[go: up one dir, main page]

WO2019208027A1 - Arc detecting circuit, breaker, power conditioner, solar panel, module with solar panel, and connection box - Google Patents

Arc detecting circuit, breaker, power conditioner, solar panel, module with solar panel, and connection box Download PDF

Info

Publication number
WO2019208027A1
WO2019208027A1 PCT/JP2019/011212 JP2019011212W WO2019208027A1 WO 2019208027 A1 WO2019208027 A1 WO 2019208027A1 JP 2019011212 W JP2019011212 W JP 2019011212W WO 2019208027 A1 WO2019208027 A1 WO 2019208027A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
resistor
detection circuit
path
arc detection
Prior art date
Application number
PCT/JP2019/011212
Other languages
French (fr)
Japanese (ja)
Inventor
圭太 金森
達雄 古賀
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020516107A priority Critical patent/JP7108859B2/en
Publication of WO2019208027A1 publication Critical patent/WO2019208027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification

Definitions

  • the present invention relates to an arc detection circuit for detecting an arc in a transmission line.
  • the signal flowing through the transmission line when an arc is generated includes not only an arc that is an AC component but also a DC component from the power supply device.
  • the DC component becomes an unnecessary component when detecting the arc (AC component), and the arc may not be accurately detected due to the influence of the DC component.
  • an object of the present invention is to provide an arc detection circuit or the like that can accurately detect an arc generated in a transmission line.
  • an arc detection circuit that detects an arc generated in a transmission line, and is arranged in a path branched from the transmission line.
  • the voltage signal generated in the resistor is input, and a filter unit that allows a signal having a frequency corresponding to the arc to pass therethrough, and an arc determination unit that determines the occurrence of the arc based on the signal that has passed through the filter unit.
  • one aspect of the breaker according to the present invention includes the arc detection circuit described above.
  • an aspect of the power conditioner according to the present invention includes the arc detection circuit.
  • one aspect of the solar panel according to the present invention includes the arc detection circuit described above.
  • one aspect of the solar panel attached module according to the present invention includes the arc detection circuit described above, and converts a signal output from the solar panel.
  • connection box includes the arc detection circuit described above, and connects the solar panel and the power conditioner.
  • FIG. 1 is a configuration diagram illustrating an example of a system to which an arc detection circuit according to Embodiment 1 is applied.
  • FIG. 2 is a configuration diagram illustrating another example of a system to which the arc detection circuit according to the first embodiment is applied.
  • FIG. 3 is a configuration diagram illustrating an example of a system to which an arc detection circuit according to a comparative example is applied.
  • FIG. 4 is a configuration diagram illustrating an example of a system to which the arc detection circuit according to the second embodiment is applied.
  • FIG. 5 is a diagram for explaining an application example of the arc detection circuit according to each embodiment.
  • FIG. 1 is a configuration diagram illustrating an example of a system to which the arc detection circuit 10 according to the first embodiment is applied.
  • the arc detection circuit 10 is a circuit that detects an arc generated in the power transmission line L1 from the power supply device to the power converter.
  • the arc detection circuit 10 includes a capacitor C1, a resistor R1, an arc determination unit 11, and a filter unit 12.
  • a power converter 50 is connected to the transmission line L1.
  • the power converter 50 is a part of the configuration of a power conditioner (power conditioner), for example.
  • the power converter 50 converts DC power supplied from the solar panel 31 via the transmission line L1 into AC power.
  • the power converter 50 employs, for example, an MPPT (Maximum Power Point Tracking) method, and adjusts the current and voltage of the DC power supplied from the solar panel 31 to values that maximize the power.
  • the power converter 50 converts it into AC power having a voltage of 100 V and a frequency of 50 Hz or 60 Hz.
  • the AC power is used in household electrical equipment and the like.
  • the transmission line L1 has been reported to cause damage and breakage due to external factors and aging. An arc (that is, arc discharge) may occur due to such damage to the transmission line L1.
  • the capacitor C1 is a capacitor that is arranged on the path L2 branched from the transmission line L1, and that allows an AC component signal included in the signal flowing through the transmission line L1 to flow from the transmission line L1 to the path L2. Since the capacitor C1 has a function of cutting off the direct current component, only the alternating current component can be extracted from the signal flowing through the transmission line L1 and can be passed through the path L2. The capacitance value of the capacitor C1 is appropriately determined according to the frequency of the AC component to be extracted.
  • a capacitor may be used as the capacitor C1.
  • the resistor R1 is a resistance element having a minute resistance value that is connected in series with the capacitor C1 in the path L2 and generates a voltage signal corresponding to the AC component signal.
  • the voltage signal is a signal indicating a potential difference generated in the resistor R1 when an AC component signal (current) flows through the resistor R1. Since the potential difference has a value corresponding to the current flowing through the path L2, the resistor R1 functions as a current sensor.
  • a sensor such as an integrated circuit (IC) is used as the current sensor, the arc detection circuit 10 is increased in size and cost.
  • the Hall element when a Hall element or the like is used as a current sensor, the Hall element itself is often larger than the resistance R1, and a separate magnetic core is also required, so that the arc detection circuit 10 is increased in size. Costs are also incurred. On the other hand, by using the resistor R1, it is possible to reduce the size and the cost.
  • a circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series is connected in parallel with the power converter 50.
  • one end of the path L2 is connected to the transmission path L1 through which current flows from the solar panel 31 to the power converter 50, and the other end of the path L2 is current from the power converter 50 to the solar panel 31.
  • the capacitor C1 and the resistor R1 connected in series in the path L2 are connected in parallel with the power converter 50.
  • the capacitor C1 is disposed on the transmission line L1 side
  • the resistor R1 is disposed on the transmission line L3 side.
  • the capacitor C1 may be disposed on the transmission line L3 side
  • the resistor R1 may be disposed on the transmission line L1 side.
  • the filter unit 12 has a filter that receives a voltage signal generated in the resistor R1 and passes a signal having a frequency corresponding to the arc. Since the arc is generated at a specific wideband frequency, the filter blocks signals other than the frequency used for the arc determination.
  • the filter is, for example, an RLC filter, but is not particularly limited.
  • the pass band of the filter is appropriately determined according to the frequency of the arc that can be generated and the frequency of noise other than the arc.
  • the arc determination unit 11 determines the occurrence of an arc based on the signal that has passed through the filter unit 12.
  • the arc determination unit 11 is realized by, for example, a microcomputer (microcontroller) having an AD conversion function, and acquires, for example, a voltage generated in the resistor R1 through the filter unit 12.
  • the microcomputer is a ROM, RAM, a processor (CPU: Central Processing Unit) that executes the program, a timer, an A / D converter, a D / A converter, or the like.
  • the filter unit 12 may include an amplifier circuit. Thereby, the magnitude of the voltage generated in the resistor R1 can be amplified to a magnitude corresponding to the AD conversion function of the arc determination unit 11, and the arc determination unit 11 can correctly AD-convert the voltage.
  • the arc detection circuit determines the occurrence of an arc directly from the signal flowing through the transmission line L1, it is necessary to detect the arc from the signal including a DC component unnecessary for arc detection, and the arc is accurately detected by the DC component. It may not be detected.
  • the DC component flows through the resistor R1, it is necessary to prepare a high voltage resistance as the resistor R1.
  • the capacitor C1 (arc detection circuit 10) is arranged in the path L2 branched from the transmission line L1, so that the capacitor C1 (arc detection circuit) is normally operated when no arc is generated.
  • the direct-current power can be supplied from the power supply device such as the solar panel 31 to the power converter 50 without being affected by 10).
  • produces, only the arc (alternating current component) can be extracted with the capacitor
  • a low breakdown voltage resistor that is, a small resistor
  • circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series is connected in parallel with the power converter 50, but is not limited thereto.
  • a circuit in which a capacitor C1 and a resistor R1 are connected in series may be connected as shown in FIG.
  • FIG. 2 is a configuration diagram illustrating another example of a system to which the arc detection circuit 10 according to the first embodiment is applied.
  • the circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series is connected to the ground. That is, the path L2 is not connected to the transmission path L3.
  • the ground is a ground that is electrically insulated from the ground to which the power converter 50 is connected.
  • the capacitor C1 is disposed on the transmission line L1 side
  • the resistor R1 is disposed on the ground side.
  • the capacitor C1 may be disposed on the ground side
  • the resistor R1 may be disposed on the transmission line L1 side.
