[go: up one dir, main page]

WO2019220889A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019220889A1
WO2019220889A1 PCT/JP2019/017257 JP2019017257W WO2019220889A1 WO 2019220889 A1 WO2019220889 A1 WO 2019220889A1 JP 2019017257 W JP2019017257 W JP 2019017257W WO 2019220889 A1 WO2019220889 A1 WO 2019220889A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
belt layer
rubber
cord
layer
Prior art date
Application number
PCT/JP2019/017257
Other languages
French (fr)
Japanese (ja)
Inventor
誓志 今
好秀 河野
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019220889A1 publication Critical patent/WO2019220889A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • This disclosure relates to a pneumatic tire provided with a belt layer.
  • Japanese Unexamined Patent Application Publication No. 2016-193725 describes an automobile tire in which a working reinforcing material is formed by winding a plurality of reinforcing rubber strips formed using a steel cord in the tire circumferential direction.
  • the steel cord is cut along a direction inclined with respect to the extending direction of the steel cord. For this reason, the tip of the steel cord is formed sharper than, for example, the tip of the steel cord cut along a direction orthogonal to the extending direction. For this reason, the rubber forming the tread is easily damaged. As a result, the actual reinforcing material (belt layer) and the rubber forming the tread are more easily separated.
  • the present disclosure provides a pneumatic tire in which a belt layer and a member covering the belt layer are hardly peeled off.
  • the pneumatic tire according to the first aspect includes a pair of bead cores, a carcass formed across the pair of bead cores, and a coated cord formed by covering the cord with rubber on the outer side in the tire radial direction of the carcass.
  • a belt layer formed by being spirally wound in the circumferential direction, a resin reinforcing layer disposed on the outer side or the inner side in the tire radial direction of the belt layer, and provided on the outer side in the tire radial direction of the belt layer and the resin reinforcing layer. Tread.
  • the resin reinforcing layer is arranged on the outer side or the inner side of the belt layer in the tire radial direction.
  • the tread is reinforced by the resin reinforcing layer.
  • the tread reinforced by the resin reinforcing layer has higher ring rigidity than the non-reinforced tread. For this reason, it becomes difficult for the tread to be deformed out of the plane of the annular surface along the tire circumferential direction and the tire width direction, and deformation of the pneumatic tire is suppressed.
  • in-plane in the annular plane along the tire circumferential direction and the tire width direction
  • shear rigidity is higher than when the resin reinforcing layer is not arranged.
  • the tread is difficult to be deformed in-plane due to the shearing force acting in the tire width direction.
  • the crossing belt layer can be omitted, so that the weight of the tire is reduced, and the steering stability during running under internal pressure is increased.
  • the belt layer is formed by spirally winding a coated cord formed by coating the cord with rubber in the tire circumferential direction. For this reason, it is difficult to expose the end face of the cord at the end of the belt layer in the tire width direction. Thereby, the belt layer and the tread or the resin reinforcing layer covering the belt layer are hardly peeled off.
  • the end surface of the cord is likely to be exposed at the end of the belt layer in the tire width direction.
  • the end surface of the cord is less likely to adhere to members around the cord layer as compared to the outer peripheral surface of the cord. For this reason, a belt layer and the tread which covers a belt layer, or a resin reinforcement layer becomes easy to peel.
  • the inclination angle of the covering cord with respect to the tire circumferential direction is 10 ° or less on the tire equatorial plane.
  • the inclination angle of the covering cord is closer to the circumferential direction on the tire equatorial plane than when the inclination angle of the covering cord with respect to the tire circumferential direction is larger than 10 °.
  • the covering cord exhibits a function as a gutter and can suppress out-of-plane deformation of the tread.
  • the end portion in the tire width direction of the resin reinforcing layer is disposed on the outer side in the tire width direction from the end portion in the tire width direction of the belt layer.
  • the belt layer is hardly deformed. Specifically, when the resin reinforcing layer is located on the inner side in the tire radial direction from the belt layer, the belt layer is stiffened by the resin reinforcing layer even if it is deformed inward in the tire radial direction by receiving an external force, and the belt layer is deformed. Is suppressed. Further, when the resin reinforcing layer is on the outer side in the tire radial direction from the belt layer, the resin reinforcing layer suppresses the input of external force to the belt layer, so that deformation of the belt layer is suppressed. This makes it difficult for the belt layer to break.
  • the belt layer and the member covering the belt layer are difficult to peel off.
  • FIG. 6 is a cross-sectional view illustrating a modification in which a plurality of reinforcing cords are embedded in one rubber-coated cord in a pneumatic tire according to an embodiment of the present disclosure. It is the elements on larger scale which showed the inclination-angle in the tire equatorial plane of the rubber coating cord in the belt layer which concerns on embodiment of this indication.
  • FIG. 6 is a cross-sectional view illustrating a modification in which a plurality of reinforcing cords are embedded in one rubber-coated cord in a pneumatic tire according to an embodiment of the present disclosure. It is the elements on larger scale which showed the inclination-angle in the tire equatorial plane of the rubber coating cord in the belt layer which concerns on embodiment of this indication.
  • FIG. 6 is a half cross-sectional view illustrating a modification in which a resin reinforcing layer is formed wider than a belt layer in a pneumatic tire according to an embodiment of the present disclosure.
  • FIG. 6 is a half cross-sectional view showing a modification in which a resin reinforcing layer is disposed on the inner side in the tire radial direction of a belt layer in a pneumatic tire according to an embodiment of the present disclosure.
  • the pneumatic tire concerning the embodiment of this indication, it is a key map showing the angle of inclination in the case of making a rubber covering cord wind only 1 turn around a carcass.
  • FIG. 8B is a sectional view taken along line BB in FIG. 8A.
  • FIG. 1 shows a cut surface (that is, a direction along a tire circumferential direction) cut along a tire width direction and a tire radial direction of a pneumatic tire (hereinafter referred to as “tire 10”) according to an embodiment of the present disclosure.
  • tire 10 a pneumatic tire
  • An arrow W indicates the width direction of the tire 10 (tire width direction)
  • an arrow R indicates the radial direction of the tire 10 (tire radial direction).
  • the tire width direction here refers to a direction parallel to the rotation axis of the tire 10.
  • the tire radial direction refers to a direction orthogonal to the rotation axis of the tire 10.
  • Reference sign CL indicates the equator plane of the tire 10 (tire equator plane).
  • the side closer to the rotation axis of the tire 10 along the tire radial direction is “inner side in the tire radial direction”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is “outer side in the tire radial direction”. It describes.
  • the side close to the tire equator plane CL along the tire width direction is described as “inner side in the tire width direction”, and the side far from the tire equator plane CL along the tire width direction is described as “outer side in the tire width direction”.
  • FIG. 1 shows a tire 10 when it is assembled to a rim 30 that is a standard rim and filled with standard air pressure.
  • the “standard rim” refers to a rim defined in the Year Book 2017 version of JATMA (Japan Automobile Tire Association).
  • the standard air pressure is an air pressure corresponding to the maximum load capacity of Year Book 2017 version of JATMA (Japan Automobile Tire Association).
  • the tire 10 includes a pair of bead portions 12, a carcass 14 having an end portion locked to the bead core 12 ⁇ / b> A embedded in each bead portion 12, and a bead portion 12.
  • a bead filler 12B that is buried and extends along the outer surface of the carcass 14 from the bead core 12A to the outer side in the tire radial direction, a belt layer 40 provided on the outer side in the tire radial direction of the carcass 14, and a outer side in the tire radial direction of the belt layer 40.
  • the resin reinforcing layer 50 and a tread 60 provided on the outer side in the tire radial direction of the resin reinforcing layer 50 are provided. In FIG. 1, only the bead portion 12 on one side is shown.
  • bead cores 12A as wire bundles are respectively embedded.
  • a carcass 14 straddles these bead cores 12A.
  • the bead core 12A can employ various structures such as a circular cross section and a polygonal cross section. Further, for example, a hexagon can be adopted as the polygon, but in the present embodiment, it is a quadrangle.
  • a bead filler 12B extending from the bead core 12A to the outer side in the tire radial direction is embedded in a region surrounded by the carcass 14 locked to the bead core 12A in the bead portion 12.
  • the carcass 14 is a tire frame member formed by coating a plurality of cords with a covering rubber.
  • the carcass 14 extends in a toroidal shape from one bead core 12A to the other bead core 12A to form a tire skeleton. Further, the end portion side of the carcass 14 is locked to the bead core 12A. Specifically, the end of the carcass 14 is folded and locked around the bead core 12A from the inner side in the tire width direction to the outer side in the tire width direction.
  • the carcass 14 is a radial carcass.
  • the material of the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel, or the like can be used. From the viewpoint of weight reduction, an organic fiber cord is preferable.
  • the number of carcass shots is in the range of 20 to 60 pieces / 50 mm, but is not limited to this range.
  • Side rubber 16 is provided on the outer side of the carcass 14 in the tire width direction.
