WO2019230133A1 - Photo-fabrication composition set - Google Patents
Photo-fabrication composition set Download PDFInfo
- Publication number
- WO2019230133A1 WO2019230133A1 PCT/JP2019/010943 JP2019010943W WO2019230133A1 WO 2019230133 A1 WO2019230133 A1 WO 2019230133A1 JP 2019010943 W JP2019010943 W JP 2019010943W WO 2019230133 A1 WO2019230133 A1 WO 2019230133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- mass
- support material
- parts
- meth
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/112—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/40—Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
Definitions
- the present invention relates to an optical modeling composition set in which a composition for a model material and a composition for a support material used in a material jet optical modeling method are combined, and a method for manufacturing an optical modeling object using the same.
- the material jet (inkjet) method for forming a cured layer having a predetermined shape by discharging a photocurable resin composition from a nozzle and immediately irradiating it with ultraviolet rays or the like to cure.
- material jet stereolithography also known as “material jet stereolithography”.
- the material jet stereolithography has been attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
- the material jet stereolithography method is easy to model complex shapes compared to the conventional method of obtaining stereolithography by irradiating a liquid photocurable composition with light, curing the irradiated part, and laminating it. .
- the amount of the photocurable composition required is small and there is a merit that it is easy to adjust the mechanical characteristics by simultaneously emitting the photocurable composition having different properties from a plurality of nozzles, It is used for various purposes including trial use.
- Patent Document 1 a model material composition for producing such a full color three-dimensional modeling has been developed.
- the model material composition is usually used in the material jet stereolithography together with the support material composition.
- the above patent document also describes that the composition for a model material described in the document can be used in combination with a support material or a water-soluble support material that can be physically removed by pulverization or the like. .
- the support material obtained by photocuring the support material composition The independence of was sometimes inferior.
- the present invention combines a composition for a model material having high formability, concealability and mechanical properties, which is suitable for producing a colored three-dimensional structure, and excellent water removal property and high support force. Proposing a combination with a composition for a support material, suppressing the occurrence of appearance defects that may occur when removing the support material, and providing a composition set for optical modeling capable of modeling a colored optical modeled object with high accuracy Objective.
- a composition set for stereolithography used in a material jet stereolithography method comprising a composition for model material and a composition for support material,
- a colorant As the model material composition, a colorant, at least one (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer, and a glass transition temperature as a homopolymer of ⁇
- the support material composition is based on 100 parts by mass of the support material composition.
- composition set for optical modeling containing a photopolymerization initiator.
- the support material composition includes a water-soluble monofunctional ethylenically unsaturated monomer and a photopolymerization initiator.
- the content of the water-soluble monofunctional ethylenically unsaturated monomer is 19 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the support material composition, and the content of the photopolymerization initiator is 2 parts by mass.
- composition for support material contains 30 parts by mass or less of a water-soluble organic solvent with respect to 100 parts by mass of the composition for support material.
- Composition set for modeling [6] The stereolithography composition set according to any one of [1] to [5], wherein the support material composition includes a storage stabilizer. [7] The colorant contained in the coloring composition for model material is a pigment selected from the group consisting of white, black, cyan, magenta and yellow, according to any one of [1] to [6] above Stereolithography composition set. [8] The stereolithography composition set according to any one of [1] to [7], further including, as the model material composition, a model material clear composition containing no colorant. [9] A method for producing a three-dimensional modeled object, wherein a three-dimensional modeled object is manufactured by a material jet stereolithography method using the stereolithography composition set according to any one of [1] to [8].
- the composition for optical modeling which suppresses generation
- the optical modeling composition set of the present invention includes a model material composition.
- the composition for optical modeling of the present invention is a model material composition, a colorant, at least one (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer, and A coloring composition for a model material containing at least one (meth) acrylate monomer (B) having a glass transition temperature of ⁇ 60 ° C. or more and less than 25 ° C.
- the total mass of the coloring material for the model material The content of the (meth) acrylate monomer (A) is 5% by mass or more and less than 50% by mass, and the content of the (meth) acrylate monomer (B) is 20% by mass or more and less than 80% by mass.
- the coloring composition for materials is included.
- “(meth) acrylate” is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl”, “(meth) acryl” and the like.
- the coloring composition for a model material includes at least one (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer.
- the coloring composition for a model material contains the (meth) acrylate monomer (A)
- an appropriate softness and tensile strength can be imparted to the model material obtained by photocuring the composition, and a support is provided.
- production of the appearance defect which may arise at the time of material removal can be heightened.
- the glass transition temperature of the (meth) acrylate monomer (A) is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and preferably 100 ° C. or lower.
- the glass transition temperature (Tg) of the monomer homopolymer is measured by a dynamic viscoelasticity measuring device (DMA).
- the glass transition temperature of the homopolymer may depend on the degree of polymerization, but if a homopolymer having a weight average molecular weight of 20,000 or more is prepared and measured, the influence of the degree of polymerization can be ignored.
- a value measured using a sample polymerized until the influence of the degree of polymerization is negligible is defined as a glass transition temperature (Tg).
- the (meth) acrylate monomer (A) may be an acrylate compound or a methacrylate compound, but is preferably an acrylate compound.
- a monofunctional (meth) acrylate monomer or a polyfunctional (meth) acrylate monomer may be used, but a monofunctional (meth) acrylate monomer is preferable.
- the (meth) acrylate monomer (A) is preferably a (meth) acrylate monomer having a hydrocarbon ring structure.
- the (meth) acrylate monomer (A) include isobornyl acrylate, isobornyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, t-butyl acrylate, t-butyl methacrylate, t-butylcyclohexyl acrylate, and methyl methacrylate.
- the (meth) acrylate monomer (A) was selected from the group consisting of isobornyl acrylate, t-butylcyclohexyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, and dicyclopentanyl acrylate. It preferably contains a monomer, and more preferably contains isobornyl acrylate and / or 3,3,5-trimethylcyclohexyl acrylate. By including these compounds, the tensile strength of the resulting model material can be improved, and the effect of suppressing the appearance defects that can occur when the support material is removed can be enhanced.
- the content of the (meth) acrylate monomer (A) in the coloring composition for model material is 5% by mass or more and less than 50% by mass with respect to the total mass of the coloring composition for model material.
- the content of the (meth) acrylate monomer (A) is preferably 8% by mass or more, more preferably 10% by mass or more, and preferably 45% by mass with respect to the total mass of the coloring composition for model material. % Or less, more preferably 42% by mass or less.
- the coloring composition for a model material includes at least one (meth) acrylate monomer (B) having a glass transition temperature of ⁇ 60 ° C. or higher and lower than 25 ° C. as a homopolymer.
- the coloring composition for a model material contains the (meth) acrylate monomer (B)
- an appropriate softness and tensile strength can be imparted to the model material obtained by photocuring the composition, and molding is performed. Can be improved.
- the glass transition temperature of the (meth) acrylate monomer (B) is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 10 ° C. or higher, and preferably 10 ° C. or lower.
- the (meth) acrylate monomer (B) may be an acrylate compound or a methacrylate compound, but is preferably an acrylate compound.
- a monofunctional (meth) acrylate monomer or a polyfunctional (meth) acrylate monomer may be used, but a monofunctional (meth) acrylate monomer is preferable.
- the (meth) acrylate monomer (B) is preferably a (meth) acrylate monomer having an ether bond and / or an alkyl group having 8 or more carbon atoms.
- the (meth) acrylate monomer (B) preferably include a long-chain alkyl (8 or more carbon atoms) acrylate compound, an acrylate compound having a polyethylene oxide or polypropylene oxide chain, and a phenoxyethyl acrylate compound.
- Examples of the long-chain alkyl acrylate compound include 2-ethylhexyl acrylate, n-octyl acrylate, n-nonyl acrylate, n-decyl acrylate, isooctyl acrylate, n-lauryl acrylate, n-tridecyl acrylate, n-cetyl acrylate, Examples thereof include n-stearyl acrylate, isomyristyl acrylate, and isostearyl acrylate.
- Examples of the acrylate compound having a polyethylene oxide or polypropylene oxide chain include (poly) ethylene glycol monoacrylate, (poly) ethylene glycol acrylate methyl ester, (poly) ethylene glycol acrylate ethyl ester, (poly) ethylene glycol acrylate phenyl ester, (Poly) propylene glycol monoacrylate, (poly) propylene glycol monoacrylate phenyl ester, (poly) propylene glycol acrylate methyl ester, (poly) propylene glycol acrylate ethyl ester, methoxytriethylene glycol acrylate, methoxydipropylene glycol acrylate, ethoxydiethylene glycol Acrylate (Ethoxy Butoxyethyl acrylate), methoxy polyethylene glycol acrylate.
- phenoxyethyl acrylate compound examples include phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, phenoxy polyethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, and nonylphenol ethylene oxide adduct acrylate.
- Examples of the (meth) acrylate monomer (B) include tetrahydrofurfuryl acrylate and 2- (N-butylcarbamoyloxy) ethyl acrylate (1,2-ethanediol 1-acrylate 2- (N-butylcarbamate) ) Is also preferred.
- the (meth) acrylate monomer (B) phenoxyethyl acrylate, n-stearyl acrylate, isodecyl acrylate, ethoxyethoxyethyl acrylate, tetrahydrofurfuryl acrylate, n-lauryl acrylate, n-octyl acrylate, n- It preferably contains a monomer selected from the group consisting of decyl acrylate, isooctyl acrylate, n-tridecyl acrylate, and 2- (N-butylcarbamoyloxy) ethyl acrylate, and includes phenoxyethyl acrylate and / or n-stearyl.
- acrylate is included, and it is further preferable that phenoxyethyl acrylate is included.
- phenoxyethyl acrylate is included.
- the said compound may be used individually by 1 type, and may be used in combination of 2 or more type.
- the content of the (meth) acrylate monomer (B) in the colored composition for model material is 20% by mass or more and less than 80% by mass with respect to the total mass of the colored composition for model material.
- the content of the (meth) acrylate monomer (B) is less than 20% by mass, it becomes difficult to impart appropriate flexibility.
- the glass transition temperature (Tg) is lowered, so that the surface of the model material becomes sticky, and the tackiness is easily developed.
- the content of the (meth) acrylate monomer (A) is preferably 25% by mass or more, more preferably 30% by mass or more, and preferably 75% by mass with respect to the total mass of the coloring composition for model material. % Or less, more preferably 70% by mass or less.
- the coloring composition for a model material preferably contains a bifunctional (meth) acrylate oligomer (C) having a weight average molecular weight of 2,000 or more and 20,000 or less.
- the (meth) acrylate oligomer (C) is an oligomer having a total of two acryloyloxy groups and / or methacryloyloxy groups, and preferably has an acryloyloxy group.
- the tensile strength of the resulting model material tends to be inferior, and when only a trifunctional or higher (meth) acrylate oligomer is used, the resulting model material is obtained. Is inferior in softness, but by including the bifunctional (meth) acrylate oligomer (C), appropriate softness and tensile strength can be imparted to the obtained model material in a balanced manner.
- the weight average molecular weight of the (meth) acrylate oligomer (C) is preferably 2,000 or more, more preferably 5,000 or more, still more preferably 10,000 or more, and preferably 20,000 or less.
- the weight average molecular weight of the (meth) acrylate oligomer (C) can be measured by gel permeation chromatography (GPC).
- the Young's modulus at 25 ° C. of the (meth) acrylate oligomer (C) is preferably 1 to 100 MPa, more preferably 2 to 80 MPa, further preferably 3 to 50 MPa, and 10 to 30 MPa. It is particularly preferred that If it is the said range, moderate softness and tensile strength can be provided to the model material obtained.
- the Young's modulus at 25 ° C. of the (meth) acrylate oligomer (C) in the present invention is the Young's modulus at 25 ° C. of the homopolymer (homopolymer) of the (meth) acrylate oligomer (C).
- the Young's modulus at 25 ° C. in the present invention can be measured, for example, according to the following method: Irgacure 819 (BASF) 2 mass%, Irgacure 184 (BASF) 2 mass%, and oligomer to be measured 96 mass
- a 100 ⁇ m coating film is formed with a bar coater from the mixed liquid, and cured with an ultraviolet (UV) exposure machine. At this time, curing is performed to such an extent that the influence of the degree of polymerization of the cured film can be ignored.
- This cured film is cut into a 15 mm ⁇ 50 mm strip and the Young's modulus is measured with a tensile tester (Autograph AGS-X, 5KN, manufactured by Shimadzu Corporation). The value of Young's modulus is measured at the 1% elongation. For example, it may be pulled in the long axis direction and the upper and lower portions of about 10 mm may be grasped by the clamp.
- the (meth) acrylate oligomer (C) is not particularly limited as long as it is an oligomer having an Mw of 2,000 or more and 20,000 or less having a total of two acryloyloxy groups and / or methacryloyloxy groups.
- Olefin ethylene oligomer, propylene oligomer butene oligomer, etc.
- vinyl styrene oligomer, vinyl alcohol oligomer, vinyl pyrrolidone oligomer, acrylic resin oligomer, etc.
- diene butadiene oligomer, chloroprene rubber, pentadiene oligomer, etc.
- ring opening Polymerization system di-, tri-, tetraethylene glycol, polyethylene glycol, polyethylimine, etc.
- polyaddition system oligoester acrylate, polyamide oligomer, polyisocyanate oligo
- Chromatography addition-condensation oligomer (a phenolic resin, amino resins, xylene resins, ketone resins, etc.) and the like.
- a urethane acrylate oligomer, a polyester acrylate oligomer, or an epoxy acrylate oligomer is preferable, a urethane acrylate oligomer or a urethane acrylate oligomer having a polyester chain is more preferable, and a urethane acrylate oligomer is more preferable.
- the oligomer handbook (supervised by Junji Furukawa, Chemical Industry Daily Co., Ltd.) can be referred to.
- examples of the (meth) acrylate oligomer (C) include Shin-Nakamura Chemical Co., Ltd., Sartomer Japan Co., Ltd., Daicel Cytec Co., Ltd., Rahn A.C. G. Those that are commercially available from companies and the like and that meet the above conditions can be used.
- (Meth) acrylate oligomer (C) may be used individually by 1 type, and may be used in combination of 2 or more type.
- the coloring composition for model materials contains the (meth) acrylate oligomer (C), the content thereof is preferably 5% by mass or more and less than 30% by mass with respect to the total mass of the coloring composition for model materials. More preferably, it is 8 mass% or more and less than 25 mass%.
- the coloring composition for model materials used for this invention is polymerizable compounds other than (meth) acrylate monomer (A), (meth) acrylate monomer (B), and (meth) acrylate oligomer (C) (henceforth " It may also be referred to as “other polymerizable compounds”. As other polymerizable compounds, acrylate compounds are preferred.
- Other oligomers and polymers included in other polymerizable compounds include monofunctional or trifunctional or higher functional (meth) acrylate compounds having a weight average molecular weight of 2,000 to 20,000, and molecular weights exceeding 20,000 (meth).
- An acrylate compound etc. are mentioned.
- the coloring composition for a model material contains a monomer other than the (meth) acrylate monomer (A), the (meth) acrylate monomer (B) and the (meth) acrylate oligomer (C), the content thereof is (meth)
- the content is preferably smaller than any of the contents of the acrylate monomer (A), the (meth) acrylate monomer (B), and the (meth) acrylate oligomer (C).
- the coloring composition for model materials contains a photoinitiator. It does not specifically limit as a photoinitiator used in this invention, A well-known photoinitiator can be used. A photoinitiator may be used individually by 1 type and may use 2 or more types together.
- the photopolymerization initiator that can be used in the present invention is a compound that generates a polymerization initiating species by absorbing external energy by irradiation with actinic rays.
- the photopolymerization initiator is preferably a radical photopolymerization initiator.
- radical photopolymerization initiators aromatic ketones, acylphosphine compounds, aromatic onium salt compounds, organic peroxides, thio compounds, hexaarylbiimidazole compounds, ketoxime ester compounds, borate compounds, azinium compounds, metallocene compounds, Examples thereof include active ester compounds, compounds having a carbon halogen bond, and alkylamine compounds.
- photo radical polymerization initiators may be used alone or in combination. Further, for example, a plurality of types can be used in combination from the same type.
- the radical photopolymerization initiator in the present invention is preferably used alone or in combination of two or more. Details of the photo radical polymerization initiator are described in JP-A-2009-185186.
- a photopolymerization initiator selected from the group consisting of an ⁇ -hydroxyketone compound and an acylphosphine oxide compound (hereinafter also referred to as “specific photopolymerization initiator”).
- specific photopolymerization initiator By containing these specific photopolymerization initiators, the resulting model material is excellent in softness and tensile strength, and coloring derived from a residue or decomposition product of the photopolymerization initiator can be reduced.
- the acyl phosphine oxide compound may be either a monoacyl phosphine oxide compound or a bisacyl phosphine oxide compound, but is preferably a bisacyl phosphine oxide compound.
- the coloring composition for a model material preferably contains one or more ⁇ -hydroxyketone compounds and one or more acylphosphine oxide compounds.
- ⁇ -hydroxyketone compounds include 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-2-methyl-1-phenyl Propan-1-one, 1-hydroxycyclohexyl phenyl ketone and the like can be mentioned.
- Acylphosphine oxide compounds include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethylbenzoyl) phenylphosphine oxide, bis (2,4,6-trimethylbenzoyl)- 2-methoxyphenylphosphine oxide, bis (2,6-dimethylbenzoyl) -2-methoxyphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,4-dimethoxyphenylphosphine oxide, bis ( 2,6-Dimethylbenzoyl) -2,4-dimethoxyphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,4-dipentyloxyphenylphosphine oxide, bis (2,6-dimethylbenzoyl) -2, -Dipentyloxyphenylphosphine oxide, bis (2,6-dimethoxybenzoyl)
- the content of the specific photopolymerization initiator in the colored composition for model material is preferably 1 to 20% by mass, more preferably 2 to 15% by mass with respect to the total mass of the colored composition for model material. More preferably, the content is 5 to 15% by mass.
- the content of the specific photopolymerization initiator is in the above range, a model material that is superior in softness and tensile strength can be obtained.
- the coloring composition for a model material as a photopolymerization initiator, absorbs a specific active energy ray and promotes the decomposition of the polymerization initiator, so that it functions as a sensitizer (hereinafter simply referred to as “sensitizer”). May also be included.
- the sensitizer examples include polynuclear aromatics (eg, pyrene, perylene, triphenylene, 2-ethyl-9,10-dimethoxyanthracene), xanthenes (eg, fluorescein, eosin, erythrosine, rhodamine B, Rose Bengal etc.), cyanines (eg thiacarbocyanine, oxacarbocyanine etc.), merocyanines (eg merocyanine, carbomerocyanine etc.), thiazines (eg thionine, methylene blue, toluidine blue etc.), acridines (eg , Acridine orange, chloroflavin, acriflavine, etc.), anthraquinones (eg, anthraquinone, etc.), squariums (eg, squalium), coumarins (eg, 7-diethylamino-4-methylcoumarin, etc.
- the content thereof is preferably 0.1 to 5% by mass, more preferably 0.5 to 5% by mass with respect to the total mass of the coloring composition for model material. 3% by mass.
- the content of the sensitizer is within the above range, the curability and curing sensitivity of the coloring composition for model material can be improved.
- the coloring composition for model material contains a coloring agent.
- a coloring agent Since the coloring composition for model materials of this invention is non-aqueous, the pigment which is easy to disperse
- the pigment either an inorganic pigment or an organic pigment can be used.
- the white pigment (white) is not particularly limited, but basic lead carbonate (2PbCO 3 Pb (OH) 2 , so-called silver white), zinc oxide (ZnO, so-called zinc white), titanium oxide (TiO 2 , so-called , Titanium white), strontium titanate (SrTiO 3 , so-called titanium strontium white) and the like can be used.
- a white pigment may be used individually by 1 type, and may use 2 or more types together.
- titanium oxide has a smaller specific gravity than other white pigments, a large refractive index, and is chemically and physically stable, so that it has a large hiding power and coloring power as a pigment. Excellent durability against other environments. Therefore, it is preferable to use titanium oxide as the white pigment.
- other white pigments may be other than the white pigments listed above) may be used as necessary.
- pigments exhibiting colors such as black, cyan, magenta, and yellow, and all organic pigments and inorganic pigments that are generally commercially available, and those in which resin particles are dyed with a dye, etc. Can be used.
- commercially available pigment dispersions and surface-treated pigments for example, pigments dispersed in an insoluble resin or the like as a dispersion medium, or those obtained by grafting a resin on the pigment surface, etc., impair the effects of the present invention. It can be used as long as it is not.
- examples of these pigments include, for example, “Pigment Dictionary” (2000), edited by Seijiro Ito. Herbst, K.M. Hunger “Industrial Organic Pigments”, JP 2002-12607 A, JP 2002-188025 A, JP 2003-26978 A, and JP 2003-342503 A3.
- organic pigments and inorganic pigments that can be used in the present invention include C.I. I. Pigment Yellow 1 (Fast Yellow G, etc.), C.I. I. A monoazo pigment such as C.I. Pigment Yellow 74; I. Pigment Yellow 12 (disaji yellow AAA, etc.), C.I. I. Disazo pigments such as C.I. Pigment Yellow 17; I. Non-benzidine type azo pigments such as CI Pigment Yellow 180; I. Azo lake pigments such as C.I. Pigment Yellow 100 (eg Tartrazine Yellow Lake); I. Condensed azo pigments such as CI Pigment Yellow 95 (Condensed Azo Yellow GR, etc.); I. Acidic dye lake pigments such as C.I.
- Pigment Yellow 115 (such as quinoline yellow lake);
- Basic dye lake pigments such as CI Pigment Yellow 18 (Thioflavin Lake, etc.), anthraquinone pigments such as Flavantron Yellow (Y-24), isoindolinone pigments such as Isoindolinone Yellow 3RLT (Y-110), and quinophthalone yellow Quinophthalone pigments such as (Y-138), isoindoline pigments such as isoindoline yellow (Y-139), C.I.
- Nitroso pigments such as C.I. Pigment Yellow 153 (nickel nitroso yellow, etc.);
- I. And metal complex salt azomethine pigments such as CI Pigment Yellow 117 (copper azomethine yellow, etc.).
- Monoazo pigments such as CI Pigment Red 3 (Toluidine Red, etc.); I. Disazo pigments such as C.I. Pigment Red 38 (Pyrazolone Red B, etc.); I. Pigment Red 53: 1 (Lake Red C, etc.) and C.I.
- Azo lake pigments such as C.I. Pigment Red 57: 1 (Brilliant Carmine 6B); I. Condensed azo pigments such as C.I. Pigment Red 144 (condensed azo red BR, etc.); I. Acidic dye lake pigments such as C.I. Pigment Red 174 (Phloxine B Lake, etc.); I. Basic dye lake pigments such as C.I.
- Pigment Red 81 (Rhodamine 6G 'lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Red 177 (eg, dianthraquinonyl red); I. Thioindigo pigments such as C.I. Pigment Red 88 (Thioindigo Bordeaux, etc.); I. Perinone pigments such as C.I. Pigment Red 194 (perinone red, etc.); I. Perylene pigments such as C.I. Pigment Red 149 (perylene scarlet, etc.); I. Pigment violet 19 (unsubstituted quinacridone), C.I. I.
- Quinacridone pigments such as CI Pigment Red 122 (quinacridone magenta, etc.); I. Isoindolinone pigments such as CI Pigment Red 180 (isoindolinone red 2BLT, etc.); I. And alizarin lake pigments such as CI Pigment Red 83 (Mada Lake, etc.).
- C.I. I. Disazo pigments such as C.I. Pigment Blue 25 (Dianisidine Blue, etc.); I. Phthalocyanine pigments such as C.I. Pigment Blue 15 (phthalocyanine blue, etc.); I. Acidic dye lake pigments such as C.I. Pigment Blue 24 (Peacock Blue Lake, etc.); I. Basic dye lake pigments such as C.I. Pigment Blue 1 (Viclotia Pure Blue BO Lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Blue 60 (Indantron Blue, etc.); I. And alkali blue pigments such as CI Pigment Blue 18 (Alkali Blue V-5: 1).
- C.I. I. Pigment green 7 phthalocyanine green
- C.I. I. Phthalocyanine pigments such as C.I. Pigment Green 36 (phthalocyanine green)
- I. And azo metal complex pigments such as CI Pigment Green 8 (Nitroso Green).
- An isoindoline pigment such as C.I. Pigment Orange 66 (isoindoline orange); I. And anthraquinone pigments such as CI Pigment Orange 51 (dichloropyrantron orange).
- black pigments examples include carbon black, titanium black, and aniline black.
- the colorant contained in the coloring composition for model material is preferably at least one selected from the group consisting of white, black, cyan, magenta and yellow.
- the composition set for optical modeling of the present invention may include a plurality of coloring compositions for model materials. For example, in order to perform full-color printing, it is possible to obtain a set in which the coloring compositions for model materials of five colors including yellow, magenta, and cyan subtractive three primary colors and white and black are combined.
- the composition set for stereolithography of the present invention may be a set in which a coloring composition for a model material containing a colorant as described above and a clear composition for a model material not containing a coloring agent are combined. .
- the colorant may be directly added together with each component when preparing the coloring composition for model material. Further, in order to improve dispersibility, it may be added to a dispersion medium such as a solvent or a monomer in advance and uniformly dispersed or dissolved, and then blended.
- a solvent may be added as a dispersion medium for various components such as a colorant, and a polymerizable compound described below which is a low molecular weight component without a solvent may be used as a dispersion medium. Is hardened by irradiation with actinic rays, and is preferably solvent-free.
- the average particle diameter of the colorant is preferably 0.01 to 0.4 ⁇ m, and more preferably 0.02 to 0.2 ⁇ m, because the finer the color, the better the color developability.
- the colorant, the below-mentioned dispersant and dispersion medium selection, dispersion conditions, and filtration conditions are set so that the maximum particle size is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less.
- a uniform and stable dispersion can be obtained even when a particulate colorant is used by using the above-described dispersant having excellent dispersibility and stability.
- the particle size of the colorant can be measured by a known measurement method. Specifically, it can be measured by, for example, a centrifugal sedimentation light transmission method, an X-ray transmission method, a laser diffraction / scattering method, or a dynamic light scattering method. In the present invention, a value obtained by measurement using a laser diffraction / scattering method is employed.
- a dispersing device such as a ball mill, a sand mill, an attritor, a roll mill, a jet mill, a homogenizer, a paint shaker, a kneader, an agitator, a Henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, or a wet jet mill is used.
- a dispersing device such as a ball mill, a sand mill, an attritor, a roll mill, a jet mill, a homogenizer, a paint shaker, a kneader, an agitator, a Henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, or a wet jet mill is used. be able to.
- the colorant When dispersing the colorant, it may contain a dispersant.
- a dispersant when a pigment is used, a dispersant is preferably contained in order to stably disperse the pigment in the coloring composition for model material.
- a polymer dispersant is preferable.
- the “polymer dispersing agent” in the present invention means a dispersing agent having a weight average molecular weight of 1,000 or more.
- Polymer dispersing agents include DISPERBYK-101, DISPERBYK-102, DISPERBYK-103, DISPERBYK-106, DISPERBYK-111, DISPERBYK-161, DISPERBYK-162, DISPERBYK163, DISPERBYK-164, DISPERBYK-166, DISPERBYK-166, DISPERBYK-166 -168, DISPERBYK-170, DISPERBYK-171, DISPERBYK-174, DISPERBYK-182 (manufactured by BYK Chemie); EFKA4010, EFKA4046, EFKA4080, EFKA5010, EFKA5207, EFKA6745, EFKA 7462, EFKA 7500, EFKA 7570, EFKA 7575, EFKA 7580 (manufactured by Efka Additive); Disperse Aid 6, Disperse Aid 8, Disperse
- the content of the dispersant with respect to the total mass of the coloring composition for a model material can be appropriately determined according to the purpose of use and the like, but is preferably 0.05 to 15% by mass.