  • a resistor R1 having sufficient withstand voltage characteristics with respect to a voltage applied via the transmission line L1 may be selected. This is because if the withstand voltage characteristic of the resistor R1 is low, the resistor R1 may be destroyed, and accordingly, the electronic components in the arc detection circuit 10 may be destroyed.
  • the power converter 50 generates noise when converting direct current power into alternating current power, or generates an arc component as noise when a signal indicating the occurrence of an arc is input.
  • a noise component from the power converter 50 is transmitted to the resistor R1, and a voltage corresponding to the noise component may be generated in the resistor R1.
  • the influence of the noise component may be affected when the arc determination unit 11 that determines the occurrence of an arc from the voltage generated in the resistor R1 determines the occurrence of the arc.
  • the ground to which the circuit in which the capacitor C1 and the resistor R1 are connected in series is connected is a ground that is electrically insulated from the ground to which the power converter 50 is connected.
  • the converter 50 is electrically insulated. Therefore, since the noise component is difficult to be transmitted to the resistor R1, an arc generated in the transmission line L1 can be detected more accurately.
  • the arc detection circuit 10 is an arc detection circuit that detects an arc generated in the transmission line L1.
  • the arc detection circuit 10 is disposed in a path L2 branched from the transmission line L1, and includes a capacitor C1 that flows an AC component signal included in a signal flowing through the transmission line L1 from the transmission line L1 to the path L2, and a capacitor C1 in the path L2. And a resistor R1 for generating a voltage signal corresponding to the AC component signal.
  • the arc detection circuit 10 receives the voltage signal generated in the resistor R1, and determines the occurrence of an arc based on the filter unit 12 that passes a signal having a frequency corresponding to the arc and the signal that has passed through the filter unit 12. And an arc determination unit 11 for performing.
  • DC power can be supplied from the transmission line L1 without being affected by the capacitor C1 at normal times when no arc is generated.
  • the resistor R1 that is smaller than an IC or the like is used as a current sensor for arc detection, the arc detection circuit 10 can be reduced in size. Further, since a direct current component does not easily flow through the resistor R1 connected in series with the capacitor C1, a low breakdown voltage resistor can be used as the resistor R1, and the arc detection circuit 10 can be further downsized.
  • the transmission line L1 is connected to a power converter that converts DC power to AC power.
  • a circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series is the ground to which the power converter is connected. It may be connected to an electrically isolated ground.
  • the ground to which the circuit in which the capacitor C1 and the resistor R1 are connected in series is connected is a ground electrically insulated from the ground to which the power converter 50 is connected, the resistor R1 and the power The converter 50 is electrically insulated. Therefore, since the noise component generated in the power converter 50 is difficult to be transmitted to the resistor R1, the arc generated in the transmission line L1 can be detected more accurately.
  • the transmission line L1 is connected to a power converter that converts DC power into AC power, and the circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series may be connected in parallel with the power converter. Good.
  • the resistor R1 does not need to be electrically insulated from the power converter 50, and the design effort for electrical insulation can be saved.
  • FIG. 3 is a configuration diagram illustrating an example of a system to which the arc detection circuit 100 according to the comparative example is applied.
  • the current sensor 13 is arranged instead of the resistor R1.
  • the current sensor 13 is a current sensor that is connected in series with the capacitor C1 in the path L2 and generates a voltage signal corresponding to the AC component signal.
  • the current sensor 13 is, for example, a sensor using a Hall element and a magnetic core. For example, by arranging the magnetic core so that the path L2 penetrates the magnetic core, a magnetic field corresponding to the current flowing through the path L2 is generated in the magnetic core. When the Hall element is placed in the magnetic field, a voltage corresponding to the magnetic field (that is, a current flowing through the path L2) is generated.
  • the current can be accurately detected by using the current sensor 13 such as a Hall element.
  • the ground to which the circuit in which the capacitor C1 and the current sensor 13 are connected in series is connected is a ground that is electrically insulated from the ground to which the power converter 50 is connected. Thereby, the current sensor 13 and the power converter 50 are electrically insulated. Therefore, since the noise component generated in the power converter 50 becomes difficult to be transmitted to the current sensor 13, the arc generated in the transmission line L1 can be detected more accurately.
  • FIG. 4 is a configuration diagram illustrating an example of a system to which the arc detection circuit 10a according to the second embodiment is applied.
  • the arc detection circuit 10a is further different from the arc detection circuit 10 according to the first embodiment in that a diode D1 is provided. Since other points are the same as those in the first embodiment, description thereof is omitted.
  • the arc detection circuit 10a includes a diode D1 connected in series with the capacitor C1 and the resistor R1 in the path L2.
  • the circuit in which the capacitor C1, the resistor R1, and the diode D1 are connected in series is connected to the power converter 50 in parallel. That is, the system configuration in the second embodiment is a configuration in which the diode D1 is further added to the system described in FIG.
  • these are arranged in the order of the capacitor C1, the resistor R1, and the diode D1 from the transmission line L1 side to the transmission line L3 side. That is, the anode of the diode D1 is connected to the transmission line L1 side, and the cathode is connected to the transmission line L3 side. Specifically, the anode of the diode D1 is connected to the resistor R1, and the cathode is connected to the transmission line L3.
  • the order in which the capacitor C1, the resistor R1, and the diode D1 are arranged is not limited to the order shown in FIG. 4 and may be arranged in any order.
  • the capacitor C1, the resistor R1, and the diode D1 are preferably arranged as shown in FIG.
  • the power converter 50 generates noise when converting direct current power into alternating current power, or generates an arc component as noise when a signal in which an arc is generated is input.
  • the resistor R1 and the power converter 50 are electrically insulated by dropping the path L2 to the ground electrically insulated from the ground to which the power converter 50 is connected.
  • the resistor R1 is not affected by the noise component.
  • the second embodiment by providing the diode D1, it is difficult for the noise component of the power converter 50 to enter the path L2 by the diode D1, and the resistor R1 can be prevented from being affected by the noise component. Therefore, it is possible to detect the arc generated in the transmission line L1 more accurately.
  • the circuit in which the capacitor C1, the resistor R1, and the diode D1 are connected in series may be connected to a ground that is electrically insulated from the ground to which the power converter 50 is connected. That is, the system configuration in the second embodiment may be a configuration in which the diode D1 is further added to the system described in FIG. In this case, a noise component from the ground is less likely to enter the path L2 by the diode D1, and the resistor R1 can be prevented from being affected by the noise component.
  • FIG. 5 is a diagram for explaining an application example of the arc detection circuits 10 and 10a according to each embodiment.
  • the arc detection circuits 10 and 10 a exchange DC power supplied from the solar panel 31 via the transmission line L ⁇ b> 1 with the power conditioner (power conditioner) 51 configured by the power converter 50.
  • the power conditioner power conditioner
  • three solar panels 31 connected in series by one string 60 are arranged to form the solar cell array 30.
  • the strings 60 are collected by the connection box 40 and connected to the power conditioner 51.
  • a breaker 41 is provided for each string 60, and here, the breaker 41 is provided in the connection box 40.
  • the breaker 41 may not be provided in the connection box 40.
  • the breaker 41 may be provided between the connection box 40 and the solar cell array 30, or may be provided between the connection box 40 and the power conditioner 51 without being provided for each string 60.
  • the solar panel 31 includes, for example, a solar panel attached module 32 that converts a signal output from the solar panel 31. Note that the solar panel 31 may not have the solar panel accessory module 32.
  • the solar panel attachment module 32 is, for example, a DC / DC converter that optimizes the power generation amount for each solar panel 31.
  • the breaker 41 may include the arc detection circuits 10 and 10a.
  • the transmission line L1 becomes a transmission line (for example, the string 60) connected to the breaker 41, and the current flowing through the string 60 where the arc is generated can be cut off.
  • the breaker 41 interrupts the current flowing through the string 60 in which the arc has occurred.
  • the string 60 in which no arc is generated can be used without interrupting the current.
  • the power conditioner 51 may include the arc detection circuits 10 and 10a.
  • a circuit in which the capacitor C1 and the resistor R1 in the path L2 in the power converter 51 are connected in series is connected to a ground electrically isolated from the ground to which the power converter 50 is connected, or an arc detection circuit. 10 and the power converter 50 are connected in parallel, or the circuit connected in series is connected in parallel with the power converter 50.
  • the transmission line L1 is a transmission line connected to the power conditioner 51, and can stop the power conditioner 51 in response to the occurrence of an arc. For example, when the arc determination unit 11 determines that an arc has occurred, the power conditioner 51 stops.
  • the solar panel 31 or the solar panel attached module 32 may include the arc detection circuits 10 and 10a.