  • the side rubber 16 extends from the bead portion 12 to the outer side in the tire radial direction to form the side portion 10A of the tire 10 and is joined to the tread 60. Further, the side rubber 16 is formed so that the thickness gradually decreases in the shoulder portion 10B.
  • the end portion 16E of the side rubber 16 is on the inner side in the tire radial direction of the belt layer 40, which will be described later, and on the inner side in the tire width direction from the tire width direction end portion 40EW of the belt layer 40 and the tire width direction end portion 50EW of the resin reinforcing layer 50. Has been placed.
  • the end 16E of the side rubber 16 may be disposed outside the end 40EW in the tire width direction of the belt layer 40.
  • the tire width direction end portion 40EW of the belt layer 40 is disposed so as to contact the outer peripheral surface of the carcass 14 instead of the side rubber 16.
  • a belt layer 40 is disposed outside the carcass 14 in the tire radial direction. As shown in FIG. 2, the belt layer 40 is a ring-shaped ridge formed by a single rubber-coated cord 42 spirally wound around the outer circumferential surface of the carcass 14 in the tire circumferential direction. is there. Both end portions 42E1 and 42E2 of the rubber-coated cord 42 are arranged at different positions in the tire circumferential direction. Note that “spiral” indicates a state in which one rubber-coated cord 42 is wound at least one turn around the carcass 14.
  • the rubber-coated cord 42 is configured by covering a reinforcing cord 42C with a coated rubber 42S, and has a substantially square cross section.
  • the covering rubber 42S is joined to the outer peripheral surfaces of the carcass 14 and the side rubber 16 disposed on the inner side in the tire radial direction via rubber or an adhesive.
  • the rubbers 42S that are adjacent to each other in the tire width direction are joined to each other during tire vulcanization.
  • a belt layer 40 rubber-coated belt layer in which the reinforcing cord 42C is covered with the covering rubber 42S is formed.
  • the end portions 42E1 and 42E2 of the rubber-coated cord 42 are exposed.
  • the end portions 42E1 and 42E2 of the rubber-coated cord 42 are formed substantially at right angles to the longitudinal direction of the rubber-coated cord.
  • FIG. 4 shows a partially enlarged view of the belt layer 40 as seen from the direction along the tire radial direction.
  • the rubber-coated cord 42 is wound at an angle ⁇ 1 with respect to the tire circumferential direction (the direction indicated by the arrow S in FIG. 4) on the tire equatorial plane.
  • the angle ⁇ 1 is 10 ° or less in the present embodiment, but is more preferably 2 ° or less.
  • the reinforcing cord 42C in the belt layer 40 of the present embodiment is a steel cord whose outer peripheral surface is plated with cobalt.
  • the steel cord is mainly composed of steel and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper, and chromium.
  • the plating material is not limited to cobalt, and nickel or the like can be used.
  • the end surface of the reinforcing cord 42C is not plated, and the solid steel is exposed.
  • the reinforcing cord 42C in the belt layer 40 may be a monofilament cord or a cord in which a plurality of filaments are twisted instead of the steel cord.
  • organic fibers such as aramid, carbon, and the like may be used.
  • Various designs can be adopted for the twist structure, and various cross-sectional structures, twist pitches, twist directions, and distances between adjacent filaments can be used.
  • a cord in which filaments of different materials are twisted can be adopted, and the cross-sectional structure is not particularly limited, and various twisted structures such as single twist, layer twist, and double twist can be adopted.
  • a resin reinforcing layer 50 is disposed outside the belt layer 40 in the tire radial direction.
  • the resin reinforcing layer 50 is a rigidity imparting member in the tire 10.
  • the width direction end portion 50EW of the resin reinforcing layer 50 is disposed on the inner side in the tire width direction than the width direction end portion 40EW of the belt layer 40. Therefore, both end portions 42E1 and 42E2 (see FIG. 2) of the rubber-coated cord 42 are not covered with the resin reinforcing layer 50 but are covered with the tread rubber 60G that forms the tread 60.
  • the belt layer 40 and the resin reinforcing layer 50 and the resin reinforcing layer 50 and the tread 60 are bonded with an adhesive or rubber.
  • the resin material used for the resin reinforcing layer 50 is a thermoplastic resin.
  • the embodiment of the present disclosure is not limited thereto, and examples of the resin material include thermoplastic elastomers, thermosetting resins, (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, and silicone resins.
  • thermoplastic elastomers include thermosetting resins, (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, and silicone resins.
  • engineering plastics including super engineering plastics
  • the resin material here does not include vulcanized rubber.
  • Thermoplastic resin refers to a polymer compound that softens and flows as the temperature rises and becomes relatively hard and strong when cooled.
  • the material softens and flows as the temperature rises, and when cooled, the material becomes relatively hard and strong and has a rubber-like elasticity as a thermoplastic elastomer.
  • a high molecular compound having no rubber-like elasticity is distinguished from a thermoplastic elastomer as a non-elastomer thermoplastic resin.
  • Thermoplastic resins include polyolefin-based thermoplastic elastomers (TPO), polystyrene-based thermoplastic elastomers (TPS), polyamide-based thermoplastic elastomers (TPA), polyurethane-based thermoplastic elastomers (TPU), and polyesters.
  • TPO polyolefin-based thermoplastic elastomers
  • TPS polystyrene-based thermoplastic elastomers
  • TPA polyamide-based thermoplastic elastomers
  • TPU polyurethane-based thermoplastic elastomers
  • polyesters polyesters.
  • TSV dynamically crosslinked thermoplastic elastomer
  • polyolefin thermoplastic resin polystyrene thermoplastic resin
  • polyamide thermoplastic resin polyamide thermoplastic resin
  • polyester thermoplastic resin etc. Can be mentioned.
  • thermosetting resin refers to a polymer compound that forms a three-dimensional network structure as the temperature rises and cures, and examples thereof include a phenol resin, an epoxy resin, a melamine resin, and a urea resin.
  • a tread 60 is provided outside the resin reinforcing layer 50 in the tire radial direction.
  • the tread 60 is a part that contacts the road surface during traveling, and a plurality of circumferential grooves 62 extending in the tire circumferential direction are formed on the tread surface of the tread 60.
  • the shape and number of the circumferential grooves 62 are appropriately set according to the performance such as drainage performance and steering stability required for the tire 10.
  • the resin reinforcing layer 50 is disposed on the outer side in the tire radial direction of the belt layer 40.
  • the tread 60 is reinforced by the resin reinforcing layer 50.
  • the tread 60 reinforced by the resin reinforcing layer 50 has higher ring rigidity than a tread that is not reinforced. For this reason, it becomes difficult for the tread 60 to be deformed outside the annular surface along the tire circumferential direction and the tire width direction, and deformation of the tire 10 is suppressed.
  • the tire 10 has higher shear rigidity in the plane of the tread 60 (that is, in the annular plane along the tire circumferential direction and the tire width direction) than when the resin reinforcing layer 50 is not disposed. For this reason, for example, during turning, the tread 60 is unlikely to be deformed in-plane due to the shearing force acting in the tire width direction. As a result, the crossing belt layer can be omitted, so that the weight of the tire is reduced, and the steering stability during running under internal pressure is increased.
  • the belt layer 40 is formed by spirally winding a single rubber-coated cord 42 formed by coating the reinforcing cord 42C with the covering rubber 42S in the tire circumferential direction. For this reason, the end surface of the reinforcing cord 42C is exposed at the tire width direction end portion 40EW of the belt layer 40 only at the two ends 42E1 and 42E2 of one rubber-coated cord 42. Thereby, the belt layer 40 and the tread rubber 60 ⁇ / b> G covering the belt layer 40 are difficult to peel off.
  • the belt layer 400 according to the comparative example shown in FIG. 8A is formed by arranging a plurality of rubber-coated cords 420 inclined at an angle ⁇ 2 with respect to the circumferential direction (the direction indicated by the arrow S in FIG. 8A). Yes.
  • FIG. 8A a plan view in which the belt layer 400 is developed is shown. In a state where the belt layer 400 is wound around the tire, the side surface 420A of the rubber-coated cord 420 shown at the bottom of FIG. 8A and the side surface 420B of the rubber-coated cord 420 shown at the top are bonded to each other. .
  • each rubber-coated cord 420 is laid between both end portions 400EW of the belt layer 400 in the tire width direction.
  • each rubber covered cord 420 is formed by covering a reinforcing cord 420C with a covering rubber 420S. For this reason, the end surface of the reinforcement cord 420C is exposed at the tire width direction end portion 400EW of the belt layer 400.
  • the reinforcement cord 420C is plated with cobalt on the outer peripheral surface in the same manner as the reinforcement cord 42C.
  • the end surface of the reinforcing cord 42C is not plated, and the steel is exposed in a solid state. For this reason, the end surface of the reinforcing cord 42C is less likely to adhere to the tread rubber that covers the belt layer 400 as compared to the outer peripheral surface. For this reason, the belt layer 400 and the tread rubber covering the belt layer 400 are easily peeled off.
  • the belt layer 40 in the tire 10 according to the present embodiment has a smaller number of locations that serve as a starting point for separation from the tread rubber 60G than the belt layer 400 in the comparative example.
  • the inclination angle of the rubber-coated cord 42 with respect to the tire circumferential direction is 10 ° or less on the tire equatorial plane. For this reason, compared with the case where the inclination angle of the covering cord with respect to the tire circumferential direction is larger than 10 °, for example, the inclination angle of the covering cord becomes closer to the circumferential direction. As a result, the rubber-coated cord 42 exhibits a function as a gutter and can suppress out-of-plane deformation of the tread 60.
  • both end portions 42E1 and 42E2 of the rubber-coated cord 42 are disposed at different positions in the tire circumferential direction. For this reason, compared with the case where both end portions 42E1 and 42E2 of the rubber-coated cord 42 are arranged at the same position in the tire circumferential direction, the location that becomes the base point of separation from the tread rubber 60G in the tire circumferential direction can be dispersed.
  • the width direction end portion 50EW of the resin reinforcing layer 50 is disposed on the inner side in the tire width direction than the width direction end portion 40EW of the belt layer 40, but the embodiment of the present disclosure is not limited thereto. .
  • the width direction end portion 50EW of the resin reinforcing layer 50 may be disposed outside the width direction end portion 40EW of the belt layer 40 in the tire width direction.
  • the resin reinforcing layer 50 is formed of a thermoplastic resin. For this reason, the resin reinforcing layer 50 is formed in close contact with the width direction end portion 40EW of the belt layer 40 in the vulcanization step in forming the tire 10.
  • the outer side in the tire radial direction of the belt layer 40 is covered with the resin reinforcing layer 50, so that the belt layer 40 is hardly deformed. That is, the resin reinforcing layer 50 suppresses the input of external force to the belt layer 40, and thus the deformation of the belt layer 40 is suppressed.
  • the both end portions 42E1 and 42E2 of the rubber-coated cord 42 in the belt layer 40 are covered with the resin reinforcing layer 50, the both end portions 42E1 and 42E2 are the starting points of the separation between the belt layer 40, the resin reinforcing layer 50, and the tread rubber 60G. Can be suppressed.
  • the resin reinforcing layer 50 is disposed on the outer side in the tire radial direction of the belt layer 40, but the embodiment of the present disclosure is not limited thereto.
  • the resin reinforcing layer 50 may be disposed on the inner side in the tire radial direction of the belt layer 40.
  • the end portion 50EW in the width direction of the resin reinforcing layer 50 is disposed on the outer side in the tire width direction from the end portion 40EW in the width direction of the belt layer 40.
  • the belt layer 40 is formed by winding a substantially square rubber-coated cord 42 formed by coating one reinforcing cord 42C with a coating rubber 42S around the outer peripheral surface of the carcass 14,
  • the embodiment of the present disclosure is not limited to this.
  • a rubber-coated cord 44 having a substantially parallelogram cross section formed by coating a plurality of (for example, six) reinforcing cords 44C with a coating rubber 44S is formed on the outer peripheral surface of the carcass 14. It may be formed by winding.
  • the number of the rubber-coated cord 42 is not limited to one, for example, two or more. It may be used.
  • the rubber-coated cord 42 is wound around the carcass 14 by one or more rounds.
  • the angle ⁇ 1 (see FIG. 4) of the rubber-coated cord 42 with respect to the tire circumferential direction may be set to ( ⁇ 1 ⁇ tan ⁇ 1 (W1 / L1)).
  • the width of the rubber-coated cord 42 is (W2), as shown in FIG.
  • the angle ⁇ 1 may be ( ⁇ 1 ⁇ tan ⁇ 1 (W2 / L1)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A pneumatic tire according to the present invention is provided with: a pair of bead cores; a carcass which is formed so as to extend across the pair of bead cores; a belt layer which is formed by spirally winding a covered cord (a rubber-covered cord) in the tire circumferential direction, said covered cord being formed by covering a cord (a reinforcement cord) with a rubber (a covering rubber), and which is arranged on the outside of the carcass in the tire radial direction; a resin reinforcement layer which is arranged on the outside or inside of the belt layer in the tire radial direction; and a tread which is arranged on the outside of the belt layer and the resin reinforcement layer in the tire radial direction.

Description

空気入りタイヤPneumatic tire
 本開示は、ベルト層を備えた空気入りタイヤに関する。 This disclosure relates to a pneumatic tire provided with a belt layer.
 特開2016-193725号公報には、スチールコードを用いて形成された複数の補強ゴムストリップをタイヤ周方向に巻回して実働補強材が形成された自動車用タイヤが記載されている。 Japanese Unexamined Patent Application Publication No. 2016-193725 describes an automobile tire in which a working reinforcing material is formed by winding a plurality of reinforcing rubber strips formed using a steel cord in the tire circumferential direction.
 特開2016-193725号公報の自動車用タイヤでは、実働補強材のタイヤ幅方向端部に、複数のスチールコードの端面が露出している。一般にスチールコードの端面はメッキが施されていない。このため、実働補強材においてスチールコードの端面が露出した場所と、トレッドを形成するゴムとは接着し難い。これにより、実働補強材(ベルト層)とトレッドを形成するゴムとが剥離し易くなる。 In the automobile tire disclosed in Japanese Patent Laid-Open No. 2016-193725, the end surfaces of a plurality of steel cords are exposed at the end portion of the actual reinforcing material in the tire width direction. Generally, the end surface of the steel cord is not plated. For this reason, it is difficult to bond the place where the end surface of the steel cord is exposed in the actual reinforcing material and the rubber forming the tread. Thereby, the actual reinforcing material (belt layer) and the rubber forming the tread are easily peeled off.
 また、スチールコードは、スチールコードの延在方向に対して傾斜した方向に沿って切断されている。このため、このスチールコードの先端は、例えば延在方向に対して直交する方向に沿って切断されたスチールコードの先端と比較して、鋭利に形成される。このためトレッドを形成するゴムが損傷し易い。これにより、実働補強材(ベルト層)とトレッドを形成するゴムとがさらに剥離し易くなる。 Also, the steel cord is cut along a direction inclined with respect to the extending direction of the steel cord. For this reason, the tip of the steel cord is formed sharper than, for example, the tip of the steel cord cut along a direction orthogonal to the extending direction. For this reason, the rubber forming the tread is easily damaged. As a result, the actual reinforcing material (belt layer) and the rubber forming the tread are more easily separated.
 本開示は、ベルト層とベルト層を覆う部材とが剥離し難い空気入りタイヤを提供する。 The present disclosure provides a pneumatic tire in which a belt layer and a member covering the belt layer are hardly peeled off.
 第1態様の空気入りタイヤは、一対のビードコアと、前記一対のビードコアに跨って形成されたカーカスと、前記カーカスのタイヤ径方向外側において、コードをゴムで被覆して形成された被覆コードをタイヤ周方向に螺旋状に巻回して形成されたベルト層と、前記ベルト層のタイヤ径方向外側又は内側に配置された樹脂補強層と、前記ベルト層及び前記樹脂補強層のタイヤ径方向外側に設けられたトレッドと、を備えている。 The pneumatic tire according to the first aspect includes a pair of bead cores, a carcass formed across the pair of bead cores, and a coated cord formed by covering the cord with rubber on the outer side in the tire radial direction of the carcass. A belt layer formed by being spirally wound in the circumferential direction, a resin reinforcing layer disposed on the outer side or the inner side in the tire radial direction of the belt layer, and provided on the outer side in the tire radial direction of the belt layer and the resin reinforcing layer. Tread.
 第1態様の空気入りタイヤによると、ベルト層のタイヤ径方向外側又は内側に樹脂補強層が配置されている。これにより、トレッドが樹脂補強層によって補強される。樹脂補強層によって補強されたトレッドは、補強されていないトレッドと比較して、リング剛性が高くなる。このため、トレッドはタイヤ周方向及びタイヤ幅方向に沿った環状面の面外へ変形し難くなり、空気入りタイヤの変形が抑制される。 According to the pneumatic tire of the first aspect, the resin reinforcing layer is arranged on the outer side or the inner side of the belt layer in the tire radial direction. Thereby, the tread is reinforced by the resin reinforcing layer. The tread reinforced by the resin reinforcing layer has higher ring rigidity than the non-reinforced tread. For this reason, it becomes difficult for the tread to be deformed out of the plane of the annular surface along the tire circumferential direction and the tire width direction, and deformation of the pneumatic tire is suppressed.
 また、樹脂補強層を配置する場合、樹脂補強層を配置しない場合と比較して、面内(タイヤ周方向及びタイヤ幅方向に沿った環状面内)せん断剛性が高くなる。このため、例えば旋回走行時などにおいて、タイヤ幅方向に作用するせん断力に対して、トレッドが面内へ変形し難くなる。これにより交錯ベルト層を省略できるため、タイヤの重量が軽くなり内圧走行時の操縦安定性が高くなる。 Further, when the resin reinforcing layer is arranged, in-plane (in the annular plane along the tire circumferential direction and the tire width direction) shear rigidity is higher than when the resin reinforcing layer is not arranged. For this reason, for example, during turning, the tread is difficult to be deformed in-plane due to the shearing force acting in the tire width direction. As a result, the crossing belt layer can be omitted, so that the weight of the tire is reduced, and the steering stability during running under internal pressure is increased.
 さらに、ベルト層はコードをゴムで被覆して形成された被覆コードをタイヤ周方向に螺旋状に巻回して形成されている。このため、ベルト層のタイヤ幅方向端部にコードの端面が露出し難い。これにより、ベルト層と、ベルト層を覆うトレッド又は樹脂補強層とが剥離し難い。 Furthermore, the belt layer is formed by spirally winding a coated cord formed by coating the cord with rubber in the tire circumferential direction. For this reason, it is difficult to expose the end face of the cord at the end of the belt layer in the tire width direction. Thereby, the belt layer and the tread or the resin reinforcing layer covering the belt layer are hardly peeled off.
 これに対して、例えばタイヤ周方向に対して傾斜させたコードを複数本並べてベルト層を形成する場合、ベルト層のタイヤ幅方向端部には、コードの端面が露出し易い。コードの端面は、コードの外周面と比較してコード層の周囲の部材と接着し難い。このため、ベルト層と、ベルト層を覆うトレッド又は樹脂補強層とが剥離し易くなる。 On the other hand, for example, when a belt layer is formed by arranging a plurality of cords inclined with respect to the tire circumferential direction, the end surface of the cord is likely to be exposed at the end of the belt layer in the tire width direction. The end surface of the cord is less likely to adhere to members around the cord layer as compared to the outer peripheral surface of the cord. For this reason, a belt layer and the tread which covers a belt layer, or a resin reinforcement layer becomes easy to peel.
 第2態様の空気入りタイヤは、タイヤ赤道面において、タイヤ周方向に対する前記被覆コードの傾斜角度が10°以下とされている。 In the pneumatic tire of the second aspect, the inclination angle of the covering cord with respect to the tire circumferential direction is 10 ° or less on the tire equatorial plane.
 第2態様の空気入りタイヤによると、タイヤ赤道面において、タイヤ周方向に対する被覆コードの傾斜角度が10°より大きい場合と比較して、被覆コードの傾斜角度が周方向に近くなる。これにより被覆コードは箍(たが)としての機能を発揮し、トレッドの面外変形を抑制できる。 According to the pneumatic tire of the second aspect, the inclination angle of the covering cord is closer to the circumferential direction on the tire equatorial plane than when the inclination angle of the covering cord with respect to the tire circumferential direction is larger than 10 °. As a result, the covering cord exhibits a function as a gutter and can suppress out-of-plane deformation of the tread.
 第3態様の空気入りタイヤは、前記樹脂補強層のタイヤ幅方向端部は、前記ベルト層のタイヤ幅方向端部よりタイヤ幅方向外側に配置されている。 In the pneumatic tire of the third aspect, the end portion in the tire width direction of the resin reinforcing layer is disposed on the outer side in the tire width direction from the end portion in the tire width direction of the belt layer.
 第3態様の空気入りタイヤによると、樹脂補強層がベルト層より幅広に形成されるため、ベルト層が変形し難い。具体的には、樹脂補強層がベルト層よりタイヤ径方向内側にある場合は、ベルト層が外力を受けてタイヤ径方向内側に変形しようとしても、樹脂補強層によって補剛され、ベルト層の変形が抑制される。また、樹脂補強層がベルト層よりタイヤ径方向外側にある場合は、樹脂補強層によってベルト層への外力の入力が抑制されるため、ベルト層の変形が抑制される。これによりベルト層が破壊し難い。 According to the pneumatic tire of the third aspect, since the resin reinforcing layer is formed wider than the belt layer, the belt layer is hardly deformed. Specifically, when the resin reinforcing layer is located on the inner side in the tire radial direction from the belt layer, the belt layer is stiffened by the resin reinforcing layer even if it is deformed inward in the tire radial direction by receiving an external force, and the belt layer is deformed. Is suppressed. Further, when the resin reinforcing layer is on the outer side in the tire radial direction from the belt layer, the resin reinforcing layer suppresses the input of external force to the belt layer, so that deformation of the belt layer is suppressed. This makes it difficult for the belt layer to break.
 本開示に係る空気入りタイヤによると、ベルト層と、ベルト層を覆う部材とが剥離し難い。 According to the pneumatic tire according to the present disclosure, the belt layer and the member covering the belt layer are difficult to peel off.
本開示の実施形態に係る空気入りタイヤを、タイヤ幅方向及びタイヤ径方向に沿って切断した状態を示す半断面図である。It is a half sectional view showing the state where a pneumatic tire concerning an embodiment of this indication was cut along a tire width direction and a tire radial direction. 本開示の実施形態に係る空気入りタイヤにおけるベルト層の構成を示す斜視図である。It is a perspective view showing composition of a belt layer in a pneumatic tire concerning an embodiment of this indication. 本開示の実施形態に係る空気入りタイヤにおけるベルト層を示す断面図である。It is sectional drawing which shows the belt layer in the pneumatic tire which concerns on embodiment of this indication. 本開示の実施形態に係る空気入りタイヤにおいて1本のゴム被覆コードに複数の補強コードを埋設した変形例を示す断面図である。FIG. 6 is a cross-sectional view illustrating a modification in which a plurality of reinforcing cords are embedded in one rubber-coated cord in a pneumatic tire according to an embodiment of the present disclosure. 本開示の実施形態に係るベルト層におけるゴム被覆コードのタイヤ赤道面における傾斜角度を示した部分拡大図である。It is the elements on larger scale which showed the inclination-angle in the tire equatorial plane of the rubber coating cord in the belt layer which concerns on embodiment of this indication. 本開示の実施形態に係る空気入りタイヤにおいて樹脂補強層をベルト層より幅広に形成した変形例を示す半断面図である。FIG. 6 is a half cross-sectional view illustrating a modification in which a resin reinforcing layer is formed wider than a belt layer in a pneumatic tire according to an embodiment of the present disclosure. 本開示の実施形態に係る空気入りタイヤにおいて樹脂補強層をベルト層のタイヤ径方向内側に配置した変形例を示す半断面図である。FIG. 6 is a half cross-sectional view showing a modification in which a resin reinforcing layer is disposed on the inner side in the tire radial direction of a belt layer in a pneumatic tire according to an embodiment of the present disclosure. 本開示の実施形態に係る空気入りタイヤにおいて、ゴム被覆コードをカーカスの周囲に1周だけ巻回させる場合の傾斜角度を示す概念図である。In the pneumatic tire concerning the embodiment of this indication, it is a key map showing the angle of inclination in the case of making a rubber covering cord wind only 1 turn around a carcass. 本開示の実施形態に係る空気入りタイヤにおいてベルト層を1本のゴム被覆コードで形成する場合の傾斜角度を示す概念図である。It is a conceptual diagram which shows the inclination angle in the case of forming a belt layer with one rubber-coated cord in the pneumatic tire according to the embodiment of the present disclosure. 比較例に係るベルト層の展開図である。It is an expanded view of the belt layer which concerns on a comparative example. 図8AにおけるB-B線断面図である。FIG. 8B is a sectional view taken along line BB in FIG. 8A.
 図1には、本開示の実施形態に係る空気入りタイヤ(以下、「タイヤ10」と称する。)のタイヤ幅方向及びタイヤ径方向に沿って切断した切断面(すなわちタイヤ周方向に沿った方向から見た断面)の片側が示されている。なお、図中矢印Wはタイヤ10の幅方向(タイヤ幅方向)を示し、矢印Rはタイヤ10の径方向(タイヤ径方向)を示す。ここでいうタイヤ幅方向とは、タイヤ10の回転軸と平行な方向を指している。また、タイヤ径方向とは、タイヤ10の回転軸と直交する方向をいう。また、符号CLはタイヤ10の赤道面(タイヤ赤道面)を示している。 FIG. 1 shows a cut surface (that is, a direction along a tire circumferential direction) cut along a tire width direction and a tire radial direction of a pneumatic tire (hereinafter referred to as “tire 10”) according to an embodiment of the present disclosure. One side of the cross section viewed from FIG. In the figure, an arrow W indicates the width direction of the tire 10 (tire width direction), and an arrow R indicates the radial direction of the tire 10 (tire radial direction). The tire width direction here refers to a direction parallel to the rotation axis of the tire 10. Further, the tire radial direction refers to a direction orthogonal to the rotation axis of the tire 10. Reference sign CL indicates the equator plane of the tire 10 (tire equator plane).
 また、本実施形態では、タイヤ径方向に沿ってタイヤ10の回転軸に近い側を「タイヤ径方向内側」、タイヤ径方向に沿ってタイヤ10の回転軸から遠い側を「タイヤ径方向外側」と記載する。一方、タイヤ幅方向に沿ってタイヤ赤道面CLに近い側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってタイヤ赤道面CLから遠い側を「タイヤ幅方向外側」と記載する。 In the present embodiment, the side closer to the rotation axis of the tire 10 along the tire radial direction is “inner side in the tire radial direction”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is “outer side in the tire radial direction”. It describes. On the other hand, the side close to the tire equator plane CL along the tire width direction is described as “inner side in the tire width direction”, and the side far from the tire equator plane CL along the tire width direction is described as “outer side in the tire width direction”.
(タイヤ)
 図1は、標準リムであるリム30に組み付けて標準空気圧を充填したときのタイヤ10を示している。なお、ここでいう「標準リム」とは、JATMA(日本自動車タイヤ協会)のYear Book2017年版規定のリムを指す。また、上記標準空気圧とは、JATMA(日本自動車タイヤ協会)のYear Book2017年版の最大負荷能力に対応する空気圧である。
(tire)
FIG. 1 shows a tire 10 when it is assembled to a rim 30 that is a standard rim and filled with standard air pressure. Here, the “standard rim” refers to a rim defined in the Year Book 2017 version of JATMA (Japan Automobile Tire Association). The standard air pressure is an air pressure corresponding to the maximum load capacity of Year Book 2017 version of JATMA (Japan Automobile Tire Association).
 図1に示されるように、タイヤ10は、一対のビード部12と、それぞれのビード部12に埋設されたビードコア12Aに跨り端部がビードコア12Aに係止されたカーカス14と、ビード部12に埋設されビードコア12Aからタイヤ径方向外側へカーカス14の外面に沿って伸びるビードフィラー12Bと、カーカス14のタイヤ径方向外側に設けられたベルト層40と、ベルト層40のタイヤ径方向外側に設けられた樹脂補強層50と、樹脂補強層50のタイヤ径方向外側に設けられたトレッド60と、を備えている。なお、図1では、片側のビード部12のみが図示されている。 As shown in FIG. 1, the tire 10 includes a pair of bead portions 12, a carcass 14 having an end portion locked to the bead core 12 </ b> A embedded in each bead portion 12, and a bead portion 12. A bead filler 12B that is buried and extends along the outer surface of the carcass 14 from the bead core 12A to the outer side in the tire radial direction, a belt layer 40 provided on the outer side in the tire radial direction of the carcass 14, and a outer side in the tire radial direction of the belt layer 40. The resin reinforcing layer 50 and a tread 60 provided on the outer side in the tire radial direction of the resin reinforcing layer 50 are provided. In FIG. 1, only the bead portion 12 on one side is shown.
(ビード部)
 一対のビード部12には、ワイヤ束であるビードコア12Aがそれぞれ埋設されている。これらのビードコア12Aには、カーカス14が跨っている。ビードコア12Aは、断面が円形や多角形状など、様々な構造を採用することができる。また、多角形としては例えば六角形を採用することができるが、本実施形態においては四角形とされている。
(Bead part)
In the pair of bead portions 12, bead cores 12A as wire bundles are respectively embedded. A carcass 14 straddles these bead cores 12A. The bead core 12A can employ various structures such as a circular cross section and a polygonal cross section. Further, for example, a hexagon can be adopted as the polygon, but in the present embodiment, it is a quadrangle.
 ビード部12においてビードコア12Aに係止されたカーカス14で囲まれた領域には、ビードコア12Aからタイヤ径方向外側へ延びるビードフィラー12Bが埋設されている。 A bead filler 12B extending from the bead core 12A to the outer side in the tire radial direction is embedded in a region surrounded by the carcass 14 locked to the bead core 12A in the bead portion 12.
(カーカス)
 カーカス14は、複数本のコードを被覆ゴムで被覆して形成されたタイヤ骨格部材である。カーカス14は、一方のビードコア12Aから他方のビードコア12Aへトロイド状に延びてタイヤの骨格を構成している。また、カーカス14の端部側は、ビードコア12Aに係止されている。具体的には、カーカス14は、端部側がビードコア12A周りにタイヤ幅方向内側からタイヤ幅方向外側へ折り返されて係止されている。
(Carcass)
The carcass 14 is a tire frame member formed by coating a plurality of cords with a covering rubber. The carcass 14 extends in a toroidal shape from one bead core 12A to the other bead core 12A to form a tire skeleton. Further, the end portion side of the carcass 14 is locked to the bead core 12A. Specifically, the end of the carcass 14 is folded and locked around the bead core 12A from the inner side in the tire width direction to the outer side in the tire width direction.
 なお、本実施形態においてカーカス14はラジアルカーカスとされている。また、カーカス14の材質は特に限定されず、レーヨン、ナイロン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、アラミド、ガラス繊維、カーボン繊維、スチール等が採用できる。なお、軽量化の点からは、有機繊維コードが好ましい。また、カーカスの打ち込み数は20~60本/50mmの範囲とされているが、この範囲に限定されるのもではない。 In the present embodiment, the carcass 14 is a radial carcass. The material of the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel, or the like can be used. From the viewpoint of weight reduction, an organic fiber cord is preferable. In addition, the number of carcass shots is in the range of 20 to 60 pieces / 50 mm, but is not limited to this range.
 カーカス14のタイヤ幅方向外側には、サイドゴム16が設けられている。サイドゴム16は、ビード部12からタイヤ径方向外側へ延びてタイヤ10のサイド部10Aを形成し、トレッド60と接合されている。また、サイドゴム16は、ショルダー部10Bにおいて厚みが漸減するように形成されている。サイドゴム16の端部16Eは、後述するベルト層40のタイヤ径方向内側であって、ベルト層40のタイヤ幅方向端部40EW及び樹脂補強層50のタイヤ幅方向端部50EWよりタイヤ幅方向内側に配置されている。 Side rubber 16 is provided on the outer side of the carcass 14 in the tire width direction. The side rubber 16 extends from the bead portion 12 to the outer side in the tire radial direction to form the side portion 10A of the tire 10 and is joined to the tread 60. Further, the side rubber 16 is formed so that the thickness gradually decreases in the shoulder portion 10B. The end portion 16E of the side rubber 16 is on the inner side in the tire radial direction of the belt layer 40, which will be described later, and on the inner side in the tire width direction from the tire width direction end portion 40EW of the belt layer 40 and the tire width direction end portion 50EW of the resin reinforcing layer 50. Has been placed.
 なお、サイドゴム16の端部16Eは、ベルト層40のタイヤ幅方向端部40EWより外側に配置してもよい。この場合、ベルト層40のタイヤ幅方向端部40EWは、サイドゴム16ではなくカーカス14の外周面に接するように配置される。 The end 16E of the side rubber 16 may be disposed outside the end 40EW in the tire width direction of the belt layer 40. In this case, the tire width direction end portion 40EW of the belt layer 40 is disposed so as to contact the outer peripheral surface of the carcass 14 instead of the side rubber 16.
(ベルト層)
 カーカス14のタイヤ径方向外側には、ベルト層40が配設されている。図2に示すように、ベルト層40は、1本のゴム被覆コード42がカーカス14の外周面に対してタイヤ周方向に螺旋状に巻かれて形成されたリング状の箍(たが)である。ゴム被覆コード42の両端部42E1、42E2は、タイヤ周方向において異なる位置に配置されている。なお、「螺旋状」とは、1本のゴム被覆コード42がカーカス14の周囲において少なくとも1周以上巻回されている状態を示す。
(Belt layer)
A belt layer 40 is disposed outside the carcass 14 in the tire radial direction. As shown in FIG. 2, the belt layer 40 is a ring-shaped ridge formed by a single rubber-coated cord 42 spirally wound around the outer circumferential surface of the carcass 14 in the tire circumferential direction. is there. Both end portions 42E1 and 42E2 of the rubber-coated cord 42 are arranged at different positions in the tire circumferential direction. Note that “spiral” indicates a state in which one rubber-coated cord 42 is wound at least one turn around the carcass 14.
 図3Aに示すように、ゴム被覆コード42は、補強コード42Cを被覆ゴム42Sで被覆して構成されており、断面が略正方形状とされている。被覆ゴム42Sは、タイヤ径方向内側に配置されたカーカス14及びサイドゴム16の外周面にゴムや接着剤を介して接合されている。 As shown in FIG. 3A, the rubber-coated cord 42 is configured by covering a reinforcing cord 42C with a coated rubber 42S, and has a substantially square cross section. The covering rubber 42S is joined to the outer peripheral surfaces of the carcass 14 and the side rubber 16 disposed on the inner side in the tire radial direction via rubber or an adhesive.
 また、タイヤ幅方向に互いに隣接する被覆ゴム42S同士は、タイヤ加硫時にゴム同士が接合されている。これにより、補強コード42Cが被覆ゴム42Sによって被覆されたベルト層40(ゴム被覆ベルト層)が形成される。図2に示すように、ゴム被覆コード42の端部42E1、42E2においては、補強コード42Cの端面が露出している。なお、ゴム被覆コード42の端部42E1、42E2は、ゴム被覆コードの長手方向に対して略直角に形成されている。 Further, the rubbers 42S that are adjacent to each other in the tire width direction are joined to each other during tire vulcanization. As a result, a belt layer 40 (rubber-coated belt layer) in which the reinforcing cord 42C is covered with the covering rubber 42S is formed. As shown in FIG. 2, at the end portions 42E1 and 42E2 of the rubber-coated cord 42, the end surface of the reinforcing cord 42C is exposed. The end portions 42E1 and 42E2 of the rubber-coated cord 42 are formed substantially at right angles to the longitudinal direction of the rubber-coated cord.
 図4には、ベルト層40をタイヤ径方向に沿った方向からみた部分拡大図が示されている。図4に示すように、ゴム被覆コード42は、タイヤ赤道面において、タイヤ周方向(図4において矢印Sで示す方向)に対して角度θ1で傾斜して巻回されている。角度θ1は、本実施形態においては10°以下とされているが、2°以下とすると更に好適である。 FIG. 4 shows a partially enlarged view of the belt layer 40 as seen from the direction along the tire radial direction. As shown in FIG. 4, the rubber-coated cord 42 is wound at an angle θ1 with respect to the tire circumferential direction (the direction indicated by the arrow S in FIG. 4) on the tire equatorial plane. The angle θ1 is 10 ° or less in the present embodiment, but is more preferably 2 ° or less.
 また、本実施形態のベルト層40における補強コード42Cは、外周面がコバルトでメッキされたスチールコードとされている。このスチールコードは、スチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むことができる。また、メッキ材料はコバルトに限定されず、ニッケル等を用いる事ができる。なお、補強コード42Cの端面は非メッキとされ、無垢のスチールが露出している。 Further, the reinforcing cord 42C in the belt layer 40 of the present embodiment is a steel cord whose outer peripheral surface is plated with cobalt. The steel cord is mainly composed of steel and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper, and chromium. The plating material is not limited to cobalt, and nickel or the like can be used. The end surface of the reinforcing cord 42C is not plated, and the solid steel is exposed.
 なお、本開示の実施形態はこれに限らず、ベルト層40における補強コード42Cとしては、スチールコードに代えて、モノフィラメントコードや、複数のフィラメントを撚り合せたコードを用いることができる。また、アラミド等の有機繊維、カーボンなどを用いてもよい。撚り構造も種々の設計が採用可能であり、断面構造、撚りピッチ、撚り方向、隣接するフィラメント同士の距離も様々なものが使用できる。更には異なる材質のフィラメントを縒り合せたコードを採用することもでき、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。 The embodiment of the present disclosure is not limited to this, and the reinforcing cord 42C in the belt layer 40 may be a monofilament cord or a cord in which a plurality of filaments are twisted instead of the steel cord. Further, organic fibers such as aramid, carbon, and the like may be used. Various designs can be adopted for the twist structure, and various cross-sectional structures, twist pitches, twist directions, and distances between adjacent filaments can be used. Furthermore, a cord in which filaments of different materials are twisted can be adopted, and the cross-sectional structure is not particularly limited, and various twisted structures such as single twist, layer twist, and double twist can be adopted.
(樹脂補強層)
 図1に示すように、ベルト層40のタイヤ径方向外側には、樹脂補強層50が配設されている。樹脂補強層50は、タイヤ10における剛性付与部材である。樹脂補強層50の幅方向端部50EWは、ベルト層40の幅方向端部40EWよりタイヤ幅方向内側に配置されている。このため、ゴム被覆コード42の両端部42E1、42E2(図2参照)は樹脂補強層50によって被覆されず、トレッド60を形成するトレッドゴム60Gによって被覆されている。
(Resin reinforcement layer)
As shown in FIG. 1, a resin reinforcing layer 50 is disposed outside the belt layer 40 in the tire radial direction. The resin reinforcing layer 50 is a rigidity imparting member in the tire 10. The width direction end portion 50EW of the resin reinforcing layer 50 is disposed on the inner side in the tire width direction than the width direction end portion 40EW of the belt layer 40. Therefore, both end portions 42E1 and 42E2 (see FIG. 2) of the rubber-coated cord 42 are not covered with the resin reinforcing layer 50 but are covered with the tread rubber 60G that forms the tread 60.
 なお、ベルト層40と樹脂補強層50及び樹脂補強層50とトレッド60とは、接着剤又はゴムで接着されている。 The belt layer 40 and the resin reinforcing layer 50 and the resin reinforcing layer 50 and the tread 60 are bonded with an adhesive or rubber.
 樹脂補強層50に用いられる樹脂材料は、熱可塑性樹脂とされている。但し本開示の実施形態はこれに限らず、例えば樹脂材料として、熱可塑性エラストマー、熱硬化性樹脂、及び(メタ)アクリル系樹脂、EVA樹脂、塩化ビニル樹脂、フッ素系樹脂、シリコーン系樹脂等の汎用樹脂のほか、エンジニアリングプラスチック(スーパーエンジニアリングプラスチックを含む)等を用いることができる。なお、ここでの樹脂材料には、加硫ゴムは含まれない。 The resin material used for the resin reinforcing layer 50 is a thermoplastic resin. However, the embodiment of the present disclosure is not limited thereto, and examples of the resin material include thermoplastic elastomers, thermosetting resins, (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, and silicone resins. In addition to general-purpose resins, engineering plastics (including super engineering plastics) can be used. The resin material here does not include vulcanized rubber.
 熱可塑性樹脂(熱可塑性エラストマーを含む)とは、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になる高分子化合物をいう。本明細書では、このうち、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物を熱可塑性エラストマーとする。また、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有しない高分子化合物をエラストマーでない熱可塑性樹脂として、熱可塑性エラストマーと区別する。 Thermoplastic resin (including thermoplastic elastomer) refers to a polymer compound that softens and flows as the temperature rises and becomes relatively hard and strong when cooled. In the present specification, among these, the material softens and flows as the temperature rises, and when cooled, the material becomes relatively hard and strong and has a rubber-like elasticity as a thermoplastic elastomer. Further, when the material softens and flows as the temperature rises, it becomes relatively hard and strong when cooled, and a high molecular compound having no rubber-like elasticity is distinguished from a thermoplastic elastomer as a non-elastomer thermoplastic resin.
 熱可塑性樹脂(熱可塑性エラストマーを含む)としては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、及び、動的架橋型熱可塑性エラストマー(TPV)、ならびに、ポリオレフィン系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、及び、ポリエステル系熱可塑性樹脂等が挙げられる。 Thermoplastic resins (including thermoplastic elastomers) include polyolefin-based thermoplastic elastomers (TPO), polystyrene-based thermoplastic elastomers (TPS), polyamide-based thermoplastic elastomers (TPA), polyurethane-based thermoplastic elastomers (TPU), and polyesters. Thermoplastic thermoplastic elastomer (TPC), dynamically crosslinked thermoplastic elastomer (TPV), polyolefin thermoplastic resin, polystyrene thermoplastic resin, polyamide thermoplastic resin, polyester thermoplastic resin, etc. Can be mentioned.
 熱硬化性樹脂とは、温度上昇と共に3次元的網目構造を形成し、硬化する高分子化合物をいい、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。 The thermosetting resin refers to a polymer compound that forms a three-dimensional network structure as the temperature rises and cures, and examples thereof include a phenol resin, an epoxy resin, a melamine resin, and a urea resin.
(トレッド)
 樹脂補強層50のタイヤ径方向外側には、トレッド60が設けられている。トレッド60は、走行中に路面に接地する部位であり、トレッド60の踏面には、タイヤ周方向に延びる周方向溝62が複数本形成されている。周方向溝62の形状や本数は、タイヤ10に要求される排水性や操縦安定性等の性能に応じて適宜設定される。
(tread)
A tread 60 is provided outside the resin reinforcing layer 50 in the tire radial direction. The tread 60 is a part that contacts the road surface during traveling, and a plurality of circumferential grooves 62 extending in the tire circumferential direction are formed on the tread surface of the tread 60. The shape and number of the circumferential grooves 62 are appropriately set according to the performance such as drainage performance and steering stability required for the tire 10.
(作用)
 本実施形態に係るタイヤ10によると、ベルト層40のタイヤ径方向外側に樹脂補強層50が配置されている。これにより、トレッド60が樹脂補強層50によって補強される。樹脂補強層50によって補強されたトレッド60は、補強されていないトレッドと比較して、リング剛性が高くなる。このため、トレッド60は、タイヤ周方向及びタイヤ幅方向に沿った環状面の面外へ変形し難くなり、タイヤ10の変形が抑制される。
(Function)
According to the tire 10 according to the present embodiment, the resin reinforcing layer 50 is disposed on the outer side in the tire radial direction of the belt layer 40. Thereby, the tread 60 is reinforced by the resin reinforcing layer 50. The tread 60 reinforced by the resin reinforcing layer 50 has higher ring rigidity than a tread that is not reinforced. For this reason, it becomes difficult for the tread 60 to be deformed outside the annular surface along the tire circumferential direction and the tire width direction, and deformation of the tire 10 is suppressed.
 また、タイヤ10は、樹脂補強層50を配置しない場合と比較して、トレッド60の面内(すなわちタイヤ周方向及びタイヤ幅方向に沿った環状面内)せん断剛性が高くなる。このため、例えば旋回走行時などにおいて、タイヤ幅方向に作用するせん断力に対して、トレッド60が面内へ変形し難くなる。これにより交錯ベルト層を省略できるため、タイヤの重量が軽くなり内圧走行時の操縦安定性が高くなる。 Also, the tire 10 has higher shear rigidity in the plane of the tread 60 (that is, in the annular plane along the tire circumferential direction and the tire width direction) than when the resin reinforcing layer 50 is not disposed. For this reason, for example, during turning, the tread 60 is unlikely to be deformed in-plane due to the shearing force acting in the tire width direction. As a result, the crossing belt layer can be omitted, so that the weight of the tire is reduced, and the steering stability during running under internal pressure is increased.
 さらに、ベルト層40は、補強コード42Cを被覆ゴム42Sで被覆して形成された1本のゴム被覆コード42をタイヤ周方向に螺旋状に巻回して形成されている。このため、ベルト層40のタイヤ幅方向端部40EWには、1本のゴム被覆コード42の両端部42E1、42E2の2箇所のみにおいて、補強コード42Cの端面が露出する。これにより、ベルト層40と、ベルト層40を覆うトレッドゴム60Gとが剥離し難い。 Further, the belt layer 40 is formed by spirally winding a single rubber-coated cord 42 formed by coating the reinforcing cord 42C with the covering rubber 42S in the tire circumferential direction. For this reason, the end surface of the reinforcing cord 42C is exposed at the tire width direction end portion 40EW of the belt layer 40 only at the two ends 42E1 and 42E2 of one rubber-coated cord 42. Thereby, the belt layer 40 and the tread rubber 60 </ b> G covering the belt layer 40 are difficult to peel off.
 これに対して、図8Aに示す比較例に係るベルト層400は、周方向(図8Aにおいて矢印Sで示す方向)に対して角度θ2で傾斜させたゴム被覆コード420を複数本並べて形成されている。図8Aにおいては、ベルト層400を展開した平面図が示されている。ベルト層400がタイヤに巻き付けられた状態においては、図8Aの最下部に示されたゴム被覆コード420の側面420Aと、最上部に示されたゴム被覆コード420の側面420Bとが互いに接着される。 On the other hand, the belt layer 400 according to the comparative example shown in FIG. 8A is formed by arranging a plurality of rubber-coated cords 420 inclined at an angle θ2 with respect to the circumferential direction (the direction indicated by the arrow S in FIG. 8A). Yes. In FIG. 8A, a plan view in which the belt layer 400 is developed is shown. In a state where the belt layer 400 is wound around the tire, the side surface 420A of the rubber-coated cord 420 shown at the bottom of FIG. 8A and the side surface 420B of the rubber-coated cord 420 shown at the top are bonded to each other. .
 また、それぞれのゴム被覆コード420は、ベルト層400のタイヤ幅方向両端部400EW間に亘って敷設されている。図8Bに示すように、それぞれのゴム被覆コード420は、補強コード420Cを被覆ゴム420Sで被覆して形成されている。このため、ベルト層400のタイヤ幅方向端部400EWには、補強コード420Cの端面が露出する。 Further, each rubber-coated cord 420 is laid between both end portions 400EW of the belt layer 400 in the tire width direction. As shown in FIG. 8B, each rubber covered cord 420 is formed by covering a reinforcing cord 420C with a covering rubber 420S. For this reason, the end surface of the reinforcement cord 420C is exposed at the tire width direction end portion 400EW of the belt layer 400.
 補強コード420Cは、補強コード42Cと同様に、外周面がコバルトでメッキされている。補強コード42Cの端面は非メッキとされ、スチールが無垢の状態で露出している。このため、補強コード42Cの端面は、外周面と比較してベルト層400を覆うトレッドゴムと接着し難い。このため、ベルト層400と、ベルト層400を覆うトレッドゴムとが剥離し易くなる。 The reinforcement cord 420C is plated with cobalt on the outer peripheral surface in the same manner as the reinforcement cord 42C. The end surface of the reinforcing cord 42C is not plated, and the steel is exposed in a solid state. For this reason, the end surface of the reinforcing cord 42C is less likely to adhere to the tread rubber that covers the belt layer 400 as compared to the outer peripheral surface. For this reason, the belt layer 400 and the tread rubber covering the belt layer 400 are easily peeled off.
 すなわち、本実施形態に係るタイヤ10におけるベルト層40は、比較例におけるベルト層400と比較して、トレッドゴム60Gとの剥離の基点になる箇所が少ない。 That is, the belt layer 40 in the tire 10 according to the present embodiment has a smaller number of locations that serve as a starting point for separation from the tread rubber 60G than the belt layer 400 in the comparative example.
 また、本実施形態に係るタイヤ10は、タイヤ赤道面において、タイヤ周方向に対するゴム被覆コード42の傾斜角度が10°以下とされている。このため、例えばタイヤ周方向に対する被覆コードの傾斜角度が10°より大きい場合と比較して、被覆コードの傾斜角度が周方向に近くなる。これによりゴム被覆コード42は箍(たが)としての機能を発揮し、トレッド60の面外変形を抑制できる。 Further, in the tire 10 according to the present embodiment, the inclination angle of the rubber-coated cord 42 with respect to the tire circumferential direction is 10 ° or less on the tire equatorial plane. For this reason, compared with the case where the inclination angle of the covering cord with respect to the tire circumferential direction is larger than 10 °, for example, the inclination angle of the covering cord becomes closer to the circumferential direction. As a result, the rubber-coated cord 42 exhibits a function as a gutter and can suppress out-of-plane deformation of the tread 60.
 また、本実施形態においては、ゴム被覆コード42の両端部42E1、42E2は、タイヤ周方向において異なる位置に配置されている。このため、ゴム被覆コード42の両端部42E1、42E2がタイヤ周方向において等しい位置に配置されている場合と比較して、タイヤ周方向においてトレッドゴム60Gとの剥離の基点になる箇所を分散できる。 In the present embodiment, both end portions 42E1 and 42E2 of the rubber-coated cord 42 are disposed at different positions in the tire circumferential direction. For this reason, compared with the case where both end portions 42E1 and 42E2 of the rubber-coated cord 42 are arranged at the same position in the tire circumferential direction, the location that becomes the base point of separation from the tread rubber 60G in the tire circumferential direction can be dispersed.
 なお、本実施形態において、樹脂補強層50の幅方向端部50EWは、ベルト層40の幅方向端部40EWよりタイヤ幅方向内側に配置されているが、本開示の実施形態はこれに限らない。例えば図5に示すように、樹脂補強層50の幅方向端部50EWを、ベルト層40の幅方向端部40EWよりタイヤ幅方向外側に配置してもよい。本実施形態においては、樹脂補強層50が熱可塑性樹脂で形成されている。このため、タイヤ10の成形における加硫工程で、樹脂補強層50がベルト層40の幅方向端部40EWに密着するように形成される。 In the present embodiment, the width direction end portion 50EW of the resin reinforcing layer 50 is disposed on the inner side in the tire width direction than the width direction end portion 40EW of the belt layer 40, but the embodiment of the present disclosure is not limited thereto. . For example, as shown in FIG. 5, the width direction end portion 50EW of the resin reinforcing layer 50 may be disposed outside the width direction end portion 40EW of the belt layer 40 in the tire width direction. In the present embodiment, the resin reinforcing layer 50 is formed of a thermoplastic resin. For this reason, the resin reinforcing layer 50 is formed in close contact with the width direction end portion 40EW of the belt layer 40 in the vulcanization step in forming the tire 10.
 このようにすることで、ベルト層40のタイヤ径方向外側が樹脂補強層50によって覆われるため、ベルト層40が変形し難い。すなわち、樹脂補強層50によってベルト層40への外力の入力が抑制されるため、ベルト層40の変形が抑制される。特に、ベルト層40におけるゴム被覆コード42の両端部42E1、42E2が樹脂補強層50によって覆われるため、両端部42E1、42E2が、ベルト層40と樹脂補強層50及びトレッドゴム60Gとの剥離の基点になることを抑制できる。 By doing in this way, the outer side in the tire radial direction of the belt layer 40 is covered with the resin reinforcing layer 50, so that the belt layer 40 is hardly deformed. That is, the resin reinforcing layer 50 suppresses the input of external force to the belt layer 40, and thus the deformation of the belt layer 40 is suppressed. In particular, since both end portions 42E1 and 42E2 of the rubber-coated cord 42 in the belt layer 40 are covered with the resin reinforcing layer 50, the both end portions 42E1 and 42E2 are the starting points of the separation between the belt layer 40, the resin reinforcing layer 50, and the tread rubber 60G. Can be suppressed.
 また、本実施形態において、樹脂補強層50は、ベルト層40のタイヤ径方向外側に配置されているが、本開示の実施形態はこれに限らない。例えば図6に示すように、樹脂補強層50を、ベルト層40のタイヤ径方向内側に配置してもよい。この場合、樹脂補強層50の幅方向端部50EWは、ベルト層40の幅方向端部40EWよりタイヤ幅方向外側に配置することが好適である。このようにすることで、ベルト層40が外力を受けてタイヤ径方向内側に変形しようとしても、樹脂補強層50によって補剛され、変形が抑制される。 In the present embodiment, the resin reinforcing layer 50 is disposed on the outer side in the tire radial direction of the belt layer 40, but the embodiment of the present disclosure is not limited thereto. For example, as shown in FIG. 6, the resin reinforcing layer 50 may be disposed on the inner side in the tire radial direction of the belt layer 40. In this case, it is preferable that the end portion 50EW in the width direction of the resin reinforcing layer 50 is disposed on the outer side in the tire width direction from the end portion 40EW in the width direction of the belt layer 40. By doing in this way, even if the belt layer 40 receives an external force and tries to deform inward in the tire radial direction, it is stiffened by the resin reinforcing layer 50 and the deformation is suppressed.
 また、本実施形態においてベルト層40は、1本の補強コード42Cを被覆ゴム42Sで被覆して形成された略正方形状のゴム被覆コード42を、カーカス14の外周面に巻いて形成したが、本開示の実施形態はこれに限らない。 In the present embodiment, the belt layer 40 is formed by winding a substantially square rubber-coated cord 42 formed by coating one reinforcing cord 42C with a coating rubber 42S around the outer peripheral surface of the carcass 14, The embodiment of the present disclosure is not limited to this.
 例えば図3Bに示すように、複数本(例えば6本)の補強コード44Cを被覆ゴム44Sで被覆して形成された、断面が略平行四辺形状のゴム被覆コード44を、カーカス14の外周面に巻いて形成してもよい。 For example, as shown in FIG. 3B, a rubber-coated cord 44 having a substantially parallelogram cross section formed by coating a plurality of (for example, six) reinforcing cords 44C with a coating rubber 44S is formed on the outer peripheral surface of the carcass 14. It may be formed by winding.
 また、ゴム被覆コード42はカーカス14の周囲において少なくとも1周以上巻回されていれば(すなわち螺旋状に巻回されていれば)、ゴム被覆コード42は1本だけではなく、例えば2本以上用いてもよい。 Further, if the rubber-coated cord 42 is wound at least one turn around the carcass 14 (that is, if it is wound spirally), the number of the rubber-coated cord 42 is not limited to one, for example, two or more. It may be used.
 なお、図2に示すように、ベルト層40の幅を(W1)、カーカス14のタイヤ赤道面における周長を(L1)とした場合、ゴム被覆コード42をカーカス14の周囲において1周以上巻回するためには、図7Aに示すように、ゴム被覆コード42のタイヤ周方向に対する角度θ1(図4参照)は(θ1≦tan-1(W1/L1))とすればよい。 As shown in FIG. 2, when the width of the belt layer 40 is (W1) and the circumferential length of the carcass 14 on the tire equatorial plane is (L1), the rubber-coated cord 42 is wound around the carcass 14 by one or more rounds. In order to rotate, as shown in FIG. 7A, the angle θ1 (see FIG. 4) of the rubber-coated cord 42 with respect to the tire circumferential direction may be set to (θ1 ≦ tan −1 (W1 / L1)).
 また、1本のゴム被覆コード42でベルト層40を形成するためには、ゴム被覆コード42の幅を(W2)とした場合、図7Bに示すように、ゴム被覆コード42のタイヤ周方向に対する角度θ1(図4参照)は(θ1≦tan-1(W2/L1))とすればよい。このように、本開示は様々な態様で実施することができる。 Further, in order to form the belt layer 40 with one rubber-coated cord 42, when the width of the rubber-coated cord 42 is (W2), as shown in FIG. The angle θ1 (see FIG. 4) may be (θ1 ≦ tan −1 (W2 / L1)). Thus, the present disclosure can be implemented in various ways.
 2018年5月14日に出願された日本国特許出願2018-093000号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The entire disclosure of Japanese Patent Application No. 2018-093000 filed on May 14, 2018 is incorporated herein by reference. All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (3)

  1.  一対のビードコアと、
     前記一対のビードコアに跨って形成されたカーカスと、
     前記カーカスのタイヤ径方向外側において、コードをゴムで被覆して形成された被覆コードをタイヤ周方向に螺旋状に巻回して形成されたベルト層と、
     前記ベルト層のタイヤ径方向外側又は内側に配置された樹脂補強層と、
     前記ベルト層及び前記樹脂補強層のタイヤ径方向外側に設けられたトレッドと、
     を備えた空気入りタイヤ。
    A pair of bead cores;
    A carcass formed across the pair of bead cores;
    On the outer side of the carcass in the tire radial direction, a belt layer formed by spirally winding a covering cord formed by covering the cord with rubber in the tire circumferential direction;
    A resin reinforcing layer disposed on the outer side or the inner side in the tire radial direction of the belt layer; and
    A tread provided on the outer side in the tire radial direction of the belt layer and the resin reinforcing layer;
    Pneumatic tire with
  2.  タイヤ赤道面において、タイヤ周方向に対する前記被覆コードの傾斜角度が10°以下とされている、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein an inclination angle of the covering cord with respect to a tire circumferential direction is 10 ° or less on a tire equator plane.
  3.  前記樹脂補強層のタイヤ幅方向端部は、前記ベルト層のタイヤ幅方向端部よりタイヤ幅方向外側に配置されている、請求項1又は請求項2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein an end portion in the tire width direction of the resin reinforcing layer is disposed on an outer side in the tire width direction from an end portion in the tire width direction of the belt layer.
PCT/JP2019/017257 2018-05-14 2019-04-23 Pneumatic tire WO2019220889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-093000 2018-05-14
JP2018093000A JP2019199106A (en) 2018-05-14 2018-05-14 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2019220889A1 true WO2019220889A1 (en) 2019-11-21

Family

ID=68539929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017257 WO2019220889A1 (en) 2018-05-14 2019-04-23 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP2019199106A (en)
WO (1) WO2019220889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175627A1 (en) * 2019-02-27 2020-09-03 株式会社ブリヂストン Run-flat tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234002A (en) * 1984-04-30 1985-11-20 Yokohama Rubber Co Ltd:The Pneumatic radial-ply tire
JP2010540337A (en) * 2007-10-05 2010-12-24 ソシエテ ド テクノロジー ミシュラン Tire using a reinforcing structure including a fiber having a flat cross section
JP2015515412A (en) * 2012-04-06 2015-05-28 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tires with radial or cross-ply carcass
JP2016193725A (en) * 2010-10-13 2016-11-17 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Passenger car tire with radial carcass reinforcement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234002A (en) * 1984-04-30 1985-11-20 Yokohama Rubber Co Ltd:The Pneumatic radial-ply tire
JP2010540337A (en) * 2007-10-05 2010-12-24 ソシエテ ド テクノロジー ミシュラン Tire using a reinforcing structure including a fiber having a flat cross section
JP2016193725A (en) * 2010-10-13 2016-11-17 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Passenger car tire with radial carcass reinforcement
JP2015515412A (en) * 2012-04-06 2015-05-28 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tires with radial or cross-ply carcass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175627A1 (en) * 2019-02-27 2020-09-03 株式会社ブリヂストン Run-flat tire
JP2020138602A (en) * 2019-02-27 2020-09-03 株式会社ブリヂストン Run flat tire

Also Published As

Publication number Publication date
JP2019199106A (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2019220887A1 (en) Pneumatic tire
JP6211320B2 (en) tire
WO2019220888A1 (en) Pneumatic tire
WO2019244738A1 (en) Pneumatic tire
WO2019220889A1 (en) Pneumatic tire
JP6875209B2 (en) Run flat tire
JP6976908B2 (en) Resin coated cord and pneumatic tire
EP3643539B1 (en) Run-flat tire
WO2019239941A1 (en) Pneumatic tire
JP6831300B2 (en) Run flat tire
WO2019244773A1 (en) Pneumatic tire
WO2019230811A1 (en) Pneumatic tire
WO2019244739A1 (en) Pneumatic tire
JP6909715B2 (en) Run flat tire
WO2019244737A1 (en) Pneumatic tire
WO2019230812A1 (en) Pneumatic tire
WO2019244741A1 (en) Pneumatic tire
WO2019244740A1 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804435

Country of ref document: EP

Kind code of ref document: A1