WO2019230420A1 - Magnetic circuit, faraday rotator, and magneto-optic element - Google Patents
Magnetic circuit, faraday rotator, and magneto-optic element Download PDFInfo
- Publication number
- WO2019230420A1 WO2019230420A1 PCT/JP2019/019503 JP2019019503W WO2019230420A1 WO 2019230420 A1 WO2019230420 A1 WO 2019230420A1 JP 2019019503 W JP2019019503 W JP 2019019503W WO 2019230420 A1 WO2019230420 A1 WO 2019230420A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnet
- magnetic circuit
- optical axis
- axis direction
- magnets
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 171
- 230000003287 optical effect Effects 0.000 claims abstract description 108
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 claims abstract description 15
- 239000011521 glass Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 239000002907 paramagnetic material Substances 0.000 claims description 7
- 230000004907 flux Effects 0.000 abstract description 47
- 230000005347 demagnetization Effects 0.000 abstract description 35
- 230000002427 irreversible effect Effects 0.000 abstract description 26
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 abstract description 5
- 230000005415 magnetization Effects 0.000 description 11
- 230000003993 interaction Effects 0.000 description 7
- 229910001172 neodymium magnet Inorganic materials 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 239000002223 garnet Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/091—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect based on magneto-absorption or magneto-reflection
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/092—Operation of the cell; Circuit arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
Definitions
- the present invention relates to a magnetic circuit, a Faraday rotator, and a magneto-optical element.
- the Faraday rotator is an element composed of a Faraday element and a magnet that applies a magnetic field to the Faraday element. Since the Faraday rotator has a function of propagating light only in one direction and blocking return light, it has been used as a laser optical oscillator such as an optical communication system or a laser processing system as a magneto-optical element such as an optical isolator.
- the wavelength range used in the optical communication system is mainly 1300 nm to 1700 nm, and in the conventional Faraday rotator, rare earth iron garnet has been used for the Faraday element.
- the wavelength range used for laser processing and the like in recent years is shorter than the optical communication band, and the vicinity of 1000 nm is mainly used.
- the rare earth iron garnet cannot be used because of its large light absorption, paramagnetic crystals such as terbium gallium garnet (TGG) have been used for Faraday elements.
- the rotation angle ( ⁇ ) by Faraday rotation needs to be 45 °.
- This rotation angle is known to have a relationship of the following formula (1) with the length of the Faraday element (L), the Verde constant (V), the magnetic flux density parallel to the optical axis (B).
- the Verde constant is a characteristic that depends on the material of the Faraday element.
- a paramagnetic material such as TGG has a smaller Verde constant compared to rare earth iron garnet, so in order to obtain a Faraday rotation angle of 45 °, the length of the Faraday element and the magnetic flux parallel to the optical axis applied to the Faraday element It was necessary to increase the density.
- an invention has been proposed in which the magnetic flux density applied to the Faraday element is improved by devising the structure of the magnet instead of increasing the size of the Faraday element or the magnet. .
- Patent Document 1 discloses a Faraday rotator including a magnetic circuit formed of first to third magnets and a Faraday element.
- the first magnet is magnetized in a direction perpendicular to the optical axis and toward the optical axis.
- the second magnet is magnetized in a direction perpendicular to the optical axis and away from the optical axis.
- a third magnet is disposed between them.
- the third magnet is magnetized in a direction parallel to the optical axis and in a direction from the second magnet toward the first magnet.
- the third optical axis direction is L 3, L 2/10 ⁇ L 3 ⁇ L 2 is established.
- FIG. 7 shows an example of a demagnetization curve (BH curve and JH curve) of a magnet.
- the BH curve 32 is a curve representing the relationship between the magnetic flux density B and the external magnetic field H.
- the JH curve 33 is a curve representing the relationship between the magnetization J and the external magnetic field H.
- the intersections of the curve, the vertical axis, and the horizontal axis mean the residual magnetic flux density Br, the intrinsic coercivity H cJ and the coercivity H cB , respectively.
- the residual magnetic flux density Br is the magnetic flux density remaining in the magnetic material when the external magnetic field is changed from the saturation magnetization state to zero.
- the coercive force is a value of an external magnetic field when a magnetic field opposite to the magnetization direction of the magnetic material is applied to make the magnetization or magnetic flux density zero, and the former is the intrinsic coercive force H cJ and the latter is the coercive force. It is expressed as magnetic force HcB .
- the magnetic flux density (B), the external magnetic field strength (H), the magnetization strength (J), and the vacuum magnetic permeability ( ⁇ 0 ) of the magnetic material may have a relationship of the following formula (2). Are known.
- the operating point c2 obtained by projecting the operating point on the BH curve 32 onto the JH curve 33 exceeds the nick point 34 of the JH curve 33.
- the operating point a1 of the magnet moves to the operating point d1.
- the operating point d1 is an operating point when the external magnetic field H2 is removed from the operating point c1, a straight line parallel to the inclination of the recoil permeability curve passing through the operating point c1, and a straight line passing through the operating point a1 and the origin.
- the difference between the magnetic flux density at the operating point a1 and the magnetic flux density at the operating point d1 is irreversible demagnetization ⁇ B due to the external magnetic field H2, and is a demagnetization that does not recover unless re-magnetization is performed.
- the operating point of the magnet is a point on the BH curve 32 of the magnet as shown in FIG. 7, and is a point indicating the state of the magnetic flux density B and magnetic field H of the magnet in the magnetic circuit. .
- a straight line drawn from the origin toward this point is called a permeance line 31. It is known that the inclination (B / H) of the permeance line 31 is in the relationship of the vacuum permeability ( ⁇ 0 ), the permeance coefficient (P), and the following equation (3).
- FIG. 8 shows the temperature change of the demagnetization curve of the neodymium magnet.
- a BH curve 35 at a high temperature, a BH curve 36 at a low temperature, a JH curve 37 at a high temperature, and a JH curve 38 at a low temperature are shown, respectively.
- the residual magnetic flux density Br, the intrinsic coercivity H cJ and the coercivity H cB move to Br ′, H cJ ′ and H cB ′, respectively.
- the BH curve 36 at the low temperature and the JH curve 38 at the low temperature change to the BH curve 35 at the high temperature and the JH curve 37 at the high temperature, respectively.
- the magnetic force does not return to the original even if the temperature condition is restored, that is, the magnet is irreversible due to the temperature change. Demagnetization occurs.
- the operating point a1 moves to the operating point b1 when the external temperature is changed from a low temperature to a high temperature.
- the operating point b1 Since the operating point b1 does not exceed the nick point on the BH curve 35 at a high temperature, when the external temperature is returned from the high temperature to the low temperature, the operating point b1 can return to the operating point a1, that is, reversible demagnetization and Become. On the other hand, the operating point a2 closer to the H-axis moves to the operating point b2 when the external temperature is changed from the low temperature to the high temperature. In this case, since the operating point b2 exceeds the nick point 34 on the BH curve 35 at the time of high temperature, the operating point b2 can return to the operating point a2 even if the external temperature is returned from high temperature to low temperature. Without moving to the operating point c2.
- the difference between the magnetic flux density at the operating point a2 and the magnetic flux density at the operating point c2 is irreversible demagnetization ⁇ B.
- the BH curve and the JH curve greatly change to the B axis (magnetic flux density) side of neodymium magnets as the temperature rises. Irreversible demagnetization is likely to occur due to the movement of.
- the operating point c2 in FIG. 8 can be obtained by the same method as the operating point d1 in FIG.
- the third magnet described in Patent Document 1 has a shorter shape in the magnetization direction than the first and second magnets.
- the permeance coefficient is small in the magnetizing direction, that is, the magnet having a shape in which the magnetic poles are close to each other.
- the permeance coefficient is also the slope of the permeance line 31 as shown in equation (3). For example, as shown in FIG. 9, the permeance line 31 passing through the operating point a1 has a larger inclination ⁇ than the inclination ⁇ of the permeance line 31 passing through the operating point b1, that is, a larger permeance coefficient. .
- the third magnet of the magnetic circuit described in Patent Document 1 is used at a disadvantageous operating point as a magnet, it tends to cause irreversible demagnetization due to a reverse magnetic field or high temperature.
- the magnetic circuit is used as a magneto-optical element such as an optical isolator for a high-power laser, the temperature rise of the magnetic circuit accompanying the temperature rise of the Faraday element due to the high-power light is unavoidable. There was a high possibility of irreversible demagnetization. When irreversible demagnetization occurs in the third magnet in this way, a sufficient magnetic flux density cannot be stably given to the Faraday element, and the Faraday rotator may not perform its original function.
- the present invention has been made in view of the above problems, and provides a magnetic circuit that can suppress irreversible demagnetization due to an external magnetic field or a temperature rise, and can stably provide a sufficient magnetic flux density to a Faraday element. To do.
- the magnetic circuit of the present invention is a magnetic circuit having first to third magnets made of samarium-cobalt magnets each provided with a through-hole through which light passes.
- the magnetic circuit includes first to third magnets.
- the magnets are arranged coaxially in this order in the front-rear direction, and when the direction in which light passes through the through hole of the magnetic circuit is the optical axis direction, the first magnet is in a direction perpendicular to the optical axis direction.
- the second magnet is magnetized in a direction parallel to the optical axis direction and the first magnet side is N pole
- the third magnet is magnetized so that the through hole side is N pole.
- the magnet is magnetized in a direction perpendicular to the optical axis direction so that the through-hole side is an S pole, and the second magnet has a coercive force greater than one or three magnets.
- coercivity is used to indicate HcB .
- the first to third magnets are samarium-cobalt magnets.
- Samarium-cobalt magnets have the same residual magnetic flux density and coercive force as neodymium magnets, but are characterized by small variations in coercive force due to temperature changes and high Curie temperatures. Therefore, in the magnetic circuit composed of the magnet, the operating point is difficult to exceed the nick point on the BH curve and the JH curve, particularly at high temperatures, and the occurrence of irreversible demagnetization can be suppressed. It becomes easy to maintain a large magnetic flux density in the through hole portion.
- the first to third magnets have a coercive force of 650 kA / m or more. By having such a coercive force, occurrence of irreversible demagnetization in the second magnet can be suppressed.
- the length along the optical axis direction of the second magnet is preferably equal to or longer than the length along the optical axis direction of the first and third magnets. If it does in this way, generation
- the length along the optical axis direction of the second magnet is preferably larger than the length along the optical axis direction of the first and third magnets.
- the second magnet has a larger coercive force than the first and third magnets.
- the cross-sectional area of the through hole is preferably 100 mm 2 or less. By setting the cross-sectional area of the through hole to 100 mm 2 or less, the magnetic flux density tends to increase.
- the magnetic circuit of the present invention is a magnetic circuit having first to third magnets each provided with a through-hole through which light passes, and the first to third magnets are coaxial in the front-rear direction.
- the first magnet is in a direction perpendicular to the optical axis direction and the through hole side is N poles, where the direction in which light passes through the through hole of the magnetic circuit is the optical axis direction.
- the second magnet is magnetized in a direction parallel to the optical axis direction and the first magnet side is an N pole, and the third magnet is in the optical axis direction.
- the second magnet has a coercive force greater than that of the first and third magnets, and is along the optical axis direction of the second magnet.
- the length is not less than the length along the optical axis direction of the first and third magnets.
- a strong magnetic field generated by the interaction between the first magnet and the third magnet is generated near the through hole of the second magnet.
- the coercive force of the second magnet is large, the operating point is unlikely to exceed the nick point on the BH curve and JH curve, and the occurrence of irreversible demagnetization due to temperature rise and reverse magnetic field can be suppressed.
- the magnetic flux density in the through-hole portion of the second magnet can be easily kept large.
- the length along the optical axis direction of the second magnet is equal to or longer than the length along the optical axis direction of the first and third magnets, the occurrence of irreversible demagnetization in the second magnet can be suppressed. It is possible to easily maintain a large magnetic flux density in the through-hole portion of the second magnet.
- the Faraday rotator of the present invention is characterized by comprising the above magnetic circuit and a Faraday element made of a paramagnetic material that is disposed in a through hole in the magnetic circuit and transmits light.
- the paramagnetic material is preferably a glass material.
- the magneto-optical element of the present invention includes the Faraday rotator, a first optical component disposed at one end in the optical axis direction of the magnetic circuit of the Faraday rotator, and a second optical component disposed at the other end.
- the light passing through the through hole of the magnetic circuit passes through the first optical component and the second optical component.
- the first optical component and the second optical component are polarizers.
- the present invention it is possible to provide a magnetic circuit that can suppress irreversible demagnetization due to an external magnetic field or a temperature rise and can stably give a sufficient magnetic flux density to a Faraday element.
- FIG. 1 is a schematic cross-sectional view showing the structure of the magnetic circuit of the present invention.
- the magnetic circuit 1 includes a first magnet 11, a second magnet 12, and a third magnet 13 each having a through hole.
- the magnetic circuit 1 includes a first magnet 11, a second magnet 12, and a third magnet 13 that are coaxially arranged in this order in the front-rear direction.
- positioning coaxially means arrange
- the through holes 2 of the magnetic circuit are configured by connecting the through holes of the first magnet 11, the second magnet 12, and the third magnet 13.
- the letters N and S in FIG. 1 indicate magnetic poles, and the same applies to other drawings described later.
- the first magnet 11 and the third magnet 13 are magnetized in the direction perpendicular to the optical axis, and the magnetization directions are opposed to each other.
- the first magnet 11 is magnetized in a direction perpendicular to the optical axis so that the through hole side is an N pole.
- the third magnet 13 is magnetized in a direction perpendicular to the optical axis so that the through hole side is an S pole.
- the second magnet 12 is magnetized in a direction parallel to the optical axis so that the first magnet 11 side has an N pole.
- the first to third magnets constituting the magnetic circuit 1 are preferably composed of magnets mainly composed of samarium-cobalt (Sm—Co). Since the samarium-cobalt magnet has a Curie temperature of 600 ° C. or higher, irreversible demagnetization at high temperatures can be suppressed. Further, the temperature dependence of the residual magnetic flux density of the samarium-cobalt magnet is generally about -0.03% / ° C, and the neodymium magnet is about -0.1% / ° C. The temperature dependence of the coercive force is about ⁇ 0.5% / K for neodymium magnets and about ⁇ 0.2% / K for samarium-cobalt magnets.
- Sm—Co samarium-cobalt
- a magnet other than samarium-cobalt (Sm—Co) as a main component may be used.
- the first to third magnets constituting the magnetic circuit 1 preferably have a coercive force of 650 kA / m or more, more preferably 660 kA / m, further preferably 700 kA / m, and particularly preferably 750 kA / m. If the coercive force is low, the second magnet 12 tends to irreversibly demagnetize because the operating point approaches the H-axis due to the strong magnetic field created by the interaction between the first magnet 11 and the third magnet 13. Become. Further, the larger the coercive force, the more stable the magnetic circuit 1 can be obtained at higher temperatures. However, the upper limit of the coercive force obtained with the samarium-cobalt magnet is practically 1000 kA / m.
- the coercive force of the first magnet 11 and the third magnet 13 is equal. In this way, a uniform magnetic field can be applied to the second magnet 12. But the coercive force of the 1st magnet 11 and the coercive force of the 3rd magnet 13 do not need to be equal.
- the second magnet 12 has a coercive force greater than that of the first and third magnets.
- the coercive force of the second magnet 12 is one or more times that of the first and third magnets, preferably 1.05 times or more, and particularly preferably 1.1 times or more. In this way, even if a strong magnetic field generated by the interaction between the first magnet 11 and the third magnet 13 is generated near the through hole of the second magnet 12, the operation of the second magnet 12 is performed. The point becomes difficult to exceed the nicks on the BH curve and JH curve, and the occurrence of irreversible demagnetization due to temperature rise and reverse magnetic field can be suppressed, and the magnetic flux density in the through hole portion of the second magnet 12 can be reduced. Large and easy to hold.
- the coercive force obtained with a samarium-cobalt magnet is actually about 400 to 1000 kA / m. Therefore, the coercive force of the second magnet 12 is the maximum, preferably 2.5 times or less of the coercive force of the first and third magnets, more preferably 2 times or less, and 1.8 times or less. It is particularly preferred. When the coercive force of the first magnet 11 and the coercive force of the third magnet 13 are not equal, the first and third magnets have the above values for higher coercive force. And
- the residual magnetic flux density (Br) of the first to third magnets constituting the magnetic circuit 1 is preferably 0.7T or more, more preferably 0.8T or more, and 0.9T or more. It is particularly preferred. In this way, a region having a high magnetic flux density can be formed in the vicinity of the through hole of the second magnet 12, and a 45 ° rotation angle can be given to the Faraday element 14 described later.
- the residual magnetic flux densities of the first magnet 11 and the third magnet 13 are equal. In this way, a uniform magnetic field can be applied to the second magnet 12. However, the coercive force of the first magnet 11 and the residual magnetic flux density of the third magnet 13 may not be equal.
- the length along the optical axis direction of the second magnet 12 is preferably equal to or longer than the length along the optical axis direction of the first magnet 11 or the third magnet 13.
- the length of the second magnet 12 is preferably at least 1 time, more preferably at least 1.01 times the length of the first magnet 11 and the third magnet 13. 1.05 times or more is particularly preferable. In this way, the length in the magnetization direction of the second magnet 12 is relatively improved, and the permeance coefficient of the second magnet 12 is increased, so that the operating point of the second magnet 12 is moved to the B-axis side. The effect of suppressing irreversible demagnetization increases.
- the length of the second magnet 12 along the optical axis direction is preferably 2 times or less, more preferably 1.5 times or less, and particularly preferably 1.4 times or less.
- the length along the optical axis direction of the first magnet 11 and the length along the optical axis direction of the third magnet 13 are not equal, the light of the longer magnet of the first and third magnets. It shall have said value with respect to the length along an axial direction.
- the length along the optical axis direction of the first magnet 11 is equal to the length along the optical axis direction of the third magnet 13. In this way, a uniform magnetic field can be applied to the second magnet 12. But the length along the optical axis direction of the 1st magnet 11 and the length along the optical axis direction of the 3rd magnet 13 do not need to be equal.
- the cross-sectional shape of the through hole 2 of the magnetic circuit is not particularly limited, and may be a rectangle or a circle.
- a rectangle is preferable in terms of facilitating assembly, and a circle is preferable in terms of providing a uniform magnetic field.
- the cross-sectional area of the through-hole 2 of the magnetic circuit is 100 mm 2 or less, more preferably 3mm 2 ⁇ 80mm 2, 5mm 2 ⁇ 60mm more preferably 2, particularly preferably 7 mm 2 ⁇ 50 mm 2. If the cross-sectional area becomes too large, a sufficient magnetic flux density cannot be obtained, and if it is too small, it becomes difficult to arrange the Faraday element 14 in the through hole 2 of the magnetic circuit.
- FIG. 2 is a diagram showing an example of the structure of the first magnet.
- the first magnet 11 shown in FIG. 2 is configured by combining four magnet pieces.
- the number of magnet pieces constituting the first magnet 11 is not limited to the above.
- the first magnet 11 may be configured by combining six or eight magnet pieces. By configuring the first magnet 11 by combining a plurality of magnet pieces, the magnetic field can be effectively increased. But the 1st magnet 11 may consist of a single magnet.
- FIG. 3 is a diagram showing an example of the structure of the second magnet.
- the 2nd magnet 12 shown in FIG. 3 consists of one single-piece magnet.
- the second magnet 12 may be configured by combining two or more magnet pieces.
- FIG. 4 is a diagram showing an example of the structure of the third magnet.
- the third magnet 13 shown in FIG. 4 is configured by combining four magnet pieces in the same manner as the first magnet 11. By configuring the third magnet 13 by combining a plurality of magnet pieces, the magnetic field can be effectively increased.
- the third magnet 13 may be configured by combining six or eight magnet pieces, or may be a single magnet.
- FIG. 5 is a schematic cross-sectional view showing an example of the structure of the Faraday rotator of the present invention.
- the Faraday rotator 10 is an apparatus used for a magneto-optical element 20 described later, such as an optical isolator or an optical circulator.
- the Faraday rotator 10 includes a magnetic circuit 1 and a Faraday element 14 disposed in the through hole 2 of the magnetic circuit.
- the Faraday element 14 is made of a paramagnetic material that transmits light.
- the Faraday rotator 10 Since the Faraday rotator 10 has the magnetic circuit 1 of the present invention shown in FIG. 1, irreversible demagnetization due to an external magnetic field or temperature rise is suppressed, and a sufficient magnetic flux density can be stably given to the Faraday element 14. Therefore, it can be used stably.
- light may be incident on the Faraday rotator 10 from the first magnet 11 side or may be incident from the third magnet 13 side.
- cross-sectional shape of the Faraday element 14 and the cross-sectional shape of the through-hole 2 of the magnetic circuit are not necessarily matched, but are preferably matched from the viewpoint of providing a uniform magnetic field.
- a paramagnetic material can be used for the Faraday element 14.
- the Faraday element 14 made of a glass material has a stable Verde constant and a high extinction ratio because there is little fluctuation of the Verde constant due to defects such as a single crystal material and there is little influence of the stress from the adhesive. Can keep.
- the glass material used for the Faraday element 14 preferably has a Tb 2 O 3 content of more than 40%, more preferably 45% or more, even more preferably 48% or more, and 51% in terms of mol% of oxide.
- the above is particularly preferable.
- Tb exists in a trivalent or tetravalent state in glass, all of these are expressed as values converted to Tb 2 O 3 in this specification.
- the ratio of Tb 3+ to the total Tb is preferably 55% or more in terms of mol%, more preferably 60% or more, further preferably 80% or more, and 90% or more. It is particularly preferred. If the ratio of Tb 3+ to the total Tb is too small, the light transmittance at wavelengths of 300 nm to 1100 nm tends to decrease.
- FIG. 6 is a schematic cross-sectional view showing an example of the structure of the magneto-optical element of the present invention.
- the magneto-optical element 20 shown in FIG. 6 is an optical isolator.
- the magneto-optical element 20 includes the Faraday rotator 10 illustrated in FIG. 5, the first optical component 25 disposed at one end in the optical axis direction of the magnetic circuit 1, and the second optical disposed at the other end. And a component 26.
- the first optical component 25 and the second optical component 26 are polarizers in this embodiment.
- the light transmission axis of the second optical component 26 is inclined 45 ° with respect to the light transmission axis of the first optical component 25.
- the light incident on the magneto-optical element 20 passes through the first optical component 25, becomes linearly polarized light, and enters the Faraday element 14.
- the incident light is rotated 45 ° by the Faraday element 14 and passes through the second optical component 26.
- Part of the light that has passed through the second optical component 26 becomes reflected return light, and the polarization plane passes through the second optical component 26 at an angle of 45 °.
- the reflected return light that has passed through the second optical component 26 is further rotated by 45 ° by the Faraday element 14 and becomes an orthogonal polarization plane of 90 ° with respect to the light transmission axis of the first optical component 25. Therefore, the reflected return light cannot be transmitted through the first optical component 25 and is blocked.
- the magneto-optical element 20 of the present invention has the magnetic circuit 1 of the present invention shown in FIG. 1, irreversible demagnetization due to an external magnetic field or temperature rise is suppressed, and a sufficient magnetic flux density for the Faraday element 14 can be stabilized. Therefore, it can be used stably.
- the magneto-optical element 20 shown in FIG. 6 is an optical isolator
- the magneto-optical element 20 may be an optical circulator.
- the first optical component 25 and the second optical component 26 may be a wave plate or a beam splitter.
- the magneto-optical element 20 is not limited to an optical isolator and an optical circulator.
- Table 1 shows Examples 1 to 7 and Comparative Example 1 of the present invention.
- the average values of the magnetic flux densities of the magnetic circuits of Examples 1 to 7 and Comparative Example 1 have the coercive force H cB , the residual magnetic flux density Br, and the length L so as to satisfy the conditions in Table 1 above. This was measured by simulating a case where a magnet structure as shown in FIG. 1 is configured with the first to third magnets.
- the average value of the magnetic flux density is based on the assumption that a Faraday rotating glass element having a diameter of 3 mm, a length of 10 mm, and a Verde constant of 0.21 min / Oe ⁇ cm is used. It represents a simulated value of the average value of magnetic flux density in the length of ⁇ 5 mm from the center to the optical axis direction.
- the “length” is a length along the optical axis direction, and is simply expressed as a length or L in this embodiment.
- the average value of the magnetic flux density in the length of ⁇ 5 mm from the center of the through hole of the second magnet in the optical axis direction is 1.13 to 1.34 T. Even under the influence of a strong magnetic field created by the interaction between the first magnet and the third magnet, irreversible demagnetization hardly occurs in the vicinity of the through hole of the second magnet. Obtained.
- Comparative Example 1 a second magnet, H cB is 413kA / m, but except that Br is small and 0.95T is a magnetic circuit manufactured in the same manner as in Example 3, the through-hole of the second magnet The average value of the magnetic flux density in the length of ⁇ 5 mm from the center to the optical axis direction was as small as 1.01 T.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Provided is a magnetic circuit in which irreversible demagnetization due to an external magnetic field or a temperature increase can be suppressed, and magnetic flux density adequate for a Faraday element can be stably provided. A magnetic circuit 1 having first through third magnets comprising samarium-cobalt-based magnets each provided with a through hole through which light passes, wherein the magnetic circuit 1 is characterized in that: the first through third magnets are disposed in this order on the same axis in a front-rear direction; when the direction in which light passes through the through holes of the magnetic circuit 1 is defined as the optical axis direction, the first magnet 11 is magnetized in the direction perpendicular to the optical axis direction and so that the through-hole side thereof is the N pole thereof, the second magnet 12 is magnetized in the direction parallel to the optical axis direction and so that the first magnet 11 side thereof is the N pole thereof, and the third magnet 13 is magnetized in the direction perpendicular to the optical axis direction and so that the through-hole side thereof is the S pole thereof; and the second magnet 12 has a coercivity equal to or greater than the coercivity of the first and third magnets.
Description
本発明は、磁気回路、ファラデー回転子及び磁気光学素子に関する。
The present invention relates to a magnetic circuit, a Faraday rotator, and a magneto-optical element.
ファラデー回転子は、ファラデー素子と、ファラデー素子に磁界を与える磁石とからなる素子である。ファラデー回転子は光を一方向だけに伝搬し、戻り光を阻止する働きがあるため、光アイソレータなどの磁気光学素子として、光通信システムやレーザー加工システムなどのレーザー発振器に用いられてきた。
The Faraday rotator is an element composed of a Faraday element and a magnet that applies a magnetic field to the Faraday element. Since the Faraday rotator has a function of propagating light only in one direction and blocking return light, it has been used as a laser optical oscillator such as an optical communication system or a laser processing system as a magneto-optical element such as an optical isolator.
光通信システムで使用される波長域は主に1300nm~1700nmであり、従来のファラデー回転子では、ファラデー素子に希土類鉄ガーネットが用いられてきた。
The wavelength range used in the optical communication system is mainly 1300 nm to 1700 nm, and in the conventional Faraday rotator, rare earth iron garnet has been used for the Faraday element.
一方で、近年レーザー加工などに用いられる波長域は、光通信帯域よりもより短波長側であり、主に1000nm付近が利用される。この波長域では、上記希土類鉄ガーネットは光吸収が大きく使用することができないため、ファラデー素子にテルビウム・ガリウム・ガーネット(TGG)のような常磁性体結晶が用いられてきた。
On the other hand, the wavelength range used for laser processing and the like in recent years is shorter than the optical communication band, and the vicinity of 1000 nm is mainly used. In this wavelength region, since the rare earth iron garnet cannot be used because of its large light absorption, paramagnetic crystals such as terbium gallium garnet (TGG) have been used for Faraday elements.
ところで、このようなファラデー回転子を光アイソレータとして用いるためには、ファラデー回転による回転角度(θ)が45°である必要がある。この回転角度は、ファラデー素子の長さ(L)、ベルデ定数(V)、光軸と平行な磁束密度(B)と下記の式(1)の関係にあることが知られている。
Incidentally, in order to use such a Faraday rotator as an optical isolator, the rotation angle (θ) by Faraday rotation needs to be 45 °. This rotation angle is known to have a relationship of the following formula (1) with the length of the Faraday element (L), the Verde constant (V), the magnetic flux density parallel to the optical axis (B).
θ=V・B・L (1)
Θ = V ・ B ・ L (1)
このうち、ベルデ定数はファラデー素子の材料に依存する特性である。一般に、TGGのような常磁性体は希土類鉄ガーネットに比べてベルデ定数が小さいため、45°のファラデー回転角を得るためには、ファラデー素子の長さや、ファラデー素子に加わる光軸と平行な磁束密度を大きくする必要があった。特に近年は装置の小型化が望まれているため、ファラデー素子や磁石を大型化するのではなく、磁石の構造を工夫することで、ファラデー素子に加わる磁束密度を向上させる発明が提案されている。
Of these, the Verde constant is a characteristic that depends on the material of the Faraday element. In general, a paramagnetic material such as TGG has a smaller Verde constant compared to rare earth iron garnet, so in order to obtain a Faraday rotation angle of 45 °, the length of the Faraday element and the magnetic flux parallel to the optical axis applied to the Faraday element It was necessary to increase the density. In particular, in recent years, there has been a demand for downsizing of the apparatus. Therefore, an invention has been proposed in which the magnetic flux density applied to the Faraday element is improved by devising the structure of the magnet instead of increasing the size of the Faraday element or the magnet. .
例えば、特許文献1には、第1~第3の磁石により構成された磁気回路と、ファラデー素子とを備えるファラデー回転子が開示されている。第1の磁石は、光軸と垂直の方向であり、かつ光軸に向かう方向に磁化されている。第2の磁石は、光軸と垂直の方向であり、かつ光軸から離れる方向に磁化されている。これらの間に第3の磁石が配置されている。第3の磁石は、光軸と平行な方向であり、かつ第2の磁石から第1の磁石に向かう方向に磁化されている。この磁気回路では、第1の磁石と第2の磁石の光軸方向に沿う長さをL2、第3の光軸方向に沿う長さをL3としたとき、L2/10≦L3≦L2の関係が成立するように構成されている。
For example, Patent Document 1 discloses a Faraday rotator including a magnetic circuit formed of first to third magnets and a Faraday element. The first magnet is magnetized in a direction perpendicular to the optical axis and toward the optical axis. The second magnet is magnetized in a direction perpendicular to the optical axis and away from the optical axis. A third magnet is disposed between them. The third magnet is magnetized in a direction parallel to the optical axis and in a direction from the second magnet toward the first magnet. In this magnetic circuit, when the length along the length along the optical axis direction of the first magnet and the second magnet L 2, the third optical axis direction is L 3, L 2/10 ≦ L 3 ≦ L 2 is established.
上記の磁気回路では、第3の磁石の貫通孔付近において、第1の磁石と第2の磁石の相互作用で作り出された強い磁界が発生する。この磁界は第3の磁石の磁化方向と逆向きである。このように着磁方向と逆向きの外部磁界が生じる場合、磁石の動作点の移動及びそれに帰属する減磁の影響を考慮する必要がある。説明のため、図7に磁石の減磁曲線(B-H曲線及びJ-H曲線)の一例を示す。B-H曲線32は、磁束密度Bと外部磁界Hの関係を表す曲線である。また、J-H曲線33は、磁化Jと外部磁界Hの関係を表す曲線である。曲線と縦軸、横軸の交点は、それぞれ残留磁束密度Br、固有保磁力HcJ及び保磁力HcBを意味する。残留磁束密度Brは、外部磁界を飽和磁化の状態から0にした時に磁性体に残る磁束密度のことである。保磁力は、磁性体が持つ磁化方向と反対方向の磁界を作用させて、磁化または磁束密度が0になる時の外部磁界の値のことであり、前者が固有保磁力HcJ、後者が保磁力HcBと表される。なお、磁性体の磁束密度(B)、外部磁界の強さ(H)、磁化の強さ(J)、真空の透磁率(μ0)は、下記の式(2)の関係にあることが知られている。
In the above magnetic circuit, a strong magnetic field generated by the interaction between the first magnet and the second magnet is generated in the vicinity of the through hole of the third magnet. This magnetic field is opposite to the magnetization direction of the third magnet. When an external magnetic field opposite to the magnetization direction is generated as described above, it is necessary to consider the influence of the movement of the operating point of the magnet and the demagnetization attributed to it. For explanation, FIG. 7 shows an example of a demagnetization curve (BH curve and JH curve) of a magnet. The BH curve 32 is a curve representing the relationship between the magnetic flux density B and the external magnetic field H. The JH curve 33 is a curve representing the relationship between the magnetization J and the external magnetic field H. The intersections of the curve, the vertical axis, and the horizontal axis mean the residual magnetic flux density Br, the intrinsic coercivity H cJ and the coercivity H cB , respectively. The residual magnetic flux density Br is the magnetic flux density remaining in the magnetic material when the external magnetic field is changed from the saturation magnetization state to zero. The coercive force is a value of an external magnetic field when a magnetic field opposite to the magnetization direction of the magnetic material is applied to make the magnetization or magnetic flux density zero, and the former is the intrinsic coercive force H cJ and the latter is the coercive force. It is expressed as magnetic force HcB . The magnetic flux density (B), the external magnetic field strength (H), the magnetization strength (J), and the vacuum magnetic permeability (μ 0 ) of the magnetic material may have a relationship of the following formula (2). Are known.
B=μ0H+J (2)
B = μ 0 H + J (2)
(外部磁界による不可逆減磁)
図7に示すように、磁石に外部磁界H1が加えられた場合、磁石の動作点a1は、B-H曲線32上を移動し、H軸へ近い動作点b1へ移動する。また、より大きな外部磁界H2を与えると、磁石の動作点a1は、さらにH軸へ近い動作点c1へ移動する。このとき、B-H曲線32上の動作点c1をJ-H曲線33上に投影した動作点c2は、J-H曲線33のクニック点34(傾きが変化して急激に磁束密度が減少する変化点)を越えてしまう。このように、より大きな外部磁界H2による減磁の場合、B-H曲線32上の動作点をJ-H曲線33上に投影した動作点c2がJ-H曲線33のクニック点34を越えることで、外部磁界H2を取り除いた際に磁石の動作点a1が動作点d1へと移動する。ここで、動作点d1は、動作点c1から外部磁界H2を取り除いたときの動作点であり、動作点c1を通るリコイル透磁率曲線の傾きと平行な直線と、動作点a1と原点を通る直線の交点である。このとき、動作点a1における磁束密度と、動作点d1における磁束密度の差は外部磁界H2による不可逆減磁ΔBであり、再着磁を行わない限り回復しない減磁となる。 (Irreversible demagnetization by external magnetic field)
As shown in FIG. 7, when the external magnetic field H1 is applied to the magnet, the operating point a1 of the magnet moves on theBH curve 32 and moves to the operating point b1 close to the H axis. Further, when a larger external magnetic field H2 is applied, the operating point a1 of the magnet further moves to an operating point c1 closer to the H axis. At this time, the operating point c2 obtained by projecting the operating point c1 on the BH curve 32 onto the JH curve 33 is the nick point 34 of the JH curve 33 (the gradient changes and the magnetic flux density rapidly decreases). Change point). Thus, in the case of demagnetization by a larger external magnetic field H2, the operating point c2 obtained by projecting the operating point on the BH curve 32 onto the JH curve 33 exceeds the nick point 34 of the JH curve 33. Thus, when the external magnetic field H2 is removed, the operating point a1 of the magnet moves to the operating point d1. Here, the operating point d1 is an operating point when the external magnetic field H2 is removed from the operating point c1, a straight line parallel to the inclination of the recoil permeability curve passing through the operating point c1, and a straight line passing through the operating point a1 and the origin. Is the intersection of At this time, the difference between the magnetic flux density at the operating point a1 and the magnetic flux density at the operating point d1 is irreversible demagnetization ΔB due to the external magnetic field H2, and is a demagnetization that does not recover unless re-magnetization is performed.
図7に示すように、磁石に外部磁界H1が加えられた場合、磁石の動作点a1は、B-H曲線32上を移動し、H軸へ近い動作点b1へ移動する。また、より大きな外部磁界H2を与えると、磁石の動作点a1は、さらにH軸へ近い動作点c1へ移動する。このとき、B-H曲線32上の動作点c1をJ-H曲線33上に投影した動作点c2は、J-H曲線33のクニック点34(傾きが変化して急激に磁束密度が減少する変化点)を越えてしまう。このように、より大きな外部磁界H2による減磁の場合、B-H曲線32上の動作点をJ-H曲線33上に投影した動作点c2がJ-H曲線33のクニック点34を越えることで、外部磁界H2を取り除いた際に磁石の動作点a1が動作点d1へと移動する。ここで、動作点d1は、動作点c1から外部磁界H2を取り除いたときの動作点であり、動作点c1を通るリコイル透磁率曲線の傾きと平行な直線と、動作点a1と原点を通る直線の交点である。このとき、動作点a1における磁束密度と、動作点d1における磁束密度の差は外部磁界H2による不可逆減磁ΔBであり、再着磁を行わない限り回復しない減磁となる。 (Irreversible demagnetization by external magnetic field)
As shown in FIG. 7, when the external magnetic field H1 is applied to the magnet, the operating point a1 of the magnet moves on the
なお、磁石の動作点とは、図7に示すように、磁石のB-H曲線32上の点であり、磁気回路内における磁石の磁束密度B、磁界Hの状態を示す点のことである。また、原点からこの点に向かって引いた直線をパーミアンス線31と呼ぶ。パーミアンス線31の傾き(B/H)は、真空の透磁率(μ0)、パーミアンス係数(P)と下記の式(3)の関係にあることが知られている。
The operating point of the magnet is a point on the BH curve 32 of the magnet as shown in FIG. 7, and is a point indicating the state of the magnetic flux density B and magnetic field H of the magnet in the magnetic circuit. . A straight line drawn from the origin toward this point is called a permeance line 31. It is known that the inclination (B / H) of the permeance line 31 is in the relationship of the vacuum permeability (μ 0 ), the permeance coefficient (P), and the following equation (3).
B/H=μ0P (3)
B / H = μ 0 P (3)
(高温による不可逆減磁)
図8にネオジム磁石の減磁曲線の温度変化を示す。それぞれ、高温時のB-H曲線35、低温時のB-H曲線36、高温時のJ-H曲線37、低温時のJ-H曲線38を示している。ネオジム磁石は温度が上昇すると、残留磁束密度Br、固有保磁力HcJ及び保磁力HcBがそれぞれ、Br´、HcJ´及びHcB´に移動する。すると、低温時のB-H曲線36、低温時のJ-H曲線38は、それぞれ高温時のB-H曲線35、高温時のJ-H曲線37に変化する。このような温度変化において、B-H曲線上の動作点がB-H曲線のクニック点34を越えると、温度条件を元に戻しても磁力が元に戻らない、つまり温度変化による磁石の不可逆減磁が生じる。例えば、動作点a1は、低温から高温へ外部温度を変化させると、動作点b1へ移動する。動作点b1は高温時のB-H曲線35上のクニック点を越えていないため、外部温度を高温から低温へ戻すと、動作点b1から動作点a1へ戻ることができる、すなわち可逆減磁となる。一方、よりH軸へ近い動作点a2は、低温から高温へ外部温度を変化させると、動作点b2へと移動する。この場合は、動作点b2が高温時のB-H曲線35上のクニック点34を越えているため、外部温度を高温から低温へ戻しても、動作点b2から動作点a2へ戻ることができず、動作点c2へ移る。このとき、動作点a2における磁束密度と、動作点c2における磁束密度の差が不可逆減磁ΔBとなる。特にネオジム磁石は、図8に示すように、温度の上昇によりB-H曲線とJ-H曲線がB軸(磁束密度)側へ大きく変化することが知られており、高温下において、動作点の移動による不可逆減磁が生じやすい。なお、図8の動作点c2は、図7の動作点d1と同様の方法で求めることができる。 (Irreversible demagnetization due to high temperature)
FIG. 8 shows the temperature change of the demagnetization curve of the neodymium magnet. ABH curve 35 at a high temperature, a BH curve 36 at a low temperature, a JH curve 37 at a high temperature, and a JH curve 38 at a low temperature are shown, respectively. When the temperature of the neodymium magnet rises, the residual magnetic flux density Br, the intrinsic coercivity H cJ and the coercivity H cB move to Br ′, H cJ ′ and H cB ′, respectively. Then, the BH curve 36 at the low temperature and the JH curve 38 at the low temperature change to the BH curve 35 at the high temperature and the JH curve 37 at the high temperature, respectively. In such a temperature change, when the operating point on the BH curve exceeds the nick point 34 of the BH curve, the magnetic force does not return to the original even if the temperature condition is restored, that is, the magnet is irreversible due to the temperature change. Demagnetization occurs. For example, the operating point a1 moves to the operating point b1 when the external temperature is changed from a low temperature to a high temperature. Since the operating point b1 does not exceed the nick point on the BH curve 35 at a high temperature, when the external temperature is returned from the high temperature to the low temperature, the operating point b1 can return to the operating point a1, that is, reversible demagnetization and Become. On the other hand, the operating point a2 closer to the H-axis moves to the operating point b2 when the external temperature is changed from the low temperature to the high temperature. In this case, since the operating point b2 exceeds the nick point 34 on the BH curve 35 at the time of high temperature, the operating point b2 can return to the operating point a2 even if the external temperature is returned from high temperature to low temperature. Without moving to the operating point c2. At this time, the difference between the magnetic flux density at the operating point a2 and the magnetic flux density at the operating point c2 is irreversible demagnetization ΔB. In particular, as shown in FIG. 8, it is known that the BH curve and the JH curve greatly change to the B axis (magnetic flux density) side of neodymium magnets as the temperature rises. Irreversible demagnetization is likely to occur due to the movement of. The operating point c2 in FIG. 8 can be obtained by the same method as the operating point d1 in FIG.
図8にネオジム磁石の減磁曲線の温度変化を示す。それぞれ、高温時のB-H曲線35、低温時のB-H曲線36、高温時のJ-H曲線37、低温時のJ-H曲線38を示している。ネオジム磁石は温度が上昇すると、残留磁束密度Br、固有保磁力HcJ及び保磁力HcBがそれぞれ、Br´、HcJ´及びHcB´に移動する。すると、低温時のB-H曲線36、低温時のJ-H曲線38は、それぞれ高温時のB-H曲線35、高温時のJ-H曲線37に変化する。このような温度変化において、B-H曲線上の動作点がB-H曲線のクニック点34を越えると、温度条件を元に戻しても磁力が元に戻らない、つまり温度変化による磁石の不可逆減磁が生じる。例えば、動作点a1は、低温から高温へ外部温度を変化させると、動作点b1へ移動する。動作点b1は高温時のB-H曲線35上のクニック点を越えていないため、外部温度を高温から低温へ戻すと、動作点b1から動作点a1へ戻ることができる、すなわち可逆減磁となる。一方、よりH軸へ近い動作点a2は、低温から高温へ外部温度を変化させると、動作点b2へと移動する。この場合は、動作点b2が高温時のB-H曲線35上のクニック点34を越えているため、外部温度を高温から低温へ戻しても、動作点b2から動作点a2へ戻ることができず、動作点c2へ移る。このとき、動作点a2における磁束密度と、動作点c2における磁束密度の差が不可逆減磁ΔBとなる。特にネオジム磁石は、図8に示すように、温度の上昇によりB-H曲線とJ-H曲線がB軸(磁束密度)側へ大きく変化することが知られており、高温下において、動作点の移動による不可逆減磁が生じやすい。なお、図8の動作点c2は、図7の動作点d1と同様の方法で求めることができる。 (Irreversible demagnetization due to high temperature)
FIG. 8 shows the temperature change of the demagnetization curve of the neodymium magnet. A
さらに、特許文献1に記載の第3の磁石は、第1、第2の磁石に比べ、磁化方向に短い形状を有している。このような磁化方向に短い形状の磁石では、磁石の形状に依存するパーミアンス係数も考慮する必要がある。通常、パーミアンス係数は磁化方向に短い、すなわち磁極同士が近づく形状の磁石で小さくなる。また、パーミアンス係数は式(3)に示すように、パーミアンス線31の傾きでもある。例えば、図9に示すように、動作点a1を通るパーミアンス線31は、動作点b1を通るパーミアンス線31の傾きβよりも大きな傾きα、すなわち、より大きなパーミアンス係数を有していることになる。言い換えれば、値の小さいパーミアンス係数βを有する磁石はH軸へ近い位置に動作点があるため、よりB-H曲線32及びJ-H曲線33上のクニック点34を越えやすくなり、上述した逆磁界や高温下による不可逆減磁が生じやすくなる。
Furthermore, the third magnet described in Patent Document 1 has a shorter shape in the magnetization direction than the first and second magnets. In such a magnet having a short shape in the magnetization direction, it is necessary to consider a permeance coefficient depending on the shape of the magnet. Usually, the permeance coefficient is small in the magnetizing direction, that is, the magnet having a shape in which the magnetic poles are close to each other. The permeance coefficient is also the slope of the permeance line 31 as shown in equation (3). For example, as shown in FIG. 9, the permeance line 31 passing through the operating point a1 has a larger inclination α than the inclination β of the permeance line 31 passing through the operating point b1, that is, a larger permeance coefficient. . In other words, since a magnet having a small permeance coefficient β has an operating point at a position close to the H-axis, it becomes easier to exceed the nick point 34 on the BH curve 32 and the JH curve 33, and the above-described reverse Irreversible demagnetization is likely to occur due to magnetic fields and high temperatures.
以上のように、特許文献1に記載の磁気回路の第3の磁石は、磁石として不利な動作点において使用されるため、逆磁界や高温下による不可逆減磁を引き起こしやすい状況にあった。特に、高出力レーザー用光アイソレータなどの磁気光学素子として上記磁気回路を用いる場合、高出力光によるファラデー素子の温度上昇に伴う磁気回路の温度上昇は避けられないため、第3の磁石で高温による不可逆減磁が生じる可能性が高くなっていた。このように第3の磁石で不可逆減磁が生じると、ファラデー素子に十分な磁束密度を安定して与えることができなくなるため、ファラデー回転子が本来の機能を果たせなくなる可能性があった。
As described above, since the third magnet of the magnetic circuit described in Patent Document 1 is used at a disadvantageous operating point as a magnet, it tends to cause irreversible demagnetization due to a reverse magnetic field or high temperature. In particular, when the magnetic circuit is used as a magneto-optical element such as an optical isolator for a high-power laser, the temperature rise of the magnetic circuit accompanying the temperature rise of the Faraday element due to the high-power light is unavoidable. There was a high possibility of irreversible demagnetization. When irreversible demagnetization occurs in the third magnet in this way, a sufficient magnetic flux density cannot be stably given to the Faraday element, and the Faraday rotator may not perform its original function.
本発明は上記課題を鑑みてなされたものであり、外部磁界や温度上昇による不可逆減磁を抑制することができ、かつファラデー素子に十分な磁束密度を安定して与えることができる磁気回路を提供するものである。
The present invention has been made in view of the above problems, and provides a magnetic circuit that can suppress irreversible demagnetization due to an external magnetic field or a temperature rise, and can stably provide a sufficient magnetic flux density to a Faraday element. To do.
本発明の磁気回路は、光が通過する貫通孔がそれぞれ設けられたサマリウム-コバルト系磁石からなる第1~第3の磁石を有する磁気回路であって、磁気回路は、第1~第3の磁石が前後方向に同軸上にこの順序で配置されてなり、光が磁気回路の貫通孔を通過する方向を光軸方向としたときに、第1の磁石は、光軸方向に垂直な方向に、かつ貫通孔側がN極となるように磁化されており、第2の磁石は光軸方向に平行な方向に、かつ第1の磁石側がN極となるように磁化されており、第3の磁石は、光軸方向に垂直な方向に、かつ貫通孔側がS極となるように磁化されており、第2の磁石が、1、3の磁石以上の保磁力を有することを特徴とする。なお、本発明で単に保磁力と記載する際は、HcBを指すものとする。
The magnetic circuit of the present invention is a magnetic circuit having first to third magnets made of samarium-cobalt magnets each provided with a through-hole through which light passes. The magnetic circuit includes first to third magnets. The magnets are arranged coaxially in this order in the front-rear direction, and when the direction in which light passes through the through hole of the magnetic circuit is the optical axis direction, the first magnet is in a direction perpendicular to the optical axis direction. And the second magnet is magnetized in a direction parallel to the optical axis direction and the first magnet side is N pole, and the third magnet is magnetized so that the through hole side is N pole. The magnet is magnetized in a direction perpendicular to the optical axis direction so that the through-hole side is an S pole, and the second magnet has a coercive force greater than one or three magnets. In the present invention, the term “coercivity” is used to indicate HcB .
上記のような構成において、第2の磁石の貫通孔付近には、第1の磁石と第3の磁石の相互作用で作り出された強い磁界が発生する。しかし、本発明の磁気回路では第2の磁石における保磁力が大きいため、動作点がB-H曲線、J-H曲線上のクニック点を越えにくくなり、温度上昇や逆磁界による不可逆減磁発生を抑制することができ、第2の磁石の貫通孔部分における磁束密度を大きく保持しやすくなる。すなわち、ファラデー素子に十分な磁束密度を安定して与えることができる。
In the configuration as described above, a strong magnetic field generated by the interaction between the first magnet and the third magnet is generated near the through hole of the second magnet. However, in the magnetic circuit of the present invention, since the coercive force of the second magnet is large, the operating point does not easily exceed the nick point on the BH curve and JH curve, and irreversible demagnetization occurs due to temperature rise and reverse magnetic field. And the magnetic flux density in the through hole portion of the second magnet can be easily maintained. That is, a sufficient magnetic flux density can be stably given to the Faraday element.
さらに、第1~第3の磁石はサマリウム-コバルト系磁石からなる磁石である。サマリウム-コバルト系磁石は、ネオジム磁石と同等の残留磁束密度と保磁力を有するが、温度変化による保磁力の変動が小さく、かつキュリー温度が高いという特徴を有する。そのため、上記磁石からなる磁気回路では、特に高温下において動作点がB-H曲線、J-H曲線上のクニック点を越えにくく、不可逆減磁発生を抑制することができ、第2の磁石の貫通孔部分における磁束密度を大きく保持しやすくなる。
Furthermore, the first to third magnets are samarium-cobalt magnets. Samarium-cobalt magnets have the same residual magnetic flux density and coercive force as neodymium magnets, but are characterized by small variations in coercive force due to temperature changes and high Curie temperatures. Therefore, in the magnetic circuit composed of the magnet, the operating point is difficult to exceed the nick point on the BH curve and the JH curve, particularly at high temperatures, and the occurrence of irreversible demagnetization can be suppressed. It becomes easy to maintain a large magnetic flux density in the through hole portion.
本発明の磁気回路では、第1~第3の磁石が650kA/m以上の保磁力を有することが好ましい。このような保磁力を有することで、第2の磁石における不可逆減磁の発生を抑制することができる。
In the magnetic circuit of the present invention, it is preferable that the first to third magnets have a coercive force of 650 kA / m or more. By having such a coercive force, occurrence of irreversible demagnetization in the second magnet can be suppressed.
本発明の磁気回路では、第2の磁石の光軸方向に沿う長さが、第1、3の磁石の光軸方向に沿う長さ以上であることが好ましい。このようにすれば、第2の磁石における不可逆減磁の発生を抑制することができ、第2の磁石の貫通孔部分における磁束密度を大きく保持しやすくなる。
In the magnetic circuit of the present invention, the length along the optical axis direction of the second magnet is preferably equal to or longer than the length along the optical axis direction of the first and third magnets. If it does in this way, generation | occurrence | production of the irreversible demagnetization in a 2nd magnet can be suppressed, and it will become easy to hold | maintain the magnetic flux density in the through-hole part of a 2nd magnet largely.
本発明の磁気回路では、第2の磁石の光軸方向に沿う長さが、第1、3の磁石の光軸方向に沿う長さより大きいことが好ましい。
In the magnetic circuit of the present invention, the length along the optical axis direction of the second magnet is preferably larger than the length along the optical axis direction of the first and third magnets.
本発明の磁気回路では、第2の磁石が、第1、3の磁石より大きな保磁力を有することが好ましい。
In the magnetic circuit of the present invention, it is preferable that the second magnet has a larger coercive force than the first and third magnets.
本発明の磁気回路では、貫通孔の断面積が100mm2以下であることが好ましい。貫通孔の断面積を100mm2以下にすることで、磁束密度が大きくなりやすい。
In the magnetic circuit of the present invention, the cross-sectional area of the through hole is preferably 100 mm 2 or less. By setting the cross-sectional area of the through hole to 100 mm 2 or less, the magnetic flux density tends to increase.
本発明の磁気回路は、光が通過する貫通孔がそれぞれ設けられた第1~第3の磁石を有する磁気回路であって、磁気回路は、第1~第3の磁石が前後方向に同軸上にこの順序で配置されてなり、光が磁気回路の貫通孔を通過する方向を光軸方向としたときに、第1の磁石は、光軸方向に垂直な方向に、かつ貫通孔側がN極となるように磁化されており、第2の磁石は光軸方向に平行な方向に、かつ第1の磁石側がN極となるように磁化されており、第3の磁石は、光軸方向に垂直な方向に、かつ貫通孔側がS極となるように磁化されており、第2の磁石が、第1、3の磁石以上の保磁力を有し、第2の磁石の光軸方向に沿う長さが、第1、3の磁石の光軸方向に沿う長さ以上であることを特徴とする。
The magnetic circuit of the present invention is a magnetic circuit having first to third magnets each provided with a through-hole through which light passes, and the first to third magnets are coaxial in the front-rear direction. The first magnet is in a direction perpendicular to the optical axis direction and the through hole side is N poles, where the direction in which light passes through the through hole of the magnetic circuit is the optical axis direction. The second magnet is magnetized in a direction parallel to the optical axis direction and the first magnet side is an N pole, and the third magnet is in the optical axis direction. Magnetized in a vertical direction and with the through-hole side as an S pole, the second magnet has a coercive force greater than that of the first and third magnets, and is along the optical axis direction of the second magnet. The length is not less than the length along the optical axis direction of the first and third magnets.
上記のような構成において、第2の磁石の貫通孔付近には、第1の磁石と第3の磁石の相互作用で作り出された強い磁界が発生する。しかし、第2の磁石における保磁力が大きいため、動作点がB-H曲線、J-H曲線上のクニック点を越えにくくなり、温度上昇や逆磁界による不可逆減磁発生を抑制することができ、第2の磁石の貫通孔部分における磁束密度を大きく保持しやすくなる。また、第2の磁石の光軸方向に沿う長さが、第1、3の磁石の光軸方向に沿う長さ以上であるため、第2の磁石における不可逆減磁の発生を抑制することができ、第2の磁石の貫通孔部分における磁束密度を大きく保持しやすくなる。
In the configuration as described above, a strong magnetic field generated by the interaction between the first magnet and the third magnet is generated near the through hole of the second magnet. However, since the coercive force of the second magnet is large, the operating point is unlikely to exceed the nick point on the BH curve and JH curve, and the occurrence of irreversible demagnetization due to temperature rise and reverse magnetic field can be suppressed. The magnetic flux density in the through-hole portion of the second magnet can be easily kept large. Moreover, since the length along the optical axis direction of the second magnet is equal to or longer than the length along the optical axis direction of the first and third magnets, the occurrence of irreversible demagnetization in the second magnet can be suppressed. It is possible to easily maintain a large magnetic flux density in the through-hole portion of the second magnet.
本発明のファラデー回転子は、上記磁気回路と、磁気回路における貫通孔内に配置されており、かつ光が透過する常磁性体からなるファラデー素子とを備えてなることを特徴とする。
The Faraday rotator of the present invention is characterized by comprising the above magnetic circuit and a Faraday element made of a paramagnetic material that is disposed in a through hole in the magnetic circuit and transmits light.
本発明のファラデー回転子は、常磁性体がガラス材であることが好ましい。
In the Faraday rotator of the present invention, the paramagnetic material is preferably a glass material.
本発明の磁気光学素子は、上記ファラデー回転子と、ファラデー回転子の磁気回路の光軸方向における一方端に配置されている第1の光学部品及び他方端に配置されている第2の光学部品とを備え、磁気回路の貫通孔を通過する光が、第1の光学部品及び第2の光学部品を通過することを特徴とする。
The magneto-optical element of the present invention includes the Faraday rotator, a first optical component disposed at one end in the optical axis direction of the magnetic circuit of the Faraday rotator, and a second optical component disposed at the other end. The light passing through the through hole of the magnetic circuit passes through the first optical component and the second optical component.
本発明の磁気光学素子では、第1の光学部品及び第2の光学部品が偏光子であることが好ましい。
In the magneto-optical element of the present invention, it is preferable that the first optical component and the second optical component are polarizers.
本発明によれば、外部磁界や温度上昇による不可逆減磁を抑制することができ、かつファラデー素子に十分な磁束密度を安定して与えることができる磁気回路を提供することができる。
According to the present invention, it is possible to provide a magnetic circuit that can suppress irreversible demagnetization due to an external magnetic field or a temperature rise and can stably give a sufficient magnetic flux density to a Faraday element.
以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に何ら限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.
(磁気回路1)
図1は、本発明の磁気回路の構造を示す模式的断面図である。磁気回路1は、それぞれ貫通孔が設けられた第1の磁石11、第2の磁石12及び第3の磁石13を有する。磁気回路1は、第1の磁石11、第2の磁石12及び第3の磁石13が前後方向に同軸上にこの順序で配置されてなる。なお、同軸上に配置されるとは、光軸方向から見て、各磁石の中央付近が重なるように配置されることをいう。本実施形態では、第1の磁石11、第2の磁石12及び第3の磁石13の貫通孔が連結されることにより、磁気回路の貫通孔2が構成されている。なお、図1中のN及びSの文字は磁極を示し、後述する他の図面においても同様である。 (Magnetic circuit 1)
FIG. 1 is a schematic cross-sectional view showing the structure of the magnetic circuit of the present invention. Themagnetic circuit 1 includes a first magnet 11, a second magnet 12, and a third magnet 13 each having a through hole. The magnetic circuit 1 includes a first magnet 11, a second magnet 12, and a third magnet 13 that are coaxially arranged in this order in the front-rear direction. In addition, arrange | positioning coaxially means arrange | positioning so that the center vicinity of each magnet may overlap seeing from an optical axis direction. In the present embodiment, the through holes 2 of the magnetic circuit are configured by connecting the through holes of the first magnet 11, the second magnet 12, and the third magnet 13. The letters N and S in FIG. 1 indicate magnetic poles, and the same applies to other drawings described later.
図1は、本発明の磁気回路の構造を示す模式的断面図である。磁気回路1は、それぞれ貫通孔が設けられた第1の磁石11、第2の磁石12及び第3の磁石13を有する。磁気回路1は、第1の磁石11、第2の磁石12及び第3の磁石13が前後方向に同軸上にこの順序で配置されてなる。なお、同軸上に配置されるとは、光軸方向から見て、各磁石の中央付近が重なるように配置されることをいう。本実施形態では、第1の磁石11、第2の磁石12及び第3の磁石13の貫通孔が連結されることにより、磁気回路の貫通孔2が構成されている。なお、図1中のN及びSの文字は磁極を示し、後述する他の図面においても同様である。 (Magnetic circuit 1)
FIG. 1 is a schematic cross-sectional view showing the structure of the magnetic circuit of the present invention. The
磁気回路1において、第1の磁石11と第3の磁石13は光軸と垂直方向に磁化され、互いに磁化方向が対向している。具体的には、第1の磁石11は、光軸と垂直な方向に、かつ貫通孔側がN極となるように磁化されている。第3の磁石13は、光軸と垂直な方向に、かつ貫通孔側がS極となるように磁化されている。第2の磁石12は光軸に平行な方向に、かつ第1の磁石11側がN極となるように磁化されている。
In the magnetic circuit 1, the first magnet 11 and the third magnet 13 are magnetized in the direction perpendicular to the optical axis, and the magnetization directions are opposed to each other. Specifically, the first magnet 11 is magnetized in a direction perpendicular to the optical axis so that the through hole side is an N pole. The third magnet 13 is magnetized in a direction perpendicular to the optical axis so that the through hole side is an S pole. The second magnet 12 is magnetized in a direction parallel to the optical axis so that the first magnet 11 side has an N pole.
磁気回路1を構成する第1~第3の磁石は、サマリウム-コバルト(Sm-Co)を主成分とする磁石から構成されることが好ましい。サマリウム-コバルト系磁石はキュリー温度が600℃以上であるため、高温下における不可逆減磁を抑制することができる。また、サマリウム-コバルト系磁石の残留磁束密度の温度依存性は、一般に-0.03%/℃程度であり、ネオジム磁石は-0.1%/℃程度である。また、保磁力の温度依存性は、ネオジム磁石で-0.5%/K程度、サマリウム-コバルト系磁石で-0.2%/K程度である。そのため、サマリウム-コバルト系磁石を用いると、磁気回路1の温度上昇による磁石の残留磁束密度及び保磁力の低下を、より効果的に抑制することができる。なお、サマリウム-コバルト(Sm-Co)を主成分とする磁石以外を用いても良い。
The first to third magnets constituting the magnetic circuit 1 are preferably composed of magnets mainly composed of samarium-cobalt (Sm—Co). Since the samarium-cobalt magnet has a Curie temperature of 600 ° C. or higher, irreversible demagnetization at high temperatures can be suppressed. Further, the temperature dependence of the residual magnetic flux density of the samarium-cobalt magnet is generally about -0.03% / ° C, and the neodymium magnet is about -0.1% / ° C. The temperature dependence of the coercive force is about −0.5% / K for neodymium magnets and about −0.2% / K for samarium-cobalt magnets. Therefore, when the samarium-cobalt magnet is used, it is possible to more effectively suppress the decrease in the residual magnetic flux density and the coercive force of the magnet due to the temperature rise of the magnetic circuit 1. A magnet other than samarium-cobalt (Sm—Co) as a main component may be used.
磁気回路1を構成する第1~第3の磁石は、保磁力が650kA/m以上であることが好ましく、660kA/m以上がより好ましく、700kA/mがさらに好ましく、750kA/mが特に好ましい。保磁力が低いと、第2の磁石12が、第1の磁石11と第3の磁石13の相互作用で作り出される強い磁界によって動作点がH軸へ近づくことにより、磁石が不可逆減磁しやすくなる。また、保磁力が大きいほど高温化で安定した磁気回路1を得ることができるが、サマリウム-コバルト系磁石で得られる保磁力は、現実的には1000kA/mが上限である。
The first to third magnets constituting the magnetic circuit 1 preferably have a coercive force of 650 kA / m or more, more preferably 660 kA / m, further preferably 700 kA / m, and particularly preferably 750 kA / m. If the coercive force is low, the second magnet 12 tends to irreversibly demagnetize because the operating point approaches the H-axis due to the strong magnetic field created by the interaction between the first magnet 11 and the third magnet 13. Become. Further, the larger the coercive force, the more stable the magnetic circuit 1 can be obtained at higher temperatures. However, the upper limit of the coercive force obtained with the samarium-cobalt magnet is practically 1000 kA / m.
また、第1の磁石11と第3の磁石13の保磁力は等しいことが好ましい。このようにすれば、第2の磁石12に均一な磁界を与えることができる。もっとも、第1の磁石11の保磁力と、第3の磁石13の保磁力が等しくなくてもよい。
Moreover, it is preferable that the coercive force of the first magnet 11 and the third magnet 13 is equal. In this way, a uniform magnetic field can be applied to the second magnet 12. But the coercive force of the 1st magnet 11 and the coercive force of the 3rd magnet 13 do not need to be equal.
第2の磁石12は、第1、第3の磁石以上の保磁力を有する。具体的には、第2の磁石12の保磁力は、第1、第3の磁石の保磁力の1倍以上であり、1.05倍以上が好ましく、1.1倍以上が特に好ましい。このようにすれば、第2の磁石12の貫通孔付近に、第1の磁石11と第3の磁石13の相互作用で作り出された強い磁界が発生しても、第2の磁石12の動作点がB-H曲線、J-H曲線上のクニック点を越えにくくなり、温度上昇や逆磁界による不可逆減磁発生を抑制することができ、第2の磁石12の貫通孔部分における磁束密度を大きく保持しやすくなる。また、サマリウム-コバルト系磁石で得られる保磁力は、現実的には400~1000kA/m程度である。そのため、第2の磁石12の保磁力は最大で、第1、第3の磁石の保磁力の2.5倍以下が好ましく、2倍以下であることがより好ましく、1.8倍以下であることが特に好ましい。なお、第1の磁石11の保磁力と、第3の磁石13の保磁力が等しくない場合は、第1及び第3の磁石のうち、より高い保磁力に対して、上記の値を有するものとする。
The second magnet 12 has a coercive force greater than that of the first and third magnets. Specifically, the coercive force of the second magnet 12 is one or more times that of the first and third magnets, preferably 1.05 times or more, and particularly preferably 1.1 times or more. In this way, even if a strong magnetic field generated by the interaction between the first magnet 11 and the third magnet 13 is generated near the through hole of the second magnet 12, the operation of the second magnet 12 is performed. The point becomes difficult to exceed the nicks on the BH curve and JH curve, and the occurrence of irreversible demagnetization due to temperature rise and reverse magnetic field can be suppressed, and the magnetic flux density in the through hole portion of the second magnet 12 can be reduced. Large and easy to hold. The coercive force obtained with a samarium-cobalt magnet is actually about 400 to 1000 kA / m. Therefore, the coercive force of the second magnet 12 is the maximum, preferably 2.5 times or less of the coercive force of the first and third magnets, more preferably 2 times or less, and 1.8 times or less. It is particularly preferred. When the coercive force of the first magnet 11 and the coercive force of the third magnet 13 are not equal, the first and third magnets have the above values for higher coercive force. And
また、磁気回路1を構成する第1~第3の磁石の残留磁束密度(Br)は、0.7T以上であることが好ましく、0.8T以上であることがより好ましく、0.9T以上であることが特に好ましい。このようにすれば、第2の磁石12の貫通孔付近に磁束密度の大きい領域を形成することができ、後述するファラデー素子14に45°の回転角度を与えることができる。
Further, the residual magnetic flux density (Br) of the first to third magnets constituting the magnetic circuit 1 is preferably 0.7T or more, more preferably 0.8T or more, and 0.9T or more. It is particularly preferred. In this way, a region having a high magnetic flux density can be formed in the vicinity of the through hole of the second magnet 12, and a 45 ° rotation angle can be given to the Faraday element 14 described later.
また、第1の磁石11と第3の磁石13の残留磁束密度は等しいことが好ましい。このようにすれば、第2の磁石12に均一な磁界を与えることができる。もっとも、第1の磁石11の保磁力と、第3の磁石13の残留磁束密度が等しくなくてもよい。
Further, it is preferable that the residual magnetic flux densities of the first magnet 11 and the third magnet 13 are equal. In this way, a uniform magnetic field can be applied to the second magnet 12. However, the coercive force of the first magnet 11 and the residual magnetic flux density of the third magnet 13 may not be equal.
本発明の磁気回路1において、第2の磁石12の光軸方向に沿う長さが、第1の磁石11又は第3の磁石13の光軸方向に沿う長さ以上であることが好ましい。具体的には、第2の磁石12の長さが、第1の磁石11及び第3の磁石13の長さに対して、1倍以上が好ましく、1.01倍以上であることがより好ましく、1.05倍以上であることが特に好ましい。このようにすれば、第2の磁石12の磁化方向の長さが相対的に向上し、第2の磁石12のパーミアンス係数が大きくなるため、第2の磁石12の動作点がB軸側へ近づき、不可逆減磁の抑制効果が大きくなる。また、第2の磁石12の光軸方向に沿う長さが大きすぎると、第1の磁石11と第3の磁石13の相互作用が弱まるため、第2の磁石12の貫通孔付近に磁束密度の大きい領域を形成することができなくなる。そのため、第2の磁石12の光軸方向に沿う長さは、2倍以下が好ましく、1.5倍以下であることがより好ましく、1.4倍以下であることが特に好ましい。なお、第1の磁石11の光軸方向に沿う長さと、第3の磁石13の光軸方向に沿う長さが等しくない場合は、第1及び第3の磁石のうち、より長い磁石の光軸方向に沿う長さに対して、上記の値を有するものとする。
In the magnetic circuit 1 of the present invention, the length along the optical axis direction of the second magnet 12 is preferably equal to or longer than the length along the optical axis direction of the first magnet 11 or the third magnet 13. Specifically, the length of the second magnet 12 is preferably at least 1 time, more preferably at least 1.01 times the length of the first magnet 11 and the third magnet 13. 1.05 times or more is particularly preferable. In this way, the length in the magnetization direction of the second magnet 12 is relatively improved, and the permeance coefficient of the second magnet 12 is increased, so that the operating point of the second magnet 12 is moved to the B-axis side. The effect of suppressing irreversible demagnetization increases. In addition, if the length of the second magnet 12 along the optical axis direction is too large, the interaction between the first magnet 11 and the third magnet 13 is weakened, so that the magnetic flux density is near the through hole of the second magnet 12. It becomes impossible to form a large area. Therefore, the length of the second magnet 12 along the optical axis direction is preferably 2 times or less, more preferably 1.5 times or less, and particularly preferably 1.4 times or less. When the length along the optical axis direction of the first magnet 11 and the length along the optical axis direction of the third magnet 13 are not equal, the light of the longer magnet of the first and third magnets. It shall have said value with respect to the length along an axial direction.
本発明の磁気回路1において、第1の磁石11の光軸方向に沿う長さと、第3の磁石13の光軸方向に沿う長さが等しいことが好ましい。このようにすれば、第2の磁石12に均一な磁界を与えることができる。もっとも、第1の磁石11の光軸方向に沿う長さと、第3の磁石13の光軸方向に沿う長さが等しくなくともよい。
In the magnetic circuit 1 of the present invention, it is preferable that the length along the optical axis direction of the first magnet 11 is equal to the length along the optical axis direction of the third magnet 13. In this way, a uniform magnetic field can be applied to the second magnet 12. But the length along the optical axis direction of the 1st magnet 11 and the length along the optical axis direction of the 3rd magnet 13 do not need to be equal.
本発明の磁気回路1において、磁気回路の貫通孔2の断面形状は特に限定されず、矩形や円形であってもよい。組み立てを容易にする点では矩形が好ましく、均一な磁界を付与する点では円形が好ましい。
In the magnetic circuit 1 of the present invention, the cross-sectional shape of the through hole 2 of the magnetic circuit is not particularly limited, and may be a rectangle or a circle. A rectangle is preferable in terms of facilitating assembly, and a circle is preferable in terms of providing a uniform magnetic field.
磁気回路の貫通孔2の断面積は100mm2以下であることが好ましく、3mm2~80mm2がより好ましく、5mm2~60mm2がさらに好ましく、7mm2~50mm2が特に好ましい。断面積が大きくなりすぎると十分な磁束密度が得られず、小さすぎるとファラデー素子14を磁気回路の貫通孔2内に配置しにくくなる。
Preferably the cross-sectional area of the through-hole 2 of the magnetic circuit is 100 mm 2 or less, more preferably 3mm 2 ~ 80mm 2, 5mm 2 ~ 60mm more preferably 2, particularly preferably 7 mm 2 ~ 50 mm 2. If the cross-sectional area becomes too large, a sufficient magnetic flux density cannot be obtained, and if it is too small, it becomes difficult to arrange the Faraday element 14 in the through hole 2 of the magnetic circuit.
図2は、第1の磁石の構造の一例を示す図である。図2に示す第1の磁石11は、4個の磁石片を組み合わせて構成されている。なお、第1の磁石11を構成する磁石片の個数は上記に限定されない。例えば、第1の磁石11は6個もしくは8個等の磁石片を組み合わせて構成されていてもよい。複数の磁石片を組み合わせて第1の磁石11を構成することにより、磁界を効果的に大きくすることができる。もっとも、第1の磁石11は、単体磁石からなっていてもよい。
FIG. 2 is a diagram showing an example of the structure of the first magnet. The first magnet 11 shown in FIG. 2 is configured by combining four magnet pieces. The number of magnet pieces constituting the first magnet 11 is not limited to the above. For example, the first magnet 11 may be configured by combining six or eight magnet pieces. By configuring the first magnet 11 by combining a plurality of magnet pieces, the magnetic field can be effectively increased. But the 1st magnet 11 may consist of a single magnet.
図3は、第2の磁石の構造の一例を示す図である。図3に示す第2の磁石12は、1個の単体磁石からなる。なお、第2の磁石12は、2個以上の磁石片を組み合わせて構成されていてもよい。
FIG. 3 is a diagram showing an example of the structure of the second magnet. The 2nd magnet 12 shown in FIG. 3 consists of one single-piece magnet. The second magnet 12 may be configured by combining two or more magnet pieces.
図4は、第3の磁石の構造の一例を示す図である。図4に示す第3の磁石13は、第1の磁石11と同様に、4個の磁石片を組み合わせて構成されている。複数の磁石片を組み合わせて第3の磁石13を構成することにより、磁界を効果的に大きくすることができる。なお、第3の磁石13は、6個もしくは8個等の磁石片を組み合わせて構成されていてもよく、単体磁石からなっていてもよい。
FIG. 4 is a diagram showing an example of the structure of the third magnet. The third magnet 13 shown in FIG. 4 is configured by combining four magnet pieces in the same manner as the first magnet 11. By configuring the third magnet 13 by combining a plurality of magnet pieces, the magnetic field can be effectively increased. The third magnet 13 may be configured by combining six or eight magnet pieces, or may be a single magnet.
(ファラデー回転子10)
図5は、本発明のファラデー回転子の構造の一例を示す模式的断面図である。ファラデー回転子10は、光アイソレータや光サーキュレータ等、後述する磁気光学素子20に用いられる装置である。ファラデー回転子10は、磁気回路1と、磁気回路の貫通孔2内に配置されたファラデー素子14とを備える。ファラデー素子14は、光を透過する常磁性体からなる。 (Faraday rotator 10)
FIG. 5 is a schematic cross-sectional view showing an example of the structure of the Faraday rotator of the present invention. TheFaraday rotator 10 is an apparatus used for a magneto-optical element 20 described later, such as an optical isolator or an optical circulator. The Faraday rotator 10 includes a magnetic circuit 1 and a Faraday element 14 disposed in the through hole 2 of the magnetic circuit. The Faraday element 14 is made of a paramagnetic material that transmits light.
図5は、本発明のファラデー回転子の構造の一例を示す模式的断面図である。ファラデー回転子10は、光アイソレータや光サーキュレータ等、後述する磁気光学素子20に用いられる装置である。ファラデー回転子10は、磁気回路1と、磁気回路の貫通孔2内に配置されたファラデー素子14とを備える。ファラデー素子14は、光を透過する常磁性体からなる。 (Faraday rotator 10)
FIG. 5 is a schematic cross-sectional view showing an example of the structure of the Faraday rotator of the present invention. The
ファラデー回転子10は、図1に示した本発明の磁気回路1を有するため、外部磁界や温度上昇による不可逆減磁が抑制され、かつファラデー素子14に十分な磁束密度を安定して与えることができるため、安定して使用することが可能である。
Since the Faraday rotator 10 has the magnetic circuit 1 of the present invention shown in FIG. 1, irreversible demagnetization due to an external magnetic field or temperature rise is suppressed, and a sufficient magnetic flux density can be stably given to the Faraday element 14. Therefore, it can be used stably.
また、ファラデー回転子10には、光を第1の磁石11側から入射させてもよく、第3の磁石13側から入射させてもよい。
Further, light may be incident on the Faraday rotator 10 from the first magnet 11 side or may be incident from the third magnet 13 side.
また、ファラデー素子14の断面形状と磁気回路の貫通孔2の断面形状は必ずしも一致させなくともよいが、均一な磁界を与えるという観点では、一致させることが好ましい。
Further, the cross-sectional shape of the Faraday element 14 and the cross-sectional shape of the through-hole 2 of the magnetic circuit are not necessarily matched, but are preferably matched from the viewpoint of providing a uniform magnetic field.
ファラデー素子14には、常磁性体を用いることができる。中でもガラス材を用いることが好ましい。ガラス材からなるファラデー素子14は、単結晶材料のような欠陥等によるベルデ定数の変動や消光比の低下が少なく、接着剤からの応力の影響も少ないため、安定したベルデ定数と高い消光比を保つことができる。
A paramagnetic material can be used for the Faraday element 14. Among these, it is preferable to use a glass material. The Faraday element 14 made of a glass material has a stable Verde constant and a high extinction ratio because there is little fluctuation of the Verde constant due to defects such as a single crystal material and there is little influence of the stress from the adhesive. Can keep.
ファラデー素子14に用いられるガラス材は、モル%の酸化物換算で、Tb2O3の含有量が40%より多いことが好ましく、45%以上がより好ましく、48%以上がさらに好ましく、51%以上であることが特に好ましい。このようにTb2O3の含有量を多くすることにより、良好なファラデー効果が得やすくなる。なお、ガラス中においてTbは3価や4価の状態で存在するが、本明細書ではこれら全てをTb2O3に換算した値として表す。
The glass material used for the Faraday element 14 preferably has a Tb 2 O 3 content of more than 40%, more preferably 45% or more, even more preferably 48% or more, and 51% in terms of mol% of oxide. The above is particularly preferable. Thus, it becomes easy to acquire a favorable Faraday effect by increasing the content of Tb 2 O 3 . In addition, although Tb exists in a trivalent or tetravalent state in glass, all of these are expressed as values converted to Tb 2 O 3 in this specification.
ファラデー素子14に用いられるガラス材において、全Tbに対するTb3+の割合は、モル%で55%以上であることが好ましく、60%以上がより好ましく、80%以上がさらに好ましく、90%以上であることが特に好ましい。全Tbに対するTb3+の割合が少なすぎると、波長300nm~1100nmにおける光透過率が低下しやすくなる。
In the glass material used for the Faraday element 14, the ratio of Tb 3+ to the total Tb is preferably 55% or more in terms of mol%, more preferably 60% or more, further preferably 80% or more, and 90% or more. It is particularly preferred. If the ratio of Tb 3+ to the total Tb is too small, the light transmittance at wavelengths of 300 nm to 1100 nm tends to decrease.
(磁気光学素子20)
図6は、本発明の磁気光学素子の構造の一例を示す模式的断面図である。図6に示す磁気光学素子20は光アイソレータである。磁気光学素子20は、図5に示したファラデー回転子10と、磁気回路1の光軸方向における一方端に配置されている第1の光学部品25及び他方端に配置されている第2の光学部品26とを備える。第1の光学部品25及び第2の光学部品26は、本実施形態では偏光子である。第2の光学部品26の光透過軸は、第1の光学部品25の光透過軸に対して45°傾けられている。 (Magneto-optical element 20)
FIG. 6 is a schematic cross-sectional view showing an example of the structure of the magneto-optical element of the present invention. The magneto-optical element 20 shown in FIG. 6 is an optical isolator. The magneto-optical element 20 includes the Faraday rotator 10 illustrated in FIG. 5, the first optical component 25 disposed at one end in the optical axis direction of the magnetic circuit 1, and the second optical disposed at the other end. And a component 26. The first optical component 25 and the second optical component 26 are polarizers in this embodiment. The light transmission axis of the second optical component 26 is inclined 45 ° with respect to the light transmission axis of the first optical component 25.
図6は、本発明の磁気光学素子の構造の一例を示す模式的断面図である。図6に示す磁気光学素子20は光アイソレータである。磁気光学素子20は、図5に示したファラデー回転子10と、磁気回路1の光軸方向における一方端に配置されている第1の光学部品25及び他方端に配置されている第2の光学部品26とを備える。第1の光学部品25及び第2の光学部品26は、本実施形態では偏光子である。第2の光学部品26の光透過軸は、第1の光学部品25の光透過軸に対して45°傾けられている。 (Magneto-optical element 20)
FIG. 6 is a schematic cross-sectional view showing an example of the structure of the magneto-optical element of the present invention. The magneto-
磁気光学素子20に入射する光は、第1の光学部品25を通過し、直線偏光となって、ファラデー素子14に入射する。入射した光はファラデー素子14により45°回転し、第2の光学部品26を通過する。第2の光学部品26を通過した光の一部が反射戻り光となり、偏光面が45°の角度で第2の光学部品26を通過する。第2の光学部品26を通過した反射戻り光は、ファラデー素子14により、さらに45°回転され、第1の光学部品25の光透過軸に対して90°の直交偏光面となる。そのため、反射戻り光は第1の光学部品25を透過できず、遮断される。
The light incident on the magneto-optical element 20 passes through the first optical component 25, becomes linearly polarized light, and enters the Faraday element 14. The incident light is rotated 45 ° by the Faraday element 14 and passes through the second optical component 26. Part of the light that has passed through the second optical component 26 becomes reflected return light, and the polarization plane passes through the second optical component 26 at an angle of 45 °. The reflected return light that has passed through the second optical component 26 is further rotated by 45 ° by the Faraday element 14 and becomes an orthogonal polarization plane of 90 ° with respect to the light transmission axis of the first optical component 25. Therefore, the reflected return light cannot be transmitted through the first optical component 25 and is blocked.
本発明の磁気光学素子20は、図1に示した本発明の磁気回路1を有するため、外部磁界や温度上昇による不可逆減磁が抑制され、かつファラデー素子14に十分な磁束密度を安定して与えることができるため、安定して使用することが可能である。
Since the magneto-optical element 20 of the present invention has the magnetic circuit 1 of the present invention shown in FIG. 1, irreversible demagnetization due to an external magnetic field or temperature rise is suppressed, and a sufficient magnetic flux density for the Faraday element 14 can be stabilized. Therefore, it can be used stably.
なお、図6に示す磁気光学素子20は光アイソレータであるが、磁気光学素子20は光サーキュレータであってもよい。この場合には、第1の光学部品25及び第2の光学部品26は波長板やビームスプリッタであればよい。もっとも、磁気光学素子20は、光アイソレータ及び光サーキュレータに限定されない。
Although the magneto-optical element 20 shown in FIG. 6 is an optical isolator, the magneto-optical element 20 may be an optical circulator. In this case, the first optical component 25 and the second optical component 26 may be a wave plate or a beam splitter. However, the magneto-optical element 20 is not limited to an optical isolator and an optical circulator.
以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
表1は、本発明の実施例1~7及び比較例1を示している。
Table 1 shows Examples 1 to 7 and Comparative Example 1 of the present invention.
実施例1~7及び比較例1の磁気回路の磁束密度の平均値は、上記の表1の条件になるように保磁力HcB、残留磁束密度Br及び長さLを有する第1~第3の磁石を設定し、第1~第3の磁石で図1のような磁石構造を構成する場合についてシミュレーションを行うことで測定した。なお、上記の磁束密度の平均値は、直径3mm、長さ10mm、ベルデ定数0.21min/Oe・cmのファラデー回転ガラス素子を用いることを想定したものであり、第2の磁石の貫通孔の中央から光軸方向に±5mmの長さにおける磁束密度の平均値のシミュレート値を表すものである。また、上記の「長さ」とは光軸方向に沿う長さのことであり、本実施例では単に長さ又はLと表記する。
The average values of the magnetic flux densities of the magnetic circuits of Examples 1 to 7 and Comparative Example 1 have the coercive force H cB , the residual magnetic flux density Br, and the length L so as to satisfy the conditions in Table 1 above. This was measured by simulating a case where a magnet structure as shown in FIG. 1 is configured with the first to third magnets. The average value of the magnetic flux density is based on the assumption that a Faraday rotating glass element having a diameter of 3 mm, a length of 10 mm, and a Verde constant of 0.21 min / Oe · cm is used. It represents a simulated value of the average value of magnetic flux density in the length of ± 5 mm from the center to the optical axis direction. The “length” is a length along the optical axis direction, and is simply expressed as a length or L in this embodiment.
表1から明らかなように、実施例1~7では、第2の磁石の貫通孔の中央から光軸方向に±5mmの長さにおける磁束密度の平均値は1.13~1.34Tとなり、第1の磁石と第3の磁石の相互作用で作り出された強い磁界の影響を受けても、第2の磁石の貫通孔付近で不可逆減磁が生じにくいため、大きな磁束密度を有する磁気回路が得られた。
As is apparent from Table 1, in Examples 1 to 7, the average value of the magnetic flux density in the length of ± 5 mm from the center of the through hole of the second magnet in the optical axis direction is 1.13 to 1.34 T. Even under the influence of a strong magnetic field created by the interaction between the first magnet and the third magnet, irreversible demagnetization hardly occurs in the vicinity of the through hole of the second magnet. Obtained.
比較例1は、第2の磁石について、HcBが413kA/m、Brが0.95Tと小さいこと以外は実施例3と同様に作製された磁気回路であるが、第2の磁石の貫通孔の中央から光軸方向に±5mm長さにおける磁束密度の平均値は1.01Tと小さくなった。
Comparative Example 1, a second magnet, H cB is 413kA / m, but except that Br is small and 0.95T is a magnetic circuit manufactured in the same manner as in Example 3, the through-hole of the second magnet The average value of the magnetic flux density in the length of ± 5 mm from the center to the optical axis direction was as small as 1.01 T.
1 磁気回路
2 磁気回路の貫通孔
10 ファラデー回転子
11 第1の磁石
12 第2の磁石
13 第3の磁石
14 ファラデー素子
20 磁気光学素子
25 第1の光学部品
26 第2の光学部品
31 パーミアンス線
32 B-H曲線
33 J-H曲線
34 クニック点
35 高温時のB-H曲線
36 低温時のB-H曲線
37 高温時のJ-H曲線
38 低温時のJ-H曲線
a1、b1、c1、d1、a2、b2、c2 動作点
H、H1、H2 外部磁界
ΔB 不可逆減磁
HcJ、HcJ´ 固有保磁力
HcB、HcB´ 保磁力
Br、Br´ 残留磁束密度
α、β パーミアンス係数 DESCRIPTION OFSYMBOLS 1 Magnetic circuit 2 Through-hole 10 of magnetic circuit Faraday rotator 11 1st magnet 12 2nd magnet 13 3rd magnet 14 Faraday element 20 Magneto-optical element 25 1st optical component 26 2nd optical component 31 Permeance line 32 BH curve 33 JH curve 34 Knick point 35 BH curve at high temperature 36 BH curve at low temperature 37 JH curve at high temperature 38 JH curves at low temperature a1, b1, c1 , D1, a2, b2, c2 Operating points H, H1, H2 External magnetic field ΔB Irreversible demagnetization HcJ, HcJ ′ Intrinsic coercive force HcB, HcB ′ coercive force Br, Br ′ residual magnetic flux density α, β permeance coefficient
2 磁気回路の貫通孔
10 ファラデー回転子
11 第1の磁石
12 第2の磁石
13 第3の磁石
14 ファラデー素子
20 磁気光学素子
25 第1の光学部品
26 第2の光学部品
31 パーミアンス線
32 B-H曲線
33 J-H曲線
34 クニック点
35 高温時のB-H曲線
36 低温時のB-H曲線
37 高温時のJ-H曲線
38 低温時のJ-H曲線
a1、b1、c1、d1、a2、b2、c2 動作点
H、H1、H2 外部磁界
ΔB 不可逆減磁
HcJ、HcJ´ 固有保磁力
HcB、HcB´ 保磁力
Br、Br´ 残留磁束密度
α、β パーミアンス係数 DESCRIPTION OF
Claims (11)
- 光が通過する貫通孔がそれぞれ設けられたサマリウム-コバルト系磁石からなる第1~第3の磁石を有する磁気回路であって、
前記磁気回路は、前記第1~第3の磁石が前後方向に同軸上にこの順序で配置されてなり、
光が前記磁気回路の前記貫通孔を通過する方向を光軸方向としたときに、前記第1の磁石は、前記光軸方向に垂直な方向に、かつ前記貫通孔側がN極となるように磁化されており、
前記第2の磁石は前記光軸方向に平行な方向に、かつ前記第1の磁石側がN極となるように磁化されており、
前記第3の磁石は、前記光軸方向に垂直な方向に、かつ前記貫通孔側がS極となるように磁化されており、
前記第2の磁石が、前記第1、3の磁石以上の保磁力を有することを特徴とする、磁気回路。 A magnetic circuit having first to third magnets made of samarium-cobalt magnets each provided with a through-hole through which light passes,
The magnetic circuit comprises the first to third magnets arranged coaxially in this order in the front-rear direction,
When the direction in which light passes through the through hole of the magnetic circuit is the optical axis direction, the first magnet is in a direction perpendicular to the optical axis direction and the through hole side is an N pole. Magnetized,
The second magnet is magnetized in a direction parallel to the optical axis direction so that the first magnet side is an N pole,
The third magnet is magnetized in a direction perpendicular to the optical axis direction and so that the through hole side is an S pole,
The magnetic circuit, wherein the second magnet has a coercive force greater than that of the first and third magnets. - 前記第1~3の磁石が650kA/m以上の保磁力を有することを特徴とする、請求項1に記載の磁気回路。 2. The magnetic circuit according to claim 1, wherein the first to third magnets have a coercive force of 650 kA / m or more.
- 前記第2の磁石の光軸方向に沿う長さが、前記第1、3の磁石の光軸方向に沿う長さ以上であることを特徴とする、請求項1又は2に記載の磁気回路。 3. The magnetic circuit according to claim 1, wherein a length along the optical axis direction of the second magnet is equal to or longer than a length along the optical axis direction of the first and third magnets.
- 前記第2の磁石の光軸方向に沿う長さが、前記第1、3の磁石の光軸方向に沿う長さより大きいことを特徴とする、請求項1~3のいずれか一項に記載の磁気回路。 The length along the optical axis direction of the second magnet is larger than the length along the optical axis direction of the first and third magnets, according to any one of claims 1 to 3. Magnetic circuit.
- 前記第2の磁石が、前記第1、3の磁石より大きい保磁力を有することを特徴とする、請求項1~4のいずれか一項に記載の磁気回路。 The magnetic circuit according to any one of claims 1 to 4, wherein the second magnet has a coercive force larger than that of the first and third magnets.
- 前記貫通孔の断面積が100mm2以下であることを特徴とする、請求項1~5のいずれか一項に記載の磁気回路。 The magnetic circuit according to any one of claims 1 to 5, wherein a cross-sectional area of the through hole is 100 mm 2 or less.
- 光が通過する貫通孔がそれぞれ設けられた第1~第3の磁石を有する磁気回路であって、
前記磁気回路は、前記第1~第3の磁石が前後方向に同軸上にこの順序で配置されてなり、
光が前記磁気回路の前記貫通孔を通過する方向を光軸方向としたときに、前記第1の磁石は、前記光軸方向に垂直な方向に、かつ前記貫通孔側がN極となるように磁化されており、
前記第2の磁石は前記光軸方向に平行な方向に、かつ前記第1の磁石側がN極となるように磁化されており、
前記第3の磁石は、前記光軸方向に垂直な方向に、かつ前記貫通孔側がS極となるように磁化されており、
前記第2の磁石が、前記第1、3の磁石以上の保磁力を有し、
前記第2の磁石の光軸方向に沿う長さが、前記第1、3の磁石の光軸方向に沿う長さ以上であることを特徴とする、磁気回路。 A magnetic circuit having first to third magnets each provided with a through-hole through which light passes,
The magnetic circuit comprises the first to third magnets arranged coaxially in this order in the front-rear direction,
When the direction in which light passes through the through hole of the magnetic circuit is the optical axis direction, the first magnet is in a direction perpendicular to the optical axis direction and the through hole side is an N pole. Magnetized,
The second magnet is magnetized in a direction parallel to the optical axis direction so that the first magnet side is an N pole,
The third magnet is magnetized in a direction perpendicular to the optical axis direction and so that the through hole side is an S pole,
The second magnet has a coercive force greater than that of the first and third magnets;
The magnetic circuit characterized in that a length along the optical axis direction of the second magnet is equal to or longer than a length along the optical axis direction of the first and third magnets. - 請求項1~7のいずれか一項に記載の磁気回路と、前記磁気回路における前記貫通孔内に配置されており、かつ光が透過する常磁性体からなるファラデー素子とを備えてなる、ファラデー回転子。 A Faraday comprising: the magnetic circuit according to any one of claims 1 to 7; and a Faraday element made of a paramagnetic material that is disposed in the through hole of the magnetic circuit and transmits light. Rotor.
- 前記常磁性体がガラス材であることを特徴とする、請求項8に記載のファラデー回転子。 The Faraday rotator according to claim 8, wherein the paramagnetic material is a glass material.
- 請求項8又は9に記載のファラデー回転子と、
前記ファラデー回転子の前記磁気回路の前記光軸方向における一方端に配置されている第1の光学部品及び他方端に配置されている第2の光学部品とを備え、
前記磁気回路の前記貫通孔を通過する光が、前記第1の光学部品及び前記第2の光学部品を通過する、磁気光学素子。 The Faraday rotator according to claim 8 or 9,
A first optical component disposed at one end in the optical axis direction of the magnetic circuit of the Faraday rotator and a second optical component disposed at the other end;
A magneto-optical element in which light passing through the through hole of the magnetic circuit passes through the first optical component and the second optical component. - 前記第1の光学部品及び前記第2の光学部品が偏光子である、請求項10に記載の磁気光学素子。 The magneto-optical element according to claim 10, wherein the first optical component and the second optical component are polarizers.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018104884 | 2018-05-31 | ||
JP2018-104884 | 2018-05-31 | ||
JP2019-038635 | 2019-03-04 | ||
JP2019038635A JP7356631B2 (en) | 2018-05-31 | 2019-03-04 | Magnetic circuits, Faraday rotators and magneto-optical elements |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019230420A1 true WO2019230420A1 (en) | 2019-12-05 |
Family
ID=68697986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/019503 WO2019230420A1 (en) | 2018-05-31 | 2019-05-16 | Magnetic circuit, faraday rotator, and magneto-optic element |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110554522A (en) |
WO (1) | WO2019230420A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11101955A (en) * | 1997-09-26 | 1999-04-13 | Tokin Corp | Isolator for optical use |
JP2000241765A (en) * | 1999-02-23 | 2000-09-08 | Tokin Corp | Faraday rotator and optical isolator |
WO2011078381A1 (en) * | 2009-12-25 | 2011-06-30 | 日立金属株式会社 | Magnetic circuit for a faraday rotator and method for manufacturing a magnetic circuit for a faraday rotator |
US20150198823A1 (en) * | 2014-01-13 | 2015-07-16 | Coherent Lasersystems Gmbh & Co. Kg | Faraday rotator for an optical isolator |
JP2016180858A (en) * | 2015-03-24 | 2016-10-13 | 住友金属鉱山株式会社 | Faraday rotator |
-
2019
- 2019-05-16 WO PCT/JP2019/019503 patent/WO2019230420A1/en active Application Filing
- 2019-05-30 CN CN201910461422.1A patent/CN110554522A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11101955A (en) * | 1997-09-26 | 1999-04-13 | Tokin Corp | Isolator for optical use |
JP2000241765A (en) * | 1999-02-23 | 2000-09-08 | Tokin Corp | Faraday rotator and optical isolator |
WO2011078381A1 (en) * | 2009-12-25 | 2011-06-30 | 日立金属株式会社 | Magnetic circuit for a faraday rotator and method for manufacturing a magnetic circuit for a faraday rotator |
US20150198823A1 (en) * | 2014-01-13 | 2015-07-16 | Coherent Lasersystems Gmbh & Co. Kg | Faraday rotator for an optical isolator |
JP2016180858A (en) * | 2015-03-24 | 2016-10-13 | 住友金属鉱山株式会社 | Faraday rotator |
Also Published As
Publication number | Publication date |
---|---|
CN110554522A (en) | 2019-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6580546B2 (en) | Faraday rotator | |
US8817370B2 (en) | Magnetic circuit for faraday rotator and method of manufacturing magnetic circuit for faraday rotator | |
JPH0968675A (en) | High-performance small-sized optical isolator using faraday rotator | |
WO2019239684A1 (en) | Faraday rotator and magneto-optic element | |
JP7356631B2 (en) | Magnetic circuits, Faraday rotators and magneto-optical elements | |
WO2019239696A1 (en) | Faraday rotator and magneto-optical element | |
JPH11249095A (en) | Faraday rotator | |
WO2019230420A1 (en) | Magnetic circuit, faraday rotator, and magneto-optic element | |
US6108120A (en) | Faraday rotation angle varying apparatus | |
JP7238892B2 (en) | Faraday rotator and magneto-optical element | |
WO2021256255A1 (en) | Magnetic circuit, faraday rotator, and magneto-optic device | |
WO2021256256A1 (en) | Magnetic circuit, faraday rotator, and magneto-optic device | |
JP2022184626A (en) | Faraday rotor module and optical isolator | |
EP1847870B1 (en) | Polarization controlling apparatus | |
JP2017032639A (en) | Polarization-independent optical isolator | |
JP2000298247A (en) | Optical isolator and irreversible phase reciprocal component | |
JP2004083387A (en) | Magnetic garnet material, faraday rotator, optical device, manufacturing method for bismuth substitution type rare earth iron garnet single crystal film, and crucible | |
JP2003195241A (en) | Method for manufacturing faraday rotator, faraday rotator, method for manufacturing bismuth-substituted rare earth iron garnet single crystal film and optical isolator | |
JPH03142415A (en) | Light intensity modulating element | |
JP2000241766A (en) | Optical circulator, faraday rotator, hard magnetic garnet thick film material and its production | |
JP2000105355A (en) | Optical isolator and manufacture thereof | |
JPS59147320A (en) | Optical non-reciprocal element | |
JPH05164999A (en) | Faraday rotator and method for adjusting rotation angle | |
CN1687820A (en) | 45 deg. Faraday rotator without adding bias magnetic field | |
JP2000180791A (en) | Optical isolator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19810554 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19810554 Country of ref document: EP Kind code of ref document: A1 |