  • the transmission line L1 becomes a transmission line (for example, the string 60) connected to the solar panel 31, and the output to the string 60 where the arc is generated can be stopped.
  • the solar panel 31 or the solar panel attachment module 32 stops output to the string 60 in which the arc has occurred.
  • the string 60 in which no arc is generated can be used without stopping the output.
  • the junction box 40 may include the arc detection circuits 10 and 10a.
  • the transmission line L1 becomes a transmission line (for example, the string 60) connected to the connection box 40, and the current flowing through the string 60 where the arc is generated can be interrupted via, for example, the breaker 41 or the like.
  • the junction box 40 interrupts the current flowing through the string 60 in which the arc has occurred.
  • the string 60 in which no arc is generated can be used without interrupting the current.
  • the arc detection circuits 10 and 10a are not limited to the above system, and can be applied to any system that needs to detect the occurrence of an arc.
  • the breaker 41, the power conditioner 51, the solar panel 31, the solar panel attachment module 32, or the connection box 40 may include the arc detection circuit 100 according to the comparative example.
  • the breaker 41 may include the arc detection circuits 10 and 10a.
  • the power conditioner 51 may include arc detection circuits 10 and 10a.
  • the solar panel 31 may include the arc detection circuits 10 and 10a.
  • the solar panel attachment module 32 may include the arc detection circuits 10 and 10a, and may convert a signal output from the solar panel.
  • the connection box 40 may include the arc detection circuits 10 and 10 a and connect the solar panel 31 and the power conditioner 51.
  • the arc detection circuits 10 and 10a are realized as software by a microcomputer, they may be realized as software in a general-purpose computer such as a personal computer. Furthermore, the arc detection circuit 10 may be realized in hardware by a dedicated electronic circuit including an A / D converter, a logic circuit, a gate array, a D / A converter, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

An arc detecting circuit (10) for detecting an arc generated in a transmission path (L1) is provided with: a capacitor (C1) which is disposed in a pathway (L2) that branches from the transmission path (L1) and which causes an alternating current component signal contained in a signal flowing through the transmission path (L1) to flow from the transmission path (L1) to the pathway (L2); a resistor (R1) which is connected in series with the capacitor (C1) in the pathway (L2), and which generates a voltage signal corresponding to the alternating current component signal; a filter unit (12) into which the voltage signal generated by the resistor (R1) is input, and which allows a signal having a frequency corresponding to an arc to pass; and an arc determining unit (11) which determines the generation of an arc on the basis of the signal that has passed through the filter unit (12).

Description

アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱Arc detection circuit, breaker, power conditioner, solar panel, solar panel module and junction box
 本発明は、伝送路におけるアークを検出するアーク検出回路等に関する。 The present invention relates to an arc detection circuit for detecting an arc in a transmission line.
 従来、PV(Photo Voltaic)パネル(太陽光パネル)などの電力供給装置から伝送路を介して供給される直流電力をパワーコンディショナ(パワコン)で交流電力に変換するシステムが知られている。PVパネルとパワコンを接続する伝送路は、外的要因や経年劣化等によって損傷、破断を引き起こすことが報告されている。このような伝送路の損傷等に起因してアーク(つまりアーク放電)が発生する場合がある。そこで、アークを検出するためのアーク検出手段が提案されている(例えば、特許文献1)。特許文献1に開示されたアーク検出手段においては、伝送路に印加される電圧および電流に基づいてアークを検出しようとしている。 2. Description of the Related Art Conventionally, a system that converts DC power supplied via a transmission line from a power supply device such as a PV (Photo Voltaic) panel (solar panel) into AC power using a power conditioner (power conditioner) is known. It has been reported that a transmission line connecting a PV panel and a power conditioner causes damage and breakage due to external factors and aging deterioration. An arc (that is, arc discharge) may occur due to such damage to the transmission path. Therefore, arc detection means for detecting an arc has been proposed (for example, Patent Document 1). The arc detection means disclosed in Patent Document 1 tries to detect an arc based on the voltage and current applied to the transmission line.
特開2011-7765号公報JP 2011-7765 A
 ところで、アークが発生したときに伝送路を流れる信号には、交流成分であるアークだけでなく、電力供給装置からの直流成分も含まれている。当該直流成分は、アーク(交流成分)の検出の際には不要な成分となり、当該直流成分の影響を受けてアークを正確に検出できないことがある。 By the way, the signal flowing through the transmission line when an arc is generated includes not only an arc that is an AC component but also a DC component from the power supply device. The DC component becomes an unnecessary component when detecting the arc (AC component), and the arc may not be accurately detected due to the influence of the DC component.
 そこで、本発明は、伝送路において発生するアークを正確に検出できるアーク検出回路等を提供することを目的とする。 Therefore, an object of the present invention is to provide an arc detection circuit or the like that can accurately detect an arc generated in a transmission line.
 上記目的を達成するために、本発明に係るアーク検出回路の一態様は、伝送路において発生するアークを検出するアーク検出回路であって、前記伝送路から分岐した経路に配置され、前記伝送路を流れる信号に含まれる交流成分の信号を前記伝送路から前記経路へ流すコンデンサと、前記経路において、前記コンデンサと直列接続され、前記交流成分の信号に対応した電圧信号を発生する抵抗と、前記抵抗に発生した前記電圧信号が入力され、アークに対応した周波数の信号を通過させるフィルタ部と、前記フィルタ部を通過した信号に基づいて、アークの発生を判定するアーク判定部と、を備える。 In order to achieve the above object, one aspect of an arc detection circuit according to the present invention is an arc detection circuit that detects an arc generated in a transmission line, and is arranged in a path branched from the transmission line. A capacitor for flowing an AC component signal included in a signal flowing through the transmission path from the transmission path, a resistor connected in series with the capacitor in the path, and generating a voltage signal corresponding to the AC component signal; The voltage signal generated in the resistor is input, and a filter unit that allows a signal having a frequency corresponding to the arc to pass therethrough, and an arc determination unit that determines the occurrence of the arc based on the signal that has passed through the filter unit.
 また、上記目的を達成するために、本発明に係るブレーカの一態様は、上記のアーク検出回路を備える。 In order to achieve the above object, one aspect of the breaker according to the present invention includes the arc detection circuit described above.
 また、上記目的を達成するために、本発明に係るパワーコンディショナの一態様は、上記のアーク検出回路を備える。 In order to achieve the above object, an aspect of the power conditioner according to the present invention includes the arc detection circuit.
 また、上記目的を達成するために、本発明に係る太陽光パネルの一態様は、上記のアーク検出回路を備える。 In order to achieve the above object, one aspect of the solar panel according to the present invention includes the arc detection circuit described above.
 また、上記目的を達成するために、本発明に係る太陽光パネル付属モジュールの一態様は、上記のアーク検出回路を備え、太陽光パネルから出力される信号の変換を行う。 Further, in order to achieve the above object, one aspect of the solar panel attached module according to the present invention includes the arc detection circuit described above, and converts a signal output from the solar panel.
 また、上記目的を達成するために、本発明に係る接続箱の一態様は、上記のアーク検出回路を備え、太陽光パネルとパワーコンディショナとを接続する。 Further, in order to achieve the above object, one aspect of the connection box according to the present invention includes the arc detection circuit described above, and connects the solar panel and the power conditioner.
 本発明の一態様によれば、伝送路において発生するアークを正確に検出できる。 According to one aspect of the present invention, it is possible to accurately detect an arc generated in a transmission line.
図1は、実施の形態1に係るアーク検出回路が適用されたシステムの一例を示す構成図である。FIG. 1 is a configuration diagram illustrating an example of a system to which an arc detection circuit according to Embodiment 1 is applied. 図2は、実施の形態1に係るアーク検出回路が適用されたシステムの他の一例を示す構成図である。FIG. 2 is a configuration diagram illustrating another example of a system to which the arc detection circuit according to the first embodiment is applied. 図3は、比較例に係るアーク検出回路が適用されたシステムの一例を示す構成図である。FIG. 3 is a configuration diagram illustrating an example of a system to which an arc detection circuit according to a comparative example is applied. 図4は、実施の形態2に係るアーク検出回路が適用されたシステムの一例を示す構成図である。FIG. 4 is a configuration diagram illustrating an example of a system to which the arc detection circuit according to the second embodiment is applied. 図5は、各実施の形態に係るアーク検出回路の適用例を説明するための図である。FIG. 5 is a diagram for explaining an application example of the arc detection circuit according to each embodiment.
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement positions of components, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 (実施の形態1)
 実施の形態1に係るアーク検出回路について、図面を用いて説明する。
(Embodiment 1)
The arc detection circuit according to the first embodiment will be described with reference to the drawings.
 図1は、実施の形態1に係るアーク検出回路10が適用されたシステムの一例を示す構成図である。 FIG. 1 is a configuration diagram illustrating an example of a system to which the arc detection circuit 10 according to the first embodiment is applied.
 アーク検出回路10は、電力供給装置から電力変換器への電力の伝送路L1において発生するアークを検出する回路である。アーク検出回路10は、コンデンサC1、抵抗R1、アーク判定部11およびフィルタ部12を備える。 The arc detection circuit 10 is a circuit that detects an arc generated in the power transmission line L1 from the power supply device to the power converter. The arc detection circuit 10 includes a capacitor C1, a resistor R1, an arc determination unit 11, and a filter unit 12.
 図1に示されるように、伝送路L1には、電力変換器50が接続される。本実施の形態では、電力変換器50は、例えば、パワーコンディショナ(パワコン)が有する構成の一部である。電力変換器50は、太陽光パネル31から伝送路L1を介して供給される直流電力を交流電力に変換する。電力変換器50は、例えばMPPT(Maximum Power Point Tracking)方式を採用しており、太陽光パネル31から供給される直流電力の電流および電圧を、それぞれ電力が最大となる値に調整する。例えば、電力変換器50は電圧100V、周波数50Hzまたは60Hzの交流電力に変換する。当該交流電力は、家庭用電気機器等で使用される。 As shown in FIG. 1, a power converter 50 is connected to the transmission line L1. In the present embodiment, the power converter 50 is a part of the configuration of a power conditioner (power conditioner), for example. The power converter 50 converts DC power supplied from the solar panel 31 via the transmission line L1 into AC power. The power converter 50 employs, for example, an MPPT (Maximum Power Point Tracking) method, and adjusts the current and voltage of the DC power supplied from the solar panel 31 to values that maximize the power. For example, the power converter 50 converts it into AC power having a voltage of 100 V and a frequency of 50 Hz or 60 Hz. The AC power is used in household electrical equipment and the like.
 伝送路L1は、外的要因や経年劣化等によって損傷、破断を引き起こすことが報告されている。このような伝送路L1の損傷等に起因してアーク(つまりアーク放電)が発生する場合がある。 The transmission line L1 has been reported to cause damage and breakage due to external factors and aging. An arc (that is, arc discharge) may occur due to such damage to the transmission line L1.
 コンデンサC1は、伝送路L1から分岐した経路L2に配置され、伝送路L1を流れる信号に含まれる交流成分の信号を伝送路L1から経路L2へ流すコンデンサである。コンデンサC1は、直流成分を遮断する機能を有するため、伝送路L1を流れる信号から交流成分のみを抽出して、経路L2に流すことができる。コンデンサC1のキャパシタンス値は、抽出したい交流成分の周波数等に応じて適宜決定される。なお、電力変換器50に設けられているコンデンサが、電力変換器50が有する交流電力への変換回路(インバータ等)の前段において伝送路L1から分岐した経路に配置されている場合には、当該コンデンサを、コンデンサC1として流用してもよい。 The capacitor C1 is a capacitor that is arranged on the path L2 branched from the transmission line L1, and that allows an AC component signal included in the signal flowing through the transmission line L1 to flow from the transmission line L1 to the path L2. Since the capacitor C1 has a function of cutting off the direct current component, only the alternating current component can be extracted from the signal flowing through the transmission line L1 and can be passed through the path L2. The capacitance value of the capacitor C1 is appropriately determined according to the frequency of the AC component to be extracted. In addition, when the capacitor provided in the power converter 50 is arranged in a path branched from the transmission line L1 in the previous stage of the conversion circuit (inverter or the like) to the AC power included in the power converter 50, A capacitor may be used as the capacitor C1.
 抵抗R1は、経路L2において、コンデンサC1と直列接続され、交流成分の信号に対応した電圧信号を発生する、微小な抵抗値を有する抵抗素子である。当該電圧信号は、交流成分の信号(電流)が抵抗R1を流れることで、抵抗R1に生じる電位差を示す信号である。当該電位差は、経路L2を流れる電流に相当する値となるため、抵抗R1は、電流センサとして機能する。電流センサとして、IC(Intergrated Circuit)等のセンサを用いた場合、アーク検出回路10は、大型化してしまい、コストもかかる。例えば、電流センサとして、ホール素子等を用いた場合、ホール素子自体が抵抗R1よりも大きい場合が多く、また、別途磁気コア等も必要となるため、アーク検出回路10は、大型化してしまい、コストもかかる。これに対して、抵抗R1を用いることで、小型化、低コスト化を実現できる。 The resistor R1 is a resistance element having a minute resistance value that is connected in series with the capacitor C1 in the path L2 and generates a voltage signal corresponding to the AC component signal. The voltage signal is a signal indicating a potential difference generated in the resistor R1 when an AC component signal (current) flows through the resistor R1. Since the potential difference has a value corresponding to the current flowing through the path L2, the resistor R1 functions as a current sensor. When a sensor such as an integrated circuit (IC) is used as the current sensor, the arc detection circuit 10 is increased in size and cost. For example, when a Hall element or the like is used as a current sensor, the Hall element itself is often larger than the resistance R1, and a separate magnetic core is also required, so that the arc detection circuit 10 is increased in size. Costs are also incurred. On the other hand, by using the resistor R1, it is possible to reduce the size and the cost.
 例えば、経路L2におけるコンデンサC1と抵抗R1とが直列接続された回路は、電力変換器50と並列に接続される。具体的には、経路L2の一端が、太陽光パネル31から電力変換器50へ電流が流れ込む伝送路L1に接続され、経路L2の他端が、電力変換器50から太陽光パネル31へ電流が戻る伝送路L3に接続されることで、経路L2において直列接続されたコンデンサC1と抵抗R1とは、電力変換器50と並列に接続される。例えば、伝送路L1側にコンデンサC1が配置され、伝送路L3側に抵抗R1が配置される。なお、伝送路L3側にコンデンサC1が配置され、伝送路L1側に抵抗R1が配置されてもよい。 For example, a circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series is connected in parallel with the power converter 50. Specifically, one end of the path L2 is connected to the transmission path L1 through which current flows from the solar panel 31 to the power converter 50, and the other end of the path L2 is current from the power converter 50 to the solar panel 31. By connecting to the returning transmission line L3, the capacitor C1 and the resistor R1 connected in series in the path L2 are connected in parallel with the power converter 50. For example, the capacitor C1 is disposed on the transmission line L1 side, and the resistor R1 is disposed on the transmission line L3 side. The capacitor C1 may be disposed on the transmission line L3 side, and the resistor R1 may be disposed on the transmission line L1 side.
 フィルタ部12は、抵抗R1に発生した電圧信号が入力され、アークに対応した周波数の信号を通過させるフィルタを有する。アークは、特定の広帯域周波数で発生するため、当該フィルタは、アーク判定に用いる周波数以外の信号を遮断する。当該フィルタは、例えば、RLCフィルタ等であるが、特に限定されない。当該フィルタの通過帯域は、発生し得るアークの周波数およびアーク以外のノイズの周波数等に応じて適宜決定される。 The filter unit 12 has a filter that receives a voltage signal generated in the resistor R1 and passes a signal having a frequency corresponding to the arc. Since the arc is generated at a specific wideband frequency, the filter blocks signals other than the frequency used for the arc determination. The filter is, for example, an RLC filter, but is not particularly limited. The pass band of the filter is appropriately determined according to the frequency of the arc that can be generated and the frequency of noise other than the arc.
 アーク判定部11は、フィルタ部12を通過した信号に基づいて、アークの発生を判定する。アーク判定部11は、例えばAD変換機能を有するマイコン(マイクロコントローラ)により実現され、例えば抵抗R1において生じた電圧を、フィルタ部12を介して取得する。マイコンは、プログラムが格納されたROM、RAM、プログラムを実行するプロセッサ(CPU:Central Processing Unit)、タイマ、A/D変換器、D/A変換器等を有する半導体集積回路等である。なお、フィルタ部12は、増幅回路を有していてもよい。これにより、抵抗R1において生じた電圧の大きさをアーク判定部11のAD変換機能に対応した大きさに増幅することができ、アーク判定部11が正しく当該電圧をAD変換できる。 The arc determination unit 11 determines the occurrence of an arc based on the signal that has passed through the filter unit 12. The arc determination unit 11 is realized by, for example, a microcomputer (microcontroller) having an AD conversion function, and acquires, for example, a voltage generated in the resistor R1 through the filter unit 12. The microcomputer is a ROM, RAM, a processor (CPU: Central Processing Unit) that executes the program, a timer, an A / D converter, a D / A converter, or the like. Note that the filter unit 12 may include an amplifier circuit. Thereby, the magnitude of the voltage generated in the resistor R1 can be amplified to a magnitude corresponding to the AD conversion function of the arc determination unit 11, and the arc determination unit 11 can correctly AD-convert the voltage.