- a coloring agent it is also possible to use the synergist according to various coloring agents as a dispersing aid as needed.
- the dispersion aid is preferably added in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the colorant.
- the content of the colorant may be appropriately determined according to the desired color of the model material and the purpose of use, but is preferably 0.01 to 40% by mass with respect to the total mass of the color composition for the model material. More preferably, it is 0.1 to 30% by mass, and further preferably 0.2 to 20% by mass.
- the coloring composition for model material may contain a surface conditioner.
- the surface conditioner is a component that adjusts the surface tension of the coloring composition for model material to an appropriate range, and the type thereof is not particularly limited.
- Examples of the surface conditioner include silicone compounds.
- Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane.
- surface conditioners other than silicone compounds for example, fluorine-based surface conditioners, dialkylsulfosuccinates, alkylnaphthalenesulfonates, fatty acid salts and other anionic surfactants, polyoxyethylene alkyl ethers, polyoxyethylene Nonionic surfactants such as alkyl allyl ethers, acetylene glycols, polyoxyethylene / polyoxypropylene block copolymers, and cationic surfactants such as alkylamine salts and quaternary ammonium salts may be used. These may be used alone or in combination of two or more.
- the coloring composition for a model material contains a surface conditioner
- the content can be appropriately selected depending on the purpose of use and the like, but is preferably 0.0001 based on the total mass of the coloring composition for a model material. To 3% by mass.
- the coloring composition for model materials used for this invention may contain other components other than said each component as needed.
- other components include storage stabilizers, photopolymerization initiators other than specific photopolymerization initiators, co-sensitizers, ultraviolet absorbers, antioxidants, anti-fading agents, conductive salts, solvents, and polymer compounds.
- the coloring composition for model material preferably contains a storage stabilizer from the viewpoint of improving storage stability.
- the coloring composition for model material is preferably discharged in the range of 40 ° C to 80 ° C with heating and low viscosity, and a storage stabilizer is added to prevent head clogging due to thermal polymerization. Is preferred.
- the storage stabilizer include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, nitrosamine compounds, and the like.
- the content thereof is preferably 0.001 to 1.5% by mass, more preferably based on the total mass of the coloring composition for a model material.
- the content is 0.01 to 1.0% by mass, and more preferably 0.05 to 0.8% by mass.
- the viscosity of the coloring composition for a model material of the present invention is preferably 20 to 150 mPa ⁇ s at 25 ° C., preferably 40 to 100 mPa ⁇ s, from the viewpoint of improving dischargeability from a material jet nozzle and moldability. More preferably.
- the above-mentioned viscosity can be measured using a rotational viscometer in accordance with JIS Z 8803.
- the surface tension of the coloring composition for a model material of the present invention is preferably 20 to 40 mN / m at 25 ° C., and 20 to 30 mN / m from the viewpoint of improving dischargeability from a material jet nozzle and moldability. It is more preferable that The surface tension can be measured according to a du Nouey method or a Wilhelmy method based on JIS K2241.
- the manufacturing method of the coloring composition for model materials of this invention is not specifically limited, For example, it manufactures by mixing uniformly the component which comprises the composition for coloring model materials using a mixing stirrer, a disperser, etc. be able to.
- the stereolithography composition set of the present invention may contain only one kind of coloring material for a model material as a composition for model material, or may contain two or more kinds of coloring composition for model material. Moreover, you may contain combining the coloring composition for 1 or more types of model materials, and the clear composition for model materials which does not contain a coloring agent.
- a model material composition containing a colorant is referred to as a “model material color composition”
- a model material composition not containing a colorant is referred to as a “model material clear composition”.
- the colorant contained in the model material coloring composition is mainly a white colorant (pigment) is referred to as a “model material white composition”, and the colorant is mainly used.
- a colorant (pigment) exhibiting a color other than white is referred to as a “model material color composition”.
- the ratio of the white colorant with respect to the total mass of the coloring material for model material is 0.1% by mass or more is called “white composition for model material”
- the coloring material for model material What has the ratio of the coloring agent which has colors other than white with respect to gross mass is 0.05 mass% or more is called "the color composition for model materials.”
- the composition for a model material is formed on a white composition for a model material containing a white pigment constituting an inner layer of the model material, and a white shaped object formed from the white composition for a model material. And one or more color compositions for model materials for forming a color layer.
- the white composition for a model material contains, as a white pigment, and a polymerizable compound, a (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C.
- the content of the white pigment is preferably 0.5% by mass to 10% by mass and the content of the (meth) acrylate monomer (A) is preferably 40% with respect to the total mass of the white composition for model material.
- It may be a composition [hereinafter also referred to as a white composition for model material (1)] that is not less than 80% by mass.
- a white composition for model material may have the structure of the colored composition for model material described above, and contains a white pigment as a colorant in the colored composition for model material [hereinafter, for model material] Also referred to as a white composition (2)].
- a model material having both moderate softness and tensile strength can be formed.
- Whichever white composition for model materials is used it is preferable that the color composition for model materials has the structure of the coloring composition for model materials demonstrated previously.
- the model material composition includes a colorant that constitutes the inner layer of the model material or can be used to dilute the model material color composition during modeling of the model material.
- a clear composition for a model material and one or more color compositions for a model material for forming a color layer on the clear modeled object formed from the clear composition for a model material.
- a clear composition for model materials what is comprised from the component remove
- the optical modeling composition set of the present invention includes a support material composition.
- the composition for support material constituting the composition set for optical modeling of the present invention is based on 100 parts by mass of the composition for support material. 15 to 75 parts by mass of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more, and 19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b) It is a composition containing this.
- the composition for a support material contains the polyalkylene glycol (a) containing an oxybutylene group in the above content, a support material having both excellent water removal property and support capability can be provided. Moreover, the support material composition excellent in low-temperature stability can be provided. While the polyalkylene glycol (a) containing the oxybutylene group is water-soluble, it does not have hydrophilicity to reduce the support force of the support material when the support material is formed, while the oxybutylene group is Since the polyalkylene glycol (a) contained is water-soluble, the support material is excellent in water removability when the support material is formed.
- water-soluble means a property that can be dissolved in water or dispersed in water. Moreover, the composition for a support material is not easily solidified (solidified) at low temperatures, and the fluidity is not easily lowered.
- the support material composition comprises the above polyalkylene glycol (a) containing an oxybutylene group, a water-soluble monofunctional ethylenically unsaturated monomer (b), and a photopolymerization initiator. Contains. Thereby, it is possible to provide a support material that has both excellent water removability and support capability, and is excellent in low-temperature stability.
- the polyalkylene glycol (a) containing an oxybutylene group that can be included in the support material composition may be either a linear type or a multi-chain type.
- the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
- the polyalkylene glycol (a) containing an oxybutylene group is a water-soluble resin for imparting appropriate hydrophilicity to a support material, and by adding this, a support material having both water removability and support power Can be obtained.
- the polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group.
- the polyalkylene glycol having only an oxybutylene group (oxytetramethylene group) is a single polybutylene glycol.
- it may be a polybutylene polyoxyalkylene glycol (for example, polybutylene polyethylene glycol) having both an oxybutylene group and another oxyalkylene group.
- polybutylene glycol is represented by the following chemical formula (1)
- polybutylene polyethylene glycol is represented by the following chemical formula (2).
- m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100.
- the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
- the support material composition contains the polyalkylene glycol (a) containing an oxybutylene group, it is possible to further improve the removability by water without reducing the support power of the support material, and to support the model material. It becomes a support material suitable for modeling a model material with high accuracy.
- the support material can sufficiently support the model material during the optical modeling, it is possible to improve the modeling accuracy at the stage of optical modeling by suppressing a decrease in dimensional accuracy during molding. Furthermore, since the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed. This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, an optically shaped object having better modeling accuracy can be obtained.
- the weight average molecular weight (M w ) of the polyalkylene glycol (a) containing an oxybutylene group is 300 or more.
- the weight average molecular weight of the polyalkylene glycol (a) containing an oxybutylene group is more preferably 400 or more, and even more preferably 500 or more.
- the upper limit of the weight average molecular weight of the polyalkylene glycol (a) containing an oxybutylene group is not particularly limited, but is usually 3000 or less, preferably 2000 or less.
- the weight average molecular weight is within the above range, the water-soluble monofunctional ethylenically unsaturated monomer (b) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
- the content of the polyalkylene glycol (a) containing an oxybutylene group in the support material composition is preferably 15 parts by mass or more and 75 parts by mass or less with respect to 100 parts by mass of the support material composition. Is 17 parts by mass or more, more preferably 20 parts by mass or more, preferably 72 parts by mass or less, more preferably 70 parts by mass or less.
- the content of the polyalkylene glycol (a) containing an oxybutylene group is less than 15 parts by mass, the hydrophilicity of the support material decreases, so the water removability of the support material decreases, and the content is 75 masses.
- the amount of the water-soluble monofunctional ethylenically unsaturated monomer (b) that is a polymerizable component is reduced, and the support material is softened and the self-supporting property is lowered. To do.
- the water-soluble monofunctional ethylenically unsaturated monomer (b) contained in the support material composition includes, for example, a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meta ) Acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, mono Alkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meta) of PEG-PPG block polymer Acry Etc.], (meth) acrylamide derivatives [eg (meth)
- Content of the water-soluble monofunctional ethylenically unsaturated monomer (b) contained in the composition for support material is 19 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the composition for support material.
- the amount is preferably 22 parts by mass or more, more preferably 25 parts by mass or more, preferably 76 parts by mass or less, and more preferably 73 parts by mass or less.
- composition for support material may contain a water-soluble organic solvent.
- a water-soluble organic solvent is a component which improves the solubility to water of the support material obtained by photocuring the composition for support materials. Moreover, it has the function to adjust the composition for support materials to low viscosity.
- a glycol-based solvent is preferably used. Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate, triethylene glycol monoacetate, and the like.
- Glycol ester solvents such as propylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl ether, ethylene Glycol monoethyl ether, propylene glycol Ethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, ethylene Glycol ether solvents such as glycol dipropyl ether, propylene glycol dipropyl ether, ethylene glycol dibut
- examples of the water-soluble organic solvent include triethylene glycol monomethyl ether, diethylene glycol diethyl ether and Dipropylene glycol monomethyl ether acetate is preferred.
- the content of the water-soluble organic solvent in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, further preferably 100 parts by mass of the support material composition. 25 parts by mass or less.
- the content of the water-soluble organic solvent is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material.
- the composition for a support material contains a water-soluble organic solvent
- the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
- the compounds described above as photopolymerization initiators that can be contained in the model material composition can be used in the same manner.
- the content of the photopolymerization initiator in the composition for support material is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the composition for support material. Moreover, More preferably, it is 18 mass parts or less, More preferably, it is 15 mass parts or less.
- a composition for a support material that has both excellent water solubility and support ability can be obtained.
- the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy can be obtained.
- the support material composition may contain other additives as necessary.
- additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, chain transfer agents, and fillers.
- the surface tension of the support material composition can be controlled within an appropriate range, and the model material composition and the support material composition are mixed at the interface. Can be suppressed. Thereby, a stereolithography thing with favorable dimensional accuracy can be obtained.
- the surface conditioner that can be contained in the support material composition the same as those exemplified as the surface conditioner that can be used in the previous model material composition can be used, the content of which is the composition for the support material It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
- the storage stability can be improved by blending a storage stabilizer into the support material composition.
- a storage stabilizer that can be contained in the support material composition
- those exemplified as the storage stabilizer that can be used in the previous model material composition can be used, and the content thereof can be determined by the support material composition. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts.
- the viscosity of the composition for a support material is preferably 30 to 200 mPa ⁇ s at 25 ° C., more preferably 35 mPa ⁇ s or more, from the viewpoint of improving dischargeability from a material jet nozzle.
- it is 40 mPa * s or more, More preferably, it is 170 mPa * s or less, More preferably, it is 150 mPa * s or less.
- the measurement of the said viscosity can be performed using R100 type
- the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m.
- the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
- the method for producing the composition for a support material of the present invention is not particularly limited.
- the composition for a support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer, a disperser, or the like. it can.
- composition set for stereolithography In the composition set for optical modeling of the present invention, since the support material is excellent in self-supporting property and removability, the dimensional accuracy of the optical modeling object is not impaired, so that the three-dimensional modeled object (model material) can be modeled with excellent accuracy. And a model material excellent in appearance can be provided.
- the manufacturing method of the optical modeling thing of this invention is a manufacturing method of the optical modeling thing using the composition set for optical modeling of this invention, and is a composition for model materials, and a support material using a material jet (inkjet) type printer.
- the model material composition is photocured to obtain a model material
- the water soluble support material composition is photocured to obtain a water soluble support material
- the manufacturing method of the present invention uses the optical modeling composition set of the present invention, it is possible to form an optical modeling object that is excellent in colored appearance with high modeling accuracy.
- FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays.
- the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12.
- the ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c.
- the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material composition 13, and a support material inkjet head 11aS filled with the support material composition 14.
- the model material composition 13 is ejected from the model material inkjet head 11aM
- the support material composition 14 is ejected from the support material inkjet head 11aS
- the energy beam 15 is irradiated and ejected from the light source 11c.
- the model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS.
- FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
- the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet head for model material is used.
- the composition 13 for model material is discharged from 11aM
- the composition 14 for support material is discharged from the inkjet head 11aS for support material.
- the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange
- the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 ⁇ / b> M and the support material precursor 14 ⁇ / b> S with the roller 11 b.
- the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS.
- a layer consisting of is formed.
- the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
- optical modeling product precursor 16 shown in FIG. 4 is brought into contact with water, for example, by immersing in water, the support material 14PS is dissolved and removed to form the optical modeling product 17 as shown in FIG. Is done.
- a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source.
- UV-LED is preferable.
- the amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product.
- a UV-LED it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved.
- ultraviolet rays As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, ⁇ rays, ⁇ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
- the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data.
- the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
- each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 ⁇ m from the balance with the modeling speed.
- the stereolithography composition set includes two or more model material compositions as the model material composition
- the white composition for model material containing a white pigment constituting the inner layer of the model material or A color layer is formed on a clear composition for a model material that does not contain a colorant and a white shaped article that is shaped from the white composition for a model material or a clear shaped article that is shaped from the clear composition for a model material
- the color composition for the model material on the white shaped article or the clear shaped article according to the cross-sectional data corresponding to the three-dimensional shape of the desired three-dimensional shaped article.
- the obtained stereolithography is a combination of a model material and a support material.
- the support material is removed from the stereolithography product to obtain a stereolithography product as a model material.
- the support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
- a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
- Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
- the above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
- the stereolithographic product obtained by the above steps has a relatively high surface hardness in an embodiment.
- the stereolithographic product has a surface hardness of Shore-D hardness of 50 or more, preferably 60 or more, more preferably 70 or more.
- the optically shaped article has a high dimensional accuracy because water absorption and swelling are suppressed because it takes a short time to contact water when removing the support material.
- Model Material Composition Table 1 shows the details of the components constituting the model material composition used in the examples.
- the dispersion time was 1 to 6 hours.
- pigment dispersions Cyan 1, Magenta 1, Yellow 1, Black, and White 1 were produced.
- the numerical value of the mass% described in Table 2 represents content (mass%) of each component with respect to the total mass of a pigment dispersion.
- model material photocured material
- evaluation of characteristics Using the coloring compositions for model materials of Examples M1 to M8 and Comparative Examples m1 to m3, model materials (photocured materials) were prepared, The model material was evaluated for film flexibility and film strength according to the following methods and evaluation criteria. Table 4 shows the results.
- a frame is formed of a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 10 mm on a glass plate, and the composition for each model material shown in Table 3 is placed in the frame.
- Each was poured and irradiated with ultraviolet rays having an accumulated light amount of 400 mJ / cm 2 by a metal halide lamp, to obtain a model material.
- the softness was measured with a durometer (GS-779G Tech Rock). (Evaluation criteria) 5: 0 or more but less than 30 4:30 or more but less than 60 3:60 or more but less than 95 2:95 or more but less than 100 1: 100 or more
- a frame is formed with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 10 mm on a glass plate, and the composition for each model material shown in Table 3 is placed in the frame.
- the model material was obtained by pouring and irradiating with a metal halide lamp an ultraviolet ray having an integrated light quantity of 400 mJ / cm 2 .
- a tensile test Autograph AGS-X 5KN, manufactured by Shimadzu Corporation
- the model material was formed so that the long direction was horizontal to the table.
- ⁇ Low temperature stability of support material composition The stability of the composition for the support material at low temperature was evaluated. Each composition for support material was put into a glass bottle, and the glass bottle with the composition for support material was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the composition for support material was evaluated according to the following criteria.
- composition for the support material When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent) When the support material composition is partially solidified (solidified): Low temperature stability B (good) When the composition for the support material is solidified (solidified): low temperature stability C (poor)
- a frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp.
- a metal halide lamp was irradiated to produce a cured support material.
- the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
- Support strength A excellent
- Support strength B good
- Support force C defect
- a cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
- Stereolithographic Composition Set Examples 1 to 6 and Comparative Example 1 were prepared by combining the model material composition and the support material composition as shown in Table 6.
- a spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm ⁇ 200 mm ⁇ thickness 5 mm), and was partitioned into 10 cm ⁇ 10 cm squares.
- an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
- UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
- spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm ⁇ 10 cm.
- an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
- UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2.
- cured to obtain a model material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
Abstract
The present invention relates to a photo-fabrication composition set that is for use in material jet photo-fabrication and includes a model material composition and a support material composition. The model material composition is a model material colored composition that includes a colorant, at least one (meth)acrylate monomer (A) that, as a homopolymer, has a glass transition temperature of 25°C–120°C, and at least one (meth)acrylate monomer (B) that, as a homopolymer, has a glass transition temperature of at least -60°C but less than 25°C, (meth)acrylate monomer (A) being at least 5 mass% but less than 50 mass% of the total mass of the model material colored composition, and (meth)acrylate monomer (B) being at least 20 mass% but less than 80 mass% of the total mass of the model material colored composition. The support material composition contains, per 100 parts by mass of the support material composition, 15–75 parts by mass of a polyalkylene glycol (a) that includes an oxybutylene group and has a weight average molecular weight of at least 300, 19–80 parts by mass of a water-soluble monofunctional ethylenically unsaturated monomer (b), and a photopolymerization initiator.
Description
本発明は、マテリアルジェット光造形法に用いられるモデル材用組成物とサポート材用組成物を組み合わせた光造形用組成物セット、およびそれを用いた光造形物の製造方法に関する。
The present invention relates to an optical modeling composition set in which a composition for a model material and a composition for a support material used in a material jet optical modeling method are combined, and a method for manufacturing an optical modeling object using the same.
ノズルから光硬化性樹脂組成物を吐出させ、その直後に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成するマテリアルジェット(インクジェット)方式による光造形法(以下、「マテリアルジェット光造形法」ともいう)が知られている。マテリアルジェット光造形法は、CAD(Computer Aided Design)データに基づいて、自由に立体造形物を作成可能な3Dプリンタによって実現される造形法として、注目されている。
An optical molding method (hereinafter referred to as “the material jet (inkjet) method) for forming a cured layer having a predetermined shape by discharging a photocurable resin composition from a nozzle and immediately irradiating it with ultraviolet rays or the like to cure. Also known as “material jet stereolithography”. The material jet stereolithography has been attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
マテリアルジェット光造形法は、液体状の光硬化性組成物に光を照射し、その照射部分を硬化させ、積層させることにより光造形物を得る従来の方法に比べて複雑な形状を造形しやすい。また、必要となる光硬化性組成物の量が少なく、複数のノズルから性質の異なる光硬化性組成物を同時に出射することで機械的特性を調整しやすい等のメリットもあるため、工業製品の試作用途をはじめ様々な用途に使用されている。
The material jet stereolithography method is easy to model complex shapes compared to the conventional method of obtaining stereolithography by irradiating a liquid photocurable composition with light, curing the irradiated part, and laminating it. . In addition, since the amount of the photocurable composition required is small and there is a merit that it is easy to adjust the mechanical characteristics by simultaneously emitting the photocurable composition having different properties from a plurality of nozzles, It is used for various purposes including trial use.
最近では、例えば、アニメキャラクターの人形などの小ロットの玩具製品や文房具、装飾品などへの利用が着目されている。そのため、造形物のフルカラー化に対する要望が高まっており、そのようなフルカラーの立体造形物を製造するためのモデル材用組成物が開発されている(特許文献1)。
Recently, attention has been focused on the use of small-lot toy products such as anime character dolls, stationery, and ornaments. For this reason, there is an increasing demand for full color modeling, and a model material composition for producing such a full color three-dimensional modeling has been developed (Patent Document 1).
モデル材用組成物は、通常、サポート材用組成物とともにマテリアルジェット光造形法に用いられる。上記特許文献にも、該文献に記載されるモデル材用組成物を、粉砕等により物理的に除去することが可能なサポート材や水溶性のサポート材と組み合わせて用い得ることが記載されている。しかしながら、このようなサポート材用組成物を用いたとしても、該サポート材用組成物に含まれる成分の種類及び含有量によっては、該サポート材用組成物を光硬化させることにより得られるサポート材の自立性が劣る場合があった。その結果、上記特許文献に開示された前記モデル材用組成物及び前記サポート材用組成物を用いて造形された光造形品は、寸法精度が低下するという問題があった。これらは、外観の美しさが求められるフルカラーの立体造形物において、特に問題となりやすい。
The model material composition is usually used in the material jet stereolithography together with the support material composition. The above patent document also describes that the composition for a model material described in the document can be used in combination with a support material or a water-soluble support material that can be physically removed by pulverization or the like. . However, even if such a support material composition is used, depending on the type and content of the components contained in the support material composition, the support material obtained by photocuring the support material composition The independence of was sometimes inferior. As a result, there has been a problem that the dimensional accuracy of the stereolithographic product that is modeled using the composition for model material and the composition for support material disclosed in the above-mentioned patent document is reduced. These are particularly likely to be a problem in a full-color three-dimensional structure that requires a beautiful appearance.
そこで、本発明は、着色された立体造形物を作製するのに適した、高い成形性、隠蔽性および機械的物性を有するモデル材用組成物と、優れた水除去性および高いサポート力を併せ持つサポート材用組成物との組み合わせを提案し、サポート材除去時に生じ得る外観的欠陥の発生を抑え、着色された光造形物を高い精度で造形し得る光造形用組成物セットを提供することを目的とする。
Therefore, the present invention combines a composition for a model material having high formability, concealability and mechanical properties, which is suitable for producing a colored three-dimensional structure, and excellent water removal property and high support force. Proposing a combination with a composition for a support material, suppressing the occurrence of appearance defects that may occur when removing the support material, and providing a composition set for optical modeling capable of modeling a colored optical modeled object with high accuracy Objective.
本発明者等は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、以下の好適な態様を提供するものである。
[1]モデル材用組成物とサポート材用組成物とを含んでなるマテリアルジェット光造形法に使用される光造形用組成物セットであって、
前記モデル材用組成物として、着色剤、ホモポリマーとしてのガラス転移温度が25℃以上120℃以下である少なくとも1つの(メタ)アクリレートモノマー(A)、および、ホモポリマーとしてのガラス転移温度が-60℃以上25℃未満である少なくとも1つの(メタ)アクリレートモノマー(B)を含むモデル材用着色組成物であって、該モデル材用着色組成物の総質量に対する、前記(メタ)アクリレートモノマー(A)の含有量が5質量%以上50質量%未満であり、前記(メタ)アクリレートモノマー(B)の含有量が20質量%以上80質量%未満であるモデル材用着色組成物を含み、
前記サポート材用組成物が、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)、および、
光重合開始剤
を含有する、光造形用組成物セット。
[2]サポート材用組成物が、水溶性単官能エチレン性不飽和単量体および光重合開始剤を含む、前記[1]に記載の光造形用組成物セット。
[3]サポート材用組成物100質量部に対する、水溶性単官能エチレン性不飽和単量体の含有量が19質量部以上80質量部以下であり、光重合開始剤の含有量が2質量部以上20質量部以下である、前記[2]に記載の光造形用組成物セット。
[4]サポート材用組成物が、該サポート材用組成物100質量部に対して、0.005質量部以上3.0質量部以下の表面調整剤を含む、前記[1]~[3]のいずれかに記載の光造形用組成物セット。
[5]サポート材用組成物が、該サポート材用組成物100質量部に対して、30質量部以下の水溶性有機溶剤を含む、前記[1]~[4]のいずれかに記載の光造形用組成物セット。
[6]サポート材用組成物が保存安定化剤を含む、前記[1]~[5]のいずれかに記載の光造形用組成物セット。
[7]モデル材用着色組成物に含まれる着色剤が、ホワイト、ブラック、シアン、マゼンタおよびイエローからなる群から選択される顔料である、前記[1]~[6]のいずれかに記載の光造形用組成物セット。
[8]モデル材用組成物として、着色剤を含まないモデル材用クリア組成物をさらに含む、前記[1]~[7]のいずれかに記載の光造形用組成物セット。
[9]前記[1]~[8]のいずれかに記載の光造形用組成物セットを用いて、マテリアルジェット光造形法により立体造形物を製造する、立体造形物の製造方法。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention provides the following preferred embodiments.
[1] A composition set for stereolithography used in a material jet stereolithography method comprising a composition for model material and a composition for support material,
As the model material composition, a colorant, at least one (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer, and a glass transition temperature as a homopolymer of − A coloring composition for a model material containing at least one (meth) acrylate monomer (B) having a temperature of 60 ° C. or more and less than 25 ° C., wherein the (meth) acrylate monomer ( A content of A) is 5% by mass or more and less than 50% by mass, and the content of the (meth) acrylate monomer (B) is 20% by mass or more and less than 80% by mass.
The support material composition is based on 100 parts by mass of the support material composition.
15 parts by mass or more and 75 parts by mass or less of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more,
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b), and
A composition set for optical modeling containing a photopolymerization initiator.
[2] The composition set for optical modeling according to [1], wherein the support material composition includes a water-soluble monofunctional ethylenically unsaturated monomer and a photopolymerization initiator.
[3] The content of the water-soluble monofunctional ethylenically unsaturated monomer is 19 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the support material composition, and the content of the photopolymerization initiator is 2 parts by mass. The composition set for optical modeling according to [2], which is 20 parts by mass or less.
[4] The above [1] to [3], wherein the support material composition contains 0.005 parts by mass or more and 3.0 parts by mass or less of a surface conditioner with respect to 100 parts by mass of the support material composition. The composition set for optical modeling according to any one of the above.
[5] The light according to any one of [1] to [4], wherein the composition for support material contains 30 parts by mass or less of a water-soluble organic solvent with respect to 100 parts by mass of the composition for support material. Composition set for modeling.
[6] The stereolithography composition set according to any one of [1] to [5], wherein the support material composition includes a storage stabilizer.
[7] The colorant contained in the coloring composition for model material is a pigment selected from the group consisting of white, black, cyan, magenta and yellow, according to any one of [1] to [6] above Stereolithography composition set.
[8] The stereolithography composition set according to any one of [1] to [7], further including, as the model material composition, a model material clear composition containing no colorant.
[9] A method for producing a three-dimensional modeled object, wherein a three-dimensional modeled object is manufactured by a material jet stereolithography method using the stereolithography composition set according to any one of [1] to [8].
