[go: up one dir, main page]

WO2019234816A1 - Fertilizer production plant and fertilizer production method - Google Patents

Fertilizer production plant and fertilizer production method Download PDF

Info

Publication number
WO2019234816A1
WO2019234816A1 PCT/JP2018/021512 JP2018021512W WO2019234816A1 WO 2019234816 A1 WO2019234816 A1 WO 2019234816A1 JP 2018021512 W JP2018021512 W JP 2018021512W WO 2019234816 A1 WO2019234816 A1 WO 2019234816A1
Authority
WO
WIPO (PCT)
Prior art keywords
scrubber
urea
fertilizer
gas
carbon dioxide
Prior art date
Application number
PCT/JP2018/021512
Other languages
French (fr)
Japanese (ja)
Inventor
立花 晋也
田中 幸男
陽和 萩本
創 駒田
Original Assignee
三菱重工エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジニアリング株式会社 filed Critical 三菱重工エンジニアリング株式会社
Priority to PCT/JP2018/021512 priority Critical patent/WO2019234816A1/en
Priority to MYPI2020005533A priority patent/MY194352A/en
Priority to RU2020137143A priority patent/RU2755819C1/en
Publication of WO2019234816A1 publication Critical patent/WO2019234816A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/26Carbonates or bicarbonates of ammonium
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C9/00Fertilisers containing urea or urea compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • This disclosure relates to a fertilizer manufacturing plant and a method for manufacturing a fertilizer.
  • Patent Document 1 describes a sulfuric acid scrubber for bringing a sulfuric acid aqueous solution into contact with a gas containing ammonia (see particularly FIG. 1).
  • ammonium sulfate (ammonium sulfate) is generated by contacting the sulfuric acid aqueous solution with a gas containing ammonia. Thereby, ammonia in off-gas is removed.
  • Ammonium sulfate aqueous solution produced by ammonia treatment in off-gas can usually be granulated and used as fertilizer. However, additional cost is required for the additional installation of ammonium sulfate granulation equipment. Moreover, since sulfuric acid aqueous solution is used in a sulfuric acid scrubber, maintenance is complicated. Therefore, a simple treatment technique that does not generate ammonium sulfate is desired for off-gas containing ammonia.
  • One embodiment of the present invention aims to provide a fertilizer manufacturing plant and a method for manufacturing fertilizer that can be easily processed without producing ammonium sulfate for off-gas containing ammonia.
  • a fertilizer production plant is: A fertilizer production plant for producing fertilizers containing urea, A urea production apparatus for producing the urea using ammonia; A scrubber having an internal space for contacting the offgas containing the ammonia, which is an offgas of the fertilizer production plant, with the acidic absorbent, The acidic absorbing liquid contains carbonic acid.
  • ammonia in off-gas can be absorbed using an acidic absorbent containing carbonic acid that is easy to handle. Thereby, ammonia in off-gas can be removed without producing ammonium sulfate, and off-gas generated in the fertilizer production plant can be easily treated.
  • the acidic absorbing liquid can be manufactured using carbon dioxide generated by reforming methane-containing gas such as natural gas.
  • a compressor for increasing the pressure of the recovered carbon dioxide and supplied to the urea production apparatus A first carbon dioxide supply system for supplying the carbon dioxide boosted in the compressor to the urea production apparatus; A second carbon dioxide supply system for supplying the carbon dioxide boosted in the compressor to the carbonic acid production apparatus; It is characterized by providing.
  • the pressurized carbon dioxide can be supplied to both the urea production apparatus and the carbonic acid production apparatus. Thereby, it is not necessary to separately provide a compressor for carbonic acid production, and the installation area of the compressor can be reduced. Moreover, since carbonic acid can be produced from carbon dioxide after pressure increase, the production amount of carbonic acid can be increased.
  • the carbonic acid production apparatus includes a microbubble generator for producing the carbonic acid by dissolving carbon dioxide in water.
  • An ammonium carbonate supply system for supplying the acid absorbing liquid after the off-gas contact in the scrubber to the urea production apparatus is provided.
  • ammonium carbonate contained in the acidic absorbent after contact with off-gas can be used as a raw material for urea production.
  • the fertilizer production plant includes a solid content removal scrubber for removing solid content in the off gas,
  • the scrubber is disposed downstream of the solid content removal scrubber in the flow direction of the off gas.
  • the solid content contained in the offgas of the fertilizer production plant can be removed.
  • the ammonia in off gas after solid content removal can be removed from off gas by a scrubber.
  • An acidic absorbing liquid supply system for supplying the acidic absorbing liquid after the off-gas contact in the scrubber to the solid content removing scrubber is provided.
  • the fertilizer production plant is A urea aqueous solution supply system for supplying the urea aqueous solution produced by the urea production apparatus to the solid content removing scrubber; A urea aqueous solution return system for returning the urea aqueous solution after the off-gas contact in the solid content removing scrubber to the urea production apparatus.
  • the solid content in the off-gas can be removed using the urea aqueous solution manufactured by the urea manufacturing apparatus.
  • the usage-amount of the new water from the outside for solid content removal can be reduced.
  • the fertilizer manufacturing plant can manufacture a fertilizer using the urea aqueous solution returned from the solid content removal scrubber.
  • An integrated scrubber comprising: the solid content removing scrubber; and the scrubber configured integrally with the solid content removing scrubber above the solid content removing scrubber.
  • the scrubber can be integrally formed with the solid content removing scrubber above the solid content removing scrubber, the installation area of the scrubber can be reduced.
  • a combustor for burning fuel and a third carbon dioxide supply system for supplying carbon dioxide generated in the combustor to the internal space of the scrubber.
  • the partial pressure of carbon dioxide in the gas phase in the internal space for bringing the off gas into contact with the acidic absorbent can be increased. Thereby, it can suppress that a carbon dioxide is discharge
  • the fertilizer manufacturing plant includes a reforming device for reforming methane-containing gas,
  • the reformer is configured to reform the methane-containing gas using heat generated by combustion of the fuel in the combustor.
  • the fertilizer manufacturing plant includes a reforming device for reforming methane-containing gas
  • the combustor includes a boiler
  • the reformer is configured to reform the methane-containing gas using steam generated by combustion of the fuel in the boiler.
  • the reforming of the methane-containing gas such as natural gas can be performed using the steam generated in the boiler.
  • the fertilizer production plant includes a granulation device for granulating urea produced in the urea production device,
  • the offgas of the fertilizer manufacturing plant includes the offgas of the granulator.
  • ammonia generated at the time of granulation of the urea aqueous solution in the granulator can be removed from the off-gas by contact with the acidic absorbent.
  • a method for producing a fertilizer according to at least one embodiment of the present invention comprises: A method for producing a fertilizer for producing a fertilizer containing urea, A urea production step of producing the urea using ammonia; A contact step of contacting offgas generated during the manufacture of the fertilizer and containing ammonia with an acidic absorbent.
  • the acidic absorbing liquid contains carbonic acid.
  • ammonia in the offgas can be absorbed using an acidic absorbent containing carbonic acid that is easy to handle. Thereby, ammonia in off-gas can be removed without producing ammonium sulfate, and off-gas generated during the production of fertilizer can be easily treated.
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.
  • FIG. 1 is a system diagram of a fertilizer production plant 100 according to the first embodiment of the present invention.
  • the fertilizer manufacturing plant 100 is for manufacturing a fertilizer containing urea (urea fertilizer) from a hydrocarbon source such as methane-containing gas (natural gas or the like) or coal.
  • methane containing gas is illustrated as a hydrocarbon source.
  • the fertilizer production plant 100 includes a reformer 1, an ammonia production unit 10, a urea production unit 20, a granulator 61, and an off-gas treatment unit 80.
  • a reformer 2, a carbon dioxide recovery device 3, and a methanation device 4 are provided in the subsequent stage of the reformer 1.
  • the reformer 1 is for reforming methane-containing gas.
  • the reformer 1 uses air and steam to reform natural gas as an example of a methane-containing gas to obtain at least hydrogen and carbon dioxide.
  • the reformer 1 includes a primary reformer that performs a steam reforming reaction and a secondary reformer that performs a partial oxidation reforming reaction and a steam reforming reaction.
  • Specific reaction formulas performed in the primary reformer and the secondary reformer are shown below.
  • the reaction represented by the formulas (1) and (2) can be carried out using any reforming catalyst.
  • the reforming catalyst for example, an oxide of a transition metal such as nickel or platinum can be used.
  • the reaction conditions may be, for example, about 900 ° C. to 1000 ° C. and about 2.5 MPa to 3.5 MPa at the outlet of the catalyst layer accommodated in the secondary reformer.
  • the reformer 1 also takes in air.
  • the gas discharged from the reforming apparatus 1 and supplied to the subsequent denaturing device 2 includes components derived from air.
  • the gas discharged from the reformer 1 includes nitrogen and the like.
  • the reformer 2 denatures carbon monoxide and water vapor in the gas supplied from the reformer 1 to obtain carbon dioxide and hydrogen. Therefore, in the denaturing device 2, the carbon monoxide concentration in the gas decreases, and instead, the carbon dioxide concentration increases. By changing carbon monoxide to carbon dioxide, carbon derived from carbon monoxide can be removed as carbon dioxide by the carbon dioxide collector 3 at the subsequent stage.
  • a chemical reaction represented by the following formula (4) occurs.
  • CO + H 2 O ⁇ CO 2 + H 2 Formula (4) As a catalyst for modifying carbon monoxide (modified catalyst), any modified catalyst can be used. Examples of the modification catalyst include a copper-zinc catalyst.
  • the reaction conditions may be, for example, about 200 ° C. to 450 ° C. and about 2.5 MPa to 3.5 MPa at the outlet of the catalyst layer accommodated in the modifier 2.
  • the carbon dioxide recovery unit 3 is for recovering the carbon dioxide generated in the reformer 1. By collecting the carbon dioxide in the gas, it is possible to suppress the introduction of carbon dioxide into the ammonia production apparatus 12 at the subsequent stage and to suppress the influence on the ammonia generation catalyst (described later).
  • the carbon dioxide recovery in the carbon dioxide recovery device 3 can be performed, for example, by bringing an alkaline aqueous solution into contact with the gas.
  • the recovered carbon dioxide is separated from the alkaline aqueous solution by heating the alkaline aqueous solution or the like, and then supplied to the urea production unit 20 and the off-gas treatment unit 80 (specifically, the microbubble generator 116) described later.
  • the methanator 4 includes carbon dioxide that could not be recovered by the carbon dioxide collector 3 and carbon monoxide that was not converted to carbon dioxide by the denaturator 2 and was not recovered by the carbon dioxide collector 3. Are each converted to methane.
  • the removal of carbon oxide such as carbon monoxide and carbon dioxide suppresses the introduction of carbon oxide into the subsequent ammonia production apparatus 12. Thereby, the influence on the ammonia production
  • any methanation catalyst can be used.
  • a methanation catalyst a nickel catalyst etc. can be mentioned, for example.
  • the reaction conditions may be, for example, about 250 ° C. to 350 ° C. and about 2.0 MPa to 3.0 MPa at the outlet of the catalyst layer accommodated in the methanator 4.
  • the ammonia production unit 10 is for obtaining ammonia using at least the hydrogen obtained by the reformer 1 and the nitrogen in the air taken in by the reformer 1.
  • the ammonia production unit 10 includes a compressor 11, an ammonia production device 12, an ammonia recovery device 13, and a hydrogen recovery device 14.
  • the compressor 11 is for increasing the pressure of a raw material gas (including hydrogen and nitrogen and methane as an impurity) introduced into the ammonia production apparatus 12 at the subsequent stage.
  • a raw material gas including hydrogen and nitrogen and methane as an impurity
  • the ammonia generation reaction proceeds at a high pressure. Therefore, the ammonia generation reaction can be promoted by increasing the source gas to a high pressure by the compressor 11.
  • the ammonia production apparatus 12 is for obtaining ammonia by using at least hydrogen and nitrogen in the raw material gas.
  • liquid phase ammonia is supplied to the urea production unit 20 described later through the ammonia supply system 71.
  • the gas phase (purge gas) of the ammonia production apparatus 12 is supplied to an ammonia recovery apparatus 13 described later.
  • the gas phase of the ammonia production apparatus 12 includes surplus hydrogen and nitrogen (unreacted nitrogen), and also includes unreacted methane.
  • a chemical reaction represented by the following formula (7) occurs.
  • N 2 + 3H 2 ⁇ 2NH 3 Formula (7) As the catalyst for generating ammonia (ammonia production catalyst), any ammonia production catalyst can be used.
  • generation catalyst the iron catalyst containing a triiron tetroxide etc. can be mentioned, for example.
  • the reaction conditions may be, for example, about 400 ° C. to 480 ° C. and about 12 MPa to 20 MPa at the outlet of the catalyst layer accommodated in the ammonia production apparatus 12.
  • the ammonia recovery device 13 recovers ammonia contained in the gas phase in the ammonia production device 12.
  • the ammonia recovery device 13 includes a refrigerator (not shown), and the gas phase is cooled to around 0 ° C. by driving the refrigerator. Thereby, ammonia in the gas phase is liquefied and the liquefied ammonia is recovered.
  • the recovered ammonia is compressed by the compressor 76 through the ammonia supply system 71 in the same manner as the ammonia in the liquid phase of the ammonia production apparatus 12 described above, and then supplied to the urea production unit 20 described later.
  • the hydrogen recovery device 14 is for recovering surplus hydrogen in the ammonia production device 12. Excess hydrogen recovered by the hydrogen recovery device 14 is returned to the space between the methanator 4 and the compressor 11 (the front stage of the compressor 11) through the hydrogen circulation system 72. On the other hand, hydrogen that could not be recovered and methane that was not recovered are supplied to the reformer 1 or a boiler (not shown) together with nitrogen that has not been recovered, and are combusted and used as fuel.
  • the hydrogen recovery device 14 can have any configuration as long as it can recover hydrogen. Specifically, for example, hydrogen in the gas can be recovered by using an arbitrary hydrogen separation membrane.
  • the urea production unit 20 is for obtaining urea using at least the carbon dioxide obtained by the reformer 1 and the ammonia obtained by the ammonia production unit 10.
  • the carbon dioxide used in the urea production unit 20 is recovered by the carbon dioxide recovery unit 3 described above.
  • the ammonia used in the urea production unit 20 is ammonia produced by the above ammonia production unit and is supplied through the ammonia supply system 71.
  • the urea production unit 20 includes a compressor 21 and a urea production apparatus 22.
  • the compressor 21 is for increasing the pressure of carbon dioxide recovered by the carbon dioxide recovery device 3 and supplied to the urea production apparatus 22 (described later).
  • the pressurized carbon dioxide is supplied to the urea production apparatus 22 through the first carbon dioxide supply system 121.
  • the first carbon dioxide supply system 121 is for supplying the urea carbon dioxide boosted in the compressor 21 to the urea production apparatus 22.
  • the urea production reaction proceeds at a high pressure in the urea production apparatus 22, the urea production reaction can be promoted by increasing the raw material gas to a high pressure by the compressor 21.
  • the produced urea is supplied to a granulator 61 which will be described later.
  • the carbon dioxide boosted by the compressor 21 is also supplied to a microbubble generator 116 (a carbonic acid producing apparatus, which will be described later) through a second carbon dioxide supply system 118.
  • the second carbon dioxide supply system 118 is for supplying the carbon dioxide boosted in the compressor 21 to the microbubble generator 116.
  • the pressurized carbon dioxide is supplied to both the urea production apparatus 22 and the microbubble generator 116 (carbonic acid production apparatus). Can supply. Thereby, it is not necessary to separately provide a compressor (not shown) for carbonic acid production, and the installation area of the compressor can be reduced. Moreover, since carbonic acid can be produced from carbon dioxide after pressure increase, the production amount of carbonic acid can be increased.
  • the urea production apparatus 22 is for producing urea using at least ammonia.
  • the urea production apparatus 22 reacts carbon dioxide and ammonia in the raw material gas to generate urea.
  • the urea produced is liquid here.
  • the urea production device 22 is supplied with ammonia that has been recovered by an ammonia recovery device 13 described later and whose pressure has been increased by a compressor (high pressure pump) 76.
  • a chemical reaction represented by the following formula (8) occurs. 2NH 3 + CO 2 ⁇ (NH 2 ) 2 CO + H 2 O (8)
  • the conditions for generating urea are not particularly limited.
  • the temperature can be set to about 170 to 200 ° C. and about 13 to 18 MPa at the outlet of the urea production apparatus 22.
  • the granulator 61 is for granulating the urea produced
  • formaldehyde contained in the urea-formaldehyde aqueous solution functions as a binder, and the urea supplied from the urea production unit 20 is granulated.
  • Granular urea obtained by granulation of urea is shipped and used as fertilizer.
  • the size of the granular urea is not particularly limited, but for example, the particle size can be about 2 mm to 6 mm.
  • the off gas processing unit 80 is for processing off gas of the fertilizer manufacturing plant 100.
  • the offgas processed by the offgas processing unit 80 includes the offgas of the granulating device 61.
  • ammonia generated at the time of granulation of the urea aqueous solution in the granulator 61 can be removed from the off-gas by contact with the acidic absorbent.
  • FIG. 2 is a system diagram showing an off-gas treatment unit 80 in the fertilizer manufacturing plant 100 shown in FIG.
  • the off-gas processing unit 80 includes a solid content removing scrubber 80A and a scrubber 80B. That is, the fertilizer manufacturing plant 100 includes a solid content removing scrubber 80A and a scrubber 80B.
  • the solid content removal scrubber 80A is for removing the solid content in the off-gas.
  • the solid content here is, for example, solid urea powder contained in the off-gas of the granulator 61.
  • the solid content removal scrubber 80A it is possible to remove the solid content (for example, solid urea powder) contained in the off-gas of the fertilizer manufacturing plant 100.
  • the ammonia in the off gas after solid content removal can be removed from the off gas by the scrubber 80B.
  • the solid content removing scrubber 80A includes a casing 81 having an internal space 81a through which off-gas flows, a nozzle 83 for sprinkling water into the internal space 81a, and neutral water such as fresh water, medium water, and industrial water. (With a pH of about 7)). Since the inside of the solid content removing scrubber 80A is usually at a high temperature, liquid water evaporates. Therefore, water is sprayed by the nozzle 83 in order to replenish the evaporated liquid water.
  • the solid content removing scrubber 80A includes an extraction system 86, a pump 82, and a nozzle 84.
  • the extraction system 86 is for extracting the water remaining in the internal space 81 a by being sprayed by the nozzle 83 (including dissolved solids, the same applies to the remaining water below) to the outside of the housing 81.
  • the pump 82 is for extracting water remaining in the internal space 81 a and flowing it to the system 86.
  • the nozzle 84 is for sprinkling water that has flowed through the extraction system 86 into the internal space 81a.
  • a part of the water flowing through the extraction system 86 is extracted to the outside of the solid content removal scrubber 80A through a drainage system (not shown) from the viewpoint of suppressing the concentration of the solid content, and is drained.
  • the nozzle 84 is comprised so that water may be injected toward the tray 85 (for example, comprised with a perforated plate) installed in the middle of the off-gas flow. Thereby, the solid content deposited on the tray 85 is washed away (details will be described later).
  • the off-gas is installed in the middle of the off-gas flow, and comes into contact with a tray 85 constituted by a perforated plate, for example.
  • the nozzle 84 is configured to inject water toward the tray 85. Therefore, the solid content deposited on the tray 85 is washed away by the jetted water. Thereby, excessive solid analysis is suppressed in the tray 85, and an increase in off-gas pressure loss is suppressed.
  • the off-gas from which the solid content has been removed by deposition on the tray 85 is supplied to the off-gas supply system 112 through an off-gas discharge port (not shown). Then, the off gas flowing through the off gas supply system 112 is supplied to the scrubber 80B disposed downstream of the solid content removing scrubber 80A in the off gas flow direction.
  • the scrubber 80B has an internal space 91a for bringing the offgas containing ammonia and the offgas of the fertilizer manufacturing plant 100 into contact with the acidic absorbent.
  • the acidic absorbent that is brought into contact with the offgas contains carbonic acid.
  • the off-gas after removal of ammonia in the scrubber 80B is exhausted to the atmosphere through the exhaust system 113.
  • the scrubber 80B includes a casing 91 having an internal space 91a through which off-gas flows, a nozzle 93 for spraying water into the internal space 91a, and a water supply system 97 for supplying water to the nozzle 93. Since the inside of the scrubber 80B is normally hot, liquid water evaporates. Therefore, water is sprayed by the nozzle 93 in order to replenish the evaporated liquid water.
  • the scrubber 80B includes an extraction system 96, a pump 92, and a nozzle 94.
  • the extraction system 96 is for extracting the water retained in the internal space 91 a by being sprayed by the nozzle 93 to the outside of the housing 91.
  • the pump 92 is for extracting water staying in the internal space 91 a and flowing it to the system 96.
  • the nozzle 94 is for sprinkling water that has flowed through the extraction system 96 into the internal space 91a.
  • the nozzle 94 injects water toward a tray 98 constituted by, for example, a perforated plate.
  • the water staying in the internal space 91a is drawn out of the housing 91 as described above.
  • the acidic absorbing liquid sprayed from the nozzle 94 and the off gas containing ammonia are contacted. Therefore, the water staying in the internal space 91a includes ammonia absorbed in the acidic absorbent and the acidic absorbent after the off-gas contact.
  • the water staying in the internal space 91a includes water sprinkled by the nozzle 93. And the ammonia in offgas may be absorbed to some extent by the sprinkled water.
  • the water staying in the internal space 91a includes an acidic absorbent supplied through a first acidic absorbent supply system 117 (described later).
  • the water staying in the internal space 91a is uniformly referred to as an “acid absorbing solution” for convenience of explanation.
  • the acidic absorbing liquid staying in the internal space 91 a is sprinkled from the nozzle 94 through the extraction system 96. Therefore, the acidic absorbing liquid circulates inside and outside the internal space 91a.
  • ammonia exists in the liquid as at least one form of ammonia molecules or ammonium ions.
  • the extraction system 96 for extracting the acidic absorbing liquid from the housing 91 includes an opening adjustment valve 95 and a flow meter 99b. Then, the opening degree of the opening degree adjusting valve 95 is adjusted so that the flow rate measured by the flow meter 99b is constant. Therefore, the amount of water sprayed through the nozzle 94 is constant.
  • a branch system 115 is connected to the extraction system 96.
  • the branch system 115 includes, as an example of a carbonic acid production apparatus, a microbubble generator 116 for producing carbonic acid by dissolving carbon dioxide in water.
  • the microbubble generator 116 (an example of a carbonic acid production apparatus) is for producing carbonic acid using the carbon dioxide recovered by the carbon dioxide recovery device 3 (see FIG. 1). That is, the recovered carbon dioxide is dissolved in the acidic absorbing solution to generate carbonic acid in the acidic absorbing solution.
  • the manufactured acidic absorbent is supplied to the casing 91 through the first acidic absorbent supply system 117.
  • a second carbon dioxide supply system 118 for supplying carbon dioxide from the compressor 21 is connected to the microbubble generator 116.
  • an acidic absorption liquid can be manufactured using the carbon dioxide produced
  • the microbubble generator 116 is configured to generate, for example, bubbles having a size of about one hundred nanometers to several hundred micrometers in water. Specifically, for example, bubbles having a size of about 100 nm to about 500 ⁇ m are generated as the size of bubbles immediately after being generated by the microbubble generator 116. By providing such a microbubble generator 116, the existence time of carbonic acid in water can be extended.
  • the specific configuration of the microbubble generator 116 is not particularly limited, and for example, any method such as an ejector method, a cavitation method, a swirling flow method, and a pressure dissolution method can be adopted.
  • the second carbon dioxide supply system 118 includes an opening degree adjustment valve 119 for adjusting the supply amount of carbon dioxide.
  • the opening degree of the opening degree adjusting valve 119 is controlled by the arithmetic and control unit 151 based on the pH measured by the pH meter 99a. That is, the pH of the acidic absorbent that stays in the internal space 91a due to ammonia absorption in the scrubber 80B gradually increases. Therefore, carbon dioxide is dissolved in the acidic absorbent such that the pH of the acidic absorbent that stays in the internal space 91a (that is, the acidic absorbent that flows through the extraction system 96) is on the acidic side. Specifically, the amount of carbon dioxide dissolved is controlled so that the pH of the acidic absorbent measured by the pH meter 99a (that is, the pH of the acidic absorbent sprayed by the nozzle 94) becomes small.
  • the pH of the acidic absorbing solution measured by the pH meter 99a can be set to, for example, about 4 or more and 6.5 or less, and a smaller pH is preferable in this range.
  • the amount of carbon dioxide dissolved so that the pH range is within this range, absorption of ammonia into the acidic absorbent can be promoted.
  • the absorbed ammonia is likely to be present as ammonium ions in the acidic absorbing solution, and re-scattering of ammonia into the gas phase can be suppressed.
  • the arithmetic and control unit 151 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), a control circuit, and the like.
  • the stored predetermined control program is implemented by the CPU.
  • the microbubble generator 116 In the fertilizer manufacturing plant 100, the microbubble generator 116 generates microbubbles in the acidic absorbent flowing through the branch line 115, so that carbon dioxide is dissolved in the acidic absorbent flowing through the branch line 115. As a result, an acidic absorbent containing carbonic acid is generated, and the acidic absorbent produced by the microbubble generator 116 is supplied to the housing 91 through the first acidic absorbent supply system 117.
  • the acidic absorbent supplied to the casing 91 is sprinkled into the internal space 91a of the casing 91 through the extraction system 96 and the nozzle 94.
  • the sprinkled acidic absorbent absorbs ammonia in the off gas by coming into contact with the off gas and stays in the internal space 91 a of the housing 19.
  • the retained acidic absorbent contains ammonium carbonate produced by absorption of ammonia. Therefore, a part of the acidic absorbent containing ammonium carbonate is supplied to the urea production apparatus 22 through the extraction system 96 and the ammonium carbonate supply system 114.
  • the ammonium carbonate supply system 114 is for supplying the urea absorbent 22 with the acidic absorbent after the offgas contact in the scrubber 80B. By providing the ammonium carbonate supply system 114, ammonium carbonate contained in the acidic absorbent after contact with the off-gas can be used as a raw material for urea production.
  • ammonia in off-gas can be absorbed using an acidic absorbent containing carbonic acid that is easy to handle without using an aqueous sulfuric acid solution.
  • ammonia in offgas can be removed without producing ammonium sulfate, and offgas generated in the fertilizer manufacturing plant 100 can be easily treated.
  • FIG. 3 is a flowchart showing a method for manufacturing a fertilizer according to the first embodiment of the present invention.
  • the fertilizer manufacturing method shown in FIG. 3 relates to a fertilizer manufacturing method for manufacturing a fertilizer containing urea.
  • FIG. 3 for simplification of description, the production of urea and the absorption removal of ammonia in the off-gas of the granulating apparatus 61 are mainly described.
  • FIG. 3 can be implemented, for example, in the fertilizer manufacturing plant 100 shown in FIG. 1 described above. Therefore, in the following, FIG. 3 will be described with reference to FIG. 1 as appropriate.
  • hydrogen is produced by reforming methane-containing gas such as natural gas. And ammonia and methanol are manufactured using the manufactured hydrogen. Further, carbon dioxide produced as a by-product during the reforming is recovered by the carbon dioxide recovery device 3 (step S1). And urea is manufactured using the collect
  • the microbubble generator 116 uses the carbon dioxide collected by the carbon dioxide collector 3 to produce an acidic absorbent containing carbonic acid (step S2).
  • the produced acidic absorbing liquid is brought into contact with offgas (for example, offgas of the granulating device 61) which is offgas generated during production of fertilizer and contains ammonia in the scrubber 80B (step S3, contact step).
  • offgas for example, offgas of the granulating device 61
  • ammonia in the off-gas is absorbed by the acidic absorbent and ammonium carbonate is generated in the acidic absorbent.
  • step S4 the acid absorbing liquid after contact with the off-gas is supplied through the ammonium carbonate supply system 114 (step S4). And in the urea manufacturing apparatus 22, urea is manufactured using the ammonium carbonate in the acidic absorbing liquid after the off-gas contact (step S5, urea manufacturing step).
  • ammonia in off-gas can be absorbed using an acidic absorbent containing carbonic acid that is easy to handle without using an aqueous sulfuric acid solution.
  • ammonia in off-gas can be removed without producing ammonium sulfate, and off-gas generated during the production of fertilizer can be easily treated.
  • the present inventors have shown in FIG. 2 in order to confirm the influence of the water spray amount of the acidic absorbent through the nozzle 94 and the water spray amount through the nozzle 93 on the ammonia removal rate in the scrubber 80B.
  • the following tests were conducted using the scrubber 80B.
  • the solid content removing scrubber 80A shown in FIG. 2 is not used to simplify the test.
  • a small-scale test apparatus simulating the scrubber 80B was produced for the sake of simplicity.
  • the flow volume of the acidic absorption liquid at the time of the test shown below, and the off-gas flow volume were converted into the flow volume equivalent to the urea production amount (for example, 3500 tons / day scale) in the actual fertilizer manufacturing plant 100, and were shown. *
  • Off-gas having an ammonia concentration of 100 mg / Nm 3 (normal lube, hereinafter the same) at an off-gas supply port (not shown) in the scrubber 80B was supplied to the scrubber 80B at a flow rate of 600,000 Nm 3 per hour. Further, an equal amount of water (fresh water) was sprinkled into the internal space 91a through the nozzle 93 while extracting 5% by volume of the acidic absorbent flowing through the extraction system 96 through the ammonium carbonate supply system 114 of the scrubber 80B. Then, the ammonia concentration at the off-gas discharge port (not shown) in the scrubber 80B was measured while changing the amount of water (flow rate) of the acidic absorbent through the nozzle 94. In addition, the pH was also measured with a pH meter 99a. These results are shown in Table 1 below (Examples 1 to 4).
  • FIG. 4 is a system diagram of a fertilizer production plant according to the second embodiment of the present invention.
  • the fertilizer manufacturing plant 100A shown in FIG. 4 includes a second acidic absorbent supply system 124 for supplying the acidic absorbent after the off-gas contact in the scrubber 80B to the solid content removing scrubber 80A.
  • the fertilizer manufacturing plant 100A includes a urea aqueous solution supply system 123 and a urea aqueous solution return system 122.
  • the urea aqueous solution supply system 123 is for supplying the urea aqueous solution manufactured by the urea manufacturing apparatus 22 to the solid content removing scrubber 80A.
  • the urea aqueous solution returning system 122 is for returning the urea aqueous solution (solid content, including the acidic aqueous solution supplied from the scrubber 80B) after the off-gas contact in the solid content removing scrubber 80A to the urea manufacturing apparatus 22.
  • FIG. 5 is a system diagram showing the off-gas treatment unit 80 in the fertilizer manufacturing plant 100A shown in FIG.
  • the scrubber 80B of the fertilizer manufacturing plant 100A a part of the acidic absorbent extracted from the housing 91 and flowing through the extraction system 96 is removed through the second acidic absorbent supply system 124 (acid absorbent supply system). It is supplied to the water supply system 87 of the scrubber 80A. The adjustment of the supply amount is performed by adjusting the opening degree of the opening degree adjustment valve 120 provided in the second acidic absorbent supply system 124.
  • the acidic absorbent after the off-gas contact in the scrubber 80B is sprinkled into the internal space 81a of the solid content removing scrubber 80A.
  • the acidic absorbent after the off-gas contact can be supplied to the solid content removing scrubber 80A.
  • the water content of the solid content removal scrubber 80A can be recovered.
  • the off-gas treatment unit 80 in the fertilizer manufacturing plant 100A includes a urea aqueous solution supply system 123 and a urea aqueous solution return system 122.
  • the urea aqueous solution supply system 123 is for supplying the urea aqueous solution manufactured by the urea manufacturing apparatus 22 to the solid content removing scrubber 80A.
  • the urea aqueous solution return system 122 is for returning the urea aqueous solution after the off-gas contact in the solid content removing scrubber 80 ⁇ / b> A to the urea production apparatus 22.
  • the solid content in the off-gas can be removed using the urea aqueous solution manufactured by the urea manufacturing apparatus 22. Thereby, the usage-amount of the new water from the outside for solid content removal can be reduced.
  • the fertilizer manufacturing plant 100A can manufacture the fertilizer using the urea aqueous solution returned from the solid content removing scrubber 80A.
  • the solid urea powder is absorbed by water as described above. Then, the water that has absorbed urea is supplied to the urea production apparatus 22 through the urea aqueous solution return system 122. Thereby, the discharge
  • the acidic absorbent after absorption of ammonia is supplied to the solid content removal scrubber 80A of the fertilizer manufacturing plant 100A through the second acidic absorbent supply system 124.
  • ammonium carbonate is contained in the acidic absorbent after absorption of ammonia.
  • the water retained in the internal space 81a of the solid content removing scrubber 80A contains ammonium carbonate. Therefore, the urea aqueous solution containing ammonium carbonate is supplied to the urea production apparatus 22 through the urea aqueous solution return system 122.
  • the urea manufacturing apparatus 22 can manufacture urea using the ammonium carbonate produced
  • the present inventors have shown in FIG. 5 in order to confirm the influence on the ammonia removal rate in the offgas by the supply of the solid content removal scrubber 80A of the acidic absorbent through the second acidic absorbent supply system 124.
  • the following tests were performed using the off-gas treatment unit 80.
  • the urea aqueous solution return system 122 and the urea aqueous solution supply system 123 are omitted.
  • a small-scale test apparatus simulating the off-gas treatment unit 80 shown in FIG. 5 was produced in this test. And each supply amount at the time of the test shown below was converted into a supply amount corresponding to the urea production amount (for example, 3500 tons / day scale) in the actual fertilizer manufacturing plant 100A and shown.
  • Example 9 the second acidic absorbent supply system 124 is not provided, and 10.0 ton / h of fresh water (fresh water) is supplied to the solid content removal scrubber 80A through the water supply system 87, and the water supply system 97, 7.5 ton / h of fresh water (fresh water) was supplied to the scrubber 80B. Therefore, in Example 9, the total new water supply is 17.5 ton / h.
  • a gas containing a predetermined amount of ammonia (simulated offgas) was flowed through the solid content removal scrubber 80A and the scrubber 80B in this order as a gas imitating offgas.
  • the simulated off gas was continuously flowed at a predetermined flow rate.
  • the respective ammonia concentrations at the off-gas supply port and off-gas discharge port (both not shown) of the scrubber 80B were measured, and the ammonia removal rate at the scrubber 80B was calculated.
  • the ammonia removal rate was 55% (Example 9).
  • Example 10 the supply amount of new water to the solid content removal scrubber 80A was set to 2.5 ton / h, the supply amount of new water to the scrubber 80B was set to 7.5 ton / h, and The test was conducted in the same manner as in Example 9 except that the supply amount of the acidic absorbent from the scrubber 80B to the solid content removing scrubber 80A through the second acidic absorbent supply system 124 was 7.5 ton / h. Therefore, in Example 10, the total new water supply is 10.0 ton / h.
  • Example 11 the supply of new water to the scrubber 80B was set to 17.5 ton / h without supplying new water to the solid content removing scrubber 80A, and the second acidic absorbent was supplied.
  • the test was performed in the same manner as in Example 9 except that the supply amount of the acidic absorbing liquid from the scrubber 80B through the system 124 to the solid content removing scrubber 80A was 17.5 ton / h. Therefore, in Example 11, the total new water supply is 17.5 ton / h.
  • Example 10 When comparing Example 9 and Example 10, the ammonia removal rate was the same. However, the total supply amount of new water in Example 10 is smaller than that in Example 9. Specifically, the total supply amount of new water was 17.5 ton / h in Example 9, but decreased to 10.0 ton / h in Example 10. Therefore, in Example 10, the amount of new water used is reduced by 43%. Therefore, by supplying the acidic absorbent from the scrubber 80B to the solid content removing scrubber 80A through the second acidic absorbent supply system 124, it is possible to reduce the amount of new water used while maintaining the ammonia removal rate.
  • Example 9 when Example 9 and Example 10 were compared, the new total supply amount of water was the same.
  • Example 11 the ammonia removal rate is improved compared to Example 9. Specifically, the ammonia removal rate was 55% in Example 9, but improved to 58% in Example 11. Therefore, by supplying the acidic absorbent from the scrubber 80B to the solid content removing scrubber 80A through the second acidic absorbent supply system 124, it is possible to improve the ammonia removal rate while keeping the new total water supply amount the same.
  • FIG. 6 is a system diagram showing an off-gas treatment unit 80 in a fertilizer production plant 100B according to the third embodiment of the present invention.
  • the fertilizer manufacturing plant 100B includes, as the off-gas treatment unit 80, an integrated scrubber 80C including a solid content removal scrubber 80A and a scrubber 80B integrally formed with the solid content removal scrubber 80A above the solid content removal scrubber 80A. .
  • an off-gas discharge port 181 is formed on the upper surface of the internal space 81a. Further, a member 191 that is constricted upward is provided above the off-gas discharge port 181. The lower end of the member 191 is open, and an offgas discharge port 181 is formed at the lower end of the member 191. Further, the upper end of the member 191 is also open, and the cylindrical member 193 is connected to the upper end of the member 191. An umbrella member 192 is disposed above the tubular member 193, and the penetration of the acidic absorbent into the tubular member 193 is suppressed.
  • the umbrella member 192 is fixed to the tubular member 193 by a support member 194 that is disposed with a gap at equal intervals in the circumferential direction of the tubular member 193.
  • An off gas supply port 195 for supplying off gas to the internal space 91a of the scrubber 80B is formed between the adjacent support members 194.
  • the off gas that has flowed upward from the internal space 81a flows into the member 191 through the off gas discharge port 181. And the off gas which flowed in the inside of the member 191 flows through the inside of the cylindrical member 193 and the off gas supply port 195 as shown by a thick arrow in FIG. Thereby, off-gas is supplied to the internal space 91a of the scrubber 80B. Then, in the scrubber 80B, ammonia in the off gas is absorbed by the acidic absorbent. The off-gas after removing ammonia is discharged to the outside of the scrubber 80B through an off-gas discharge port (not shown) formed above the scrubber 80B.
  • the scrubber 80B can be integrally formed with the solid content removal scrubber 80A above the solid content removal scrubber 80A, so that the installation area of the scrubber (specifically, the off-gas treatment unit 80) is increased. Can be reduced.
  • FIG. 7 is a system diagram of a fertilizer manufacturing plant 100C according to the fourth embodiment of the present invention.
  • the fertilizer manufacturing plant 100C includes a reformer 1 for reforming a methane-containing gas and a combustor 131 for burning fuel (heavy oil, kerosene, methane-containing gas, etc.).
  • the reformer 1 is configured to reform the methane-containing gas using heat generated by the combustion of fuel in the combustor 131. By doing in this way, modification
  • the fertilizer manufacturing plant 100C includes a third carbon dioxide supply system 133 for supplying the carbon dioxide generated in the combustor 131 to the internal space 91a of the scrubber 80B.
  • the third carbon dioxide supply system 133 is connected to the off gas supply system 112, and the carbon dioxide generated in the combustor 131 is supplied to the internal space 91a through the third carbon dioxide supply system 133 and the off gas supply system 112.
  • FIG. 8 is a diagram showing components contained in each of the gas phase and the liquid phase in the internal space 91a of the scrubber 80B in FIG.
  • at least ammonia contained in the off-gas and carbon dioxide generated by the combustor 131 are present as the gas phase.
  • Both ammonia (NH 3 ) and carbon dioxide (CO 2 ) in the gas phase exist as molecules.
  • carbon dioxide dissolved in the microbubble generator 116 is present in the acidic absorbent as the liquid phase.
  • carbon dioxide varies depending on the pH of the acidic absorbent, it exists in the acidic absorbent in the form of at least one of carbon dioxide molecules (CO 2 ) or carbonate ions (HCO 3 ⁇ ).
  • carbon dioxide molecules are present as bubbles in the acidic absorbent, and carbonate ions are dissolved as ions in the acidic absorbent.
  • carbon dioxide molecules and carbonate ions are collectively referred to as “carbonic acid”.
  • ammonium ions When ammonia in the gas phase is absorbed by the acidic absorbent through the gas-liquid interface L, the absorbed ammonia is likely to exist as ammonium ions (NH 4 + ) in the acidic absorbent. Ammonium ions have a high affinity for water molecules. Therefore, when ammonia exists as ammonium ions in the acidic absorbing liquid, re-release to the gas phase via the gas-liquid interface L is suppressed.
  • carbonate ions in the acidic absorbent are suppressed from being released into the gas phase through the gas-liquid interface L due to the high affinity between carbonate ions and water.
  • the carbon dioxide molecules in the acidic absorbing liquid are not easily so high in affinity between the carbon dioxide molecules and water that they are easily released into the gas phase through the gas-liquid interface L.
  • the pH of the acidic absorbent increases and ammonia is not easily absorbed.
  • carbon dioxide is supplied to the gas phase of the internal space 91a.
  • the carbon dioxide partial pressure of the gaseous phase in the internal space 91a for making off gas contact an acidic absorption liquid can be raised.
  • it can suppress that a carbon dioxide molecule is discharge
  • FIG. 9 is a system diagram of a fertilizer production plant 100D according to the fifth embodiment of the present invention.
  • the fertilizer manufacturing plant 100D includes a reformer 1 for reforming a methane-containing gas.
  • the fertilizer manufacturing plant 100D includes a boiler 141 for generating water vapor by combustion as an example of a combustor for burning fuel (heavy oil, kerosene, methane-containing gas, etc.).
  • the reformer 1 is configured to reform the methane-containing gas using water vapor generated by the combustion of fuel in the boiler 141, and the carbon dioxide generated by the combustion of fuel in the boiler 141 is The carbon dioxide generated in the boiler 141 (combustor) is supplied to the internal space 91a through the third carbon dioxide supply system 142 for supplying the internal space 91a of the scrubber 80B.
  • reforming of a methane-containing gas such as natural gas can be performed using the steam generated in the boiler 141. Further, the partial pressure of carbon dioxide in the gas phase in the internal space 91a of the scrubber 80B can be increased, and the duration of carbon dioxide in the acidic absorbent can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

This fertilizer production plant 100 is for producing a fertilizer containing urea, the fertilizer production plant 100 being characterized by comprising a urea production device 22 for the purpose of producing urea by using ammonia, and a scrubber 80B having an interior space for the purpose of bringing into contact with an acidic absorption solution an off-gas from the fertilizer production plant 100 that is an off-gas containing ammonia, wherein the acidic absorption solution contains carbonic acid.