 例えば、アーク検出回路が伝送路L1を流れる信号から直接アークの発生を判定する場合、アーク検出にとって不要な直流成分を含む当該信号からアークを検出する必要があり、当該直流成分によってアークを正確に検出できないことがある。また、当該直流成分が抵抗R1に流れるため、抵抗R1として、高耐圧の抵抗を用意する必要がある。 For example, when the arc detection circuit determines the occurrence of an arc directly from the signal flowing through the transmission line L1, it is necessary to detect the arc from the signal including a DC component unnecessary for arc detection, and the arc is accurately detected by the DC component. It may not be detected. In addition, since the DC component flows through the resistor R1, it is necessary to prepare a high voltage resistance as the resistor R1.
 これに対して、本実施の形態では、伝送路L1から分岐した経路L2にコンデンサC1(アーク検出回路10)が配置されることで、アークが発生していない通常時には、コンデンサC1(アーク検出回路10)の影響を受けることなく、太陽光パネル31等の電力供給装置から電力変換器50へ直流電力を供給することができる。そして、アークが発生したときには、コンデンサC1によって、アーク(交流成分)のみを抽出して、経路L2に流すことができる。つまり、伝送路L1にアークが発生した際には、当該直流成分の影響を受けずにアークの発生を検出できるため、アークを正確に検出できる。また、直流成分は抵抗R1に流れないため、抵抗R1として低耐圧の抵抗(つまり小型な抵抗)を用いることができ、アーク検出回路10を小型化できる。 On the other hand, in the present embodiment, the capacitor C1 (arc detection circuit 10) is arranged in the path L2 branched from the transmission line L1, so that the capacitor C1 (arc detection circuit) is normally operated when no arc is generated. The direct-current power can be supplied from the power supply device such as the solar panel 31 to the power converter 50 without being affected by 10). And when an arc generate | occur | produces, only the arc (alternating current component) can be extracted with the capacitor | condenser C1, and it can flow through the path | route L2. That is, when an arc is generated in the transmission line L1, the generation of the arc can be detected without being affected by the direct current component, so that the arc can be detected accurately. Further, since the direct current component does not flow to the resistor R1, a low breakdown voltage resistor (that is, a small resistor) can be used as the resistor R1, and the arc detection circuit 10 can be downsized.
 なお、経路L2におけるコンデンサC1と抵抗R1とが直列接続された回路は、電力変換器50と並列に接続されたが、これに限らない。例えば、コンデンサC1と抵抗R1とが直列接続された回路は、図2のように接続されてもよい。 Note that the circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series is connected in parallel with the power converter 50, but is not limited thereto. For example, a circuit in which a capacitor C1 and a resistor R1 are connected in series may be connected as shown in FIG.
 図2は、実施の形態1に係るアーク検出回路10が適用されたシステムの他の一例を示す構成図である。 FIG. 2 is a configuration diagram illustrating another example of a system to which the arc detection circuit 10 according to the first embodiment is applied.
 図2に示されるように、経路L2におけるコンデンサC1と抵抗R1とが直列接続された回路はグランドに接続される。つまり、経路L2は、伝送路L3に接続されない。当該グランドは、電力変換器50が接続されたグランドとは電気的に絶縁されたグランドである。例えば、伝送路L1側にコンデンサC1が配置され、グランド側に抵抗R1が配置される。なお、グランド側にコンデンサC1が配置され、伝送路L1側に抵抗R1が配置されてもよい。なお、伝送路L1側に抵抗R1が配置される場合、抵抗R1として、伝送路L1を介して印加される電圧に対して十分な耐圧特性を有するものを選択してもよい。抵抗R1の耐圧特性が低いと抵抗R1が破壊されるおそれがあり、それに伴い、アーク検出回路10における電子部品も破壊されるおそれがあるためである。 As shown in FIG. 2, the circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series is connected to the ground. That is, the path L2 is not connected to the transmission path L3. The ground is a ground that is electrically insulated from the ground to which the power converter 50 is connected. For example, the capacitor C1 is disposed on the transmission line L1 side, and the resistor R1 is disposed on the ground side. Note that the capacitor C1 may be disposed on the ground side, and the resistor R1 may be disposed on the transmission line L1 side. When the resistor R1 is disposed on the transmission line L1 side, a resistor R1 having sufficient withstand voltage characteristics with respect to a voltage applied via the transmission line L1 may be selected. This is because if the withstand voltage characteristic of the resistor R1 is low, the resistor R1 may be destroyed, and accordingly, the electronic components in the arc detection circuit 10 may be destroyed.
 電力変換器50は、直流電力を交流電力に変換する際のノイズを発生したり、アークが発生している信号が入力された場合、当該アーク成分をノイズとして発生したりする。図1に示されるシステムでは、経路L2は伝送路L3に接続されていたため、電力変換器50からのノイズ成分が抵抗R1に伝わって、抵抗R1にノイズ成分に応じた電圧も生じてしまう可能性があった。つまり、抵抗R1に生じる電圧からアークの発生を判定するアーク判定部11のアークの発生の判定の際に、当該ノイズ成分の影響を受けてしまう可能性があった。 The power converter 50 generates noise when converting direct current power into alternating current power, or generates an arc component as noise when a signal indicating the occurrence of an arc is input. In the system shown in FIG. 1, since the path L2 is connected to the transmission line L3, a noise component from the power converter 50 is transmitted to the resistor R1, and a voltage corresponding to the noise component may be generated in the resistor R1. was there. That is, there is a possibility that the influence of the noise component may be affected when the arc determination unit 11 that determines the occurrence of an arc from the voltage generated in the resistor R1 determines the occurrence of the arc.
 これに対して、コンデンサC1と抵抗R1とが直列接続された回路が接続されるグランドは、電力変換器50が接続されたグランドとは電気的に絶縁されたグランドであるため、抵抗R1と電力変換器50とは電気的に絶縁されることになる。したがって、上記ノイズ成分が抵抗R1に伝わりにくくなるため、伝送路L1において発生するアークをより正確に検出できる。 In contrast, the ground to which the circuit in which the capacitor C1 and the resistor R1 are connected in series is connected is a ground that is electrically insulated from the ground to which the power converter 50 is connected. The converter 50 is electrically insulated. Therefore, since the noise component is difficult to be transmitted to the resistor R1, an arc generated in the transmission line L1 can be detected more accurately.
 以上説明したように、本実施の形態に係るアーク検出回路10は、伝送路L1において発生するアークを検出するアーク検出回路である。アーク検出回路10は、伝送路L1から分岐した経路L2に配置され、伝送路L1を流れる信号に含まれる交流成分の信号を伝送路L1から経路L2へ流すコンデンサC1と、経路L2において、コンデンサC1と直列接続され、交流成分の信号に対応した電圧信号を発生する抵抗R1と、を備える。また、アーク検出回路10は、抵抗R1に発生した電圧信号が入力され、アークに対応した周波数の信号を通過させるフィルタ部12と、フィルタ部12を通過した信号に基づいて、アークの発生を判定するアーク判定部11と、を備える。 As described above, the arc detection circuit 10 according to the present embodiment is an arc detection circuit that detects an arc generated in the transmission line L1. The arc detection circuit 10 is disposed in a path L2 branched from the transmission line L1, and includes a capacitor C1 that flows an AC component signal included in a signal flowing through the transmission line L1 from the transmission line L1 to the path L2, and a capacitor C1 in the path L2. And a resistor R1 for generating a voltage signal corresponding to the AC component signal. The arc detection circuit 10 receives the voltage signal generated in the resistor R1, and determines the occurrence of an arc based on the filter unit 12 that passes a signal having a frequency corresponding to the arc and the signal that has passed through the filter unit 12. And an arc determination unit 11 for performing.
 これによれば、アークが発生していない通常時には、コンデンサC1の影響を受けることなく、伝送路L1から直流電力を供給することができる。そして、アークが発生したときには、コンデンサC1によって、伝送路L1からアーク(交流成分)のみを抽出して、経路L2に流すことができる。つまり、アーク判定部11は、当該直流成分の影響を受けずにアークの発生を検出でき、伝送路L1において発生するアークを正確に検出できる。また、アークの検出の際の電流センサとして、IC等と比べて小型な抵抗R1を用いるため、アーク検出回路10を小型化できる。また、コンデンサC1と直列接続された抵抗R1には、直流成分が流れにくいため、抵抗R1として、低耐圧の抵抗を用いることができ、アーク検出回路10をさらに小型化できる。 According to this, DC power can be supplied from the transmission line L1 without being affected by the capacitor C1 at normal times when no arc is generated. And when an arc generate | occur | produces, only the arc (alternating current component) can be extracted from the transmission line L1 with the capacitor | condenser C1, and it can flow to the path | route L2. That is, the arc determination unit 11 can detect the occurrence of an arc without being affected by the DC component, and can accurately detect the arc generated in the transmission line L1. In addition, since the resistor R1 that is smaller than an IC or the like is used as a current sensor for arc detection, the arc detection circuit 10 can be reduced in size. Further, since a direct current component does not easily flow through the resistor R1 connected in series with the capacitor C1, a low breakdown voltage resistor can be used as the resistor R1, and the arc detection circuit 10 can be further downsized.
 また、伝送路L1には、直流電力を交流電力に変換する電力変換器が接続され、経路L2におけるコンデンサC1と抵抗R1とが直列接続された回路は、電力変換器が接続されたグランドとは電気的に絶縁されたグランドに接続されてもよい。 The transmission line L1 is connected to a power converter that converts DC power to AC power. A circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series is the ground to which the power converter is connected. It may be connected to an electrically isolated ground.
 これによれば、コンデンサC1と抵抗R1とが直列接続された回路が接続されるグランドは、電力変換器50が接続されたグランドとは電気的に絶縁されたグランドであるため、抵抗R1と電力変換器50とは電気的に絶縁されることになる。したがって、電力変換器50において発生するノイズ成分が抵抗R1に伝わりにくくなるため、伝送路L1において発生するアークをより正確に検出できる。 According to this, since the ground to which the circuit in which the capacitor C1 and the resistor R1 are connected in series is connected is a ground electrically insulated from the ground to which the power converter 50 is connected, the resistor R1 and the power The converter 50 is electrically insulated. Therefore, since the noise component generated in the power converter 50 is difficult to be transmitted to the resistor R1, the arc generated in the transmission line L1 can be detected more accurately.
 また、伝送路L1には、直流電力を交流電力に変換する電力変換器が接続され、経路L2におけるコンデンサC1と抵抗R1とが直列接続された回路は、電力変換器と並列に接続されてもよい。 The transmission line L1 is connected to a power converter that converts DC power into AC power, and the circuit in which the capacitor C1 and the resistor R1 in the path L2 are connected in series may be connected in parallel with the power converter. Good.
 このように、抵抗R1が電力変換器50と電気的に絶縁されていなくてもよく、電気的に絶縁するための設計上の手間を省くことができる。 Thus, the resistor R1 does not need to be electrically insulated from the power converter 50, and the design effort for electrical insulation can be saved.
 なお、抵抗R1の代わりに他の電流センサが配置されてもよい。 Note that another current sensor may be arranged instead of the resistor R1.
 図3は、比較例に係るアーク検出回路100が適用されたシステムの一例を示す構成図である。 FIG. 3 is a configuration diagram illustrating an example of a system to which the arc detection circuit 100 according to the comparative example is applied.
 図3に示される比較例では、抵抗R1の代わりに電流センサ13が配置される。電流センサ13は、経路L2において、コンデンサC1と直列接続され、交流成分の信号に対応した電圧信号を発生する電流センサである。電流センサ13は、例えば、ホール素子および磁気コアを用いたセンサである。例えば、経路L2が磁気コアを貫通するように磁気コアを配置することで、磁気コアに経路L2を流れる電流に応じた磁界が発生する。そして、ホール素子が、当該磁界中に置かれることで、当該磁界(つまり経路L2を流れる電流)に応じた電圧を発生する。このとき、磁気コアを貫通する経路L2には、コンデンサC1によって直流成分が流れにくいため、当該直流成分によって磁気コアに磁気飽和が生じにくく、電流センサ13のダイナミックレンジを広げることができる。このように、例えば、ホール素子等の電流センサ13が用いられることで、精度良く電流を検出することができる。 In the comparative example shown in FIG. 3, the current sensor 13 is arranged instead of the resistor R1. The current sensor 13 is a current sensor that is connected in series with the capacitor C1 in the path L2 and generates a voltage signal corresponding to the AC component signal. The current sensor 13 is, for example, a sensor using a Hall element and a magnetic core. For example, by arranging the magnetic core so that the path L2 penetrates the magnetic core, a magnetic field corresponding to the current flowing through the path L2 is generated in the magnetic core. When the Hall element is placed in the magnetic field, a voltage corresponding to the magnetic field (that is, a current flowing through the path L2) is generated. At this time, since the DC component is less likely to flow through the path L2 passing through the magnetic core due to the capacitor C1, magnetic saturation is unlikely to occur in the magnetic core due to the DC component, and the dynamic range of the current sensor 13 can be expanded. Thus, for example, the current can be accurately detected by using the current sensor 13 such as a Hall element.
 また、コンデンサC1と電流センサ13とが直列接続された回路が接続されるグランドは、電力変換器50が接続されたグランドとは電気的に絶縁されたグランドである。これにより、電流センサ13と電力変換器50とは電気的に絶縁されることになる。したがって、電力変換器50において発生するノイズ成分が電流センサ13に伝わりにくくなるため、伝送路L1において発生するアークをより正確に検出できる。 The ground to which the circuit in which the capacitor C1 and the current sensor 13 are connected in series is connected is a ground that is electrically insulated from the ground to which the power converter 50 is connected. Thereby, the current sensor 13 and the power converter 50 are electrically insulated. Therefore, since the noise component generated in the power converter 50 becomes difficult to be transmitted to the current sensor 13, the arc generated in the transmission line L1 can be detected more accurately.
 (実施の形態2)
 次に、実施の形態2に係るアーク検出回路について、図4を用いて説明する。
(Embodiment 2)
Next, an arc detection circuit according to the second embodiment will be described with reference to FIG.
 図4は、実施の形態2に係るアーク検出回路10aが適用されたシステムの一例を示す構成図である。 FIG. 4 is a configuration diagram illustrating an example of a system to which the arc detection circuit 10a according to the second embodiment is applied.
 アーク検出回路10aは、さらに、ダイオードD1を備える点が、実施の形態1に係るアーク検出回路10と異なる。その他の点は、実施の形態1におけるものと同じであるため説明を省略する。 The arc detection circuit 10a is further different from the arc detection circuit 10 according to the first embodiment in that a diode D1 is provided. Since other points are the same as those in the first embodiment, description thereof is omitted.
 アーク検出回路10aは、経路L2において、コンデンサC1および抵抗R1と直列接続されたダイオードD1を備える。また、実施の形態2では、コンデンサC1、抵抗R1およびダイオードD1が直列接続された回路は、電力変換器50に並列に接続されている。つまり、実施の形態2におけるシステムの構成は、図1で説明したシステムにさらにダイオードD1を追加した構成となっている。 The arc detection circuit 10a includes a diode D1 connected in series with the capacitor C1 and the resistor R1 in the path L2. In the second embodiment, the circuit in which the capacitor C1, the resistor R1, and the diode D1 are connected in series is connected to the power converter 50 in parallel. That is, the system configuration in the second embodiment is a configuration in which the diode D1 is further added to the system described in FIG.
 経路L2において、伝送路L1側から伝送路L3側に向けて、コンデンサC1、抵抗R1、ダイオードD1の順序でこれらは配置される。つまり、ダイオードD1のアノードは、伝送路L1側に接続され、カソードは、伝送路L3側に接続される。具体的には、ダイオードD1のアノードは、抵抗R1に接続され、カソードは、伝送路L3に接続されている。なお、コンデンサC1、抵抗R1およびダイオードD1が配置される順序は図4に示される順序に限らず、どのような順序で配置されてもかまわない。なお、ダイオードD1が伝送路L1側に接続される場合、ダイオードD1の性能によっては伝送路L1を介して印加、入力される電圧、電流に耐えられないおそれがある。さらに、ダイオードD1の向きによっては、逆方向電流が生じて破損するおそれがある。このため、コンデンサC1、抵抗R1およびダイオードD1は、図4に示されるように配置されることが好ましい。 In the path L2, these are arranged in the order of the capacitor C1, the resistor R1, and the diode D1 from the transmission line L1 side to the transmission line L3 side. That is, the anode of the diode D1 is connected to the transmission line L1 side, and the cathode is connected to the transmission line L3 side. Specifically, the anode of the diode D1 is connected to the resistor R1, and the cathode is connected to the transmission line L3. The order in which the capacitor C1, the resistor R1, and the diode D1 are arranged is not limited to the order shown in FIG. 4 and may be arranged in any order. When the diode D1 is connected to the transmission line L1, the voltage and current applied and input through the transmission line L1 may not be able to endure depending on the performance of the diode D1. Further, depending on the direction of the diode D1, a reverse current may be generated and damaged. For this reason, the capacitor C1, the resistor R1, and the diode D1 are preferably arranged as shown in FIG.
 上述したように、電力変換器50は、直流電力を交流電力に変換する際のノイズを発生したり、アークが発生している信号が入力された場合、当該アーク成分をノイズとして発生したりする。実施の形態1における一例では、経路L2を、電力変換器50が接続されたグランドとは電気的に絶縁されたグランドに落とすことで、抵抗R1と電力変換器50とを電気的に絶縁し、抵抗R1が上記ノイズ成分の影響を受けないようにした。実施の形態2では、ダイオードD1を設けることで、電力変換器50のノイズ成分がダイオードD1によって経路L2へ進入しにくくなり、抵抗R1が上記ノイズ成分の影響を受けないようにすることができる。したがって、伝送路L1において発生するアークをより正確に検出できる。 As described above, the power converter 50 generates noise when converting direct current power into alternating current power, or generates an arc component as noise when a signal in which an arc is generated is input. . In one example in the first embodiment, the resistor R1 and the power converter 50 are electrically insulated by dropping the path L2 to the ground electrically insulated from the ground to which the power converter 50 is connected. The resistor R1 is not affected by the noise component. In the second embodiment, by providing the diode D1, it is difficult for the noise component of the power converter 50 to enter the path L2 by the diode D1, and the resistor R1 can be prevented from being affected by the noise component. Therefore, it is possible to detect the arc generated in the transmission line L1 more accurately.
 なお、コンデンサC1、抵抗R1およびダイオードD1が直列接続された回路は、電力変換器50が接続されたグランドとは電気的に絶縁されたグランドに接続されていてもよい。つまり、実施の形態2におけるシステムの構成は、図2で説明したシステムにさらにダイオードD1を追加した構成となっていてもよい。この場合、グランドからのノイズ成分がダイオードD1によって経路L2へ進入しにくくなり、抵抗R1が上記ノイズ成分の影響を受けないようにすることができる。 Note that the circuit in which the capacitor C1, the resistor R1, and the diode D1 are connected in series may be connected to a ground that is electrically insulated from the ground to which the power converter 50 is connected. That is, the system configuration in the second embodiment may be a configuration in which the diode D1 is further added to the system described in FIG. In this case, a noise component from the ground is less likely to enter the path L2 by the diode D1, and the resistor R1 can be prevented from being affected by the noise component.
 (実施の形態3)
 実施の形態3では、アーク検出回路10、10aの適用例について説明する。
(Embodiment 3)
In the third embodiment, an application example of the arc detection circuits 10 and 10a will be described.
 図5は、各実施の形態に係るアーク検出回路10、10aの適用例を説明するための図である。 FIG. 5 is a diagram for explaining an application example of the arc detection circuits 10 and 10a according to each embodiment.
 上述したように、アーク検出回路10、10aは、例えば、太陽光パネル31から伝送路L1を介して供給される直流電力を、電力変換器50により構成されるパワーコンディショナ(パワコン)51で交流電力に変換するシステムに適用される。本適用例では、3つの太陽光パネル31が1つのストリング60によって直列に接続されたものが3つ並べられて、太陽電池アレイ30を形成している。各ストリング60は、接続箱40によってまとめられて、パワコン51へ接続される。 As described above, for example, the arc detection circuits 10 and 10 a exchange DC power supplied from the solar panel 31 via the transmission line L <b> 1 with the power conditioner (power conditioner) 51 configured by the power converter 50. Applies to systems that convert power. In this application example, three solar panels 31 connected in series by one string 60 are arranged to form the solar cell array 30. The strings 60 are collected by the connection box 40 and connected to the power conditioner 51.
 例えば、ストリング60毎にブレーカ41が設けられており、ここでは、接続箱40内にブレーカ41が設けられている。なお、ブレーカ41は、接続箱40内に設けられなくてもよい。例えば、ブレーカ41は、接続箱40と太陽電池アレイ30との間に設けられていてもよいし、ストリング60毎に設けられず接続箱40とパワコン51との間に設けられていてもよい。 For example, a breaker 41 is provided for each string 60, and here, the breaker 41 is provided in the connection box 40. Note that the breaker 41 may not be provided in the connection box 40. For example, the breaker 41 may be provided between the connection box 40 and the solar cell array 30, or may be provided between the connection box 40 and the power conditioner 51 without being provided for each string 60.
 太陽光パネル31は、例えば、太陽光パネル31から出力される信号の変換を行う、太陽光パネル付属モジュール32を有する。なお、太陽光パネル31は、太陽光パネル付属モジュール32を有していなくてもよい。太陽光パネル付属モジュール32は、例えば、太陽光パネル31毎の発電量を最適化するDC/DCコンバータである。 The solar panel 31 includes, for example, a solar panel attached module 32 that converts a signal output from the solar panel 31. Note that the solar panel 31 may not have the solar panel accessory module 32. The solar panel attachment module 32 is, for example, a DC / DC converter that optimizes the power generation amount for each solar panel 31.
 例えば、ブレーカ41がアーク検出回路10、10aを備えていてもよい。この場合、伝送路L1は、ブレーカ41に接続された伝送路(例えばストリング60)となり、アークが発生したストリング60に流れる電流を遮断することができる。例えば、アーク判定部11が、アークが発生したと判定することで、ブレーカ41は、アークが発生したストリング60に流れる電流を遮断する。アークが発生していないストリング60については、電流を遮断せずに使用することができる。 For example, the breaker 41 may include the arc detection circuits 10 and 10a. In this case, the transmission line L1 becomes a transmission line (for example, the string 60) connected to the breaker 41, and the current flowing through the string 60 where the arc is generated can be cut off. For example, when the arc determination unit 11 determines that an arc has occurred, the breaker 41 interrupts the current flowing through the string 60 in which the arc has occurred. The string 60 in which no arc is generated can be used without interrupting the current.
 また、例えば、パワコン51がアーク検出回路10、10aを備えていてもよい。この場合、パワコン51内で経路L2におけるコンデンサC1と抵抗R1とが直列接続された回路が、電力変換器50が接続されたグランドとは電気的に絶縁されたグランドに接続されたり、アーク検出回路10と電力変換器50とが並列接続されたり、当該直列接続された回路が、電力変換器50と並列に接続されたりする。また、伝送路L1は、パワコン51に接続された伝送路となり、アークの発生に応じてパワコン51を停止することができる。例えば、アーク判定部11が、アークが発生したと判定することで、パワコン51は停止する。 For example, the power conditioner 51 may include the arc detection circuits 10 and 10a. In this case, a circuit in which the capacitor C1 and the resistor R1 in the path L2 in the power converter 51 are connected in series is connected to a ground electrically isolated from the ground to which the power converter 50 is connected, or an arc detection circuit. 10 and the power converter 50 are connected in parallel, or the circuit connected in series is connected in parallel with the power converter 50. Further, the transmission line L1 is a transmission line connected to the power conditioner 51, and can stop the power conditioner 51 in response to the occurrence of an arc. For example, when the arc determination unit 11 determines that an arc has occurred, the power conditioner 51 stops.
 また、例えば、太陽光パネル31または太陽光パネル付属モジュール32がアーク検出回路10、10aを備えていてもよい。この場合、伝送路L1は、太陽光パネル31に接続された伝送路(例えばストリング60)となり、アークが発生したストリング60への出力を停止することができる。例えば、アーク判定部11が、アークが発生したと判定することで、太陽光パネル31または太陽光パネル付属モジュール32は、アークが発生したストリング60への出力を停止する。アークが発生していないストリング60については、出力を停止せずに使用することができる。 Further, for example, the solar panel 31 or the solar panel attached module 32 may include the arc detection circuits 10 and 10a. In this case, the transmission line L1 becomes a transmission line (for example, the string 60) connected to the solar panel 31, and the output to the string 60 where the arc is generated can be stopped. For example, when the arc determination unit 11 determines that an arc has occurred, the solar panel 31 or the solar panel attachment module 32 stops output to the string 60 in which the arc has occurred. The string 60 in which no arc is generated can be used without stopping the output.