[1]モデル材用組成物とサポート材用組成物とを含んでなるマテリアルジェット光造形法に使用される光造形用組成物セットであって、
前記モデル材用組成物として、着色剤、ホモポリマーとしてのガラス転移温度が25℃以上120℃以下である少なくとも1つの(メタ)アクリレートモノマー(A)、および、ホモポリマーとしてのガラス転移温度が-60℃以上25℃未満である少なくとも1つの(メタ)アクリレートモノマー(B)を含むモデル材用着色組成物であって、該モデル材用着色組成物の総質量に対する、前記(メタ)アクリレートモノマー(A)の含有量が5質量%以上50質量%未満であり、前記(メタ)アクリレートモノマー(B)の含有量が20質量%以上80質量%未満であるモデル材用着色組成物を含み、
前記サポート材用組成物が、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)、および、
光重合開始剤
を含有する、光造形用組成物セット。
[2]サポート材用組成物が、水溶性単官能エチレン性不飽和単量体および光重合開始剤を含む、前記[1]に記載の光造形用組成物セット。
[3]サポート材用組成物100質量部に対する、水溶性単官能エチレン性不飽和単量体の含有量が19質量部以上80質量部以下であり、光重合開始剤の含有量が2質量部以上20質量部以下である、前記[2]に記載の光造形用組成物セット。
[4]サポート材用組成物が、該サポート材用組成物100質量部に対して、0.005質量部以上3.0質量部以下の表面調整剤を含む、前記[1]~[3]のいずれかに記載の光造形用組成物セット。
[5]サポート材用組成物が、該サポート材用組成物100質量部に対して、30質量部以下の水溶性有機溶剤を含む、前記[1]~[4]のいずれかに記載の光造形用組成物セット。
[6]サポート材用組成物が保存安定化剤を含む、前記[1]~[5]のいずれかに記載の光造形用組成物セット。
[7]モデル材用着色組成物に含まれる着色剤が、ホワイト、ブラック、シアン、マゼンタおよびイエローからなる群から選択される顔料である、前記[1]~[6]のいずれかに記載の光造形用組成物セット。
[8]モデル材用組成物として、着色剤を含まないモデル材用クリア組成物をさらに含む、前記[1]~[7]のいずれかに記載の光造形用組成物セット。
[9]前記[1]~[8]のいずれかに記載の光造形用組成物セットを用いて、マテリアルジェット光造形法により立体造形物を製造する、立体造形物の製造方法。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention provides the following preferred embodiments.
[1] A composition set for stereolithography used in a material jet stereolithography method comprising a composition for model material and a composition for support material,
As the model material composition, a colorant, at least one (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer, and a glass transition temperature as a homopolymer of − A coloring composition for a model material containing at least one (meth) acrylate monomer (B) having a temperature of 60 ° C. or more and less than 25 ° C., wherein the (meth) acrylate monomer ( A content of A) is 5% by mass or more and less than 50% by mass, and the content of the (meth) acrylate monomer (B) is 20% by mass or more and less than 80% by mass.
The support material composition is based on 100 parts by mass of the support material composition.
15 parts by mass or more and 75 parts by mass or less of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more,
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b), and
A composition set for optical modeling containing a photopolymerization initiator.
[2] The composition set for optical modeling according to [1], wherein the support material composition includes a water-soluble monofunctional ethylenically unsaturated monomer and a photopolymerization initiator.
[3] The content of the water-soluble monofunctional ethylenically unsaturated monomer is 19 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the support material composition, and the content of the photopolymerization initiator is 2 parts by mass. The composition set for optical modeling according to [2], which is 20 parts by mass or less.
[4] The above [1] to [3], wherein the support material composition contains 0.005 parts by mass or more and 3.0 parts by mass or less of a surface conditioner with respect to 100 parts by mass of the support material composition. The composition set for optical modeling according to any one of the above.
[5] The light according to any one of [1] to [4], wherein the composition for support material contains 30 parts by mass or less of a water-soluble organic solvent with respect to 100 parts by mass of the composition for support material. Composition set for modeling.
[6] The stereolithography composition set according to any one of [1] to [5], wherein the support material composition includes a storage stabilizer.
[7] The colorant contained in the coloring composition for model material is a pigment selected from the group consisting of white, black, cyan, magenta and yellow, according to any one of [1] to [6] above Stereolithography composition set.
[8] The stereolithography composition set according to any one of [1] to [7], further including, as the model material composition, a model material clear composition containing no colorant.
[9] A method for producing a three-dimensional modeled object, wherein a three-dimensional modeled object is manufactured by a material jet stereolithography method using the stereolithography composition set according to any one of [1] to [8].
本発明によれば、サポート材除去時に生じ得る外観的欠陥の発生を抑え、高い成形性、隠蔽性および機械的物性を有する着色された光造形物を高い精度で造形し得る光造形用組成物セットを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the composition for optical modeling which suppresses generation | occurrence | production of the external defect which may arise at the time of support material removal, and can model the colored optical modeling thing which has high moldability, concealment property, and a mechanical physical property with high precision. Set can be offered.
以下に、実施形態を挙げて本発明を説明するが、本発明は以下の実施形態に限定されるものではない。
Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments.
<モデル材用組成物>
本発明の光造形用組成物セットは、モデル材用組成物を含む。本発明の光造形用組成物セットはモデル材用組成物として、着色剤、ホモポリマーとしてのガラス転移温度が25℃以上120℃以下である少なくとも1つの(メタ)アクリレートモノマー(A)、および、ホモポリマーとしてのガラス転移温度が-60℃以上25℃未満である少なくとも1つの(メタ)アクリレートモノマー(B)を含むモデル材用着色組成物であって、該モデル材用着色組成物の総質量に対する、前記(メタ)アクリレートモノマー(A)の含有量が5質量%以上50質量%未満であり、前記(メタ)アクリレートモノマー(B)の含有量が20質量%以上80質量%未満であるモデル材用着色組成物を含む。なお、本発明において「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの総称であり、アクリレートおよびメタクリレートの一方または両方を意味するものである。「(メタ)アクリロイル」、「(メタ)アクリル」等についても同様である。 <Model material composition>
The optical modeling composition set of the present invention includes a model material composition. The composition for optical modeling of the present invention is a model material composition, a colorant, at least one (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer, and A coloring composition for a model material containing at least one (meth) acrylate monomer (B) having a glass transition temperature of −60 ° C. or more and less than 25 ° C. as a homopolymer, the total mass of the coloring material for the model material The content of the (meth) acrylate monomer (A) is 5% by mass or more and less than 50% by mass, and the content of the (meth) acrylate monomer (B) is 20% by mass or more and less than 80% by mass. The coloring composition for materials is included. In the present invention, “(meth) acrylate” is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl”, “(meth) acryl” and the like.
本発明の光造形用組成物セットは、モデル材用組成物を含む。本発明の光造形用組成物セットはモデル材用組成物として、着色剤、ホモポリマーとしてのガラス転移温度が25℃以上120℃以下である少なくとも1つの(メタ)アクリレートモノマー(A)、および、ホモポリマーとしてのガラス転移温度が-60℃以上25℃未満である少なくとも1つの(メタ)アクリレートモノマー(B)を含むモデル材用着色組成物であって、該モデル材用着色組成物の総質量に対する、前記(メタ)アクリレートモノマー(A)の含有量が5質量%以上50質量%未満であり、前記(メタ)アクリレートモノマー(B)の含有量が20質量%以上80質量%未満であるモデル材用着色組成物を含む。なお、本発明において「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの総称であり、アクリレートおよびメタクリレートの一方または両方を意味するものである。「(メタ)アクリロイル」、「(メタ)アクリル」等についても同様である。 <Model material composition>
The optical modeling composition set of the present invention includes a model material composition. The composition for optical modeling of the present invention is a model material composition, a colorant, at least one (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer, and A coloring composition for a model material containing at least one (meth) acrylate monomer (B) having a glass transition temperature of −60 ° C. or more and less than 25 ° C. as a homopolymer, the total mass of the coloring material for the model material The content of the (meth) acrylate monomer (A) is 5% by mass or more and less than 50% by mass, and the content of the (meth) acrylate monomer (B) is 20% by mass or more and less than 80% by mass. The coloring composition for materials is included. In the present invention, “(meth) acrylate” is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl”, “(meth) acryl” and the like.
本発明において、モデル材用着色組成物は、ホモポリマーとしてのガラス転移温度が25℃以上120℃以下である少なくとも1つの(メタ)アクリレートモノマー(A)を含む。モデル材用着色組成物が前記(メタ)アクリレートモノマー(A)を含むことにより、該組成物を光硬化して得られるモデル材に適度な柔らかさと引張強度を付与することができ、また、サポート材除去時に生じ得る外観的欠陥の発生に対する抑制効果を高めることができる。本発明において、(メタ)アクリレートモノマー(A)のガラス転移温度は、好ましくは30℃以上、より好ましくは60℃以上であり、また、好ましくは100℃以下である。
In the present invention, the coloring composition for a model material includes at least one (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer. When the coloring composition for a model material contains the (meth) acrylate monomer (A), an appropriate softness and tensile strength can be imparted to the model material obtained by photocuring the composition, and a support is provided. The suppression effect with respect to generation | occurrence | production of the appearance defect which may arise at the time of material removal can be heightened. In the present invention, the glass transition temperature of the (meth) acrylate monomer (A) is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and preferably 100 ° C. or lower.
なお、本発明において、モノマーのホモポリマー(単独重合体)のガラス転移温度(Tg)は、動的粘弾性測定器(DMA)によって測定される。なお、ホモポリマーのガラス転移温度は、重合度に左右される場合があるが、重量平均分子量20,000以上のホモポリマーを作製して測定すれば、重合度による影響は無視できる。本発明では、重合度による影響が無視できるまで重合させた試料を用いて測定した値を、ガラス転移温度(Tg)とした。
In the present invention, the glass transition temperature (Tg) of the monomer homopolymer (homopolymer) is measured by a dynamic viscoelasticity measuring device (DMA). The glass transition temperature of the homopolymer may depend on the degree of polymerization, but if a homopolymer having a weight average molecular weight of 20,000 or more is prepared and measured, the influence of the degree of polymerization can be ignored. In the present invention, a value measured using a sample polymerized until the influence of the degree of polymerization is negligible is defined as a glass transition temperature (Tg).
(メタ)アクリレートモノマー(A)は、アクリレート化合物であっても、メタクリレート化合物であってもよいが、アクリレート化合物であることが好ましい。単官能(メタ)アクリレートモノマーであってもよく、多官能(メタ)アクリレートモノマーであってもよいが、好ましくは単官能(メタ)アクリレートモノマーである。さらに、(メタ)アクリレートモノマー(A)は、炭化水素環構造を有する(メタ)アクリレートモノマーであることが好ましい。
The (meth) acrylate monomer (A) may be an acrylate compound or a methacrylate compound, but is preferably an acrylate compound. A monofunctional (meth) acrylate monomer or a polyfunctional (meth) acrylate monomer may be used, but a monofunctional (meth) acrylate monomer is preferable. Furthermore, the (meth) acrylate monomer (A) is preferably a (meth) acrylate monomer having a hydrocarbon ring structure.
上記(メタ)アクリレートモノマー(A)として、具体的には、イソボルニルアクリレート、イソボルニルメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、t-ブチルアクリレート、t-ブチルメタクリレート、t-ブチルシクロヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、フェニルアクリレート、フェニルメタクリレート、ベンジルアクリレート、ベンジルメタクリレート、フェネチルアクリレート、フェネチルメタクリレート、ジシクロペンタニルアクリレート、2-ヒドロキシエチルメタクリレート、2-メタクリロイロキシエチルヘキサヒドロフタル酸、3-ヒドロキシプロピルメタクリレート、2-メタクリロイロキシエチルフタル酸、3,3,5-トリメチルシクロヘキシルアクリレート、3,3,5-トリメチルシクロヘキシルメタクリレート、ジシクロペンテニルアクリレート、1,6-ヘキサンジオールジアクリレートが挙げられる。これらは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、(メタ)アクリレートモノマー(A)としては、イソボルニルアクリレート、t-ブチルシクロヘキシルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、および、ジシクロペンタニルアクリレートよりなる群から選ばれたモノマーを含むことが好ましく、イソボルニルアクリレートおよび/または3,3,5-トリメチルシクロヘキシルアクリレートを含むことがより好ましい。これらの化合物を含むことにより、得られるモデル材の引張強度を向上させることができ、また、サポート材除去時に生じ得る外観的欠陥の発生に対する抑制効果を高めることができる。 Specific examples of the (meth) acrylate monomer (A) include isobornyl acrylate, isobornyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, t-butyl acrylate, t-butyl methacrylate, t-butylcyclohexyl acrylate, and methyl methacrylate. , Ethyl methacrylate, propyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, phenethyl acrylate, phenethyl methacrylate, dicyclopentanyl acrylate, 2-hydroxyethyl methacrylate, 2-methacryloyloxyethyl hexahydrophthalic acid, 3- Hydroxypropyl methacrylate, 2-methacryloyloxyethylphthalic acid, 3, , 5-trimethyl cyclohexyl acrylate, 3,3,5-trimethylcyclohexyl methacrylate, dicyclopentenyl acrylate, 1,6-hexanediol diacrylate. These may be used alone or in combination of two or more.
Among these, the (meth) acrylate monomer (A) was selected from the group consisting of isobornyl acrylate, t-butylcyclohexyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, and dicyclopentanyl acrylate. It preferably contains a monomer, and more preferably contains isobornyl acrylate and / or 3,3,5-trimethylcyclohexyl acrylate. By including these compounds, the tensile strength of the resulting model material can be improved, and the effect of suppressing the appearance defects that can occur when the support material is removed can be enhanced.
これらの中でも、(メタ)アクリレートモノマー(A)としては、イソボルニルアクリレート、t-ブチルシクロヘキシルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、および、ジシクロペンタニルアクリレートよりなる群から選ばれたモノマーを含むことが好ましく、イソボルニルアクリレートおよび/または3,3,5-トリメチルシクロヘキシルアクリレートを含むことがより好ましい。これらの化合物を含むことにより、得られるモデル材の引張強度を向上させることができ、また、サポート材除去時に生じ得る外観的欠陥の発生に対する抑制効果を高めることができる。 Specific examples of the (meth) acrylate monomer (A) include isobornyl acrylate, isobornyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, t-butyl acrylate, t-butyl methacrylate, t-butylcyclohexyl acrylate, and methyl methacrylate. , Ethyl methacrylate, propyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, phenethyl acrylate, phenethyl methacrylate, dicyclopentanyl acrylate, 2-hydroxyethyl methacrylate, 2-methacryloyloxyethyl hexahydrophthalic acid, 3- Hydroxypropyl methacrylate, 2-methacryloyloxyethylphthalic acid, 3, , 5-trimethyl cyclohexyl acrylate, 3,3,5-trimethylcyclohexyl methacrylate, dicyclopentenyl acrylate, 1,6-hexanediol diacrylate. These may be used alone or in combination of two or more.
Among these, the (meth) acrylate monomer (A) was selected from the group consisting of isobornyl acrylate, t-butylcyclohexyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, and dicyclopentanyl acrylate. It preferably contains a monomer, and more preferably contains isobornyl acrylate and / or 3,3,5-trimethylcyclohexyl acrylate. By including these compounds, the tensile strength of the resulting model material can be improved, and the effect of suppressing the appearance defects that can occur when the support material is removed can be enhanced.
モデル材用着色組成物における前記(メタ)アクリレートモノマー(A)の含有量は、該モデル材用着色組成物の総質量に対して、5質量%以上50質量%未満である。(メタ)アクリレートモノマー(A)の含有量が5質量%未満であると、該組成物を光硬化して得られるモデル材の強度が低下する傾向にある。また、50質量%以上であるとモデル材に適度な柔らかさを付与することが困難となる。(メタ)アクリレートモノマー(A)の含有量は、該モデル材用着色組成物の総質量に対して、好ましくは8質量%以上、より好ましくは10質量%以上であり、また、好ましくは45質量%以下、より好ましくは42質量%以下である。
The content of the (meth) acrylate monomer (A) in the coloring composition for model material is 5% by mass or more and less than 50% by mass with respect to the total mass of the coloring composition for model material. When the content of the (meth) acrylate monomer (A) is less than 5% by mass, the strength of the model material obtained by photocuring the composition tends to decrease. Moreover, it becomes difficult to provide moderate softness to a model material as it is 50 mass% or more. The content of the (meth) acrylate monomer (A) is preferably 8% by mass or more, more preferably 10% by mass or more, and preferably 45% by mass with respect to the total mass of the coloring composition for model material. % Or less, more preferably 42% by mass or less.
本発明において、モデル材用着色組成物は、ホモポリマーとしてのガラス転移温度が-60℃以上25℃未満である少なくとも1つの(メタ)アクリレートモノマー(B)を含む。モデル材用着色組成物が前記(メタ)アクリレートモノマー(B)を含むことにより、該組成物を光硬化して得られるモデル材に適度な柔らかさと引張強度を付与することができ、また、成形性を向上させることができる。本発明において、(メタ)アクリレートモノマー(B)のガラス転移温度は、好ましくは-30℃以上、より好ましくは-10℃以上であり、また、好ましくは10℃以下である。
In the present invention, the coloring composition for a model material includes at least one (meth) acrylate monomer (B) having a glass transition temperature of −60 ° C. or higher and lower than 25 ° C. as a homopolymer. When the coloring composition for a model material contains the (meth) acrylate monomer (B), an appropriate softness and tensile strength can be imparted to the model material obtained by photocuring the composition, and molding is performed. Can be improved. In the present invention, the glass transition temperature of the (meth) acrylate monomer (B) is preferably −30 ° C. or higher, more preferably −10 ° C. or higher, and preferably 10 ° C. or lower.
(メタ)アクリレートモノマー(B)は、アクリレート化合物であっても、メタクリレート化合物であってもよいが、アクリレート化合物であることが好ましい。単官能(メタ)アクリレートモノマーであってもよく、多官能(メタ)アクリレートモノマーであってもよいが、好ましくは単官能(メタ)アクリレートモノマーである。さらに、(メタ)アクリレートモノマー(B)は、エーテル結合および/または炭素数8以上のアルキル基を有する(メタ)アクリレートモノマーであることが好ましい。
The (meth) acrylate monomer (B) may be an acrylate compound or a methacrylate compound, but is preferably an acrylate compound. A monofunctional (meth) acrylate monomer or a polyfunctional (meth) acrylate monomer may be used, but a monofunctional (meth) acrylate monomer is preferable. Furthermore, the (meth) acrylate monomer (B) is preferably a (meth) acrylate monomer having an ether bond and / or an alkyl group having 8 or more carbon atoms.
上記(メタ)アクリレートモノマー(B)として、具体的には、長鎖アルキル(炭素数8以上)アクリレート化合物、ポリエチレンオキサイドまたはポリプロピレンオキサイド鎖を有するアクリレート化合物、および、フェノキシエチルアクリレート化合物が好ましく挙げられる。
Specific examples of the (meth) acrylate monomer (B) preferably include a long-chain alkyl (8 or more carbon atoms) acrylate compound, an acrylate compound having a polyethylene oxide or polypropylene oxide chain, and a phenoxyethyl acrylate compound.
長鎖アルキルアクリレート化合物としては、例えば、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-ノニルアクリレート、n-デシルアクリレート、イソオクチルアクリレート、n-ラウリルアクリレート、n-トリデシルアクリレート、n-セチルアクリレート、n-ステアリルアクリレート、イソミリスチルアクリレート、イソステアリルアクリレート等が挙げられる。
Examples of the long-chain alkyl acrylate compound include 2-ethylhexyl acrylate, n-octyl acrylate, n-nonyl acrylate, n-decyl acrylate, isooctyl acrylate, n-lauryl acrylate, n-tridecyl acrylate, n-cetyl acrylate, Examples thereof include n-stearyl acrylate, isomyristyl acrylate, and isostearyl acrylate.
ポリエチレンオキサイドまたはポリプロピレンオキサイド鎖を有するアクリレート化合物としては、例えば、(ポリ)エチレングリコールモノアクリレート、(ポリ)エチレングリコールアクリレートメチルエステル、(ポリ)エチレングリコールアクリレートエチルエステル、(ポリ)エチレングリコールアクリレートフェニルエステル、(ポリ)プロピレングリコールモノアクリレート、(ポリ)プロピレングリコールモノアクリレートフェニルエステル、(ポリ)プロピレングリコールアクリレートメチルエステル、(ポリ)プロピレングリコールアクリレートエチルエステル、メトキシトリエチレングリコールアクリレート、メトキシジプロピレングリコールアクリレート、エトキシジエチレングリコールアクリレート(エトキシエトキシエチルアクリレート)、メトキシポリエチレングリコールアクリレート等が挙げられる。
Examples of the acrylate compound having a polyethylene oxide or polypropylene oxide chain include (poly) ethylene glycol monoacrylate, (poly) ethylene glycol acrylate methyl ester, (poly) ethylene glycol acrylate ethyl ester, (poly) ethylene glycol acrylate phenyl ester, (Poly) propylene glycol monoacrylate, (poly) propylene glycol monoacrylate phenyl ester, (poly) propylene glycol acrylate methyl ester, (poly) propylene glycol acrylate ethyl ester, methoxytriethylene glycol acrylate, methoxydipropylene glycol acrylate, ethoxydiethylene glycol Acrylate (Ethoxy Butoxyethyl acrylate), methoxy polyethylene glycol acrylate.
フェノキシエチルアクリレート化合物としては、例えば、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ノニルフェノールエチレンオキサイド付加物アクリレート等が挙げられる。
Examples of the phenoxyethyl acrylate compound include phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, phenoxy polyethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, and nonylphenol ethylene oxide adduct acrylate.
また、(メタ)アクリレートモノマー(B)としては、テトラヒドロフルフリルアクリレートや、アクリル酸2-(N-ブチルカルバモイルオキシ)エチル(1,2-エタンジオール 1-アクリラート 2-(N-ブチルカルバマート))も好ましく挙げられる。
Examples of the (meth) acrylate monomer (B) include tetrahydrofurfuryl acrylate and 2- (N-butylcarbamoyloxy) ethyl acrylate (1,2-ethanediol 1-acrylate 2- (N-butylcarbamate) ) Is also preferred.
これらの中でも、(メタ)アクリレートモノマー(B)としては、フェノキシエチルアクリレート、n-ステアリルアクリレート、イソデシルアクリレート、エトキシエトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、n-ラウリルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、イソオクチルアクリレート、n-トリデシルアクリレート、および、アクリル酸2-(N-ブチルカルバモイルオキシ)エチルよりなる群から選ばれたモノマーを含むことが好ましく、フェノキシエチルアクリレートおよび/またはn-ステアリルアクリレートを含むことがより好ましく、フェノキシエチルアクリレートを含むことがさらに好ましい。これらの化合物を含むことにより、得られるモデル材の引張強度を向上させることができ、また、成形性を向上させることもできる。上記化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Among these, as the (meth) acrylate monomer (B), phenoxyethyl acrylate, n-stearyl acrylate, isodecyl acrylate, ethoxyethoxyethyl acrylate, tetrahydrofurfuryl acrylate, n-lauryl acrylate, n-octyl acrylate, n- It preferably contains a monomer selected from the group consisting of decyl acrylate, isooctyl acrylate, n-tridecyl acrylate, and 2- (N-butylcarbamoyloxy) ethyl acrylate, and includes phenoxyethyl acrylate and / or n-stearyl. It is more preferable that acrylate is included, and it is further preferable that phenoxyethyl acrylate is included. By including these compounds, the tensile strength of the resulting model material can be improved, and the moldability can also be improved. The said compound may be used individually by 1 type, and may be used in combination of 2 or more type.
モデル材用着色組成物における前記(メタ)アクリレートモノマー(B)の含有量は、該モデル材用着色組成物の総質量に対して、20質量%以上80質量%未満である。(メタ)アクリレートモノマー(B)の含有量が20質量%未満であると、適度な柔軟性を付与することが困難となる。また、80質量%以上であると、ガラス転移温度(Tg)が低下するためモデル材表面がべた付き、粘着性が発現しやすくなる。(メタ)アクリレートモノマー(A)の含有量は、該モデル材用着色組成物の総質量に対して、好ましくは25質量%以上、より好ましくは30質量%以上であり、また、好ましくは75質量%以下、より好ましくは70質量%以下である。
The content of the (meth) acrylate monomer (B) in the colored composition for model material is 20% by mass or more and less than 80% by mass with respect to the total mass of the colored composition for model material. When the content of the (meth) acrylate monomer (B) is less than 20% by mass, it becomes difficult to impart appropriate flexibility. On the other hand, if it is 80% by mass or more, the glass transition temperature (Tg) is lowered, so that the surface of the model material becomes sticky, and the tackiness is easily developed. The content of the (meth) acrylate monomer (A) is preferably 25% by mass or more, more preferably 30% by mass or more, and preferably 75% by mass with respect to the total mass of the coloring composition for model material. % Or less, more preferably 70% by mass or less.
本発明において、モデル材用着色組成物は、重量平均分子量が2,000以上20,000以下の2官能(メタ)アクリレートオリゴマー(C)を含むことが好ましい。(メタ)アクリレートオリゴマー(C)は、アクリロイルオキシ基および/またはメタクリロイルオキシ基を合計2つ有するオリゴマーであり、アクリロイルオキシ基を有していることが好ましい。1官能の(メタ)アクリレートオリゴマーのみを用いた場合には、得られるモデル材の引張強度が劣る傾向にあり、3官能以上の(メタ)アクリレートオリゴマーのみを用いた場合には、得られるモデル材は柔らかさに劣る傾向にあるところ、上記2官能(メタ)アクリレートオリゴマー(C)を含むことにより、得られるモデル材に適度な柔らかさと引張強度をバランスよく付与することができる。
In the present invention, the coloring composition for a model material preferably contains a bifunctional (meth) acrylate oligomer (C) having a weight average molecular weight of 2,000 or more and 20,000 or less. The (meth) acrylate oligomer (C) is an oligomer having a total of two acryloyloxy groups and / or methacryloyloxy groups, and preferably has an acryloyloxy group. When only a monofunctional (meth) acrylate oligomer is used, the tensile strength of the resulting model material tends to be inferior, and when only a trifunctional or higher (meth) acrylate oligomer is used, the resulting model material is obtained. Is inferior in softness, but by including the bifunctional (meth) acrylate oligomer (C), appropriate softness and tensile strength can be imparted to the obtained model material in a balanced manner.
(メタ)アクリレートオリゴマー(C)の重量平均分子量は、好ましくは2,000以上、より好ましくは5,000以上、さらに好ましくは10,000以上であり、また、好ましくは20,000以下である。なお、(メタ)アクリレートオリゴマー(C)の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定できる。
The weight average molecular weight of the (meth) acrylate oligomer (C) is preferably 2,000 or more, more preferably 5,000 or more, still more preferably 10,000 or more, and preferably 20,000 or less. In addition, the weight average molecular weight of the (meth) acrylate oligomer (C) can be measured by gel permeation chromatography (GPC).
また、(メタ)アクリレートオリゴマー(C)の25℃におけるヤング率は、1~100MPaであることが好ましく、2~80MPaであることがより好ましく、3~50MPaであることがさらに好ましく、10~30MPaであることが特に好ましい。上記範囲であれば、得られるモデル材に適度な柔らかさと引張強度を付与することができる。
本発明における(メタ)アクリレートオリゴマー(C)の25℃におけるヤング率とは、(メタ)アクリレートオリゴマー(C)の単独重合体(ホモポリマー)の25℃におけるヤング率である。 In addition, the Young's modulus at 25 ° C. of the (meth) acrylate oligomer (C) is preferably 1 to 100 MPa, more preferably 2 to 80 MPa, further preferably 3 to 50 MPa, and 10 to 30 MPa. It is particularly preferred that If it is the said range, moderate softness and tensile strength can be provided to the model material obtained.