Description

肥料製造プラント及び肥料の製造方法Fertilizer manufacturing plant and fertilizer manufacturing method
 本開示は、肥料製造プラント及び肥料の製造方法に関する。 This disclosure relates to a fertilizer manufacturing plant and a method for manufacturing a fertilizer.
 天然ガス等のメタン含有ガスを用いて肥料を製造するための技術が知られている。この技術では、まず、メタン含有ガスの改質により水素等が製造され、例えば空気中の窒素と、製造された水素とからアンモニアが製造される。次いで、製造されたアンモニアから尿素水溶液が製造される。そして、製造された尿素水溶液を用いた尿素の造粒が行われ、肥料が製造される。 Technology for producing fertilizer using methane-containing gas such as natural gas is known. In this technique, first, hydrogen or the like is produced by reforming a methane-containing gas. For example, ammonia is produced from nitrogen in the air and the produced hydrogen. Next, an aqueous urea solution is produced from the produced ammonia. And the granulation of urea using the manufactured urea aqueous solution is performed, and a fertilizer is manufactured.
 例えば尿素造粒時等、肥料の製造中には、アンモニアを含むオフガスが発生する。そこで、発生したオフガスは、排ガス処理が行われた後、大気中に放出される。アンモニアを含むガスの処理技術として、特許文献1に記載の技術が知られている。特許文献1には、アンモニアを含むガスに対して硫酸水溶液を接触させるための硫酸スクラバが記載されている(特に図1を参照)。硫酸スクラバでは、アンモニアを含むガスへの硫酸水溶液の接触により、硫酸アンモニウム(硫安)が生成している。これにより、オフガス中のアンモニアが除去される。 For example, off-gas containing ammonia is generated during fertilizer production, such as during urea granulation. Therefore, the generated off gas is discharged into the atmosphere after the exhaust gas treatment is performed. A technique described in Patent Document 1 is known as a processing technique for a gas containing ammonia. Patent Document 1 describes a sulfuric acid scrubber for bringing a sulfuric acid aqueous solution into contact with a gas containing ammonia (see particularly FIG. 1). In the sulfuric acid scrubber, ammonium sulfate (ammonium sulfate) is generated by contacting the sulfuric acid aqueous solution with a gas containing ammonia. Thereby, ammonia in off-gas is removed.
米国特許第9464009号明細書US Pat. No. 9,464,009
 オフガス中のアンモニア処理で生成した硫安水溶液は、通常、造粒し肥料として利用できる。しかし、硫安造粒設備の追設には設置コストがかかる。また、硫酸スクラバでは硫酸水溶液が使用されるため、メンテナンスが煩雑である。そこで、アンモニアを含むオフガスについて、硫安を生成させない簡便な処理技術が望まれている。 安 Ammonium sulfate aqueous solution produced by ammonia treatment in off-gas can usually be granulated and used as fertilizer. However, additional cost is required for the additional installation of ammonium sulfate granulation equipment. Moreover, since sulfuric acid aqueous solution is used in a sulfuric acid scrubber, maintenance is complicated. Therefore, a simple treatment technique that does not generate ammonium sulfate is desired for off-gas containing ammonia.
 本発明の一実施形態は、アンモニアを含むオフガスについて、硫安を生成させずに簡便に処理可能な肥料製造プラント及び肥料の製造方法を提供することを目的とする。 One embodiment of the present invention aims to provide a fertilizer manufacturing plant and a method for manufacturing fertilizer that can be easily processed without producing ammonium sulfate for off-gas containing ammonia.
 (1)本発明の一実施形態に係る肥料製造プラントは、
 尿素を含む肥料を製造するための肥料製造プラントであって、
 アンモニアを用いて前記尿素を製造するための尿素製造装置と、
 前記肥料製造プラントのオフガスであってアンモニアを含むオフガスを酸性吸収液に接触させるための内部空間を有するスクラバと、を備え、
 前記酸性吸収液は炭酸を含む
 ことを特徴とする。
(1) A fertilizer production plant according to an embodiment of the present invention is:
A fertilizer production plant for producing fertilizers containing urea,
A urea production apparatus for producing the urea using ammonia;
A scrubber having an internal space for contacting the offgas containing the ammonia, which is an offgas of the fertilizer production plant, with the acidic absorbent,
The acidic absorbing liquid contains carbonic acid.
 上記(1)の構成によれば、取り扱いが容易な炭酸を含む酸性吸収液を用いて、オフガス中のアンモニアを吸収できる。これにより、硫安を生成させずにオフガス中のアンモニアを除去でき、肥料製造プラントで発生したオフガスを簡便に処理できる。 According to the configuration of (1) above, ammonia in off-gas can be absorbed using an acidic absorbent containing carbonic acid that is easy to handle. Thereby, ammonia in off-gas can be removed without producing ammonium sulfate, and off-gas generated in the fertilizer production plant can be easily treated.
 (2)幾つかの実施形態では、上記(1)の構成において、
 メタン含有ガスを改質するための改質装置と、
 前記改質装置において生成した二酸化炭素を回収するための二酸化炭素回収装置と、
 回収した前記二酸化炭素を用いて前記炭酸を製造するための炭酸製造装置と、
 を備える
 ことを特徴とする。
(2) In some embodiments, in the configuration of (1) above,
A reformer for reforming methane-containing gas;
A carbon dioxide recovery device for recovering carbon dioxide produced in the reformer;
A carbonic acid producing apparatus for producing the carbonic acid using the recovered carbon dioxide,
It is characterized by providing.
 上記(2)の構成によれば、天然ガス等のメタン含有ガスの改質により生成した二酸化炭素を用いて、上記の酸性吸収液を製造できる。 According to the configuration of (2) above, the acidic absorbing liquid can be manufactured using carbon dioxide generated by reforming methane-containing gas such as natural gas.
 (3)幾つかの実施形態では、上記(2)の構成において、
 回収した前記二酸化炭素であって前記尿素製造装置に供給される二酸化炭素を昇圧させるための圧縮機と、
 前記圧縮機において昇圧された前記二酸化炭素を前記尿素製造装置に供給するための第1二酸化炭素供給系統と、
 前記圧縮機において昇圧された前記二酸化炭素を前記炭酸製造装置に供給するための第2二酸化炭素供給系統と、
 を備える
 ことを特徴とする。
(3) In some embodiments, in the configuration of (2) above,
A compressor for increasing the pressure of the recovered carbon dioxide and supplied to the urea production apparatus;
A first carbon dioxide supply system for supplying the carbon dioxide boosted in the compressor to the urea production apparatus;
A second carbon dioxide supply system for supplying the carbon dioxide boosted in the compressor to the carbonic acid production apparatus;
It is characterized by providing.
 上記(3)の構成によれば、昇圧された二酸化炭素を、尿素製造装置及び炭酸製造装置の双方に供給できる。これにより、炭酸製造のための圧縮機を別途設ける必要がなく、圧縮機の設置面積を削減できる。また、昇圧後の二酸化炭素から炭酸を製造できるため、炭酸の製造量を増大できる。 According to the configuration of (3) above, the pressurized carbon dioxide can be supplied to both the urea production apparatus and the carbonic acid production apparatus. Thereby, it is not necessary to separately provide a compressor for carbonic acid production, and the installation area of the compressor can be reduced. Moreover, since carbonic acid can be produced from carbon dioxide after pressure increase, the production amount of carbonic acid can be increased.
 (4)幾つかの実施形態では、上記(2)又は(3)の構成において、
 前記炭酸製造装置は、水に二酸化炭素を溶解させることにより前記炭酸を製造するためのマイクロバブル発生装置を含む
 ことを特徴とする。
(4) In some embodiments, in the configuration of (2) or (3) above,
The carbonic acid production apparatus includes a microbubble generator for producing the carbonic acid by dissolving carbon dioxide in water.
 上記(4)の構成によれば、水中での炭酸の存在時間を長時間化できる。 According to the configuration of (4) above, it is possible to lengthen the existence time of carbonic acid in water.
 (5)幾つかの実施形態では、上記(1)~(4)の何れか1の構成において、
 前記スクラバでの前記オフガス接触後の酸性吸収液を前記尿素製造装置に供給するための炭酸アンモニウム供給系統を備える
 ことを特徴とする。
(5) In some embodiments, in any one of the above configurations (1) to (4),
An ammonium carbonate supply system for supplying the acid absorbing liquid after the off-gas contact in the scrubber to the urea production apparatus is provided.
 上記(5)の構成によれば、オフガス接触後の酸性吸収液に含まれる炭酸アンモニウムを、尿素製造のための原料として用いることができる。 According to the configuration of (5) above, ammonium carbonate contained in the acidic absorbent after contact with off-gas can be used as a raw material for urea production.
 (6)幾つかの実施形態では、上記(1)~(5)の何れか1の構成において、
 前記肥料製造プラントは、前記オフガス中の固形分を除去するための固形分除去スクラバを備え、
 前記スクラバは、前記オフガスの流れ方向で前記固形分除去スクラバの下流側に配置される
 ことを特徴とする。
(6) In some embodiments, in any one of the above configurations (1) to (5),
The fertilizer production plant includes a solid content removal scrubber for removing solid content in the off gas,
The scrubber is disposed downstream of the solid content removal scrubber in the flow direction of the off gas.
 上記(6)の構成によれば、肥料製造プラントのオフガスに含まれる固形分を除去できる。そして、固形分除去後のオフガス中のアンモニアを、スクラバによってオフガスから除去できる。 According to the configuration of (6) above, the solid content contained in the offgas of the fertilizer production plant can be removed. And the ammonia in off gas after solid content removal can be removed from off gas by a scrubber.
 (7)幾つかの実施形態では、上記(6)の構成において、
 前記スクラバでの前記オフガス接触後の酸性吸収液を前記固形分除去スクラバに供給するための酸性吸収液供給系統を備える
 ことを特徴とする。
(7) In some embodiments, in the configuration of (6) above,
An acidic absorbing liquid supply system for supplying the acidic absorbing liquid after the off-gas contact in the scrubber to the solid content removing scrubber is provided.
 上記(7)の構成によれば、オフガス接触後の酸性吸収液を固形分除去スクラバに供給できる。これにより、蒸発により固形分除去スクラバで水分が減少しても、固形分除去スクラバの水分量を回復できる。この結果、固形分除去スクラバでの水分量回復のための外部から新たな水の使用量を削減できる。 According to the configuration of (7) above, it is possible to supply the acidic absorbing liquid after the off-gas contact to the solid content removing scrubber. Thereby, even if the water content is reduced in the solid content removal scrubber by evaporation, the water content of the solid content removal scrubber can be recovered. As a result, it is possible to reduce the amount of new water used from the outside for recovering the amount of water in the solid content removing scrubber.
 (8)幾つかの実施形態では、上記(6)又は(7)の構成において、
 前記肥料製造プラントは、
 前記尿素製造装置で製造された尿素水溶液を前記固形分除去スクラバに供給するための尿素水溶液供給系統と、
 前記固形分除去スクラバでの前記オフガス接触後の尿素水溶液を前記尿素製造装置に戻すための尿素水溶液戻し系統と、を備える
 ことを特徴とする。
(8) In some embodiments, in the above configuration (6) or (7),
The fertilizer production plant is
A urea aqueous solution supply system for supplying the urea aqueous solution produced by the urea production apparatus to the solid content removing scrubber;
A urea aqueous solution return system for returning the urea aqueous solution after the off-gas contact in the solid content removing scrubber to the urea production apparatus.
 上記(8)の構成によれば、尿素製造装置で製造された尿素水溶液を用いて、オフガス中の固形分を除去できる。これにより、固形分除去のための外部からの新たな水の使用量を削減できる。また、肥料製造プラントは、固形分除去スクラバから戻された尿素水溶液を用いて、肥料を製造できる。 According to the configuration of (8) above, the solid content in the off-gas can be removed using the urea aqueous solution manufactured by the urea manufacturing apparatus. Thereby, the usage-amount of the new water from the outside for solid content removal can be reduced. Moreover, the fertilizer manufacturing plant can manufacture a fertilizer using the urea aqueous solution returned from the solid content removal scrubber.
 (9)幾つかの実施形態では、上記(6)~(8)の何れか1の構成において、
 前記固形分除去スクラバと、前記固形分除去スクラバの上方において前記固形分除去スクラバと一体に構成された前記スクラバとを備えた一体型スクラバを備える
 ことを特徴とする。
(9) In some embodiments, in any one of the configurations (6) to (8) above,
An integrated scrubber comprising: the solid content removing scrubber; and the scrubber configured integrally with the solid content removing scrubber above the solid content removing scrubber.
 上記(9)の構成によれば、固形分除去スクラバの上方にスクラバを固形分除去スクラバと一体に構成することができるため、スクラバの設置面積を削減できる。 According to the configuration of (9) above, since the scrubber can be integrally formed with the solid content removing scrubber above the solid content removing scrubber, the installation area of the scrubber can be reduced.
 (10)幾つかの実施形態では、上記(1)~(9)の何れか1の構成において、
 燃料を燃焼させるための燃焼器と、
 前記燃焼器において生成した二酸化炭素を前記スクラバの前記内部空間に供給するための第3二酸化炭素供給系統と、を備える
 ことを特徴とする。
(10) In some embodiments, in any one of the above configurations (1) to (9),
A combustor for burning fuel;
And a third carbon dioxide supply system for supplying carbon dioxide generated in the combustor to the internal space of the scrubber.
 上記(10)の構成によれば、オフガスを酸性吸収液に接触させるための内部空間における気相の二酸化炭素分圧を高めることができる。これにより、酸性吸収液から二酸化炭素が気相に放出されることを抑制でき、酸性吸収液中での炭酸の存在時間を長くできる。 According to the configuration of (10) above, the partial pressure of carbon dioxide in the gas phase in the internal space for bringing the off gas into contact with the acidic absorbent can be increased. Thereby, it can suppress that a carbon dioxide is discharge | released to a gaseous phase from an acidic absorption liquid, and can extend the presence time of the carbonic acid in an acidic absorption liquid.
 (11)幾つかの実施形態では、上記(10)の構成において、
 前記肥料製造プラントは、メタン含有ガスの改質を行うための改質装置を備え、
 前記改質装置は、前記燃焼器における前記燃料の燃焼により発生した熱を用いて、前記メタン含有ガスの改質を行うように構成された
 ことを特徴とする。
(11) In some embodiments, in the configuration of (10) above,
The fertilizer manufacturing plant includes a reforming device for reforming methane-containing gas,
The reformer is configured to reform the methane-containing gas using heat generated by combustion of the fuel in the combustor.
 上記(11)の構成によれば、燃料の燃焼により生じた熱を用いて、天然ガス等のメタン含有ガスの改質を行うことができる。 According to the configuration of (11) above, it is possible to reform methane-containing gas such as natural gas using heat generated by fuel combustion.
 (12)幾つかの実施形態では、上記(10)又は(11)の構成において、
 前記肥料製造プラントは、メタン含有ガスの改質を行うための改質装置を備え、
 前記燃焼器は、ボイラを含み、
 前記改質装置は、前記ボイラにおける前記燃料の燃焼により発生した水蒸気を用いて、前記メタン含有ガスの改質を行うように構成された
 ことを特徴とする。
(12) In some embodiments, in the configuration of the above (10) or (11),
The fertilizer manufacturing plant includes a reforming device for reforming methane-containing gas,
The combustor includes a boiler,
The reformer is configured to reform the methane-containing gas using steam generated by combustion of the fuel in the boiler.
 上記(12)の構成によれば、ボイラにおいて発生した水蒸気を用いて、天然ガス等のメタン含有ガスの改質を行うことができる。 According to the configuration of (12) above, the reforming of the methane-containing gas such as natural gas can be performed using the steam generated in the boiler.
 (13)幾つかの実施形態では、上記(1)~(12)の何れか1の構成において、
 前記肥料製造プラントは、前記尿素製造装置において生成した尿素を造粒するための造粒装置を備え、
 前記肥料製造プラントのオフガスは、前記造粒装置のオフガスを含む
 ことを特徴とする。
(13) In some embodiments, in any one of the above configurations (1) to (12),
The fertilizer production plant includes a granulation device for granulating urea produced in the urea production device,
The offgas of the fertilizer manufacturing plant includes the offgas of the granulator.
 上記(13)の構成によれば、造粒装置において尿素水溶液の造粒時に発生したアンモニアを、酸性吸収液との接触によりオフガスから除去できる。 According to the configuration of (13) above, ammonia generated at the time of granulation of the urea aqueous solution in the granulator can be removed from the off-gas by contact with the acidic absorbent.
 (14)本発明の少なくとも一実施形態に係る肥料の製造方法は、
 尿素を含む肥料を製造する肥料の製造方法であって、
 アンモニアを用いて前記尿素を製造する尿素製造ステップと、
 前記肥料の製造時に発生したオフガスであってアンモニアを含むオフガスを酸性吸収液に接触させる接触ステップと、を含み、
 前記酸性吸収液は炭酸を含む
 ことを特徴とする。
(14) A method for producing a fertilizer according to at least one embodiment of the present invention comprises:
A method for producing a fertilizer for producing a fertilizer containing urea,
A urea production step of producing the urea using ammonia;
A contact step of contacting offgas generated during the manufacture of the fertilizer and containing ammonia with an acidic absorbent.
The acidic absorbing liquid contains carbonic acid.
 上記(14)の構成によれば、取り扱いが容易な炭酸を含む酸性吸収液を用いて、オフガス中のアンモニアを吸収できる。これにより、硫安を生成させずにオフガス中のアンモニアを除去でき、肥料製造時に発生したオフガスを簡便に処理できる。 According to the configuration of (14) above, ammonia in the offgas can be absorbed using an acidic absorbent containing carbonic acid that is easy to handle. Thereby, ammonia in off-gas can be removed without producing ammonium sulfate, and off-gas generated during the production of fertilizer can be easily treated.
 本発明の少なくとも一実施形態によれば、アンモニアを含むオフガスについて、硫安を生成させずに簡便に処理可能な肥料製造プラント及び肥料の製造方法を提供することができる。 According to at least one embodiment of the present invention, it is possible to provide a fertilizer manufacturing plant and a fertilizer manufacturing method that can be easily processed without producing ammonium sulfate for off-gas containing ammonia.
本発明の第1実施形態に係る肥料製造プラントの系統図である。It is a systematic diagram of a fertilizer manufacturing plant concerning a 1st embodiment of the present invention. 図1に示す肥料製造プラントにおけるオフガス処理ユニット80を示す系統図である。It is a systematic diagram which shows the off gas processing unit 80 in the fertilizer manufacturing plant shown in FIG. 本発明の第1実施形態に係る肥料の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the fertilizer which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る肥料製造プラントの系統図である。It is a systematic diagram of the fertilizer manufacturing plant which concerns on 2nd Embodiment of this invention. 図4に示す肥料製造プラントにおけるオフガス処理ユニットを示す系統図である。It is a systematic diagram which shows the off gas processing unit in the fertilizer manufacturing plant shown in FIG. 本発明の第3実施形態に係る肥料製造プラントにおけるオフガス処理ユニットを示す系統図である。It is a systematic diagram which shows the off gas processing unit in the fertilizer manufacturing plant which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る肥料製造プラントの系統図である。It is a systematic diagram of the fertilizer manufacturing plant which concerns on 4th Embodiment of this invention. 図7におけるスクラバの内部空間において、気相及び液相のそれぞれに含まれる成分を示す図である。It is a figure which shows the component contained in each of a gaseous phase and a liquid phase in the internal space of the scrubber in FIG. 本発明の第5実施形態に係る肥料製造プラントの系統図である。It is a systematic diagram of the fertilizer manufacturing plant which concerns on 5th Embodiment of this invention.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、以下に実施形態として記載されている内容又は図面に記載されている内容は、あくまでも例示に過ぎず、本発明の要旨を逸脱しない範囲内で、任意に変更して実施することができる。また、各実施形態は、2つ以上を任意に組み合わせて実施することができる。さらに、各実施形態において、共通する部材については同じ符号を付すものとし、説明の簡略化のために重複する説明は省略する。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the contents described in the following embodiments or the contents described in the drawings are merely examples, and can be arbitrarily changed and implemented without departing from the gist of the present invention. Moreover, each embodiment can be implemented in any combination of two or more. Furthermore, in each embodiment, the same code | symbol shall be attached | subjected about a common member, and the overlapping description is abbreviate | omitted for the simplification of description.
 また、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In addition, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.
 図1は、本発明の第1実施形態に係る肥料製造プラント100の系統図である。肥料製造プラント100は、メタン含有ガス(天然ガス等)、石炭等の炭化水素源から尿素を含む肥料(尿素肥料)を製造するためのものである。図1では、炭化水素源としてメタン含有ガスを例示している。肥料製造プラント100は、改質装置1と、アンモニア製造ユニット10と、尿素製造ユニット20と、造粒装置61と、オフガス処理ユニット80とを備える。また、本発明の一実施形態では、改質装置1の後段に、変性器2と、二酸化炭素回収器3と、メタン化装置4とが備えられる。 FIG. 1 is a system diagram of a fertilizer production plant 100 according to the first embodiment of the present invention. The fertilizer manufacturing plant 100 is for manufacturing a fertilizer containing urea (urea fertilizer) from a hydrocarbon source such as methane-containing gas (natural gas or the like) or coal. In FIG. 1, methane containing gas is illustrated as a hydrocarbon source. The fertilizer production plant 100 includes a reformer 1, an ammonia production unit 10, a urea production unit 20, a granulator 61, and an off-gas treatment unit 80. In one embodiment of the present invention, a reformer 2, a carbon dioxide recovery device 3, and a methanation device 4 are provided in the subsequent stage of the reformer 1.
 改質装置1は、メタン含有ガスを改質するためのものである。本発明の一実施形態では、改質装置1は、空気及び水蒸気を使用し、メタン含有ガスの一例としての天然ガスを改質して、少なくとも水素及び二酸化炭素を得る。 The reformer 1 is for reforming methane-containing gas. In one embodiment of the present invention, the reformer 1 uses air and steam to reform natural gas as an example of a methane-containing gas to obtain at least hydrogen and carbon dioxide.
 改質装置1は、いずれも図示しないが、水蒸気改質反応を行う一次改質器と、部分酸化改質反応及び水蒸気改質反応を行う二次改質器とを備えて構成される。一次改質器及び二次改質器で行われる具体的な反応式を以下に示す。
(a)一次改質器(水蒸気改質反応)
 CH+HO→CO+3H ・・・式(1)
 CO+HO→CO+H ・・・式(2)
(b)二次改質器(部分酸化改質反応及び水蒸気改質反応)
 CH+0.5O→CO+2H ・・・式(3)
 CO+HO→CO+H ・・・式(2)
Although not shown, the reformer 1 includes a primary reformer that performs a steam reforming reaction and a secondary reformer that performs a partial oxidation reforming reaction and a steam reforming reaction. Specific reaction formulas performed in the primary reformer and the secondary reformer are shown below.
(A) Primary reformer (steam reforming reaction)
CH 4 + H 2 O → CO + 3H 2 Formula (1)
CO + H 2 O → CO 2 + H 2 Formula (2)
(B) Secondary reformer (partial oxidation reforming reaction and steam reforming reaction)
CH 4 + 0.5O 2 → CO + 2H 2 Formula (3)
CO + H 2 O → CO 2 + H 2 Formula (2)
 従って、改質装置1では、メタン含有ガスから二酸化炭素が生成することになる。ただし、式(1)及び式(3)の反応より生成した一酸化炭素の一部については、式(2)の反応が進行せず、一酸化炭素として残存する。残存した一酸化炭素は後段の変性器2において二酸化炭素に変換される。 Therefore, in the reformer 1, carbon dioxide is generated from the methane-containing gas. However, about a part of carbon monoxide produced | generated from reaction of Formula (1) and Formula (3), reaction of Formula (2) does not advance but it remains as carbon monoxide. The remaining carbon monoxide is converted into carbon dioxide in the subsequent denaturing device 2.
 式(1)及び(2)で示される反応は、任意の改質触媒を用いて行うことができる。改質触媒としては、例えば、ニッケル、白金等の遷移金属の酸化物を使用することができる。反応条件としては、例えば二次改質器に収容された触媒層の出口において900℃~1000℃、2.5MPa~3.5MPa程度とすることができる。 The reaction represented by the formulas (1) and (2) can be carried out using any reforming catalyst. As the reforming catalyst, for example, an oxide of a transition metal such as nickel or platinum can be used. The reaction conditions may be, for example, about 900 ° C. to 1000 ° C. and about 2.5 MPa to 3.5 MPa at the outlet of the catalyst layer accommodated in the secondary reformer.
 上記のように、改質装置1では、空気の取り込みも行われる。そのため、改質装置1から排出され、後段の変性器2に供給されるガスには、空気に由来する成分も含まれる。具体的には、改質装置1から排出されるガスには、窒素等も含まれる。 As described above, the reformer 1 also takes in air. For this reason, the gas discharged from the reforming apparatus 1 and supplied to the subsequent denaturing device 2 includes components derived from air. Specifically, the gas discharged from the reformer 1 includes nitrogen and the like.
 変性器2は、改質装置1から供給されたガス中の一酸化炭素及び水蒸気を変性させて、二酸化炭素及び水素を得るものである。従って、変性器2では、ガス中の一酸化炭素濃度が低下し、代わりに、二酸化炭素濃度が増加する。一酸化炭素を二酸化炭素に変化させることで、後段の二酸化炭素回収器3により、一酸化炭素に由来する炭素を二酸化炭素をとして除去することができる。 The reformer 2 denatures carbon monoxide and water vapor in the gas supplied from the reformer 1 to obtain carbon dioxide and hydrogen. Therefore, in the denaturing device 2, the carbon monoxide concentration in the gas decreases, and instead, the carbon dioxide concentration increases. By changing carbon monoxide to carbon dioxide, carbon derived from carbon monoxide can be removed as carbon dioxide by the carbon dioxide collector 3 at the subsequent stage.
 変性器2では、以下の式(4)で示される化学反応が生じている。
 CO+HO→CO+H ・・・式(4)
 一酸化炭素を変性させる触媒(変性触媒)としては、任意の変性触媒を用いて行うことができる。変性触媒としては、例えば、銅-亜鉛系触媒等を挙げることができる。反応条件としては、例えば変性器2に収容された触媒層の出口において200℃~450℃、2.5MPa~3.5MPa程度とすることができる。
In the denaturing device 2, a chemical reaction represented by the following formula (4) occurs.
CO + H 2 O → CO 2 + H 2 Formula (4)
As a catalyst for modifying carbon monoxide (modified catalyst), any modified catalyst can be used. Examples of the modification catalyst include a copper-zinc catalyst. The reaction conditions may be, for example, about 200 ° C. to 450 ° C. and about 2.5 MPa to 3.5 MPa at the outlet of the catalyst layer accommodated in the modifier 2.
 二酸化炭素回収器3は、改質装置1において生成した二酸化炭素を回収するためのものである。ガス中の二酸化炭素を回収することで、後段のアンモニア製造装置12への二酸化炭素の持ち込みを抑制し、アンモニア生成触媒(後記する)への影響を抑制することができる。二酸化炭素回収器3における二酸化炭素の回収は、例えば、アルカリ水溶液をガスに接触させることで、行うことができる。なお、回収された二酸化炭素は、アルカリ水溶液の加熱等によりアルカリ水溶液から分離された後、後記する尿素製造ユニット20及びオフガス処理ユニット80(具体的にはマイクロバブル発生装置116)に供給される。 The carbon dioxide recovery unit 3 is for recovering the carbon dioxide generated in the reformer 1. By collecting the carbon dioxide in the gas, it is possible to suppress the introduction of carbon dioxide into the ammonia production apparatus 12 at the subsequent stage and to suppress the influence on the ammonia generation catalyst (described later). The carbon dioxide recovery in the carbon dioxide recovery device 3 can be performed, for example, by bringing an alkaline aqueous solution into contact with the gas. The recovered carbon dioxide is separated from the alkaline aqueous solution by heating the alkaline aqueous solution or the like, and then supplied to the urea production unit 20 and the off-gas treatment unit 80 (specifically, the microbubble generator 116) described later.
 メタン化装置4は、上記の二酸化炭素回収器3で回収しきれなかった二酸化炭素、及び、上記の変性器2で二酸化炭素に変換されずに二酸化炭素回収器3で回収されなかった一酸化炭素を、それぞれメタンに変換するものである。メタン化装置4において、一酸化炭素、二酸化炭素等の酸化炭素が除去されることで、後段のアンモニア製造装置12への酸化炭素の持ち込みが抑制される。これにより、酸化炭素に起因するアンモニア生成触媒(後記する)への影響を抑制することができる。 The methanator 4 includes carbon dioxide that could not be recovered by the carbon dioxide collector 3 and carbon monoxide that was not converted to carbon dioxide by the denaturator 2 and was not recovered by the carbon dioxide collector 3. Are each converted to methane. In the methanator 4, the removal of carbon oxide such as carbon monoxide and carbon dioxide suppresses the introduction of carbon oxide into the subsequent ammonia production apparatus 12. Thereby, the influence on the ammonia production | generation catalyst (it mentions later) resulting from carbon oxide can be suppressed.
 メタン化装置4では、以下の式(5)及び(6)で示される化学反応が生じている。
 CO+H→CO+HO ・・・式(5)
 CO+3H→CH+HO ・・・式(6)
 メタン化を生じさせる触媒(メタン化触媒)としては、任意のメタン化触媒を用いて行うことができる。メタン化触媒としては、例えば、ニッケル触媒等を挙げることができる。反応条件としては、例えばメタン化装置4に収容された触媒層の出口において250℃~350℃、2.0MPa~3.0MPa程度とすることができる。
In the methanator 4, chemical reactions represented by the following formulas (5) and (6) occur.
CO 2 + H 2 → CO + H 2 O Formula (5)
CO + 3H 2 → CH 4 + H 2 O (6)
As a catalyst (methanation catalyst) for causing methanation, any methanation catalyst can be used. As a methanation catalyst, a nickel catalyst etc. can be mentioned, for example. The reaction conditions may be, for example, about 250 ° C. to 350 ° C. and about 2.0 MPa to 3.0 MPa at the outlet of the catalyst layer accommodated in the methanator 4.
 アンモニア製造ユニット10は、改質装置1で得られた水素、及び、改質装置1で取り込まれた空気中の窒素を少なくとも使用してアンモニアを得るためのものである。 The ammonia production unit 10 is for obtaining ammonia using at least the hydrogen obtained by the reformer 1 and the nitrogen in the air taken in by the reformer 1.
 アンモニア製造ユニット10は、圧縮機11と、アンモニア製造装置12と、アンモニア回収装置13と、水素回収装置14とを備える。 The ammonia production unit 10 includes a compressor 11, an ammonia production device 12, an ammonia recovery device 13, and a hydrogen recovery device 14.
 圧縮機11は、後段のアンモニア製造装置12に導入される原料ガス(水素及び窒素を含み、不純物としてメタンを含む)を昇圧するためのものである。アンモニア製造装置12では、高圧でアンモニア生成反応が進行するため、圧縮機11により原料ガスを高圧にすることで、アンモニア生成反応を促進することができる。 The compressor 11 is for increasing the pressure of a raw material gas (including hydrogen and nitrogen and methane as an impurity) introduced into the ammonia production apparatus 12 at the subsequent stage. In the ammonia production apparatus 12, the ammonia generation reaction proceeds at a high pressure. Therefore, the ammonia generation reaction can be promoted by increasing the source gas to a high pressure by the compressor 11.
 アンモニア製造装置12は、原料ガス中の水素及び窒素を少なくとも使用し、アンモニアを得るためのものである。生成したアンモニアのうち、液相のアンモニアは、アンモニア供給系統71を通じて、後記する尿素製造ユニット20に供給される。一方で、アンモニア製造装置12の気相(パージガス)は、後記するアンモニア回収装置13に供給される。なお、アンモニア製造装置12の気相には、余剰の水素及び窒素(未反応の窒素)を含むほか、未反応のメタンも含まれる。 The ammonia production apparatus 12 is for obtaining ammonia by using at least hydrogen and nitrogen in the raw material gas. Among the generated ammonia, liquid phase ammonia is supplied to the urea production unit 20 described later through the ammonia supply system 71. On the other hand, the gas phase (purge gas) of the ammonia production apparatus 12 is supplied to an ammonia recovery apparatus 13 described later. In addition, the gas phase of the ammonia production apparatus 12 includes surplus hydrogen and nitrogen (unreacted nitrogen), and also includes unreacted methane.
 アンモニア製造装置12では、以下の式(7)で示される化学反応が生じている。
 N+3H→2NH ・・・式(7)
 アンモニアを生成させる触媒(アンモニア生成触媒)としては、任意のアンモニア生成触媒を用いて行うことができる。アンモニア生成触媒としては、例えば、四酸化三鉄を含む鉄触媒等を挙げることができる。反応条件としては、例えばアンモニア製造装置12に収容された触媒層の出口において400℃~480℃、12MPa~20MPa程度とすることができる。
In the ammonia production apparatus 12, a chemical reaction represented by the following formula (7) occurs.
N 2 + 3H 2 → 2NH 3 Formula (7)
As the catalyst for generating ammonia (ammonia production catalyst), any ammonia production catalyst can be used. As an ammonia production | generation catalyst, the iron catalyst containing a triiron tetroxide etc. can be mentioned, for example. The reaction conditions may be, for example, about 400 ° C. to 480 ° C. and about 12 MPa to 20 MPa at the outlet of the catalyst layer accommodated in the ammonia production apparatus 12.
 アンモニア回収装置13は、アンモニア製造装置12における気相に含まれるアンモニアを回収するものである。アンモニア回収装置13は図示しない冷凍機を備え、冷凍機の駆動により気相が0℃前後にまで冷却される。これにより、気相中のアンモニアが液化し、液化したアンモニアが回収される。回収されたアンモニアは、上記のアンモニア製造装置12の液相中のアンモニアと同様に、アンモニア供給系統71を通じ、圧縮機76により圧縮された後、後記する尿素製造ユニット20に供給される。 The ammonia recovery device 13 recovers ammonia contained in the gas phase in the ammonia production device 12. The ammonia recovery device 13 includes a refrigerator (not shown), and the gas phase is cooled to around 0 ° C. by driving the refrigerator. Thereby, ammonia in the gas phase is liquefied and the liquefied ammonia is recovered. The recovered ammonia is compressed by the compressor 76 through the ammonia supply system 71 in the same manner as the ammonia in the liquid phase of the ammonia production apparatus 12 described above, and then supplied to the urea production unit 20 described later.
 水素回収装置14は、上記アンモニア製造装置12での余剰の水素を回収するためのものである。水素回収装置14で回収された余剰の水素は、水素循環系統72を通じて、上記のメタン化装置4と圧縮機11との間(圧縮機11の前段)に戻される。一方で、回収できなかった水素と、回収されなかったメタンは、同じく回収されなかった窒素とともに改質装置1又は図示しないボイラ(双方でもよい)に供給され、燃料として燃焼利用される。 The hydrogen recovery device 14 is for recovering surplus hydrogen in the ammonia production device 12. Excess hydrogen recovered by the hydrogen recovery device 14 is returned to the space between the methanator 4 and the compressor 11 (the front stage of the compressor 11) through the hydrogen circulation system 72. On the other hand, hydrogen that could not be recovered and methane that was not recovered are supplied to the reformer 1 or a boiler (not shown) together with nitrogen that has not been recovered, and are combusted and used as fuel.
 水素回収装置14は、水素を回収できれば任意の構成とすることができる。具体的には例えば、任意の水素分離膜を使用することで、ガス中の水素を回収することができる。 The hydrogen recovery device 14 can have any configuration as long as it can recover hydrogen. Specifically, for example, hydrogen in the gas can be recovered by using an arbitrary hydrogen separation membrane.
 尿素製造ユニット20は、改質装置1で得られた二酸化炭素、及び、アンモニア製造ユニット10で得られたアンモニアを少なくとも使用して尿素を得るためのものである。尿素製造ユニット20において使用される二酸化炭素は、上記の二酸化炭素回収器3で回収されたものである。また、尿素製造ユニット20において使用されるアンモニアは、上記のアンモニア製造ユニットで製造したアンモニアであって、アンモニア供給系統71を通じて供給されたものである。 The urea production unit 20 is for obtaining urea using at least the carbon dioxide obtained by the reformer 1 and the ammonia obtained by the ammonia production unit 10. The carbon dioxide used in the urea production unit 20 is recovered by the carbon dioxide recovery unit 3 described above. The ammonia used in the urea production unit 20 is ammonia produced by the above ammonia production unit and is supplied through the ammonia supply system 71.
 尿素製造ユニット20は、圧縮機21と、尿素製造装置22とを備える。 The urea production unit 20 includes a compressor 21 and a urea production apparatus 22.
 圧縮機21は、二酸化炭素回収器3により回収した二酸化炭素であって尿素製造装置22(後記する)に供給される二酸化炭素を昇圧させるためのものである。昇圧された二酸化炭素は、第1二酸化炭素供給系統121を通じ、尿素製造装置22に供給される。第1二酸化炭素供給系統121は、圧縮機21において昇圧された二酸化炭素を尿素製造装置22に供給するためのものである。 The compressor 21 is for increasing the pressure of carbon dioxide recovered by the carbon dioxide recovery device 3 and supplied to the urea production apparatus 22 (described later). The pressurized carbon dioxide is supplied to the urea production apparatus 22 through the first carbon dioxide supply system 121. The first carbon dioxide supply system 121 is for supplying the urea carbon dioxide boosted in the compressor 21 to the urea production apparatus 22.
 尿素製造装置22では、高圧で尿素生成反応が進行するため、圧縮機21により原料ガスを高圧にすることで、尿素生成反応を促進することができる。生成した尿素は、後記する造粒装置61に供給される。 Since the urea production reaction proceeds at a high pressure in the urea production apparatus 22, the urea production reaction can be promoted by increasing the raw material gas to a high pressure by the compressor 21. The produced urea is supplied to a granulator 61 which will be described later.
 また、圧縮機21で昇圧された二酸化炭素は、第2二酸化炭素供給系統118を通じ、マイクロバブル発生装置116(炭酸製造装置、後記する)にも供給される。第2二酸化炭素供給系統118は、圧縮機21において昇圧された二酸化炭素をマイクロバブル発生装置116に供給するためのものである。 Further, the carbon dioxide boosted by the compressor 21 is also supplied to a microbubble generator 116 (a carbonic acid producing apparatus, which will be described later) through a second carbon dioxide supply system 118. The second carbon dioxide supply system 118 is for supplying the carbon dioxide boosted in the compressor 21 to the microbubble generator 116.
 圧縮機21、第1二酸化炭素供給系統121及び第2二酸化炭素供給系統118が備えられることで、昇圧された二酸化炭素を、尿素製造装置22及びマイクロバブル発生装置116(炭酸製造装置)の双方に供給できる。これにより、炭酸製造のための圧縮機(図示しない)を別途設ける必要がなく、圧縮機の設置面積を削減できる。また、昇圧後の二酸化炭素から炭酸を製造できるため、炭酸の製造量を増大できる。 By providing the compressor 21, the first carbon dioxide supply system 121, and the second carbon dioxide supply system 118, the pressurized carbon dioxide is supplied to both the urea production apparatus 22 and the microbubble generator 116 (carbonic acid production apparatus). Can supply. Thereby, it is not necessary to separately provide a compressor (not shown) for carbonic acid production, and the installation area of the compressor can be reduced. Moreover, since carbonic acid can be produced from carbon dioxide after pressure increase, the production amount of carbonic acid can be increased.
 尿素製造装置22は、少なくともアンモニアを用いて尿素を製造するためのものである。本発明の一実施形態では、尿素製造装置22は、原料ガス中の二酸化炭素及びアンモニアを反応させて尿素を生成させる。生成する尿素は、ここでは液体である。尿素製造装置22には、上記の圧縮機21で圧縮された二酸化炭素のほか、後記するアンモニア回収装置13で回収され、圧縮機(高圧ポンプ)76で昇圧された後のアンモニアが供給される。尿素製造装置22では、以下の式(8)で示される化学反応が生じている。
 2NH+CO→(NHCO+HO ・・・式(8)
 尿素を生成させる条件も特に制限されないが、例えば尿素製造装置22の出口で170℃~200℃、13MPa~18MPa程度とすることができる。
The urea production apparatus 22 is for producing urea using at least ammonia. In one embodiment of the present invention, the urea production apparatus 22 reacts carbon dioxide and ammonia in the raw material gas to generate urea. The urea produced is liquid here. In addition to the carbon dioxide compressed by the compressor 21, the urea production device 22 is supplied with ammonia that has been recovered by an ammonia recovery device 13 described later and whose pressure has been increased by a compressor (high pressure pump) 76. In the urea production apparatus 22, a chemical reaction represented by the following formula (8) occurs.
2NH 3 + CO 2 → (NH 2 ) 2 CO + H 2 O (8)
The conditions for generating urea are not particularly limited. For example, the temperature can be set to about 170 to 200 ° C. and about 13 to 18 MPa at the outlet of the urea production apparatus 22.
 造粒装置61は、尿素製造装置22において生成した尿素を造粒するためのものである。造粒装置61では、尿素-ホルムアルデヒド水溶液に含まれるホルムアルデヒドが結着剤として機能し、尿素製造ユニット20から供給された尿素の造粒が行われる。尿素の造粒により得られた粒状の尿素は、肥料として出荷され、使用される。 The granulator 61 is for granulating the urea produced | generated in the urea manufacturing apparatus 22. FIG. In the granulator 61, formaldehyde contained in the urea-formaldehyde aqueous solution functions as a binder, and the urea supplied from the urea production unit 20 is granulated. Granular urea obtained by granulation of urea is shipped and used as fertilizer.
 粒状の尿素の大きさは特に制限されるものではないが、例えば、粒径として2mm~6mm程度とすることができる。 The size of the granular urea is not particularly limited, but for example, the particle size can be about 2 mm to 6 mm.
 オフガス処理ユニット80は、肥料製造プラント100のオフガスを処理するためのものである。ただし、本発明の一実施形態では、オフガス処理ユニット80により処理されるオフガスは、造粒装置61のオフガスを含む。これにより、造粒装置61において尿素水溶液の造粒時に発生したアンモニアを、酸性吸収液との接触によりオフガスから除去できる。 The off gas processing unit 80 is for processing off gas of the fertilizer manufacturing plant 100. However, in one embodiment of the present invention, the offgas processed by the offgas processing unit 80 includes the offgas of the granulating device 61. Thereby, ammonia generated at the time of granulation of the urea aqueous solution in the granulator 61 can be removed from the off-gas by contact with the acidic absorbent.
 オフガス処理ユニット80の構成について、図2を参照しながら説明する。 The configuration of the off-gas processing unit 80 will be described with reference to FIG.
 図2は、図1に示す肥料製造プラント100におけるオフガス処理ユニット80を示す系統図である。オフガス処理ユニット80は、固形分除去スクラバ80Aと、スクラバ80Bとを備える。即ち、肥料製造プラント100は、固形分除去スクラバ80Aと、スクラバ80Bとを備える。 FIG. 2 is a system diagram showing an off-gas treatment unit 80 in the fertilizer manufacturing plant 100 shown in FIG. The off-gas processing unit 80 includes a solid content removing scrubber 80A and a scrubber 80B. That is, the fertilizer manufacturing plant 100 includes a solid content removing scrubber 80A and a scrubber 80B.
 固形分除去スクラバ80Aは、オフガス中の固形分を除去するためのものである。ここでいう固形分は、例えば、造粒装置61のオフガスに含まれる固体尿素の粉体等である。固形分除去スクラバ80Aが備えられることで、肥料製造プラント100のオフガスに含まれる固形分(例えば固体尿素の粉体等)を除去できる。そして、固形分除去後のオフガス中のアンモニアを、スクラバ80Bによってオフガスから除去できる。 The solid content removal scrubber 80A is for removing the solid content in the off-gas. The solid content here is, for example, solid urea powder contained in the off-gas of the granulator 61. By providing the solid content removal scrubber 80A, it is possible to remove the solid content (for example, solid urea powder) contained in the off-gas of the fertilizer manufacturing plant 100. And the ammonia in the off gas after solid content removal can be removed from the off gas by the scrubber 80B.
 固形分除去スクラバ80Aは、オフガスが流れる内部空間81aを有する筐体81と、内部空間81aに散水するためのノズル83と、ノズル83に水(例えば真水、中水、工業用水等の中性水(pHが7程度))を供給するための給水系統87とを備える。固形分除去スクラバ80Aの内部は通常は高温であるため、液体の水が蒸発する。そこで、蒸発した液体の水を補給するため、ノズル83による散水が行われる。 The solid content removing scrubber 80A includes a casing 81 having an internal space 81a through which off-gas flows, a nozzle 83 for sprinkling water into the internal space 81a, and neutral water such as fresh water, medium water, and industrial water. (With a pH of about 7)). Since the inside of the solid content removing scrubber 80A is usually at a high temperature, liquid water evaporates. Therefore, water is sprayed by the nozzle 83 in order to replenish the evaporated liquid water.
 なお、固形分除去スクラバ80Aでは中性水が散水されるため、オフガス中のアンモニアが多少は吸収される。そこで、アンモニアの濃縮抑制の観点から、内部空間81aに滞留した水の一部は、排水系統(図示しない)を通じて固形分除去スクラバ80Aの外部に抜き出され、抜き出し液中のアンモニアが処理されるようにしてもよい。 In addition, since neutral water is sprinkled in the solid content removal scrubber 80A, some ammonia in the offgas is absorbed. Therefore, from the viewpoint of suppressing the concentration of ammonia, a part of the water staying in the internal space 81a is extracted outside the solid content removing scrubber 80A through a drainage system (not shown), and the ammonia in the extracted liquid is processed. You may do it.
 固形分除去スクラバ80Aは、抜き出し系統86と、ポンプ82と、ノズル84とを備える。抜き出し系統86は、ノズル83により散水されることで内部空間81aに滞留した水(溶解した固形分を含む、以下滞留した水については同じ)を筐体81の外部に抜き出すためのものである。ポンプ82は、内部空間81aに滞留した水を抜き出し系統86に流すためのものである。ノズル84は、抜き出し系統86を流れた水を内部空間81aに散水するためのものである。 The solid content removing scrubber 80A includes an extraction system 86, a pump 82, and a nozzle 84. The extraction system 86 is for extracting the water remaining in the internal space 81 a by being sprayed by the nozzle 83 (including dissolved solids, the same applies to the remaining water below) to the outside of the housing 81. The pump 82 is for extracting water remaining in the internal space 81 a and flowing it to the system 86. The nozzle 84 is for sprinkling water that has flowed through the extraction system 86 into the internal space 81a.
 抜き出し系統86を流れる水の一部は、固形分の濃縮抑制の観点から、図示しない排水系統を通じて固形分除去スクラバ80Aの外部に抜き出されて排水処理される。また、ノズル84は、オフガス流れの途中に設置されたトレイ85(例えば多孔板により構成される)に向けて水を噴射するように構成される。これにより、トレイ85に析出した固形分が洗い流される(詳細は後記する)。 A part of the water flowing through the extraction system 86 is extracted to the outside of the solid content removal scrubber 80A through a drainage system (not shown) from the viewpoint of suppressing the concentration of the solid content, and is drained. Moreover, the nozzle 84 is comprised so that water may be injected toward the tray 85 (for example, comprised with a perforated plate) installed in the middle of the off-gas flow. Thereby, the solid content deposited on the tray 85 is washed away (details will be described later).
 オフガス供給系統111を通じて固形分除去スクラバ80Aに供給されたオフガスは、筐体81の内部空間81aを上方向に向かって流れる。この際、オフガスは、オフガス流れの途中に設置され、例えば多孔板により構成されるトレイ85と接触する。これにより、オフガスに含まれる固形分は、トレイ85に析出する。ここで、上記のノズル84は、トレイ85に向けて水を噴射するように構成される。そのため、トレイ85に析出した固形分は噴射された水によって洗い流される。これにより、トレイ85において過剰の固形分析出が抑制され、オフガスの圧力損失増大が抑制される。 The off gas supplied to the solid content removal scrubber 80A through the off gas supply system 111 flows upward in the internal space 81a of the casing 81. At this time, the off-gas is installed in the middle of the off-gas flow, and comes into contact with a tray 85 constituted by a perforated plate, for example. Thereby, the solid content contained in the off gas is deposited on the tray 85. Here, the nozzle 84 is configured to inject water toward the tray 85. Therefore, the solid content deposited on the tray 85 is washed away by the jetted water. Thereby, excessive solid analysis is suppressed in the tray 85, and an increase in off-gas pressure loss is suppressed.
 一方で、トレイ85への析出により固形分が除去されたオフガスは、図示しないオフガス排出口を通じて、オフガス供給系統112に供給される。そして、オフガス供給系統112を流れるオフガスは、オフガスの流れ方向で固形分除去スクラバ80Aの下流側に配置されるスクラバ80Bに供給される。 On the other hand, the off-gas from which the solid content has been removed by deposition on the tray 85 is supplied to the off-gas supply system 112 through an off-gas discharge port (not shown). Then, the off gas flowing through the off gas supply system 112 is supplied to the scrubber 80B disposed downstream of the solid content removing scrubber 80A in the off gas flow direction.
 スクラバ80Bは、肥料製造プラント100のオフガスであってアンモニアを含むオフガスを酸性吸収液に接触させるための内部空間91aを有するものである。オフガスに接触させる酸性吸収液は炭酸を含む。スクラバ80Bにおいてアンモニア除去後のオフガスは、排気系統113を通じて、大気中に排気される。 The scrubber 80B has an internal space 91a for bringing the offgas containing ammonia and the offgas of the fertilizer manufacturing plant 100 into contact with the acidic absorbent. The acidic absorbent that is brought into contact with the offgas contains carbonic acid. The off-gas after removal of ammonia in the scrubber 80B is exhausted to the atmosphere through the exhaust system 113.
 スクラバ80Bは、オフガスが流れる内部空間91aを有する筐体91と、内部空間91aに散水するためのノズル93と、ノズル93に水を供給するための給水系統97とを備える。スクラバ80Bの内部は通常は高温であるため、液体の水が蒸発する。そこで、蒸発した液体の水を補給するため、ノズル93による散水が行われる。 The scrubber 80B includes a casing 91 having an internal space 91a through which off-gas flows, a nozzle 93 for spraying water into the internal space 91a, and a water supply system 97 for supplying water to the nozzle 93. Since the inside of the scrubber 80B is normally hot, liquid water evaporates. Therefore, water is sprayed by the nozzle 93 in order to replenish the evaporated liquid water.
 スクラバ80Bは、抜き出し系統96と、ポンプ92と、ノズル94とを備える。抜き出し系統96は、ノズル93により散水されることで内部空間91aに滞留した水を筐体91の外部に抜き出すためのものである。ポンプ92は、内部空間91aに滞留した水を抜き出し系統96に流すためのものである。ノズル94は、抜き出し系統96を流れた水を内部空間91aに散水するためのものである。ノズル94は、例えば多孔板により構成されるトレイ98に向けて水を噴射するようになっている。 The scrubber 80B includes an extraction system 96, a pump 92, and a nozzle 94. The extraction system 96 is for extracting the water retained in the internal space 91 a by being sprayed by the nozzle 93 to the outside of the housing 91. The pump 92 is for extracting water staying in the internal space 91 a and flowing it to the system 96. The nozzle 94 is for sprinkling water that has flowed through the extraction system 96 into the internal space 91a. The nozzle 94 injects water toward a tray 98 constituted by, for example, a perforated plate.
 ここで、スクラバ80Bでは、上記のように、内部空間91aに滞留した水が筐体91の外部に抜き出される。そして、スクラバ80Bでは、詳細は後記するが、ノズル94から散水された酸性吸収液と、アンモニアを含むオフガスとの接触が行われる。そのため、内部空間91aに滞留した水には、酸性吸収液に吸収されたアンモニア、及び、オフガス接触後の酸性吸収液が含まれる。また、内部空間91aに滞留した水には、ノズル93により散水された水も含まれる。そして、散水された水にも、多少は、オフガス中のアンモニアが吸収され得る。さらに、内部空間91aに滞留した水には、第1酸性吸収液供給系統117(後記する)を通じて供給された酸性吸収液も含まれる。 Here, in the scrubber 80B, the water staying in the internal space 91a is drawn out of the housing 91 as described above. In the scrubber 80B, as will be described in detail later, the acidic absorbing liquid sprayed from the nozzle 94 and the off gas containing ammonia are contacted. Therefore, the water staying in the internal space 91a includes ammonia absorbed in the acidic absorbent and the acidic absorbent after the off-gas contact. The water staying in the internal space 91a includes water sprinkled by the nozzle 93. And the ammonia in offgas may be absorbed to some extent by the sprinkled water. Further, the water staying in the internal space 91a includes an acidic absorbent supplied through a first acidic absorbent supply system 117 (described later).
 そこで、本発明の一実施形態では、内部空間91aに滞留した水については、説明の便宜のため一律に「酸性吸収液」と呼称するものとする。そして、本発明の一実施形態では、内部空間91aに滞留した酸性吸収液は、抜き出し系統96を通じて、ノズル94から散水される。従って、酸性吸収液は、内部空間91aの内外を循環する。 Therefore, in one embodiment of the present invention, the water staying in the internal space 91a is uniformly referred to as an “acid absorbing solution” for convenience of explanation. In one embodiment of the present invention, the acidic absorbing liquid staying in the internal space 91 a is sprinkled from the nozzle 94 through the extraction system 96. Therefore, the acidic absorbing liquid circulates inside and outside the internal space 91a.
 なお、内部空間91aに滞留した水(酸性吸収液)においては、アンモニアは、アンモニア分子又はアンモニウムイオンの少なくとも一方の形態として液中に存在する。 Note that in the water (acid absorbing liquid) staying in the internal space 91a, ammonia exists in the liquid as at least one form of ammonia molecules or ammonium ions.
 酸性吸収液を筐体91から抜き出すための抜き出し系統96は、開度調整弁95及び流量計99bを含む。そして、流量計99bにより測定される流量が一定となるように、開度調整弁95の開度が調整される。従って、ノズル94を通じて散水される水量は一定になっている。 The extraction system 96 for extracting the acidic absorbing liquid from the housing 91 includes an opening adjustment valve 95 and a flow meter 99b. Then, the opening degree of the opening degree adjusting valve 95 is adjusted so that the flow rate measured by the flow meter 99b is constant. Therefore, the amount of water sprayed through the nozzle 94 is constant.
 抜き出し系統96には、分岐系統115が接続される。分岐系統115は、炭酸製造装置の一例として、水に二酸化炭素を溶解させることにより炭酸を製造するためのマイクロバブル発生装置116を含む。 A branch system 115 is connected to the extraction system 96. The branch system 115 includes, as an example of a carbonic acid production apparatus, a microbubble generator 116 for producing carbonic acid by dissolving carbon dioxide in water.
 マイクロバブル発生装置116(炭酸製造装置の一例)は、二酸化炭素回収器3(図1参照)で回収した二酸化炭素を用いて炭酸を製造するためのものである。即ち、回収した二酸化炭素を酸性吸収液に溶解させることで、酸性吸収液中に炭酸を生成させるためのものである。製造された酸性吸収液は、第1酸性吸収液供給系統117を通じて、筐体91に供給される。 The microbubble generator 116 (an example of a carbonic acid production apparatus) is for producing carbonic acid using the carbon dioxide recovered by the carbon dioxide recovery device 3 (see FIG. 1). That is, the recovered carbon dioxide is dissolved in the acidic absorbing solution to generate carbonic acid in the acidic absorbing solution. The manufactured acidic absorbent is supplied to the casing 91 through the first acidic absorbent supply system 117.
 マイクロバブル発生装置116には、圧縮機21からの二酸化炭素を供給するための第2二酸化炭素供給系統118が接続される。このようにすることで、天然ガス等のメタン含有ガスの改質により生成した二酸化炭素を用いて、酸性吸収液を製造できる。 A second carbon dioxide supply system 118 for supplying carbon dioxide from the compressor 21 is connected to the microbubble generator 116. By doing in this way, an acidic absorption liquid can be manufactured using the carbon dioxide produced | generated by modification | reformation of methane containing gas, such as natural gas.
 マイクロバブル発生装置116は、例えば、百ナノメートルから数百マイクロメートル程度の大きさの気泡を水中に発生させるように構成される。具体的には、例えば、マイクロバブル発生装置116による発生直後の気泡の大きさとして、例えば100nm以上500μm以下程度の大きさの気泡が発生する。このようなマイクロバブル発生装置116が備えられることで、水中での炭酸の存在時間を長時間化できる。 The microbubble generator 116 is configured to generate, for example, bubbles having a size of about one hundred nanometers to several hundred micrometers in water. Specifically, for example, bubbles having a size of about 100 nm to about 500 μm are generated as the size of bubbles immediately after being generated by the microbubble generator 116. By providing such a microbubble generator 116, the existence time of carbonic acid in water can be extended.
 マイクロバブル発生装置116の具体的な構成は特に制限されず、例えば、エジェクタ方式、キャビテーション方式、旋回流方式、加圧溶解方式等、任意の方式を採用できる。 The specific configuration of the microbubble generator 116 is not particularly limited, and for example, any method such as an ejector method, a cavitation method, a swirling flow method, and a pressure dissolution method can be adopted.
 第2二酸化炭素供給系統118は、二酸化炭素の供給量を調整するための開度調整弁119を備える。開度調整弁119の開度は、pH計99aにより測定されるpHに基づき、演算制御装置151により制御される。即ち、スクラバ80Bでのアンモニア吸収により内部空間91aに滞留する酸性吸収液のpHは徐々に大きくなる。そこで、内部空間91aに滞留する酸性吸収液(即ち、抜き出し系統96を流れる酸性吸収液)のpHが酸性側になるように、二酸化炭素が酸性吸収液に溶解される。具体的には、pH計99aにより測定される酸性吸収液のpH(即ち、ノズル94により散水される酸性吸収液のpH)が小さくなるように、二酸化炭素の溶解量が制御される。 The second carbon dioxide supply system 118 includes an opening degree adjustment valve 119 for adjusting the supply amount of carbon dioxide. The opening degree of the opening degree adjusting valve 119 is controlled by the arithmetic and control unit 151 based on the pH measured by the pH meter 99a. That is, the pH of the acidic absorbent that stays in the internal space 91a due to ammonia absorption in the scrubber 80B gradually increases. Therefore, carbon dioxide is dissolved in the acidic absorbent such that the pH of the acidic absorbent that stays in the internal space 91a (that is, the acidic absorbent that flows through the extraction system 96) is on the acidic side. Specifically, the amount of carbon dioxide dissolved is controlled so that the pH of the acidic absorbent measured by the pH meter 99a (that is, the pH of the acidic absorbent sprayed by the nozzle 94) becomes small.
 具体的には、pH計99aにより測定される酸性吸収液のpHは例えば4以上6.5以下程度にすることができ、この範囲の中でもより小さなpHであることが好ましい。pHの範囲がこの範囲になるように二酸化炭素の溶解量が制御されることで、酸性吸収液へのアンモニアの吸収を促すことができる。また、吸収したアンモニアが酸性吸収液中でアンモニウムイオンとして存在し易くなり、気相へのアンモニアの再飛散を抑制できる。 Specifically, the pH of the acidic absorbing solution measured by the pH meter 99a can be set to, for example, about 4 or more and 6.5 or less, and a smaller pH is preferable in this range. By controlling the amount of carbon dioxide dissolved so that the pH range is within this range, absorption of ammonia into the acidic absorbent can be promoted. Further, the absorbed ammonia is likely to be present as ammonium ions in the acidic absorbing solution, and re-scattering of ammonia into the gas phase can be suppressed.
 なお、演算制御装置151は、いずれも図示しないが、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、制御回路等を備え、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。 Although not shown, the arithmetic and control unit 151 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), a control circuit, and the like. The stored predetermined control program is implemented by the CPU.
 肥料製造プラント100においては、マイクロバブル発生装置116により、分岐系統115を流れた酸性吸収液中にマイクロバブルを発生させることで、分岐系統115を流れた酸性吸収液に二酸化炭素が溶解する。これにより、炭酸を含む酸性吸収液が生成し、マイクロバブル発生装置116で生成した酸性吸収液は、第1酸性吸収液供給系統117を通じて、筐体91に供給される。そして、筐体91に供給された酸性吸収液は、抜き出し系統96及びノズル94を通じて、筐体91の内部空間91aに散水される。散水された酸性吸収液は、オフガスと接触することでオフガス中のアンモニアを吸収し、筐体19の内部空間91aに滞留する。 In the fertilizer manufacturing plant 100, the microbubble generator 116 generates microbubbles in the acidic absorbent flowing through the branch line 115, so that carbon dioxide is dissolved in the acidic absorbent flowing through the branch line 115. As a result, an acidic absorbent containing carbonic acid is generated, and the acidic absorbent produced by the microbubble generator 116 is supplied to the housing 91 through the first acidic absorbent supply system 117. The acidic absorbent supplied to the casing 91 is sprinkled into the internal space 91a of the casing 91 through the extraction system 96 and the nozzle 94. The sprinkled acidic absorbent absorbs ammonia in the off gas by coming into contact with the off gas and stays in the internal space 91 a of the housing 19.
 滞留した酸性吸収液には、アンモニアの吸収により生成した炭酸アンモニウムが含まれる。そこで、炭酸アンモニウムを含む酸性吸収液の一部は、抜き出し系統96及び炭酸アンモニウム供給系統114を通じて、尿素製造装置22に供給される。なお、炭酸アンモニウム供給系統114は、スクラバ80Bでのオフガス接触後の酸性吸収液を尿素製造装置22に供給するためのものである。炭酸アンモニウム供給系統114が備えられることで、オフガス接触後の酸性吸収液に含まれる炭酸アンモニウムを、尿素製造のための原料として用いることができる。 The retained acidic absorbent contains ammonium carbonate produced by absorption of ammonia. Therefore, a part of the acidic absorbent containing ammonium carbonate is supplied to the urea production apparatus 22 through the extraction system 96 and the ammonium carbonate supply system 114. The ammonium carbonate supply system 114 is for supplying the urea absorbent 22 with the acidic absorbent after the offgas contact in the scrubber 80B. By providing the ammonium carbonate supply system 114, ammonium carbonate contained in the acidic absorbent after contact with the off-gas can be used as a raw material for urea production.
 以上の構成を有する肥料製造プラント100によれば、硫酸水溶液を使用せず、取り扱いが容易な炭酸を含む酸性吸収液を用いて、オフガス中のアンモニアを吸収できる。これにより、硫安を生成させずにオフガス中のアンモニアを除去でき、肥料製造プラント100で発生したオフガスを簡便に処理できる。 According to the fertilizer manufacturing plant 100 having the above configuration, ammonia in off-gas can be absorbed using an acidic absorbent containing carbonic acid that is easy to handle without using an aqueous sulfuric acid solution. Thereby, ammonia in offgas can be removed without producing ammonium sulfate, and offgas generated in the fertilizer manufacturing plant 100 can be easily treated.
 図3は、本発明の第1実施形態に係る肥料の製造方法を示すフローチャートである。図3に示す肥料の製造方法は、尿素を含む肥料を製造する肥料の製造方法に関する。ただし、図3では、説明の簡略化のために、尿素の製造、及び、造粒装置61のオフガス中のアンモニアの吸収除去を中心に記載している。 FIG. 3 is a flowchart showing a method for manufacturing a fertilizer according to the first embodiment of the present invention. The fertilizer manufacturing method shown in FIG. 3 relates to a fertilizer manufacturing method for manufacturing a fertilizer containing urea. However, in FIG. 3, for simplification of description, the production of urea and the absorption removal of ammonia in the off-gas of the granulating apparatus 61 are mainly described.
 図3に示す肥料の製造方法は、例えば、上記の図1に示す肥料製造プラント100において実施することができる。そこで、以下においては、適宜、図1を併せて参照しながら、図3の説明を行う。 3 can be implemented, for example, in the fertilizer manufacturing plant 100 shown in FIG. 1 described above. Therefore, in the following, FIG. 3 will be described with reference to FIG. 1 as appropriate.
 肥料製造プラント100では、天然ガス等のメタン含有ガスの改質により、水素が製造する。そして、製造された水素を用いて、アンモニア及びメタノールが製造される。また、改質の際に副生した二酸化炭素は二酸化炭素回収器3によって回収される(ステップS1)。そして、回収された二酸化炭素とアンモニアとを用いて、尿素が製造される。このとき、上記のように、尿素製造装置22は、炭酸アンモニウム供給系統114を通じて供給された炭酸アンモニウムを原料の一部として尿素を製造する。そして、製造された尿素と、アンモニア及びメタノールとを用いて、肥料が製造される。 In the fertilizer manufacturing plant 100, hydrogen is produced by reforming methane-containing gas such as natural gas. And ammonia and methanol are manufactured using the manufactured hydrogen. Further, carbon dioxide produced as a by-product during the reforming is recovered by the carbon dioxide recovery device 3 (step S1). And urea is manufactured using the collect | recovered carbon dioxide and ammonia. At this time, as described above, the urea production apparatus 22 produces urea using ammonium carbonate supplied through the ammonium carbonate supply system 114 as a part of the raw material. And the fertilizer is manufactured using the manufactured urea, ammonia, and methanol.
 また、二酸化炭素回収器3で回収された二酸化炭素を用いて、マイクロバブル発生装置116(図2参照)は、炭酸を含む酸性吸収液を製造する(ステップS2)。製造された酸性吸収液は、スクラバ80Bにおいて、肥料の製造時に発生したオフガスであってアンモニアを含むオフガス(例えば造粒装置61のオフガス)と接触される(ステップS3、接触ステップ)。これにより、オフガス中のアンモニアが酸性吸収液に吸収され、酸性吸収液中で炭酸アンモニウムが生成する。 Further, the microbubble generator 116 (see FIG. 2) uses the carbon dioxide collected by the carbon dioxide collector 3 to produce an acidic absorbent containing carbonic acid (step S2). The produced acidic absorbing liquid is brought into contact with offgas (for example, offgas of the granulating device 61) which is offgas generated during production of fertilizer and contains ammonia in the scrubber 80B (step S3, contact step). As a result, ammonia in the off-gas is absorbed by the acidic absorbent and ammonium carbonate is generated in the acidic absorbent.
 次いで、オフガス接触後の酸性吸収液が、炭酸アンモニウム供給系統114を通じて供給される(ステップS4)。そして、尿素製造装置22では、オフガス接触後の酸性吸収液中の炭酸アンモニウムを用いた尿素の製造が行われる(ステップS5、尿素製造ステップ)。 Next, the acid absorbing liquid after contact with the off-gas is supplied through the ammonium carbonate supply system 114 (step S4). And in the urea manufacturing apparatus 22, urea is manufactured using the ammonium carbonate in the acidic absorbing liquid after the off-gas contact (step S5, urea manufacturing step).
 以上の製造方法によれば、硫酸水溶液を使用せず、取り扱いが容易な炭酸を含む酸性吸収液を用いて、オフガス中のアンモニアを吸収できる。これにより、硫安を生成させずにオフガス中のアンモニアを除去でき、肥料製造時に発生したオフガスを簡便に処理できる。 According to the above production method, ammonia in off-gas can be absorbed using an acidic absorbent containing carbonic acid that is easy to handle without using an aqueous sulfuric acid solution. Thereby, ammonia in off-gas can be removed without producing ammonium sulfate, and off-gas generated during the production of fertilizer can be easily treated.
 ここで、本発明者らは、ノズル94を通じた酸性吸収液の散水量、及び、ノズル93を通じた水の散水量が、スクラバ80Bにおけるアンモニア除去率に及ぼす影響を確認するため、図2に示すスクラバ80Bを用いて、以下の試験を行った。なお、この試験では、試験の簡略化のために、図2に示す固形分除去スクラバ80Aは使用していない。また、この試験では、簡略化のために上記スクラバ80Bを模した小規模の試験装置を作製して行った。そして、以下に示す試験時の酸性吸収液の流量、及びオフガス流量は、実際の肥料製造プラント100における尿素生産量(例えば3500トン/日規模)に相当する流量に換算して示した。  Here, the present inventors have shown in FIG. 2 in order to confirm the influence of the water spray amount of the acidic absorbent through the nozzle 94 and the water spray amount through the nozzle 93 on the ammonia removal rate in the scrubber 80B. The following tests were conducted using the scrubber 80B. In this test, the solid content removing scrubber 80A shown in FIG. 2 is not used to simplify the test. In this test, a small-scale test apparatus simulating the scrubber 80B was produced for the sake of simplicity. And the flow volume of the acidic absorption liquid at the time of the test shown below, and the off-gas flow volume were converted into the flow volume equivalent to the urea production amount (for example, 3500 tons / day scale) in the actual fertilizer manufacturing plant 100, and were shown. *
 スクラバ80Bでのオフガス供給口(図示しない)におけるアンモニア濃度が100mg/Nm(ノルマルリューベ、以下同じ)のオフガスを、1時間当たり60万Nmの流量でスクラバ80Bに供給した。また、スクラバ80Bの炭酸アンモニウム供給系統114を通じて、抜き出し系統96を流れる酸性吸収液の5体積%を抜き出しながら、等量の水(真水)をノズル93を通じて内部空間91aに散水した。そして、ノズル94を通じた酸性吸収液の散水量(流量)を変更しながら、スクラバ80Bでのオフガス排出口(図示しない)におけるアンモニア濃度を測定した。あわせて、pH計99aによりpHも測定した。これらの結果を以下の表1に示す(実施例1~4)。 Off-gas having an ammonia concentration of 100 mg / Nm 3 (normal lube, hereinafter the same) at an off-gas supply port (not shown) in the scrubber 80B was supplied to the scrubber 80B at a flow rate of 600,000 Nm 3 per hour. Further, an equal amount of water (fresh water) was sprinkled into the internal space 91a through the nozzle 93 while extracting 5% by volume of the acidic absorbent flowing through the extraction system 96 through the ammonium carbonate supply system 114 of the scrubber 80B. Then, the ammonia concentration at the off-gas discharge port (not shown) in the scrubber 80B was measured while changing the amount of water (flow rate) of the acidic absorbent through the nozzle 94. In addition, the pH was also measured with a pH meter 99a. These results are shown in Table 1 below (Examples 1 to 4).
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、ノズル94を通じた酸性吸収液の散水量が多いほど、即ち、オフガスに対する酸性吸収液の流量が多いほど、アンモニア除去率が向上することがわかった。 As shown in Table 1, it was found that the ammonia removal rate was improved as the amount of water sprayed through the nozzle 94 increased, that is, as the flow rate of the acid absorbing solution with respect to the off-gas increased.
 次に、炭酸アンモニウム供給系統114を通じた酸性吸収液の抜き出し量を、抜き出し系統96を流れる酸性吸収液の15体積%に変更したこと以外は、上記の実施例1~4と同様にして、オフガス排出口におけるアンモニア濃度及びpHを測定した。これらの結果を以下の表2に示す(実施例5~8)。 Next, in the same manner as in Examples 1 to 4, except that the amount of acidic absorbent extracted through the ammonium carbonate supply system 114 was changed to 15% by volume of the acidic absorbent flowing through the extraction system 96, the offgas was removed. The ammonia concentration and pH at the outlet were measured. These results are shown in Table 2 below (Examples 5 to 8).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、抜き出し量が多くなっても、上記の表1と同様に、ノズル94を通じた酸性吸収液の散水量が多いほど、即ち、オフガスに対する酸性吸収液の流量が多いほど、アンモニア除去率が向上することがわかった。また、表1と表2とを比較すると、例えば、抜き出し量が異なること以外は同じ条件であれば(実施例1及び実施例5等)、抜き出し量が多い方がアンモニア除去率が向上することがわかった。 As shown in Table 2, even if the extraction amount is increased, the amount of water sprayed through the nozzle 94 is larger, that is, as the flow rate of the acid absorbent relative to the off-gas is larger, as in Table 1 above. It was found that the ammonia removal rate was improved. Moreover, when Table 1 and Table 2 are compared, for example, if the extraction conditions are the same except that the extraction amount is different (Example 1 and Example 5), the ammonia removal rate is improved when the extraction amount is large. I understood.
 以上の表1及び表2の結果から、ノズル94を通じた酸性吸収液の散水量、及び、ノズル93を通じた水の散水量は、いずれも、大きい方がスクラバ80Bにおけるアンモニア除去率が向上することがわかった。 From the results of Tables 1 and 2 above, the larger the amount of water sprayed through the nozzle 94 and the amount of water sprayed through the nozzle 93, the greater the ammonia removal rate in the scrubber 80B. I understood.
 図4は、本発明の第2実施形態に係る肥料製造プラントの系統図である。図4に示す肥料製造プラント100Aは、スクラバ80Bでのオフガス接触後の酸性吸収液を固形分除去スクラバ80Aに供給するための第2酸性吸収液供給系統124を備える。また、肥料製造プラント100Aは、尿素水溶液供給系統123と、尿素水溶液戻し系統122と、を備える。尿素水溶液供給系統123は、尿素製造装置22で製造された尿素水溶液を固形分除去スクラバ80Aに供給するためのものである。また、尿素水溶液戻し系統122は、固形分除去スクラバ80Aでのオフガス接触後の尿素水溶液(固形分、スクラバ80Bから供給された酸性水溶液を含む)を尿素製造装置22に戻すためのものである。 FIG. 4 is a system diagram of a fertilizer production plant according to the second embodiment of the present invention. The fertilizer manufacturing plant 100A shown in FIG. 4 includes a second acidic absorbent supply system 124 for supplying the acidic absorbent after the off-gas contact in the scrubber 80B to the solid content removing scrubber 80A. Moreover, the fertilizer manufacturing plant 100A includes a urea aqueous solution supply system 123 and a urea aqueous solution return system 122. The urea aqueous solution supply system 123 is for supplying the urea aqueous solution manufactured by the urea manufacturing apparatus 22 to the solid content removing scrubber 80A. The urea aqueous solution returning system 122 is for returning the urea aqueous solution (solid content, including the acidic aqueous solution supplied from the scrubber 80B) after the off-gas contact in the solid content removing scrubber 80A to the urea manufacturing apparatus 22.
 図5は、図4に示す肥料製造プラント100Aにおけるオフガス処理ユニット80を示す系統図である。肥料製造プラント100Aのスクラバ80Bでは、筐体91から抜き出され、抜き出し系統96を流れる酸性吸収液の一部が、第2酸性吸収液供給系統124(酸性吸収液供給系統)を通じて、固形分除去スクラバ80Aの給水系統87に供給される。供給量の調整は、第2酸性吸収液供給系統124に備えられる開度調整弁120の開度調整により行われる。給水系統87への供給により、スクラバ80Bでのオフガス接触後の酸性吸収液は、固形分除去スクラバ80Aの内部空間81aに散水される。 FIG. 5 is a system diagram showing the off-gas treatment unit 80 in the fertilizer manufacturing plant 100A shown in FIG. In the scrubber 80B of the fertilizer manufacturing plant 100A, a part of the acidic absorbent extracted from the housing 91 and flowing through the extraction system 96 is removed through the second acidic absorbent supply system 124 (acid absorbent supply system). It is supplied to the water supply system 87 of the scrubber 80A. The adjustment of the supply amount is performed by adjusting the opening degree of the opening degree adjustment valve 120 provided in the second acidic absorbent supply system 124. By supplying to the water supply system 87, the acidic absorbent after the off-gas contact in the scrubber 80B is sprinkled into the internal space 81a of the solid content removing scrubber 80A.
 第2酸性吸収液供給系統124が備えられることで、オフガス接触後の酸性吸収液を固形分除去スクラバ80Aに供給できる。これにより、蒸発により固形分除去スクラバ80Aで水分が減少しても、固形分除去スクラバ80Aの水分量を回復できる。この結果、固形分除去スクラバ80Aでの水分量回復のための外部から新たな水の使用量を削減できる。 By providing the second acidic absorbent supply system 124, the acidic absorbent after the off-gas contact can be supplied to the solid content removing scrubber 80A. Thereby, even if water content decreases in the solid content removal scrubber 80A due to evaporation, the water content of the solid content removal scrubber 80A can be recovered. As a result, it is possible to reduce the amount of new water used from the outside for recovering the amount of water in the solid content removing scrubber 80A.
 また、肥料製造プラント100Aにおけるオフガス処理ユニット80は、尿素水溶液供給系統123と、尿素水溶液戻し系統122と、を備える。尿素水溶液供給系統123は、尿素製造装置22で製造された尿素水溶液を固形分除去スクラバ80Aに供給するためのものである。また、尿素水溶液戻し系統122は、固形分除去スクラバ80Aでのオフガス接触後の尿素水溶液を尿素製造装置22に戻すためのものである。 The off-gas treatment unit 80 in the fertilizer manufacturing plant 100A includes a urea aqueous solution supply system 123 and a urea aqueous solution return system 122. The urea aqueous solution supply system 123 is for supplying the urea aqueous solution manufactured by the urea manufacturing apparatus 22 to the solid content removing scrubber 80A. The urea aqueous solution return system 122 is for returning the urea aqueous solution after the off-gas contact in the solid content removing scrubber 80 </ b> A to the urea production apparatus 22.
 尿素水溶液供給系統123と尿素水溶液戻し系統122とが備えられることで、尿素製造装置22で製造された尿素水溶液を用いて、オフガス中の固形分を除去できる。これにより、固形分除去のための外部からの新たな水の使用量を削減できる。また、肥料製造プラント100Aは、固形分除去スクラバ80Aから戻された尿素水溶液を用いて、肥料を製造できる。 By providing the urea aqueous solution supply system 123 and the urea aqueous solution return system 122, the solid content in the off-gas can be removed using the urea aqueous solution manufactured by the urea manufacturing apparatus 22. Thereby, the usage-amount of the new water from the outside for solid content removal can be reduced. Moreover, the fertilizer manufacturing plant 100A can manufacture the fertilizer using the urea aqueous solution returned from the solid content removing scrubber 80A.
 また、固形分除去スクラバ80Aでは、上記のように固体尿素の粉体が水に吸収される。そして、尿素を吸収した水が、尿素水溶液戻し系統122を通じて、尿素製造装置22に供給される。これにより、尿素の外部への排出を抑制し、尿素の収率を向上できる。 In the solid content removing scrubber 80A, the solid urea powder is absorbed by water as described above. Then, the water that has absorbed urea is supplied to the urea production apparatus 22 through the urea aqueous solution return system 122. Thereby, the discharge | release to the exterior of urea can be suppressed and the yield of urea can be improved.
 さらに、肥料製造プラント100Aの固形分除去スクラバ80Aには、上記のように、第2酸性吸収液供給系統124を通じて、アンモニア吸収後の酸性吸収液が供給される。ここで、アンモニア吸収後の酸性吸収液には炭酸アンモニウムが含まれる。このため、固形分除去スクラバ80Aの内部空間81aに滞留した水は、炭酸アンモニウムを含む。従って、炭酸アンモニウムを含む尿素水溶液が尿素水溶液戻し系統122を通じて、尿素製造装置22に供給される。これにより、尿素製造装置22は、アンモニア吸収により生成した炭酸アンモニウムを用いて、尿素を製造できる。 Furthermore, as described above, the acidic absorbent after absorption of ammonia is supplied to the solid content removal scrubber 80A of the fertilizer manufacturing plant 100A through the second acidic absorbent supply system 124. Here, ammonium carbonate is contained in the acidic absorbent after absorption of ammonia. For this reason, the water retained in the internal space 81a of the solid content removing scrubber 80A contains ammonium carbonate. Therefore, the urea aqueous solution containing ammonium carbonate is supplied to the urea production apparatus 22 through the urea aqueous solution return system 122. Thereby, the urea manufacturing apparatus 22 can manufacture urea using the ammonium carbonate produced | generated by ammonia absorption.
 ここで、本発明者らは、第2酸性吸収液供給系統124を通じた酸性吸収液の固形分除去スクラバ80Aの供給による、オフガス中のアンモニア除去率への影響を確認するため、図5に示すオフガス処理ユニット80を用いて、以下の試験を行った。ただし、便宜のために、尿素水溶液戻し系統122及び尿素水溶液供給系統123は省略した。また、上記の実施例1~8と同様に、この試験では、簡略化のために、図5に示すオフガス処理ユニット80を模した小規模の試験装置を作製して行った。そして、以下に示す試験時の各供給量は、実際の肥料製造プラント100Aにおける尿素生産量(例えば3500トン/日規模)に相当する供給量に換算して示した。 Here, the present inventors have shown in FIG. 5 in order to confirm the influence on the ammonia removal rate in the offgas by the supply of the solid content removal scrubber 80A of the acidic absorbent through the second acidic absorbent supply system 124. The following tests were performed using the off-gas treatment unit 80. However, for the sake of convenience, the urea aqueous solution return system 122 and the urea aqueous solution supply system 123 are omitted. Further, in the same manner as in Examples 1 to 8 described above, for the sake of simplicity, a small-scale test apparatus simulating the off-gas treatment unit 80 shown in FIG. 5 was produced in this test. And each supply amount at the time of the test shown below was converted into a supply amount corresponding to the urea production amount (for example, 3500 tons / day scale) in the actual fertilizer manufacturing plant 100A and shown.
 まず、実施例9として、第2酸性吸収液供給系統124を設けず、かつ、給水系統87を通じて10.0ton/hの新たな水(真水)を固形分除去スクラバ80Aに供給するとともに、給水系統97を通じて7.5ton/hの新たな水(真水)をスクラバ80Bに供給した。従って、実施例9では、新たな水の総供給量は17.5ton/hである。 First, as Example 9, the second acidic absorbent supply system 124 is not provided, and 10.0 ton / h of fresh water (fresh water) is supplied to the solid content removal scrubber 80A through the water supply system 87, and the water supply system 97, 7.5 ton / h of fresh water (fresh water) was supplied to the scrubber 80B. Therefore, in Example 9, the total new water supply is 17.5 ton / h.
 そして、オフガスを模したガスとして、所定量のアンモニアを含むガス(模擬オフガス)を、固形分除去スクラバ80A及びスクラバ80Bにこの順で流した。この際、模擬オフガスは、所定流量で連続的に流した。そして、スクラバ80Bのオフガス供給口及びオフガス排出口(いずれも図示しない)でのそれぞれのアンモニア濃度を測定し、スクラバ80Bでのアンモニア除去率を算出した。この結果、アンモニア除去率は55%であった(実施例9)。 Then, a gas containing a predetermined amount of ammonia (simulated offgas) was flowed through the solid content removal scrubber 80A and the scrubber 80B in this order as a gas imitating offgas. At this time, the simulated off gas was continuously flowed at a predetermined flow rate. Then, the respective ammonia concentrations at the off-gas supply port and off-gas discharge port (both not shown) of the scrubber 80B were measured, and the ammonia removal rate at the scrubber 80B was calculated. As a result, the ammonia removal rate was 55% (Example 9).
 次に、実施例10として、固形分除去スクラバ80Aへの新たな水の供給量を2.5ton/hにし、スクラバ80Bへの新たな水の供給量を7.5ton/hにしたこと、及び、第2酸性吸収液供給系統124を通じたスクラバ80Bから固形分除去スクラバ80Aへの酸性吸収液の供給量を7.5ton/hにしたこと以外は実施例9と同様にして試験を行った。従って、実施例10では、新たな水の総供給量は10.0ton/hである。 Next, as Example 10, the supply amount of new water to the solid content removal scrubber 80A was set to 2.5 ton / h, the supply amount of new water to the scrubber 80B was set to 7.5 ton / h, and The test was conducted in the same manner as in Example 9 except that the supply amount of the acidic absorbent from the scrubber 80B to the solid content removing scrubber 80A through the second acidic absorbent supply system 124 was 7.5 ton / h. Therefore, in Example 10, the total new water supply is 10.0 ton / h.
 そして、実施例9と同様にして、アンモニア除去率を算出した。この結果、アンモニア除去率は55%であった(実施例10)。 Then, the ammonia removal rate was calculated in the same manner as in Example 9. As a result, the ammonia removal rate was 55% (Example 10).
 さらに、実施例11として、固形分除去スクラバ80Aに新たな水の供給を行わず、スクラバ80Bへの新たな水の供給量を17.5ton/hにしたこと、及び、第2酸性吸収液供給系統124を通じたスクラバ80Bから固形分除去スクラバ80Aへの酸性吸収液の供給量を17.5ton/hにしたこと以外は実施例9と同様にして試験を行った。従って、実施例11では、新たな水の総供給量は17.5ton/hである。 Further, as Example 11, the supply of new water to the scrubber 80B was set to 17.5 ton / h without supplying new water to the solid content removing scrubber 80A, and the second acidic absorbent was supplied. The test was performed in the same manner as in Example 9 except that the supply amount of the acidic absorbing liquid from the scrubber 80B through the system 124 to the solid content removing scrubber 80A was 17.5 ton / h. Therefore, in Example 11, the total new water supply is 17.5 ton / h.
 そして、実施例9と同様にして、アンモニア除去率を算出した。この結果、アンモニア除去率は58%であった(実施例11)。 Then, the ammonia removal rate was calculated in the same manner as in Example 9. As a result, the ammonia removal rate was 58% (Example 11).
 以上の実施例9~11の結果を、以下の表3に示した。 The results of Examples 9 to 11 are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例9と実施例10とを比較すると、アンモニア除去率は同じであった。しかし、実施例10は、実施例9と比べて、新たな水の総供給量が減少している。具体的には、新たな水の総供給量は、実施例9では17.5ton/hであったものが、実施例10では10.0ton/hに減少している。そのため、実施例10では、新たな水の使用量が43%も減少している。従って、第2酸性吸収液供給系統124を通じてスクラバ80Bから固形分除去スクラバ80Aに酸性吸収液を供給することで、アンモニア除去率を維持したままで、新たな水の使用量を削減できる。 When comparing Example 9 and Example 10, the ammonia removal rate was the same. However, the total supply amount of new water in Example 10 is smaller than that in Example 9. Specifically, the total supply amount of new water was 17.5 ton / h in Example 9, but decreased to 10.0 ton / h in Example 10. Therefore, in Example 10, the amount of new water used is reduced by 43%. Therefore, by supplying the acidic absorbent from the scrubber 80B to the solid content removing scrubber 80A through the second acidic absorbent supply system 124, it is possible to reduce the amount of new water used while maintaining the ammonia removal rate.
 また、実施例9と実施例10とを比較すると、新たな水の総供給量は同じであった。しかし、実施例11は、実施例9と比べて、アンモニア除去率が向上している。具体的には、アンモニア除去率は、実施例9では55%であったものが、実施例11では58%に向上している。従って、第2酸性吸収液供給系統124を通じてスクラバ80Bから固形分除去スクラバ80Aに酸性吸収液を供給することで、新たな水の総供給量を同じにしたままで、アンモニア除去率を向上できる。 Moreover, when Example 9 and Example 10 were compared, the new total supply amount of water was the same. However, in Example 11, the ammonia removal rate is improved compared to Example 9. Specifically, the ammonia removal rate was 55% in Example 9, but improved to 58% in Example 11. Therefore, by supplying the acidic absorbent from the scrubber 80B to the solid content removing scrubber 80A through the second acidic absorbent supply system 124, it is possible to improve the ammonia removal rate while keeping the new total water supply amount the same.
 図6は、本発明の第3実施形態に係る肥料製造プラント100Bにおけるオフガス処理ユニット80を示す系統図である。肥料製造プラント100Bは、オフガス処理ユニット80として、固形分除去スクラバ80Aと、固形分除去スクラバ80Aの上方において固形分除去スクラバ80Aと一体に構成されたスクラバ80Bとを備えた一体型スクラバ80Cを含む。 FIG. 6 is a system diagram showing an off-gas treatment unit 80 in a fertilizer production plant 100B according to the third embodiment of the present invention. The fertilizer manufacturing plant 100B includes, as the off-gas treatment unit 80, an integrated scrubber 80C including a solid content removal scrubber 80A and a scrubber 80B integrally formed with the solid content removal scrubber 80A above the solid content removal scrubber 80A. .
 固形分除去スクラバ80Aにおいて、内部空間81aの上面には、オフガス排出口181が形成される。また、オフガス排出口181の上方には、上方に向かって窄まる部材191を備える。そして、部材191の下端は開口しており、部材191の下端にオフガス排出口181が形成される。また、部材191の上端も開口しており、部材191の上端には、筒部材193が接続される。筒部材193の上方には傘部材192が配置され、酸性吸収液の筒部材193内部への侵入が抑制される。 In the solid content removal scrubber 80A, an off-gas discharge port 181 is formed on the upper surface of the internal space 81a. Further, a member 191 that is constricted upward is provided above the off-gas discharge port 181. The lower end of the member 191 is open, and an offgas discharge port 181 is formed at the lower end of the member 191. Further, the upper end of the member 191 is also open, and the cylindrical member 193 is connected to the upper end of the member 191. An umbrella member 192 is disposed above the tubular member 193, and the penetration of the acidic absorbent into the tubular member 193 is suppressed.
 傘部材192は、筒部材193に対して、筒部材193の周方向に等間隔に隙間を有して配置された支持部材194により、固定される。隣接する支持部材194同士の間には、スクラバ80Bの内部空間91aにオフガスを供給するためのオフガス供給口195が形成される。 The umbrella member 192 is fixed to the tubular member 193 by a support member 194 that is disposed with a gap at equal intervals in the circumferential direction of the tubular member 193. An off gas supply port 195 for supplying off gas to the internal space 91a of the scrubber 80B is formed between the adjacent support members 194.
 固形分除去スクラバ80Aの下方に形成されたオフガス供給口(図示しない)を通じて供給されたオフガスは、固形分除去スクラバ80Aの内部空間81aを上方に向かって流れる。この際、例えば多孔板により構成されるトレイ85にオフガスが接触することでオフガス中の固形分がトレイ85に析出し、オフガス中の固形分が除去される。 Off gas supplied through an off gas supply port (not shown) formed below the solid content removal scrubber 80A flows upward in the internal space 81a of the solid content removal scrubber 80A. At this time, for example, when the off gas comes into contact with the tray 85 formed of a perforated plate, the solid content in the off gas is deposited on the tray 85, and the solid content in the off gas is removed.
 内部空間81aの上方に向かって流れたオフガスは、オフガス排出口181を通じて、部材191の内部に流れ込む。そして、部材191の内部に流れ込んだオフガスは、筒部材193の内部及びオフガス供給口195を、図6において太線矢印で示すように流れる。これにより、スクラバ80Bの内部空間91aにオフガスが供給される。そして、スクラバ80Bにおいて、オフガス中のアンモニアが酸性吸収液に吸収される。アンモニア除去後のオフガスは、スクラバ80Bの上方に形成されたオフガス排出口(図示しない)を通じて、スクラバ80Bの外部に排出される。 The off gas that has flowed upward from the internal space 81a flows into the member 191 through the off gas discharge port 181. And the off gas which flowed in the inside of the member 191 flows through the inside of the cylindrical member 193 and the off gas supply port 195 as shown by a thick arrow in FIG. Thereby, off-gas is supplied to the internal space 91a of the scrubber 80B. Then, in the scrubber 80B, ammonia in the off gas is absorbed by the acidic absorbent. The off-gas after removing ammonia is discharged to the outside of the scrubber 80B through an off-gas discharge port (not shown) formed above the scrubber 80B.
 一体型スクラバ80Cが備えられることで、固形分除去スクラバ80Aの上方にスクラバ80Bを固形分除去スクラバ80Aと一体に構成することができるため、スクラバ(具体的にはオフガス処理ユニット80)の設置面積を削減できる。 Since the integrated scrubber 80C is provided, the scrubber 80B can be integrally formed with the solid content removal scrubber 80A above the solid content removal scrubber 80A, so that the installation area of the scrubber (specifically, the off-gas treatment unit 80) is increased. Can be reduced.
 図7は、本発明の第4実施形態に係る肥料製造プラント100Cの系統図である。肥料製造プラント100Cは、メタン含有ガスの改質を行うための改質装置1と、燃料(重油、灯油、メタン含有ガス等)を燃焼させるための燃焼器131とを備える。そして、改質装置1は、燃焼器131における燃料の燃焼により発生した熱を用いて、メタン含有ガスの改質を行うように構成される。このようにすることで、燃料の燃焼により生じた熱を用いて、天然ガス等のメタン含有ガスの改質を行うことができる。 FIG. 7 is a system diagram of a fertilizer manufacturing plant 100C according to the fourth embodiment of the present invention. The fertilizer manufacturing plant 100C includes a reformer 1 for reforming a methane-containing gas and a combustor 131 for burning fuel (heavy oil, kerosene, methane-containing gas, etc.). The reformer 1 is configured to reform the methane-containing gas using heat generated by the combustion of fuel in the combustor 131. By doing in this way, modification | reformation of methane containing gas, such as natural gas, can be performed using the heat | fever produced by combustion of fuel.
 また、肥料製造プラント100Cは、燃焼器131において生成した二酸化炭素をスクラバ80Bの内部空間91aに供給するための第3二酸化炭素供給系統133を備える。第3二酸化炭素供給系統133はオフガス供給系統112に接続され、燃焼器131において生成した二酸化炭素は、第3二酸化炭素供給系統133及びオフガス供給系統112を通じて、内部空間91aに供給される。 Further, the fertilizer manufacturing plant 100C includes a third carbon dioxide supply system 133 for supplying the carbon dioxide generated in the combustor 131 to the internal space 91a of the scrubber 80B. The third carbon dioxide supply system 133 is connected to the off gas supply system 112, and the carbon dioxide generated in the combustor 131 is supplied to the internal space 91a through the third carbon dioxide supply system 133 and the off gas supply system 112.
 図8は、図7におけるスクラバ80Bの内部空間91aにおいて、気相及び液相のそれぞれに含まれる成分を示す図である。図8に示すように、スクラバ80Bの内部空間91aでは、気相として、オフガスに含まれるアンモニアと、燃焼器131で生成した二酸化炭素とが少なくとも存在する。気相におけるアンモニア(NH)及び二酸化炭素(CO)は、いずれも分子として存在する。 FIG. 8 is a diagram showing components contained in each of the gas phase and the liquid phase in the internal space 91a of the scrubber 80B in FIG. As shown in FIG. 8, in the internal space 91a of the scrubber 80B, at least ammonia contained in the off-gas and carbon dioxide generated by the combustor 131 are present as the gas phase. Both ammonia (NH 3 ) and carbon dioxide (CO 2 ) in the gas phase exist as molecules.
 一方で、液相としての酸性吸収液中では、マイクロバブル発生装置116(図2参照)において溶解した二酸化炭素が存在する。二酸化炭素は、酸性吸収液のpHによっても異なるが、二酸化炭素分子(CO)又は炭酸イオン(HCO )のうちの少なくとも一方の形態で、酸性吸収液中に存在する。特に、二酸化炭素分子は、気泡(バブル)となって酸性吸収液中に存在し、炭酸イオンは、酸性吸収液中にイオンとして溶解している。本発明の一実施形態では、説明の便宜のために、二酸化炭素分子及び炭酸イオンを総称して「炭酸」というものとする。 On the other hand, carbon dioxide dissolved in the microbubble generator 116 (see FIG. 2) is present in the acidic absorbent as the liquid phase. Although carbon dioxide varies depending on the pH of the acidic absorbent, it exists in the acidic absorbent in the form of at least one of carbon dioxide molecules (CO 2 ) or carbonate ions (HCO 3 ). In particular, carbon dioxide molecules are present as bubbles in the acidic absorbent, and carbonate ions are dissolved as ions in the acidic absorbent. In an embodiment of the present invention, for convenience of explanation, carbon dioxide molecules and carbonate ions are collectively referred to as “carbonic acid”.
 気相のアンモニアが気液界面Lを通じて酸性吸収液に吸収されると、吸収されたアンモニアは酸性吸収液中でアンモニウムイオン(NH )として存在し易くなる。アンモニウムイオンは水分子との親和性が高い。そのため、アンモニアが酸性吸収液中でアンモニウムイオンとして存在することで、気液界面Lを介した気相への再放出が抑制される。 When ammonia in the gas phase is absorbed by the acidic absorbent through the gas-liquid interface L, the absorbed ammonia is likely to exist as ammonium ions (NH 4 + ) in the acidic absorbent. Ammonium ions have a high affinity for water molecules. Therefore, when ammonia exists as ammonium ions in the acidic absorbing liquid, re-release to the gas phase via the gas-liquid interface L is suppressed.
 また、酸性吸収液中の炭酸イオンも、炭酸イオンと水との親和性の高さにより、気液界面Lを通じた気相への放出が抑制される。しかし、酸性吸収液中の二酸化炭素分子は、二酸化炭素分子と水との親和性がさほど高くないことから、気液界面Lを通じて気相に放出され易い。そして、二酸化炭素分子が酸性吸収液から気相に放出されると、酸性吸収液のpHが大きくなり、アンモニアが吸収されにくくなる。 Also, carbonate ions in the acidic absorbent are suppressed from being released into the gas phase through the gas-liquid interface L due to the high affinity between carbonate ions and water. However, the carbon dioxide molecules in the acidic absorbing liquid are not easily so high in affinity between the carbon dioxide molecules and water that they are easily released into the gas phase through the gas-liquid interface L. When carbon dioxide molecules are released from the acidic absorbent into the gas phase, the pH of the acidic absorbent increases and ammonia is not easily absorbed.
 そこで、肥料製造プラント100Cでは、内部空間91aの気相に二酸化炭素が供給されている。このようにすることで、オフガスを酸性吸収液に接触させるための内部空間91aにおける気相の二酸化炭素分圧を高めることができる。これにより、酸性吸収液から二酸化炭素分子が気相に放出されることを抑制でき、酸性吸収液中での炭酸の存在時間を長くできる。 Therefore, in the fertilizer manufacturing plant 100C, carbon dioxide is supplied to the gas phase of the internal space 91a. By doing in this way, the carbon dioxide partial pressure of the gaseous phase in the internal space 91a for making off gas contact an acidic absorption liquid can be raised. Thereby, it can suppress that a carbon dioxide molecule is discharge | released to a gaseous phase from an acidic absorption liquid, and the existence time of the carbonic acid in an acidic absorption liquid can be lengthened.
 図9は、本発明の第5実施形態に係る肥料製造プラント100Dの系統図である。肥料製造プラント100Dは、メタン含有ガスの改質を行うための改質装置1を備える。また、肥料製造プラント100Dは、燃料(重油、灯油、メタン含有ガス等)を燃焼させるための燃焼器の一例として、燃焼の燃焼により水蒸気を発生させるためのボイラ141を含む。 FIG. 9 is a system diagram of a fertilizer production plant 100D according to the fifth embodiment of the present invention. The fertilizer manufacturing plant 100D includes a reformer 1 for reforming a methane-containing gas. The fertilizer manufacturing plant 100D includes a boiler 141 for generating water vapor by combustion as an example of a combustor for burning fuel (heavy oil, kerosene, methane-containing gas, etc.).
 改質装置1は、ボイラ141における燃料の燃焼により発生した水蒸気を用いて、メタン含有ガスの改質を行うように構成される、また、ボイラ141での燃料の燃焼により生成した二酸化炭素は、ボイラ141(燃焼器)において生成した二酸化炭素をスクラバ80Bの内部空間91aに供給するための第3二酸化炭素供給系統142を通じて、内部空間91aに供給される。 The reformer 1 is configured to reform the methane-containing gas using water vapor generated by the combustion of fuel in the boiler 141, and the carbon dioxide generated by the combustion of fuel in the boiler 141 is The carbon dioxide generated in the boiler 141 (combustor) is supplied to the internal space 91a through the third carbon dioxide supply system 142 for supplying the internal space 91a of the scrubber 80B.
 このようにすることで、ボイラ141において発生した水蒸気を用いて、天然ガス等のメタン含有ガスの改質を行うことができる。また、スクラバ80Bの内部空間91aにおける気相の二酸化炭素分圧を高め、酸性吸収液中での炭酸の存在時間を長くできる。 By doing so, reforming of a methane-containing gas such as natural gas can be performed using the steam generated in the boiler 141. Further, the partial pressure of carbon dioxide in the gas phase in the internal space 91a of the scrubber 80B can be increased, and the duration of carbon dioxide in the acidic absorbent can be increased.
1 改質装置
2 変性器
3 二酸化炭素回収器
4 メタン化装置
10 アンモニア製造ユニット
11,21,76 圧縮機
12 アンモニア製造装置
13 アンモニア回収装置
14 水素回収装置
19,81,91 筐体
20 尿素製造ユニット
22 尿素製造装置
61 造粒装置
71 アンモニア供給系統
72 水素循環系統
80 オフガス処理ユニット
80A 固形分除去スクラバ
80B スクラバ
80C 一体型スクラバ
81a,90a,91a 内部空間
82,92 ポンプ
83,84,93,94 ノズル
85,98 トレイ
86,96,122 系統
87,97 給水系統
95,119,120 開度調整弁
99a pH計
99b 流量計
100,100A,100B,100C,100D 肥料製造プラント
111,112 オフガス供給系統
113 排気系統
114 炭酸アンモニウム供給系統
115 分岐系統
116 マイクロバブル発生装置
117 第1酸性吸収液供給系統
118 第2二酸化炭素供給系統
121 第1二酸化炭素供給系統
123 尿素水溶液供給系統
124 第2酸性吸収液供給系統
131 燃焼器
133,142 第3二酸化炭素供給系統
141 ボイラ
151 演算制御装置
181 オフガス排出口
191 部材
192 傘部材
193 筒部材
194 支持部材
195 オフガス供給口
L 気液界面
DESCRIPTION OF SYMBOLS 1 Reformer 2 Denaturer 3 Carbon dioxide collector 4 Methanator 10 Ammonia production unit 11, 21, 76 Compressor 12 Ammonia production device 13 Ammonia collection device 14 Hydrogen collection device 19, 81, 91 Housing 20 Urea production unit 22 Urea production apparatus 61 Granulator 71 Ammonia supply system 72 Hydrogen circulation system 80 Off-gas treatment unit 80A Solid content removal scrubber 80B Scrubber 80C Integrated scrubber 81a, 90a, 91a Internal space 82, 92 Pump 83, 84, 93, 94 Nozzle 85, 98 Tray 86, 96, 122 System 87, 97 Water supply system 95, 119, 120 Opening adjustment valve 99a pH meter 99b Flow meter 100, 100A, 100B, 100C, 100D Fertilizer production plant 111, 112 Off-gas supply system 113 Exhaust Line 114 charcoal Ammonium supply system 115 Branch system 116 Microbubble generator 117 First acidic absorbent supply system 118 Second carbon dioxide supply system 121 First carbon dioxide supply system 123 Urea aqueous solution supply system 124 Second acidic absorbent supply system 131 Combustor 133 , 142 Third carbon dioxide supply system 141 Boiler 151 Arithmetic controller 181 Off gas discharge port 191 Member 192 Umbrella member 193 Cylindrical member 194 Support member 195 Off gas supply port L Gas-liquid interface

Claims (14)

  1.  尿素を含む肥料を製造するための肥料製造プラントであって、
     アンモニアを用いて前記尿素を製造するための尿素製造装置と、
     前記肥料製造プラントのオフガスであってアンモニアを含むオフガスを酸性吸収液に接触させるための内部空間を有するスクラバと、を備え、
     前記酸性吸収液は炭酸を含む
     ことを特徴とする、肥料製造プラント。
    A fertilizer production plant for producing fertilizers containing urea,
    A urea production apparatus for producing the urea using ammonia;
    A scrubber having an internal space for contacting the offgas containing the ammonia, which is an offgas of the fertilizer production plant, with the acidic absorbent,
    The fertilizer manufacturing plant, wherein the acidic absorbent includes carbonic acid.
  2.  メタン含有ガスを改質するための改質装置と、
     前記改質装置において生成した二酸化炭素を回収するための二酸化炭素回収装置と、
     回収した前記二酸化炭素を用いて前記炭酸を製造するための炭酸製造装置と、
     を備える
     ことを特徴とする、請求項1に記載の肥料製造プラント。
    A reformer for reforming methane-containing gas;
    A carbon dioxide recovery device for recovering carbon dioxide produced in the reformer;
    A carbonic acid producing apparatus for producing the carbonic acid using the recovered carbon dioxide,
    The fertilizer manufacturing plant of Claim 1 characterized by the above-mentioned.
  3.  回収した前記二酸化炭素であって前記尿素製造装置に供給される二酸化炭素を昇圧させるための圧縮機と、
     前記圧縮機において昇圧された前記二酸化炭素を前記尿素製造装置に供給するための第1二酸化炭素供給系統と、
     前記圧縮機において昇圧された前記二酸化炭素を前記炭酸製造装置に供給するための第2二酸化炭素供給系統と、
     を備える
     ことを特徴とする、請求項2に記載の肥料製造プラント。
    A compressor for increasing the pressure of the carbon dioxide recovered and supplied to the urea production apparatus;
    A first carbon dioxide supply system for supplying the carbon dioxide boosted in the compressor to the urea production apparatus;
    A second carbon dioxide supply system for supplying the carbon dioxide boosted in the compressor to the carbonic acid production apparatus;
    The fertilizer manufacturing plant of Claim 2 characterized by the above-mentioned.
  4.  前記炭酸製造装置は、水に二酸化炭素を溶解させることにより前記炭酸を製造するためのマイクロバブル発生装置を含む
     ことを特徴とする、請求項2又は3に記載の肥料製造プラント。
    The fertilizer manufacturing plant according to claim 2 or 3, wherein the carbonic acid production device includes a microbubble generator for producing the carbonic acid by dissolving carbon dioxide in water.
  5.  前記スクラバでの前記オフガス接触後の酸性吸収液を前記尿素製造装置に供給するための炭酸アンモニウム供給系統を備える
     ことを特徴とする、請求項1~4の何れか1項に記載の肥料製造プラント。
    The fertilizer production plant according to any one of claims 1 to 4, further comprising an ammonium carbonate supply system for supplying the urea-producing apparatus with the acidic absorbent after the off-gas contact in the scrubber. .
  6.  前記肥料製造プラントは、前記オフガス中の固形分を除去するための固形分除去スクラバを備え、
     前記スクラバは、前記オフガスの流れ方向で前記固形分除去スクラバの下流側に配置される
     ことを特徴とする、請求項1~5の何れか1項に記載の肥料製造プラント。
    The fertilizer production plant includes a solid content removal scrubber for removing solid content in the off gas,
    The fertilizer production plant according to any one of claims 1 to 5, wherein the scrubber is disposed downstream of the solid content removal scrubber in the flow direction of the off-gas.
  7.  前記スクラバでの前記オフガス接触後の酸性吸収液を前記固形分除去スクラバに供給するための酸性吸収液供給系統を備える
     ことを特徴とする、請求項6に記載の肥料製造プラント。
    The fertilizer manufacturing plant according to claim 6, further comprising an acidic absorbent supply system for supplying the acidic absorbent after the off-gas contact in the scrubber to the solid content removing scrubber.
  8.  前記肥料製造プラントは、
     前記尿素製造装置で製造された尿素水溶液を前記固形分除去スクラバに供給するための尿素水溶液供給系統と、
     前記固形分除去スクラバでの前記オフガス接触後の尿素水溶液を前記尿素製造装置に戻すための尿素水溶液戻し系統と、を備える
     ことを特徴とする、請求項6又は7に記載の肥料製造プラント。
    The fertilizer production plant is
    A urea aqueous solution supply system for supplying the urea aqueous solution produced by the urea production apparatus to the solid content removing scrubber;
    A fertilizer production plant according to claim 6 or 7, comprising a urea aqueous solution return system for returning the urea aqueous solution after the off-gas contact in the solid content scrubber to the urea production apparatus.
  9.  前記固形分除去スクラバと、前記固形分除去スクラバの上方において前記固形分除去スクラバと一体に構成された前記スクラバとを備えた一体型スクラバを備える
     ことを特徴とする、請求項6~8の何れか1項に記載の肥料製造プラント。
    9. An integrated scrubber comprising: the solid content removing scrubber; and the scrubber integrally formed with the solid content removing scrubber above the solid content removing scrubber. The fertilizer manufacturing plant of Claim 1.
  10.  燃料を燃焼させるための燃焼器と、
     前記燃焼器において生成した二酸化炭素を前記内部空間に供給するための第3二酸化炭素供給系統と、を備える
     ことを特徴とする、請求項1~9の何れか1項に記載の肥料製造プラント。
    A combustor for burning fuel;
    The fertilizer production plant according to any one of claims 1 to 9, further comprising a third carbon dioxide supply system for supplying carbon dioxide generated in the combustor to the internal space.
  11.  前記肥料製造プラントは、メタン含有ガスの改質を行うための改質装置を備え、
     前記改質装置は、前記燃焼器における前記燃料の燃焼により発生した熱を用いて、前記メタン含有ガスの改質を行うように構成された
     ことを特徴とする、請求項10に記載の肥料製造プラント。
    The fertilizer manufacturing plant includes a reforming device for reforming methane-containing gas,
    11. The fertilizer production according to claim 10, wherein the reformer is configured to reform the methane-containing gas using heat generated by combustion of the fuel in the combustor. plant.
  12.  前記肥料製造プラントは、メタン含有ガスの改質を行うための改質装置を備え、
     前記燃焼器は、ボイラを含み、
     前記改質装置は、前記ボイラにおける前記燃料の燃焼により発生した水蒸気を用いて、前記メタン含有ガスの改質を行うように構成された
     ことを特徴とする、請求項10又は11に記載の肥料製造プラント。
    The fertilizer manufacturing plant includes a reforming device for reforming methane-containing gas,
    The combustor includes a boiler,
    The fertilizer according to claim 10 or 11, wherein the reformer is configured to reform the methane-containing gas using water vapor generated by combustion of the fuel in the boiler. Production plant.
  13.  前記肥料製造プラントは、前記尿素製造装置において生成した尿素を造粒するための造粒装置を備え、
     前記肥料製造プラントのオフガスは、前記造粒装置のオフガスを含む
     ことを特徴とする、請求項1~12の何れか1項に記載の肥料製造プラント。
    The fertilizer production plant includes a granulation device for granulating urea produced in the urea production device,
    The fertilizer manufacturing plant according to any one of claims 1 to 12, wherein the offgas of the fertilizer manufacturing plant includes the offgas of the granulating device.
  14.  尿素を含む肥料を製造する肥料の製造方法であって、
     アンモニアを用いて前記尿素を製造する尿素製造ステップと、
     前記肥料の製造時に発生したオフガスであってアンモニアを含むオフガスを酸性吸収液に接触させる接触ステップと、を含み、
     前記酸性吸収液は炭酸を含む
     ことを特徴とする、肥料の製造方法。
    A method for producing a fertilizer for producing a fertilizer containing urea,
    A urea production step of producing the urea using ammonia;
    A contact step of contacting offgas generated during the manufacture of the fertilizer and containing ammonia with an acidic absorbent.
    The method for producing a fertilizer, wherein the acidic absorbent includes carbonic acid.
PCT/JP2018/021512 2018-06-05 2018-06-05 Fertilizer production plant and fertilizer production method WO2019234816A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/021512 WO2019234816A1 (en) 2018-06-05 2018-06-05 Fertilizer production plant and fertilizer production method
MYPI2020005533A MY194352A (en) 2018-06-05 2018-06-05 Fertilizer production plant and fertilizer production method
RU2020137143A RU2755819C1 (en) 2018-06-05 2018-06-05 Unit for producing fertiliser and method for producing fertiliser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021512 WO2019234816A1 (en) 2018-06-05 2018-06-05 Fertilizer production plant and fertilizer production method

Publications (1)

Publication Number Publication Date
WO2019234816A1 true WO2019234816A1 (en) 2019-12-12

Family

ID=68770919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021512 WO2019234816A1 (en) 2018-06-05 2018-06-05 Fertilizer production plant and fertilizer production method

Country Status (3)

Country Link
MY (1) MY194352A (en)
RU (1) RU2755819C1 (en)
WO (1) WO2019234816A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049769A1 (en) * 2020-09-07 2022-03-10 三菱重工エンジニアリング株式会社 Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus
RU2804369C1 (en) * 2020-09-07 2023-09-28 Мицубиси Хеви Индастриз Энджиниринг, Лтд. Device for wet cleaning of exhaust gas from ammonia and installation for fertilizer production containing such device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1960204A (en) * 1931-01-08 1934-05-22 Standard Ig Co Process for the hydrogenation of carbonaceous materials
JPH09227493A (en) * 1996-02-27 1997-09-02 Toyo Eng Corp Urea dust and ammonia recovery method from exhaust gas
WO2011032786A1 (en) * 2009-09-16 2011-03-24 Dsm Ip Assets B.V. Removal of urea and ammonia from exhaust gases
WO2013165533A1 (en) * 2012-05-04 2013-11-07 Robert Hickey Ammonium recovery methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581342A3 (en) * 2005-08-11 2015-05-27 Clue As Method for the production of fertilizer and CO2

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1960204A (en) * 1931-01-08 1934-05-22 Standard Ig Co Process for the hydrogenation of carbonaceous materials
JPH09227493A (en) * 1996-02-27 1997-09-02 Toyo Eng Corp Urea dust and ammonia recovery method from exhaust gas
WO2011032786A1 (en) * 2009-09-16 2011-03-24 Dsm Ip Assets B.V. Removal of urea and ammonia from exhaust gases
WO2013165533A1 (en) * 2012-05-04 2013-11-07 Robert Hickey Ammonium recovery methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049769A1 (en) * 2020-09-07 2022-03-10 三菱重工エンジニアリング株式会社 Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus
RU2804369C1 (en) * 2020-09-07 2023-09-28 Мицубиси Хеви Индастриз Энджиниринг, Лтд. Device for wet cleaning of exhaust gas from ammonia and installation for fertilizer production containing such device

Also Published As

Publication number Publication date
MY194352A (en) 2022-11-29
RU2755819C1 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
US6797039B2 (en) Methods and systems for selectively separating CO2 from a multicomponent gaseous stream
KR102204443B1 (en) Systems and methods for power production including methanation
CA2826340C (en) A two-stage gas washing method
AU2010235896B2 (en) Ammonia Recovery Device and Recovery Method
US10766770B2 (en) Systems and methods of production of hydrogen containing compounds using products of fuel cells
EA039851B1 (en) System and method for power production using partial oxidation
CN101274746A (en) Reforming system for combined cycle plant with partial CO2 capture
WO2014041645A1 (en) Reforming device and devices for manufacturing chemical products comprising same
AU2007321504A1 (en) Process for obtaining carbon dioxide
CN101331212A (en) Process for humidifying synthesis gas
CN107743416B (en) Acid gas collecting system and acid gas collecting method using the same
Zhuang et al. From ammonium bicarbonate fertilizer production process to power plant CO2 capture
Barzagli et al. Direct CO2 air capture with aqueous 2-(ethylamino) ethanol and 2-(2-aminoethoxy) ethanol: 13C NMR speciation of the absorbed solutions and study of the sorbent regeneration improved by a transition metal oxide catalyst
CN104039758A (en) A method of forming urea by integration of an ammonia production process in a urea production process and a system therefor
WO2019234816A1 (en) Fertilizer production plant and fertilizer production method
JP6960468B2 (en) Fertilizer production plant and fertilizer production method
Quan et al. Sorption-enhanced ethanol steam reforming coupled with in-situ CO2 capture and conversion
AU2011201679B2 (en) System for gas purification and recovery with multiple solvents
WO2020174559A1 (en) Off gas processing device and fertilizer production plant provided with this off gas processing device
RU2515477C2 (en) Method of obtaining hydrogen
JP4814403B1 (en) Methane production equipment
Alguacil et al. Innovative processes in the production of inorganic bases and derived salts of current interest
US11795121B2 (en) Hydrocarbon generation system and hydrocarbon generation method
TW201411054A (en) Gasification method, gasification system and integrated coal gasification combined cycle
CN220201855U (en) Device for removing acid gas in synthesis gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP