[go: up one dir, main page]

WO2019239502A1 - Foreign matter inspection device and foreign matter inspection method - Google Patents

Foreign matter inspection device and foreign matter inspection method Download PDF

Info

Publication number
WO2019239502A1
WO2019239502A1 PCT/JP2018/022471 JP2018022471W WO2019239502A1 WO 2019239502 A1 WO2019239502 A1 WO 2019239502A1 JP 2018022471 W JP2018022471 W JP 2018022471W WO 2019239502 A1 WO2019239502 A1 WO 2019239502A1
Authority
WO
WIPO (PCT)
Prior art keywords
foreign matter
inspection
inspection object
illumination light
imaging unit
Prior art date
Application number
PCT/JP2018/022471
Other languages
French (fr)
Japanese (ja)
Inventor
栄一 佐野
瑞樹 中村
Original Assignee
株式会社エフケー光学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフケー光学研究所 filed Critical 株式会社エフケー光学研究所
Priority to CN201880094390.XA priority Critical patent/CN112262313B/en
Priority to JP2020524995A priority patent/JP7011348B2/en
Priority to PCT/JP2018/022471 priority patent/WO2019239502A1/en
Priority to TW108119932A priority patent/TWI734992B/en
Publication of WO2019239502A1 publication Critical patent/WO2019239502A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present invention relates to a foreign matter inspection apparatus and a foreign matter inspection method for inspecting foreign matters attached to various substrates such as a liquid crystal color filter.
  • Patent Document 1 an imaging unit is focused on the surface of an object to be inspected, foreign matter on the surface of the object to be inspected is detected from the captured image, and the imaging unit is focused on the back surface of the object to be inspected.
  • a foreign matter detection device that picks up an image and detects foreign matter on the back surface of the object to be inspected from the taken image.
  • Patent Document 2 discloses a foreign matter inspection apparatus capable of inspecting foreign matter attached to the front and back surfaces of a glass substrate with high accuracy. Therefore, this foreign matter inspection device can switch between detection of foreign matter attached to the surface of the glass substrate and detection of foreign matter attached to the back surface of the glass substrate by changing the relative position of the light projecting position and the light receiving position. It is said.
  • a foreign matter inspection apparatus for inspecting foreign matter attached to the surface of an inspection object, A light source unit for illuminating the inspection object with illumination light; An imaging unit for imaging the inspection object; A detection unit that detects foreign matter based on an image captured by the imaging unit, In the detection unit, the image to be detected as a foreign object is a partial region on the side on which illumination light is incident in the image captured by the imaging unit.
  • the foreign substance inspection apparatus (second configuration) according to the present invention is the first configuration,
  • the optical axis of the optical system in the imaging unit is inclined with respect to the surface of the inspection object.
  • the foreign matter inspection apparatus includes: A foreign matter inspection apparatus for inspecting foreign matter attached to the surface of an inspection object, A light source unit for illuminating the inspection object with illumination light; An imaging unit for imaging the inspection object; A detection unit that detects foreign matter based on an image captured by the imaging unit, The optical axis of the optical system in the imaging unit is inclined with respect to the vertical direction of the imaging surface of the imaging unit.
  • the foreign matter inspection apparatus (fourth configuration) according to the present invention is the third configuration,
  • the extended surface of the imaging surface intersects with a vertical surface of the optical axis of the optical system at a substantially surface position of the inspection object.
  • the foreign matter inspection apparatus (fifth configuration) is any one of the first to third configurations.
  • the imaging unit is disposed at a position where the specularly reflected light reflected by the inspection object is not received and a position where the scattered light of the foreign matter attached to the surface of the inspection object is received.
  • the foreign matter inspection method includes: A foreign matter inspection method for inspecting foreign matter adhering to a surface to be inspected, Irradiate the inspection object with illumination light, Photographing the illumination light reflected by the inspection object with an imaging unit, The image to be detected as a foreign object is a partial region on the side on which illumination light is incident in the image captured by the imaging unit.
  • the foreign matter inspection method includes: A foreign matter inspection apparatus for inspecting foreign matter attached to the surface of an inspection object, Irradiate the inspection object with illumination light, Photographing the illumination light reflected by the inspection object with an imaging unit, Detect foreign objects based on the captured images,
  • the optical axis of the optical system in the imaging unit is inclined with respect to the vertical direction of the imaging surface of the imaging unit.
  • an image to be detected as a foreign matter is a partial region on the side on which illumination light is incident in an image taken by the imaging unit (first, (Sixth configuration) or by tilting the optical axis of the optical system in the imaging unit with respect to the vertical direction of the imaging surface of the imaging unit (second and seventh configurations), so that the scattered light from the foreign matter can be reduced. It is possible to increase the effective inspection area capable of receiving light effectively and to improve the inspection accuracy.
  • Side view showing the configuration of the foreign matter inspection apparatus in the present embodiment The figure which shows the manufacturing process of the color filter used as the test object of this embodiment
  • Side view for explaining a photographing configuration of the foreign matter inspection apparatus of the present embodiment Schematic diagram for explaining the inspection target area in the captured image
  • Flow chart showing foreign substance inspection process of this embodiment The side view for demonstrating the imaging
  • FIG. 1 is a perspective view showing a configuration of a foreign matter inspection apparatus 1 in the present embodiment.
  • the foreign matter inspection apparatus of the present embodiment is illuminated with LED (Light Emitting Diode) line light sources 3a and 3b (corresponding to the “light source part” of the present invention) that illuminate the inspection object 4 installed on the base 5.
  • the imaging units 2a to 2r that shoot the inspection object 4 and the information processing device (not shown) that performs image processing on the images captured by the imaging units 2a to 2r and detects foreign matter attached to the surface of the inspection object 4. And corresponds to the “detection unit” of the present invention.
  • the inspection object 4 of the present embodiment is, for example, a transparent substrate (a glass substrate or the like) on which a surface color resist is applied during the color filter manufacturing process.
  • a transparent substrate a glass substrate or the like
  • the manufacturing process of the color filter will be described in detail later.
  • the foreign matter inspection apparatus 1 is not limited to the color filter in the middle of the manufacturing process, but can be used in various fields where a transparent substrate is used.
  • the imaging units 2a to 2r are arranged in a matrix above the inspection object 4.
  • the imaging range P of the imaging unit 2k is indicated by hatching.
  • a part of the imaging range P is used as an effective inspection area, and the remaining imaging range is not used for detection of a foreign object (ineffective inspection area).
  • the imaging units 2a to 2r arranged in a matrix form are arranged so that a part of each effective inspection region overlaps, so that the entire inspection object 4 can be the inspection object. In this way, it is possible to inspect the entire surface of the inspection object 4 by photographing with the imaging units 2a to 2r.
  • the number and arrangement of the imaging units 2a to 2r are not limited to the form shown in FIG. 1, and can be appropriately determined according to various conditions such as the size and shape of the inspection object 4.
  • the LED line light sources 3 a and 3 b as the light source unit irradiate the surface of the inspection object 4 with the illumination light L from the lateral direction of the inspection object 4.
  • the imaging units 2a to 2r of the present embodiment receive the regular reflection light of the illumination light L from the inspection object 4 at an angle at which scattered light from the foreign object is received in order to detect the foreign material attached to the surface of the inspection object 4. It is arranged to face the angle that does not. With such an arrangement, the scattered light of the foreign matter is received without being obstructed by the regular reflection light, and the accuracy of foreign matter detection can be improved.
  • incoherent light such as the LED line light sources 3a and 3b of the present embodiment or a fluorescent lamp instead of coherent light such as laser light for the light source unit.
  • coherent light a structure such as an electrode located on the back surface of the inspection object or a hole provided in the inspection object is photographed in actual size.
  • incoherent light as illumination light and selecting the color of illumination light, structures such as electrodes located on the back surface of the inspection object or holes provided in the inspection object are smaller than the actual size. It is recognized (observed), and it is possible to enlarge the inspection target area.
  • FIG. 2 is a side view showing the configuration of the foreign matter inspection apparatus 1 in the present embodiment.
  • 2 is a side view of the imaging units 2a to 2f in FIG.
  • LED line light source 3a, 3b irradiates the illumination light L to the surface of the test object 4 from the horizontal direction.
  • the illumination light L is preferably incident so as to be substantially parallel to the surface of the inspection object 4, that is, incident so that the light strikes only the foreign matter located on the surface 4 of the inspection object 4.
  • the surface of the inspection object 4 does not become a flat surface due to the distortion of the inspection object 4 or the pedestal 5, it is necessary to tilt the inspection object 4 slightly.
  • the inclination angle of the illumination light L with respect to the surface of the inspection object 4 is preferably inclined toward the inspection object 4 within a range of 0 to 5 degrees when the state parallel to the XY plane is 0 degree. More preferably, it is within 0 to 3 degrees. In FIG. 2, the inclination angle of the illumination light L is shown exaggerated larger than actual.
  • the imaging units 2a to 2f of the present embodiment have an angle for receiving scattered light from the foreign matter attached to the surface of the inspection object 4, and do not receive the regular reflection light of the illumination light L from the inspection object 4. It is arranged to face the angle.
  • the imaging units 2a to 2c receive the scattered light from the foreign matter caused by the illumination light L of the LED line light source 3a, and the vertical direction (Z-axis direction) and the angle E (1 degree ⁇ E ⁇ 20 degrees).
  • the imaging units 2d to 2f are arranged at an angle E in the direction different from the imaging units 2a to 2c on the XZ plane so as to receive the scattered light from the foreign matter by the illumination light L of the LED line light source 3b. ing.
  • the imaging units 2a to 2c mainly receive the scattered light scattered by the foreign matter by the illumination light L from the LED line light source 3a, and are affected by the regular reflection light of the LED line light sources 3a and 3b. It is difficult.
  • the imaging units 2d to 2f mainly receive the scattered light scattered by the foreign matter by the illumination light L from the LED line light source 3b, and are hardly affected by the regular reflection light of the LED line light sources 3a and 3b. Although not shown, the imaging units 2a to 2f are in a state of being oriented in the vertical direction in the YZ plane.
  • FIG. 3 is a diagram illustrating a manufacturing process of a color filter.
  • a black matrix 42 is formed on a transparent substrate 41 such as a glass substrate.
  • the formation of the black matrix 42 is performed by exposure and development as in the case of the color resist 43R described later, but the description thereof is omitted here.
  • a red color resist 43R is applied on a transparent substrate 41 on which a black matrix 42 is formed.
  • the inspection object 4 is a state where the color resist 43R is applied.
  • the exposure is performed by placing the photomask 44 on the upper side.
  • the foreign matter adheres to the color resist 43R, the foreign matter is exposed to the photo resist.
  • the mask 44 may be damaged. Since the photomask 44 is extremely expensive, the financial damage due to breakage is great. Further, if the manufacture of the color filter is continued without noticing the damage of the photomask 44 due to the foreign matter, the color filter itself will be defective. The loss of the color filter causes, for example, deterioration of a display image in the liquid crystal display device.
  • FIG. 3D shows the cured color resist 43R.
  • the cured color resist 43G is added as shown in FIG. 3E.
  • the process of FIGS. 3B and 3C is performed on the blue color resist 43B, whereby the cured color resist 43B is added as shown in FIG. 3E.
  • the foreign matter inspection apparatus 1 according to the present embodiment also sets the inspection target 4 in a state where the green color resist 43G and the blue color resist 43B are applied, and executes the inspection of the foreign matter attached to the surface.
  • FIG. 4 is a hue circle for explaining the relationship between the color of the illumination light L used in the foreign matter inspection apparatus 1 of the present embodiment and the color resist color that is the surface color of the inspection object 4.
  • a hue circle equally divided into 24 blocks is used.
  • FIG. 4A shows the case of the color resist 43G, in which the resist color is red as indicated by an arrow.
  • the colors at the opposite positions are complementary colors.
  • the complementary color is a color that generates white light when additive color is mixed between a certain color light and the complementary color light.
  • the present embodiment by selecting the color of the illumination light L so as to satisfy a predetermined condition according to the surface color of the inspection object 4, a structure such as an electrode located on the back surface of the inspection object 4 or the inspection object It is possible to recognize (observe) holes provided in 4 or scratches, holes or the like on the surface of the pedestal 5 smaller than the actual size.
  • white light or the like is used as the illumination light L
  • the structures, holes, scratches and holes of the pedestal 5 described above are observed in actual size on the captured image. Therefore, it is necessary to provide a mask having a dead zone corresponding to the actual size for these structures, holes, and scratches. In the dead zone region, the surface of the inspection object 4 cannot be inspected.
  • the present embodiment by using the color of the illumination light L that satisfies a predetermined condition, it is possible to reduce the dead zone area and enlarge the area for inspecting the foreign matter.
  • the complementary color relationship is a color having a center frequency within a predetermined range from the complementary color of the surface color of the inspection object 4 in the hue circle.
  • the complementary color relationship is a color having a center frequency within a predetermined range from the complementary color of the surface color of the inspection object 4 in the hue circle.
  • Illumination light L having a center frequency for colors within the block range is used.
  • the illumination light L having the center frequency for the color at the position indicated by the arrow is used.
  • Illumination light L having a center frequency in a color within a predetermined range from the complementary color of the above is used.
  • the imaging units 2a to 2r can detect the foreign matter effectively by receiving the scattered light from the foreign matter.
  • the scattering of light by a foreign substance will be described. It is known that when light is incident on microparticles that are foreign matters, the form of scattering varies depending on the size of the microparticles. Scattering by microparticles is roughly classified according to the relationship between the size of microparticles and the wavelength of light. When the size of microparticles is 1/10 of the wavelength of light, Rayleigh scattering can occur. It is known that Mie scattering occurs when the size is larger.
  • the foreign object to be detected in the present embodiment is a broken piece of a glass substrate or the like, and is a foreign object having a size that causes Mie scattering.
  • FIG. 5 is a schematic diagram for explaining Mie scattering, and is a schematic diagram showing a state of scattering when the illumination light L is incident on the spherical microparticle S.
  • FIG. FIG. 5A is a top view showing a state of scattered light
  • FIG. 5B is a side view thereof.
  • the surface of the inspection object 4 is the XY plane
  • the axis orthogonal to the surface of the inspection object is the Z axis
  • the traveling direction of the illumination light L is the positive direction of the X axis.
  • Scattered light appears in an arc in each of the positive and negative directions of the X axis.
  • the scattered light is observed to be larger than the size of the spherical microparticles S, it is possible to efficiently detect the foreign matter attached to the inspection object by observing the scattered light.
  • FIG. 6 shows a captured image 23 (binarized) captured using the foreign matter inspection apparatus 1 of the present embodiment.
  • two transparent spherical fine particles S1 and S2 small bead spheres
  • Circles indicated by broken lines indicate actual positions of the spherical microparticles S ⁇ b> 1 and S ⁇ b> 2 and are not actually shown in the captured image 23.
  • the captured image 23 is a binarized image obtained by photographing the spherical minute particles S1 and S2 with the illumination light L incident in the positive X-axis direction, as in FIG.
  • Scattered light shown in black is captured in the positive and negative X-axis directions of the spherical microparticles S1 and S2.
  • the scattered light from the spherical microparticles S1 and S2 is projected larger than the actual size of the spherical microparticles S1 and S2, and thus is effective for the inspection of the foreign matter attached to the surface of the inspection object 4.
  • spherical microparticles S are used as foreign substances, which is because observation of scattered light is most difficult in a spherical shape.
  • An actual foreign object generally has a shape different from a spherical shape such as a glass piece, and scattered light appears remarkably in such a shape, and its observation is easy.
  • FIG. 7 is a diagram for explaining a photographing configuration of the foreign matter inspection apparatus 1 as a comparative example.
  • the imaging configuration will be described by taking one imaging unit 2 a as an example.
  • the surface of the inspection object 4 is illuminated by the LED line light source 3a extending in the Y-axis direction, and the scattered light scattered by the foreign matter adhering to the inspection object 4 is imaged by the imaging unit 2a.
  • the optical axis of the optical system 22 in the imaging unit 2 a is arranged so as to be substantially orthogonal to the surface of the inspection object 4.
  • spherical microparticles S1 to S4 are arranged at equal intervals in the X-axis direction as foreign matter samples. These spherical microparticles S1 to S4 are arranged so as to fall within the imaging range T of the imaging unit 2a.
  • the illumination light L is incident substantially parallel to the surface of the inspection object 4, but may be slightly inclined toward the inspection object 4 as described with reference to FIG. The same applies to FIGS. 8 and 12 described later.
  • the optical axis of the optical system 22 is substantially orthogonal to the surface of the inspection object 4
  • only the spherical microparticles S1 positioned on the side on which the illumination light L is incident are among the four spherical microparticles S1 to S4 arranged. It was possible to observe with high accuracy.
  • the three spherical microparticles S2 to S4 located on the side opposite to the illumination light L have insufficient amount of scattered light, so that the observation accuracy becomes worse as the distance from the incident side of the illumination light L is increased. I understood.
  • the entire imaging range T is not used, but the effective inspection region R1 positioned on the LED line light source 3a side is used as a foreign object detection target. And it is preferable not to use the invalid inspection area
  • FIG. 9A is a schematic diagram for explaining the effective inspection region R1 in the captured image 23 of the comparative example.
  • an area located on the side where the illumination light L is incident from the LED line light source 3 a in the imaging range T is set as an effective inspection area R ⁇ b> 1 used for the inspection of the foreign matter. Further, the remaining area is set as an invalid inspection area R2 that is not used for the inspection of foreign matter.
  • the imaging unit 2 a in which the optical axis of the optical system 22 is orthogonal to the imaging surface 21 is used, the position of the optical axis C ⁇ b> 2 in the captured image 23 is at the center of the captured image 23. To position. On the other hand, the image center C1 of the effective inspection region R1 is shifted to the side on which the illumination light L is incident because the invalid inspection region R2 is cut out from the captured image 23.
  • the present invention effectively uses scattered light due to foreign matter by using a partial region (effective inspection region R1) positioned on the incident side of the illumination light L as a foreign matter detection target in the captured image 23. It is possible to receive light and improve the detection accuracy of foreign matter.
  • the effective inspection region R1 in the imaging range T is It will become narrower.
  • the imaging units 2a to 2r are arranged so as to be provided at an angle E from the orthogonal direction of the inspection target 4, thereby enabling the effective inspection region R1. Is expanding.
  • FIG. 8 is a side view for explaining a photographing configuration of the foreign matter inspection apparatus 1 of the present embodiment.
  • the imaging configuration will be described by taking one imaging unit 2a as an example.
  • the surface of the inspection object 4 is illuminated with the LED line light source 3a extending in the Y-axis direction, and the scattered light scattered by the foreign matter attached to the inspection object 4 is imaged by the imaging unit 2a.
  • six spherical microparticles S1 to S6 are arranged at equal intervals in the X-axis direction as a sample of foreign matter. These spherical fine particles S1 to S6 are arranged so as to fall within the imaging range T of the imaging unit 2a.
  • the angle E of the imaging unit 2a is set to an angle (in the range of 1 to 20 degrees) such that the regular reflection light by the illumination light L from the LED line light source 3a does not enter.
  • the effective inspection region R1 is compared with the comparative example (FIGS. 7 and 9A) in which the optical axis of the optical system 22 is substantially orthogonal to the surface of the inspection object 4. Can be expanded. Also in the present embodiment, the entire imaging range T is not used, but the effective inspection region R1 located on the LED line light source 3a side is used as a foreign object detection target. The invalid inspection region R2 located away from the LED line light source 3a is not used as a foreign object detection target. Accordingly, when the entire surface of the inspection object 4 is inspected using the plurality of imaging units 2a to 2r as described with reference to FIGS. 1 and 2, the imaging units 2a to 2 are arranged such that a part of the effective inspection region R1 overlaps. Placed in.
  • FIG. 9B is a schematic diagram for explaining the effective inspection region R1 in the captured image 23 of the present embodiment.
  • an area located on the side where the illumination light L is incident from the LED line light source 3 a in the imaging range T is set as an effective inspection area R ⁇ b> 1 used for the inspection of foreign matter. Further, the remaining area is set as an invalid inspection area R2 that is not used for the inspection of foreign matter.
  • the imaging unit 2 a in which the optical axis of the optical system 22 is orthogonal to the imaging surface 21 is used, the position of the optical axis C ⁇ b> 2 in the captured image 23 is located at the center of the captured image 23.
  • the image center C1 of the effective inspection region R1 is shifted to the side on which the illumination light L is incident because the invalid inspection region R2 is cut out from the captured image 23.
  • FIG. 10 is a schematic diagram for explaining a mask used in the image processing of the present embodiment.
  • the mask is used for designating a dead zone area that is not used for the inspection of foreign matter in the captured image 23.
  • the dead zone region is assigned to positions of structures, holes, scratches, and the like that are known in advance in the inspection object 4, and is intended to prevent erroneous detection of these as foreign matters.
  • incoherent light is used as the illumination light L and the color thereof is selected, so that in particular, structures such as electrodes located on the back surface of the inspection object 4, holes provided in the inspection object 4, pedestal 5 can be recognized (observed) smaller than the actual size. Therefore, it is possible to reduce the dead zone area in the mask or not to provide the dead zone area, and it is possible to enlarge the area other than the dead zone area, that is, the area to be inspected for foreign matter.
  • FIG. 10A is a top view schematically showing the electrode 45b provided on the back surface of the inspection object 4, the hole 45a penetrating the inspection object 4, the pedestal hole 5a provided in the pedestal, and the position of the hole 45a.
  • FIG. The coordinate system shown in FIG. 10 is the same as that in FIGS. 1 and 2, and the illumination light L is irradiated on the surface of the inspection object 4 from the positive direction of the Z axis.
  • the electrode 45b is located on the back surface opposite to the side irradiated with the illumination light L.
  • the dead zone regions 61a and 61b in the mask 6a have the same size or allowance as the holes 45a and the electrodes 45b in FIG. 10A, as shown in FIG. 10B. Slightly larger.
  • regions other than the dead zone regions 61a and 61b are used as foreign matter inspection targets. Therefore, when a foreign object adheres to these dead zone regions 61a and 61b, the foreign object cannot be detected.
  • the transmission amount of the illumination light L to the inspection object is selected by selecting the color of the illumination light L according to the surface color of the inspection object 4.
  • the reflection amount (luminance) at the electrode 45b located on the back surface of the inspection object 4, the hole 45a provided in the inspection object 4 and the pedestal hole 5a provided in the pedestal 5 is made substantially zero, or the reflection amount Can be reduced.
  • a threshold value is provided for each pixel of the captured image and binarization is performed with a luminance equal to or higher than the threshold value.
  • the electrode 45b positioned on the back surface of the inspection object 4 In the hole 45a provided in the inspection object 4 and the pedestal hole 5a provided in the pedestal 5, the luminance of the entire region or a part of the region is below a threshold value, and the entire region or a part of the region is recognized (observed). It will be excluded from the target.
  • the illumination light L is incident from the positive direction of the X axis, but the incident illumination light L is reflected at the end of the electrode 45b (the side where the value of X is large), It is conceivable that the luminance is stronger than the other part of the electrode 45b. Therefore, the end of the electrode 45b on the side where the illumination light is incident remains as a recognizable (observable) image even after binarization.
  • masking is performed only on a portion remaining as a recognizable (observable) image.
  • the mask 6b used in the foreign matter inspection apparatus 1 of the present embodiment is created based on the binarized captured image 23 shown in FIG. 10C, and has the form shown in FIG. .
  • the dead zone region 61a for the hole 45a and the pedestal hole 5a is not required.
  • the dead zone region 61b ′ smaller than the actual size of the electrode 45b is sufficient for the electrode 45b. Therefore, as can be seen by comparing the mask 6a for white light in FIG. 10B and the mask 6b of the present embodiment in FIG. 10D, the dead zone region is suppressed to a small size, that is, a foreign object inspection target. It is possible to expand the area that becomes.
  • the binarization of the captured image 23 is not necessarily performed, and the binarization may be performed instead of the binarization (n ⁇ 3).
  • the mask 6b used in the image processing of the foreign matter inspection apparatus 1 is created by taking an image of the inspection object 4 that has been sufficiently confirmed that no foreign matter has adhered, and using the captured image. Further, even if the inspection target 4 has the same configuration, when the surface color such as the resist color and the color of the illumination light L are different, the size of the electrode image 23b and the like also changes. It is preferable to create each.
  • FIG. 11 is a flowchart showing a foreign substance inspection process in the foreign substance inspection apparatus 1 of the present embodiment.
  • the color filter in the middle of the manufacturing process described with reference to FIG. In the foreign matter inspection step, first, the inspection object 4 is installed on the base 5 (S11). Then, it is determined whether or not the color resist color that is the surface color of the inspection object 4 is compatible with the color of the illumination light L set in the LED line light sources 3a and 3b. The color of the illumination light L does not match the surface color of the inspection object 4, that is, the color of the applied color resist, such as when the target color resist color is changed due to a change in the production line (S12).
  • the color of the illumination light L is changed so as to match the surface color of the inspection object 4 (S13).
  • the LED line light source 3a is provided with R (red), G (green), and B (blue) LEDs, and changes the color of the illumination light L by changing the brightness of each color LED (adjustment). Light).
  • the surface of the inspection object 4 is irradiated with illumination light (S14), and imaging is performed by the imaging units 2a to 2r.
  • the effective inspection region R1 that is a partial region of the captured image 23 is used for the inspection of foreign matter.
  • the captured image 23 is binarized (S16), and then a mask corresponding to the surface color is applied (S19). Since the mask corresponds to the surface color as described above, if the mask does not match the surface color (S17: No), the mask is changed to one that matches the surface color (S18).
  • the inspection for the presence or absence of a foreign object is performed on the binarized captured image 23 in an area other than the dead zone area by the mask (S20).
  • foreign matter is detected by observing scattered light generated by the foreign matter. If the range of the scattered light (shown in black in FIG. 6) exceeds a threshold value, it is assumed that there is a foreign matter. To be judged.
  • the inspection object 4 is moved from the pedestal 5 (S21), and when there is no foreign object (S22: No), the inspection object 4 enters the next step.
  • the inspection object 4 is subjected to a reprocessing step such as removing the applied color resist or is subjected to a disposal process (S23).
  • a reprocessing step such as removing the applied color resist
  • a disposal process S23.
  • FIG. 12 is a side view for explaining an embodiment of the imaging configuration of the foreign matter inspection apparatus 1 according to another embodiment, in which the effective inspection region R1 is expanded by devising the imaging unit 2a. Similar to the comparative example of FIG. 7 and the embodiment of FIG. 8, the imaging configuration will be described using one imaging unit 2 a as an example.
  • the surface of the inspection object 4 is illuminated with the LED line light source 3a extending in the Y-axis direction, and the scattered light scattered by the foreign matter adhering to the inspection object 4 is imaged by the imaging unit 2a.
  • five spherical microparticles S1 to S5 are arranged at equal intervals in the X-axis direction as a sample of foreign matter.
  • the optical axis of the optical system 22 in the imaging unit 2a is inclined with respect to the vertical direction of the imaging surface of the imaging unit 2a. More specifically, the image pickup unit 2a is arranged so that the extended surface P1 of the image pickup surface 21 intersects the vertical surface P2 of the optical axis of the optical system 22 at a substantially surface position of the inspection target.
  • the extended surface P ⁇ b> 1 and the vertical surface P ⁇ b> 2 are described by bending a route in the middle so as to be within the description range.
  • the imaging range T and the effective inspection area R1 are the same area. That is, the entire area of the imaging range T can be used for the inspection of foreign matter.
  • the effective inspection region R1 is a partial region on the side on which illumination light is incident in the image captured by the imaging unit 2a. It is good also as doing.
  • the foreign matter inspection apparatus or foreign matter inspection method according to the present invention
  • a part on the side on which illumination light is incident is included in an image taken by an imaging unit as an object to be detected as a foreign matter.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Central Air Conditioning (AREA)

Abstract

[Problem] To enhance foreign matter detection accuracy when inspecting for foreign matter adhered to an object of inspection. [Solution] A foreign matter inspection device (1) according to the present invention is for inspecting for foreign matter adhered to the surface of an object (4) of inspection. The foreign matter inspection device (1) comprises: light source units (3a, 3b) for irradiating illumination light (L) onto the object (4) of inspection, imaging units (2a-2r) for photographing the object (4) of inspection, and a detection unit for detecting foreign matter on the basis of the images photographed by the imaging units (2a-2r). The image from which the detection unit detects foreign matter is a partial area within the images photographed by the imaging units (2a-2r) on a side upon which the illumination light (L) is incident.

Description

異物検査装置及び異物検査方法Foreign matter inspection apparatus and foreign matter inspection method
 本発明は、液晶カラーフィルタ等、各種基板に付着した異物を検査する異物検査装置、及び、異物検査方法に関する。 The present invention relates to a foreign matter inspection apparatus and a foreign matter inspection method for inspecting foreign matters attached to various substrates such as a liquid crystal color filter.
 従来、半導体製造工程、あるいは、液晶表示装置等のフラットディスプレイの製造工程等では、製品の精度向上等を図ることを目的として、製造工程において、ガラス基板に付着する異物を検出することが行われている。 Conventionally, in a semiconductor manufacturing process or a manufacturing process of a flat display such as a liquid crystal display device, foreign substances adhering to a glass substrate are detected in the manufacturing process for the purpose of improving the accuracy of the product. ing.
 特許文献1には、被検査物体の表面に撮像手段の焦点を合わせて撮像し、撮像された画像から被検査物体の表面の異物を検出し、被検査物体の裏面に撮像手段の焦点を合わせて撮像し、撮像された画像から被検査物体の裏面の異物を検出する異物検出装置が開示されている。特許文献2には、ガラス基板の表面および裏面に付着した異物を高精度で検査しうる異物検査装置が開示されている。そのため、この異物検査装置は、投光位置と受光位置の相対位置を変化させることで、ガラス基板の表面に付着した異物の検出と、ガラス基板の裏面に付着した異物の検出を切り替えることを可能としている。 In Patent Document 1, an imaging unit is focused on the surface of an object to be inspected, foreign matter on the surface of the object to be inspected is detected from the captured image, and the imaging unit is focused on the back surface of the object to be inspected. There has been disclosed a foreign matter detection device that picks up an image and detects foreign matter on the back surface of the object to be inspected from the taken image. Patent Document 2 discloses a foreign matter inspection apparatus capable of inspecting foreign matter attached to the front and back surfaces of a glass substrate with high accuracy. Therefore, this foreign matter inspection device can switch between detection of foreign matter attached to the surface of the glass substrate and detection of foreign matter attached to the back surface of the glass substrate by changing the relative position of the light projecting position and the light receiving position. It is said.
特開2000-74849号公報JP 2000-74849 A 特開2016-133357号公報JP 2016-133357 A
 液晶表示装置に実装されるカラーフィルタの製造工程では、レジストが塗布された状態で、塗布されたレジストに異物が付着していないか検査を行う必要がある。レジストに異物が付着している場合、その後の工程となる露光において、レジスト面に近接配置されるフォトマスクを破損させる、あるいは、カラーフィルタ自体の品質を損なうことになる。特に、フォトマスクは高価であるため、異物により破損が生じた場合、金銭的な被害は大きいものとなる。 In the manufacturing process of a color filter mounted on a liquid crystal display device, it is necessary to inspect whether or not a foreign substance adheres to the applied resist in a state where the resist is applied. In the case where foreign matters are adhered to the resist, the photomask disposed in the vicinity of the resist surface is damaged or the quality of the color filter itself is deteriorated in the subsequent exposure. In particular, since a photomask is expensive, if damage is caused by foreign matter, the financial damage is significant.
 このような事情からカラーフィルタの製造工程では、精度の高い異物検出を行うことが求められている。 For this reason, it is required to detect foreign matter with high accuracy in the color filter manufacturing process.
 そのため、本発明に係る異物検査装置は、以下に記載する第1の構成を採用するものである。
 検査対象の表面に付着した異物を検査する異物検査装置であって、
 照明光を前記検査対象に照射する光源部と、
 前記検査対象を撮影する撮像部と、
 前記撮像部で撮影された画像に基づいて異物を検出する検出部と、を備え、
 前記検出部において、異物の検出対象とする画像は、前記撮像部で撮影された画像中、照明光が入射する側の一部領域である。
Therefore, the foreign substance inspection apparatus according to the present invention employs the first configuration described below.
A foreign matter inspection apparatus for inspecting foreign matter attached to the surface of an inspection object,
A light source unit for illuminating the inspection object with illumination light;
An imaging unit for imaging the inspection object;
A detection unit that detects foreign matter based on an image captured by the imaging unit,
In the detection unit, the image to be detected as a foreign object is a partial region on the side on which illumination light is incident in the image captured by the imaging unit.
 さらに本発明に係る異物検査装置(第2の構成)は、第1の構成において、
 前記撮像部における光学系の光軸は、前記検査対象の表面に対して傾斜している。
Furthermore, the foreign substance inspection apparatus (second configuration) according to the present invention is the first configuration,
The optical axis of the optical system in the imaging unit is inclined with respect to the surface of the inspection object.
 また本発明に係る異物検査装置(第3の構成)は、
 検査対象の表面に付着した異物を検査する異物検査装置であって、
 照明光を前記検査対象に照射する光源部と、
 前記検査対象を撮影する撮像部と、
 前記撮像部で撮影された画像に基づいて異物を検出する検出部と、を備え、
 前記撮像部における光学系の光軸は、前記撮像部の撮像面の鉛直方向に対して傾斜している。
Further, the foreign matter inspection apparatus (third configuration) according to the present invention includes:
A foreign matter inspection apparatus for inspecting foreign matter attached to the surface of an inspection object,
A light source unit for illuminating the inspection object with illumination light;
An imaging unit for imaging the inspection object;
A detection unit that detects foreign matter based on an image captured by the imaging unit,
The optical axis of the optical system in the imaging unit is inclined with respect to the vertical direction of the imaging surface of the imaging unit.
 さらに本発明に係る異物検査装置(第4の構成)は、第3の構成において、
 前記撮像面の延長面は、前記光学系の光軸の垂直面と、前記検査対象の略表面位置で交わる。
Furthermore, the foreign matter inspection apparatus (fourth configuration) according to the present invention is the third configuration,
The extended surface of the imaging surface intersects with a vertical surface of the optical axis of the optical system at a substantially surface position of the inspection object.
 さらに本発明に係る異物検査装置(第5の構成)は、第1から第3の何れか1つの構成において、
 前記撮像部は、前記検査対象で反射した正反射光を受光しない位置であって、前記検査対象の表面に付着した異物の散乱光を受光する位置に配置されている。
Furthermore, the foreign matter inspection apparatus according to the present invention (fifth configuration) is any one of the first to third configurations.
The imaging unit is disposed at a position where the specularly reflected light reflected by the inspection object is not received and a position where the scattered light of the foreign matter attached to the surface of the inspection object is received.
 また本発明に係る異物検査方法(第6の構成)は、
 検査対象の表面に付着した異物を検査する異物検査方法であって、
 照明光を前記検査対象に照射し、
 前記検査対象で反射した照明光を撮像部で撮影し、
 異物の検出対象とする画像は、前記撮像部で撮影された画像中、照明光が入射する側の一部領域である。
The foreign matter inspection method (sixth configuration) according to the present invention includes:
A foreign matter inspection method for inspecting foreign matter adhering to a surface to be inspected,
Irradiate the inspection object with illumination light,
Photographing the illumination light reflected by the inspection object with an imaging unit,
The image to be detected as a foreign object is a partial region on the side on which illumination light is incident in the image captured by the imaging unit.
 また本発明に係る異物検査方法(第7の構成)は、
 検査対象の表面に付着した異物を検査する異物検査装置であって、
 照明光を前記検査対象に照射し、
 前記検査対象で反射した照明光を撮像部で撮影し、
 撮影された画像に基づいて異物を検出し、
 前記撮像部における光学系の光軸は、前記撮像部の撮像面の鉛直方向に対して傾斜している。
The foreign matter inspection method (seventh configuration) according to the present invention includes:
A foreign matter inspection apparatus for inspecting foreign matter attached to the surface of an inspection object,
Irradiate the inspection object with illumination light,
Photographing the illumination light reflected by the inspection object with an imaging unit,
Detect foreign objects based on the captured images,
The optical axis of the optical system in the imaging unit is inclined with respect to the vertical direction of the imaging surface of the imaging unit.
 本発明に係る異物検査装置、異物検査方法によれば、異物の検出対象とする画像を、前記撮像部で撮影された画像中、照明光が入射する側の一部領域とする(第1、第6の構成)、あるいは、撮像部における光学系の光軸を、撮像部の撮像面の鉛直方向に対して傾斜させる(第2、第7の構成)とすることで、異物による散乱光を有効に受光できる有効検査領域の拡大を図り、検査精度の向上を図ることが可能となる。 According to the foreign matter inspection apparatus and the foreign matter inspection method according to the present invention, an image to be detected as a foreign matter is a partial region on the side on which illumination light is incident in an image taken by the imaging unit (first, (Sixth configuration) or by tilting the optical axis of the optical system in the imaging unit with respect to the vertical direction of the imaging surface of the imaging unit (second and seventh configurations), so that the scattered light from the foreign matter can be reduced. It is possible to increase the effective inspection area capable of receiving light effectively and to improve the inspection accuracy.
本実施形態における異物検査装置の構成を示す斜視図The perspective view which shows the structure of the foreign material inspection apparatus in this embodiment. 本実施形態における異物検査装置の構成を示す側面図Side view showing the configuration of the foreign matter inspection apparatus in the present embodiment 本実施形態の検査対象となるカラーフィルタの製造工程を示す図The figure which shows the manufacturing process of the color filter used as the test object of this embodiment 本実施形態で使用する照明光の色とカラーレジスト色(検査対象の表面色)の関係を説明するための色相環A hue circle for explaining the relationship between the color of illumination light used in the present embodiment and the color resist color (surface color to be inspected) ミー散乱を説明するための模式図Schematic diagram for explaining Mie scattering ビーズ球を使用して撮影した撮像画像Image taken using a bead sphere 比較例の異物検査装置の撮影構成を説明するための側面図Side view for explaining a photographing configuration of a foreign matter inspection apparatus of a comparative example 本実施形態の異物検査装置の撮影構成を説明するための側面図Side view for explaining a photographing configuration of the foreign matter inspection apparatus of the present embodiment 撮像画像中、検査対象領域を説明するための模式図Schematic diagram for explaining the inspection target area in the captured image 本実施形態の画像処理で使用するマスクを説明するための模式図Schematic diagram for explaining a mask used in image processing of the present embodiment 本実施形態の異物検査工程を示すフロー図Flow chart showing foreign substance inspection process of this embodiment 他の実施形態の異物検査装置の撮影構成を説明するための側面図The side view for demonstrating the imaging | photography structure of the foreign material inspection apparatus of other embodiment.
 図1は、本実施形態における異物検査装置1の構成を示す斜視図である。本実施形態の異物検査装置は、台座5の上に設置された検査対象4を照明するLED(Light Emitting Diode)線光源3a、3b(本発明の「光源部」に相当する)、照明された検査対象4を撮影する撮像部2a~2r、そして、撮像部2a~2rで撮影された画像に対して画像処理を施し、検査対象4の表面に付着した異物を検出する情報処理装置(図示せず、本発明の「検出部」に相当する)を備えて構成されている。 FIG. 1 is a perspective view showing a configuration of a foreign matter inspection apparatus 1 in the present embodiment. The foreign matter inspection apparatus of the present embodiment is illuminated with LED (Light Emitting Diode) line light sources 3a and 3b (corresponding to the “light source part” of the present invention) that illuminate the inspection object 4 installed on the base 5. The imaging units 2a to 2r that shoot the inspection object 4 and the information processing device (not shown) that performs image processing on the images captured by the imaging units 2a to 2r and detects foreign matter attached to the surface of the inspection object 4. And corresponds to the “detection unit” of the present invention.
 本実施形態の検査対象4は、例えば、カラーフィルタの製造工程途中において、表面カラーレジストが塗布された透明基板(ガラス基板等)である。カラーフィルタの製造工程については、後で詳細に説明を行う。なお、異物検査装置1は、検査対象4を製造工程途中のカラーフィルタに限られるものではなく、透明基板を使用する各種分野において使用することが可能である。 The inspection object 4 of the present embodiment is, for example, a transparent substrate (a glass substrate or the like) on which a surface color resist is applied during the color filter manufacturing process. The manufacturing process of the color filter will be described in detail later. The foreign matter inspection apparatus 1 is not limited to the color filter in the middle of the manufacturing process, but can be used in various fields where a transparent substrate is used.
 撮像部2a~2rは、検査対象4の上方にマトリクス状に配置されている。図1には、撮像部2kについて、その撮像範囲Pが斜線で示されている。本実施形態では、撮像範囲Pの一部を有効検査領域として使用し、残る撮像範囲は異物の検出に使用しない(無効検査領域とする)こととしている。マトリクス状に配置された撮像部2a~2rは、各有効検査領域の一部が重なるように配置されることで、検査対象4の全面を検査対象とすることが可能となっている。このように、撮像部2a~2rで撮影することで、検査対象4の全面を検査することが可能となっている。なお、検査対象4の一部領域を撮影し、検査対象4を移動させる、あるいは、撮像部2a~2rを移動させることで、検査対象4の全面を検査する形態とすることも可能である。また、撮像部2a~2rの数、配置は、図1に示す形態に限られるものでは無く、検査対象4の大きさ、形状等の各種条件に応じて適宜に決定することが可能である。 The imaging units 2a to 2r are arranged in a matrix above the inspection object 4. In FIG. 1, the imaging range P of the imaging unit 2k is indicated by hatching. In the present embodiment, a part of the imaging range P is used as an effective inspection area, and the remaining imaging range is not used for detection of a foreign object (ineffective inspection area). The imaging units 2a to 2r arranged in a matrix form are arranged so that a part of each effective inspection region overlaps, so that the entire inspection object 4 can be the inspection object. In this way, it is possible to inspect the entire surface of the inspection object 4 by photographing with the imaging units 2a to 2r. It is also possible to take a form in which the entire surface of the inspection object 4 is inspected by photographing a part of the inspection object 4 and moving the inspection object 4 or moving the imaging units 2a to 2r. Further, the number and arrangement of the imaging units 2a to 2r are not limited to the form shown in FIG. 1, and can be appropriately determined according to various conditions such as the size and shape of the inspection object 4.
 光源部としてのLED線光源3a、3bは、検査対象4の横方向から検査対象4の表面に照明光Lを照射する。本実施形態の撮像部2a~2rは、検査対象4の表面に付着した異物を検出するため、異物による散乱光を受光する角度であって、検査対象4による照明光Lの正反射光を受光しない角度を向くように配置されている。このような配置により、異物の散乱光を、正反射光に阻害されることなく受光し、異物検出の精度向上を図ることを可能としている。 The LED line light sources 3 a and 3 b as the light source unit irradiate the surface of the inspection object 4 with the illumination light L from the lateral direction of the inspection object 4. The imaging units 2a to 2r of the present embodiment receive the regular reflection light of the illumination light L from the inspection object 4 at an angle at which scattered light from the foreign object is received in order to detect the foreign material attached to the surface of the inspection object 4. It is arranged to face the angle that does not. With such an arrangement, the scattered light of the foreign matter is received without being obstructed by the regular reflection light, and the accuracy of foreign matter detection can be improved.
 光源部には、レーザー光のようなコヒーレント光ではなく、本実施形態のLED線光源3a、3b、あるいは、蛍光灯等のインコヒーレント光を使用することが好ましい。コヒーレント光を使用した場合、検査対象の裏面に位置する電極等の構造物、あるいは、検査対象に設けられた孔等が実寸で撮影されることになる。一方、照明光にインコヒーレント光を使用するとともに、照明光の色を選択することで、検査対象の裏面に位置する電極等構造物、あるいは、検査対象に設けられた孔等が実寸よりも小さく認識(観察)され、検査対象領域の拡大を図ることが可能となる。 It is preferable to use incoherent light such as the LED line light sources 3a and 3b of the present embodiment or a fluorescent lamp instead of coherent light such as laser light for the light source unit. When coherent light is used, a structure such as an electrode located on the back surface of the inspection object or a hole provided in the inspection object is photographed in actual size. On the other hand, by using incoherent light as illumination light and selecting the color of illumination light, structures such as electrodes located on the back surface of the inspection object or holes provided in the inspection object are smaller than the actual size. It is recognized (observed), and it is possible to enlarge the inspection target area.
 図2は、本実施形態における異物検査装置1の構成を示す側面図である。図2は、図1中、撮像部2a~2fの列における側面図である。LED線光源3a、3bは、横方向から検査対象4の表面に照明光Lを照射する。照明光Lは、理想的には、検査対象4の表面と略平行に入射させる、すなわち、検査対象4の表面4に位置する異物にのみ光があたるように入射させることが好ましい。しかしながら、検査対象4、あるいは、台座5の歪みによって、検査対象4の表面が全くの平面とならないことを考慮し、僅かに傾けておく必要が生じる。照明光Lの検査対象4の表面に対する傾斜角は、XY平面と平行状態を0度とした場合、0度~5度の範囲内で検査対象4に向けて傾斜させることが好ましい。さらに好ましくは0度~3度以内とすることが好ましい。なお、図2では、照明光Lの傾斜角は、実際よりも大きく誇張して示されている。前述したように、本実施形態の撮像部2a~2fは、検査対象4の表面に付着した異物による散乱光を受光する角度であって、検査対象4による照明光Lの正反射光を受光しない角度を向くように配置されている。 FIG. 2 is a side view showing the configuration of the foreign matter inspection apparatus 1 in the present embodiment. 2 is a side view of the imaging units 2a to 2f in FIG. LED line light source 3a, 3b irradiates the illumination light L to the surface of the test object 4 from the horizontal direction. Ideally, the illumination light L is preferably incident so as to be substantially parallel to the surface of the inspection object 4, that is, incident so that the light strikes only the foreign matter located on the surface 4 of the inspection object 4. However, in consideration of the fact that the surface of the inspection object 4 does not become a flat surface due to the distortion of the inspection object 4 or the pedestal 5, it is necessary to tilt the inspection object 4 slightly. The inclination angle of the illumination light L with respect to the surface of the inspection object 4 is preferably inclined toward the inspection object 4 within a range of 0 to 5 degrees when the state parallel to the XY plane is 0 degree. More preferably, it is within 0 to 3 degrees. In FIG. 2, the inclination angle of the illumination light L is shown exaggerated larger than actual. As described above, the imaging units 2a to 2f of the present embodiment have an angle for receiving scattered light from the foreign matter attached to the surface of the inspection object 4, and do not receive the regular reflection light of the illumination light L from the inspection object 4. It is arranged to face the angle.
 撮像部2a~2cは、LED線光源3aの照明光Lによる異物での散乱光を受光するべく、XZ平面上、検査対象4の鉛直方向(Z軸方向)と角度E(1度<E<20度)だけ傾けて配置されている。一方、撮像部2d~2fは、LED線光源3bの照明光Lによる異物での散乱光を受光するべく、XZ平面上、撮像部2a~2cとは異なる方向に、角度Eだけ傾けて配置されている。このように配置することで、撮像部2a~2cは、LED線光源3aによる照明光Lにより異物で散乱された散乱光を主として受光し、LED線光源3a、3bの正反射光の影響を受け難くしている。また、撮像部2d~2fは、LED線光源3bによる照明光Lにより異物で散乱された散乱光を主として受光し、LED線光源3a、3bの正反射光の影響を受け難くしている。なお、図示していないが、撮像部2a~2fは、YZ平面内においては鉛直方向を向いた状態となっている。 The imaging units 2a to 2c receive the scattered light from the foreign matter caused by the illumination light L of the LED line light source 3a, and the vertical direction (Z-axis direction) and the angle E (1 degree <E < 20 degrees). On the other hand, the imaging units 2d to 2f are arranged at an angle E in the direction different from the imaging units 2a to 2c on the XZ plane so as to receive the scattered light from the foreign matter by the illumination light L of the LED line light source 3b. ing. By arranging in this way, the imaging units 2a to 2c mainly receive the scattered light scattered by the foreign matter by the illumination light L from the LED line light source 3a, and are affected by the regular reflection light of the LED line light sources 3a and 3b. It is difficult. The imaging units 2d to 2f mainly receive the scattered light scattered by the foreign matter by the illumination light L from the LED line light source 3b, and are hardly affected by the regular reflection light of the LED line light sources 3a and 3b. Although not shown, the imaging units 2a to 2f are in a state of being oriented in the vertical direction in the YZ plane.
 本実施形態では、検査対象4として液晶表示装置に使用されるカラーフィルタとしている。特に、製造工程途中のカラーフィルタについて、表面に付着した異物の検出を行うこととしている。図3は、カラーフィルタの製造工程を示す図である。図3(A)に示すように、ガラス基板等の透明基板41上にブラックマトリックス42が形成される。ブラックマトリックス42の形成については、後で説明するカラーレジスト43Rと同様、露光、現像により行われることになるが、ここではその説明は省略する。図3(B)に示すように、ブラックマトリックス42が形成された透明基板41上に赤色のカラーレジスト43Rが塗布される。本実施形態の異物検査装置1は、このカラーレジスト43Rが塗布された状態を検査対象4としている。 In the present embodiment, the color filter used in the liquid crystal display device is used as the inspection object 4. In particular, for color filters in the middle of the manufacturing process, foreign matter adhering to the surface is detected. FIG. 3 is a diagram illustrating a manufacturing process of a color filter. As shown in FIG. 3A, a black matrix 42 is formed on a transparent substrate 41 such as a glass substrate. The formation of the black matrix 42 is performed by exposure and development as in the case of the color resist 43R described later, but the description thereof is omitted here. As shown in FIG. 3B, a red color resist 43R is applied on a transparent substrate 41 on which a black matrix 42 is formed. In the foreign matter inspection apparatus 1 of the present embodiment, the inspection object 4 is a state where the color resist 43R is applied.
 図3(C)に示すように、カラーレジスト43Rが塗布された後、フォトマスク44を上方に配置して露光を行うことになるが、カラーレジスト43R上に異物が付着した場合、異物がフォトマスク44を破損させてしまうことがある。フォトマスク44は極めて高価であるため、破損による金銭的な被害は大きい。また、異物によるフォトマスク44の破損に気付かず、カラーフィルタの製造を続けた場合、カラーフィルタ自体に欠損を生じることになる。カラーフィルタの欠損は、例えば、液晶表示装置における表示画像の劣化を生じさせることになる。 As shown in FIG. 3C, after the color resist 43R is applied, the exposure is performed by placing the photomask 44 on the upper side. However, when the foreign matter adheres to the color resist 43R, the foreign matter is exposed to the photo resist. The mask 44 may be damaged. Since the photomask 44 is extremely expensive, the financial damage due to breakage is great. Further, if the manufacture of the color filter is continued without noticing the damage of the photomask 44 due to the foreign matter, the color filter itself will be defective. The loss of the color filter causes, for example, deterioration of a display image in the liquid crystal display device.
 フォトマスク44に設けられた開口44aを介して紫外線を照射し、開口44aの位置におけるカラーレジスト43Rを不活性化させる。その後、現像液でカラーレジスト43Rの不要な部分を除去した後、残ったカラーレジスト43Rをベークして硬化させる。図3(D)は、硬化されたカラーレジスト43Rを示す図である。緑のカラーレジスト43Gについて、図3(B)、図3(C)の行程を行うことで、図3(E)のように、硬化されたカラーレジスト43Gが追加される。そして、青のカラーレジスト43Bについて、図3(B)、図3(C)の行程を行うことで、図3(E)のように、硬化されたカラーレジスト43Bが追加される。本実施形態の異物検査装置1は、緑のカラーレジスト43G、青のカラーレジスト43Bが塗布された状態についても検査対象4とし、その表面に付着した異物の検査を実行する。 UV light is irradiated through the opening 44a provided in the photomask 44 to inactivate the color resist 43R at the position of the opening 44a. Thereafter, unnecessary portions of the color resist 43R are removed with a developer, and the remaining color resist 43R is baked and cured. FIG. 3D shows the cured color resist 43R. By performing the steps of FIGS. 3B and 3C for the green color resist 43G, the cured color resist 43G is added as shown in FIG. 3E. Then, the process of FIGS. 3B and 3C is performed on the blue color resist 43B, whereby the cured color resist 43B is added as shown in FIG. 3E. The foreign matter inspection apparatus 1 according to the present embodiment also sets the inspection target 4 in a state where the green color resist 43G and the blue color resist 43B are applied, and executes the inspection of the foreign matter attached to the surface.
 図4は、本実施形態の異物検査装置1で使用する照明光Lの色と、検査対象4の表面色となるカラーレジスト色の関係を説明するための色相環である。本実施形態では、24ブロックに等分割された色相環を使用している。図4(A)は、カラーレジスト43Gの場合であって、矢印で示すようにレジスト色が赤の場合である。色相環では、対向する位置の色が補色となる。ここで、補色とは、ある色光とその補色光を加法混色した場合、白色光を生じる色である。 FIG. 4 is a hue circle for explaining the relationship between the color of the illumination light L used in the foreign matter inspection apparatus 1 of the present embodiment and the color resist color that is the surface color of the inspection object 4. In the present embodiment, a hue circle equally divided into 24 blocks is used. FIG. 4A shows the case of the color resist 43G, in which the resist color is red as indicated by an arrow. In the hue circle, the colors at the opposite positions are complementary colors. Here, the complementary color is a color that generates white light when additive color is mixed between a certain color light and the complementary color light.
 本実施形態では、検査対象4の表面色に応じて、照明光Lの色が所定条件を満たすように選択することで、検査対象4の裏面に位置する電極等の構造物、あるいは、検査対象4に設けられた孔、あるいは、台座5の表面の傷、穴等を実寸よりも小さく認識(観察)することを可能としている。従来、照明光Lとして白色光等を用いた場合、上述する検査対象4の構造物、孔、台座5の傷、穴については、撮像画像上、実寸で観察されることになる。したがって、これらの構造物、孔、傷については、実寸に応じた不感帯領域を有するマスクを設ける必要がある。不感帯領域では、検査対象4の表面を検査することができなくなる。したがって、不感帯領域に異物が付着した場合には、検査漏れとなることがある。一方、本実施形態では、所定条件を満たす照明光Lの色を使用することで、不感帯領域を縮小し、異物を検査する領域の拡大を図ることが可能となっている。 In the present embodiment, by selecting the color of the illumination light L so as to satisfy a predetermined condition according to the surface color of the inspection object 4, a structure such as an electrode located on the back surface of the inspection object 4 or the inspection object It is possible to recognize (observe) holes provided in 4 or scratches, holes or the like on the surface of the pedestal 5 smaller than the actual size. Conventionally, when white light or the like is used as the illumination light L, the structures, holes, scratches and holes of the pedestal 5 described above are observed in actual size on the captured image. Therefore, it is necessary to provide a mask having a dead zone corresponding to the actual size for these structures, holes, and scratches. In the dead zone region, the surface of the inspection object 4 cannot be inspected. Therefore, if foreign matter adheres to the dead zone area, inspection may be missed. On the other hand, in the present embodiment, by using the color of the illumination light L that satisfies a predetermined condition, it is possible to reduce the dead zone area and enlarge the area for inspecting the foreign matter.
 照明光Lの色の条件としては、検査対象4の表面色(本実施形態では、レジスト色)と補色関係にあることとが必要である。ここで、補色関係とは、色相環において、検査対象4の表面色の補色から所定範囲内に中心周波数を有する色としている。例えば、図4(A)に示す、カラーレジスト43Gの場合、レジスト色(赤)に対向して位置する補色の位置から、24分割された色相環において、所定範囲内、すなわち、その前後、4ブロックの範囲内の色に中心周波数を有する照明光Lを使用している。本実施形態では、矢印で示す位置の色に中心周波数を有する照明光Lを使用している。また、図4(B)に示す、カラーレジスト43Gの場合(レジスト色は緑)、図4(C)に示す、カラーレジスト43Bの場合(レジスト色は青)も同様であって、カラーレジスト色の補色から所定範囲内の色に中心周波数を有する照明光Lを使用している。 As a condition of the color of the illumination light L, it is necessary to have a complementary color relationship with the surface color (resist color in the present embodiment) of the inspection object 4. Here, the complementary color relationship is a color having a center frequency within a predetermined range from the complementary color of the surface color of the inspection object 4 in the hue circle. For example, in the case of the color resist 43G shown in FIG. 4A, within a predetermined range, that is, before and after the hue ring divided into 24 from the position of the complementary color located opposite to the resist color (red). Illumination light L having a center frequency for colors within the block range is used. In the present embodiment, the illumination light L having the center frequency for the color at the position indicated by the arrow is used. The same applies to the color resist 43G shown in FIG. 4B (resist color is green) and the color resist 43B shown in FIG. 4C (resist color is blue). Illumination light L having a center frequency in a color within a predetermined range from the complementary color of the above is used.
 図2で説明したように、本実施形態では、撮像部2a~2rにおいて、異物による散乱光を受光することで、異物を効果的に検出することが可能である。ここで、異物による光の散乱について説明しておく。異物となる微小粒子に光が入射した場合、微少粒子の大きさに応じて散乱の形態は異なることが知られている。微小粒子による散乱は、微少粒子の大きさと光の波長との関係によって大別され、微小粒子の大きさが光の波長の1/10の場合、レーリー散乱を生じることが、また、微小粒子の大きさがそれ以上の場合、ミー散乱を生じることが知られている。本実施形態で検出対象となる異物は、ガラス基板の破片等であって、ミー散乱を生じる大きさの異物である。 As described with reference to FIG. 2, in this embodiment, the imaging units 2a to 2r can detect the foreign matter effectively by receiving the scattered light from the foreign matter. Here, the scattering of light by a foreign substance will be described. It is known that when light is incident on microparticles that are foreign matters, the form of scattering varies depending on the size of the microparticles. Scattering by microparticles is roughly classified according to the relationship between the size of microparticles and the wavelength of light. When the size of microparticles is 1/10 of the wavelength of light, Rayleigh scattering can occur. It is known that Mie scattering occurs when the size is larger. The foreign object to be detected in the present embodiment is a broken piece of a glass substrate or the like, and is a foreign object having a size that causes Mie scattering.
 図5は、ミー散乱を説明するための模式図であって、球形微小粒子Sに照明光Lが入射したときの散乱の様子を示す模式図である。図5(A)は、散乱光の様子を示す上面図であり、図5(B)は、その側面図である。ここでは、検査対象4の表面をXY平面、検査対象の表面に直交する軸をZ軸、照明光Lの進行方向をX軸正の方向としている。散乱光は、X軸の正負方向それぞれに弧を描くように現れる。また、散乱光は、球形微小粒子Sの大きさよりも大きく観察されることになるため、散乱光を観察することで、検査対象に付着した異物を効率よく検出することが可能となる。 FIG. 5 is a schematic diagram for explaining Mie scattering, and is a schematic diagram showing a state of scattering when the illumination light L is incident on the spherical microparticle S. FIG. FIG. 5A is a top view showing a state of scattered light, and FIG. 5B is a side view thereof. Here, the surface of the inspection object 4 is the XY plane, the axis orthogonal to the surface of the inspection object is the Z axis, and the traveling direction of the illumination light L is the positive direction of the X axis. Scattered light appears in an arc in each of the positive and negative directions of the X axis. Further, since the scattered light is observed to be larger than the size of the spherical microparticles S, it is possible to efficiently detect the foreign matter attached to the inspection object by observing the scattered light.
 図6は、本実施形態の異物検査装置1を使用して撮像された撮像画像23(2値化済み)である。ここでは、透明な2つの球形微小粒子S1、S2(微少なビーズ球)を検査対象4の表面に付着させて撮像している。破線で示す円は、球形微小粒子S1、S2の実際の位置を示しており、実際には撮像画像23には写っていない。撮像画像23は、球形微小粒子S1、S2に対し、図5と同様、X軸正の方向に照明光Lを入射させて撮影し、画像の2値化された画像である。球形微小粒子S1、S2のX軸正負の方向には、黒色で示す散乱光が写されている。このように、球形微小粒子S1、S2による散乱光は、実際の球形微小粒子S1、S2の大きさよりも大きく写されるため、検査対象4の表面に付着した異物の検査には有効である。なお、図5、図6では、異物として球形微小粒子Sを使用しているが、これは散乱光の観察が球形形状で最も困難であることを理由としている。実際の異物は、ガラス破片等、球形とは異なる形状が一般的であり、そのような形状において散乱光は顕著に現れることになり、その観察は容易である。 FIG. 6 shows a captured image 23 (binarized) captured using the foreign matter inspection apparatus 1 of the present embodiment. Here, two transparent spherical fine particles S1 and S2 (small bead spheres) are attached to the surface of the inspection object 4 and imaged. Circles indicated by broken lines indicate actual positions of the spherical microparticles S <b> 1 and S <b> 2 and are not actually shown in the captured image 23. The captured image 23 is a binarized image obtained by photographing the spherical minute particles S1 and S2 with the illumination light L incident in the positive X-axis direction, as in FIG. Scattered light shown in black is captured in the positive and negative X-axis directions of the spherical microparticles S1 and S2. As described above, the scattered light from the spherical microparticles S1 and S2 is projected larger than the actual size of the spherical microparticles S1 and S2, and thus is effective for the inspection of the foreign matter attached to the surface of the inspection object 4. In FIG. 5 and FIG. 6, spherical microparticles S are used as foreign substances, which is because observation of scattered light is most difficult in a spherical shape. An actual foreign object generally has a shape different from a spherical shape such as a glass piece, and scattered light appears remarkably in such a shape, and its observation is easy.
 図7は、比較例としての異物検査装置1の撮影構成を説明するための図である。図1、図2で説明した構成中、1つの撮像部2aを例に取ってその撮影構成を説明する。比較例では、検査対象4の表面を、Y軸方向に延在するLED線光源3aで照明し、検査対象4に付着する異物で散乱した散乱光を撮像部2aで撮像することとしている。比較例では、撮像部2aにおける光学系22の光軸は、検査対象4の表面と略直交するように配置されている。また、異物のサンプルとして、X軸方向に等間隔で4個の球形微小粒子S1~S4を並べている。これら球形微小粒子S1~S4は、撮像部2aの撮像範囲Tに入るように配置されている。図7中、照明光Lは、検査対象4の表面と略平行に入射させているが、図2で説明したように、僅かに検査対象4側に向けて傾斜させてもよい。後述する図8、図12も同様である。 FIG. 7 is a diagram for explaining a photographing configuration of the foreign matter inspection apparatus 1 as a comparative example. In the configuration described with reference to FIGS. 1 and 2, the imaging configuration will be described by taking one imaging unit 2 a as an example. In the comparative example, the surface of the inspection object 4 is illuminated by the LED line light source 3a extending in the Y-axis direction, and the scattered light scattered by the foreign matter adhering to the inspection object 4 is imaged by the imaging unit 2a. In the comparative example, the optical axis of the optical system 22 in the imaging unit 2 a is arranged so as to be substantially orthogonal to the surface of the inspection object 4. In addition, four spherical microparticles S1 to S4 are arranged at equal intervals in the X-axis direction as foreign matter samples. These spherical microparticles S1 to S4 are arranged so as to fall within the imaging range T of the imaging unit 2a. In FIG. 7, the illumination light L is incident substantially parallel to the surface of the inspection object 4, but may be slightly inclined toward the inspection object 4 as described with reference to FIG. The same applies to FIGS. 8 and 12 described later.
 比較例においても、異物で生じた散乱光を鮮鋭に撮影することが、異物の発見において好ましい。光学系22の光軸を検査対象4の表面と略直交させた比較例では、4個並べた球形微小粒子S1~S4の内、照明光Lが入射する側に位置する球形微小粒子S1のみが、精度よく観察することができた。一方、照明光Lとは反対側に位置する3つの球形微小粒子S2~S4は、散乱光の受光量が不足するため、その観察精度は、照明光Lの入射する側から遠ざかるにつれて悪くなることが分かった。そのため、比較例では、撮像範囲Tを全て使用するのではなく、LED線光源3a側に位置する有効検査領域R1を異物の検出対象として使用する。そして、LED線光源3aから離れて位置する無効検査領域R2は異物の検出対象として使用しないことが、散乱光を有効に受光する点においては好ましい。 Also in the comparative example, it is preferable to detect the scattered light generated by the foreign matter sharply in order to find the foreign matter. In the comparative example in which the optical axis of the optical system 22 is substantially orthogonal to the surface of the inspection object 4, only the spherical microparticles S1 positioned on the side on which the illumination light L is incident are among the four spherical microparticles S1 to S4 arranged. It was possible to observe with high accuracy. On the other hand, the three spherical microparticles S2 to S4 located on the side opposite to the illumination light L have insufficient amount of scattered light, so that the observation accuracy becomes worse as the distance from the incident side of the illumination light L is increased. I understood. Therefore, in the comparative example, the entire imaging range T is not used, but the effective inspection region R1 positioned on the LED line light source 3a side is used as a foreign object detection target. And it is preferable not to use the invalid inspection area | region R2 located away from LED line light source 3a as a detection target of a foreign material in the point which receives scattered light effectively.
 図9(A)は、比較例の撮像画像23中、有効検査領域R1を説明するための模式図である。図7で説明したように、比較例では、撮像範囲T中、LED線光源3aから照明光Lが入射する側に位置する領域を、異物の検査に使用する有効検査領域R1としている。また、残る領域を異物の検査に使用しない無効検査領域R2としている。図9(A)を見て分かるように、光学系22の光軸が撮像面21に直交する撮像部2aを使用した場合、撮像画像23における光軸C2の位置は、撮像画像23の中心に位置する。一方、有効検査領域R1の画像中心C1は、撮像画像23から無効検査領域R2が切り取られるため、照明光Lが入射する側に偏移している。 FIG. 9A is a schematic diagram for explaining the effective inspection region R1 in the captured image 23 of the comparative example. As described with reference to FIG. 7, in the comparative example, an area located on the side where the illumination light L is incident from the LED line light source 3 a in the imaging range T is set as an effective inspection area R <b> 1 used for the inspection of the foreign matter. Further, the remaining area is set as an invalid inspection area R2 that is not used for the inspection of foreign matter. As can be seen from FIG. 9A, when the imaging unit 2 a in which the optical axis of the optical system 22 is orthogonal to the imaging surface 21 is used, the position of the optical axis C <b> 2 in the captured image 23 is at the center of the captured image 23. To position. On the other hand, the image center C1 of the effective inspection region R1 is shifted to the side on which the illumination light L is incident because the invalid inspection region R2 is cut out from the captured image 23.
 本発明は、比較例のように撮像画像23中、照明光Lの入射側に位置する一部領域(有効検査領域R1)を異物の検出対象として使用することで、異物による散乱光を有効に受光し、異物の検出精度向上を図ることが可能である。しかしながら、図9(A)を見て分かるように、比較例のように、光学系22の光軸を検査対象4の表面と略直交させた場合、撮像範囲T中の有効検査領域R1は、狭くなることになる。その結果として、撮像部2a~2rを増やすなどの対応が必要となる。本実施形態では、このような事情を考慮し、図2で説明したように、撮像部2a~2rを、検査対象4の直交方向から角度Eだけ設けた配置とすることで、有効検査領域R1の拡大を図っている。 As in the comparative example, the present invention effectively uses scattered light due to foreign matter by using a partial region (effective inspection region R1) positioned on the incident side of the illumination light L as a foreign matter detection target in the captured image 23. It is possible to receive light and improve the detection accuracy of foreign matter. However, as can be seen from FIG. 9A, when the optical axis of the optical system 22 is substantially orthogonal to the surface of the inspection object 4 as in the comparative example, the effective inspection region R1 in the imaging range T is It will become narrower. As a result, it is necessary to take measures such as increasing the imaging units 2a to 2r. In the present embodiment, in consideration of such circumstances, as described with reference to FIG. 2, the imaging units 2a to 2r are arranged so as to be provided at an angle E from the orthogonal direction of the inspection target 4, thereby enabling the effective inspection region R1. Is expanding.
 図8は、本実施形態の異物検査装置1の撮影構成を説明するための側面図である。ここでは、図7の比較例と同様、1つの撮像部2aを例に取ってその撮像構成を説明する。本実施形態では、検査対象4の表面を、Y軸方向に延在するLED線光源3aで照明し、検査対象4に付着する異物で散乱した散乱光を撮像部2aで撮像することとしている。ここでは、異物のサンプルとして、X軸方向に等間隔で6個の球形微小粒子S1~S6を並べている。これら球形微小粒子S1~S6は、撮像部2aの撮像範囲Tに入るように配置されている。 FIG. 8 is a side view for explaining a photographing configuration of the foreign matter inspection apparatus 1 of the present embodiment. Here, as in the comparative example of FIG. 7, the imaging configuration will be described by taking one imaging unit 2a as an example. In the present embodiment, the surface of the inspection object 4 is illuminated with the LED line light source 3a extending in the Y-axis direction, and the scattered light scattered by the foreign matter attached to the inspection object 4 is imaged by the imaging unit 2a. Here, six spherical microparticles S1 to S6 are arranged at equal intervals in the X-axis direction as a sample of foreign matter. These spherical fine particles S1 to S6 are arranged so as to fall within the imaging range T of the imaging unit 2a.
 本実施形態では、異物で生じた散乱光を鮮鋭に撮影することが、異物の発見において好ましい。球形微小粒子S1~S6の散乱光をできるだけ多く受光するには、球形微小粒子S1~S6において、照明光Lの入射側とは反対側に生じる散乱光について、その受光量を多くするべく、撮像部2aの角度Eを大きくとることが好ましい。しかしながら、角度Eを大きくした場合、散乱光のみならず、照明光Lの正反射光が入射することになり、正反射光で散乱光が阻害されてしまうことになる。そのため、本実施形態では、撮像部2aの角度EをLED線光源3aからの照明光Lによる正反射光が入射しない程度の角度(1度~20度の範囲)としている。 In this embodiment, it is preferable to detect the scattered light generated by the foreign object sharply in finding the foreign object. In order to receive as much scattered light as possible from the spherical microparticles S1 to S6, in order to increase the amount of received light of the scattered light generated on the side opposite to the incident side of the illumination light L in the spherical microparticles S1 to S6. It is preferable to increase the angle E of the portion 2a. However, when the angle E is increased, not only the scattered light but also the regular reflected light of the illumination light L is incident, and the scattered light is inhibited by the regular reflected light. For this reason, in the present embodiment, the angle E of the imaging unit 2a is set to an angle (in the range of 1 to 20 degrees) such that the regular reflection light by the illumination light L from the LED line light source 3a does not enter.
 また、このような角度Eを設けることで、光学系22の光軸を検査対象4の表面と略直交させた比較例(図7、図9(A))と比較して、有効検査領域R1の拡大を図ることが可能となっている。本実施形態においても、撮像範囲Tを全て使用するのではなく、LED線光源3a側に位置する有効検査領域R1を異物の検出対象として使用する。そして、LED線光源3aから離れて位置する無効検査領域R2は異物の検出対象として使用しないこととしている。したがって、図1、図2で説明したように複数の撮像部2a~2rを使用して検査対象4の全面を検査する場合、撮像部2a~2は、有効検査領域R1の一部が重なるように配置される。 Further, by providing such an angle E, the effective inspection region R1 is compared with the comparative example (FIGS. 7 and 9A) in which the optical axis of the optical system 22 is substantially orthogonal to the surface of the inspection object 4. Can be expanded. Also in the present embodiment, the entire imaging range T is not used, but the effective inspection region R1 located on the LED line light source 3a side is used as a foreign object detection target. The invalid inspection region R2 located away from the LED line light source 3a is not used as a foreign object detection target. Accordingly, when the entire surface of the inspection object 4 is inspected using the plurality of imaging units 2a to 2r as described with reference to FIGS. 1 and 2, the imaging units 2a to 2 are arranged such that a part of the effective inspection region R1 overlaps. Placed in.
 図9(B)は、本実施形態の撮像画像23中、有効検査領域R1を説明するための模式図である。図8で説明したように、本実施形態では、撮像範囲T中、LED線光源3aから照明光Lが入射する側に位置する領域を、異物の検査に使用する有効検査領域R1としている。また、残る領域を異物の検査に使用しない無効検査領域R2としている。図8を見て分かるように、光学系22の光軸が撮像面21に直交する撮像部2aを使用した場合、撮像画像23における光軸C2の位置は、撮像画像23の中心に位置する。一方、有効検査領域R1の画像中心C1は、撮像画像23から無効検査領域R2が切り取られるため、照明光Lが入射する側に偏移している。 FIG. 9B is a schematic diagram for explaining the effective inspection region R1 in the captured image 23 of the present embodiment. As described with reference to FIG. 8, in the present embodiment, an area located on the side where the illumination light L is incident from the LED line light source 3 a in the imaging range T is set as an effective inspection area R <b> 1 used for the inspection of foreign matter. Further, the remaining area is set as an invalid inspection area R2 that is not used for the inspection of foreign matter. As can be seen from FIG. 8, when the imaging unit 2 a in which the optical axis of the optical system 22 is orthogonal to the imaging surface 21 is used, the position of the optical axis C <b> 2 in the captured image 23 is located at the center of the captured image 23. On the other hand, the image center C1 of the effective inspection region R1 is shifted to the side on which the illumination light L is incident because the invalid inspection region R2 is cut out from the captured image 23.
 図10は、本実施形態の画像処理で使用するマスクを説明するための模式図である。マスクとは、撮像画像23中、異物の検査に使用しない不感帯領域を指定するために使用される。不感帯領域は、検査対象4中、予め分かっている構造物、孔、傷等の位置に割り当てられ、これらを異物として誤検出しないことを目的としている。本実施形態では、照明光Lにインコヒーレント光を使用し、その色を選定することで、特に、検査対象4の裏面に位置する電極等の構造物、検査対象4に設けられた孔、台座5の表面にある傷等を、実寸よりも小さく認識(観察)されることを可能としている。したがって、マスク中の不感帯領域を縮小する、あるいは、不感帯領域を設けなくてもよいこととし、不感帯領域以外の領域、すなわち、異物の検査対象となる領域の拡大を図ることが可能となる。 FIG. 10 is a schematic diagram for explaining a mask used in the image processing of the present embodiment. The mask is used for designating a dead zone area that is not used for the inspection of foreign matter in the captured image 23. The dead zone region is assigned to positions of structures, holes, scratches, and the like that are known in advance in the inspection object 4, and is intended to prevent erroneous detection of these as foreign matters. In the present embodiment, incoherent light is used as the illumination light L and the color thereof is selected, so that in particular, structures such as electrodes located on the back surface of the inspection object 4, holes provided in the inspection object 4, pedestal 5 can be recognized (observed) smaller than the actual size. Therefore, it is possible to reduce the dead zone area in the mask or not to provide the dead zone area, and it is possible to enlarge the area other than the dead zone area, that is, the area to be inspected for foreign matter.
 図10(A)は、検査対象4の裏面に設けた電極45b、検査対象4を貫通する孔45a、台座に設けられた台座孔5aを模式的に示した上面図、及び、孔45aの位置における断面図である。図10で示す座標系は、図1、図2と同様であって、照明光Lは、Z軸正の方向から検査対象4の表面に照射される。電極45bは、照明光Lが照射される側とは反対の裏面に位置している。 10A is a top view schematically showing the electrode 45b provided on the back surface of the inspection object 4, the hole 45a penetrating the inspection object 4, the pedestal hole 5a provided in the pedestal, and the position of the hole 45a. FIG. The coordinate system shown in FIG. 10 is the same as that in FIGS. 1 and 2, and the illumination light L is irradiated on the surface of the inspection object 4 from the positive direction of the Z axis. The electrode 45b is located on the back surface opposite to the side irradiated with the illumination light L.
 照明光Lに白色光を使用して撮影した場合、孔45a、電極45bは、実寸で観察されることになる。そのため、白色光を使用した場合のマスク6aにおける不感帯領域61a、61bは、図10(B)に示すように、図10(A)の孔45a、電極45bと同じ大きさ、あるいは、余裕をみて僅かに大きく設けられる。図10(B)のマスク6a中、不感帯領域61a、61b以外の領域が異物の検査対象として使用される。したがって、これら不感帯領域61a、61bに異物が付着していた場合、当該異物は検出できないことになる。 When photographing using white light as the illumination light L, the hole 45a and the electrode 45b are observed in actual size. Therefore, when the white light is used, the dead zone regions 61a and 61b in the mask 6a have the same size or allowance as the holes 45a and the electrodes 45b in FIG. 10A, as shown in FIG. 10B. Slightly larger. In the mask 6a shown in FIG. 10B, regions other than the dead zone regions 61a and 61b are used as foreign matter inspection targets. Therefore, when a foreign object adheres to these dead zone regions 61a and 61b, the foreign object cannot be detected.
 一方、本実施形態の異物検査装置1では、図4でも説明したように、照明光Lの色を検査対象4の表面色に応じて選択することで、検査対象への照明光Lの透過量を減少させ、検査対象4の裏面に位置する電極45b、検査対象4に設けられた孔45a、台座5に設けられた台座孔5aにおける反射量(輝度)を略0とする、あるいは、反射量を低下させることが可能となる。本実施形態では、撮像画像の各画素に対して閾値を設け、閾値以上の輝度で2値化を行っているが、2値化を行うことで、検査対象4の裏面に位置する電極45b、検査対象4に設けられた孔45a、台座5に設けられた台座孔5aは、その全領域、あるいは、一部領域の輝度が閾値以下となり、全領域、あるいは、一部領域が認識(観察)対象から外れることになる。例えば、図9(A)では、X軸正の方向から照明光Lが入射することになるが、入射する照明光Lが電極45bの端部(Xの値が大きい側)で反射を起こし、電極45bの他の部分よりも輝度が強くなることが考えられる。そのため、電極45bの照明光が入射する側の端部では、2値化後においても、認識(観察)可能な画像として残ってしまう。本実施形態では、認識(観察)可能な画像として残った部分にのみマスクを行うこととしている。 On the other hand, in the foreign substance inspection apparatus 1 according to the present embodiment, as described with reference to FIG. 4, the transmission amount of the illumination light L to the inspection object is selected by selecting the color of the illumination light L according to the surface color of the inspection object 4. The reflection amount (luminance) at the electrode 45b located on the back surface of the inspection object 4, the hole 45a provided in the inspection object 4 and the pedestal hole 5a provided in the pedestal 5 is made substantially zero, or the reflection amount Can be reduced. In the present embodiment, a threshold value is provided for each pixel of the captured image and binarization is performed with a luminance equal to or higher than the threshold value. However, by performing binarization, the electrode 45b positioned on the back surface of the inspection object 4, In the hole 45a provided in the inspection object 4 and the pedestal hole 5a provided in the pedestal 5, the luminance of the entire region or a part of the region is below a threshold value, and the entire region or a part of the region is recognized (observed). It will be excluded from the target. For example, in FIG. 9A, the illumination light L is incident from the positive direction of the X axis, but the incident illumination light L is reflected at the end of the electrode 45b (the side where the value of X is large), It is conceivable that the luminance is stronger than the other part of the electrode 45b. Therefore, the end of the electrode 45b on the side where the illumination light is incident remains as a recognizable (observable) image even after binarization. In the present embodiment, masking is performed only on a portion remaining as a recognizable (observable) image.
 本実施形態の異物検査装置1で使用するマスク6bは、図10(C)に示す2値化された撮像画像23に基づいて作成されることになり、図10(D)に示す形態となる。マスク6bでは、図10(C)に示されるように、撮像画像23において孔45a、台座孔5aが消去されているため、孔45a、台座孔5aに対する不感帯領域61aを必要としない。また、電極45bについては、電極45bの実寸よりも小さい不感帯領域61b’で済むことになる。よって、図10(B)の白色光におけるマスク6aと、図10(D)の本実施形態のマスク6bを比較して分かるように、不感帯領域を小さく抑え、残る領域、すなわち、異物の検査対象となる領域拡大を図ることが可能となっている。なお、異物の検出を行う際の画像処理として、撮像画像23に対する2値化は必ずしも行う必要はなく、2値化に代えてn値化(n≧3)とすることとしてもよい。
 
The mask 6b used in the foreign matter inspection apparatus 1 of the present embodiment is created based on the binarized captured image 23 shown in FIG. 10C, and has the form shown in FIG. . In the mask 6b, as shown in FIG. 10C, since the hole 45a and the pedestal hole 5a are deleted in the captured image 23, the dead zone region 61a for the hole 45a and the pedestal hole 5a is not required. Further, the dead zone region 61b ′ smaller than the actual size of the electrode 45b is sufficient for the electrode 45b. Therefore, as can be seen by comparing the mask 6a for white light in FIG. 10B and the mask 6b of the present embodiment in FIG. 10D, the dead zone region is suppressed to a small size, that is, a foreign object inspection target. It is possible to expand the area that becomes. It should be noted that as the image processing when detecting the foreign matter, the binarization of the captured image 23 is not necessarily performed, and the binarization may be performed instead of the binarization (n ≧ 3).
 異物検査装置1の画像処理で使用するマスク6bは、異物が付着していないことを十分に確認した検査対象4を撮影し、その撮像画像を使用して作成される。また、同じ構成の検査対象4であっても、レジスト色等の表面色、及び、照明光Lの色が異なる場合には、電極像23b等の大きさも変化するため、検査対象4の表面色毎に作成されることが好ましい。 The mask 6b used in the image processing of the foreign matter inspection apparatus 1 is created by taking an image of the inspection object 4 that has been sufficiently confirmed that no foreign matter has adhered, and using the captured image. Further, even if the inspection target 4 has the same configuration, when the surface color such as the resist color and the color of the illumination light L are different, the size of the electrode image 23b and the like also changes. It is preferable to create each.
 図11は、本実施形態の異物検査装置1における異物検査工程を示すフロー図である。本実施形態では、図3で説明した製造工程途中のカラーフィルタを検査対象4としている。異物検査工程では、まず、台座5に検査対象4が設置される(S11)。そして、検査対象4の表面色であるカラーレジスト色が、LED線光源3a、3bに設定されている照明光Lの色と適合しているか否かが判定される。製造ラインの変更などに伴い、対象となるカラーレジスト色が変更された場合等、照明光Lの色が検査対象4の表面色、すなわち、塗布されているカラーレジストの色に適合しない場合(S12:No)には、検査対象4の表面色に適合するように、照明光Lの色を変更する(S13)。LED線光源3aには、R(赤)、G(緑)、B(青)のLEDが設けられており、各色LEDの明るさを変化させることで、照明光Lの色を変更する(調光する)ことが可能である。 FIG. 11 is a flowchart showing a foreign substance inspection process in the foreign substance inspection apparatus 1 of the present embodiment. In the present embodiment, the color filter in the middle of the manufacturing process described with reference to FIG. In the foreign matter inspection step, first, the inspection object 4 is installed on the base 5 (S11). Then, it is determined whether or not the color resist color that is the surface color of the inspection object 4 is compatible with the color of the illumination light L set in the LED line light sources 3a and 3b. The color of the illumination light L does not match the surface color of the inspection object 4, that is, the color of the applied color resist, such as when the target color resist color is changed due to a change in the production line (S12). : No), the color of the illumination light L is changed so as to match the surface color of the inspection object 4 (S13). The LED line light source 3a is provided with R (red), G (green), and B (blue) LEDs, and changes the color of the illumination light L by changing the brightness of each color LED (adjustment). Light).
 そして、検査対象4の表面に照明光を照射し(S14)、撮像部2a~2rで撮像を行う。なお、本実施形態では、撮像画像23の一部領域である有効検査領域R1を、異物の検査に使用する。撮像画像23は、2値化された(S16)後、表面色に対応したマスクが施される(S19)。なお、前述したようにマスクは表面色に対応しているため、マスクが表面色に適合していない場合(S17:No)、マスクは表面色に適合するものに変更される(S18)。 Then, the surface of the inspection object 4 is irradiated with illumination light (S14), and imaging is performed by the imaging units 2a to 2r. In the present embodiment, the effective inspection region R1 that is a partial region of the captured image 23 is used for the inspection of foreign matter. The captured image 23 is binarized (S16), and then a mask corresponding to the surface color is applied (S19). Since the mask corresponds to the surface color as described above, if the mask does not match the surface color (S17: No), the mask is changed to one that matches the surface color (S18).
 異物の有無の検査は、2値化された撮像画像23に対し、マスクによる不感帯領域以外の領域に対して行われる(S20)。図6で説明したように、異物の検出は、異物で生じる散乱光を観察することで行われるが、この散乱光の範囲(図6の黒色で示す部分)が閾値を超える場合、異物ありとして判断される。検査が行われた後、検査対象4は、台座5から移動され(S21)、異物無しの場合(S22:No)は、検査対象4は次の工程に入る。一方、異物有りの場合(S22:Yes)には、検査対象4は、塗布されたカラーレジストを取り除く等の再処理工程が行われる、あるいは、廃棄処理の対象となる(S23)。なお、異物の有無の検査は、上述する形態以外に、各種形態で行うことが可能である。 The inspection for the presence or absence of a foreign object is performed on the binarized captured image 23 in an area other than the dead zone area by the mask (S20). As described with reference to FIG. 6, foreign matter is detected by observing scattered light generated by the foreign matter. If the range of the scattered light (shown in black in FIG. 6) exceeds a threshold value, it is assumed that there is a foreign matter. To be judged. After the inspection is performed, the inspection object 4 is moved from the pedestal 5 (S21), and when there is no foreign object (S22: No), the inspection object 4 enters the next step. On the other hand, when there is a foreign substance (S22: Yes), the inspection object 4 is subjected to a reprocessing step such as removing the applied color resist or is subjected to a disposal process (S23). The inspection for the presence or absence of foreign matters can be performed in various forms other than the above-described forms.
 図7~図9では、異物による散乱光の検出精度向上を図るため、撮像画像23中、撮像範囲T内において、照明光側に位置する一部を有効検査領域R1とすることを説明した。これは、撮像面21が光学系22の光軸と直交する一般的な撮像部2aを使用した場合である。撮像部2aの光学系22に工夫を施すことで、有効検査領域R1の拡大を図ることが実現できる。 7 to 9, it has been described that, in order to improve the detection accuracy of scattered light due to foreign matter, a part of the captured image 23 located on the illumination light side in the imaging range T is set as the effective inspection region R1. This is a case where a general imaging unit 2 a in which the imaging surface 21 is orthogonal to the optical axis of the optical system 22 is used. By devising the optical system 22 of the imaging unit 2a, it is possible to realize an enlargement of the effective inspection region R1.
 図12は、他の実施形態の異物検査装置1の撮影構成であり、撮像部2aに工夫を施すことで、有効検査領域R1の拡大を図る実施形態を説明するための側面図である。図7の比較例、図8の実施形態と同様、1つの撮像部2aを例に取ってその撮像構成を説明する。他の実施形態では、検査対象4の表面を、Y軸方向に延在するLED線光源3aで照明し、検査対象4に付着する異物で散乱した散乱光を撮像部2aで撮像することとしている。ここでは、異物のサンプルとして、X軸方向に等間隔で5個の球形微小粒子S1~S5を並べている。 FIG. 12 is a side view for explaining an embodiment of the imaging configuration of the foreign matter inspection apparatus 1 according to another embodiment, in which the effective inspection region R1 is expanded by devising the imaging unit 2a. Similar to the comparative example of FIG. 7 and the embodiment of FIG. 8, the imaging configuration will be described using one imaging unit 2 a as an example. In another embodiment, the surface of the inspection object 4 is illuminated with the LED line light source 3a extending in the Y-axis direction, and the scattered light scattered by the foreign matter adhering to the inspection object 4 is imaged by the imaging unit 2a. . Here, five spherical microparticles S1 to S5 are arranged at equal intervals in the X-axis direction as a sample of foreign matter.
 他の実施形態では、一般的な撮像部2aと異なり、撮像部2aにおける光学系22の光軸が、撮像部2aの撮像面の鉛直方向に対して傾斜させている。更に具体的には、撮像面21の延長面P1は、光学系22の光軸の垂直面P2と、検査対象の略表面位置で交わるように、撮像部2aを配置している。なお、図12において延長面P1と、垂直面P2は、記載範囲内に収めるため、途中の経路を折り曲げて記載している。このような構成を採用することで、照明光Lから離れた位置(例えば、球形微小粒子S5の位置)においても、十分な散乱光を受光することが可能となっている。図12の場合、撮像範囲Tと有効検査領域R1は領域を同一としている。すなわち、撮像範囲Tの全領域を、異物の検査に使用することが可能となっている。なお、このように撮像部2aに工夫を施す実施形態においても、前述した実施形態と同様、有効検査領域R1を、撮像部2aで撮影された画像中、照明光が入射する側の一部領域とすることとしてもよい。 In other embodiments, unlike the general imaging unit 2a, the optical axis of the optical system 22 in the imaging unit 2a is inclined with respect to the vertical direction of the imaging surface of the imaging unit 2a. More specifically, the image pickup unit 2a is arranged so that the extended surface P1 of the image pickup surface 21 intersects the vertical surface P2 of the optical axis of the optical system 22 at a substantially surface position of the inspection target. In FIG. 12, the extended surface P <b> 1 and the vertical surface P <b> 2 are described by bending a route in the middle so as to be within the description range. By adopting such a configuration, it is possible to receive sufficient scattered light even at a position away from the illumination light L (for example, the position of the spherical microparticle S5). In the case of FIG. 12, the imaging range T and the effective inspection area R1 are the same area. That is, the entire area of the imaging range T can be used for the inspection of foreign matter. In the embodiment in which the imaging unit 2a is devised in this way, as in the above-described embodiment, the effective inspection region R1 is a partial region on the side on which illumination light is incident in the image captured by the imaging unit 2a. It is good also as doing.
 以上説明したように、本発明に係る異物検査装置(あるいは異物検査方法)によれば、異物の検出対象とする画像を、撮像部で撮影された画像中、照明光が入射する側の一部領域とする、あるいは、撮像部における光学系の光軸を、撮像部の撮像面の鉛直方向に対して傾斜させることで、異物の検査を行う領域の拡大を図り、検査精度の向上を図ることが可能となる。 As described above, according to the foreign matter inspection apparatus (or foreign matter inspection method) according to the present invention, a part on the side on which illumination light is incident is included in an image taken by an imaging unit as an object to be detected as a foreign matter. By increasing the optical axis of the optical system in the image pickup unit with respect to the vertical direction of the image pickup surface of the image pickup unit, the region to be inspected for foreign substances can be expanded and the inspection accuracy can be improved. Is possible.
 なお、本発明はこれらの実施形態のみに限られるものではなく、それぞれの実施形態の構成を適宜組み合わせて構成した実施形態も本発明の範疇となるものである。 Note that the present invention is not limited to these embodiments, and embodiments configured by appropriately combining the configurations of the respective embodiments also fall within the scope of the present invention.
1:異物検査装置
2a~2r:撮像部
3a、3b:LED線光源
4:検査対象
5:台座
6a、6b:マスク
21:撮像面
22:光学系
23:撮像画像
23b:電極像
41:透明基板
42:ブラックマトリックス
43R、43G、43B:カラーレジスト
44:フォトマスク
44a:開口
45a:孔
45b:電極
61a、61b、61b’:不感帯領域
C1:画像中心
C2:光軸
E:角度
L:照明光
P:撮像範囲
P1:延長面
P2:垂直面
R1:有効検査領域
R2:無効検査領域
S(S1~S6):球形微小粒子
T:撮像範囲
1: foreign matter inspection devices 2a to 2r: imaging units 3a, 3b: LED line light source 4: inspection target 5: pedestal 6a, 6b: mask 21: imaging surface 22: optical system 23: captured image 23b: electrode image 41: transparent substrate 42: Black matrix 43R, 43G, 43B: Color resist 44: Photomask 44a: Opening 45a: Hole 45b: Electrodes 61a, 61b, 61b ′: Dead zone C1: Image center C2: Optical axis E: Angle L: Illumination light P : Imaging range P1: extended surface P2: vertical surface R1: effective inspection region R2: invalid inspection region S (S1 to S6): spherical fine particles T: imaging range

Claims (7)

  1.  検査対象の表面に付着した異物を検査する異物検査装置であって、
     照明光を前記検査対象に照射する光源部と、
     前記検査対象を撮影する撮像部と、
     前記撮像部で撮影された画像に基づいて異物を検出する検出部と、を備え、
     前記検出部において、異物の検出対象とする画像は、前記撮像部で撮影された画像中、照明光が入射する側の一部領域である
     異物検査装置。
    A foreign matter inspection apparatus for inspecting foreign matter attached to the surface of an inspection object,
    A light source unit for illuminating the inspection object with illumination light;
    An imaging unit for imaging the inspection object;
    A detection unit that detects foreign matter based on an image captured by the imaging unit,
    In the detection unit, the image to be detected by the foreign matter is a partial region on the side on which illumination light is incident in the image photographed by the imaging unit.
  2.  前記撮像部における光学系の光軸は、前記検査対象の表面に対して傾斜している
     請求項1に記載の異物検査装置。
    The foreign matter inspection apparatus according to claim 1, wherein an optical axis of an optical system in the imaging unit is inclined with respect to a surface of the inspection target.
  3.  検査対象の表面に付着した異物を検査する異物検査装置であって、
     照明光を前記検査対象に照射する光源部と、
     前記検査対象を撮影する撮像部と、
     前記撮像部で撮影された画像に基づいて異物を検出する検出部と、を備え、
     前記撮像部における光学系の光軸は、前記撮像部の撮像面の鉛直方向に対して傾斜している
     異物検査装置。
    A foreign matter inspection apparatus for inspecting foreign matter attached to the surface of an inspection object,
    A light source unit for illuminating the inspection object with illumination light;
    An imaging unit for imaging the inspection object;
    A detection unit that detects foreign matter based on an image captured by the imaging unit,
    The optical axis of the optical system in the imaging unit is inclined with respect to the vertical direction of the imaging surface of the imaging unit.
  4.  前記撮像面の延長面は、前記光学系の光軸の垂直面と、前記検査対象の略表面位置で交わる
     請求項3に記載の異物検査装置。
    The foreign matter inspection apparatus according to claim 3, wherein the extended surface of the imaging surface intersects with a vertical surface of the optical axis of the optical system at a substantially surface position of the inspection target.
  5.  前記撮像部は、前記検査対象で反射した正反射光を受光しない位置であって、前記検査対象の表面に付着した異物の散乱光を受光する位置に配置されている
     請求項1または請求項3に記載の異物検査装置。
    The imaging unit is disposed at a position where the specularly reflected light reflected by the inspection target is not received, and at a position where the scattered light of the foreign matter attached to the surface of the inspection target is received. The foreign matter inspection apparatus described in 1.
  6.  検査対象の表面に付着した異物を検査する異物検査方法であって、
     照明光を前記検査対象に照射し、
     前記検査対象で反射した照明光を撮像部で撮影し、
     異物の検出対象とする画像は、前記撮像部で撮影された画像中、照明光が入射する側の一部領域である
     異物検査方法。
    A foreign matter inspection method for inspecting foreign matter adhering to a surface to be inspected,
    Irradiate the inspection object with illumination light,
    Photographing the illumination light reflected by the inspection object with an imaging unit,
    The foreign object detection method is a partial region on the side on which illumination light is incident in the image captured by the imaging unit.
  7.  検査対象の表面に付着した異物を検査する異物検査装置であって、
     照明光を前記検査対象に照射し、
     前記検査対象で反射した照明光を撮像部で撮影し、
     撮影された画像に基づいて異物を検出し、
     前記撮像部における光学系の光軸は、前記撮像部の撮像面の鉛直方向に対して傾斜している
     異物検査方法。
    A foreign matter inspection apparatus for inspecting foreign matter attached to the surface of an inspection object,
    Irradiate the inspection object with illumination light,
    Photographing the illumination light reflected by the inspection object with an imaging unit,
    Detect foreign objects based on the captured images,
    The optical axis of the optical system in the imaging unit is inclined with respect to the vertical direction of the imaging surface of the imaging unit.
PCT/JP2018/022471 2018-06-12 2018-06-12 Foreign matter inspection device and foreign matter inspection method WO2019239502A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880094390.XA CN112262313B (en) 2018-06-12 2018-06-12 Foreign matter inspection device and foreign matter inspection method
JP2020524995A JP7011348B2 (en) 2018-06-12 2018-06-12 Foreign matter inspection device and foreign matter inspection method
PCT/JP2018/022471 WO2019239502A1 (en) 2018-06-12 2018-06-12 Foreign matter inspection device and foreign matter inspection method
TW108119932A TWI734992B (en) 2018-06-12 2019-06-10 Foreign body inspection device and foreign body inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022471 WO2019239502A1 (en) 2018-06-12 2018-06-12 Foreign matter inspection device and foreign matter inspection method

Publications (1)

Publication Number Publication Date
WO2019239502A1 true WO2019239502A1 (en) 2019-12-19

Family

ID=68843058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022471 WO2019239502A1 (en) 2018-06-12 2018-06-12 Foreign matter inspection device and foreign matter inspection method

Country Status (4)

Country Link
JP (1) JP7011348B2 (en)
CN (1) CN112262313B (en)
TW (1) TWI734992B (en)
WO (1) WO2019239502A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI839846B (en) * 2022-09-15 2024-04-21 華洋精機股份有限公司 Detection method and detection system for determining whether a defect on the surface of a transparent film is located on the surface of the film or on the back of the film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258235A (en) * 1993-03-04 1994-09-16 Canon Inc Surface inspection device
JPH1048144A (en) * 1996-07-31 1998-02-20 Dainippon Printing Co Ltd Glass substrate inspecting instrument
JP2000162137A (en) * 1998-11-26 2000-06-16 Nikon Corp Surface inspecting device
JP2007040862A (en) * 2005-08-04 2007-02-15 Dainippon Printing Co Ltd Foreign matter inspection device and method
JP2007078356A (en) * 2005-09-09 2007-03-29 Horiba Ltd Defect inspecting device
JP2014038045A (en) * 2012-08-17 2014-02-27 Sony Corp Inspection device, illumination, inspection method, program and substrate producing method
JP2015219085A (en) * 2014-05-16 2015-12-07 東レエンジニアリング株式会社 Substrate inspection device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373327B2 (en) * 1995-04-24 2003-02-04 松下電器産業株式会社 Foreign matter inspection device
EP0930498A3 (en) * 1997-12-26 1999-11-17 Nidek Co., Ltd. Inspection apparatus and method for detecting defects
US9019498B2 (en) * 2009-11-20 2015-04-28 National Institute Of Advanced Industrial Science And Technology Method for inspecting defects, inspected wafer or semiconductor device manufactured using the same, method for quality control of wafers or semiconductor devices and defect inspecting apparatus
JP5608722B2 (en) * 2012-11-16 2014-10-15 株式会社日立ハイテクノロジーズ Inspection device and method for adjusting inspection device
JP2016057180A (en) * 2014-09-10 2016-04-21 東レエンジニアリング株式会社 Substrate inspection device
JP6393583B2 (en) * 2014-10-30 2018-09-19 株式会社ディスコ Protective film detection apparatus and protective film detection method
JP2017173106A (en) * 2016-03-23 2017-09-28 旭硝子株式会社 Foreign object detection device, foreign object detection method and glass plate manufacturing method
JP7084012B2 (en) * 2016-10-31 2022-06-14 キリンテクノシステム株式会社 Foreign matter inspection device and foreign matter inspection method for containers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258235A (en) * 1993-03-04 1994-09-16 Canon Inc Surface inspection device
JPH1048144A (en) * 1996-07-31 1998-02-20 Dainippon Printing Co Ltd Glass substrate inspecting instrument
JP2000162137A (en) * 1998-11-26 2000-06-16 Nikon Corp Surface inspecting device
JP2007040862A (en) * 2005-08-04 2007-02-15 Dainippon Printing Co Ltd Foreign matter inspection device and method
JP2007078356A (en) * 2005-09-09 2007-03-29 Horiba Ltd Defect inspecting device
JP2014038045A (en) * 2012-08-17 2014-02-27 Sony Corp Inspection device, illumination, inspection method, program and substrate producing method
JP2015219085A (en) * 2014-05-16 2015-12-07 東レエンジニアリング株式会社 Substrate inspection device

Also Published As

Publication number Publication date
CN112262313A (en) 2021-01-22
TW202018285A (en) 2020-05-16
TWI734992B (en) 2021-08-01
JPWO2019239502A1 (en) 2021-03-11
CN112262313B (en) 2024-08-16
JP7011348B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
TWI626438B (en) Inspection equipment and article manufacturing method
KR101444474B1 (en) Inspection apparatus
KR102066520B1 (en) Epitaxial wafer backside inspection apparatus and epitaxial wafer backside inspection method using the same
JP2012159487A (en) Foreign matter inspection device and foreign matter inspection method for flat plate glass
JP6788837B2 (en) Glass plate inspection method and its manufacturing method and glass plate inspection equipment
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
JP4151306B2 (en) Inspection method of inspection object
CN103837078A (en) Visual inspecting apparatus and method
JP7125576B2 (en) Foreign matter inspection device and foreign matter inspection method
JP2017166903A (en) Defect inspection device and defect inspection method
JP2008068284A (en) Apparatus and method for correcting defect, and method for manufacturing pattern substrate
WO2019239502A1 (en) Foreign matter inspection device and foreign matter inspection method
KR101177163B1 (en) Light source for illumination and pattern inspection apparatus using the same
JP2009236760A (en) Image detection device and inspection apparatus
WO2019239501A1 (en) Foreign matter inspection device and foreign matter inspection method
JP2014077685A (en) Device and method for detecting pattern defects
JP2017138246A (en) Inspection device, inspection method, and image sensor
JPH09189665A (en) Dark field illumination device used for defect inspecting device
KR102385411B1 (en) Defect inspection apparatus
JP5685833B2 (en) Periodic pattern inspection method
JP2006244869A (en) Plasma display panel inspection device, manufacturing method of plasma display panel, and device inspection method
JP2012058029A (en) Periodic pattern inspection device
JP2008111746A (en) Substrate inspection apparatus and substrate inspection method
JP2025040267A (en) Visual Inspection Equipment
JP2010019639A (en) Irregularity detection device and pattern inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524995

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922214

Country of ref document: EP

Kind code of ref document: A1