The Young's modulus at 25 ° C. of the (meth) acrylate oligomer (C) in the present invention is the Young's modulus at 25 ° C. of the homopolymer (homopolymer) of the (meth) acrylate oligomer (C).
本発明における(メタ)アクリレートオリゴマー(C)の25℃におけるヤング率とは、(メタ)アクリレートオリゴマー(C)の単独重合体(ホモポリマー)の25℃におけるヤング率である。 In addition, the Young's modulus at 25 ° C. of the (meth) acrylate oligomer (C) is preferably 1 to 100 MPa, more preferably 2 to 80 MPa, further preferably 3 to 50 MPa, and 10 to 30 MPa. It is particularly preferred that If it is the said range, moderate softness and tensile strength can be provided to the model material obtained.
The Young's modulus at 25 ° C. of the (meth) acrylate oligomer (C) in the present invention is the Young's modulus at 25 ° C. of the homopolymer (homopolymer) of the (meth) acrylate oligomer (C).
なお、本発明における25℃におけるヤング率の測定は、例えば、以下の方法に従い測定できる:Irgacure819(BASF社製)2質量%、Irgacure184(BASF社製)2質量%、および、測定するオリゴマー96質量%を混合した液体をバーコーターにて100μmの塗布膜を形成し、紫外線(UV)露光機にて硬化させる。この時、硬化膜の重合度の影響が無視できる程度まで硬化をさせる。この硬化膜を15mm×50mmの短冊状に切り出し、引っ張り試験機(オートグラフAGS-X 5KN、(株)島津製作所製)にてヤング率を測定する。また、ヤング率の値は、1%の伸びの部分で測定する。例えば、長軸方向に引っ張り、上下約10mm部分をクランプにより掴めばよい。
The Young's modulus at 25 ° C. in the present invention can be measured, for example, according to the following method: Irgacure 819 (BASF) 2 mass%, Irgacure 184 (BASF) 2 mass%, and oligomer to be measured 96 mass A 100 μm coating film is formed with a bar coater from the mixed liquid, and cured with an ultraviolet (UV) exposure machine. At this time, curing is performed to such an extent that the influence of the degree of polymerization of the cured film can be ignored. This cured film is cut into a 15 mm × 50 mm strip and the Young's modulus is measured with a tensile tester (Autograph AGS-X, 5KN, manufactured by Shimadzu Corporation). The value of Young's modulus is measured at the 1% elongation. For example, it may be pulled in the long axis direction and the upper and lower portions of about 10 mm may be grasped by the clamp.
(メタ)アクリレートオリゴマー(C)としては、例えば、アクリロイルオキシ基および/またはメタクリロイルオキシ基を計2つ有するMw2,000以上20,000以下のオリゴマーであれば、特に限定されるものではなく、例えば、オレフィン系(エチレンオリゴマー、プロピレンオリゴマーブテンオリゴマー等)、ビニル系(スチレンオリゴマー、ビニルアルコールオリゴマー、ビニルピロリドンオリゴマー、アクリル樹脂オリゴマー等)、ジエン系(ブタジエンオリゴマー、クロロプレンゴム、ペンタジエンオリゴマー等)、開環重合系(ジ-,トリ-,テトラエチレングリコール、ポリエチレングリコール、ポリエチルイミン等)、重付加系(オリゴエステルアクリレート、ポリアミドオリゴマー、ポリイソシアネートオリゴマー)、付加縮合オリゴマー(フェノール樹脂、アミノ樹脂、キシレン樹脂、ケトン樹脂等)等を挙げることができる。
これらの中でも、ウレタンアクリレートオリゴマー、ポリエステルアクリレートオリゴマー、または、エポキシアクリレートオリゴマーが好ましく、ウレタンアクリレートオリゴマー、または、ポリエステル鎖を有するウレタンアクリレートオリゴマーがより好ましく、ウレタンアクリレートオリゴマーがさらに好ましい。 The (meth) acrylate oligomer (C) is not particularly limited as long as it is an oligomer having an Mw of 2,000 or more and 20,000 or less having a total of two acryloyloxy groups and / or methacryloyloxy groups. Olefin (ethylene oligomer, propylene oligomer butene oligomer, etc.), vinyl (styrene oligomer, vinyl alcohol oligomer, vinyl pyrrolidone oligomer, acrylic resin oligomer, etc.), diene (butadiene oligomer, chloroprene rubber, pentadiene oligomer, etc.), ring opening Polymerization system (di-, tri-, tetraethylene glycol, polyethylene glycol, polyethylimine, etc.), polyaddition system (oligoester acrylate, polyamide oligomer, polyisocyanate oligo) Chromatography), addition-condensation oligomer (a phenolic resin, amino resins, xylene resins, ketone resins, etc.) and the like.
Among these, a urethane acrylate oligomer, a polyester acrylate oligomer, or an epoxy acrylate oligomer is preferable, a urethane acrylate oligomer or a urethane acrylate oligomer having a polyester chain is more preferable, and a urethane acrylate oligomer is more preferable.
これらの中でも、ウレタンアクリレートオリゴマー、ポリエステルアクリレートオリゴマー、または、エポキシアクリレートオリゴマーが好ましく、ウレタンアクリレートオリゴマー、または、ポリエステル鎖を有するウレタンアクリレートオリゴマーがより好ましく、ウレタンアクリレートオリゴマーがさらに好ましい。 The (meth) acrylate oligomer (C) is not particularly limited as long as it is an oligomer having an Mw of 2,000 or more and 20,000 or less having a total of two acryloyloxy groups and / or methacryloyloxy groups. Olefin (ethylene oligomer, propylene oligomer butene oligomer, etc.), vinyl (styrene oligomer, vinyl alcohol oligomer, vinyl pyrrolidone oligomer, acrylic resin oligomer, etc.), diene (butadiene oligomer, chloroprene rubber, pentadiene oligomer, etc.), ring opening Polymerization system (di-, tri-, tetraethylene glycol, polyethylene glycol, polyethylimine, etc.), polyaddition system (oligoester acrylate, polyamide oligomer, polyisocyanate oligo) Chromatography), addition-condensation oligomer (a phenolic resin, amino resins, xylene resins, ketone resins, etc.) and the like.
Among these, a urethane acrylate oligomer, a polyester acrylate oligomer, or an epoxy acrylate oligomer is preferable, a urethane acrylate oligomer or a urethane acrylate oligomer having a polyester chain is more preferable, and a urethane acrylate oligomer is more preferable.
ウレタンアクリレートオリゴマー、ポリエステルアクリレートオリゴマー、および、エポキシアクリレートオリゴマーとしては、オリゴマーハンドブック(古川淳二監修、(株)化学工業日報社)を参照することができる。
また、(メタ)アクリレートオリゴマー(C)としては、新中村化学工業(株)、サートマー・ジャパン(株)、ダイセル・サイテック(株)、Rahn A.G.社等により市販されているもので上記条件に該当するものを用いることができる。
(メタ)アクリレートオリゴマー(C)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the urethane acrylate oligomer, polyester acrylate oligomer, and epoxy acrylate oligomer, the oligomer handbook (supervised by Junji Furukawa, Chemical Industry Daily Co., Ltd.) can be referred to.
In addition, examples of the (meth) acrylate oligomer (C) include Shin-Nakamura Chemical Co., Ltd., Sartomer Japan Co., Ltd., Daicel Cytec Co., Ltd., Rahn A.C. G. Those that are commercially available from companies and the like and that meet the above conditions can be used.
(Meth) acrylate oligomer (C) may be used individually by 1 type, and may be used in combination of 2 or more type.
また、(メタ)アクリレートオリゴマー(C)としては、新中村化学工業(株)、サートマー・ジャパン(株)、ダイセル・サイテック(株)、Rahn A.G.社等により市販されているもので上記条件に該当するものを用いることができる。
(メタ)アクリレートオリゴマー(C)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the urethane acrylate oligomer, polyester acrylate oligomer, and epoxy acrylate oligomer, the oligomer handbook (supervised by Junji Furukawa, Chemical Industry Daily Co., Ltd.) can be referred to.
In addition, examples of the (meth) acrylate oligomer (C) include Shin-Nakamura Chemical Co., Ltd., Sartomer Japan Co., Ltd., Daicel Cytec Co., Ltd., Rahn A.C. G. Those that are commercially available from companies and the like and that meet the above conditions can be used.
(Meth) acrylate oligomer (C) may be used individually by 1 type, and may be used in combination of 2 or more type.
モデル材用着色組成物が(メタ)アクリレートオリゴマー(C)を含む場合、その含有量は、該モデル材用着色組成物の総質量に対して、好ましくは5質量%以上30質量%未満であり、より好ましくは8質量%以上25質量%未満である。
When the coloring composition for model materials contains the (meth) acrylate oligomer (C), the content thereof is preferably 5% by mass or more and less than 30% by mass with respect to the total mass of the coloring composition for model materials. More preferably, it is 8 mass% or more and less than 25 mass%.
また、本発明に用いられるモデル材用着色組成物は、(メタ)アクリレートモノマー(A)、(メタ)アクリレートモノマー(B)および(メタ)アクリレートオリゴマー(C)以外の重合性化合物(以下、「その他の重合性化合物」ともいう。)を含有していてもよい。その他の重合性化合物としては、アクリレート化合物が好ましい。
その他の重合性化合物に含まれるモノマーとしては、N-ビニル化合物、ビニルエーテル化合物、(メタ)アクリレートモノマー(A)および(メタ)アクリレートモノマー(B)に該当しない単官能(メタ)アクリレート化合物、(メタ)アクリレートモノマー(A)および(メタ)アクリレートモノマー(B)に該当せず、かつ分子量または重量平均分子量が2,000未満の2官能以上のアクリレート化合物等が挙げられる。
その他の重合性化合物に含まれるオリゴマーやポリマーとしては、単官能または3官能以上の重量平均分子量が2,000~20,000の(メタ)アクリレート化合物や、分子量が20,000を超える(メタ)アクリレート化合物等が挙げられる。 Moreover, the coloring composition for model materials used for this invention is polymerizable compounds other than (meth) acrylate monomer (A), (meth) acrylate monomer (B), and (meth) acrylate oligomer (C) (henceforth " It may also be referred to as “other polymerizable compounds”. As other polymerizable compounds, acrylate compounds are preferred.
As other monomers contained in the polymerizable compound, N-vinyl compounds, vinyl ether compounds, (meth) acrylate monomers (A) and monofunctional (meth) acrylate compounds not corresponding to (meth) acrylate monomers (B), (meth And bifunctional or higher acrylate compounds that do not correspond to the acrylate monomer (A) and the (meth) acrylate monomer (B) and have a molecular weight or weight average molecular weight of less than 2,000.
Other oligomers and polymers included in other polymerizable compounds include monofunctional or trifunctional or higher functional (meth) acrylate compounds having a weight average molecular weight of 2,000 to 20,000, and molecular weights exceeding 20,000 (meth). An acrylate compound etc. are mentioned.
その他の重合性化合物に含まれるモノマーとしては、N-ビニル化合物、ビニルエーテル化合物、(メタ)アクリレートモノマー(A)および(メタ)アクリレートモノマー(B)に該当しない単官能(メタ)アクリレート化合物、(メタ)アクリレートモノマー(A)および(メタ)アクリレートモノマー(B)に該当せず、かつ分子量または重量平均分子量が2,000未満の2官能以上のアクリレート化合物等が挙げられる。
その他の重合性化合物に含まれるオリゴマーやポリマーとしては、単官能または3官能以上の重量平均分子量が2,000~20,000の(メタ)アクリレート化合物や、分子量が20,000を超える(メタ)アクリレート化合物等が挙げられる。 Moreover, the coloring composition for model materials used for this invention is polymerizable compounds other than (meth) acrylate monomer (A), (meth) acrylate monomer (B), and (meth) acrylate oligomer (C) (henceforth " It may also be referred to as “other polymerizable compounds”. As other polymerizable compounds, acrylate compounds are preferred.
As other monomers contained in the polymerizable compound, N-vinyl compounds, vinyl ether compounds, (meth) acrylate monomers (A) and monofunctional (meth) acrylate compounds not corresponding to (meth) acrylate monomers (B), (meth And bifunctional or higher acrylate compounds that do not correspond to the acrylate monomer (A) and the (meth) acrylate monomer (B) and have a molecular weight or weight average molecular weight of less than 2,000.
Other oligomers and polymers included in other polymerizable compounds include monofunctional or trifunctional or higher functional (meth) acrylate compounds having a weight average molecular weight of 2,000 to 20,000, and molecular weights exceeding 20,000 (meth). An acrylate compound etc. are mentioned.
モデル材用着色組成物が、(メタ)アクリレートモノマー(A)、(メタ)アクリレートモノマー(B)および(メタ)アクリレートオリゴマー(C)以外のモノマーを含有する場合、その含有量は、(メタ)アクリレートモノマー(A)、(メタ)アクリレートモノマー(B)および(メタ)アクリレートオリゴマー(C)の含有量のいずれよりも少ないことが好ましい。
When the coloring composition for a model material contains a monomer other than the (meth) acrylate monomer (A), the (meth) acrylate monomer (B) and the (meth) acrylate oligomer (C), the content thereof is (meth) The content is preferably smaller than any of the contents of the acrylate monomer (A), the (meth) acrylate monomer (B), and the (meth) acrylate oligomer (C).
本発明において、モデル材用着色組成物は光重合開始剤を含むことが好ましい。本発明において用いられる光重合開始剤としては、特に限定されず、公知の光重合開始剤を使用することができる。光重合開始剤は、1種のみを単独で使用してもよく、2種以上を併用してもよい。本発明に用いることのできる光重合開始剤は、活性光線照射による外部エネルギーを吸収して重合開始種を生成する化合物である。
光重合開始剤は、光ラジカル重合開始剤であることが好ましい。 In this invention, it is preferable that the coloring composition for model materials contains a photoinitiator. It does not specifically limit as a photoinitiator used in this invention, A well-known photoinitiator can be used. A photoinitiator may be used individually by 1 type and may use 2 or more types together. The photopolymerization initiator that can be used in the present invention is a compound that generates a polymerization initiating species by absorbing external energy by irradiation with actinic rays.
The photopolymerization initiator is preferably a radical photopolymerization initiator.
光重合開始剤は、光ラジカル重合開始剤であることが好ましい。 In this invention, it is preferable that the coloring composition for model materials contains a photoinitiator. It does not specifically limit as a photoinitiator used in this invention, A well-known photoinitiator can be used. A photoinitiator may be used individually by 1 type and may use 2 or more types together. The photopolymerization initiator that can be used in the present invention is a compound that generates a polymerization initiating species by absorbing external energy by irradiation with actinic rays.
The photopolymerization initiator is preferably a radical photopolymerization initiator.
光ラジカル重合開始剤としては芳香族ケトン類、アシルホスフィン化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、および、アルキルアミン化合物等が挙げられる。これらの光ラジカル重合開始剤は、単独又は組み合わせて使用してもよい。また、例えば、同じ種類の中から複数の種類を併用することもできる。本発明における光ラジカル重合開始剤は単独または2種以上の併用によって好適に用いられる。上記光ラジカル重合開始剤についての詳細は、特開2009-185186号公報に記載されている。
As radical photopolymerization initiators, aromatic ketones, acylphosphine compounds, aromatic onium salt compounds, organic peroxides, thio compounds, hexaarylbiimidazole compounds, ketoxime ester compounds, borate compounds, azinium compounds, metallocene compounds, Examples thereof include active ester compounds, compounds having a carbon halogen bond, and alkylamine compounds. These photo radical polymerization initiators may be used alone or in combination. Further, for example, a plurality of types can be used in combination from the same type. The radical photopolymerization initiator in the present invention is preferably used alone or in combination of two or more. Details of the photo radical polymerization initiator are described in JP-A-2009-185186.
中でも、α-ヒドロキシケトン化合物およびアシルフォスフィンオキサイド化合物よりなる群から選択された光重合開始剤(以下、「特定光重合開始剤」ともいう。)を含有することが好ましい。これら特定光重合開始剤を含有することにより、得られるモデル材の柔らかさおよび引張強度に優れ、また、光重合開始剤の残留物や分解物等に由来する着色を少なくすることができる。
Among these, it is preferable to contain a photopolymerization initiator selected from the group consisting of an α-hydroxyketone compound and an acylphosphine oxide compound (hereinafter also referred to as “specific photopolymerization initiator”). By containing these specific photopolymerization initiators, the resulting model material is excellent in softness and tensile strength, and coloring derived from a residue or decomposition product of the photopolymerization initiator can be reduced.
アシルフォスフィンオキサイド化合物は、モノアシルフォスフィンオキサイド化合物、ビスアシルフォスフィンオキサイド化合物のいずれであってもよいが、ビスアシルフォスフィンオキサイド化合物であることが好ましい。
また、本発明においてモデル材用着色組成物は、1種以上のα-ヒドロキシケトン化合物、および、1種以上のアシルフォスフィンオキサイド化合物を含有することが好ましい。上記2種の化合物を光重合開始剤として含むことにより、柔らかさおよび引張強度により優れるモデル材を得ることができる。 The acyl phosphine oxide compound may be either a monoacyl phosphine oxide compound or a bisacyl phosphine oxide compound, but is preferably a bisacyl phosphine oxide compound.
In the present invention, the coloring composition for a model material preferably contains one or more α-hydroxyketone compounds and one or more acylphosphine oxide compounds. By including the two types of compounds as photopolymerization initiators, a model material that is superior in softness and tensile strength can be obtained.
また、本発明においてモデル材用着色組成物は、1種以上のα-ヒドロキシケトン化合物、および、1種以上のアシルフォスフィンオキサイド化合物を含有することが好ましい。上記2種の化合物を光重合開始剤として含むことにより、柔らかさおよび引張強度により優れるモデル材を得ることができる。 The acyl phosphine oxide compound may be either a monoacyl phosphine oxide compound or a bisacyl phosphine oxide compound, but is preferably a bisacyl phosphine oxide compound.
In the present invention, the coloring composition for a model material preferably contains one or more α-hydroxyketone compounds and one or more acylphosphine oxide compounds. By including the two types of compounds as photopolymerization initiators, a model material that is superior in softness and tensile strength can be obtained.
α-ヒドロキシケトン化合物としては、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。
Examples of α-hydroxyketone compounds include 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-2-methyl-1-phenyl Propan-1-one, 1-hydroxycyclohexyl phenyl ketone and the like can be mentioned.
アシルフォスフィンオキサイド化合物としては、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-2-メトキシフェニルフォスフィンオキサイド、ビス(2,6-ジメチルベンゾイル)-2-メトキシフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジメトキシフェニルフォスフィンオキサイド、ビス(2,6-ジメチルベンゾイル)-2,4-ジメトキシフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジペンチルオキシフェニルフォスフィンオキサイド、ビス(2,6-ジメチルベンゾイル)-2,4-ジペンチルオキシフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルエトキシフェニルフォスフィンオキサイド、2,6-ジメチルベンゾイルエトキシフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルメトキシフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメチルベンゾイルメトキシフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル(4-ペンチルオキシフェニル)フェニルフォスフィンオキサイド、2,6-ジメチルベンゾイル(4-ペンチルオキシフェニル)フェニルフォスフィンオキサイドが挙げられる。これらの特定光重合開始剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Acylphosphine oxide compounds include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethylbenzoyl) phenylphosphine oxide, bis (2,4,6-trimethylbenzoyl)- 2-methoxyphenylphosphine oxide, bis (2,6-dimethylbenzoyl) -2-methoxyphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,4-dimethoxyphenylphosphine oxide, bis ( 2,6-Dimethylbenzoyl) -2,4-dimethoxyphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,4-dipentyloxyphenylphosphine oxide, bis (2,6-dimethylbenzoyl) -2, -Dipentyloxyphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, 2,6-dimethyl Benzoylethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethylbenzoylmethoxyphenylphosphine oxide, 2,4 6-trimethylbenzoyl (4-pentyloxyphenyl) phenylphosphine oxide, 2,6-dimethylbenzoyl (4-pentyloxyphenyl) phenylphosphine oxide Side, and the like. These specific photopolymerization initiators may be used alone or in combination of two or more.
モデル材用着色組成物における特定光重合開始剤の含有量は、モデル材用着色組成物の総質量に対して、好ましくは1~20質量%であり、より好ましくは2~15質量%であり、さらに好ましくは5~15質量%ある。特定光重合開始剤の含有量が上記範囲であると、柔らかさおよび引張強度により優れるモデル材を得ることができる。
The content of the specific photopolymerization initiator in the colored composition for model material is preferably 1 to 20% by mass, more preferably 2 to 15% by mass with respect to the total mass of the colored composition for model material. More preferably, the content is 5 to 15% by mass. When the content of the specific photopolymerization initiator is in the above range, a model material that is superior in softness and tensile strength can be obtained.
また、モデル材用着色組成物は、光重合開始剤として、特定の活性エネルギー線を吸収して重合開始剤の分解を促進させるため、増感剤として機能する化合物(以下、単に「増感剤」ともいう)を含有してもよい。
増感剤としては、例えば、多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン、2-エチル-9,10-ジメトキシアントラセン等)、キサンテン類(例えば、フルオレッセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル等)、シアニン類(例えば、チアカルボシアニン、オキサカルボシアニン等)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン等)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー等)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン等)、アントラキノン類(例えば、アントラキノン等)、スクアリウム類(例えば、スクアリウム等)、クマリン類(例えば、7-ジエチルアミノ-4-メチルクマリン等)、チオキサントン類(例えば、イソプロピルチオキサントン等)、チオクロマノン類(例えば、チオクロマノン等)等が挙げられる。中でも、増感剤としては、チオキサントン類が好ましく、イソプロピルチオキサントンがより好ましい。また、増感剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Further, the coloring composition for a model material, as a photopolymerization initiator, absorbs a specific active energy ray and promotes the decomposition of the polymerization initiator, so that it functions as a sensitizer (hereinafter simply referred to as “sensitizer”). May also be included.
Examples of the sensitizer include polynuclear aromatics (eg, pyrene, perylene, triphenylene, 2-ethyl-9,10-dimethoxyanthracene), xanthenes (eg, fluorescein, eosin, erythrosine, rhodamine B, Rose Bengal etc.), cyanines (eg thiacarbocyanine, oxacarbocyanine etc.), merocyanines (eg merocyanine, carbomerocyanine etc.), thiazines (eg thionine, methylene blue, toluidine blue etc.), acridines (eg , Acridine orange, chloroflavin, acriflavine, etc.), anthraquinones (eg, anthraquinone, etc.), squariums (eg, squalium), coumarins (eg, 7-diethylamino-4-methylcoumarin, etc.), thioxanthate Class (e.g., isopropyl thioxanthone), thiochromanone compound (e.g., a thiochromanone etc.) and the like. Especially, as a sensitizer, thioxanthone is preferable and isopropyl thioxanthone is more preferable. Moreover, a sensitizer may be used individually by 1 type and may use 2 or more types together.
増感剤としては、例えば、多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン、2-エチル-9,10-ジメトキシアントラセン等)、キサンテン類(例えば、フルオレッセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル等)、シアニン類(例えば、チアカルボシアニン、オキサカルボシアニン等)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン等)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー等)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン等)、アントラキノン類(例えば、アントラキノン等)、スクアリウム類(例えば、スクアリウム等)、クマリン類(例えば、7-ジエチルアミノ-4-メチルクマリン等)、チオキサントン類(例えば、イソプロピルチオキサントン等)、チオクロマノン類(例えば、チオクロマノン等)等が挙げられる。中でも、増感剤としては、チオキサントン類が好ましく、イソプロピルチオキサントンがより好ましい。また、増感剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Further, the coloring composition for a model material, as a photopolymerization initiator, absorbs a specific active energy ray and promotes the decomposition of the polymerization initiator, so that it functions as a sensitizer (hereinafter simply referred to as “sensitizer”). May also be included.
Examples of the sensitizer include polynuclear aromatics (eg, pyrene, perylene, triphenylene, 2-ethyl-9,10-dimethoxyanthracene), xanthenes (eg, fluorescein, eosin, erythrosine, rhodamine B, Rose Bengal etc.), cyanines (eg thiacarbocyanine, oxacarbocyanine etc.), merocyanines (eg merocyanine, carbomerocyanine etc.), thiazines (eg thionine, methylene blue, toluidine blue etc.), acridines (eg , Acridine orange, chloroflavin, acriflavine, etc.), anthraquinones (eg, anthraquinone, etc.), squariums (eg, squalium), coumarins (eg, 7-diethylamino-4-methylcoumarin, etc.), thioxanthate Class (e.g., isopropyl thioxanthone), thiochromanone compound (e.g., a thiochromanone etc.) and the like. Especially, as a sensitizer, thioxanthone is preferable and isopropyl thioxanthone is more preferable. Moreover, a sensitizer may be used individually by 1 type and may use 2 or more types together.
モデル材用着色組成物が増感剤を含む場合、その含有量はモデル材用着色組成物の総質量に対して、好ましくは0.1~5質量%であり、より好ましくは0.5~3質量%である。増感剤の含有量が上記範囲であると、モデル材用着色組成物の硬化性および硬化感度を向上させることができる。
When the coloring composition for model material contains a sensitizer, the content thereof is preferably 0.1 to 5% by mass, more preferably 0.5 to 5% by mass with respect to the total mass of the coloring composition for model material. 3% by mass. When the content of the sensitizer is within the above range, the curability and curing sensitivity of the coloring composition for model material can be improved.
本発明において、モデル材用着色組成物は着色剤を含む。着色剤としては特に限定されないが、本発明のモデル材用着色組成物は非水系であることから、非水溶性媒体に均一に分散しやすい顔料、溶解しやすい染料が好ましい。上記顔料としては、無機顔料、有機顔料のいずれも使用できる。
In the present invention, the coloring composition for model material contains a coloring agent. Although it does not specifically limit as a coloring agent, Since the coloring composition for model materials of this invention is non-aqueous, the pigment which is easy to disperse | distribute uniformly to a water-insoluble medium, and the dye | dye which is easy to melt | dissolve are preferable. As the pigment, either an inorganic pigment or an organic pigment can be used.
白色顔料(ホワイト)としては、特に限定されないが、塩基性炭酸鉛(2PbCO3Pb(OH)2、いわゆる、シルバーホワイト)、酸化亜鉛(ZnO、いわゆる、ジンクホワイト)、酸化チタン(TiO2、いわゆる、チタンホワイト)、チタン酸ストロンチウム(SrTiO3、いわゆる、チタンストロンチウムホワイト)などが利用可能である。白色顔料は、1種単独で用いてもよいし、2種以上を併用してもよい。
ここで、酸化チタンは他の白色顔料と比べて比重が小さく、屈折率が大きく化学的、物理的にも安定であるため、顔料としての隠蔽力や着色力が大きく、さらに、酸やアルカリ、その他の環境に対する耐久性にも優れている。したがって、白色顔料としては酸化チタンを利用することが好ましい。酸化チタンを用いる場合、必要に応じて他の白色顔料(先に列挙した白色顔料以外であってもよい)を使用してもよい。 The white pigment (white) is not particularly limited, but basic lead carbonate (2PbCO 3 Pb (OH) 2 , so-called silver white), zinc oxide (ZnO, so-called zinc white), titanium oxide (TiO 2 , so-called , Titanium white), strontium titanate (SrTiO 3 , so-called titanium strontium white) and the like can be used. A white pigment may be used individually by 1 type, and may use 2 or more types together.
Here, titanium oxide has a smaller specific gravity than other white pigments, a large refractive index, and is chemically and physically stable, so that it has a large hiding power and coloring power as a pigment. Excellent durability against other environments. Therefore, it is preferable to use titanium oxide as the white pigment. When using titanium oxide, other white pigments (may be other than the white pigments listed above) may be used as necessary.
ここで、酸化チタンは他の白色顔料と比べて比重が小さく、屈折率が大きく化学的、物理的にも安定であるため、顔料としての隠蔽力や着色力が大きく、さらに、酸やアルカリ、その他の環境に対する耐久性にも優れている。したがって、白色顔料としては酸化チタンを利用することが好ましい。酸化チタンを用いる場合、必要に応じて他の白色顔料(先に列挙した白色顔料以外であってもよい)を使用してもよい。 The white pigment (white) is not particularly limited, but basic lead carbonate (2PbCO 3 Pb (OH) 2 , so-called silver white), zinc oxide (ZnO, so-called zinc white), titanium oxide (TiO 2 , so-called , Titanium white), strontium titanate (SrTiO 3 , so-called titanium strontium white) and the like can be used. A white pigment may be used individually by 1 type, and may use 2 or more types together.
Here, titanium oxide has a smaller specific gravity than other white pigments, a large refractive index, and is chemically and physically stable, so that it has a large hiding power and coloring power as a pigment. Excellent durability against other environments. Therefore, it is preferable to use titanium oxide as the white pigment. When using titanium oxide, other white pigments (may be other than the white pigments listed above) may be used as necessary.
ブラック、シアン、マゼンタおよびイエロー等の色味を呈する顔料としては、特に限定されるものではなく、一般に市販されているすべての有機顔料および無機顔料、また、樹脂粒子を染料で染色したもの等も用いることができる。さらに、市販の顔料分散体や表面処理された顔料、例えば、顔料を分散媒として不溶性の樹脂等に分散させたもの、あるいは顔料表面に樹脂をグラフト化したもの等も、本発明の効果を損なわない限りにおいて用いることができる。
これらの顔料としては、例えば、伊藤征司郎編「顔料の辞典」(2000年刊)、W.Herbst,K.Hunger「Industrial Organic Pigments」、特開2002-12607号公報、特開2002-188025号公報、特開2003-26978号公報、特開2003-342503号公報に記載の顔料が挙げられる。 There are no particular limitations on the pigments exhibiting colors such as black, cyan, magenta, and yellow, and all organic pigments and inorganic pigments that are generally commercially available, and those in which resin particles are dyed with a dye, etc. Can be used. Furthermore, commercially available pigment dispersions and surface-treated pigments, for example, pigments dispersed in an insoluble resin or the like as a dispersion medium, or those obtained by grafting a resin on the pigment surface, etc., impair the effects of the present invention. It can be used as long as it is not.
Examples of these pigments include, for example, “Pigment Dictionary” (2000), edited by Seijiro Ito. Herbst, K.M. Hunger “Industrial Organic Pigments”, JP 2002-12607 A, JP 2002-188025 A, JP 2003-26978 A, and JP 2003-342503 A3.
これらの顔料としては、例えば、伊藤征司郎編「顔料の辞典」(2000年刊)、W.Herbst,K.Hunger「Industrial Organic Pigments」、特開2002-12607号公報、特開2002-188025号公報、特開2003-26978号公報、特開2003-342503号公報に記載の顔料が挙げられる。 There are no particular limitations on the pigments exhibiting colors such as black, cyan, magenta, and yellow, and all organic pigments and inorganic pigments that are generally commercially available, and those in which resin particles are dyed with a dye, etc. Can be used. Furthermore, commercially available pigment dispersions and surface-treated pigments, for example, pigments dispersed in an insoluble resin or the like as a dispersion medium, or those obtained by grafting a resin on the pigment surface, etc., impair the effects of the present invention. It can be used as long as it is not.
Examples of these pigments include, for example, “Pigment Dictionary” (2000), edited by Seijiro Ito. Herbst, K.M. Hunger “Industrial Organic Pigments”, JP 2002-12607 A, JP 2002-188025 A, JP 2003-26978 A, and JP 2003-342503 A3.
本発明において使用し得る有機顔料および無機顔料の具体例としては、例えば、イエロー色を呈するものとして、C.I.ピグメントイエロー1(ファストイエローG等)、C.I.ピグメントイエロー74の如きモノアゾ顔料、C.I.ピグメントイエロー12(ジスアジイエローAAA等)、C.I.ピグメントイエロー17の如きジスアゾ顔料、C.I.ピグメントイエロー180の如き非ベンジジン系のアゾ顔料、C.I.ピグメントイエロー100(タートラジンイエローレーキ等)の如きアゾレーキ顔料、C.I.ピグメントイエロー95(縮合アゾイエローGR等)の如き縮合アゾ顔料、C.I.ピグメントイエロー115(キノリンイエローレーキ等)の如き酸性染料レーキ顔料、C.I.ピグメントイエロー18(チオフラビンレーキ等)の如き塩基性染料レーキ顔料、フラバントロンイエロー(Y-24)の如きアントラキノン系顔料、イソインドリノンイエロー3RLT(Y-110)の如きイソインドリノン顔料、キノフタロンイエロー(Y-138)の如きキノフタロン顔料、イソインドリンイエロー(Y-139)の如きイソインドリン顔料、C.I.ピグメントイエロー153(ニッケルニトロソイエロー等)の如きニトロソ顔料、C.I.ピグメントイエロー117(銅アゾメチンイエロー等)の如き金属錯塩アゾメチン顔料等が挙げられる。
Specific examples of organic pigments and inorganic pigments that can be used in the present invention include C.I. I. Pigment Yellow 1 (Fast Yellow G, etc.), C.I. I. A monoazo pigment such as C.I. Pigment Yellow 74; I. Pigment Yellow 12 (disaji yellow AAA, etc.), C.I. I. Disazo pigments such as C.I. Pigment Yellow 17; I. Non-benzidine type azo pigments such as CI Pigment Yellow 180; I. Azo lake pigments such as C.I. Pigment Yellow 100 (eg Tartrazine Yellow Lake); I. Condensed azo pigments such as CI Pigment Yellow 95 (Condensed Azo Yellow GR, etc.); I. Acidic dye lake pigments such as C.I. Pigment Yellow 115 (such as quinoline yellow lake); I. Basic dye lake pigments such as CI Pigment Yellow 18 (Thioflavin Lake, etc.), anthraquinone pigments such as Flavantron Yellow (Y-24), isoindolinone pigments such as Isoindolinone Yellow 3RLT (Y-110), and quinophthalone yellow Quinophthalone pigments such as (Y-138), isoindoline pigments such as isoindoline yellow (Y-139), C.I. I. Nitroso pigments such as C.I. Pigment Yellow 153 (nickel nitroso yellow, etc.); I. And metal complex salt azomethine pigments such as CI Pigment Yellow 117 (copper azomethine yellow, etc.).
赤あるいはマゼンタ色を呈するものとして、C.I.ピグメントレッド3(トルイジンレッド等)の如きモノアゾ系顔料、C.I.ピグメントレッド38(ピラゾロンレッドB等)の如きジスアゾ顔料、C.I.ピグメントレッド53:1(レーキレッドC等)やC.I.ピグメントレッド57:1(ブリリアントカーミン6B)の如きアゾレーキ顔料、C.I.ピグメントレッド144(縮合アゾレッドBR等)の如き縮合アゾ顔料、C.I.ピグメントレッド174(フロキシンBレーキ等)の如き酸性染料レーキ顔料、C.I.ピグメントレッド81(ローダミン6G’レーキ等)の如き塩基性染料レーキ顔料、C.I.ピグメントレッド177(ジアントラキノニルレッド等)の如きアントラキノン系顔料、C.I.ピグメントレッド88(チオインジゴボルドー等)の如きチオインジゴ顔料、C.I.ピグメントレッド194(ペリノンレッド等)の如きペリノン顔料、C.I.ピグメントレッド149(ペリレンスカーレット等)の如きペリレン顔料、C.I.ピグメントバイオレット19(無置換キナクリドン)、C.I.ピグメントレッド122(キナクリドンマゼンタ等)の如きキナクリドン顔料、C.I.ピグメントレッド180(イソインドリノンレッド2BLT等)の如きイソインドリノン顔料、C.I.ピグメントレッド83(マダーレーキ等)の如きアリザリンレーキ顔料等が挙げられる。
C. As red or magenta color I. Monoazo pigments such as CI Pigment Red 3 (Toluidine Red, etc.); I. Disazo pigments such as C.I. Pigment Red 38 (Pyrazolone Red B, etc.); I. Pigment Red 53: 1 (Lake Red C, etc.) and C.I. I. Azo lake pigments such as C.I. Pigment Red 57: 1 (Brilliant Carmine 6B); I. Condensed azo pigments such as C.I. Pigment Red 144 (condensed azo red BR, etc.); I. Acidic dye lake pigments such as C.I. Pigment Red 174 (Phloxine B Lake, etc.); I. Basic dye lake pigments such as C.I. Pigment Red 81 (Rhodamine 6G 'lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Red 177 (eg, dianthraquinonyl red); I. Thioindigo pigments such as C.I. Pigment Red 88 (Thioindigo Bordeaux, etc.); I. Perinone pigments such as C.I. Pigment Red 194 (perinone red, etc.); I. Perylene pigments such as C.I. Pigment Red 149 (perylene scarlet, etc.); I. Pigment violet 19 (unsubstituted quinacridone), C.I. I. Quinacridone pigments such as CI Pigment Red 122 (quinacridone magenta, etc.); I. Isoindolinone pigments such as CI Pigment Red 180 (isoindolinone red 2BLT, etc.); I. And alizarin lake pigments such as CI Pigment Red 83 (Mada Lake, etc.).
青あるいはシアン色を呈する顔料として、C.I.ピグメントブルー25(ジアニシジンブルー等)の如きジスアゾ系顔料、C.I.ピグメントブルー15(フタロシアニンブルー等)の如きフタロシアニン顔料、C.I.ピグメントブルー24(ピーコックブルーレーキ等)の如き酸性染料レーキ顔料、C.I.ピグメントブルー1(ビクロチアピュアブルーBOレーキ等)の如き塩基性染料レーキ顔料、C.I.ピグメントブルー60(インダントロンブルー等)の如きアントラキノン系顔料、C.I.ピグメントブルー18(アルカリブルーV-5:1)の如きアルカリブルー顔料等が挙げられる。
As a pigment exhibiting blue or cyan, C.I. I. Disazo pigments such as C.I. Pigment Blue 25 (Dianisidine Blue, etc.); I. Phthalocyanine pigments such as C.I. Pigment Blue 15 (phthalocyanine blue, etc.); I. Acidic dye lake pigments such as C.I. Pigment Blue 24 (Peacock Blue Lake, etc.); I. Basic dye lake pigments such as C.I. Pigment Blue 1 (Viclotia Pure Blue BO Lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Blue 60 (Indantron Blue, etc.); I. And alkali blue pigments such as CI Pigment Blue 18 (Alkali Blue V-5: 1).
緑色を呈する顔料として、C.I.ピグメントグリーン7(フタロシアニングリーン)、C.I.ピグメントグリーン36(フタロシアニングリーン)の如きフタロシアニン顔料、C.I.ピグメントグリーン8(ニトロソグリーン)等の如きアゾ金属錯体顔料等が挙げられる。
As a pigment exhibiting green, C.I. I. Pigment green 7 (phthalocyanine green), C.I. I. Phthalocyanine pigments such as C.I. Pigment Green 36 (phthalocyanine green); I. And azo metal complex pigments such as CI Pigment Green 8 (Nitroso Green).
オレンジ色を呈する顔料として、C.I.ピグメントオレンジ66(イソインドリンオレンジ)の如きイソインドリン系顔料、C.I.ピグメントオレンジ51(ジクロロピラントロンオレンジ)の如きアントラキノン系顔料が挙げられる。
As a pigment exhibiting orange, C.I. I. An isoindoline pigment such as C.I. Pigment Orange 66 (isoindoline orange); I. And anthraquinone pigments such as CI Pigment Orange 51 (dichloropyrantron orange).
黒色を呈する顔料として、カーボンブラック、チタンブラック、アニリンブラック等が挙げられる。
Examples of black pigments include carbon black, titanium black, and aniline black.
本発明において、モデル材用着色組成物に含まれる着色剤は、ホワイト、ブラック、シアン、マゼンタおよびイエローからなる群から選択される少なくとも1種であることが好ましい。また、本発明の光造形用組成物セットは、モデル材用着色組成物を複数含んでいてもよい。例えば、フルカラー印刷を行うため、イエロー、マゼンタ、およびシアンの減色法3原色並びにホワイトおよびブラックを加えた5色のモデル材用着色組成物を組み合わせたセットとすることができる。さらに、本発明の光造形用組成物セットは、上述したような着色剤を含むモデル材用着色組成物と、着色剤を含まないモデル材用クリア組成物とを組み合わせたセットであってもよい。
In the present invention, the colorant contained in the coloring composition for model material is preferably at least one selected from the group consisting of white, black, cyan, magenta and yellow. Moreover, the composition set for optical modeling of the present invention may include a plurality of coloring compositions for model materials. For example, in order to perform full-color printing, it is possible to obtain a set in which the coloring compositions for model materials of five colors including yellow, magenta, and cyan subtractive three primary colors and white and black are combined. Furthermore, the composition set for stereolithography of the present invention may be a set in which a coloring composition for a model material containing a colorant as described above and a clear composition for a model material not containing a coloring agent are combined. .
着色剤は、モデル材用着色組成物の調製に際して、各成分と共に直接添加してもよい。また、分散性向上のため、あらかじめ溶剤またはモノマーのような分散媒体に添加し、均一分散あるいは溶解させた後、配合することもできる。着色剤などの諸成分の分散媒体として溶剤を添加してもよく、また、無溶剤で、低分子量成分である後述の重合性化合物を分散媒として用いてもよいが、モデル材用着色組成物を活性光線の照射により硬化させるため、無溶剤であることが好ましい。これは、モデル材用着色組成物から形成されたモデル材層(硬化物層)中に、溶剤が残留すると、耐溶剤性が低下しやすく、残留する溶剤のVOC(Volatile Organic Compound)の問題が生じやすくなるためである。このような観点から、分散媒としては、モノマーを用いることが好ましく、中でも、最も粘度が低いモノマーを選択すると分散適性やモデル材用着色組成物のハンドリング性が向上する観点から好ましい。
The colorant may be directly added together with each component when preparing the coloring composition for model material. Further, in order to improve dispersibility, it may be added to a dispersion medium such as a solvent or a monomer in advance and uniformly dispersed or dissolved, and then blended. A solvent may be added as a dispersion medium for various components such as a colorant, and a polymerizable compound described below which is a low molecular weight component without a solvent may be used as a dispersion medium. Is hardened by irradiation with actinic rays, and is preferably solvent-free. This is because if the solvent remains in the model material layer (cured material layer) formed from the coloring composition for the model material, the solvent resistance is likely to deteriorate, and there is a problem of VOC (Volatile Organic Compound) of the remaining solvent. This is because it tends to occur. From such a viewpoint, it is preferable to use a monomer as the dispersion medium, and among them, the monomer having the lowest viscosity is preferable from the viewpoint of improving the dispersion suitability and the handling property of the coloring composition for a model material.
ここで、着色剤の平均粒径は、微細なほど発色性に優れるため、0.01~0.4μmであることが好ましく、0.02~0.2μmであることがより好ましい。最大粒径は好ましくは3μm以下、より好ましくは1μm以下となるよう、着色剤、後述の分散剤、分散媒の選定、分散条件、ろ過条件を設定する。この粒径管理によって、ヘッドノズルの詰まりを抑制し、モデル材用着色組成物の保存安定性、透明性および硬化感度を維持することができる。本発明においては分散性、安定性に優れた上記分散剤を用いることにより、粒子状の着色剤を用いた場合でも、均一で安定な分散物が得られる。
なお、着色剤の粒径は、公知の測定方法で測定することができる。具体的には、例えば、遠心沈降光透過法、X線透過法、レーザー回折/散乱法、動的光散乱法により測定することができる。本発明においては、レーザー回折/散乱法を用いた測定により得られた値を採用する。 Here, the average particle diameter of the colorant is preferably 0.01 to 0.4 μm, and more preferably 0.02 to 0.2 μm, because the finer the color, the better the color developability. The colorant, the below-mentioned dispersant and dispersion medium selection, dispersion conditions, and filtration conditions are set so that the maximum particle size is preferably 3 μm or less, more preferably 1 μm or less. By controlling the particle size, clogging of the head nozzle can be suppressed, and the storage stability, transparency and curing sensitivity of the coloring composition for model material can be maintained. In the present invention, a uniform and stable dispersion can be obtained even when a particulate colorant is used by using the above-described dispersant having excellent dispersibility and stability.
The particle size of the colorant can be measured by a known measurement method. Specifically, it can be measured by, for example, a centrifugal sedimentation light transmission method, an X-ray transmission method, a laser diffraction / scattering method, or a dynamic light scattering method. In the present invention, a value obtained by measurement using a laser diffraction / scattering method is employed.
なお、着色剤の粒径は、公知の測定方法で測定することができる。具体的には、例えば、遠心沈降光透過法、X線透過法、レーザー回折/散乱法、動的光散乱法により測定することができる。本発明においては、レーザー回折/散乱法を用いた測定により得られた値を採用する。 Here, the average particle diameter of the colorant is preferably 0.01 to 0.4 μm, and more preferably 0.02 to 0.2 μm, because the finer the color, the better the color developability. The colorant, the below-mentioned dispersant and dispersion medium selection, dispersion conditions, and filtration conditions are set so that the maximum particle size is preferably 3 μm or less, more preferably 1 μm or less. By controlling the particle size, clogging of the head nozzle can be suppressed, and the storage stability, transparency and curing sensitivity of the coloring composition for model material can be maintained. In the present invention, a uniform and stable dispersion can be obtained even when a particulate colorant is used by using the above-described dispersant having excellent dispersibility and stability.
The particle size of the colorant can be measured by a known measurement method. Specifically, it can be measured by, for example, a centrifugal sedimentation light transmission method, an X-ray transmission method, a laser diffraction / scattering method, or a dynamic light scattering method. In the present invention, a value obtained by measurement using a laser diffraction / scattering method is employed.
着色剤の分散には、例えばボールミル、サンドミル、アトライター、ロールミル、ジェットミル、ホモジナイザー、ペイントシェーカー、ニーダー、アジテータ、ヘンシェルミキサ、コロイドミル、超音波ホモジナイザー、パールミル、湿式ジェットミル等の分散装置を用いることができる。
For dispersing the colorant, for example, a dispersing device such as a ball mill, a sand mill, an attritor, a roll mill, a jet mill, a homogenizer, a paint shaker, a kneader, an agitator, a Henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, or a wet jet mill is used. be able to.
着色剤の分散を行う際には、分散剤を含有してもよい。特に顔料を使用する場合において、顔料をモデル材用着色組成物中に安定に分散させるため、分散剤を含有することが好ましい。分散剤としては、高分子分散剤が好ましい。なお、本発明における「高分子分散剤」とは、重量平均分子量が1,000以上の分散剤を意味する。
When dispersing the colorant, it may contain a dispersant. In particular, when a pigment is used, a dispersant is preferably contained in order to stably disperse the pigment in the coloring composition for model material. As the dispersant, a polymer dispersant is preferable. The “polymer dispersing agent” in the present invention means a dispersing agent having a weight average molecular weight of 1,000 or more.
高分子分散剤としては、DISPERBYK-101、DISPERBYK-102、DISPERBYK-103、DISPERBYK-106、DISPERBYK-111、DISPERBYK-161、DISPERBYK-162、DISPERBYK163、DISPERBYK-164、DISPERBYK-166、DISPERBYK-167、DISPERBYK-168、DISPERBYK-170、DISPERBYK-171、DISPERBYK-174、DISPERBYK-182(BYKケミー社製);EFKA4010、EFKA4046、EFKA4080、EFKA5010、EFKA5207、EFKA5244、EFKA6745、EFKA6750、EFKA7414、EFKA745、EFKA7462、EFKA7500、EFKA7570、EFKA7575、EFKA7580(エフカアディティブ社製);ディスパースエイド6、ディスパースエイド8、ディスパースエイド15、ディスパースエイド9100(サンノプコ(株)製);ソルスパース(SOLSPERSE)3000、5000、9000、12000、13240、13940、17000、22000、24000、26000、28000、32000、36000、39000、41000、71000などの各種ソルスパース分散剤(Noveon社製);アデカプルロニックL31、F38、L42、L44、L61、L64、F68、L72、P95、F77、P84、F87、P94、L101、P103、F108、L121、P-123((株)ADEKA製)、イオネットS-20(三洋化成工業(株)製);ディスパロン KS-860、873SN、874(高分子分散剤)、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル型)(楠本化成(株)製)が挙げられる。
Polymer dispersing agents include DISPERBYK-101, DISPERBYK-102, DISPERBYK-103, DISPERBYK-106, DISPERBYK-111, DISPERBYK-161, DISPERBYK-162, DISPERBYK163, DISPERBYK-164, DISPERBYK-166, DISPERBYK-166, DISPERBYK-166 -168, DISPERBYK-170, DISPERBYK-171, DISPERBYK-174, DISPERBYK-182 (manufactured by BYK Chemie); EFKA4010, EFKA4046, EFKA4080, EFKA5010, EFKA5207, EFKA6745, EFKA 7462, EFKA 7500, EFKA 7570, EFKA 7575, EFKA 7580 (manufactured by Efka Additive); Disperse Aid 6, Disperse Aid 8, Disperse Aid 15, Disperse Aid 9100 (manufactured by Sannopco); Solsperse 3000 Various Solsperse dispersants (manufactured by Noveon) such as 5000, 9000, 12000, 13240, 13940, 17000, 22000, 24000, 26000, 28000, 32000, 36000, 39000, 41000, 71000; Adeka Pluronic L31, F38, L42, L44 , L61, L64, F68, L72, P95, F77, P84, F87, P94, L101, P103, F108, L121, -123 (manufactured by ADEKA Corporation), Ionette S-20 (manufactured by Sanyo Chemical Industries, Ltd.); Disparon KS-860, 873SN, 874 (polymer dispersing agent), # 2150 (aliphatic polycarboxylic acid), # 7004 (polyether ester type) (manufactured by Enomoto Kasei Co., Ltd.).
モデル材用着色組成物の全質量に対する分散剤の含有量は、使用目的等に応じて適宜決定し得るが、0.05~15質量%であることが好ましい。また、着色剤を添加するにあたっては、必要に応じて、分散助剤として、各種着色剤に応じたシナージストを用いることも可能である。分散助剤は、着色剤100質量部に対し、1~50質量部添加することが好ましい。
The content of the dispersant with respect to the total mass of the coloring composition for a model material can be appropriately determined according to the purpose of use and the like, but is preferably 0.05 to 15% by mass. Moreover, when adding a coloring agent, it is also possible to use the synergist according to various coloring agents as a dispersing aid as needed. The dispersion aid is preferably added in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the colorant.
着色剤の含有量は、所望するモデル材の色味および使用目的等に応じて適宜決定すればよいが、モデル材用着色組成物の総質量に対して、好ましくは0.01~40質量%であり、より好ましくは0.1~30質量%であり、さらに好ましくは0.2~20質量%である。
The content of the colorant may be appropriately determined according to the desired color of the model material and the purpose of use, but is preferably 0.01 to 40% by mass with respect to the total mass of the color composition for the model material. More preferably, it is 0.1 to 30% by mass, and further preferably 0.2 to 20% by mass.
モデル材用着色組成物は、表面調整剤を含有してもよい。表面調整剤は、モデル材用着色組成物の表面張力を適切な範囲に調整する成分であり、その種類は特に限定されない。モデル材用着色組成物の表面張力を適切な範囲にすることで、吐出性を安定化させることができるとともに、モデル材用着色組成物とサポート材用組成物との界面混じりを抑制することができる。その結果、寸法精度が良好な造形物を得ることができる。
The coloring composition for model material may contain a surface conditioner. The surface conditioner is a component that adjusts the surface tension of the coloring composition for model material to an appropriate range, and the type thereof is not particularly limited. By making the surface tension of the coloring composition for the model material within an appropriate range, it is possible to stabilize the discharge property and to suppress interfacial mixing between the coloring composition for the model material and the composition for the support material. it can. As a result, it is possible to obtain a shaped article with good dimensional accuracy.
表面調整剤としては、例えば、シリコーン系化合物等が挙げられる。シリコーン系化合物としては、例えば、ポリジメチルシロキサン構造を有するシリコーン系化合物等が挙げられる。具体的には、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリアラルキル変性ポリジメチルシロキサン等が挙げられる。これらとして、商品名でBYK-300、BYK-302、BYK-306、BYK-307、BYK-310、BYK-315、BYK-320、BYK-322、BYK-323、BYK-325、BYK-330、BYK-331、BYK-333、BYK-337、BYK-344、BYK-370、BYK-375、BYK-377、BYK-UV3500、BYK-UV3510、BYK-UV3570(以上、ビックケミー社製)、TEGO-Rad2100、TEGO-Rad2200N、TEGO-Rad2250、TEGO-Rad2300、TEGO-Rad2500、TEGO-Rad2600、TEGO-Rad2700(以上、デグサ社製)、グラノール100、グラノール115、グラノール400、グラノール410、グラノール435、グラノール440、グラノール450、B-1484、ポリフローATF-2、KL-600、UCR-L72、UCR-L93(共栄社化学社製)等を用いてもよい。また、シリコーン系化合物以外の表面調整剤、例えば、フッ素系表面調整剤、ジアルキルスルホコハク酸塩類、アルキルナフタレンスルホン酸塩類、脂肪酸塩類等のアニオン性界面活性剤、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、アセチレングリコール類、ポリオキシエチレン/ポリオキシプロピレンブロックコポリマー類等のノニオン性界面活性剤、アルキルアミン塩類、第四級アンモニウム塩類等のカチオン性界面活性剤等を用いてもよい。これらは単独で用いてもよいし、2種以上を併用してもよい。
Examples of the surface conditioner include silicone compounds. Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane. These include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-315, BYK-320, BYK-322, BYK-323, BYK-325, BYK-330, BYK-331, BYK-333, BYK-337, BYK-344, BYK-370, BYK-375, BYK-377, BYK-UV3500, BYK-UV3510, BYK-UV3570 (above, manufactured by BYK Chemie), TEGO-Rad2100 , TEGO-Rad2200N, TEGO-Rad2250, TEGO-Rad2300, TEGO-Rad2500, TEGO-Rad2600, TEGO-Rad2700 (above, manufactured by Degussa), Granol 100, Granol 115, Granol 400, Grano Le 410, Granol 435, Granol 440, Granol 450, B-1484, Polyflow ATF-2, KL-600, UCR-L72, UCR-L93 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like may be used. In addition, surface conditioners other than silicone compounds, for example, fluorine-based surface conditioners, dialkylsulfosuccinates, alkylnaphthalenesulfonates, fatty acid salts and other anionic surfactants, polyoxyethylene alkyl ethers, polyoxyethylene Nonionic surfactants such as alkyl allyl ethers, acetylene glycols, polyoxyethylene / polyoxypropylene block copolymers, and cationic surfactants such as alkylamine salts and quaternary ammonium salts may be used. These may be used alone or in combination of two or more.
モデル材用着色組成物が表面調整剤を含有する場合、その含有量は、使用目的等に応じて適宜選択し得るが、モデル材用着色組成物の総質量に対して、好ましくは0.0001~3質量%である。
When the coloring composition for a model material contains a surface conditioner, the content can be appropriately selected depending on the purpose of use and the like, but is preferably 0.0001 based on the total mass of the coloring composition for a model material. To 3% by mass.
さらに、本発明に用いられるモデル材用着色組成物は、必要に応じて、上記各成分以外に、その他の成分を含有していてもよい。
その他の成分としては、例えば、保存安定剤、特定光重合開始剤以外の光重合開始剤、共増感剤、紫外線吸収剤、酸化防止剤、褪色防止剤、導電性塩類、溶剤、高分子化合物、塩基性化合物、レベリング添加剤、マット剤、膜物性を調整するためのポリエステル系樹脂、ポリウレタン系樹脂、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類等が挙げられる。これらは、特開2009-185186号公報に記載されており、本発明においても使用できる。 Furthermore, the coloring composition for model materials used for this invention may contain other components other than said each component as needed.
Examples of other components include storage stabilizers, photopolymerization initiators other than specific photopolymerization initiators, co-sensitizers, ultraviolet absorbers, antioxidants, anti-fading agents, conductive salts, solvents, and polymer compounds. , Basic compounds, leveling additives, matting agents, polyester resins for adjusting film properties, polyurethane resins, vinyl resins, acrylic resins, rubber resins, waxes and the like. These are described in JP-A-2009-185186 and can also be used in the present invention.
その他の成分としては、例えば、保存安定剤、特定光重合開始剤以外の光重合開始剤、共増感剤、紫外線吸収剤、酸化防止剤、褪色防止剤、導電性塩類、溶剤、高分子化合物、塩基性化合物、レベリング添加剤、マット剤、膜物性を調整するためのポリエステル系樹脂、ポリウレタン系樹脂、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類等が挙げられる。これらは、特開2009-185186号公報に記載されており、本発明においても使用できる。 Furthermore, the coloring composition for model materials used for this invention may contain other components other than said each component as needed.
Examples of other components include storage stabilizers, photopolymerization initiators other than specific photopolymerization initiators, co-sensitizers, ultraviolet absorbers, antioxidants, anti-fading agents, conductive salts, solvents, and polymer compounds. , Basic compounds, leveling additives, matting agents, polyester resins for adjusting film properties, polyurethane resins, vinyl resins, acrylic resins, rubber resins, waxes and the like. These are described in JP-A-2009-185186 and can also be used in the present invention.
モデル材用着色組成物は、保存性を高める観点から、保存安定剤を含有することが好ましい。マテリアルジェット光造形法において、モデル材用着色組成物は40℃~80℃の範囲において加熱、低粘度化して吐出することが好ましく、熱重合によるヘッド詰まりを防ぐために、保存安定剤を添加することが好ましい。保存安定剤としては、例えば、ヒンダードアミン系化合物(HALS)、フェノール系酸化防止剤、リン系酸化防止剤、ニトロソアミン系化合物等が挙げられる。具体的には、ハイドロキノン、メトキノン、ベンゾキノン、p-メトキシフェノール、ハイドロキノンモノメチルエーテル、ハイドロキノンモノブチルエーテル、TEMPO、4-ヒドロキシ-TEMPO、TEMPOL、クペロンAl、IRGASTAB UV-10、IRGASTAB UV-22、FIRSTCURE ST-1(ALBEMARLE社製)、t-ブチルカテコール、ピロガロール、BASF社製のTINUVIN 111 FDL、TINUVIN 144、TINUVIN 292、TINUVIN XP40、TINUVIN XP60、TINUVIN 400等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
The coloring composition for model material preferably contains a storage stabilizer from the viewpoint of improving storage stability. In the material jet stereolithography method, the coloring composition for model material is preferably discharged in the range of 40 ° C to 80 ° C with heating and low viscosity, and a storage stabilizer is added to prevent head clogging due to thermal polymerization. Is preferred. Examples of the storage stabilizer include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, nitrosamine compounds, and the like. Specifically, hydroquinone, methoquinone, benzoquinone, p-methoxyphenol, hydroquinone monomethyl ether, hydroquinone monobutyl ether, TEMPO, 4-hydroxy-TEMPO, TEMPOL, cuperon Al, IRGASTAB UV-10, IRGASTAB UV-22, FIRSTCURE ST- 1 (manufactured by ALBEMARLE), t-butylcatechol, pyrogallol, TINUVIN 111 FDL, TINUVIN 144, TINUVIN 292, TINUVIN XP40, TINUVIN XP60, TINUVIN 400, etc. manufactured by BASF. These may be used alone or in combination of two or more.
モデル材用着色組成物が保存安定剤を含有する場合、その含有量は、モデル材用着色組成物の総質量に対して、好ましくは0.001~1.5質量%であり、より好ましくは0.01~1.0質量%であり、さらに好ましくは0.05~0.8質量%である。保存安定剤の含有量が上記範囲内にあると、モデル材用着色組成物の保管時の重合を抑制でき、ノズル詰まりを防止できる。
When the coloring composition for a model material contains a storage stabilizer, the content thereof is preferably 0.001 to 1.5% by mass, more preferably based on the total mass of the coloring composition for a model material. The content is 0.01 to 1.0% by mass, and more preferably 0.05 to 0.8% by mass. When the content of the storage stabilizer is within the above range, polymerization during storage of the coloring composition for model material can be suppressed, and nozzle clogging can be prevented.
本発明のモデル材用着色組成物の粘度は、マテリアルジェットノズルからの吐出性および成形性を良好にする観点から、25℃において20~150mPa・sであることが好ましく、40~100mPa・sであることがより好ましい。上記粘度の測定は、JIS Z 8803に準拠し、回転粘度計を用いて行うことができる。
The viscosity of the coloring composition for a model material of the present invention is preferably 20 to 150 mPa · s at 25 ° C., preferably 40 to 100 mPa · s, from the viewpoint of improving dischargeability from a material jet nozzle and moldability. More preferably. The above-mentioned viscosity can be measured using a rotational viscometer in accordance with JIS Z 8803.
本発明のモデル材用着色組成物の表面張力は、マテリアルジェットノズルからの吐出性および成形性を良好にする観点から、25℃において20~40mN/mであることが好ましく、20~30mN/mであることがより好ましい。上記表面張力の測定は、JIS K2241に準拠したdu Nouey法やWilhelmy法に従い測定することができる。
The surface tension of the coloring composition for a model material of the present invention is preferably 20 to 40 mN / m at 25 ° C., and 20 to 30 mN / m from the viewpoint of improving dischargeability from a material jet nozzle and moldability. It is more preferable that The surface tension can be measured according to a du Nouey method or a Wilhelmy method based on JIS K2241.
本発明のモデル材用着色組成物の製造方法は特に限定されず、例えば、混合攪拌装置、分散機等を用いて、モデル材着色用組成物を構成する成分を均一に混合することにより製造することができる。
The manufacturing method of the coloring composition for model materials of this invention is not specifically limited, For example, it manufactures by mixing uniformly the component which comprises the composition for coloring model materials using a mixing stirrer, a disperser, etc. be able to.
本発明の光造形用組成物セットは、モデル材用組成物として、1種類のモデル材用着色組成物のみを含んでいてもよく、2種以上のモデル材用着色組成物を含んでいてもよく、また、1種以上のモデル材用着色組成物と、着色剤を含まないモデル材用クリア組成物とを組み合わせて含んでいてもよい。なお、本発明においては、着色剤を含むモデル材用組成物を「モデル材用着色組成物」といい、着色剤を含まないモデル材用組成物を「モデル材用クリア組成物」という。また、以下の実施態様の例示においては、モデル材用着色組成物中に含まれる着色剤が主として白色着色剤(顔料)であるものを「モデル材用白色組成物」といい、着色剤が主として、白色以外の色味を呈する着色剤(顔料)であるものを「モデル材用カラー組成物」という。特に、上記定義において、モデル材用着色組成物の総質量に対する白色着色剤の割合が0.1質量%以上であるものを「モデル材用白色組成物」といい、モデル材用着色組成物の総質量に対する白色以外の色味を有する着色剤の割合が0.05質量%以上であるものを「モデル材用カラー組成物」という。
The stereolithography composition set of the present invention may contain only one kind of coloring material for a model material as a composition for model material, or may contain two or more kinds of coloring composition for model material. Moreover, you may contain combining the coloring composition for 1 or more types of model materials, and the clear composition for model materials which does not contain a coloring agent. In the present invention, a model material composition containing a colorant is referred to as a “model material color composition”, and a model material composition not containing a colorant is referred to as a “model material clear composition”. Further, in the following embodiments, the colorant contained in the model material coloring composition is mainly a white colorant (pigment) is referred to as a “model material white composition”, and the colorant is mainly used. A colorant (pigment) exhibiting a color other than white is referred to as a “model material color composition”. In particular, in the above definition, the ratio of the white colorant with respect to the total mass of the coloring material for model material is 0.1% by mass or more is called “white composition for model material”, and the coloring material for model material What has the ratio of the coloring agent which has colors other than white with respect to gross mass is 0.05 mass% or more is called "the color composition for model materials."
本発明の一実施態様において、モデル材用組成物は、モデル材の内層を構成する白色顔料を含むモデル材用白色組成物と、前記モデル材用白色組成物から造形された白色造形物上にカラー層を形成するための1種以上のモデル材用カラー組成物とを含んでなる。
前記実施態様において、モデル材用白色組成物は、白色顔料、および、重合性化合物として、ホモポリマーとしてのガラス転移温度が25℃以上120℃以下の(メタ)アクリレートモノマー(A)を含有し、モデル材用白色組成物の総質量に対して、前記白色顔料の含有量が好ましくは0.5質量%~10質量%であり、前記(メタ)アクリレートモノマー(A)の含有量が好ましくは40質量%以上80質量%未満である組成物〔以下、モデル材用白色組成物(1)ともいう〕であってもよい。このようなモデル材用白色組成物(1)を用いることにより、耐衝撃性に優れたモデル材を形成することができる。また、モデル材用白色組成物が、先に説明したモデル材用着色組成物の構成を有していてよく、モデル材用着色組成物における着色剤として白色顔料を含むもの〔以下、モデル材用白色組成物(2)ともいう〕が挙げられる。このようなモデル材用白色組成物(2)を用いることにより、適度な柔らかさと引張強度とを併せ持つモデル材を形成することができる。
いずれのモデル材用白色組成物を用いる場合も、モデル材用カラー組成物は、先に説明したモデル材用着色組成物の構成を有することが好ましい。 In one embodiment of the present invention, the composition for a model material is formed on a white composition for a model material containing a white pigment constituting an inner layer of the model material, and a white shaped object formed from the white composition for a model material. And one or more color compositions for model materials for forming a color layer.
In the above embodiment, the white composition for a model material contains, as a white pigment, and a polymerizable compound, a (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer, The content of the white pigment is preferably 0.5% by mass to 10% by mass and the content of the (meth) acrylate monomer (A) is preferably 40% with respect to the total mass of the white composition for model material. It may be a composition [hereinafter also referred to as a white composition for model material (1)] that is not less than 80% by mass. By using such a white composition (1) for a model material, a model material having excellent impact resistance can be formed. Further, the white composition for model material may have the structure of the colored composition for model material described above, and contains a white pigment as a colorant in the colored composition for model material [hereinafter, for model material] Also referred to as a white composition (2)]. By using such a white composition for model material (2), a model material having both moderate softness and tensile strength can be formed.
Whichever white composition for model materials is used, it is preferable that the color composition for model materials has the structure of the coloring composition for model materials demonstrated previously.
前記実施態様において、モデル材用白色組成物は、白色顔料、および、重合性化合物として、ホモポリマーとしてのガラス転移温度が25℃以上120℃以下の(メタ)アクリレートモノマー(A)を含有し、モデル材用白色組成物の総質量に対して、前記白色顔料の含有量が好ましくは0.5質量%~10質量%であり、前記(メタ)アクリレートモノマー(A)の含有量が好ましくは40質量%以上80質量%未満である組成物〔以下、モデル材用白色組成物(1)ともいう〕であってもよい。このようなモデル材用白色組成物(1)を用いることにより、耐衝撃性に優れたモデル材を形成することができる。また、モデル材用白色組成物が、先に説明したモデル材用着色組成物の構成を有していてよく、モデル材用着色組成物における着色剤として白色顔料を含むもの〔以下、モデル材用白色組成物(2)ともいう〕が挙げられる。このようなモデル材用白色組成物(2)を用いることにより、適度な柔らかさと引張強度とを併せ持つモデル材を形成することができる。
いずれのモデル材用白色組成物を用いる場合も、モデル材用カラー組成物は、先に説明したモデル材用着色組成物の構成を有することが好ましい。 In one embodiment of the present invention, the composition for a model material is formed on a white composition for a model material containing a white pigment constituting an inner layer of the model material, and a white shaped object formed from the white composition for a model material. And one or more color compositions for model materials for forming a color layer.
In the above embodiment, the white composition for a model material contains, as a white pigment, and a polymerizable compound, a (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer, The content of the white pigment is preferably 0.5% by mass to 10% by mass and the content of the (meth) acrylate monomer (A) is preferably 40% with respect to the total mass of the white composition for model material. It may be a composition [hereinafter also referred to as a white composition for model material (1)] that is not less than 80% by mass. By using such a white composition (1) for a model material, a model material having excellent impact resistance can be formed. Further, the white composition for model material may have the structure of the colored composition for model material described above, and contains a white pigment as a colorant in the colored composition for model material [hereinafter, for model material] Also referred to as a white composition (2)]. By using such a white composition for model material (2), a model material having both moderate softness and tensile strength can be formed.
Whichever white composition for model materials is used, it is preferable that the color composition for model materials has the structure of the coloring composition for model materials demonstrated previously.
本発明の別の一実施態様において、モデル材用組成物は、モデル材の内層を構成する、または、モデル材の造形時にモデル材用カラー組成物を希釈するために用い得る、着色剤を含まないモデル材用クリア組成物と、前記モデル材用クリア組成物から造形されたクリア造形物上にカラー層を形成するための1種以上のモデル材用カラー組成物とを含んでなる。前記実施態様において、モデル材用クリア組成物としては、先に説明したようなモデル材用白色組成物(1)または(2)から着色剤(白色顔料)を除いた成分から構成されるものが挙げられる。
In another embodiment of the present invention, the model material composition includes a colorant that constitutes the inner layer of the model material or can be used to dilute the model material color composition during modeling of the model material. A clear composition for a model material, and one or more color compositions for a model material for forming a color layer on the clear modeled object formed from the clear composition for a model material. In the said embodiment, as a clear composition for model materials, what is comprised from the component remove | excluding the colorant (white pigment) from the white composition for model materials (1) or (2) demonstrated previously. Can be mentioned.
<サポート材用組成物>
本発明の光造形用組成物セットは、サポート材用組成物を含む。本発明の光造形用組成物セットを構成するサポート材用組成物は、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、および、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)
を含有する組成物である。サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(a)を上記含有量で含有していることにより、優れた水除去性とサポート力とを兼ね備えたサポート材を提供することができ、また、低温安定性に優れたサポート材組成物を提供することができる。上記オキシブチレン基を含むポリアルキレングリコール(a)は水溶性ではあるが、サポート材を形成した際にサポート材のサポート力を低下させるほどの親水性を有さない一方で、上記オキシブチレン基を含むポリアルキレングリコール(a)が水溶性であることにより、サポート材を形成した際のサポート材の水による除去性に優れている。ここで、水溶性とは、水に溶解し得るまたは水に分散し得る特性を意味する。また、上記サポート材用組成物は、低温時に凝固(固化)し難く、流動性が低下し難いため、低温安定性にも優れている。 <Composition for support material>
The optical modeling composition set of the present invention includes a support material composition. The composition for support material constituting the composition set for optical modeling of the present invention is based on 100 parts by mass of the composition for support material.
15 to 75 parts by mass of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more, and
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b)
It is a composition containing this. When the composition for a support material contains the polyalkylene glycol (a) containing an oxybutylene group in the above content, a support material having both excellent water removal property and support capability can be provided. Moreover, the support material composition excellent in low-temperature stability can be provided. While the polyalkylene glycol (a) containing the oxybutylene group is water-soluble, it does not have hydrophilicity to reduce the support force of the support material when the support material is formed, while the oxybutylene group is Since the polyalkylene glycol (a) contained is water-soluble, the support material is excellent in water removability when the support material is formed. Here, water-soluble means a property that can be dissolved in water or dispersed in water. Moreover, the composition for a support material is not easily solidified (solidified) at low temperatures, and the fluidity is not easily lowered.
本発明の光造形用組成物セットは、サポート材用組成物を含む。本発明の光造形用組成物セットを構成するサポート材用組成物は、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、および、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)
を含有する組成物である。サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(a)を上記含有量で含有していることにより、優れた水除去性とサポート力とを兼ね備えたサポート材を提供することができ、また、低温安定性に優れたサポート材組成物を提供することができる。上記オキシブチレン基を含むポリアルキレングリコール(a)は水溶性ではあるが、サポート材を形成した際にサポート材のサポート力を低下させるほどの親水性を有さない一方で、上記オキシブチレン基を含むポリアルキレングリコール(a)が水溶性であることにより、サポート材を形成した際のサポート材の水による除去性に優れている。ここで、水溶性とは、水に溶解し得るまたは水に分散し得る特性を意味する。また、上記サポート材用組成物は、低温時に凝固(固化)し難く、流動性が低下し難いため、低温安定性にも優れている。 <Composition for support material>
The optical modeling composition set of the present invention includes a support material composition. The composition for support material constituting the composition set for optical modeling of the present invention is based on 100 parts by mass of the composition for support material.
15 to 75 parts by mass of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more, and
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b)
It is a composition containing this. When the composition for a support material contains the polyalkylene glycol (a) containing an oxybutylene group in the above content, a support material having both excellent water removal property and support capability can be provided. Moreover, the support material composition excellent in low-temperature stability can be provided. While the polyalkylene glycol (a) containing the oxybutylene group is water-soluble, it does not have hydrophilicity to reduce the support force of the support material when the support material is formed, while the oxybutylene group is Since the polyalkylene glycol (a) contained is water-soluble, the support material is excellent in water removability when the support material is formed. Here, water-soluble means a property that can be dissolved in water or dispersed in water. Moreover, the composition for a support material is not easily solidified (solidified) at low temperatures, and the fluidity is not easily lowered.
より具体的には、本発明においてサポート材組成物は、上記オキシブチレン基を含むポリアルキレングリコール(a)と、水溶性単官能エチレン性不飽和単量体(b)と、光重合開始剤とを含有している。これにより、優れた水除去性とサポート力とを兼ね備えたサポート材を実現可能で、かつ、低温安定性に優れたサポート材組成物を提供することができる。
More specifically, in the present invention, the support material composition comprises the above polyalkylene glycol (a) containing an oxybutylene group, a water-soluble monofunctional ethylenically unsaturated monomer (b), and a photopolymerization initiator. Contains. Thereby, it is possible to provide a support material that has both excellent water removability and support capability, and is excellent in low-temperature stability.
サポート材用組成物に含まれ得るオキシブチレン基を含むポリアルキレングリコール(a)としては、直鎖型、多鎖型のいずれであってもよい。また、水に溶解するものであれば、末端にアルキル基を含んでいてもよく、例えば、好ましくは炭素数6以下のアルキル鎖を含んでいてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The polyalkylene glycol (a) containing an oxybutylene group that can be included in the support material composition may be either a linear type or a multi-chain type. Moreover, as long as it melt | dissolves in water, the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
オキシブチレン基を含むポリアルキレングリコール(a)は、サポート材に適度の親水性を付与するための水溶性樹脂であり、これを添加することによりに水除去性とサポート力とを兼ね備えたサポート材を得ることができる。上記オキシブチレン基を含むポリアルキレングリコールは、オキシブチレン基を含んでいれば、特にそのアルキレン部分の構造は限定されず、例えば、オキシブチレン基(オキシテトラメチレン基)のみ有するポリブチレングリコール単体であってもよく、また、オキシブチレン基と他のオキシアルキレン基とを共に有するポリブチレンポリオキシアルキレングリコール(例えば、ポリブチレンポリエチレングリコール)であってもよい。
The polyalkylene glycol (a) containing an oxybutylene group is a water-soluble resin for imparting appropriate hydrophilicity to a support material, and by adding this, a support material having both water removability and support power Can be obtained. The polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group. For example, the polyalkylene glycol having only an oxybutylene group (oxytetramethylene group) is a single polybutylene glycol. Alternatively, it may be a polybutylene polyoxyalkylene glycol (for example, polybutylene polyethylene glycol) having both an oxybutylene group and another oxyalkylene group.
例えば、上記ポリブチレングリコールは、下記化学式(1)で示され、上記ポリブチレンポリエチレングリコールは、下記化学式(2)で示される。
For example, the polybutylene glycol is represented by the following chemical formula (1), and the polybutylene polyethylene glycol is represented by the following chemical formula (2).
上記化学式(2)において、mは5~300の整数であることが好ましく、nは2~150の整数であることが好ましい。より好ましくは、mは6~200、nは3~100である。また、化学式(1)および化学式(2)中のオキシブチレン基は、直鎖であってもよいが、分岐していてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(a)を含むことにより、サポート材のサポート力を低下させずに水による除去性をより向上させることができ、モデル材を支持し、精度の高いモデル材を造形するのに適したサポート材となる。特に、光造形中にサポート材がモデル材を十分に支えることができるため、成形時における寸法精度の低下を抑制して光造形の段階における造形精度を向上させることができる。さらに、その後、サポート材を除去する段階においてはサポート材の容易な除去が可能であるため、光造形中に高い精度で成形した立体モデルの微細構造においてもその精度の低下を抑えながらサポート材を除去することができる。これにより、サポート材の水による除去性を向上させることによりサポート材除去時における寸法精度の低下を抑制するだけでなく、サポート材の自立性を向上させることにより光造形中におけるモデル材の寸法精度を高めることで、より良好な造形精度を有する光造形物を得ることができる。 In the above chemical formula (2), m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100. Further, the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
When the support material composition contains the polyalkylene glycol (a) containing an oxybutylene group, it is possible to further improve the removability by water without reducing the support power of the support material, and to support the model material. It becomes a support material suitable for modeling a model material with high accuracy. In particular, since the support material can sufficiently support the model material during the optical modeling, it is possible to improve the modeling accuracy at the stage of optical modeling by suppressing a decrease in dimensional accuracy during molding. Furthermore, since the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed. This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, an optically shaped object having better modeling accuracy can be obtained.
サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(a)を含むことにより、サポート材のサポート力を低下させずに水による除去性をより向上させることができ、モデル材を支持し、精度の高いモデル材を造形するのに適したサポート材となる。特に、光造形中にサポート材がモデル材を十分に支えることができるため、成形時における寸法精度の低下を抑制して光造形の段階における造形精度を向上させることができる。さらに、その後、サポート材を除去する段階においてはサポート材の容易な除去が可能であるため、光造形中に高い精度で成形した立体モデルの微細構造においてもその精度の低下を抑えながらサポート材を除去することができる。これにより、サポート材の水による除去性を向上させることによりサポート材除去時における寸法精度の低下を抑制するだけでなく、サポート材の自立性を向上させることにより光造形中におけるモデル材の寸法精度を高めることで、より良好な造形精度を有する光造形物を得ることができる。 In the above chemical formula (2), m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100. Further, the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
When the support material composition contains the polyalkylene glycol (a) containing an oxybutylene group, it is possible to further improve the removability by water without reducing the support power of the support material, and to support the model material. It becomes a support material suitable for modeling a model material with high accuracy. In particular, since the support material can sufficiently support the model material during the optical modeling, it is possible to improve the modeling accuracy at the stage of optical modeling by suppressing a decrease in dimensional accuracy during molding. Furthermore, since the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed. This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, an optically shaped object having better modeling accuracy can be obtained.
オキシブチレン基を含むポリアルキレングリコール(a)の重量平均分子量(Mw)は、300以上である。前記ポリアルキレングリコール(a)の重量平均分子量が300未満であると、サポート材用組成物を構成する成分との相溶性が低下し、ブリーディングが生じやすくなる。したがって、オキシブチレン基を含むポリアルキレングリコール(a)の重量平均分子量は、より好ましくは400以上、さらに好ましくは500以上である。また、オキシブチレン基を含むポリアルキレングリコール(a)の重量平均分子量の上限は特に限定されるものではないが、通常、3000以下であり、好ましくは2000以下である。重量平均分子量が上記範囲であると、硬化前の組成物中で水溶性単官能エチレン性不飽和単量体(b)と相溶しやすくなる一方、光照射後の水溶性単官能エチレン性不飽和単量体の硬化物とは相溶し難くなり、サポート材の水または水溶性溶剤による除去が容易になる。
The weight average molecular weight (M w ) of the polyalkylene glycol (a) containing an oxybutylene group is 300 or more. When the weight average molecular weight of the polyalkylene glycol (a) is less than 300, the compatibility with the components constituting the composition for a support material is lowered, and bleeding tends to occur. Therefore, the weight average molecular weight of the polyalkylene glycol (a) containing an oxybutylene group is more preferably 400 or more, and even more preferably 500 or more. The upper limit of the weight average molecular weight of the polyalkylene glycol (a) containing an oxybutylene group is not particularly limited, but is usually 3000 or less, preferably 2000 or less. When the weight average molecular weight is within the above range, the water-soluble monofunctional ethylenically unsaturated monomer (b) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
上述したとおり、サポート材用組成物におけるオキシブチレン基を含むポリアルキレングリコール(a)の含有量は、サポート材用組成物100質量部に対して、15質量部以上75質量部以下であり、好ましくは17質量部以上であり、より好ましくは20質量部以上であり、好ましくは72質量部以下であり、より好ましくは70質量部以下である。オキシブチレン基を含むポリアルキレングリコール(a)の含有量が、15質量部未満であると、サポート材の親水性が低下するため、サポート材の水除去性が低下し、上記含有量が75質量部を上回ると、重合性成分の水溶性単官能エチレン性不飽和単量体(b)の添加量が低下し、サポート材が軟化して自立性が低下するため、サポート材のサポート力が低下する。
As described above, the content of the polyalkylene glycol (a) containing an oxybutylene group in the support material composition is preferably 15 parts by mass or more and 75 parts by mass or less with respect to 100 parts by mass of the support material composition. Is 17 parts by mass or more, more preferably 20 parts by mass or more, preferably 72 parts by mass or less, more preferably 70 parts by mass or less. When the content of the polyalkylene glycol (a) containing an oxybutylene group is less than 15 parts by mass, the hydrophilicity of the support material decreases, so the water removability of the support material decreases, and the content is 75 masses. If the amount exceeds 50 parts, the amount of the water-soluble monofunctional ethylenically unsaturated monomer (b) that is a polymerizable component is reduced, and the support material is softened and the self-supporting property is lowered. To do.
本発明において、サポート材用組成物に含まれる水溶性単官能エチレン性不飽和単量体(b)としては、例えば、炭素数5~15の水酸基含有(メタ)アクリレート〔例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等〕、数平均分子量(Mn)200~1,000の水酸基含有(メタ)アクリレート〔例えばポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリプロピレングリコールモノ(メタ)アクリレート、PEG-PPGブロックポリマーのモノ(メタ)アクリレート等〕、(メタ)アクリルアミド誘導体〔例えば(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド等〕、(メタ)アクリロイルモルホリン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
In the present invention, the water-soluble monofunctional ethylenically unsaturated monomer (b) contained in the support material composition includes, for example, a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meta ) Acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, mono Alkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meta) of PEG-PPG block polymer Acry Etc.], (meth) acrylamide derivatives [eg (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N , N′-dimethyl (meth) acrylamide, N, N′-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide, etc.] (Meth) acryloylmorpholine and the like can be mentioned. These may be used alone or in combination of two or more.
サポート材用組成物に含まれる水溶性単官能エチレン性不飽和単量体(b)の含有量は、上記サポート材用組成物100質量部に対して、19質量部以上80質量部以下であり、好ましくは22質量部以上であり、より好ましくは25質量部以上であり、好ましくは76質量部以下であり、より好ましくは73質量部以下である。水溶性単官能エチレン性不飽和単量体(b)の含有量が上記範囲内であると、サポート材のサポート力を低下させることなく、水によるサポート材の除去性を向上させることができる。
Content of the water-soluble monofunctional ethylenically unsaturated monomer (b) contained in the composition for support material is 19 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the composition for support material. The amount is preferably 22 parts by mass or more, more preferably 25 parts by mass or more, preferably 76 parts by mass or less, and more preferably 73 parts by mass or less. When the content of the water-soluble monofunctional ethylenically unsaturated monomer (b) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
さらに、サポート材用組成物は、水溶性有機溶剤を含んでいてもよい。水溶性有機溶剤は、サポート材用組成物を光硬化させて得られるサポート材の水への溶解性を向上させる成分である。また、サポート材用組成物を低粘度に調整する機能も有する。
Furthermore, the composition for support material may contain a water-soluble organic solvent. A water-soluble organic solvent is a component which improves the solubility to water of the support material obtained by photocuring the composition for support materials. Moreover, it has the function to adjust the composition for support materials to low viscosity.
水溶性有機溶剤としては、グリコール系溶剤を用いることが好ましく、具体的には、例えば、エチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジエチレングリコールモノアセテート、ジプロピレングリコールモノアセテート、トリエチレングリコールモノアセテート、トリプロピレングリコールモノアセテート、テトラエチレングリコールモノアセテート、テトラプロピレングリコールモノアセテート、エチレングリコールジアセテート、プロピレングリコールジアセテートなどのグリコールエステル系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、テトラプロピレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテルなどのグリコールエーテル系溶剤;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテートなどのグリコールモノエーテルアセテート系溶剤等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
As the water-soluble organic solvent, a glycol-based solvent is preferably used. Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate, triethylene glycol monoacetate, and the like. Glycol ester solvents such as propylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl ether, ethylene Glycol monoethyl ether, propylene glycol Ethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, ethylene Glycol ether solvents such as glycol dipropyl ether, propylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dibutyl ether, diethylene glycol diethyl ether; ethylene glycol monomethyl ether acetate, propylene glycol monomer Ether ether, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monobutyl ether acetate, etc. And glycol monoether acetate solvents. These may be used alone or in combination of two or more.
中でも、低粘度のサポート材用組成物を調製しやすく、また、硬化して得られるサポート材が水溶解性に優れる点から、水溶性有機溶剤としては、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテルおよびジプロピレングリコールモノメチルエーテルアセテートが好ましい。
Among them, since it is easy to prepare a composition for a support material having a low viscosity and the support material obtained by curing is excellent in water solubility, examples of the water-soluble organic solvent include triethylene glycol monomethyl ether, diethylene glycol diethyl ether and Dipropylene glycol monomethyl ether acetate is preferred.
サポート材用組成物における水溶性有機溶剤の含有量は、サポート材用組成物100質量部に対して、30質量部以下であることが好ましく、より好ましくは28質量部以下であり、さらに好ましくは25質量部以下である。水溶性有機溶剤の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。サポート材用組成物が水溶性有機溶剤を含む場合、その含有量は、サポート材用組成物を低粘度に調整し得る観点から、サポート材用組成物100質量部に対して、好ましくは3質量部以上である。
The content of the water-soluble organic solvent in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, further preferably 100 parts by mass of the support material composition. 25 parts by mass or less. When the content of the water-soluble organic solvent is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material. When the composition for a support material contains a water-soluble organic solvent, the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
光重合開始剤としては、モデル材用組成物に含有され得る光重合開始剤として上記に述べた化合物を同様に使用することができる。サポート材用組成物における光重合開始剤の含有量は、サポート材用組成物100質量部に対して、好ましくは1質量部以上20質量部以下であり、より好ましくは2質量部以上であり、また、より好ましくは18質量部以下、さらに好ましくは15質量部以下である。光重合開始剤の含有量が上記範囲内であると、未反応の重合成分を十分に低減させて、サポート材の硬化性を十分に高めやすい。
As the photopolymerization initiator, the compounds described above as photopolymerization initiators that can be contained in the model material composition can be used in the same manner. The content of the photopolymerization initiator in the composition for support material is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the composition for support material. Moreover, More preferably, it is 18 mass parts or less, More preferably, it is 15 mass parts or less. When the content of the photopolymerization initiator is within the above range, unreacted polymerization components can be sufficiently reduced, and the curability of the support material can be sufficiently enhanced.
上記各成分を上記範囲の含有量で含むことにより、優れた水溶解性とサポート力とを兼ね備えたサポート材用組成物を得ることができる。特に、サポート力に優れるため造形中に空気中の水分を取り込みサポート力が低下するという懸念がなく、寸法精度が良好な光造形品が得られる。
By including each of the above components in a content within the above range, a composition for a support material that has both excellent water solubility and support ability can be obtained. In particular, since the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy can be obtained.
上記サポート材用組成物には、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、表面調整剤、酸化防止剤、着色剤、顔料分散剤、保存安定剤、紫外線吸収剤、光安定剤、連鎖移動剤、充填剤等が挙げられる。
The support material composition may contain other additives as necessary. Examples of other additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, chain transfer agents, and fillers.
サポート材用組成物に、表面調整剤を配合することによりサポート材用組成物の表面張力を適当な範囲に制御することができ、モデル材用組成物とサポート材用組成物がその界面で混合することを抑制することができる。これにより、寸法精度の良好な光造形物を得ることができる。サポート材用組成物が含み得る表面調整剤としては、先のモデル材用組成物に用い得る表面調整剤として例示したものと同様のものを用いることができ、その含有量は、サポート材用組成物100質量部に対して0.005質量部以上3質量部以下であることが好ましい。
By adding a surface conditioner to the support material composition, the surface tension of the support material composition can be controlled within an appropriate range, and the model material composition and the support material composition are mixed at the interface. Can be suppressed. Thereby, a stereolithography thing with favorable dimensional accuracy can be obtained. As the surface conditioner that can be contained in the support material composition, the same as those exemplified as the surface conditioner that can be used in the previous model material composition can be used, the content of which is the composition for the support material It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
また、サポート材用組成物に保存安定剤を配合することにより保存安定性を向上させることができる。サポート材用組成物が含み得る保存安定剤としては、先のモデル材用組成物に用い得る保存安定剤として例示したものと同様のものを用いることができ、その含有量は、サポート材組成物100質量部に対して0.05質量部以上3質量部以下であることが好ましい。
Moreover, the storage stability can be improved by blending a storage stabilizer into the support material composition. As the storage stabilizer that can be contained in the support material composition, those exemplified as the storage stabilizer that can be used in the previous model material composition can be used, and the content thereof can be determined by the support material composition. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts.
本発明において、サポート材用組成物の粘度は、マテリアルジェットノズルからの吐出性を良好にする観点から、25℃において30~200mPa・sであることが好ましく、より好ましくは35mPa・s以上、さらに好ましくは40mPa・s以上であり、より好ましくは170mPa・s以下、さらに好ましくは150mPa・s以下である。なお、上記粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行うことができる。
In the present invention, the viscosity of the composition for a support material is preferably 30 to 200 mPa · s at 25 ° C., more preferably 35 mPa · s or more, from the viewpoint of improving dischargeability from a material jet nozzle. Preferably it is 40 mPa * s or more, More preferably, it is 170 mPa * s or less, More preferably, it is 150 mPa * s or less. In addition, the measurement of the said viscosity can be performed using R100 type | mold viscosity meter based on JISZ8803.
本発明において、サポート材用組成物の表面張力は、好ましくは24~30mN/mであり、より好ましくは24.5~29.5mN/mであり、さらに好ましくは25~29mN/mである。表面張力が上記範囲内であると、ノズルからの吐出液滴を正常に形成することができ、適切な液滴量や着弾精度を確保することやサテライトの発生を抑制することが可能であり、高い造形精度を確保しやすくなる。なお、サポート材用組成物の表面張力は、モデル材用組成物における表面張力の測定方法と同様の方法に従い測定することができる。
In the present invention, the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m. When the surface tension is within the above range, it is possible to normally form droplets ejected from the nozzle, to ensure an appropriate droplet amount and landing accuracy, and to suppress the occurrence of satellites, It becomes easy to ensure high modeling accuracy. In addition, the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
本発明のサポート材用組成物の製造方法は特に限定されず、例えば、混合攪拌装置、分散機等を用いて、サポート材用組成物を構成する成分を均一に混合することにより製造することができる。
The method for producing the composition for a support material of the present invention is not particularly limited. For example, the composition for a support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer, a disperser, or the like. it can.
<光造形用組成物セット>
本発明の光造形用組成物セットは、サポート材が自立性および除去性に優れるために光造形物の寸法精度を損なわないので、立体造形物(モデル材)を優れた精度で造形することができ、外観に優れたモデル材を提供することができる。 <Composition set for stereolithography>
In the composition set for optical modeling of the present invention, since the support material is excellent in self-supporting property and removability, the dimensional accuracy of the optical modeling object is not impaired, so that the three-dimensional modeled object (model material) can be modeled with excellent accuracy. And a model material excellent in appearance can be provided.
本発明の光造形用組成物セットは、サポート材が自立性および除去性に優れるために光造形物の寸法精度を損なわないので、立体造形物(モデル材)を優れた精度で造形することができ、外観に優れたモデル材を提供することができる。 <Composition set for stereolithography>
In the composition set for optical modeling of the present invention, since the support material is excellent in self-supporting property and removability, the dimensional accuracy of the optical modeling object is not impaired, so that the three-dimensional modeled object (model material) can be modeled with excellent accuracy. And a model material excellent in appearance can be provided.
<光造形品およびその製造方法>
本発明の光造形物の製造方法は、本発明の光造形用組成物セットを用いた光造形物の製造方法であり、マテリアルジェット(インクジェット)方式プリンタを用いてモデル材用組成物およびサポート材用組成物を吐出した後、モデル材用組成物を光硬化させてモデル材を得るとともに、水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程と、前記水溶性サポート材を水に接触させることにより除去する工程とを備えている。 <Optical modeling product and its manufacturing method>
The manufacturing method of the optical modeling thing of this invention is a manufacturing method of the optical modeling thing using the composition set for optical modeling of this invention, and is a composition for model materials, and a support material using a material jet (inkjet) type printer. After discharging the composition for use, the model material composition is photocured to obtain a model material, the water soluble support material composition is photocured to obtain a water soluble support material, and the water soluble support material Is removed by contacting with water.
本発明の光造形物の製造方法は、本発明の光造形用組成物セットを用いた光造形物の製造方法であり、マテリアルジェット(インクジェット)方式プリンタを用いてモデル材用組成物およびサポート材用組成物を吐出した後、モデル材用組成物を光硬化させてモデル材を得るとともに、水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程と、前記水溶性サポート材を水に接触させることにより除去する工程とを備えている。 <Optical modeling product and its manufacturing method>
The manufacturing method of the optical modeling thing of this invention is a manufacturing method of the optical modeling thing using the composition set for optical modeling of this invention, and is a composition for model materials, and a support material using a material jet (inkjet) type printer. After discharging the composition for use, the model material composition is photocured to obtain a model material, the water soluble support material composition is photocured to obtain a water soluble support material, and the water soluble support material Is removed by contacting with water.
本発明の製造方法は、上記本発明の光造形用組成物セットを用いているため、高い造形精度で、着色された外観に優れる光造形物を形成することができる。
Since the manufacturing method of the present invention uses the optical modeling composition set of the present invention, it is possible to form an optical modeling object that is excellent in colored appearance with high modeling accuracy.
以下、本発明の光造形物の製造方法について図面に基づき説明する。図1は、マテリアルジェット造形法によりサポート材用組成物およびモデル材用組成物を吐出してエネルギー線を照射している状態を示す模式側面図である。図1において、三次元造形装置10は、インクジェットヘッドモジュール11と、造形テーブル12とを備えている。また、インクジェットヘッドモジュール11は、光造形用インクユニット11aと、ローラー11bと、光源11cとを備えている。さらに、光造形用インクユニット11aは、モデル材用組成物13が充填されたモデル材用インクジェットヘッド11aMと、サポート材用組成物14が充填されたサポート材用インクジェットヘッド11aSとを備えている。
Hereinafter, a method for manufacturing an optically shaped object of the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays. In FIG. 1, the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12. The ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c. Furthermore, the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material composition 13, and a support material inkjet head 11aS filled with the support material composition 14.
モデル材用インクジェットヘッド11aMからは、モデル材用組成物13が吐出され、サポート材用インクジェットヘッド11aSからは、サポート材用組成物14が吐出され、光源11cからエネルギー線15が照射され、吐出されたモデル材用組成物13およびサポート材用組成物14を硬化させて、モデル材13PMとサポート材14PSを形成している。図1では、一層目のモデル材13PMおよびサポート材14PSを形成する状態を示している。
The model material composition 13 is ejected from the model material inkjet head 11aM, the support material composition 14 is ejected from the support material inkjet head 11aS, and the energy beam 15 is irradiated and ejected from the light source 11c. The model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS. FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
次に、本発明の光造形物の製造方法について図面に基づき更に詳細に説明する。本発明の光造形物の製造方法では、先ず、図2に示すように、インクジェットヘッドモジュール11を造形テーブル12に対してX方向(図2では右方向)に走査させる共に、モデル材用インクジェットヘッド11aMからモデル材用組成物13を吐出し、サポート材用インクジェットヘッド11aSからサポート材用組成物14を吐出する。これにより、造形テーブル12の上に、モデル材前駆体13Mからなる層とサポート材前駆体14Sからなる層とを、それぞれの界面同士が接触するように隣接して配置する。
Next, the method for manufacturing an optically shaped product of the present invention will be described in more detail based on the drawings. In the method for producing an optically shaped article of the present invention, first, as shown in FIG. 2, the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet head for model material is used. The composition 13 for model material is discharged from 11aM, and the composition 14 for support material is discharged from the inkjet head 11aS for support material. Thereby, on the modeling table 12, the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange | positioned adjacently so that each interface may contact.
次に、図3に示すように、インクジェットヘッドモジュール11を造形テーブル12に対して逆X方向(図3では左方向)に走査させると共に、ローラー11bでモデル材前駆体13Mおよびサポート材前駆体14Sからなる層の表面を平滑にした後、光源11cからエネルギー線15を照射し、モデル材前駆体13Mおよびサポート材前駆体14Sからなる層を硬化させて、一層目のモデル材13PMおよびサポート材14PSからなる層を形成する。
Next, as shown in FIG. 3, the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 </ b> M and the support material precursor 14 </ b> S with the roller 11 b. After smoothing the surface of the layer made of the material, the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS. A layer consisting of is formed.
続いて、造形テーブル12をZ方向に一層分だけ下降させて、上記と同様の工程を行い、二層目のモデル材およびサポート材からなる層を形成する。その後、上記の工程を繰り返すことにより、図4に示すように、モデル材13PMとサポート材14PSからなる光造形品前駆体16が形成される。
Subsequently, the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
最後に、図4に示した光造形品前駆体16を水に接触させる、例えば、水に浸漬することによりサポート材14PSを溶解して除去し、図5に示すような光造形品17が形成される。
Finally, the optical modeling product precursor 16 shown in FIG. 4 is brought into contact with water, for example, by immersing in water, the support material 14PS is dissolved and removed to form the optical modeling product 17 as shown in FIG. Is done.
本発明の光造形物の製造方法において、光源として、例えば、高圧水銀灯、メタルハライドランプ、UV-LED等を使用できる。三次元造形装置10の小型化が可能であり、消費電力が小さいという観点から、UV-LEDが好ましい。光量は、造形品の硬度および寸法精度の観点から、200~500mJ/cm2が好ましい。光源としてUV-LEDを用いる場合、光が深層まで届きやすくなり、光造形品の硬度および寸法精度を向上させることができることから、中心波長が385~415nmのものを用いることが好ましい。また、光源11cから照射するエネルギー線15についは、紫外線、近紫外線、可視光線、赤外線、遠赤外線、電子線、α線、γ線およびエックス線等を使用することができるが、硬化作業の容易性及び効率性の観点から、紫外線又は近紫外線が好ましい。
In the method for producing an optically shaped article of the present invention, for example, a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source. From the viewpoint that the three-dimensional modeling apparatus 10 can be miniaturized and the power consumption is small, UV-LED is preferable. The amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product. When a UV-LED is used as the light source, it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved. As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, α rays, γ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
本発明の製造方法において、例えば、作製する物体の3次元CADデータをもとに、マテリアルジェット方式で積層して立体造形物を構成するモデル材用組成物のデータ、および、作製途上の立体造形物を支持するサポート材用組成物のデータを作製し、さらにマテリアルジェット方式の3Dプリンタで各組成物を吐出するスライスデータを作製し、作製したスライスデータに基づきモデル材用およびサポート材用の各組成物を吐出後、光硬化処理を層ごとに繰り返し、モデル材用組成物の硬化物(モデル材)およびサポート材用組成物の硬化物(サポート材)からなる光造形物を作製することができる。
In the manufacturing method of the present invention, for example, based on the three-dimensional CAD data of the object to be manufactured, the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data. After discharging the composition, the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
立体造形物を構成する各層の厚みは、造形精度の観点からは薄いほうが好ましいが、造形速度とのバランスからは5~30μmが好ましい。
The thickness of each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 μm from the balance with the modeling speed.
本発明において、光造形用組成物セットがモデル材用組成物として2種以上のモデル材用組成物を含む場合、例えば、モデル材の内層を構成する白色顔料を含むモデル材用白色組成物または着色剤を含まないモデル材用クリア組成物と、前記モデル材用白色組成物から造形された白色造形物上または前記モデル材用クリア組成物から造形されたクリア造形物上にカラー層を形成するための1種以上のモデル材用カラー組成物とを含む場合、所望の立体造形物の3次元形状に応じた断面データに従い、白色造形物上またはクリア造形物上にモデル材用カラー組成物によりカラー層を形成するよう、各モデル材用組成物を吐出および硬化させることにより、内層が白色造形物またはクリア造形物であり、外層がカラー層であるモデル材を作製することができる。
In the present invention, when the stereolithography composition set includes two or more model material compositions as the model material composition, for example, the white composition for model material containing a white pigment constituting the inner layer of the model material or A color layer is formed on a clear composition for a model material that does not contain a colorant and a white shaped article that is shaped from the white composition for a model material or a clear shaped article that is shaped from the clear composition for a model material The color composition for the model material on the white shaped article or the clear shaped article according to the cross-sectional data corresponding to the three-dimensional shape of the desired three-dimensional shaped article. By discharging and curing the composition for each model material so as to form a color layer, a model material in which the inner layer is a white shaped article or a clear shaped article and the outer layer is a color layer is produced. It is possible.
得られた光造形物は、モデル材とサポート材とが組み合わされたものである。かかる光造形物からサポート材を除去してモデル材である光造形品を得る。サポート材の除去は、例えば、サポート材を溶解させる除去溶剤に得られた光造形物を浸漬し、サポート材を柔軟にした後、ブラシなどでモデル材表面からサポート材を除去して行うことが好ましい。サポート材の除去溶剤には水、水溶性溶剤、例えばグリコール系溶剤、アルコール系溶剤などを用いてもよい。これらは、単独で、あるいは複数用いてもよい。
The obtained stereolithography is a combination of a model material and a support material. The support material is removed from the stereolithography product to obtain a stereolithography product as a model material. The support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like. preferable. Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
上記光造形品は、水に接触した場合の吸水および膨潤が抑制されており、微細構造部分の破損及び変形を起こしにくいものである。また、上記光造形品は撥水撥油性に優れ、汚染されにくいものである。
The above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
以上の工程により得られた光造形品は、ある実施形態においては、比較的高い表面硬度を有する。例えば、上記光造形品は、ショア-D硬度で50以上、好ましくは60以上、より好ましくは70以上の表面硬度を有する。上記光造形品は、サポート材を除去する際に水に接触する時間が短時間で済むために吸水及び膨潤が抑制されており、寸法精度が高いものである。
The stereolithographic product obtained by the above steps has a relatively high surface hardness in an embodiment. For example, the stereolithographic product has a surface hardness of Shore-D hardness of 50 or more, preferably 60 or more, more preferably 70 or more. The optically shaped article has a high dimensional accuracy because water absorption and swelling are suppressed because it takes a short time to contact water when removing the support material.
以下、本実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
Hereinafter, examples that more specifically disclose the present embodiment will be shown. In addition, this invention is not limited only to these Examples.
以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部である。
Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” and “parts” in the examples are% by mass and parts by mass.
1.モデル材用組成物
実施例において用いたモデル材用組成物を構成する成分の詳細を表1に示す。 1. Model Material Composition Table 1 shows the details of the components constituting the model material composition used in the examples.
実施例において用いたモデル材用組成物を構成する成分の詳細を表1に示す。 1. Model Material Composition Table 1 shows the details of the components constituting the model material composition used in the examples.
(1)顔料分散物の作製
下記表2に記載の顔料以外の成分を混合し、SILVERSON社製ミキサーを用いて10~15分間、2,000~3,000回転/分で均一に撹拌して透明液体(分散剤希釈液)を得た。得られた透明液体に顔料を加えた後、さらにミキサーを用いて10~20分間、2,000~3,000回転/分で撹拌して均一な予備分散液を500部得た。次いで、ディスパーマット社製の循環型ビーズミル装置(SL-012C1)を用いて、下記条件のもと、分散処理を実施した。
<分散条件>
直径0.65mmのジルコニアビーズを200部充填し、周速を15m/秒とした。分散時間は1~6時間とした。
以上のようにして、顔料分散物シアン1、マゼンタ1、イエロー1、ブラック、ホワイト1を作製した。なお、表2中に記載の質量%の数値は、顔料分散物の総質量に対する各成分の含有量(質量%)を表す。 (1) Preparation of pigment dispersion Ingredients other than the pigments listed in Table 2 below were mixed and stirred uniformly at 2,000 to 3,000 rpm for 10 to 15 minutes using a mixer manufactured by SILVERSON. A transparent liquid (dispersant diluent) was obtained. After adding the pigment to the obtained transparent liquid, the mixture was further stirred for 10 to 20 minutes at 2,000 to 3,000 rpm with a mixer to obtain 500 parts of a uniform preliminary dispersion. Next, using a circulation type bead mill apparatus (SL-012C1) manufactured by Dispermat, dispersion treatment was performed under the following conditions.
<Distribution conditions>
200 parts of zirconia beads having a diameter of 0.65 mm were filled, and the peripheral speed was 15 m / sec. The dispersion time was 1 to 6 hours.
As described above, pigment dispersions Cyan 1, Magenta 1, Yellow 1, Black, and White 1 were produced. In addition, the numerical value of the mass% described in Table 2 represents content (mass%) of each component with respect to the total mass of a pigment dispersion.
下記表2に記載の顔料以外の成分を混合し、SILVERSON社製ミキサーを用いて10~15分間、2,000~3,000回転/分で均一に撹拌して透明液体(分散剤希釈液)を得た。得られた透明液体に顔料を加えた後、さらにミキサーを用いて10~20分間、2,000~3,000回転/分で撹拌して均一な予備分散液を500部得た。次いで、ディスパーマット社製の循環型ビーズミル装置(SL-012C1)を用いて、下記条件のもと、分散処理を実施した。
<分散条件>
直径0.65mmのジルコニアビーズを200部充填し、周速を15m/秒とした。分散時間は1~6時間とした。
以上のようにして、顔料分散物シアン1、マゼンタ1、イエロー1、ブラック、ホワイト1を作製した。なお、表2中に記載の質量%の数値は、顔料分散物の総質量に対する各成分の含有量(質量%)を表す。 (1) Preparation of pigment dispersion Ingredients other than the pigments listed in Table 2 below were mixed and stirred uniformly at 2,000 to 3,000 rpm for 10 to 15 minutes using a mixer manufactured by SILVERSON. A transparent liquid (dispersant diluent) was obtained. After adding the pigment to the obtained transparent liquid, the mixture was further stirred for 10 to 20 minutes at 2,000 to 3,000 rpm with a mixer to obtain 500 parts of a uniform preliminary dispersion. Next, using a circulation type bead mill apparatus (SL-012C1) manufactured by Dispermat, dispersion treatment was performed under the following conditions.
<Distribution conditions>
200 parts of zirconia beads having a diameter of 0.65 mm were filled, and the peripheral speed was 15 m / sec. The dispersion time was 1 to 6 hours.
As described above, pigment dispersions Cyan 1, Magenta 1, Yellow 1, Black, and White 1 were produced. In addition, the numerical value of the mass% described in Table 2 represents content (mass%) of each component with respect to the total mass of a pigment dispersion.
(2)モデル材用着色組成物の調製
表3に示す配合で、各モデル材用着色組成物を構成する成分を、それぞれ混合し、SILVERSON社製ミキサーを用いて、10~15分、2,000~3,000回転/分で均一に撹拌して、実施例M1~M8および比較例m1~m3のモデル材用着色組成物を調製した。なお、表3中の各成分の含有量は質量部であり、(メタ)アクリレートモノマー(A)の比率および(メタ)アクリレートモノマー(B)の比率は、モデル材用着色組成物の総質量に対する割合(質量%)を示す。 (2) Preparation of coloring composition for model material In the formulation shown in Table 3, the components constituting the coloring composition for each model material were respectively mixed and mixed for 10 to 15 minutes using a mixer manufactured by SILVERSON. The coloring compositions for model materials of Examples M1 to M8 and Comparative Examples m1 to m3 were prepared by stirring uniformly at 000 to 3,000 rpm. In addition, content of each component of Table 3 is a mass part, and the ratio of (meth) acrylate monomer (A) and the ratio of (meth) acrylate monomer (B) are with respect to the total mass of the coloring composition for model materials. A ratio (mass%) is shown.
表3に示す配合で、各モデル材用着色組成物を構成する成分を、それぞれ混合し、SILVERSON社製ミキサーを用いて、10~15分、2,000~3,000回転/分で均一に撹拌して、実施例M1~M8および比較例m1~m3のモデル材用着色組成物を調製した。なお、表3中の各成分の含有量は質量部であり、(メタ)アクリレートモノマー(A)の比率および(メタ)アクリレートモノマー(B)の比率は、モデル材用着色組成物の総質量に対する割合(質量%)を示す。 (2) Preparation of coloring composition for model material In the formulation shown in Table 3, the components constituting the coloring composition for each model material were respectively mixed and mixed for 10 to 15 minutes using a mixer manufactured by SILVERSON. The coloring compositions for model materials of Examples M1 to M8 and Comparative Examples m1 to m3 were prepared by stirring uniformly at 000 to 3,000 rpm. In addition, content of each component of Table 3 is a mass part, and the ratio of (meth) acrylate monomer (A) and the ratio of (meth) acrylate monomer (B) are with respect to the total mass of the coloring composition for model materials. A ratio (mass%) is shown.
(3)モデル材(光硬化物)の作製および特性評価
上記実施例M1~M8および比較例m1~m3のモデル材用着色組成物を用いて、モデル材(光硬化物)を作製し、各モデル材について、膜柔軟性および膜強度を以下の方法および評価基準に従い評価した。各結果を表4に示す。 (3) Preparation of model material (photocured material) and evaluation of characteristics Using the coloring compositions for model materials of Examples M1 to M8 and Comparative Examples m1 to m3, model materials (photocured materials) were prepared, The model material was evaluated for film flexibility and film strength according to the following methods and evaluation criteria. Table 4 shows the results.
上記実施例M1~M8および比較例m1~m3のモデル材用着色組成物を用いて、モデル材(光硬化物)を作製し、各モデル材について、膜柔軟性および膜強度を以下の方法および評価基準に従い評価した。各結果を表4に示す。 (3) Preparation of model material (photocured material) and evaluation of characteristics Using the coloring compositions for model materials of Examples M1 to M8 and Comparative Examples m1 to m3, model materials (photocured materials) were prepared, The model material was evaluated for film flexibility and film strength according to the following methods and evaluation criteria. Table 4 shows the results.
<膜柔軟性>
膜柔軟性を評価するため、ガラス板上に、縦30mm、横30mm、厚さ10mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に表3に示す各モデル材用組成物をそれぞれ流し込み、メタルハライドランプにより積算光量400mJ/cm2の紫外線を照射して、モデル材を得た。
得られたモデル材の表面において、柔らかさをデュロメーター(GS-779Gテックロック社)で測定した。
(評価基準)
5:0以上30未満
4:30以上60未満
3:60以上95未満
2:95以上100未満
1:100以上 <Membrane flexibility>
In order to evaluate the film flexibility, a frame is formed of a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 10 mm on a glass plate, and the composition for each model material shown in Table 3 is placed in the frame. Each was poured and irradiated with ultraviolet rays having an accumulated light amount of 400 mJ / cm 2 by a metal halide lamp, to obtain a model material.
On the surface of the obtained model material, the softness was measured with a durometer (GS-779G Tech Rock).
(Evaluation criteria)
5: 0 or more but less than 30 4:30 or more but less than 60 3:60 or more but less than 95 2:95 or more but less than 100 1: 100 or more
膜柔軟性を評価するため、ガラス板上に、縦30mm、横30mm、厚さ10mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に表3に示す各モデル材用組成物をそれぞれ流し込み、メタルハライドランプにより積算光量400mJ/cm2の紫外線を照射して、モデル材を得た。
得られたモデル材の表面において、柔らかさをデュロメーター(GS-779Gテックロック社)で測定した。
(評価基準)
5:0以上30未満
4:30以上60未満
3:60以上95未満
2:95以上100未満
1:100以上 <Membrane flexibility>
In order to evaluate the film flexibility, a frame is formed of a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 10 mm on a glass plate, and the composition for each model material shown in Table 3 is placed in the frame. Each was poured and irradiated with ultraviolet rays having an accumulated light amount of 400 mJ / cm 2 by a metal halide lamp, to obtain a model material.
On the surface of the obtained model material, the softness was measured with a durometer (GS-779G Tech Rock).
(Evaluation criteria)
5: 0 or more but less than 30 4:30 or more but less than 60 3:60 or more but less than 95 2:95 or more but less than 100 1: 100 or more
<膜強度>
膜強度を評価するため、ガラス板上に、縦30mm、横30mm、厚さ10mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に表3に示す各モデル材用組成物をそれぞれ流し込み、メタルハライドランプにより積算光量400mJ/cm2の紫外線を照射して、モデル材を得た。
得られたモデル材を用いて、引張り試験(オートグラフAGS-X 5KN(株)島津製作所製)を行い、引張強度を測定し、以下の基準により評価した。なお、モデル材は、長さの長い方向が台に水平になるように形成した。また、試験では、80mm×10mm×2mmの短冊を長軸方向にひっぱり、上下約10mm部分をクランプにより掴んだ。
(評価基準)
5:引っ張り強度が30N以上
4:引っ張り強度が20N以上30N未満
3:引っ張り強度が10N以上20N未満
2:引っ張り強度が5N以上10N未満
1:引っ張り強度が5N未満 <Membrane strength>
In order to evaluate the film strength, a frame is formed with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 10 mm on a glass plate, and the composition for each model material shown in Table 3 is placed in the frame. The model material was obtained by pouring and irradiating with a metal halide lamp an ultraviolet ray having an integrated light quantity of 400 mJ / cm 2 .
Using the obtained model material, a tensile test (Autograph AGS-X 5KN, manufactured by Shimadzu Corporation) was performed to measure the tensile strength and evaluated according to the following criteria. The model material was formed so that the long direction was horizontal to the table. Further, in the test, a strip of 80 mm × 10 mm × 2 mm was pulled in the long axis direction, and the upper and lower portions of about 10 mm were gripped by a clamp.
(Evaluation criteria)
5: Tensile strength is 30N or more 4: Tensile strength is 20N or more and less than 30N 3: Tensile strength is 10N or more and less than 20N 2: Tensile strength is 5N or more and less than 10N 1: Tensile strength is less than 5N
膜強度を評価するため、ガラス板上に、縦30mm、横30mm、厚さ10mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に表3に示す各モデル材用組成物をそれぞれ流し込み、メタルハライドランプにより積算光量400mJ/cm2の紫外線を照射して、モデル材を得た。
得られたモデル材を用いて、引張り試験(オートグラフAGS-X 5KN(株)島津製作所製)を行い、引張強度を測定し、以下の基準により評価した。なお、モデル材は、長さの長い方向が台に水平になるように形成した。また、試験では、80mm×10mm×2mmの短冊を長軸方向にひっぱり、上下約10mm部分をクランプにより掴んだ。
(評価基準)
5:引っ張り強度が30N以上
4:引っ張り強度が20N以上30N未満
3:引っ張り強度が10N以上20N未満
2:引っ張り強度が5N以上10N未満
1:引っ張り強度が5N未満 <Membrane strength>
In order to evaluate the film strength, a frame is formed with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 10 mm on a glass plate, and the composition for each model material shown in Table 3 is placed in the frame. The model material was obtained by pouring and irradiating with a metal halide lamp an ultraviolet ray having an integrated light quantity of 400 mJ / cm 2 .
Using the obtained model material, a tensile test (Autograph AGS-X 5KN, manufactured by Shimadzu Corporation) was performed to measure the tensile strength and evaluated according to the following criteria. The model material was formed so that the long direction was horizontal to the table. Further, in the test, a strip of 80 mm × 10 mm × 2 mm was pulled in the long axis direction, and the upper and lower portions of about 10 mm were gripped by a clamp.
(Evaluation criteria)
5: Tensile strength is 30N or more 4: Tensile strength is 20N or more and less than 30N 3: Tensile strength is 10N or more and less than 20N 2: Tensile strength is 5N or more and less than 10N 1: Tensile strength is less than 5N
2.サポート材用組成物
実施例において用いたサポート材用組成物を構成する成分の詳細を表5に示す。 2. Details of the components constituting the composition for support material used in the examples are shown in Table 5.
実施例において用いたサポート材用組成物を構成する成分の詳細を表5に示す。 2. Details of the components constituting the composition for support material used in the examples are shown in Table 5.
(1)サポート材用組成物の調製
表6に示す配合で、各サポート材用組成物を構成する成分を、それぞれ、混合攪拌装置を用いて均一に混合し、実施例S1~S13および比較例s1のサポート材用組成物を製造した。 (1) Preparation of Support Material Composition In the formulation shown in Table 6, the components constituting each support material composition were uniformly mixed using a mixing and stirring device, respectively, and Examples S1 to S13 and Comparative Examples The composition for support material of s1 was manufactured.
表6に示す配合で、各サポート材用組成物を構成する成分を、それぞれ、混合攪拌装置を用いて均一に混合し、実施例S1~S13および比較例s1のサポート材用組成物を製造した。 (1) Preparation of Support Material Composition In the formulation shown in Table 6, the components constituting each support material composition were uniformly mixed using a mixing and stirring device, respectively, and Examples S1 to S13 and Comparative Examples The composition for support material of s1 was manufactured.
(2)サポート材用組成物およびその硬化物の特性
上記実施例S1~S13および比較例s1のサポート材用組成物について、下記に示す方法によって、サポート材用組成物の低温安定性、サポート材組成物を硬化したサポート材硬化物の高温高湿条件安定性(サポート力)および水除去性を評価した。 (2) Characteristics of Support Material Composition and Cured Product thereof With respect to the support material compositions of Examples S1 to S13 and Comparative Example s1, the low temperature stability of the support material composition and the support material are obtained by the following method. The high-temperature and high-humidity condition stability (supporting power) and water removability of the cured support material obtained by curing the composition were evaluated.
上記実施例S1~S13および比較例s1のサポート材用組成物について、下記に示す方法によって、サポート材用組成物の低温安定性、サポート材組成物を硬化したサポート材硬化物の高温高湿条件安定性(サポート力)および水除去性を評価した。 (2) Characteristics of Support Material Composition and Cured Product thereof With respect to the support material compositions of Examples S1 to S13 and Comparative Example s1, the low temperature stability of the support material composition and the support material are obtained by the following method. The high-temperature and high-humidity condition stability (supporting power) and water removability of the cured support material obtained by curing the composition were evaluated.
<サポート材用組成物の低温安定性>
低温でのサポート材用組成物の安定性について評価した。各サポート材用組成物をガラス瓶に入れ、そのサポート材用組成物入りガラス瓶を温度10℃に設定した恒温槽中で24時間保管した。その後、保管後のサポート材用組成物の状態を目視で確認して、下記基準でサポート材用組成物の低温安定性を評価した。 <Low temperature stability of support material composition>
The stability of the composition for the support material at low temperature was evaluated. Each composition for support material was put into a glass bottle, and the glass bottle with the composition for support material was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the composition for support material was evaluated according to the following criteria.
低温でのサポート材用組成物の安定性について評価した。各サポート材用組成物をガラス瓶に入れ、そのサポート材用組成物入りガラス瓶を温度10℃に設定した恒温槽中で24時間保管した。その後、保管後のサポート材用組成物の状態を目視で確認して、下記基準でサポート材用組成物の低温安定性を評価した。 <Low temperature stability of support material composition>
The stability of the composition for the support material at low temperature was evaluated. Each composition for support material was put into a glass bottle, and the glass bottle with the composition for support material was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the composition for support material was evaluated according to the following criteria.
サポート材用組成物が液体状を維持している場合:低温安定性A(優良)
サポート材用組成物が一部凝固(固化)している場合:低温安定性B(良)
サポート材用組成物が凝固(固化)している場合:低温安定性C(不良) When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent)
When the support material composition is partially solidified (solidified): Low temperature stability B (good)
When the composition for the support material is solidified (solidified): low temperature stability C (poor)
サポート材用組成物が一部凝固(固化)している場合:低温安定性B(良)
サポート材用組成物が凝固(固化)している場合:低温安定性C(不良) When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent)
When the support material composition is partially solidified (solidified): Low temperature stability B (good)
When the composition for the support material is solidified (solidified): low temperature stability C (poor)
<サポート材硬化物のサポート力>
ガラス板上に、縦30mm、横30mm、厚さ5mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各サポート材組成物を流し込み、メタルハライドランプにより積算光量500mJ/cm2の紫外線を照射し、サポート材硬化物を作製した。続いて、上記硬化物をガラス製シャーレに入れ、その硬化物入りシャーレを温度40℃、相対湿度90%の恒温槽中に2時間放置した。その後、放置後の上記硬化物の状態を目視で確認して、下記基準でサポート材硬化物のサポート力を評価した。 <Supporting power of cured support material>
A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp. Was irradiated to produce a cured support material. Subsequently, the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
ガラス板上に、縦30mm、横30mm、厚さ5mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各サポート材組成物を流し込み、メタルハライドランプにより積算光量500mJ/cm2の紫外線を照射し、サポート材硬化物を作製した。続いて、上記硬化物をガラス製シャーレに入れ、その硬化物入りシャーレを温度40℃、相対湿度90%の恒温槽中に2時間放置した。その後、放置後の上記硬化物の状態を目視で確認して、下記基準でサポート材硬化物のサポート力を評価した。 <Supporting power of cured support material>
A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp. Was irradiated to produce a cured support material. Subsequently, the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
硬化物の表面に液体状物質の発生がなく、硬化物の軟化も確認されない場合:サポート力A(優良)
硬化物の表面に液体状物質がわずかに発生し、硬化物の軟化が若干確認された場合:サポート力B(良)
硬化物の表面に液体状物質が発生し、硬化物の軟化が確認された場合:サポート力C(不良) When there is no generation of liquid substances on the surface of the cured product and no softening of the cured product is confirmed: Support strength A (excellent)
When a slight amount of liquid material is generated on the surface of the cured product and softening of the cured product is confirmed slightly: Support strength B (good)
When a liquid substance is generated on the surface of the cured product and softening of the cured product is confirmed: Support force C (defect)
硬化物の表面に液体状物質がわずかに発生し、硬化物の軟化が若干確認された場合:サポート力B(良)
硬化物の表面に液体状物質が発生し、硬化物の軟化が確認された場合:サポート力C(不良) When there is no generation of liquid substances on the surface of the cured product and no softening of the cured product is confirmed: Support strength A (excellent)
When a slight amount of liquid material is generated on the surface of the cured product and softening of the cured product is confirmed slightly: Support strength B (good)
When a liquid substance is generated on the surface of the cured product and softening of the cured product is confirmed: Support force C (defect)
<サポート材硬化物の水除去性>
上記サポート材硬化物のサポート力の評価の場合と同様にして、サポート材硬化物を作製した。次に、上記硬化物を、50mLのイオン交換水を満たしたビーカーに入れ、水温を25℃に維持しながら超音波洗浄機で処理し、上記硬化物が溶解するまでの時間を測定し、下記基準でサポート材硬化物の水除去性を評価した。 <Water removability of the cured support material>
A cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
上記サポート材硬化物のサポート力の評価の場合と同様にして、サポート材硬化物を作製した。次に、上記硬化物を、50mLのイオン交換水を満たしたビーカーに入れ、水温を25℃に維持しながら超音波洗浄機で処理し、上記硬化物が溶解するまでの時間を測定し、下記基準でサポート材硬化物の水除去性を評価した。 <Water removability of the cured support material>
A cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
硬化物が完全に溶解するまでの時間が1時間未満であった:水除去性A(優良)
硬化物が完全に溶解するまでの時間が1時間以上2時間未満であった:水除去性B(良)
硬化物が完全に溶解するまでの時間が2時間以上であった:水除去性C(不良) The time until the cured product completely dissolved was less than 1 hour: water removability A (excellent)
The time until the cured product was completely dissolved was 1 hour or more and less than 2 hours: Water removability B (good)
The time until the cured product was completely dissolved was 2 hours or more: water removability C (poor)
硬化物が完全に溶解するまでの時間が1時間以上2時間未満であった:水除去性B(良)
硬化物が完全に溶解するまでの時間が2時間以上であった:水除去性C(不良) The time until the cured product completely dissolved was less than 1 hour: water removability A (excellent)
The time until the cured product was completely dissolved was 1 hour or more and less than 2 hours: Water removability B (good)
The time until the cured product was completely dissolved was 2 hours or more: water removability C (poor)
以上の結果を表7に示す。
Table 7 shows the above results.
実施例S1~S13のサポート材用組成物は、全ての評価項目で満足できる結果(優良または良)を得たことが分かる。
It can be seen that the support material compositions of Examples S1 to S13 obtained satisfactory results (excellent or good) in all evaluation items.
3.光造形用組成物セット
表6に示す通りに上記モデル材用組成物およびサポート材用組成物を組み合わせることにより、実施例1~6および比較例1を調製した。 3. Stereolithographic Composition Set Examples 1 to 6 and Comparative Example 1 were prepared by combining the model material composition and the support material composition as shown in Table 6.
表6に示す通りに上記モデル材用組成物およびサポート材用組成物を組み合わせることにより、実施例1~6および比較例1を調製した。 3. Stereolithographic Composition Set Examples 1 to 6 and Comparative Example 1 were prepared by combining the model material composition and the support material composition as shown in Table 6.
ガラス板(商品名「GLASS PLATE」、アズワン社製、200mm×200mm×厚さ5mm)の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にサポート材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させ、サポート材を得た。
A spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm × 200 mm × thickness 5 mm), and was partitioned into 10 cm × 10 cm squares. After casting the composition for the support material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
次に、上記サポート材の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にモデル材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させ、モデル材を得た。
Next, spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm × 10 cm. After casting the composition for the model material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a model material.
<密着性の評価>
この状態で30℃の恒温槽に12時間放置し、モデル材とサポート材との密着性の様子を目視にて確認し、下記の基準において評価した。結果を表8に示す。
○:モデル材とサポート材とは密着していた。
△:モデル材とサポート材とは密着していたが、モデル材とサポート材との界面を爪でひっかくと剥がれが生じた。
×:モデル材とサポート材との界面で剥がれが生じ、モデル材の硬化収縮でモデル材が反るように剥がれた。 <Evaluation of adhesion>
In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 8.
○: The model material and the support material were in close contact.
Δ: The model material and the support material were in close contact with each other, but peeling occurred when the interface between the model material and the support material was scratched with a nail.
X: Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
この状態で30℃の恒温槽に12時間放置し、モデル材とサポート材との密着性の様子を目視にて確認し、下記の基準において評価した。結果を表8に示す。
○:モデル材とサポート材とは密着していた。
△:モデル材とサポート材とは密着していたが、モデル材とサポート材との界面を爪でひっかくと剥がれが生じた。
×:モデル材とサポート材との界面で剥がれが生じ、モデル材の硬化収縮でモデル材が反るように剥がれた。 <Evaluation of adhesion>
In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 8.
○: The model material and the support material were in close contact.
Δ: The model material and the support material were in close contact with each other, but peeling occurred when the interface between the model material and the support material was scratched with a nail.
X: Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
表8の結果から分かるように、本発明の要件を満たす実施例1~6の光造形用組成物のセットは、モデル材とサポート材との界面に剥がれが生じず、モデル材とサポート材とがより密着していた。このように、モデル材とサポート材とが密着していれば、寸法精度が良好な光造形品が得られる。
As can be seen from the results in Table 8, the sets of the optical modeling compositions of Examples 1 to 6 that satisfy the requirements of the present invention do not cause peeling at the interface between the model material and the support material, and the model material and the support material Was more closely attached. Thus, if the model material and the support material are in close contact with each other, an optically shaped product with good dimensional accuracy can be obtained.
10 三次元造形装置
11 インクジェットヘッドモジュール
11a 光造形用インクユニット
11aM モデル材用インクジェットヘッド
11aS サポート材用インクジェットヘッド
11b ローラー
11c 光源
12 造形テーブル
13 モデル材用組成物
13M モデル材前駆体
13PM モデル材
14 サポート材用組成物
14S サポート材前駆体
14PS サポート材
15 エネルギー線
16 光造形品前駆体(光造形物)
17 光造形品 DESCRIPTION OFSYMBOLS 10 3D modeling apparatus 11 Inkjet head module 11a Optical modeling ink unit 11aM Model material inkjet head 11aS Support material inkjet head 11b Roller 11c Light source 12 Modeling table 13 Model material composition 13M Model material precursor 13PM Model material 14 Support Material composition 14S Support material precursor 14PS Support material 15 Energy beam 16 Stereolithography product precursor (Optical fabrication product)
17 Stereolithography
11 インクジェットヘッドモジュール
11a 光造形用インクユニット
11aM モデル材用インクジェットヘッド
11aS サポート材用インクジェットヘッド
11b ローラー
11c 光源
12 造形テーブル
13 モデル材用組成物
13M モデル材前駆体
13PM モデル材
14 サポート材用組成物
14S サポート材前駆体
14PS サポート材
15 エネルギー線
16 光造形品前駆体(光造形物)
17 光造形品 DESCRIPTION OF
17 Stereolithography
Claims (9)
- モデル材用組成物とサポート材用組成物とを含んでなるマテリアルジェット光造形法に使用される光造形用組成物セットであって、
前記モデル材用組成物として、着色剤、ホモポリマーとしてのガラス転移温度が25℃以上120℃以下である少なくとも1つの(メタ)アクリレートモノマー(A)、および、ホモポリマーとしてのガラス転移温度が-60℃以上25℃未満である少なくとも1つの(メタ)アクリレートモノマー(B)を含むモデル材用着色組成物であって、該モデル材用着色組成物の総質量に対する、前記(メタ)アクリレートモノマー(A)の含有量が5質量%以上50質量%未満であり、前記(メタ)アクリレートモノマー(B)の含有量が20質量%以上80質量%未満であるモデル材用着色組成物を含み、
前記サポート材用組成物が、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)、および、
光重合開始剤
を含有する、光造形用組成物セット。 A composition set for stereolithography used in a material jet stereolithography method comprising a composition for model material and a composition for support material,
As the model material composition, a colorant, at least one (meth) acrylate monomer (A) having a glass transition temperature of 25 ° C. or more and 120 ° C. or less as a homopolymer, and a glass transition temperature as a homopolymer of − A coloring composition for a model material containing at least one (meth) acrylate monomer (B) having a temperature of 60 ° C. or more and less than 25 ° C., wherein the (meth) acrylate monomer ( A content of A) is 5% by mass or more and less than 50% by mass, and the content of the (meth) acrylate monomer (B) is 20% by mass or more and less than 80% by mass.
The support material composition is based on 100 parts by mass of the support material composition.
15 parts by mass or more and 75 parts by mass or less of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more,
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b), and
A composition set for optical modeling containing a photopolymerization initiator. - サポート材用組成物が、水溶性単官能エチレン性不飽和単量体および光重合開始剤を含む、請求項1に記載の光造形用組成物セット。 The composition set for optical modeling according to claim 1, wherein the composition for a support material includes a water-soluble monofunctional ethylenically unsaturated monomer and a photopolymerization initiator.
- サポート材用組成物100質量部に対する、水溶性単官能エチレン性不飽和単量体の含有量が19質量部以上80質量部以下であり、光重合開始剤の含有量が2質量部以上20質量部以下である請求項2に記載の光造形用組成物セット。 The content of the water-soluble monofunctional ethylenically unsaturated monomer is 19 parts by mass or more and 80 parts by mass or less, and the content of the photopolymerization initiator is 2 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the support material composition. The composition set for optical modeling according to claim 2, wherein the composition is part or less.
- サポート材用組成物が、該サポート材用組成物100質量部に対して、0.005質量部以上3.0質量部以下の表面調整剤を含む、請求項1~3のいずれかに記載の光造形用組成物セット。 The support material composition according to any one of claims 1 to 3, wherein the support material composition includes 0.005 parts by mass or more and 3.0 parts by mass or less of a surface conditioner with respect to 100 parts by mass of the support material composition. Stereolithography composition set.
- サポート材用組成物が、該サポート材用組成物100質量部に対して、30質量部以下の水溶性有機溶剤を含む、請求項1~4のいずれかに記載の光造形用組成物セット。 The composition set for optical modeling according to any one of claims 1 to 4, wherein the composition for a support material contains 30 parts by mass or less of a water-soluble organic solvent with respect to 100 parts by mass of the composition for a support material.
- サポート材用組成物が保存安定化剤を含む、請求項1~5のいずれかに記載の光造形用組成物セット。 The composition set for stereolithography according to any one of claims 1 to 5, wherein the support material composition contains a storage stabilizer.
- モデル材用着色組成物に含まれる着色剤が、ホワイト、ブラック、シアン、マゼンタおよびイエローからなる群から選択される顔料である、請求項1~6のいずれかに記載の光造形用組成物セット。 The optical shaping composition set according to any one of claims 1 to 6, wherein the colorant contained in the coloring composition for a model material is a pigment selected from the group consisting of white, black, cyan, magenta and yellow. .
- モデル材用組成物として、着色剤を含まないモデル材用クリア組成物をさらに含む、請求項1~7のいずれかに記載の光造形用組成物セット。 The composition set for optical modeling according to any one of claims 1 to 7, further comprising a clear composition for a model material that does not contain a colorant as the composition for the model material.
- 請求項1~8のいずれかに記載の光造形用組成物セットを用いて、マテリアルジェット光造形法により立体造形物を製造する、立体造形物の製造方法。 A method for producing a three-dimensional modeled object, wherein a three-dimensional modeled object is manufactured by a material jet stereolithography method using the stereolithography composition set according to any one of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018102802A JP2021130201A (en) | 2018-05-29 | 2018-05-29 | Stereolithography composition set |
JP2018-102802 | 2018-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019230133A1 true WO2019230133A1 (en) | 2019-12-05 |
Family
ID=68697957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/010943 WO2019230133A1 (en) | 2018-05-29 | 2019-03-15 | Photo-fabrication composition set |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021130201A (en) |
WO (1) | WO2019230133A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307203A (en) * | 2005-03-30 | 2006-11-09 | Dainippon Ink & Chem Inc | Ink composition for jet printer |
JP2010180308A (en) * | 2009-02-04 | 2010-08-19 | Fujifilm Corp | Printing ink and toner containing dihydroperimidine squarylium compound and method for detecting information using the same |
JP2015183103A (en) * | 2014-03-25 | 2015-10-22 | ジェイエムエス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Photocurable resin composition for forming support part |
JP2016078284A (en) * | 2014-10-14 | 2016-05-16 | 花王株式会社 | Soluble material for three-dimensional molding |
-
2018
- 2018-05-29 JP JP2018102802A patent/JP2021130201A/en active Pending
-
2019
- 2019-03-15 WO PCT/JP2019/010943 patent/WO2019230133A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307203A (en) * | 2005-03-30 | 2006-11-09 | Dainippon Ink & Chem Inc | Ink composition for jet printer |
JP2010180308A (en) * | 2009-02-04 | 2010-08-19 | Fujifilm Corp | Printing ink and toner containing dihydroperimidine squarylium compound and method for detecting information using the same |
JP2015183103A (en) * | 2014-03-25 | 2015-10-22 | ジェイエムエス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Photocurable resin composition for forming support part |
JP2016078284A (en) * | 2014-10-14 | 2016-05-16 | 花王株式会社 | Soluble material for three-dimensional molding |
Also Published As
Publication number | Publication date |
---|---|
JP2021130201A (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6475328B2 (en) | Actinic ray curable inkjet ink set for 3D printing, 3D printing method, and 3D printing system | |
JP6334000B2 (en) | Actinic ray curable inkjet ink composition for 3D printing, three-dimensional modeling method, and actinic ray curable inkjet ink set for 3D printing | |
JP6493875B2 (en) | Method for forming a three-dimensional structure | |
JP6571297B2 (en) | Optical modeling ink set, optical modeling product, and manufacturing method of optical modeling product | |
CN108025486B (en) | Resin composition for model material, ink set for photomodeling, and method for producing photomodeling product | |
CN111093949B (en) | Composition for model material | |
JP2012153853A (en) | Ink composition, image forming method, and printed matter | |
JP2013147544A (en) | Inkset and recorded matter | |
JP6117072B2 (en) | Pigment dispersion composition, ink jet recording method, and compound production method | |
WO2019176139A1 (en) | Model material composition and photo fabrication composition set | |
JPWO2018159236A1 (en) | INK JET LIQUID COMPOSITION AND INK JET RECORDING METHOD | |
JP2017095577A (en) | Active energy ray-curable composition, active energy ray-curable ink, composition container, image formation method and formation device, 2-dimensional or 3-dimensional image, and molded article | |
WO2019230133A1 (en) | Photo-fabrication composition set | |
JP6941655B2 (en) | Composition for model material | |
JP6941654B2 (en) | Composition for model material | |
WO2019230135A1 (en) | Photo-fabrication ink set, and production method for photo-fabricated article | |
JP2012188487A (en) | Ultraviolet ray-curing type ink-jet composition, method for producing ultraviolet ray-curing type ink-jet composition and recorded matter | |
JP2012188485A (en) | Ink set and recorded matter | |
WO2019230132A1 (en) | Photo-fabrication composition set | |
JP7649747B2 (en) | Resin composition for photopolymerization, modeling material composition, photocured product thereof, and photopolymerization composition set | |
JP7456032B1 (en) | Primer ink composition, ink set, and recording method for photocurable inkjet recording | |
JP2019155801A (en) | Composition for model material, and composition set for material jetting optical shaping | |
JP2012188486A (en) | Ultraviolet ray-curing type ink-jet composition, method for producing ultraviolet ray-curing type ink-jet composition and recorded matter | |
JP2013189513A (en) | Ink set, record and inkjet recording method | |
JP2012184337A (en) | Ultraviolet ray-curing type inkjet composition, method for producing ultraviolet ray-curing type inkjet composition, and recorded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19810902 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19810902 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |