[go: up one dir, main page]

WO2019244209A1 - Stator for linear motor, linear motor, and linear motor system - Google Patents

Stator for linear motor, linear motor, and linear motor system Download PDF

Info

Publication number
WO2019244209A1
WO2019244209A1 PCT/JP2018/023133 JP2018023133W WO2019244209A1 WO 2019244209 A1 WO2019244209 A1 WO 2019244209A1 JP 2018023133 W JP2018023133 W JP 2018023133W WO 2019244209 A1 WO2019244209 A1 WO 2019244209A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
mover
stator member
linear motor
permanent magnet
Prior art date
Application number
PCT/JP2018/023133
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 若山
研太 元吉
信一 山口
秋田 裕之
和秋 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880094554.9A priority Critical patent/CN112335161B/en
Priority to KR1020207035303A priority patent/KR20210003922A/en
Priority to JP2019531476A priority patent/JP6573751B1/en
Priority to PCT/JP2018/023133 priority patent/WO2019244209A1/en
Priority to TW108120239A priority patent/TWI703793B/en
Publication of WO2019244209A1 publication Critical patent/WO2019244209A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a linear motor stator serving as a moving path of a mover, a linear motor including a mover and a stator, and a linear motor system.
  • linear motors that can perform direct linear motion instead of converting rotary motion to linear motion, and that can individually control multiple movable parts on the same transport path, have been applied to transport mechanisms. It is becoming.
  • a transfer mechanism using a linear motor has been used in a wide variety of applications, such as application to a transfer mechanism between processes in a semiconductor device manufacturing process that requires removal of dust.
  • a linear motor generally has a mechanism in which a mover having a magnetic material and a winding drives on a stator.
  • the stator serving as the transport path is configured by installing permanent magnets on the stator core by a method such as bonding.
  • a method such as bonding.
  • magnets are used in a transport section that does not require acceleration / deceleration, that is, a transport section that does not require high thrust, and the specification is excessive.
  • Patent Literature 1 reduces the size of permanent magnets in an unnecessary range for a range in which high thrust is required, thereby making thrust appropriate and reducing cost by reducing the amount of magnets used. Has been implemented.
  • the linear motor disclosed in Patent Document 1 although the amount of magnets used is reduced by reducing the size of the permanent magnets in a range where high thrust is unnecessary, the permanent magnets are provided on the entire stator serving as a conveyance path. Since the permanent magnet is used, the man-hour for installing the permanent magnet on the stator core is the same as that of a linear motor in which permanent magnets in a range where high thrust is unnecessary are not downsized. That is, the linear motor disclosed in Patent Literature 1 does not reduce the number of steps for installing permanent magnets on the stator core.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a linear motor stator in which the number of steps for installing a permanent magnet on a stator core is reduced.
  • the present invention relates to a stator for a linear motor serving as a transfer path of a mover, the permanent motor having a permanent magnet arranged along the traveling direction of the mover.
  • the present invention includes a second stator member which is made of a soft magnetic material and has a magnetic flux guide disposed along the moving direction of the mover.
  • the first stator member and the second stator member are arranged in series along the moving direction of the mover.
  • the stator of the linear motor according to the present invention has an effect that the number of steps for installing permanent magnets on the stator core can be reduced.
  • FIG. 1 is a diagram showing a configuration of a linear motor according to Embodiment 1 of the present invention.
  • FIG. 1 is a diagram showing a configuration of a linear motor system using a linear motor according to a first embodiment.
  • FIG. 4 is a diagram illustrating an example of a relationship between a moving speed of a mover of the linear motor according to the first embodiment and a position on a transport path. The figure which shows the thrust which a stator of the linear motor which concerns on Embodiment 1 produces to a mover.
  • FIG. 7 is a diagram showing a modification of the linear motor according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of a linear motor according to a second embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a linear motor according to Embodiment 3 of the present invention.
  • FIG. 7 is a diagram showing a configuration of a linear motor according to a fourth embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration of a linear motor according to Embodiment 5 of the present invention.
  • FIG. 14 is a diagram showing the phase of the linear motor according to the fifth embodiment.
  • FIG. 17 is a diagram showing a relationship between the q-axis phase and the thrust with respect to the current of the linear motor according to the fifth embodiment.
  • FIG. 17 shows a state where the phase difference between the current and the q-axis is 0 ° in the linear motor according to the fifth embodiment.
  • FIG. 1 is a diagram showing a configuration of a linear motor according to Embodiment 1 of the present invention.
  • the cross section shown in FIG. 1 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3.
  • the linear motor 1 drives a guide 5 extending in the traveling direction A, a slider 2 guided by the guide 5, a movable element 3 slidably supported in the traveling direction A by the slider 2, and a movable element 3. And a stator 4 to be used.
  • the mover 3 has a mover core 31 composed of a laminated core made of laminated soft magnetic materials.
  • the mover core 31 has a plurality of teeth 312 protruding from the core back 311 to the gap G side. Further, the mover 3 has a winding 33 wound around a plurality of teeth 312.
  • the winding 33 of the mover 3 shown in FIG. 1 is a concentrated winding that forms one coil for each tooth 312, but the winding 33 forms a coil across a plurality of teeth 312. It may be a distributed winding.
  • the mover 3 shown in FIG. 1 is an integrated type in which a core back 311 and a plurality of teeth 312 are integrated, but is divided into a plurality by the core back 311 and includes a plurality of core backs 311 and teeth 312. May be constituted by the divided cores.
  • the mover 3 is not divided by the core back 311, and the core back 311 and the teeth 312 may be divided.
  • the stator 4 includes a first stator member 41 provided with a permanent magnet 411 and a second stator member 42 provided with a magnetic flux guide 421.
  • the first stator member 41 and the second stator member 42 are arranged in series along the traveling direction A of the mover 3.
  • a plurality of permanent magnets 411 are provided at intervals on one surface of a first stator core 412, which is a magnetic yoke.
  • the permanent magnet 411 is installed on the first stator core 412 in a state where the magnetization direction is oriented in the thickness direction of the first stator member 41.
  • the shape of the projection may be an arc shape or a shape having a chamfer as long as the shape induces magnetic flux.
  • the first stator member 41 is arranged with the side on which the permanent magnet 411 is installed facing the gap G.
  • the second stator member 42 is disposed with the side on which the magnetic flux guide 421 is formed facing the gap G. Therefore, when the mover 3 passes over the first stator member 41, the first stator member 41 and the mover 3 constitute a permanent magnet motor. On the other hand, when the mover 3 passes over the second stator member 42, the second stator member 42 and the mover 3 constitute a synchronous reluctance motor.
  • FIG. 2 is a diagram showing a configuration of a linear motor system using the linear motor according to the first embodiment.
  • the linear motor system 50 receives an inverter 70 that converts the frequency of the power supplied from the power supply 60 and supplies the same to the linear motor 1, and a current value of the power supplied to the linear motor 1 by the inverter 70, and converts the voltage command into an inverter.
  • a control device 80 for outputting to the control unit 70.
  • the control device 80 controls the moving direction and the moving speed of the mover 3.
  • the second stator member 42 in which the magnetic flux guide 421 is formed in the second stator core 422 and the movable member that generates a magnetic field by passing a current through the winding 33.
  • a thrust is generated in the mover 3 using the reluctance force between the mover 3 and the armature 3.
  • Synchronous reluctance motors have a configuration in which the magnetic resistance varies depending on the position of the mover in the moving direction.
  • the synchronous reluctance motor is a motor that generates thrust using reluctance force generated in the direction in which the magnetic resistance decreases, without using permanent magnets. Thrust can be generated.
  • thrust is generated due to the difference Ld-Lq between the d-axis inductance Ld and the q-axis inductance Lq, and Ld ⁇ Lq.
  • the control device 80 estimates the position of the mover 3 in the traveling direction using the saliency, and uses the estimated position to adjust the current in accordance with the phase of the magnetic pole. Control, speed control of the mover 3, or position control of the mover 3 is performed. Performing current control, speed control of the mover 3, or position control of the mover 3 using the estimated position in accordance with the phase of the magnetic pole is also referred to as sensorless driving.
  • the control device 80 When performing sensorless driving, the control device 80 performs current control, speed control of the mover 3, or position control of the mover 3 in accordance with the phase of the magnetic pole without using the position detector and the speed detector. .
  • the control device 80 uses the speed, which is a differential component of the estimated position, in addition to the estimated position of the mover 3 in the traveling direction, to control the current in accordance with the phase of the magnetic pole, to control the speed of the mover 3, or The position of the mover 3 may be controlled.
  • a high-frequency voltage command for position estimation is added to the voltage command for current control and output to the inverter 70, and the detected current is used to determine the inductance Ld and Lq.
  • a method of estimating the salient pole ratio Lq / Ld and estimating the position of the mover 3 from the estimated value of the salient pole ratio Lq / Ld can be exemplified, but the method is not limited thereto.
  • the control device 80 may drive the mover 3 sensorlessly, or may drive the mover 3 based on a detection result of a sensor that detects the position of the mover 3. May be.
  • the controller 80 drives the mover 3 sensorlessly on the second stator member 42, so that there is no need to install a sensor for detecting the position of the mover 3 in a range where the synchronous reluctance motor is configured.
  • the linear motor system 50 can be simplified.
  • FIG. 3 is a diagram illustrating an example of a relationship between a moving speed of the mover of the linear motor according to the first embodiment and a position on the transport path.
  • the linear motor 1 according to the first embodiment is used as the power source of the transfer device, in order to improve the tact time, it is necessary to increase the upper limit of the moving speed of the mover 3 or to increase or decrease the speed of the mover 3. It is necessary to increase the acceleration.
  • the mover 3 moves at a constant speed. Therefore, theoretically, it is not necessary to generate a thrust between the position x1 and the position x2, but actually, a negative acceleration is generated due to the friction between the slider 2 and the guide 5 and the air resistance. It is necessary to generate a certain amount of thrust to cancel the resistance.
  • the thrust required to maintain the constant speed motion of the mover 3 is smaller than the thrust at the time of acceleration and deceleration.
  • FIG. 4 is an explanatory diagram of thrust generated by the stator of the linear motor according to the first embodiment on the mover.
  • FIG. 4 shows the results of obtaining the thrust generated by the first stator member 41 and the thrust generated by the second stator member 42 by magnetic field analysis.
  • the thrust generated by the first stator member 41 on the mover 3 is normalized to be 1.
  • the thrust generated by the second stator member 42 on the mover 3 is 10% or more and less than 20% of the thrust generated by the first stator member 41 on the mover 3. That is, the absolute value of the acceleration generated by the first stator member 41 on the mover 3 in the section in which the first stator member 41 is disposed is equal to the absolute value of the acceleration in the section in which the second stator member 42 is disposed. Is greater than the absolute value of the acceleration generated by the stator 3 of the mover 3.
  • the linear motor 1 includes a position between the position x0 and the position x1, which is a section for accelerating the mover 3, and a position between the position x2 and the position x3, which is a section for decelerating the mover 3.
  • One stator member 41 is arranged.
  • the second stator member 42 is disposed between the position x1 and the position x2, which is a section where the mover 3 moves at a constant speed.
  • the thrust generated by the first stator member 41 is 200N.
  • the thrust generated by the second stator member 42 is 10% or more of the thrust generated by the first stator member 41, and is therefore 20N or more. Since the thrust generated by the second stator member 42 is larger than the frictional resistance F ′ at the time of constant velocity movement, the second stator member 42 has a thrust capable of moving the mover 3 at constant velocity. It can be seen that this is occurring.
  • the first stator member 41 is disposed in a section where the mover 3 is accelerated or decelerated, and the mover 3 is moved at a constant speed. Since the second stator member 42 is arranged in the section, the usage amount of the permanent magnet 411 in the entire stator 4 can be reduced without impairing the acceleration / deceleration performance of the mover 3. That is, the device maker that manufactures the linear motor 1 arranges the first stator member 41 in the section where the mover 3 is accelerated and decelerated in accordance with the driving operation pattern of the mover 3 and accelerates and decelerates the mover 3.
  • the usage amount of the permanent magnet 411 in the entire stator 4 can be reduced without impairing the acceleration / deceleration performance of the mover 3. Reduce.
  • the number of permanent magnets 411 facing the mover 3 is the so-called 4-pole, 6-slot linear motor 1 in which the number of permanent magnets 411 is 4 with respect to the number 6 of teeth 312. May be combined with the number of poles and the number of slots.
  • FIG. 5 is a diagram showing a modification of the linear motor according to the first embodiment.
  • the magnetic flux guiding portion 421 of the second stator member 42 shown in FIG. 1 is formed by a projection projecting from the second stator core 422 into the gap G, but as shown in FIG.
  • the magnetic flux guide 421 can be formed.
  • the magnetic flux guiding portion 421 is formed by an arc-shaped slit hole 425, but the slit hole 425 forming the magnetic flux guiding portion 421 only needs to have a shape that generates reluctance torque, and is limited to an arc shape. Not done.
  • the linear motor 1 includes a first stator member 41 having a permanent magnet 411 and a second stator member 42 having a magnetic flux guide 421 formed of a soft magnetic material.
  • a high thrust is generated in the first stator member 41, smooth start and stop by high acceleration / deceleration are possible, and in the drive range requiring constant-velocity motion, the magnetic flux guiding portion 421
  • the second stator member 42 having the above-described configuration generates a thrust that can move at a constant speed using the reluctance torque generated by the magnetic flux guide 421 without using the permanent magnet 411.
  • Providing the two different stator members in this way makes it possible to optimize thrust specifications and reduce the amount of magnets used.
  • the man-hour for magnetizing the permanent magnet 411 and the man-hour for installing the permanent magnet 411 on the iron core of the stator 4 are reduced. Can be reduced.
  • FIG. FIG. 6 is a diagram showing a configuration of a linear motor according to Embodiment 2 of the present invention.
  • the cross section shown in FIG. 6 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3.
  • the second stator member 42 of the linear motor 1 according to the second embodiment has a so-called consequent type in which permanent magnets 411 are arranged between the magnetic flux guides 421 at both ends in the traveling direction. This is different from the second stator member 42 of the first embodiment.
  • the portion of the second stator member 42 where the permanent magnet 411 is sandwiched between the magnetic flux guides 421 is called a consequent unit 423.
  • the permanent magnet 411 is installed on the second stator core 422 such that the magnetization direction is oriented in the thickness direction of the second stator member 42.
  • the mover 3 When moving from the first stator member 41 to the second stator member 42, the mover 3 is driven in the opposite direction to the driving direction by the magnetic attraction of the permanent magnet 411 disposed on the first stator member 41. Force may be applied, and the speed may decrease. In order to attenuate the magnetic attraction force of the first stator member 41 by the permanent magnet 411 and allow the mover 3 to smoothly enter from the first stator member 41 to the second stator member 42, It is necessary to reduce the magnetic flux generated from the element 4 to the gap G.
  • the magnetic flux generated in the air gap is reduced from 50% to 70% as compared with the magnetic flux generated from a stator constituted only by permanent magnets. Therefore, the magnetic attractive force of the permanent magnet 411 is reduced on the consequent part 423. Further, the thrust on the consequent portion 423 is 50% or more as compared with the thrust generated on the first stator member 41 in which only the permanent magnet 411 generates the thrust. Therefore, even if the mover 3 enters the consequent portion 423 of the second stator member 42 from the first stator member 41, the speed is hardly attenuated by the magnetic attraction force.
  • the first stator member 41 Since the magnetic attraction force changes stepwise with the second stator member 42, the mover 3 traveling from the consequent portion 423 to the group of the magnetic flux guide portions 421 on the second stator member 42 has a thrust force. The speed is hardly attenuated even if is reduced, and a smooth movement is possible.
  • the mover 3 has advanced from the first stator member 41 to the second stator member 42, but has advanced from the second stator member 42 to the first stator member 41. Also in this case, the mover 3 can be moved smoothly by increasing the thrust stepwise.
  • the permanent magnet 411 is not disposed at the center of the second stator core 422, the number of steps for installing the permanent magnet 411 on the stator core can be reduced.
  • FIG. 7 is a diagram showing a configuration of a linear motor according to Embodiment 3 of the present invention.
  • the cross section shown in FIG. 7 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3.
  • the second stator member 42 of the linear motor 1 according to the third embodiment has permanent magnets 411 disposed at both ends in the traveling direction A, and is formed of a soft magnetic material at the center in the traveling direction A. It has a magnetic flux guide 421.
  • the portion of the second stator member 42 where the permanent magnet 411 is arranged is referred to as a magnet installation part 424.
  • the permanent magnet 411 is installed on the second stator core 422 such that the magnetization direction is oriented in the thickness direction of the second stator member 42.
  • the permanent magnet 411 arranged on the magnet mounting portion 424 of the second stator member 42 of the linear motor 1 according to Embodiment 3 has a smaller size than the permanent magnet 411 of the first stator member 41, or The residual magnetic flux density is small.
  • the permanent magnet 411 smaller than the permanent magnet 411 of the first stator member 41 is disposed on the second stator member 42, the residual magnetic flux density of the permanent magnet 411 increases as approaching the first stator member 41. You may make it become.
  • the mover 3 When the mover 3 enters the second stator member 42 from the first stator member 41, the mover 3 is decelerated by the magnetic attraction force of the permanent magnet 411 of the first stator member 41, and a smooth drive is performed. May not be possible. In order to enable smooth driving, it is necessary to reduce the magnetic flux generated in the gap G stepwise.
  • the magnetic flux generated by the permanent magnet 411 decreases as the magnetized area decreases. That is, the permanent magnet 411 has a dimension perpendicular to the traveling direction of the mover 3 and from the stator 4 toward the mover 3 or a direction perpendicular to the traveling direction of the mover 3 and traveling from the stator 4 to the mover 3 side. When the dimension in the direction perpendicular to the direction becomes smaller, the magnet width becomes shorter, and the magnetic flux generated by the permanent magnet 411 decreases. Also, it is generally known that the operating point is lowered and the magnetic flux density is reduced by reducing the size of the permanent magnet 411 in the direction perpendicular to the moving direction of the mover 3 and in the direction from the stator 4 to the mover 3 side. ing. In addition, when the residual magnetic flux density decreases, the generated magnetic flux decreases.
  • a magnet smaller in size than the permanent magnet 411 of the first stator member 41 or a permanent magnet 411 having a small residual magnetic flux density is used for the magnet mounting portion 424 of the linear motor 1 according to the third embodiment. Accordingly, the magnetic flux generated in the air gap G is reduced, and the magnetic attraction force is reduced stepwise when the mover 3 enters the second stator member 42 from the first stator member 41, thereby reducing the first fixed state. It is possible to eliminate the attenuation of the speed of the mover 3 due to the entry from the slave member 41 to the second stator member 42, and to smooth the drive.
  • FIG. FIG. 8 is a diagram showing a configuration of a linear motor according to Embodiment 4 of the present invention.
  • the cross section shown in FIG. 8 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3.
  • the surface of the first stator member 41 on the gap G side where the magnetic flux is generated and the surface of the magnetic flux guide portion 421 formed on the second stator member 42 on the gap G side are defined as magnetic pole surfaces 413 and 426, respectively. .
  • the distance G1 between the magnetic pole surface 413 of the first stator member 41 and the mover 3 is equal to the distance G1 between the second stator member 42 and the mover 3. 3 is greater than or equal to the distance G2 between the magnetic pole surface 426 of the second stator member 42 and the mover 3 when they face each other.
  • the distance G2 between the magnetic pole surface 426 of the second stator member 42 and the mover 3 increases as approaching the first stator member 41.
  • the thrust changes stepwise at the boundary between the first stator member 41 and the second stator member 42, and The effect of moving the child 3 smoothly can be enhanced. Therefore, as in the case of the linear motor 1 according to the third embodiment, the speed of the mover 3 is not attenuated due to the entry from the first stator member 41 to the second stator member 42, and the driving is smoothed. Is possible.
  • the distance G2 between the magnetic pole surface 426 of the second stator member 42 and the mover 3 may be constant.
  • FIG. 9 is a diagram showing a configuration of a linear motor according to Embodiment 5 of the present invention.
  • the cross section shown in FIG. 9 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3.
  • the first stator member 41 and the second stator member 42 constituting the stator 4 of the linear motor 1 according to the fifth embodiment are formed by the permanent magnets 411 arranged on the first stator member 41.
  • the magnetic pole faces 413 are arranged on the first stator core 412 at a pole pitch ⁇ p along the traveling direction A.
  • the second stator member 42 has a so-called surface magnet type configuration in which a permanent magnet 411 is disposed on the surface of the first stator core 412 on the mover 3 side.
  • an embedded magnet type in which a permanent magnet 411 is embedded in the first stator core 412 may be used.
  • the configuration may be such that the magnetization direction of the permanent magnet 411 is parallel to the traveling direction A and the magnetization directions are opposed to each other.
  • the second stator member 42 may have a hull-back type structure.
  • the second stator member 42 includes only a magnetic flux guide 421 formed of a second stator core 422 and a soft magnetic material formed on the second stator core 422, and includes a permanent magnet 411. Is not located.
  • the magnetic flux guide 421 may be formed by the slit holes 425 as described in the second embodiment.
  • the distance between the centers of the adjacent magnetic pole faces 413 is ⁇ p.
  • the center-to-center distance between adjacent magnetic pole surfaces 426 is l.
  • the distance L is ⁇ p / 2 + (n ⁇ 1) ⁇ p ⁇ L ⁇ n ⁇ p.
  • n is a natural number of 1 or more.
  • FIG. 10 is a diagram illustrating phases of the linear motor according to the fifth embodiment. As shown in FIG. 10, the angle between the current i flowing through the coil and the q axis is defined as a phase difference ⁇ .
  • FIG. 11 is a diagram illustrating the relationship between the q-axis phase and the thrust with respect to the current of the linear motor according to the fifth embodiment.
  • the thrust generated by the first stator member 41 indicated by a solid line in FIG. 11 is a value normalized so that the peak value of the thrust generated by the first stator member 41 becomes 1. Further, the thrust generated by the second stator member 42 indicated by the broken line in FIG. 11 is a value normalized such that the peak value of the thrust generated by the second stator member 42 becomes 1.
  • the phase at which the thrust generated by the first stator member 41 has a peak value is different from the phase at which the thrust generated by the second stator member 42 has a peak value.
  • L ⁇ p
  • the phase difference ⁇ between the current i and the q axis needs to be 0 °.
  • FIG. 12 shows a state where the phase difference between the current and the q-axis is 0 ° in the linear motor according to the fifth embodiment.
  • FIG. 13 is a diagram showing the relationship between the d-axis and the q-axis and the current when the mover of the linear motor according to the fifth embodiment has entered the second stator member.
  • the linear motor 1 according to the fifth embodiment by setting the distance L to be ⁇ p / 2 ⁇ L ⁇ p, when the mover 3 enters the second stator member 42, as shown in FIG.
  • the phases of the axis and the q axis advance. That is, the phase difference ⁇ between the current i and the q axis is ⁇ 90 ° ⁇ ⁇ 0 °, and thrust can be generated on the second stator member 42 without performing current control on the inverter 70 side. It becomes possible.
  • a smooth drive can be performed at the connection between the first stator member 41 and the second stator member 42.
  • the distance L is ⁇ p / 2 ⁇ L ⁇ p.
  • the thrust generated by the second stator member 42 has a periodicity, and is 180 ° in one cycle. Since the pole pitch ⁇ p is 180 ° in electrical angle, the distance L may be ⁇ p / 2 + (n ⁇ 1) ⁇ p ⁇ L ⁇ n ⁇ p.
  • the thrust generated by the second stator member 42 can secure 50% of the maximum thrust if the phase difference ⁇ is ⁇ 75 ° ⁇ ⁇ ⁇ ⁇ 15 °. Therefore, it is more preferable that the distance L is 2 ⁇ p / 3 + (n ⁇ 1) ⁇ p ⁇ L ⁇ 7 ⁇ p / 8 + (n ⁇ 1) ⁇ p.
  • the center distance 1 of the magnetic flux guide 421 is 3 ⁇ p / 4 + (m ⁇ 1) ⁇ p ⁇ l ⁇ m ⁇ p, and when m is an integer of 1 or more, the second distance from the first stator member 41 to the second It is possible to suppress the damping force from acting on the mover 3 that has entered the stator member 42.
  • the functions of the control device 80 according to Embodiments 1 to 5 are realized by a processing circuit.
  • the processing circuit may be dedicated hardware or an arithmetic device that executes a program stored in a storage device.
  • FIG. 14 is a diagram illustrating a configuration in which the functions of the control devices according to the first to fifth embodiments are implemented by hardware.
  • the processing circuit 29 incorporates a logic circuit 29a for realizing the function of the control device 80.
  • the hardware that implements the processing circuit 29 can be exemplified by a microcontroller.
  • control device 80 When the processing circuit 29 is an arithmetic device, the function of the control device 80 is realized by software, firmware, or a combination of software and firmware.
  • FIG. 15 is a diagram illustrating a configuration in which the functions of the control device according to the first to fifth embodiments are implemented by software.
  • the processing circuit 29 includes an arithmetic unit 291 that executes the program 29b, a random access memory 292 used by the arithmetic unit 291 for a work area, and a storage device 293 that stores the program 29b.
  • the function of the control device 80 is realized by the arithmetic device 291 developing and executing the program 29b stored in the storage device 293 on the random access memory 292.
  • the software or firmware is described in a programming language and stored in the storage device 293.
  • the arithmetic unit 291 can be, but is not limited to, a central processing unit.
  • the processing circuit 29 implements the function of the control device 80 by reading and executing the program 29b stored in the storage device 293. It can be said that the program 29b causes a computer to execute a procedure and a method for realizing the function of the control device 80.
  • processing circuit 29 may be partially realized by dedicated hardware and partially realized by software or firmware.
  • the processing circuit 29 can realize the above-described functions by hardware, software, firmware, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Control Of Linear Motors (AREA)

Abstract

Provided is a stator (4) for a linear motor (1), which serves as a transport path for a mover (3) and which is provided with: first stator members (41) having permanent magnets (411) arranged in the direction of movement of the mover (3); and second stator members (42) comprising soft magnetic bodies and having magnetic flux guide sections (421) arranged in the direction of movement of the mover (4). The first stator members (41) and the second stator members (42) are arranged serially in the direction of movement of the mover (3).

Description

リニアモータの固定子、リニアモータ及びリニアモータシステムLinear motor stator, linear motor and linear motor system
 本発明は、可動子の搬送路となるリニアモータの固定子、可動子と固定子とを備えたリニアモータ及びリニアモータシステムに関する。 The present invention relates to a linear motor stator serving as a moving path of a mover, a linear motor including a mover and a stator, and a linear motor system.
 近年では、回転運動を直線運動に変換するのではなく、ダイレクトに直線運動させることが可能で、同じ搬送路上で複数の可動部を個別に制御可能なリニアモータが、搬送機構に適用されるようになってきている。リニアモータによる搬送機構は、粉塵の排除が必要となる半導体装置の製造プロセスにおけるプロセス間の搬送機構への適用など用途が拡大している。 In recent years, linear motors that can perform direct linear motion instead of converting rotary motion to linear motion, and that can individually control multiple movable parts on the same transport path, have been applied to transport mechanisms. It is becoming. A transfer mechanism using a linear motor has been used in a wide variety of applications, such as application to a transfer mechanism between processes in a semiconductor device manufacturing process that requires removal of dust.
 リニアモータは、一般的に、磁性体及び巻線を有する可動子が、固定子上を駆動する機構となっている。搬送路となる固定子は、接着といった方法によって固定子鉄心に永久磁石を設置して構成される。このような固定子鉄心に磁石を配置したモータ構成では、搬送路に磁石を敷き詰める必要がありコストが増加する傾向にある。また、加減速を必要としない搬送区間、つまり、高推力を必要としない搬送区間においても、磁石を用いており、過大な仕様となっている。 A linear motor generally has a mechanism in which a mover having a magnetic material and a winding drives on a stator. The stator serving as the transport path is configured by installing permanent magnets on the stator core by a method such as bonding. In such a motor configuration in which the magnets are arranged on the stator core, it is necessary to spread the magnets on the transport path, and the cost tends to increase. Also, magnets are used in a transport section that does not require acceleration / deceleration, that is, a transport section that does not require high thrust, and the specification is excessive.
 特許文献1に開示されたリニアモータは、高推力が必要な範囲に対して、不必要な範囲の永久磁石を小型化することにより、推力の適正化と、磁石使用量の削減による低コスト化を実施している。 The linear motor disclosed in Patent Literature 1 reduces the size of permanent magnets in an unnecessary range for a range in which high thrust is required, thereby making thrust appropriate and reducing cost by reducing the amount of magnets used. Has been implemented.
特開平11-332210号公報JP-A-11-332210
 しかしながら、上記特許文献1に開示されるリニアモータは、高推力が不必要な範囲の永久磁石を小型化することにより磁石使用量は削減されるものの、搬送路となる固定子全体に永久磁石を用いているため、固定子鉄心に永久磁石を設置する作業の工数は、高推力が不必要な範囲の永久磁石を小型化していないリニアモータと変わらない。すなわち、特許文献1に開示されるリニアモータは、固定子鉄心に永久磁石を設置する作業の工数を低減するものではない。 However, in the linear motor disclosed in Patent Document 1, although the amount of magnets used is reduced by reducing the size of the permanent magnets in a range where high thrust is unnecessary, the permanent magnets are provided on the entire stator serving as a conveyance path. Since the permanent magnet is used, the man-hour for installing the permanent magnet on the stator core is the same as that of a linear motor in which permanent magnets in a range where high thrust is unnecessary are not downsized. That is, the linear motor disclosed in Patent Literature 1 does not reduce the number of steps for installing permanent magnets on the stator core.
 本発明は、上記に鑑みてなされたものであって、固定子鉄心に永久磁石を設置する作業の工数を低減したリニアモータの固定子を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a linear motor stator in which the number of steps for installing a permanent magnet on a stator core is reduced.
 上述した課題を解決し、目的を達成するために、本発明は、可動子の搬送路となるリニアモータの固定子であって、可動子の進行方向に沿って配置された永久磁石を有する第1の固定子部材を備える。本発明は、軟磁性体で構成され、可動子の進行方向に沿って配置された磁束誘導部を有する第2の固定子部材を備える。第1の固定子部材及び第2の固定子部材は、可動子の進行方向に沿って直列に配置される。 In order to solve the above-described problems and achieve the object, the present invention relates to a stator for a linear motor serving as a transfer path of a mover, the permanent motor having a permanent magnet arranged along the traveling direction of the mover. 1 stator member. The present invention includes a second stator member which is made of a soft magnetic material and has a magnetic flux guide disposed along the moving direction of the mover. The first stator member and the second stator member are arranged in series along the moving direction of the mover.
 本発明に係るリニアモータの固定子は、固定子鉄心に永久磁石を設置する作業の工数を低減できるという効果を奏する。 The stator of the linear motor according to the present invention has an effect that the number of steps for installing permanent magnets on the stator core can be reduced.
本発明の実施の形態1に係るリニアモータの構成を示す図FIG. 1 is a diagram showing a configuration of a linear motor according to Embodiment 1 of the present invention. 実施の形態1に係るリニアモータを用いたリニアモータシステムの構成を示す図FIG. 1 is a diagram showing a configuration of a linear motor system using a linear motor according to a first embodiment. 実施の形態1に係るリニアモータの可動子の移動速度と搬送路上の位置との関係の一例を示す図FIG. 4 is a diagram illustrating an example of a relationship between a moving speed of a mover of the linear motor according to the first embodiment and a position on a transport path. 実施の形態1に係るリニアモータの固定子が可動子に発生させる推力を示す図The figure which shows the thrust which a stator of the linear motor which concerns on Embodiment 1 produces to a mover. 実施の形態1に係るリニアモータの変形例を示す図FIG. 7 is a diagram showing a modification of the linear motor according to the first embodiment. 本発明の実施の形態2に係るリニアモータの構成を示す図FIG. 4 is a diagram showing a configuration of a linear motor according to a second embodiment of the present invention. 本発明の実施の形態3に係るリニアモータの構成を示す図FIG. 7 is a diagram showing a configuration of a linear motor according to Embodiment 3 of the present invention. 本発明の実施の形態4に係るリニアモータの構成を示す図FIG. 7 is a diagram showing a configuration of a linear motor according to a fourth embodiment of the present invention. 本発明の実施の形態5に係るリニアモータの構成を示す図FIG. 14 is a diagram showing a configuration of a linear motor according to Embodiment 5 of the present invention. 実施の形態5に係るリニアモータの位相を示す図FIG. 14 is a diagram showing the phase of the linear motor according to the fifth embodiment. 実施の形態5に係るリニアモータの電流に対するq軸の位相と推力との関係を示す図FIG. 17 is a diagram showing a relationship between the q-axis phase and the thrust with respect to the current of the linear motor according to the fifth embodiment. 実施の形態5に係るリニアモータにおいて、電流とq軸との位相差が0°の状態を示す図FIG. 17 shows a state where the phase difference between the current and the q-axis is 0 ° in the linear motor according to the fifth embodiment. 実施の形態5に係るリニアモータの可動子が第2の固定子部材に進入した状態におけるd軸及びq軸と電流との関係を示す図The figure which shows the relationship between a d-axis and a q-axis, and a current in the state where the mover of the linear motor according to the fifth embodiment entered the second stator member. 実施の形態1から実施の形態5に係る制御装置の機能をハードウェアで実現した構成を示す図The figure which shows the structure which implement | achieved the function of the control apparatus which concerns on Embodiment 1 to Embodiment 5 with hardware. 実施の形態1から実施の形態5に係る制御装置の機能をソフトウェアで実現した構成を示す図The figure which shows the structure which realized the function of the control apparatus which concerns on Embodiment 1 to Embodiment 5 with software.
 以下に、本発明の実施の形態に係るリニアモータの固定子、リニアモータ及びリニアモータシステムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a stator of a linear motor, a linear motor, and a linear motor system according to an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited by the embodiment.
実施の形態1.
 図1は、本発明の実施の形態1に係るリニアモータの構成を示す図である。図1に示す断面は、可動子3と固定子4との間の形成される空隙Gに垂直かつ可動子3の進行方向Aに平行な断面である。リニアモータ1は、進行方向Aに沿って延びるガイド5と、ガイド5に案内されるスライダ2と、スライダ2によって進行方向Aに摺動可能に支持された可動子3と、可動子3を駆動する固定子4とを備える。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a linear motor according to Embodiment 1 of the present invention. The cross section shown in FIG. 1 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3. The linear motor 1 drives a guide 5 extending in the traveling direction A, a slider 2 guided by the guide 5, a movable element 3 slidably supported in the traveling direction A by the slider 2, and a movable element 3. And a stator 4 to be used.
 可動子3は、軟磁性材料を積層した積層鉄心によって構成された可動子コア31を有する。可動子コア31は、コアバック311から空隙G側に突出した複数のティース312を有する。また、可動子3は、複数のティース312に巻回された巻線33を有する。なお、図1に示す可動子3が有する巻線33は、ティース312ごとに一つのコイルを形成する集中巻きであるが、巻線33は、複数のティース312に跨がってコイルを形成する分布巻きであってもよい。 The mover 3 has a mover core 31 composed of a laminated core made of laminated soft magnetic materials. The mover core 31 has a plurality of teeth 312 protruding from the core back 311 to the gap G side. Further, the mover 3 has a winding 33 wound around a plurality of teeth 312. The winding 33 of the mover 3 shown in FIG. 1 is a concentrated winding that forms one coil for each tooth 312, but the winding 33 forms a coil across a plurality of teeth 312. It may be a distributed winding.
 また、図1に示す可動子3は、コアバック311と複数のティース312とが一体となった一体型であるが、コアバック311で複数に分割され、コアバック311とティース312とを有する複数の分割コアによって構成されてもよい。また、可動子3は、コアバック311では分割されておらず、コアバック311とティース312とが分割されてもよい。 The mover 3 shown in FIG. 1 is an integrated type in which a core back 311 and a plurality of teeth 312 are integrated, but is divided into a plurality by the core back 311 and includes a plurality of core backs 311 and teeth 312. May be constituted by the divided cores. The mover 3 is not divided by the core back 311, and the core back 311 and the teeth 312 may be divided.
 固定子4は、永久磁石411を備えた第1の固定子部材41と、磁束誘導部421を備えた第2の固定子部材42とを備えている。第1の固定子部材41及び第2の固定子部材42は、可動子3の進行方向Aに沿って直列に配置されている。第1の固定子部材41は、磁性体ヨークである第1の固定子鉄心412の一方の面に、間隔を空けて複数の永久磁石411が設置されている。永久磁石411は、第1の固定子部材41の厚さ方向に着磁方向が向く状態で第1の固定子鉄心412に設置されている。第2の固定子部材42は、軟磁性体ヨークである第2の固定子鉄心422から突出する突起が磁束誘導部421を形成している。ここで、図1には四角形の突起が記載されているが、磁束を誘導する形状であれば、突起の形状は円弧形状であったり、面取りを有する形状であっても良い。第1の固定子部材41は、永久磁石411が設置された側を空隙Gに向けて配置されている。第2の固定子部材42は、磁束誘導部421が形成された側を空隙Gに向けて配置されている。したがって、第1の固定子部材41の上を可動子3が通過する際には、第1の固定子部材41及び可動子3は、永久磁石モータを構成する。一方、第2の固定子部材42の上を可動子3が通過する際には、第2の固定子部材42及び可動子3は、シンクロナスリラクタンスモータを構成する。 The stator 4 includes a first stator member 41 provided with a permanent magnet 411 and a second stator member 42 provided with a magnetic flux guide 421. The first stator member 41 and the second stator member 42 are arranged in series along the traveling direction A of the mover 3. In the first stator member 41, a plurality of permanent magnets 411 are provided at intervals on one surface of a first stator core 412, which is a magnetic yoke. The permanent magnet 411 is installed on the first stator core 412 in a state where the magnetization direction is oriented in the thickness direction of the first stator member 41. In the second stator member 42, a protrusion protruding from a second stator core 422, which is a soft magnetic yoke, forms a magnetic flux guide 421. Here, although a quadrangular projection is shown in FIG. 1, the shape of the projection may be an arc shape or a shape having a chamfer as long as the shape induces magnetic flux. The first stator member 41 is arranged with the side on which the permanent magnet 411 is installed facing the gap G. The second stator member 42 is disposed with the side on which the magnetic flux guide 421 is formed facing the gap G. Therefore, when the mover 3 passes over the first stator member 41, the first stator member 41 and the mover 3 constitute a permanent magnet motor. On the other hand, when the mover 3 passes over the second stator member 42, the second stator member 42 and the mover 3 constitute a synchronous reluctance motor.
 図2は、実施の形態1に係るリニアモータを用いたリニアモータシステムの構成を示す図である。リニアモータシステム50は、電源60から供給される電力の周波数を変換してリニアモータ1に供給するインバータ70と、インバータ70がリニアモータ1に供給する電力の電流値が入力され、電圧指令をインバータ70に出力する制御装置80とを有する。制御装置80は、可動子3の移動方向及び移動速度を制御する。 FIG. 2 is a diagram showing a configuration of a linear motor system using the linear motor according to the first embodiment. The linear motor system 50 receives an inverter 70 that converts the frequency of the power supplied from the power supply 60 and supplies the same to the linear motor 1, and a current value of the power supplied to the linear motor 1 by the inverter 70, and converts the voltage command into an inverter. And a control device 80 for outputting to the control unit 70. The control device 80 controls the moving direction and the moving speed of the mover 3.
 シンクロナスリラクタンスモータが構成される範囲においては、第2の固定子鉄心422に磁束誘導部421を形成した第2の固定子部材42と、巻線33に電流を流すことで磁界が発生する可動子3との間の、リラクタンス力を利用して可動子3に推力を発生させる。シンクロナスリラクタンスモータは、可動子の移動方向の位置によって磁気抵抗が異なる構成で、磁気抵抗が小さくなる方向に発生するリラクタンス力を利用して推力を発生させるモータであり、永久磁石を用いずに推力を発生することができる。シンクロナスリラクタンスモータでは、d軸インダクタンスLdとq軸インダクタンスLqとの差Ld-Lqが存在することによって推力が発生し、Ld≠Lqである。 In the range where the synchronous reluctance motor is configured, the second stator member 42 in which the magnetic flux guide 421 is formed in the second stator core 422 and the movable member that generates a magnetic field by passing a current through the winding 33. A thrust is generated in the mover 3 using the reluctance force between the mover 3 and the armature 3. Synchronous reluctance motors have a configuration in which the magnetic resistance varies depending on the position of the mover in the moving direction.The synchronous reluctance motor is a motor that generates thrust using reluctance force generated in the direction in which the magnetic resistance decreases, without using permanent magnets. Thrust can be generated. In the synchronous reluctance motor, thrust is generated due to the difference Ld-Lq between the d-axis inductance Ld and the q-axis inductance Lq, and Ld ≠ Lq.
 d軸インダクタンスLdとq軸インダクタンスLqの関係がLd≠Lqである場合、突極性として知られるインダクタンスの位置依存性が存在することになる。シンクロナスリラクタンスモータが構成される範囲においては、制御装置80はこの突極性を利用して可動子3の進行方向の位置を推定し、推定された位置を用いて、磁極の位相に合わせた電流制御、可動子3の速度制御、又は可動子3の位置制御を行う。推定された位置を用いて、磁極の位相に合わせた電流制御、可動子3の速度制御、又は可動子3の位置制御を行うことは、センサレス駆動とも称される。制御装置80は、センサレス駆動を行う場合には、位置検出器及び速度検出器を用いずに、磁極の位相に合わせた電流制御、可動子3の速度制御、又は可動子3の位置制御を行う。なお、制御装置80は、推定した可動子3の進行方向の位置に加え、推定した位置の微分成分である速度を用いて、磁極の位相に合わせた電流制御、可動子3の速度制御、又は可動子3の位置制御を行ってもよい。突極性を利用した可動子3の位置推定の方法には、位置推定用の高周波の電圧指令を電流制御用電圧指令に加算してインバータ70に出力し、検出した電流によりインダクタンスLdとLqとの突極比Lq/Ldを推定し、推定した突極比Lq/Ldの値から可動子3の位置を推定する方法を例示できるが、この方法に限定はされない。 When the relationship between the d-axis inductance Ld and the q-axis inductance Lq is Ld ≠ Lq, there is a position dependency of the inductance known as saliency. In the range in which the synchronous reluctance motor is configured, the control device 80 estimates the position of the mover 3 in the traveling direction using the saliency, and uses the estimated position to adjust the current in accordance with the phase of the magnetic pole. Control, speed control of the mover 3, or position control of the mover 3 is performed. Performing current control, speed control of the mover 3, or position control of the mover 3 using the estimated position in accordance with the phase of the magnetic pole is also referred to as sensorless driving. When performing sensorless driving, the control device 80 performs current control, speed control of the mover 3, or position control of the mover 3 in accordance with the phase of the magnetic pole without using the position detector and the speed detector. . The control device 80 uses the speed, which is a differential component of the estimated position, in addition to the estimated position of the mover 3 in the traveling direction, to control the current in accordance with the phase of the magnetic pole, to control the speed of the mover 3, or The position of the mover 3 may be controlled. In the method of estimating the position of the mover 3 using saliency, a high-frequency voltage command for position estimation is added to the voltage command for current control and output to the inverter 70, and the detected current is used to determine the inductance Ld and Lq. A method of estimating the salient pole ratio Lq / Ld and estimating the position of the mover 3 from the estimated value of the salient pole ratio Lq / Ld can be exemplified, but the method is not limited thereto.
 一方、永久磁石モータが構成される範囲においては、制御装置80は、可動子3をセンサレス駆動してもよいし、可動子3の位置を検出するセンサの検出結果に基づいて可動子3を駆動してもよい。 On the other hand, in a range in which the permanent magnet motor is configured, the control device 80 may drive the mover 3 sensorlessly, or may drive the mover 3 based on a detection result of a sensor that detects the position of the mover 3. May be.
 第2の固定子部材42の上で制御装置80が可動子3をセンサレス駆動することにより、シンクロナスリラクタンスモータが構成される範囲に可動子3の位置を検出するセンサを設置する必要が無くなり、リニアモータシステム50を簡素化できる。 The controller 80 drives the mover 3 sensorlessly on the second stator member 42, so that there is no need to install a sensor for detecting the position of the mover 3 in a range where the synchronous reluctance motor is configured. The linear motor system 50 can be simplified.
 図3は、実施の形態1に係るリニアモータの可動子の移動速度と搬送路上の位置との関係の一例を示す図である。位置x0から位置x3まで可動子3が移動する場合、位置x0とx1との間では可動子3は加速し、位置x1と位置x2との間では可動子3は等速運動をし、位置x2と位置x3との間では可動子3は減速する。 FIG. 3 is a diagram illustrating an example of a relationship between a moving speed of the mover of the linear motor according to the first embodiment and a position on the transport path. When the mover 3 moves from the position x0 to the position x3, the mover 3 accelerates between the positions x0 and x1, and moves at a constant speed between the positions x1 and x2. The mover 3 decelerates between the position x3 and the position x3.
 実施の形態1に係るリニアモータ1を搬送装置の動力源にする場合、タクトタイムを向上させるためには、可動子3の移動速度の上限を高めるか、可動子3を加速又は減速する際の加速度を大きくする必要がある。 When the linear motor 1 according to the first embodiment is used as the power source of the transfer device, in order to improve the tact time, it is necessary to increase the upper limit of the moving speed of the mover 3 or to increase or decrease the speed of the mover 3. It is necessary to increase the acceleration.
 可動子3を加速又は減速する際の加速度をa[m/s]、推力をF[N]、可動子3が搬送するワークと可動子3とを合わせた質量をm[kg]としたとき、下記の式(1)関係が成り立つ。 When the acceleration at the time of accelerating or decelerating the mover 3 is a [m / s], the thrust is F [N], and the mass of the work carried by the mover 3 and the mover 3 is m [kg]. , The following equation (1) holds.
 F=ma ・・・(1) {F = ma} (1)
 式(1)から、質量mが同じであるならば、加速度aを大きくするためには、推力Fを大きくする必要があることがわかる。 From equation (1), it can be seen that if the mass m is the same, the thrust F needs to be increased in order to increase the acceleration a.
 ところで、位置x1と位置x2との間では、可動子3は等速運動を行う。したがって、理論上は位置x1と位置x2との間では推力を発生させる必要はないが、実際にはスライダ2とガイド5との間の摩擦及び空気抵抗によって負の加速度が生じるため、摩擦及び空気抵抗を打ち消す一定以上の推力を発生させる必要がある。可動子3の等速運動を維持するために必要な推力は、加速時及び減速時の推力に比べると小さい。 By the way, between the position x1 and the position x2, the mover 3 moves at a constant speed. Therefore, theoretically, it is not necessary to generate a thrust between the position x1 and the position x2, but actually, a negative acceleration is generated due to the friction between the slider 2 and the guide 5 and the air resistance. It is necessary to generate a certain amount of thrust to cancel the resistance. The thrust required to maintain the constant speed motion of the mover 3 is smaller than the thrust at the time of acceleration and deceleration.
 図4は、実施の形態1に係るリニアモータの固定子が可動子に発生させる推力についての説明図である。図4は、第1の固定子部材41が発生させる推力及び第2の固定子部材42が発生させる推力を磁界解析により求めた結果を示している。図4では、第1の固定子部材41が可動子3に発生させる推力が1となるように正規化している。第2の固定子部材42が可動子3に発生させる推力は、第1の固定子部材41が可動子3に発生させる推力の10%以上20%未満である。すなわち、第1の固定子部材41が配置された区間で第1の固定子部材41が可動子3に発生させる加速度の絶対値は、第2の固定子部材42が配置された区間で第2の固定子部材42が可動子3に発生させる加速度の絶対値よりも大きい。 FIG. 4 is an explanatory diagram of thrust generated by the stator of the linear motor according to the first embodiment on the mover. FIG. 4 shows the results of obtaining the thrust generated by the first stator member 41 and the thrust generated by the second stator member 42 by magnetic field analysis. In FIG. 4, the thrust generated by the first stator member 41 on the mover 3 is normalized to be 1. The thrust generated by the second stator member 42 on the mover 3 is 10% or more and less than 20% of the thrust generated by the first stator member 41 on the mover 3. That is, the absolute value of the acceleration generated by the first stator member 41 on the mover 3 in the section in which the first stator member 41 is disposed is equal to the absolute value of the acceleration in the section in which the second stator member 42 is disposed. Is greater than the absolute value of the acceleration generated by the stator 3 of the mover 3.
 実施の形態1に係るリニアモータ1は、可動子3を加速する区間である位置x0と位置x1との間及び可動子3を減速する区間である位置x2と位置x3との間には、第1の固定子部材41を配置している。また、実施の形態1に係るリニアモータ1は、可動子3が等速運動を行う区間である位置x1と位置x2との間には第2の固定子部材42を配置している。 The linear motor 1 according to the first embodiment includes a position between the position x0 and the position x1, which is a section for accelerating the mover 3, and a position between the position x2 and the position x3, which is a section for decelerating the mover 3. One stator member 41 is arranged. Further, in the linear motor 1 according to the first embodiment, the second stator member 42 is disposed between the position x1 and the position x2, which is a section where the mover 3 moves at a constant speed.
 第1の固定子部材41を配置した位置x0と位置x1との間の区間及び位置x2と位置x3との間の区間では、可動子3に大きい推力を発生させ、大きな加速度を得ることができる。また、位置x1と位置x2との間の区間は、通常のリニアモータに用いられるスライダ2の場合、動摩擦係数μは0.002から0.003の間であり、シール抵抗fは2Nから5Nの間である。したがって、スライダ2への負荷加重Wが3000Nの場合、摩擦抵抗F’は、下記の式(2)から13N程度と算出される。 In the section between the position x0 and the position x1 where the first stator member 41 is arranged and in the section between the position x2 and the position x3, a large thrust is generated on the mover 3 and a large acceleration can be obtained. . Further, in the section between the position x1 and the position x2, in the case of the slider 2 used for a normal linear motor, the dynamic friction coefficient μ is between 0.002 and 0.003, and the seal resistance f is between 2N and 5N. Between. Therefore, when the load W applied to the slider 2 is 3000N, the frictional resistance F 'is calculated to be about 13N from the following equation (2).
 F’=μW+f ・・・(2) {F ′ = μW + f} (2)
 スライダ2への負荷加重が3000Nである場合、第1の固定子部材41が発生させる推力は200Nとなる。図4に示したように、第2の固定子部材42が発生させる推力は、第1の固定子部材41が発生させる推力の10%以上であるため、20N以上である。第2の固定子部材42が発生させる推力は、等速運動時の摩擦抵抗F’よりも大きいことから、第2の固定子部材42は、可動子3を等速運動させることが可能な推力を発生させていることがわかる。 When the load applied to the slider 2 is 3000N, the thrust generated by the first stator member 41 is 200N. As shown in FIG. 4, the thrust generated by the second stator member 42 is 10% or more of the thrust generated by the first stator member 41, and is therefore 20N or more. Since the thrust generated by the second stator member 42 is larger than the frictional resistance F ′ at the time of constant velocity movement, the second stator member 42 has a thrust capable of moving the mover 3 at constant velocity. It can be seen that this is occurring.
 上記のように、実施の形態1に係るリニアモータ1の固定子4は、可動子3を加速又は減速する区間には第1の固定子部材41を配置し、可動子3を等速運動させる区間には第2の固定子部材42を配置しているため、可動子3の加減速性能を損なうことなく、固定子4全体での永久磁石411の使用量を低減することができる。すなわち、リニアモータ1を製造する装置メーカは、可動子3の駆動運転パターンに合わせて、可動子3を加減速させる区間には第1の固定子部材41を配置し、可動子3を加減速させる必要がない区間に第2の固定子部材42を配置して固定子4を組み立てることで、可動子3の加減速性能を損なうことなく、固定子4全体での永久磁石411の使用量を低減する。 As described above, in the stator 4 of the linear motor 1 according to the first embodiment, the first stator member 41 is disposed in a section where the mover 3 is accelerated or decelerated, and the mover 3 is moved at a constant speed. Since the second stator member 42 is arranged in the section, the usage amount of the permanent magnet 411 in the entire stator 4 can be reduced without impairing the acceleration / deceleration performance of the mover 3. That is, the device maker that manufactures the linear motor 1 arranges the first stator member 41 in the section where the mover 3 is accelerated and decelerated in accordance with the driving operation pattern of the mover 3 and accelerates and decelerates the mover 3. By assembling the stator 4 by arranging the second stator member 42 in a section where it is not necessary to perform the operation, the usage amount of the permanent magnet 411 in the entire stator 4 can be reduced without impairing the acceleration / deceleration performance of the mover 3. Reduce.
 図1において可動子3に対向する永久磁石411の数は、ティース312の数6に対して、永久磁石411の数が4のいわゆる4極6スロットのリニアモータ1となっているが、これ以外の極数とスロット数との組み合わせでもよい。 In FIG. 1, the number of permanent magnets 411 facing the mover 3 is the so-called 4-pole, 6-slot linear motor 1 in which the number of permanent magnets 411 is 4 with respect to the number 6 of teeth 312. May be combined with the number of poles and the number of slots.
 図5は、実施の形態1に係るリニアモータの変形例を示す図である。図1に示した第2の固定子部材42の磁束誘導部421は、第2の固定子鉄心422から空隙Gに突出した突起により形成されていたが、図5に示すように、第2の固定子鉄心422にスリット穴425を設けることにより磁束誘導部421を形成することも可能である。なお、図5において磁束誘導部421は、円弧状のスリット穴425により形成されているが、磁束誘導部421を形成するスリット穴425は、リラクタンストルクを発生させる形状あればよく、円弧状に限定されない。 FIG. 5 is a diagram showing a modification of the linear motor according to the first embodiment. The magnetic flux guiding portion 421 of the second stator member 42 shown in FIG. 1 is formed by a projection projecting from the second stator core 422 into the gap G, but as shown in FIG. By providing the slit holes 425 in the stator core 422, the magnetic flux guide 421 can be formed. In FIG. 5, the magnetic flux guiding portion 421 is formed by an arc-shaped slit hole 425, but the slit hole 425 forming the magnetic flux guiding portion 421 only needs to have a shape that generates reluctance torque, and is limited to an arc shape. Not done.
 実施の形態1に係るリニアモータ1は、永久磁石411を有する第1の固定子部材41と、軟磁性体で構成された磁束誘導部421を有する第2の固定子部材42とで固定子4を構成することにより、第1の固定子部材41において高推力を発生し、高加減速による滑らかな始動及び停止が可能であり、等速運動を必要とする駆動範囲においては、磁束誘導部421を有する第2の固定子部材42により、永久磁石411を用いずとも磁束誘導部421で発生するリラクタンストルクを用い等速運動可能な推力を発生する。このように二つの異なる固定子部材を有することにより推力仕様の適正化及び磁石使用量の削減を実現できる。また、第2の固定子鉄心422に永久磁石411を設置する作業が不要であるため、永久磁石411を着磁する作業の工数及び固定子4の鉄心に永久磁石411を設置する作業の工数を低減できる。 The linear motor 1 according to the first embodiment includes a first stator member 41 having a permanent magnet 411 and a second stator member 42 having a magnetic flux guide 421 formed of a soft magnetic material. With this configuration, a high thrust is generated in the first stator member 41, smooth start and stop by high acceleration / deceleration are possible, and in the drive range requiring constant-velocity motion, the magnetic flux guiding portion 421 The second stator member 42 having the above-described configuration generates a thrust that can move at a constant speed using the reluctance torque generated by the magnetic flux guide 421 without using the permanent magnet 411. Providing the two different stator members in this way makes it possible to optimize thrust specifications and reduce the amount of magnets used. Further, since it is unnecessary to install the permanent magnet 411 on the second stator core 422, the man-hour for magnetizing the permanent magnet 411 and the man-hour for installing the permanent magnet 411 on the iron core of the stator 4 are reduced. Can be reduced.
実施の形態2.
 図6は、本発明の実施の形態2に係るリニアモータの構成を示す図である。図6に示す断面は、可動子3と固定子4との間の形成される空隙Gに垂直かつ可動子3の進行方向Aに平行な断面である。実施の形態2に係るリニアモータ1の第2の固定子部材42は、進行方向両端部において、磁束誘導部421の間に永久磁石411が配置されており、いわゆるコンシークエント型となっている点で実施の形態1の第2の固定子部材42とは相違している。第2の固定子部材42の永久磁石411が磁束誘導部421で挟まれた部分をコンシークエント部423という。永久磁石411は、第2の固定子部材42の厚さ方向に着磁方向が向く状態で第2の固定子鉄心422に設置されている。
Embodiment 2 FIG.
FIG. 6 is a diagram showing a configuration of a linear motor according to Embodiment 2 of the present invention. The cross section shown in FIG. 6 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3. The second stator member 42 of the linear motor 1 according to the second embodiment has a so-called consequent type in which permanent magnets 411 are arranged between the magnetic flux guides 421 at both ends in the traveling direction. This is different from the second stator member 42 of the first embodiment. The portion of the second stator member 42 where the permanent magnet 411 is sandwiched between the magnetic flux guides 421 is called a consequent unit 423. The permanent magnet 411 is installed on the second stator core 422 such that the magnetization direction is oriented in the thickness direction of the second stator member 42.
 可動子3は、第1の固定子部材41から第2の固定子部材42へ進入する際に、第1の固定子部材41に配置された永久磁石411の磁気吸引力により駆動方向と逆方向に力が加わり、速度が減衰する可能性がある。第1の固定子部材41の永久磁石411による磁気吸引力を減衰し、第1の固定子部材41から第2の固定子部材42へ可動子3が滑らかに進入できるようにするには、固定子4から空隙Gに発生する磁束を減少する必要がある。 When moving from the first stator member 41 to the second stator member 42, the mover 3 is driven in the opposite direction to the driving direction by the magnetic attraction of the permanent magnet 411 disposed on the first stator member 41. Force may be applied, and the speed may decrease. In order to attenuate the magnetic attraction force of the first stator member 41 by the permanent magnet 411 and allow the mover 3 to smoothly enter from the first stator member 41 to the second stator member 42, It is necessary to reduce the magnetic flux generated from the element 4 to the gap G.
 一般的に、コンシークエント型のモータでは、空隙に発生する磁束は、永久磁石のみで構成された固定子から発生する磁束に比べて50%から70%に低減する。したがって、永久磁石411の磁気吸引力は、コンシークエント部423の上では低減する。また、コンシークエント部423の上での推力は、永久磁石411だけが推力を発生させる第1の固定子部材41上で発生する推力と比較して50%以上である。したがって、第1の固定子部材41から第2の固定子部材42のコンシークエント部423に可動子3が進入しても、磁気吸引力による速度の減衰は生じにくい。 Generally, in a consequent type motor, the magnetic flux generated in the air gap is reduced from 50% to 70% as compared with the magnetic flux generated from a stator constituted only by permanent magnets. Therefore, the magnetic attractive force of the permanent magnet 411 is reduced on the consequent part 423. Further, the thrust on the consequent portion 423 is 50% or more as compared with the thrust generated on the first stator member 41 in which only the permanent magnet 411 generates the thrust. Therefore, even if the mover 3 enters the consequent portion 423 of the second stator member 42 from the first stator member 41, the speed is hardly attenuated by the magnetic attraction force.
 また、第1の固定子部材41の永久磁石411と、第2の固定子部材42の磁束誘導部421群との間に、コンシークエント部423を設けることにより、第1の固定子部材41と第2の固定子部材42との間で磁気吸引力が段階的に変化するため、第2の固定子部材42上でコンシークエント部423から磁束誘導部421群へ進行する可動子3は、推力が低減しても速度が減衰しにくく、滑らかな移動をすることが可能である。 Further, by providing a consequent portion 423 between the permanent magnet 411 of the first stator member 41 and the magnetic flux guide portion 421 group of the second stator member 42, the first stator member 41 Since the magnetic attraction force changes stepwise with the second stator member 42, the mover 3 traveling from the consequent portion 423 to the group of the magnetic flux guide portions 421 on the second stator member 42 has a thrust force. The speed is hardly attenuated even if is reduced, and a smooth movement is possible.
 上記の説明は、可動子3が第1の固定子部材41から第2の固定子部材42へ進行する場合であったが、第2の固定子部材42から第1の固定子部材41へ進行する場合も、推力を段階的に増大させることで、可動子3を滑らかに移動させることができる。 In the above description, the mover 3 has advanced from the first stator member 41 to the second stator member 42, but has advanced from the second stator member 42 to the first stator member 41. Also in this case, the mover 3 can be moved smoothly by increasing the thrust stepwise.
 実施の形態2に係るリニアモータ1は、第2の固定子鉄心422の中央部には永久磁石411を配置しないため、固定子鉄心に永久磁石411を設置する工数を低減することができる。 In the linear motor 1 according to the second embodiment, since the permanent magnet 411 is not disposed at the center of the second stator core 422, the number of steps for installing the permanent magnet 411 on the stator core can be reduced.
実施の形態3.
 図7は、本発明の実施の形態3に係るリニアモータの構成を示す図である。図7に示す断面は、可動子3と固定子4との間の形成される空隙Gに垂直かつ可動子3の進行方向Aに平行な断面である。実施の形態3に係るリニアモータ1の第2の固定子部材42は、進行方向Aの両端部に永久磁石411が配置されており、進行方向Aの中央部には軟磁性体で構成された磁束誘導部421を有している。第2の固定子部材42の永久磁石411が配置された部分を、磁石設置部424という。永久磁石411は、第2の固定子部材42の厚さ方向に着磁方向が向く状態で第2の固定子鉄心422に設置されている。実施の形態3に係るリニアモータ1の第2の固定子部材42の磁石設置部424に配置された永久磁石411は、第1の固定子部材41の永久磁石411よりも寸法が小さいか、又は残留磁束密度が小さくなっている。第1の固定子部材41の永久磁石411よりも小さい永久磁石411を第2の固定子部材42に配置する場合、永久磁石411は、第1の固定子部材41に近づくにつれて残留磁束密度が大きくなるようにしてもよい。
Embodiment 3 FIG.
FIG. 7 is a diagram showing a configuration of a linear motor according to Embodiment 3 of the present invention. The cross section shown in FIG. 7 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3. The second stator member 42 of the linear motor 1 according to the third embodiment has permanent magnets 411 disposed at both ends in the traveling direction A, and is formed of a soft magnetic material at the center in the traveling direction A. It has a magnetic flux guide 421. The portion of the second stator member 42 where the permanent magnet 411 is arranged is referred to as a magnet installation part 424. The permanent magnet 411 is installed on the second stator core 422 such that the magnetization direction is oriented in the thickness direction of the second stator member 42. The permanent magnet 411 arranged on the magnet mounting portion 424 of the second stator member 42 of the linear motor 1 according to Embodiment 3 has a smaller size than the permanent magnet 411 of the first stator member 41, or The residual magnetic flux density is small. When the permanent magnet 411 smaller than the permanent magnet 411 of the first stator member 41 is disposed on the second stator member 42, the residual magnetic flux density of the permanent magnet 411 increases as approaching the first stator member 41. You may make it become.
 第1の固定子部材41から第2の固定子部材42へ可動子3が進入する場合、第1の固定子部材41の永久磁石411の磁気吸引力により可動子3が減速し、滑らかな駆動ができない可能性がある。滑らかな駆動を可能とするためには、空隙Gに発生する磁束を段階的に減少する必要がある。 When the mover 3 enters the second stator member 42 from the first stator member 41, the mover 3 is decelerated by the magnetic attraction force of the permanent magnet 411 of the first stator member 41, and a smooth drive is performed. May not be possible. In order to enable smooth driving, it is necessary to reduce the magnetic flux generated in the gap G stepwise.
 永久磁石411が発生する磁束は、着磁面積が小さくなると減少する。すなわち、永久磁石411は、可動子3の進行方向に垂直かつ固定子4から可動子3側に向かう方向の寸法又は可動子3の進行方向に垂直かつ固定子4から可動子3側に向かう方向と垂直な方向の寸法が小さくなると、磁石幅が短くなり、永久磁石411が発生する磁束は減少する。また、永久磁石411の可動子3の進行方向に垂直かつ固定子4から可動子3側に向かう方向の寸法が小さくなることにより動作点が下がり、磁束密度が小さくなることが一般的に知られている。また、残留磁束密度が小さくなると、発生する磁束は小さくなる。 (4) The magnetic flux generated by the permanent magnet 411 decreases as the magnetized area decreases. That is, the permanent magnet 411 has a dimension perpendicular to the traveling direction of the mover 3 and from the stator 4 toward the mover 3 or a direction perpendicular to the traveling direction of the mover 3 and traveling from the stator 4 to the mover 3 side. When the dimension in the direction perpendicular to the direction becomes smaller, the magnet width becomes shorter, and the magnetic flux generated by the permanent magnet 411 decreases. Also, it is generally known that the operating point is lowered and the magnetic flux density is reduced by reducing the size of the permanent magnet 411 in the direction perpendicular to the moving direction of the mover 3 and in the direction from the stator 4 to the mover 3 side. ing. In addition, when the residual magnetic flux density decreases, the generated magnetic flux decreases.
 実施の形態3に係るリニアモータ1の磁石設置部424には、第1の固定子部材41の永久磁石411よりも寸法が小さい磁石、又は残留磁束密度の小さい永久磁石411が用いられている。したがって、空隙Gに発生する磁束が小さくなり、第1の固定子部材41から第2の固定子部材42に可動子3が進入する際に磁気吸引力を段階的に減少させ、第1の固定子部材41から第2の固定子部材42への進入による可動子3の速度の減衰を無くし、駆動を滑らかにすることが可能である。 磁石 A magnet smaller in size than the permanent magnet 411 of the first stator member 41 or a permanent magnet 411 having a small residual magnetic flux density is used for the magnet mounting portion 424 of the linear motor 1 according to the third embodiment. Accordingly, the magnetic flux generated in the air gap G is reduced, and the magnetic attraction force is reduced stepwise when the mover 3 enters the second stator member 42 from the first stator member 41, thereby reducing the first fixed state. It is possible to eliminate the attenuation of the speed of the mover 3 due to the entry from the slave member 41 to the second stator member 42, and to smooth the drive.
実施の形態4.
 図8は、本発明の実施の形態4に係るリニアモータの構成を示す図である。図8に示す断面は、可動子3と固定子4との間の形成される空隙Gに垂直かつ可動子3の進行方向Aに平行な断面である。第1の固定子部材41の磁束を発生する空隙G側の面と、第2の固定子部材42に構成された磁束誘導部421の空隙G側の面をそれぞれ磁極面413,426と定義する。第1の固定子部材41と可動子3とが対向しているときの第1の固定子部材41の磁極面413と可動子3との距離G1は、第2の固定子部材42と可動子3とが対向しているときの第2の固定子部材42の磁極面426と可動子3との距離G2以上となっている。G1≧G2とすることにより、第1の固定子部材41と第2の固定子部材42との境界部を可動子3が通過する際に、推力の急激な変動を抑制し、可動子3を滑らかに移動させることができる。
Embodiment 4 FIG.
FIG. 8 is a diagram showing a configuration of a linear motor according to Embodiment 4 of the present invention. The cross section shown in FIG. 8 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3. The surface of the first stator member 41 on the gap G side where the magnetic flux is generated and the surface of the magnetic flux guide portion 421 formed on the second stator member 42 on the gap G side are defined as magnetic pole surfaces 413 and 426, respectively. . When the first stator member 41 and the mover 3 face each other, the distance G1 between the magnetic pole surface 413 of the first stator member 41 and the mover 3 is equal to the distance G1 between the second stator member 42 and the mover 3. 3 is greater than or equal to the distance G2 between the magnetic pole surface 426 of the second stator member 42 and the mover 3 when they face each other. By setting G1 ≧ G2, when the mover 3 passes through the boundary between the first stator member 41 and the second stator member 42, a rapid change in thrust is suppressed, and the mover 3 is moved. It can be moved smoothly.
 実施の形態4に係るリニアモータ1では、第2の固定子部材42の磁極面426と可動子3との距離G2は、第1の固定子部材41に近づくにつれて長くなっている。第1の固定子部材41に近づくにつれて距離G2を長くすることにより、第1の固定子部材41と第2の固定子部材42との境界部において、推力が段階的に変化することとなり、可動子3を滑らかに移動させる効果を高めることができる。したがって、実施の形態3に係るリニアモータ1と同様に、第1の固定子部材41から第2の固定子部材42への進入による可動子3の速度の減衰を無くし、駆動を滑らかにすることが可能である。ただし、第2の固定子部材42の磁極面426と可動子3との距離G2は、一定であってもよい。 In the linear motor 1 according to the fourth embodiment, the distance G2 between the magnetic pole surface 426 of the second stator member 42 and the mover 3 increases as approaching the first stator member 41. By increasing the distance G2 as approaching the first stator member 41, the thrust changes stepwise at the boundary between the first stator member 41 and the second stator member 42, and The effect of moving the child 3 smoothly can be enhanced. Therefore, as in the case of the linear motor 1 according to the third embodiment, the speed of the mover 3 is not attenuated due to the entry from the first stator member 41 to the second stator member 42, and the driving is smoothed. Is possible. However, the distance G2 between the magnetic pole surface 426 of the second stator member 42 and the mover 3 may be constant.
実施の形態5.
 図9は、本発明の実施の形態5に係るリニアモータの構成を示す図である。図9に示す断面は、可動子3と固定子4との間の形成される空隙Gに垂直かつ可動子3の進行方向Aに平行な断面である。実施の形態5に係るリニアモータ1の固定子4を構成する第1の固定子部材41及び第2の固定子部材42において、第1の固定子部材41に配置した永久磁石411によって形成された磁極面413は、進行方向Aに沿って、第1の固定子鉄心412に極ピッチτpで配置されている。図9において、第2の固定子部材42は、永久磁石411が第1の固定子鉄心412の可動子3側の表面に配置された、いわゆる表面磁石型の構成である。ただし、第1の固定子鉄心412内に永久磁石411が埋め込まれた埋め込み磁石型であってもよい。また、永久磁石411の着磁方向が進行方向Aと平行であり着磁方向が対向するような構成であってもよい。さらに、第2の固定子部材42は、ハルバック型の構造でもよい。
Embodiment 5 FIG.
FIG. 9 is a diagram showing a configuration of a linear motor according to Embodiment 5 of the present invention. The cross section shown in FIG. 9 is a cross section perpendicular to the gap G formed between the mover 3 and the stator 4 and parallel to the traveling direction A of the mover 3. In the first stator member 41 and the second stator member 42 constituting the stator 4 of the linear motor 1 according to the fifth embodiment, the first stator member 41 and the second stator member 42 are formed by the permanent magnets 411 arranged on the first stator member 41. The magnetic pole faces 413 are arranged on the first stator core 412 at a pole pitch τp along the traveling direction A. In FIG. 9, the second stator member 42 has a so-called surface magnet type configuration in which a permanent magnet 411 is disposed on the surface of the first stator core 412 on the mover 3 side. However, an embedded magnet type in which a permanent magnet 411 is embedded in the first stator core 412 may be used. Further, the configuration may be such that the magnetization direction of the permanent magnet 411 is parallel to the traveling direction A and the magnetization directions are opposed to each other. Further, the second stator member 42 may have a hull-back type structure.
 第2の固定子部材42は、第2の固定子鉄心422と、第2の固定子鉄心422に形成された軟磁性体とで形成された磁束誘導部421のみを備えており、永久磁石411は配置されていない。なお、磁束誘導部421は、実施の形態2でも説明したように、スリット穴425によって形成されていてもよい。 The second stator member 42 includes only a magnetic flux guide 421 formed of a second stator core 422 and a soft magnetic material formed on the second stator core 422, and includes a permanent magnet 411. Is not located. The magnetic flux guide 421 may be formed by the slit holes 425 as described in the second embodiment.
 第1の固定子部材41は、隣接する磁極面413の中心間距離がτpである。第2の固定子部材42は、隣接する磁極面426の中心間距離がlである。 は In the first stator member 41, the distance between the centers of the adjacent magnetic pole faces 413 is τp. In the second stator member 42, the center-to-center distance between adjacent magnetic pole surfaces 426 is l.
 第1の固定子部材41と第2の固定子部材42との連結部を介して隣接する第1の固定子部材41の磁極面中心と、第2の固定子部材42の磁極面との中心の距離はLである。距離Lは、τp/2+(n-1)τp≦L≦nτpとなっている。ここで、nは、1以上の自然数である。 The center between the center of the magnetic pole surface of the first stator member 41 and the center of the magnetic pole surface of the second stator member 42 which are adjacent to each other via a connection portion between the first stator member 41 and the second stator member 42. Is L. The distance L is τp / 2 + (n−1) τp ≦ L ≦ nτp. Here, n is a natural number of 1 or more.
 図9において、第1の固定子部材41の磁極面413の中心をd軸、隣接する磁極面413の中間をq軸とする。同様に、第2の固定子部材42の磁極面426の中心をd軸、隣接する磁極面426の中間をq軸とする。図10は、実施の形態5に係るリニアモータの位相を示す図である。図10に示すように、コイルに通電する電流iとq軸とのなす角を位相差θと定義する。図11は、実施の形態5に係るリニアモータの電流に対するq軸の位相と推力との関係を示す図である。図11に実線で示す第1の固定子部材41が発生する推力は、第1の固定子部材41が発生する推力のピーク値が1となるように正規化した値である。また、図11に破線で示す第2の固定子部材42が発生する推力は、第2の固定子部材42が発生する推力のピーク値が1となるように正規化した値である。 In FIG. 9, the center of the pole face 413 of the first stator member 41 is the d-axis, and the middle of the adjacent pole face 413 is the q-axis. Similarly, the center of the magnetic pole surface 426 of the second stator member 42 is the d-axis, and the middle between adjacent magnetic pole surfaces 426 is the q-axis. FIG. 10 is a diagram illustrating phases of the linear motor according to the fifth embodiment. As shown in FIG. 10, the angle between the current i flowing through the coil and the q axis is defined as a phase difference θ. FIG. 11 is a diagram illustrating the relationship between the q-axis phase and the thrust with respect to the current of the linear motor according to the fifth embodiment. The thrust generated by the first stator member 41 indicated by a solid line in FIG. 11 is a value normalized so that the peak value of the thrust generated by the first stator member 41 becomes 1. Further, the thrust generated by the second stator member 42 indicated by the broken line in FIG. 11 is a value normalized such that the peak value of the thrust generated by the second stator member 42 becomes 1.
 図11に示すように、第1の固定子部材41で発生する推力がピーク値をとる位相と、第2の固定子部材42で発生する推力がピーク値をとる位相とは異なっている。例えば、L=τpの場合、第1の固定子部材41で最大推力を発生するためには、電流iとq軸との位相差θを0°とする必要がある。図12は、実施の形態5に係るリニアモータにおいて、電流とq軸との位相差が0°の状態を示す図である。第1の固定子部材41で最大推力を発生させるためには、id=0、iq=iとなる必要がある。 位相 As shown in FIG. 11, the phase at which the thrust generated by the first stator member 41 has a peak value is different from the phase at which the thrust generated by the second stator member 42 has a peak value. For example, when L = τp, in order to generate the maximum thrust in the first stator member 41, the phase difference θ between the current i and the q axis needs to be 0 °. FIG. 12 shows a state where the phase difference between the current and the q-axis is 0 ° in the linear motor according to the fifth embodiment. In order for the first stator member 41 to generate the maximum thrust, id = 0 and iq = i need to be satisfied.
 図12の電流位相の状態において、可動子3が第1の固定子部材41から第2の固定子部材42に進入した場合、図11に示すように位相差θ=0°であるため推力が発生しない。L=τpの場合に推力を発生するには、可動子3が第2の固定子部材42に進入したことを検知し、電流位相を変化させる制御が必要となり、滑らかな駆動をすることが困難である。 In the state of the current phase shown in FIG. 12, when the mover 3 enters the second stator member 42 from the first stator member 41, the thrust is 0 because the phase difference θ = 0 ° as shown in FIG. Does not occur. In order to generate a thrust when L = τp, it is necessary to detect that the mover 3 has entered the second stator member 42 and to perform control to change the current phase, making it difficult to perform smooth driving. It is.
 図13は、実施の形態5に係るリニアモータの可動子が第2の固定子部材に進入した状態におけるd軸及びq軸と電流との関係を示す図である。実施の形態5に係るリニアモータ1では、距離Lを、τp/2<L<τpとすることにより、可動子3が第2の固定子部材42に進入すると、図13に示すように、d軸及びq軸の位相が進む。つまり、電流iとq軸との位相差θは、-90°<θ<0°となり、インバータ70側で電流制御をしなくとも、第2の固定子部材42上で推力を発生することが可能となる。これにより、第1の固定子部材41と第2の固定子部材42との連結部において滑らかな駆動が可能となる。 FIG. 13 is a diagram showing the relationship between the d-axis and the q-axis and the current when the mover of the linear motor according to the fifth embodiment has entered the second stator member. In the linear motor 1 according to the fifth embodiment, by setting the distance L to be τp / 2 <L <τp, when the mover 3 enters the second stator member 42, as shown in FIG. The phases of the axis and the q axis advance. That is, the phase difference θ between the current i and the q axis is −90 ° <θ <0 °, and thrust can be generated on the second stator member 42 without performing current control on the inverter 70 side. It becomes possible. Thus, a smooth drive can be performed at the connection between the first stator member 41 and the second stator member 42.
 以上のことから、距離Lは、τp/2<L<τpとすることが望ましい。また、図11に示すように、第2の固定子部材42が発生する推力は周期性があり、一周期180°である。極ピッチτpは、電気角度で180°であることから、距離Lは、τp/2+(n-1)τp<L<nτpであればよい。 From the above, it is desirable that the distance L is τp / 2 <L <τp. Further, as shown in FIG. 11, the thrust generated by the second stator member 42 has a periodicity, and is 180 ° in one cycle. Since the pole pitch τp is 180 ° in electrical angle, the distance L may be τp / 2 + (n−1) τp <L <nτp.
 さらに、図11に示すように、第2の固定子部材42で発生する推力は、位相差θが-75°≦θ≦-15°であれば、最大推力の50%を確保することができることから、距離Lは、2τp/3+(n-1)τp<L<7τp/8+(n-1)τpとすると、より望ましい。 Further, as shown in FIG. 11, the thrust generated by the second stator member 42 can secure 50% of the maximum thrust if the phase difference θ is −75 ° ≦ θ ≦ −15 °. Therefore, it is more preferable that the distance L is 2τp / 3 + (n−1) τp <L <7τp / 8 + (n−1) τp.
 また、磁束誘導部421の中心距離lは、3τp/4+(m-1)τp≦l≦mτpであり、mが1以上の整数であると、第1の固定子部材41上から第2の固定子部材42の上に進入した可動子3に減衰力が働くことを抑制できる。 The center distance 1 of the magnetic flux guide 421 is 3τp / 4 + (m−1) τp ≦ l ≦ mτp, and when m is an integer of 1 or more, the second distance from the first stator member 41 to the second It is possible to suppress the damping force from acting on the mover 3 that has entered the stator member 42.
 上記実施の形態1から実施の形態5に係る制御装置80の機能は、処理回路により実現される。処理回路は、専用のハードウェアであっても、記憶装置に格納されるプログラムを実行する演算装置であってもよい。 The functions of the control device 80 according to Embodiments 1 to 5 are realized by a processing circuit. The processing circuit may be dedicated hardware or an arithmetic device that executes a program stored in a storage device.
 処理回路が専用のハードウェアである場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又はこれらを組み合わせたものが該当する。図14は、実施の形態1から実施の形態5に係る制御装置の機能をハードウェアで実現した構成を示す図である。処理回路29には、制御装置80の機能を実現する論理回路29aが組み込まれている。処理回路29を実現するハードウェアには、マイクロコントローラを例示できる。 If the processing circuit is dedicated hardware, the processing circuit may be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an application specific integrated circuit, a field programmable gate array, or a combination thereof. Is applicable. FIG. 14 is a diagram illustrating a configuration in which the functions of the control devices according to the first to fifth embodiments are implemented by hardware. The processing circuit 29 incorporates a logic circuit 29a for realizing the function of the control device 80. The hardware that implements the processing circuit 29 can be exemplified by a microcontroller.
 処理回路29が演算装置の場合、制御装置80の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。 When the processing circuit 29 is an arithmetic device, the function of the control device 80 is realized by software, firmware, or a combination of software and firmware.
 図15は、実施の形態1から実施の形態5に係る制御装置の機能をソフトウェアで実現した構成を示す図である。処理回路29は、プログラム29bを実行する演算装置291と、演算装置291がワークエリアに用いるランダムアクセスメモリ292と、プログラム29bを記憶する記憶装置293を有する。記憶装置293に記憶されているプログラム29bを演算装置291がランダムアクセスメモリ292上に展開し、実行することにより、制御装置80の機能が実現される。ソフトウェア又はファームウェアはプログラム言語で記述され、記憶装置293に格納される。演算装置291は、中央処理装置を例示できるがこれに限定はされない。 FIG. 15 is a diagram illustrating a configuration in which the functions of the control device according to the first to fifth embodiments are implemented by software. The processing circuit 29 includes an arithmetic unit 291 that executes the program 29b, a random access memory 292 used by the arithmetic unit 291 for a work area, and a storage device 293 that stores the program 29b. The function of the control device 80 is realized by the arithmetic device 291 developing and executing the program 29b stored in the storage device 293 on the random access memory 292. The software or firmware is described in a programming language and stored in the storage device 293. The arithmetic unit 291 can be, but is not limited to, a central processing unit.
 処理回路29は、記憶装置293に記憶されたプログラム29bを読み出して実行することにより、制御装置80の機能を実現する。プログラム29bは、制御装置80の機能を実現する手順及び方法をコンピュータに実行させるものであるとも言える。 The processing circuit 29 implements the function of the control device 80 by reading and executing the program 29b stored in the storage device 293. It can be said that the program 29b causes a computer to execute a procedure and a method for realizing the function of the control device 80.
 なお、処理回路29は、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 Note that the processing circuit 29 may be partially realized by dedicated hardware and partially realized by software or firmware.
 このように、処理回路29は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 29 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are merely examples of the contents of the present invention, and can be combined with other known technologies, and can be combined with other known technologies without departing from the gist of the present invention. Parts can be omitted or changed.
 1 リニアモータ、2 スライダ、3 可動子、4 固定子、5 ガイド、29 処理回路、29a 論理回路、29b プログラム、31 可動子コア、33 巻線、41 第1の固定子部材、42 第2の固定子部材、50 リニアモータシステム、60 電源、70 インバータ、80 制御装置、291 演算装置、292 ランダムアクセスメモリ、293 記憶装置、311 コアバック、312 ティース、411 永久磁石、412 第1の固定子鉄心、413,426 磁極面、421 磁束誘導部、422 第2の固定子鉄心、423 コンシークエント部、424 磁石設置部、425 スリット穴。 1 linear motor, 2 slider, 3 mover, 4 stator, 5 guide, 29 processing circuit, 29a logic circuit, 29b program, 31 mover core, 33 winding, 41 first stator member, 42 second Stator member, 50 linear motor system, 60 power supply, 70 inverter, 80 control device, 291 arithmetic unit, 292 random access memory, 293 storage device, 311 core back, 312 teeth, 411 permanent magnet, 412 first stator core , 413, 426} magnetic pole face, 421, magnetic flux guide, 422, second stator core, 423, consequent part, 424, magnet mounting part, 425, slit hole.

Claims (16)

  1.  可動子の搬送路となるリニアモータの固定子であって、
     前記可動子の進行方向に沿って配置された永久磁石を有する第1の固定子部材と、
     軟磁性体で構成され、前記可動子の進行方向に沿って配置された磁束誘導部を有する第2の固定子部材とを備え、
     前記第1の固定子部材及び前記第2の固定子部材は、前記可動子の進行方向に沿って直列に配置されたことを特徴とするリニアモータの固定子。
    A stator of a linear motor serving as a transfer path of the mover,
    A first stator member having a permanent magnet disposed along the moving direction of the mover,
    A second stator member, which is made of a soft magnetic material and has a magnetic flux guide portion disposed along the traveling direction of the mover,
    A stator for a linear motor, wherein the first stator member and the second stator member are arranged in series along a traveling direction of the mover.
  2.  前記第1の固定子部材は、極ピッチτpで前記永久磁石が配置されており、
     前記第1の固定子部材と前記第2の固定子部材との連結部において、前記第1の固定子部材の進行方向端部に配置された磁極面の進行方向中心から、前記第1の固定子部材の前記磁極面に隣接する前記第2の固定子部材の磁極面の進行方向中心との距離Lは、τp/2+(n-1)τp≦L≦nτpであり、nは1以上の整数であることを特徴とする請求項1に記載のリニアモータの固定子。
    In the first stator member, the permanent magnets are arranged at a pole pitch τp,
    At a connecting portion between the first stator member and the second stator member, the first fixed member is moved from the center in the traveling direction of a magnetic pole surface disposed at an end in the traveling direction of the first stator member. The distance L between the magnetic pole surface of the second stator member and the center of the magnetic pole surface of the second stator member adjacent to the magnetic pole surface in the traveling direction is τp / 2 + (n−1) τp ≦ L ≦ nτp, and n is 1 or more. 2. The linear motor stator according to claim 1, wherein the stator is an integer.
  3.  前記距離Lは、2τp/3+(n-1)τp≦L≦7τp/8+(n-1)τpであることを特徴とする請求項2に記載のリニアモータの固定子。 The stator according to claim 2, wherein the distance L satisfies 2τp / 3 + (n−1) τp ≦ L ≦ 7τp / 8 + (n−1) τp.
  4.  前記可動子の進行方向において隣接する前記磁束誘導部の中心距離lは、3τp/4+(m-1)τp≦l≦mτpであり、mは1以上の整数であることを特徴とする請求項1から3のいずれか1項に記載のリニアモータの固定子。 The center distance 1 of the magnetic flux guides adjacent in the moving direction of the mover is 3τp / 4 + (m−1) τp ≦ l ≦ mτp, and m is an integer of 1 or more. 4. The stator of the linear motor according to any one of 1 to 3.
  5.  前記第2の固定子部材は、前記可動子の進行方向に沿って配置された永久磁石を有することを特徴とする請求項1から4のいずれか1項に記載のリニアモータの固定子。 The stator according to any one of claims 1 to 4, wherein the second stator member includes a permanent magnet arranged along a traveling direction of the mover.
  6.  前第2の固定子部材に配置された前記永久磁石は、前記第1の固定子部材に配置された前記永久磁石とは、形状又は残留磁束密度が異なることを特徴とする請求項5に記載のリニアモータの固定子。 The said permanent magnet arrange | positioned at a front 2nd stator member differs in the shape or the residual magnetic flux density from the said permanent magnet arrange | positioned at the said 1st stator member, The Claim 5 characterized by the above-mentioned. Linear motor stator.
  7.  前記第2の固定子部材に配置された前記永久磁石の、前記可動子の進行方向に垂直かつ前記固定子から前記可動子側に向かう方向と垂直な方向の寸法は、前記第1の固定子部材に近いほど長いことを特徴とする請求項6に記載のリニアモータの固定子。 The dimension of the permanent magnet disposed on the second stator member in a direction perpendicular to a traveling direction of the mover and perpendicular to a direction from the stator toward the mover is the first stator. 7. The linear motor stator according to claim 6, wherein the stator is longer as being closer to the member.
  8.  前記第2の固定子部材に配置された前記永久磁石の、前記可動子の進行方向に垂直かつ前記固定子から前記可動子側に向かう方向の寸法は、前記第1の固定子部材に近いほど長いことを特徴とする請求項6又は7に記載のリニアモータの固定子。 The dimension of the permanent magnet disposed on the second stator member in a direction perpendicular to the moving direction of the mover and in the direction from the stator to the mover side is closer to the first stator member. The stator for a linear motor according to claim 6, wherein the stator is long.
  9.  前記第2の固定子部材に配置された前記永久磁石の残留磁束密度は、前記第1の固定子部材に近いほど大きいことを特徴とする請求項6から8のいずれか1項に記載のリニアモータの固定子。 9. The linear motor according to claim 6, wherein a residual magnetic flux density of the permanent magnet disposed on the second stator member is larger as the permanent magnet density is closer to the first stator member. 10. Motor stator.
  10.  前記第2の固定子部材の前記磁束誘導部は、磁性体ヨークから突出する突起によって形成されていることを特徴とする請求項1から9のいずれか1項に記載のリニアモータの固定子。 The stator according to any one of claims 1 to 9, wherein the magnetic flux guide portion of the second stator member is formed by a protrusion protruding from a magnetic yoke.
  11.  前記第2の固定子部材の前記磁束誘導部は、磁性体ヨークに設けられた複数のスリット穴で形成されていることを特徴とする請求項1から9のいずれか1項に記載のリニアモータの固定子。 10. The linear motor according to claim 1, wherein the magnetic flux guide of the second stator member is formed by a plurality of slit holes provided in a magnetic yoke. Stator.
  12.  前記可動子を加減速させる区間に前記第1の固定子部材が配置され、前記可動子を等速運動させる区間に前記第2の固定子部材が配置されたことを特徴とする請求項1から11のいずれか1項に記載のリニアモータの固定子。 2. The apparatus according to claim 1, wherein the first stator member is disposed in a section in which the mover is accelerated and decelerated, and the second stator member is disposed in a section in which the mover is moved at a constant speed. 3. 12. The stator for a linear motor according to any one of items 11 to 11.
  13.  請求項1から12のいずれか1項に記載のリニアモータの固定子と、可動子とを備えることを特徴とするリニアモータ。 A linear motor, comprising: the stator of the linear motor according to any one of claims 1 to 12; and a mover.
  14.  前記第1の固定子部材と前記可動子とが対向しているときの前記第1の固定子部材の磁極面と前記可動子との距離G1と、前記第2の固定子部材と前記可動子とが対向しているときの前記第2の固定子部材の磁極面と前記可動子との距離G2とは、G1≧G2であることを特徴とする請求項13に記載のリニアモータ。 A distance G1 between the magnetic pole surface of the first stator member and the mover when the first stator member and the mover face each other, the second stator member and the mover 14. The linear motor according to claim 13, wherein a distance G2 between the magnetic pole surface of the second stator member and the mover when the magnetic poles face each other is G1 ≧ G2.
  15.  前記第2の固定子部材の磁極面と前記可動子との距離G2は、前記第1の固定子部材に近いほど長いことを特徴とする請求項14に記載のリニアモータ。 The linear motor according to claim 14, wherein a distance G2 between the magnetic pole surface of the second stator member and the mover is longer as the distance is closer to the first stator member.
  16.  請求項13から15のいずれか1項に記載のリニアモータと、
     前記可動子の移動方向及び移動速度を制御する制御装置とを有し、
     前記制御装置は、前記可動子が前記第2の固定子部材の上を通過する際に、前記可動子をセンサレス駆動することを特徴とするリニアモータシステム。
    A linear motor according to any one of claims 13 to 15,
    A control device for controlling the moving direction and moving speed of the mover,
    The controller is configured to drive the movable element without a sensor when the movable element passes over the second stator member.
PCT/JP2018/023133 2018-06-18 2018-06-18 Stator for linear motor, linear motor, and linear motor system WO2019244209A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880094554.9A CN112335161B (en) 2018-06-18 2018-06-18 Linear motor holder, linear motor, and linear motor system
KR1020207035303A KR20210003922A (en) 2018-06-18 2018-06-18 Stator of linear motor, linear motor and linear motor system
JP2019531476A JP6573751B1 (en) 2018-06-18 2018-06-18 Linear motor stator, linear motor and linear motor system
PCT/JP2018/023133 WO2019244209A1 (en) 2018-06-18 2018-06-18 Stator for linear motor, linear motor, and linear motor system
TW108120239A TWI703793B (en) 2018-06-18 2019-06-12 Linear motor stator, linear motor and linear motor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023133 WO2019244209A1 (en) 2018-06-18 2018-06-18 Stator for linear motor, linear motor, and linear motor system

Publications (1)

Publication Number Publication Date
WO2019244209A1 true WO2019244209A1 (en) 2019-12-26

Family

ID=67909624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023133 WO2019244209A1 (en) 2018-06-18 2018-06-18 Stator for linear motor, linear motor, and linear motor system

Country Status (5)

Country Link
JP (1) JP6573751B1 (en)
KR (1) KR20210003922A (en)
CN (1) CN112335161B (en)
TW (1) TWI703793B (en)
WO (1) WO2019244209A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228590A1 (en) * 2022-05-27 2023-11-30 カヤバ株式会社 Cylindrical linear motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774180B (en) * 2021-01-05 2022-08-11 大銀微系統股份有限公司 Position measuring mechanism and measuring method of linear motion system
CN115159067B (en) * 2022-06-30 2023-09-12 瑞声光电科技(常州)有限公司 Multi-rotor direct-drive transmission system, related control method, device and storage medium
CN118842396B (en) * 2024-09-20 2025-01-14 苏州纵苇科技有限公司 Rotor control method of magnetic drive system and related equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169254A (en) * 1989-11-27 1991-07-22 Amada Co Ltd Alternating current linear servomotor
JPH0821151A (en) * 1994-07-06 1996-01-23 Fuji Electric Co Ltd Linear motor for automatic door drive
JP2001314072A (en) * 2000-04-28 2001-11-09 Yaskawa Electric Corp Permanent magnet linear motor
JP2002186244A (en) * 2000-12-15 2002-06-28 Mitsubishi Heavy Ind Ltd Permanent magnet linear motor
WO2009016147A2 (en) * 2007-07-31 2009-02-05 Siemens Aktiengesellschaft Linear electrical machine with differently configured subsections in the primary or secondary part

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646518B2 (en) 1998-05-12 2005-05-11 日本精工株式会社 Linear motor
SE0300657D0 (en) * 2003-03-10 2003-03-10 Hoeganaes Ab Linear motor
JP2006074881A (en) * 2004-09-01 2006-03-16 Oriental Motor Co Ltd Mover of cylinder type linear motor
DE502005003627D1 (en) * 2004-11-08 2008-05-21 Etel Sa Linear motor with segment stator
CN1976185B (en) * 2005-11-28 2010-12-08 中国科学院电工研究所 High Power Hybrid Linear Motor
DE102006014616A1 (en) * 2006-03-29 2007-10-11 Siemens Ag Linear motor with differently designed secondary sections
AT506431B1 (en) * 2008-01-24 2011-02-15 Lunatone Ind Elektronik Gmbh SLIP-MOUNTED THREAD GUIDE
KR20090107157A (en) * 2008-04-08 2009-10-13 한국철도기술연구원 Hybrid Linear Propulsion System for Railway Vehicles
JP4747184B2 (en) * 2008-04-14 2011-08-17 本田技研工業株式会社 Electric motor
TWI491145B (en) * 2013-04-30 2015-07-01 Ghing Hsin Dien Electric machine
JP6819211B2 (en) * 2016-10-25 2021-01-27 アイシン精機株式会社 Rotating machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169254A (en) * 1989-11-27 1991-07-22 Amada Co Ltd Alternating current linear servomotor
JPH0821151A (en) * 1994-07-06 1996-01-23 Fuji Electric Co Ltd Linear motor for automatic door drive
JP2001314072A (en) * 2000-04-28 2001-11-09 Yaskawa Electric Corp Permanent magnet linear motor
JP2002186244A (en) * 2000-12-15 2002-06-28 Mitsubishi Heavy Ind Ltd Permanent magnet linear motor
WO2009016147A2 (en) * 2007-07-31 2009-02-05 Siemens Aktiengesellschaft Linear electrical machine with differently configured subsections in the primary or secondary part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228590A1 (en) * 2022-05-27 2023-11-30 カヤバ株式会社 Cylindrical linear motor

Also Published As

Publication number Publication date
CN112335161A (en) 2021-02-05
JP6573751B1 (en) 2019-09-11
JPWO2019244209A1 (en) 2020-06-25
KR20210003922A (en) 2021-01-12
TW202002461A (en) 2020-01-01
CN112335161B (en) 2021-10-29
TWI703793B (en) 2020-09-01

Similar Documents

Publication Publication Date Title
TWI703793B (en) Linear motor stator, linear motor and linear motor system
JP6304560B2 (en) Linear motor, linear motor control system
JP2008535471A (en) Reluctance motor
US20120153763A1 (en) Synchronous motor
JP6668844B2 (en) Rotating electric machine
JP4882715B2 (en) Electric motor and control method thereof
Shin et al. The design for cogging force reduction of a double-sided transverse flux permanent magnet linear synchronous motor
JP2005304204A (en) Permanent magnet synchronous motor and drive apparatus
JP2003244930A (en) Drive device
JP3944766B2 (en) Permanent magnet synchronous linear motor
JP7124981B1 (en) Field device, linear motor
JPH0880027A (en) Linear motor
JPH07213044A (en) Stepping motor
JP6867854B2 (en) Motors and motor drives
JP2006352961A (en) Pm motor
JP4243651B1 (en) Magnetic flux shunt control rotating electrical machine system
JPH1169763A (en) Shaft-type linear motor and drive method therefor
JP2022012372A (en) Cylindrical linear motor
JP6593163B2 (en) Rotating electric machine
JP2005094932A (en) Motor drive device
US20250175069A1 (en) Linear motor
JP2019009924A (en) Magnet position variable motor, magnet position variable rotor, motor characteristic changing method, and motor manufacturing method
WO2020121509A1 (en) Linear electric motor
Deva et al. Reduction of Cogging Torque in BLDC Motor using Finite Element Analysis [FEA]
Sanada et al. Mover design and performance analysis of linear synchronous reluctance motor with multiflux barrier

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531476

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207035303

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923644

Country of ref document: EP

Kind code of ref document: A1