8本のラインについて行い、その8つの線幅の平均値を密着性の指標として求めた。以下基準に基づき密着性を評価した。
A:独立パターンの最少密着線幅が9μm未満
B:独立パターンの最少密着線幅が9μm以上10μm未満
C:独立パターンの最少密着線幅が10μm以上11μm未満
D:独立パターンの最少密着線幅が11μm以上
<Evaluation of image quality>
The minimum line width at which a pattern of mask pattern L / S = X μm / 200 μm was normally formed was measured with an optical microscope. This measurement was performed for eight lines, and the average value of the eight line widths was determined as an index of adhesion. The adhesion was evaluated based on the following criteria.
A: The minimum adhesion line width of the independent pattern is less than 9 μm B: The minimum adhesion line width of the independent pattern is 9 μm or more and less than 10 μm C: The minimum adhesion line width of the independent pattern is 10 μm or more and less than 11 μm D: The minimum adhesion line width of the independent pattern is 11 μm or more

 実施例9~16及び比較例5~8で使用した材料を下表4に、結果を下表5及び6に示す。 材料 The materials used in Examples 9 to 16 and Comparative Examples 5 to 8 are shown in Table 4 below, and the results are shown in Tables 5 and 6 below.

Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

[実施例17~24及び比較例9]
〈高分子の重量平均分子量又は数平均分子量の測定〉
 高分子の重量平均分子量(Mw)又は数平均分子量(Mn)は、日本分光(株)製ゲルパーミエーションクロマトグラフィー(GPC)(ポンプ:Gulliver、PU-1580型、カラム:昭和電工(株)製Shodex(登録商標)(KF-807、KF-806M、KF-806M、KF-802.5)4本直列、移動層溶媒:テトラヒドロフラン、ポリスチレン標準サンプル(昭和電工(株)製Shodex STANDARD SM-105)による検量線使用)によりポリスチレン換算として求めた。また、数平均分子量に対する重量平均分子量の比(Mw/Mn)として高分子の分散度を算出した。
[Examples 17 to 24 and Comparative Example 9]
<Measurement of weight average molecular weight or number average molecular weight of polymer>
The weight average molecular weight (Mw) or number average molecular weight (Mn) of the polymer is determined by gel permeation chromatography (GPC) manufactured by JASCO Corporation (pump: Gulliver, PU-1580 type, column: manufactured by Showa Denko KK) Shodex (registered trademark) (KF-807, KF-806M, KF-806M, KF-802.5) 4 in series, moving bed solvent: tetrahydrofuran, polystyrene standard sample (Showex STANDARD SM-105 manufactured by Showa Denko KK) Using a calibration curve according to the standard) in terms of polystyrene. The degree of dispersion of the polymer was calculated as the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn).

〈感光性樹脂積層体の作製〉
 後掲する表7及び8に示すように、各成分(但し、各成分の量は固形分としての配合量(質量部)を示す。「A-1含有量」は、表7に示す成分A-1の、感光性樹脂組成物中の固形分に対する含有量(質量%)を示す。)及び溶媒を十分に攪拌、混合して、感光性樹脂組成物調合液を得た。支持フィルムとして16μm厚のポリエチレンテレフタラートフィルム(東レ(株)製、FB-40)を用い、その表面にバーコーターを用いて、この調合液を均一に塗布し、95℃の乾燥機中で3分間乾燥して、感光性樹脂組成物層を形成した。感光性樹脂組成物層の乾燥厚みは25μmであった。次いで、感光性樹脂組成物層のポリエチレンテレフタラートフィルムを積層していない側の表面上に、保護層として19μm厚のポリエチレンフィルム(タマポリ(株)製、GF-818)を貼り合わせて感光性樹脂積層体を得た。
<Preparation of photosensitive resin laminate>
As shown in Tables 7 and 8 below, each component (however, the amount of each component indicates a blending amount (parts by mass) as a solid content. The “A-1 content” refers to the component A shown in Table 7. -1 relative to the solid content in the photosensitive resin composition (% by mass)) and the solvent were sufficiently stirred and mixed to obtain a photosensitive resin composition preparation. A 16 μm-thick polyethylene terephthalate film (FB-40, manufactured by Toray Industries, Inc.) was used as a support film, and the prepared liquid was uniformly applied to the surface thereof using a bar coater. After drying for a minute, a photosensitive resin composition layer was formed. The dry thickness of the photosensitive resin composition layer was 25 μm. Then, a 19 μm-thick polyethylene film (manufactured by Tamapoly Corporation, GF-818) is laminated as a protective layer on the surface of the photosensitive resin composition layer on the side where the polyethylene terephthalate film is not laminated. A laminate was obtained.

〈基板整面〉
 画像性の評価基板として、35μm圧延銅箔を積層した0.4mm厚の銅張積層板を、スプレー圧0.2MPaで研削剤(宇治電化学工業(株)製、#400)を用いてジェットスクラブ研磨した後、10質量%HSO水溶液で基板表面を洗浄した。
<Surface preparation>
As a substrate for evaluation of image quality, a 0.4 mm thick copper-clad laminate obtained by laminating 35 μm rolled copper foil was jetted with a spraying agent (# 400, manufactured by Uji Denka Kogyo KK) at a spray pressure of 0.2 MPa. After scrub polishing, the substrate surface was washed with a 10% by mass H 2 SO 4 aqueous solution.

〈ラミネート〉
 感光性樹脂積層体のポリエチレンフィルム(保護層)を剥がしながら、50℃に予熱した銅張積層板に、ホットロールラミネーター(旭化成(株)社製、AL-700)により、感光性樹脂積層体をロール温度105℃でラミネートした。エアー圧は0.35MPaとし、ラミネート速度は1.5m/minとした。
<laminate>
While peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, the photosensitive resin laminate was applied to a copper-clad laminate preheated to 50 ° C. using a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). Lamination was performed at a roll temperature of 105 ° C. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.

〈露光〉
 ラミネート後2時間経過した評価用基板に、直接描画露光機(オルボテック(株)製、Nuvogo1000、光源:375nm(30%)+405nm(70%))により、ストーファー41段ステップタブレットを用いて露光した。露光は、上記ストーファー41段ステップタブレットをマスクとして露光、現像したときの最高残膜段数が18段となる露光量で行った。
<exposure>
Two hours after the lamination, the evaluation substrate was exposed with a direct drawing exposure machine (Nuvogo 1000, manufactured by Orbotech Co., Ltd., light source: 375 nm (30%) + 405 nm (70%)) using a 41-step Stoffer tablet. . The exposure was performed with an exposure amount such that the maximum number of remaining film steps was 18 when exposed and developed using the 41-step stofer step tablet as a mask.

〈露光後加熱〉
 露光後7分経過した評価用基板を、ホットロールラミネーター(旭化成(株)社製、AL-700)により加熱した。ロール温度は105℃、エアー圧は0.30MPa、ラミネート速度は1m/minとした。なお、露光後の経過時間を長くすると加熱の効果が無くなってくるため、通常は露光後1分程度に加熱する。そのため、本実施例の露光7分後の加熱は非常に厳しい条件である。
<Heating after exposure>
The evaluation substrate 7 minutes after the exposure was heated by a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). The roll temperature was 105 ° C., the air pressure was 0.30 MPa, and the laminating speed was 1 m / min. Note that if the elapsed time after the exposure is lengthened, the effect of the heating is lost, so that the heating is usually performed for about one minute after the exposure. For this reason, heating after 7 minutes of exposure in this embodiment is a very severe condition.

〈現像〉
 ポリエチレンテレフタレートフィルム(支持層)を剥離した後、アルカリ現像機(フジ機工製、ドライフィルム用現像機)を用い、30℃の1質量%NaCO水溶液を所定時間に亘ってスプレーして現像を行った。現像スプレーの時間は最短現像時間の2倍の時間とし、現像後の水洗スプレーの時間は最短現像時間の3倍の時間とした。この際、未露光部分の感光性樹脂層が完全に溶解するのに要する最も短い時間を最短現像時間とした。
<developing>
After peeling off the polyethylene terephthalate film (support layer), a 1% by mass aqueous solution of Na 2 CO 3 at 30 ° C. is sprayed for a predetermined period of time using an alkali developing machine (developing machine for dry film manufactured by Fuji Kiko Co., Ltd.) for development. Was done. The time of the developing spray was twice the shortest developing time, and the time of the water spray after the developing was three times the shortest developing time. At this time, the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve was taken as the shortest development time.

〈画像性評価〉
 マスクパターンL/S=Xμm/200μmのパターンが正常に形成されている最小ライン幅を光学顕微鏡により測定した。この測定を8本のラインについて行い、その8つの線幅の平均値を密着性の値として求めた。
<Evaluation of image quality>
The minimum line width at which a pattern of mask pattern L / S = X μm / 200 μm was normally formed was measured with an optical microscope. This measurement was performed for eight lines, and the average value of the eight line widths was determined as the value of the adhesion.

 実施例17~23及び比較例9で使用した材料を下表7に、結果を下表8に示す。 材料 The materials used in Examples 17 to 23 and Comparative Example 9 are shown in Table 7 below, and the results are shown in Table 8 below.

Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014

 表7及び8の結果から、本発明の構成要件の範囲に入っている実施例においては、本発明の範囲外である比較例よりも、画像性評価結果が優れていることが確認された。 結果 From the results of Tables 7 and 8, it was confirmed that in the examples falling within the scope of the constitutional requirements of the present invention, the image quality evaluation results were superior to the comparative examples outside the scope of the present invention.

 本実施例の露光後の加熱条件は、露光7分後の加熱であるため非常に厳しい条件である。例えば、実施例17及び比較例9の組成を露光後の加熱無しで現像したときの密着性は、共に10.6μmであった。つまり、比較例9の組成においては、露光7分後の加熱では効果は見られなかったが、実施例23においては非常に厳しい条件であっても密着性を良くすることができた。また、露光1分後に加熱する条件においては、実施例23及び比較例9の組成のいずれにおいても9.0μmの密着性が得られた。 加熱 The heating conditions after exposure in this example are very strict conditions because heating is performed 7 minutes after exposure. For example, the adhesiveness when the compositions of Example 17 and Comparative Example 9 were developed without heating after exposure was 10.6 μm. That is, in the composition of Comparative Example 9, no effect was observed by heating after 7 minutes of exposure, but in Example 23, the adhesion could be improved even under extremely severe conditions. In addition, under the conditions of heating after 1 minute of exposure, in each of the compositions of Example 23 and Comparative Example 9, adhesion of 9.0 μm was obtained.

 以上の結果より、一般的な露光後の加熱条件においては密着性が良好な場合であっても、本実施例の露光後7分後の加熱という、厳しい条件においては密着性が良くなるという訳ではない。しかし、特定の組成を有する本発明の感光性樹脂組成物により、初めてこの厳しい露光後加熱条件においても密着性を良くすることができた。これにより、回路基板を製造する際、露光後の経過時間が長くなってしまっても良好な密着性を得ることができるため、高精細な回路パターンを安定して形成可能となる。 From the above results, even if the adhesion is good under the general heating conditions after exposure, the adhesion is improved under the severe conditions of heating 7 minutes after exposure in the present example. is not. However, with the photosensitive resin composition of the present invention having a specific composition, it was possible to improve the adhesion even under these severe post-exposure heating conditions for the first time. Thereby, when manufacturing a circuit board, good adhesion can be obtained even if the elapsed time after exposure becomes long, so that a high-definition circuit pattern can be stably formed.

[実施例24~38及び比較例10~11]
〈高分子の重量平均分子量の測定〉
 高分子の重量平均分子量(Mw)は、以下の条件下のゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算値として求めた。
  測定装置:日本分光(株)製、ゲルパーミエーションクロマトグラフィー(GPC)
  ポンプ:日本分光(株)製、Gulliver PU-1580型
  カラム:昭和電工(株)製、Shodex(登録商標) KF-807、KF-806M、KF-806M、及びKF-802.5の4本直列
  移動相溶媒:テトラヒドロフラン
  標準サンプル:昭和電工(株)製、Shodex STANDARD SM-105
[Examples 24 to 38 and Comparative Examples 10 to 11]
<Measurement of weight average molecular weight of polymer>
The weight average molecular weight (Mw) of the polymer was determined as a value in terms of polystyrene by gel permeation chromatography (GPC) under the following conditions.
Measurement device: JASCO Corporation, Gel Permeation Chromatography (GPC)
Pump: Gulliver PU-1580 type, manufactured by JASCO Corporation Column: Showa Denko KK, Shodex (registered trademark) KF-807, KF-806M, KF-806M, and KF-802.5 Mobile phase solvent: tetrahydrofuran Standard sample: Shodex STANDARD SM-105 manufactured by Showa Denko KK

〈感光性樹脂積層体の作製〉
 各実施例及び比較例で調製した感光性樹脂組成物調合液を、支持層としてのポリエチレンテレフタレートフィルム(東レ(株)製、FB-40、16μm厚)の表面上にバーコーターを用いて均一に塗布し、95℃の乾燥機中で3分間乾燥して、感光性樹脂層を形成した。感光性樹脂層の乾燥厚みは25μmであった。次いで、感光性樹脂層のポリエチレンテレフタレートフィルムを積層していない側の表面上に、保護層としてのポリエチレンフィルム(タマポリ(株)製、GF-818、19μm厚)を貼り合わせて、感光性樹脂積層体を得た。
<Preparation of photosensitive resin laminate>
The photosensitive resin composition prepared in each of Examples and Comparative Examples was uniformly coated on a surface of a polyethylene terephthalate film (FB-40, manufactured by Toray Industries, Inc., 16 μm thick) as a support layer using a bar coater. It was applied and dried in a drier at 95 ° C. for 3 minutes to form a photosensitive resin layer. The dry thickness of the photosensitive resin layer was 25 μm. Next, a polyethylene film (manufactured by Tamapoly Co., Ltd., GF-818, 19 μm thick) as a protective layer is laminated on the surface of the photosensitive resin layer on the side where the polyethylene terephthalate film is not laminated. I got a body.

〈基板整面〉
 基板として、35μm厚の圧延銅箔を積層した0.4mm厚の銅張積層板を用いた。この銅張積層板を、研削剤(宇治電化学工業(株)製、#400)を用いてスプレー圧0.2MPaでジェットスクラブ研磨した後、10質量%HSO水溶液による表面洗浄を行って、基板表面を整面した。
<Surface preparation>
As a substrate, a 0.4 mm-thick copper-clad laminate in which rolled copper foil having a thickness of 35 μm was laminated was used. The copper-clad laminate is jet scrub polished at a spray pressure of 0.2 MPa using a grinding agent (# 400 manufactured by Uji Denka Kogyo Co., Ltd.), and then the surface is washed with a 10% by mass aqueous H 2 SO 4 solution. The surface of the substrate was adjusted.

〈ラミネート〉
 ホットロールラミネーター(旭化成(株)社製、AL-700)を用いて、50℃に予熱した銅張積層板上に、感光性樹脂積層体を、ポリエチレンフィルム(保護層)を剥がしながらラミネートして、評価用基板を得た。このとき、ロール温度は105℃、エアー圧は0.35MPa、及びラミネート速度は1.5m/分とした。
<laminate>
Using a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation), a photosensitive resin laminate is laminated on a copper-clad laminate preheated to 50 ° C. while peeling off a polyethylene film (protective layer). Thus, a substrate for evaluation was obtained. At this time, the roll temperature was 105 ° C., the air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.

〈露光〉
 ラミネート後2時間経過した評価用基板に、直接描画露光機(オルボテック(株)製、Nuvogo Fine 10、光源:375nm(30%)+405nm(70%))により、ストーファー41段ステップタブレットを用いて露光した。露光は、上記ストーファー41段ステップタブレットをマスクとする露光、及び現像を行ったときの最高残膜段数が19段となる露光量で行った。
<exposure>
A direct drawing exposure machine (Nuvogo Fine 10, manufactured by Orbotech Co., Ltd., light source: 375 nm (30%) + 405 nm (70%)) was used on the evaluation substrate 2 hours after lamination, using a 41-step stofer tablet. Exposure. The exposure was performed using the above-mentioned 41-step stofer step tablet as a mask, and at an exposure amount such that the maximum number of remaining film steps when developing was 19 steps.

〈露光後加熱〉
 露光後1分経過した評価用基板を、ホットロールラミネーター(旭化成(株)社製、AL-700)により加熱して、露光部の感光性樹脂層を硬化膜とした。ロール温度は105℃、エアー圧は0.30MPa、及びラミネート速度は1.5m/分とした。
<Heating after exposure>
One minute after the exposure, the evaluation substrate was heated by a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation), and the photosensitive resin layer in the exposed area was formed into a cured film. The roll temperature was 105 ° C., the air pressure was 0.30 MPa, and the laminating speed was 1.5 m / min.

〈現像〉
 露光及び加熱後の評価用基板からポリエチレンテレフタレートフィルム(支持層)を剥離した後、アルカリ現像機(フジ機工製、ドライフィルム用現像機)を用い、30℃の1質量%Na2CO3水溶液及び純水を、それぞれの所定時間にて順次にスプレーして、現像を行った。現像スプレーの時間は最短現像時間の2倍の時間とし、現像後の水洗スプレーの時間は最短現像時間の3倍の時間とした。ここで、最短現像時間とは、未露光部分の感光性樹脂層が完全に溶解するのに要する最も短い時間を意味する。
<developing>
After peeling off the polyethylene terephthalate film (support layer) from the evaluation substrate after exposure and heating, using an alkali developing machine (manufactured by Fuji Kiko Co., a developing machine for dry film), a 1% by mass aqueous solution of Na 2 CO 3 at 30 ° C. and Pure water was sequentially sprayed for each predetermined time to perform development. The time of the developing spray was twice the shortest developing time, and the time of the water spray after the developing was three times the shortest developing time. Here, the shortest development time means the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve.

〈密着性評価〉
 スペース幅が200μmの一定値でライン幅が変量されているラインアンドスペースのテストパターンにおいて、正常に形成されている最小ライン幅を光学顕微鏡により測定した。この測定を8組のテストパターンについて行い、その平均値を密着性の指標とした。
<Adhesion evaluation>
In a line-and-space test pattern in which the line width was varied with a constant value of the space width of 200 μm, the minimum line width normally formed was measured by an optical microscope. This measurement was performed for eight sets of test patterns, and the average value was used as an index of adhesion.

〈剥離時間評価〉
 ラミネート後2時間経過した評価用基板を、縦5cm、横3cmのベタパターンで露光した。露光後1分経過した評価用基板を、ホットロールラミネーター(旭化成(株)社製、AL-700)により加熱した。次いで、最小現像時間の2倍で現像し、現像後の水洗スプレーの時間は最短現像時間の3倍として、評価サンプルを得た。剥離液としては、菱光化学株式会社製、R-100S(12vol%)及びR-101(4vol%)の混合水溶液を50℃に調温して用いた。評価サンプルを剥離液に浸し、硬化膜が基板から剥離するまでの時間を記録し、この時間を剥離時間として以下の基準で評価した。
  A(良好):剥離時間が45秒以下
  B(可):剥離時間が45秒を超え50秒以下
  C(不良):剥離時間が50秒超
<Peeling time evaluation>
The evaluation substrate 2 hours after the lamination was exposed to a solid pattern of 5 cm in length and 3 cm in width. One minute after the exposure, the evaluation substrate was heated with a hot roll laminator (AL-700, manufactured by Asahi Kasei Corporation). Next, the sample was developed with twice the minimum development time, and the time of spraying with water after the development was set to be three times the minimum development time to obtain an evaluation sample. As the stripping solution, a mixed aqueous solution of R-100S (12 vol%) and R-101 (4 vol%) manufactured by Ryoko Chemical Co., Ltd. was used by adjusting the temperature to 50 ° C. The evaluation sample was immersed in a stripping solution, the time required for the cured film to be stripped from the substrate was recorded, and this time was evaluated as the stripping time according to the following criteria.
A (good): Peeling time is 45 seconds or less B (OK): Peeling time is more than 45 seconds and 50 seconds or less C (bad): Peeling time is more than 50 seconds

〈剥離片サイズ評価〉
 上記、剥離時間評価にて、評価サンプルを剥離液に浸し、基板から剥離した硬化膜のサイズを観察し、以下の基準により評価した。
  AA(極めて良好):剥離片サイズが1cm角以上
  A(良好):剥離片サイズが7mm角以上1cm角未満
  B(可):剥離片サイズが3mm角以上7mm角未満
  C(不良):剥離片サイズが3mm角未満
<Evaluation of release piece size>
In the above-mentioned peeling time evaluation, the evaluation sample was immersed in a peeling liquid, the size of the cured film peeled from the substrate was observed, and evaluated according to the following criteria.
AA (extremely good): peeled piece size of 1 cm square or more A (good): peeled piece size of 7 mm square to less than 1 cm square B (good): peeled piece size of 3 mm square to less than 7 mm square C (bad): peeled piece Size is less than 3mm square

 (A)アルカリ可溶性高分子、(B)エチレン性不飽和二重結合を有する化合物、及び(C)光重合開始剤、並びに任意添加剤である(D)光増感剤、着色剤、及び安定化剤として、それぞれ、表1に記載の種類及び量(固形分換算の質量部)の成分、並びに溶媒としてエタノールを混合し、十分に撹拌することにより、固形分濃度55質量%の感光性樹脂組成物調合液を調製した。 (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, and (C) a photopolymerization initiator, and optional additives (D) a photosensitizer, a colorant, and a stabilizer. The components of the kind and amount shown in Table 1 (parts by mass in terms of solids) as the agent, and ethanol as the solvent were mixed and thoroughly stirred to obtain a photosensitive resin having a solids concentration of 55% by mass. A composition preparation was prepared.

 実施例24~38及び比較例10~11で使用した材料を下表9に、結果を下表10~12に示す。 材料 The materials used in Examples 24 to 38 and Comparative Examples 10 to 11 are shown in Table 9 below, and the results are shown in Tables 10 to 12 below.

Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017

Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018

 表10~12の結果から、本発明の感光性樹脂組成物を用いた実施例においては、本発明の範囲外である比較例よりも、密着性と、アミン系剥離液による剥離時間及び剥離片サイズと、のうちの少なくとも一方、好ましくは両方に優れていることが確認された。 From the results shown in Tables 10 to 12, in the examples using the photosensitive resin composition of the present invention, the adhesiveness, the peeling time by the amine-based peeling solution, and the peeling pieces were larger than those in the comparative examples outside the scope of the present invention. It was confirmed that at least one, and preferably both, of the size was excellent.

Claims (29)

 露光後、加熱してから現像して樹脂硬化物を得るための感光性樹脂組成物であって、前記感光性樹脂組成物が、前記感光性樹脂組成物の全固形分質量を基準として、以下の成分:
  (A)10質量%~90質量%の、アルカリ可溶性高分子と、
  (B)5質量%~70質量%の、エチレン性不飽和二重結合を有する化合物と、及び
  (C)0.01質量%~20質量%の、光重合開始剤と
を含み、
 前記アルカリ可溶性高分子(A)の無機性値(I値)が720以下である、感光性樹脂組成物。
After exposure, a photosensitive resin composition for obtaining a cured resin by heating and developing after heating, the photosensitive resin composition, based on the total solid content mass of the photosensitive resin composition, the following Ingredients:
(A) 10% to 90% by mass of an alkali-soluble polymer;
(B) 5 to 70% by mass of a compound having an ethylenically unsaturated double bond, and (C) 0.01 to 20% by mass of a photopolymerization initiator,
A photosensitive resin composition, wherein the alkali-soluble polymer (A) has an inorganic value (I value) of 720 or less.
 前記アルカリ可溶性高分子(A)のI値が635以下である、請求項1に記載の感光性樹脂組成物。 感光 The photosensitive resin composition according to claim 1, wherein the alkali-soluble polymer (A) has an I value of 635 or less.  前記アルカリ可溶性高分子(A)のI値が600以下である、請求項2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 2, wherein the I value of the alkali-soluble polymer (A) is 600 or less.  前記アルカリ可溶性高分子(A)のI値が300以上である、請求項1~3のいずれか一項に記載の感光性樹脂組成物。 4. The photosensitive resin composition according to claim 1, wherein the I value of the alkali-soluble polymer (A) is 300 or more.  前記アルカリ可溶性高分子(A)のI値が400以上である、請求項4に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 4, wherein the alkali-soluble polymer (A) has an I value of 400 or more.  前記アルカリ可溶性高分子(A)のI値が450以上である、請求項5に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 5, wherein the I value of the alkali-soluble polymer (A) is 450 or more.  前記アルカリ可溶性高分子(A)のI値が500以上である、請求項6に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 6, wherein the I value of the alkali-soluble polymer (A) is 500 or more.  前記アルカリ可溶性高分子(A)のI値が550以上である、請求項7に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 7, wherein the I value of the alkali-soluble polymer (A) is 550 or more.  露光後、加熱してから現像して樹脂硬化物を得るための感光性樹脂組成物であって、前記感光性樹脂組成物が、前記感光性樹脂組成物の全固形分質量を基準として、以下の成分:
  (A)10質量%~90質量%の、アルカリ可溶性高分子と、
  (B)5質量%~70質量%の、エチレン性不飽和二重結合を有する化合物と、及び
  (C)0.01質量%~20質量%の、光重合開始剤と
を含み、
 前記(A)アルカリ可溶性高分子の溶解度パラメータ(sp値)が21.45MPa1/2以下である、感光性樹脂組成物。
After exposure, a photosensitive resin composition for obtaining a cured resin by heating and developing after heating, the photosensitive resin composition, based on the total solid content mass of the photosensitive resin composition, the following Ingredients:
(A) 10% to 90% by mass of an alkali-soluble polymer;
(B) 5 to 70% by mass of a compound having an ethylenically unsaturated double bond, and (C) 0.01 to 20% by mass of a photopolymerization initiator,
(A) The photosensitive resin composition, wherein the solubility parameter (sp value) of the alkali-soluble polymer is 21.45 MPa 1/2 or less.
 前記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が21.40MPa1/2以下である、請求項9に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 9, wherein the solubility parameter (sp value) of the alkali-soluble polymer (A) is 21.40 MPa 1/2 or less.  前記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が21.20MPa1/2以下である、請求項10に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 10, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 21.20 MPa 1/2 or less.  前記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が19.00MPa1/2以上である、請求項9~11のいずれか一項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 9 to 11, wherein the alkali-soluble polymer (A) has a solubility parameter (sp value) of 19.00 MPa 1/2 or more.  前記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が19.50MPa1/2以上である、請求項12に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 12, wherein a solubility parameter (sp value) of the alkali-soluble polymer (A) is 19.50 MPa 1/2 or more.  前記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が20.00MPa1/2以上である、請求項13に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 13, wherein the solubility parameter (sp value) of the alkali-soluble polymer (A) is 20.00 MPa 1/2 or more.  前記アルカリ可溶性高分子(A)の溶解度パラメータ(sp値)が20.50MPa1/2以上である、請求項14に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 14, wherein the solubility parameter (sp value) of the alkali-soluble polymer (A) is 20.50 MPa 1/2 or more.  露光後、加熱してから現像して樹脂硬化物を得るための感光性樹脂組成物であって、前記感光性樹脂組成物が、前記感光性樹脂組成物の全固形分質量を基準として、以下の成分:
  (A)10質量%~90質量%の、アルカリ可溶性高分子と、
  (B)5質量%~70質量%の、エチレン性不飽和二重結合を有する化合物と、及び
  (C)0.01質量%~20質量%の、光重合開始剤と
を含み、
 前記感光性樹脂組成物は、前記アルカリ可溶性高分子(A)として、単量体成分としてスチレン及び/又はスチレン誘導体に由来する構成単位を52質量%以上含むアルカリ可溶性高分子(A-1)を、前記感光性樹脂組成物中の全固形分質量を基準として3質量%以上含む、感光性樹脂組成物。
After exposure, a photosensitive resin composition for obtaining a cured resin by heating and developing after heating, the photosensitive resin composition, based on the total solid content mass of the photosensitive resin composition, the following Ingredients:
(A) 10% to 90% by mass of an alkali-soluble polymer;
(B) 5 to 70% by mass of a compound having an ethylenically unsaturated double bond, and (C) 0.01 to 20% by mass of a photopolymerization initiator,
The photosensitive resin composition includes, as the alkali-soluble polymer (A), an alkali-soluble polymer (A-1) containing 52% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component. , A photosensitive resin composition comprising 3% by mass or more based on the total solid content in the photosensitive resin composition.
 前記感光性樹脂組成物は、前記アルカリ可溶性高分子(A-1)を前記感光性樹脂組成物中の全固形分質量に対して10質量%以上含む、請求項16に記載の感光性樹脂組成物。 17. The photosensitive resin composition according to claim 16, wherein the photosensitive resin composition contains the alkali-soluble polymer (A-1) in an amount of 10% by mass or more based on the total solid content in the photosensitive resin composition. object.  前記アルカリ可溶性高分子(A-1)が、単量体成分としてスチレン及び/又はスチレン誘導体に由来する構成単位を55質量%以上含む、請求項16又は17に記載の感光性樹脂組成物。 18. The photosensitive resin composition according to claim 16, wherein the alkali-soluble polymer (A-1) contains 55% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component.  前記アルカリ可溶性高分子(A-1)が、単量体成分としてスチレン及び/又はスチレン誘導体に由来する構成単位を58質量%以上含む、請求項18に記載の感光性樹脂組成物。 19. The photosensitive resin composition according to claim 18, wherein the alkali-soluble polymer (A-1) contains 58% by mass or more of a structural unit derived from styrene and / or a styrene derivative as a monomer component.  前記アルカリ可溶性高分子(A-1)が、単量体成分として(メタ)アクリル酸に由来する構成単位を27質量%以上含む、請求項16~19のいずれか一項に記載の感光性樹脂組成物。 20. The photosensitive resin according to claim 16, wherein the alkali-soluble polymer (A-1) contains, as a monomer component, 27% by mass or more of a structural unit derived from (meth) acrylic acid. Composition.  前記アルカリ可溶性高分子(A-1)が、単量体成分としてベンジル(メタ)アクリレートに由来する構成単位を更に含む、請求項16~19のいずれか一項に記載の感光性樹脂組成物。 20. The photosensitive resin composition according to claim 16, wherein the alkali-soluble polymer (A-1) further contains a structural unit derived from benzyl (meth) acrylate as a monomer component.  以下の工程:
 請求項1~21のいずれか一項に記載の感光性樹脂組成物の層を露光する工程;
 露光された前記感光性樹脂組成物の層を加熱する加熱工程;及び
 加熱された前記感光性樹脂組成物の層を現像する現像工程
を含む、レジストパターンの形成方法。
The following steps:
A step of exposing a layer of the photosensitive resin composition according to any one of claims 1 to 21;
A method for forming a resist pattern, comprising: a heating step of heating the exposed layer of the photosensitive resin composition; and a developing step of developing the heated layer of the photosensitive resin composition.
 前記加熱工程における加熱温度が30℃~150℃の範囲である、請求項22に記載のレジストパターンの形成方法。 23. The method for forming a resist pattern according to claim 22, wherein a heating temperature in the heating step is in a range of 30 ° C. to 150 ° C.  前記加熱工程を、露光停止から15分以内に行う、請求項22又は23に記載のレジストパターンの形成方法。 24. The method for forming a resist pattern according to claim 22, wherein the heating step is performed within 15 minutes after stopping the exposure.  前記露光工程を、描画パターンの直接描画による露光方法か、又はフォトマスクの像を、レンズを通して投影させる露光方法により行う、請求項22~24のいずれか一項に記載のレジストパターンの形成方法。 The method of forming a resist pattern according to any one of claims 22 to 24, wherein the exposure step is performed by an exposure method by directly drawing a drawing pattern or by an exposure method of projecting an image of a photomask through a lens.  前記露光工程を、描画パターンの直接描画による露光方法により行う、請求項25に記載のレジストパターンの形成方法。 26. The method for forming a resist pattern according to claim 25, wherein the exposing step is performed by an exposing method based on direct drawing of a drawing pattern.  前記露光工程を、中心波長390nm未満の第1のレーザー光と、中心波長390nm以上の第2のレーザー光とで露光する方法により行う、請求項26に記載のレジストパターンの形成方法。 27. The method of forming a resist pattern according to claim 26, wherein the exposing step is performed by a method of exposing with a first laser beam having a center wavelength of less than 390 nm and a second laser beam having a center wavelength of 390 nm or more.  前記第1のレーザー光の中心波長が350nm以上380nm以下であり、前記第2のレーザー光の中心波長が400nm以上410nm以下である、請求項27に記載のレジストパターンの形成方法。 28. The method of forming a resist pattern according to claim 27, wherein the center wavelength of the first laser light is 350 nm or more and 380 nm or less, and the center wavelength of the second laser light is 400 nm or more and 410 nm or less.  請求項22~28のいずれか一項に記載の方法により基板上にレジストパターンを製造し、前記レジストパターンを有する前記基板に対してエッチング又はめっきを施すことにより回路基板を形成することを含む、回路基板の製造方法。 A method for producing a circuit board by forming a resist pattern on a substrate by the method according to any one of claims 22 to 28, and performing etching or plating on the substrate having the resist pattern. A method for manufacturing a circuit board.
PCT/JP2019/023149 2018-06-22 2019-06-11 Photosensitive resin composition and resist pattern formation method WO2019244724A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020525595A JP7169351B2 (en) 2018-06-22 2019-06-11 Photosensitive resin composition and method for forming resist pattern
CN201980041589.0A CN112352197A (en) 2018-06-22 2019-06-11 Photosensitive resin composition and method for forming resist pattern
KR1020247010981A KR20240046924A (en) 2018-06-22 2019-06-11 Photosensitive resin composition and resist pattern formation method
KR1020207036582A KR102655468B1 (en) 2018-06-22 2019-06-11 Photosensitive resin composition and method of forming resist pattern
CN202410867812.XA CN118778362A (en) 2018-06-22 2019-06-11 Photosensitive resin composition and method for forming resist pattern

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-118562 2018-06-22
JP2018-118803 2018-06-22
JP2018-118614 2018-06-22
JP2018118614 2018-06-22
JP2018118562 2018-06-22
JP2018118803 2018-06-22
JP2018118600 2018-06-22
JP2018-118600 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019244724A1 true WO2019244724A1 (en) 2019-12-26

Family

ID=68983426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023149 WO2019244724A1 (en) 2018-06-22 2019-06-11 Photosensitive resin composition and resist pattern formation method

Country Status (5)

Country Link
JP (3) JP7169351B2 (en)
KR (2) KR102655468B1 (en)
CN (2) CN118778362A (en)
TW (1) TWI716904B (en)
WO (1) WO2019244724A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298615A (en) * 2020-03-24 2022-11-04 昭和电工材料株式会社 Photosensitive resin composition, photosensitive element, and method for producing wiring board
KR20240054400A (en) 2022-01-14 2024-04-25 아사히 가세이 가부시키가이샤 Photosensitive resin composition, photosensitive resin laminate, and method for forming resist pattern
KR20240056661A (en) 2021-10-25 2024-04-30 아사히 가세이 가부시키가이샤 Photosensitive element and method of forming a resist pattern

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240012326A1 (en) * 2021-01-29 2024-01-11 Asahi Kasei Kabushiki Kaisha Photosensitive element, and method for forming resist pattern

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204800A (en) * 2008-02-27 2009-09-10 Fujifilm Corp Photosensitive composition and photosensitive film
JP2010020264A (en) * 2007-08-09 2010-01-28 Nichigo Morton Co Ltd Solder resist film, resist pattern forming method and luminescent device
JP2015152726A (en) * 2014-02-13 2015-08-24 三洋化成工業株式会社 Photosensitive resin composition
WO2016017596A1 (en) * 2014-07-28 2016-02-04 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for producing resist pattern and method for manufacturing printed wiring board
WO2016163540A1 (en) * 2015-04-08 2016-10-13 旭化成株式会社 Photosensitive resin composition
JP2018005250A (en) * 2017-09-21 2018-01-11 旭化成株式会社 Method for forming resist pattern
JP2018077490A (en) * 2014-09-24 2018-05-17 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, production method of resin pattern, production method of cured film and method for manufacturing display device
WO2018105532A1 (en) * 2016-12-05 2018-06-14 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, resin pattern production method, and cured film pattern production method
WO2018159629A1 (en) * 2017-03-01 2018-09-07 旭化成株式会社 Photosensitive resin composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202457A (en) 1983-05-02 1984-11-16 Asahi Chem Ind Co Ltd Improved photopolymerizable laminate
JP2005031575A (en) 2003-07-11 2005-02-03 Asahi Kasei Electronics Co Ltd Material for forming black matrix
CN101356452B (en) * 2006-07-25 2011-09-21 日立化成工业株式会社 Resin composition for optical material, resin film for optical material, and optical waveguide
JP2010249884A (en) 2009-04-10 2010-11-04 Dupont Mrc Dryfilm Ltd Photopolymerizable resin composition and photosensitive film using the same
JP5948539B2 (en) 2012-01-27 2016-07-06 旭化成株式会社 Photosensitive resin composition
JP6257164B2 (en) 2013-03-28 2018-01-10 旭化成株式会社 Method for forming resist pattern
JP2016224161A (en) 2015-05-28 2016-12-28 日立化成株式会社 Method for forming resist pattern, method for manufacturing printed wiring board and photosensitive element
JP2016224162A (en) 2015-05-28 2016-12-28 日立化成株式会社 Method for forming resist pattern, method for manufacturing printed wiring board and photosensitive element
WO2017018053A1 (en) 2015-07-29 2017-02-02 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for forming resist pattern and method for producing printed wiring board
WO2017043544A1 (en) * 2015-09-11 2017-03-16 旭化成株式会社 Photosensitive resin composition
JP6819160B2 (en) 2015-11-26 2021-01-27 Jsr株式会社 Photosensitive resin composition, resist pattern forming method, and metal pattern manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020264A (en) * 2007-08-09 2010-01-28 Nichigo Morton Co Ltd Solder resist film, resist pattern forming method and luminescent device
JP2009204800A (en) * 2008-02-27 2009-09-10 Fujifilm Corp Photosensitive composition and photosensitive film
JP2015152726A (en) * 2014-02-13 2015-08-24 三洋化成工業株式会社 Photosensitive resin composition
WO2016017596A1 (en) * 2014-07-28 2016-02-04 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for producing resist pattern and method for manufacturing printed wiring board
JP2018077490A (en) * 2014-09-24 2018-05-17 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, production method of resin pattern, production method of cured film and method for manufacturing display device
WO2016163540A1 (en) * 2015-04-08 2016-10-13 旭化成株式会社 Photosensitive resin composition
WO2018105532A1 (en) * 2016-12-05 2018-06-14 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, resin pattern production method, and cured film pattern production method
WO2018159629A1 (en) * 2017-03-01 2018-09-07 旭化成株式会社 Photosensitive resin composition
JP2018005250A (en) * 2017-09-21 2018-01-11 旭化成株式会社 Method for forming resist pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298615A (en) * 2020-03-24 2022-11-04 昭和电工材料株式会社 Photosensitive resin composition, photosensitive element, and method for producing wiring board
KR20240056661A (en) 2021-10-25 2024-04-30 아사히 가세이 가부시키가이샤 Photosensitive element and method of forming a resist pattern
KR20240054400A (en) 2022-01-14 2024-04-25 아사히 가세이 가부시키가이샤 Photosensitive resin composition, photosensitive resin laminate, and method for forming resist pattern

Also Published As

Publication number Publication date
JP7169351B2 (en) 2022-11-10
JP7480252B2 (en) 2024-05-09
JP2024100770A (en) 2024-07-26
CN112352197A (en) 2021-02-09
JPWO2019244724A1 (en) 2021-03-11
CN118778362A (en) 2024-10-15
TWI716904B (en) 2021-01-21
JP2023010735A (en) 2023-01-20
KR20210013119A (en) 2021-02-03
KR102655468B1 (en) 2024-04-05
TW202005995A (en) 2020-02-01
KR20240046924A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
JP7480252B2 (en) Photosensitive resin composition and method for forming resist pattern
JP5626428B2 (en) Photosensitive resin composition, photosensitive element using the same, resist pattern forming method, and printed wiring board manufacturing method
JP7340643B2 (en) Photosensitive resin composition and photosensitive resin laminate
JP7170723B2 (en) Photosensitive resin composition and method for forming resist pattern
JP6320425B2 (en) Photosensitive resin composition and photosensitive resin laminate
JP5777461B2 (en) Photosensitive resin composition
JP5600903B2 (en) Photosensitive resin composition, photosensitive element using the same, resist pattern forming method, and printed wiring board manufacturing method
JP7137370B2 (en) Photosensitive resin laminate roll
JPWO2010027061A1 (en) Photosensitive resin composition, photosensitive resin laminate, resist pattern forming method, conductor pattern, printed wiring board, lead frame, substrate, and method for manufacturing semiconductor package
JP2021113984A (en) Photosensitive resin composition and photosensitive resin laminate
CN108469717B (en) Photosensitive resin composition and photosensitive resin laminate
JP6486672B2 (en) Photosensitive element and manufacturing method thereof
WO2020032133A1 (en) Photosensitive resin composition and method for forming resist pattern
CN114375420A (en) Photosensitive resin composition and photosensitive element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525595

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207036582

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822482

Country of ref document: EP

Kind code of ref document: A1