 また、例えば、接続箱40がアーク検出回路10、10aを備えていてもよい。この場合、伝送路L1は、接続箱40に接続された伝送路(例えばストリング60)となり、例えばブレーカ41等を介して、アークが発生したストリング60に流れる電流を遮断することができる。例えば、アーク判定部11が、アークが発生したと判定することで、接続箱40は、アークが発生したストリング60に流れる電流を遮断する。アークが発生していないストリング60については、電流を遮断せずに使用することができる。 For example, the junction box 40 may include the arc detection circuits 10 and 10a. In this case, the transmission line L1 becomes a transmission line (for example, the string 60) connected to the connection box 40, and the current flowing through the string 60 where the arc is generated can be interrupted via, for example, the breaker 41 or the like. For example, when the arc determination unit 11 determines that an arc has occurred, the junction box 40 interrupts the current flowing through the string 60 in which the arc has occurred. The string 60 in which no arc is generated can be used without interrupting the current.
 なお、アーク検出回路10、10aは、上記システムに限らず、アークの発生の検出が必要なシステム全般に適用できる。また、ブレーカ41、パワコン51、太陽光パネル31、太陽光パネル付属モジュール32または接続箱40は、比較例に係るアーク検出回路100を備えていてもよい。 The arc detection circuits 10 and 10a are not limited to the above system, and can be applied to any system that needs to detect the occurrence of an arc. Moreover, the breaker 41, the power conditioner 51, the solar panel 31, the solar panel attachment module 32, or the connection box 40 may include the arc detection circuit 100 according to the comparative example.
 このように、ブレーカ41は、アーク検出回路10、10aを備えていてもよい。また、パワーコンディショナ51は、アーク検出回路10、10aを備えていてもよい。また、太陽光パネル31は、アーク検出回路10、10aを備えていてもよい。また、太陽光パネル付属モジュール32は、アーク検出回路10、10aを備え、太陽光パネルから出力される信号の変換を行ってもよい。また、接続箱40は、アーク検出回路10、10aを備え、太陽光パネル31とパワーコンディショナ51とを接続してもよい。 As described above, the breaker 41 may include the arc detection circuits 10 and 10a. Further, the power conditioner 51 may include arc detection circuits 10 and 10a. Moreover, the solar panel 31 may include the arc detection circuits 10 and 10a. Moreover, the solar panel attachment module 32 may include the arc detection circuits 10 and 10a, and may convert a signal output from the solar panel. Moreover, the connection box 40 may include the arc detection circuits 10 and 10 a and connect the solar panel 31 and the power conditioner 51.
 (その他の実施の形態)
 以上、実施の形態に係るアーク検出回路10等について説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
The arc detection circuit 10 and the like according to the embodiment have been described above, but the present invention is not limited to the above embodiment.
 上記実施の形態に係るアーク検出回路10、10aは、マイコンによってソフトウェア的に実現されたが、パーソナルコンピュータなどの汎用コンピュータにおいてソフトウェア的に実現されてもよい。さらに、アーク検出回路10は、A/D変換器、論理回路、ゲートアレイ、D/A変換器等で構成される専用の電子回路によってハードウェア的に実現されてもよい。 Although the arc detection circuits 10 and 10a according to the above-described embodiment are realized as software by a microcomputer, they may be realized as software in a general-purpose computer such as a personal computer. Furthermore, the arc detection circuit 10 may be realized in hardware by a dedicated electronic circuit including an A / D converter, a logic circuit, a gate array, a D / A converter, and the like.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, it is realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
 10、10a、100 アーク検出回路
 11 アーク判定部
 12 フィルタ部
 31 太陽光パネル
 32 太陽光パネル付属モジュール
 40 接続箱
 41 ブレーカ
 50 電力変換器
 51 パワーコンディショナ(パワコン)
 C1 コンデンサ
 L1、L3 伝送路
 L2 経路
 R1 抵抗
DESCRIPTION OF SYMBOLS 10, 10a, 100 Arc detection circuit 11 Arc determination part 12 Filter part 31 Solar panel 32 Solar panel attachment module 40 Connection box 41 Breaker 50 Power converter 51 Power conditioner (power conditioner)
C1 Capacitor L1, L3 Transmission path L2 Path R1 Resistance

Claims (9)

  1.  伝送路において発生するアークを検出するアーク検出回路であって、
     前記伝送路から分岐した経路に配置され、前記伝送路を流れる信号に含まれる交流成分の信号を前記伝送路から前記経路へ流すコンデンサと、
     前記経路において、前記コンデンサと直列接続され、前記交流成分の信号に対応した電圧信号を発生する抵抗と、
     前記抵抗に発生した前記電圧信号が入力され、アークに対応した周波数の信号を通過させるフィルタ部と、
     前記フィルタ部を通過した信号に基づいて、アークの発生を判定するアーク判定部と、を備える、
     アーク検出回路。
    An arc detection circuit for detecting an arc generated in a transmission line,
    A capacitor that is arranged in a path branched from the transmission path, and that allows a signal of an alternating current component included in a signal flowing in the transmission path to flow from the transmission path to the path;
    A resistor connected in series with the capacitor in the path to generate a voltage signal corresponding to the signal of the AC component;
    The voltage signal generated in the resistor is input, a filter unit that passes a signal having a frequency corresponding to the arc, and
    An arc determination unit that determines the occurrence of an arc based on a signal that has passed through the filter unit;
    Arc detection circuit.
  2.  前記伝送路には、直流電力を交流電力に変換する電力変換器が接続され、
     前記経路における前記コンデンサと前記抵抗とが直列接続された回路は、前記電力変換器が接続されたグランドとは電気的に絶縁されたグランドに接続される、
     請求項1に記載のアーク検出回路。
    A power converter that converts DC power to AC power is connected to the transmission line,
    The circuit in which the capacitor and the resistor in the path are connected in series is connected to a ground that is electrically insulated from the ground to which the power converter is connected.
    The arc detection circuit according to claim 1.
  3.  前記伝送路には、直流電力を交流電力に変換する電力変換器が接続され、
     前記経路における前記コンデンサと前記抵抗とが直列接続された回路は、前記電力変換器と並列に接続される、
     請求項1に記載のアーク検出回路。
    A power converter that converts DC power to AC power is connected to the transmission line,
    A circuit in which the capacitor and the resistor in the path are connected in series is connected in parallel with the power converter,
    The arc detection circuit according to claim 1.
  4.  前記アーク検出回路は、さらに、前記経路において、前記コンデンサおよび前記抵抗と直列接続されたダイオードを備える、
     請求項1~3のいずれか1項に記載のアーク検出回路。
    The arc detection circuit further includes a diode in series with the capacitor and the resistor in the path.
    The arc detection circuit according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載のアーク検出回路を備える、
     ブレーカ。
    The arc detection circuit according to any one of claims 1 to 4,
    breaker.
  6.  請求項1~4のいずれか1項に記載のアーク検出回路を備える、
     パワーコンディショナ。
    The arc detection circuit according to any one of claims 1 to 4,
    Inverter.
  7.  請求項1~4のいずれか1項に記載のアーク検出回路を備える、
     太陽光パネル。
    The arc detection circuit according to any one of claims 1 to 4,
    Solar panel.
  8.  請求項1~4のいずれか1項に記載のアーク検出回路を備え、
     太陽光パネルから出力される信号の変換を行う、
     太陽光パネル付属モジュール。
    The arc detection circuit according to any one of claims 1 to 4,
    Convert the signal output from the solar panel,
    Module with solar panel.
  9.  請求項1~4のいずれか1項に記載のアーク検出回路を備え、
     太陽光パネルとパワーコンディショナとを接続する、
     接続箱。
    The arc detection circuit according to any one of claims 1 to 4,
    Connect the solar panel and the inverter.
    Connection box.
PCT/JP2019/011212 2018-04-25 2019-03-18 Arc detecting circuit, breaker, power conditioner, solar panel, module with solar panel, and connection box WO2019208027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516107A JP7108859B2 (en) 2018-04-25 2019-03-18 Arc detection circuits, breakers, power conditioners, solar panels, modules attached to solar panels and junction boxes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018084075 2018-04-25
JP2018-084075 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208027A1 true WO2019208027A1 (en) 2019-10-31

Family

ID=68294548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011212 WO2019208027A1 (en) 2018-04-25 2019-03-18 Arc detecting circuit, breaker, power conditioner, solar panel, module with solar panel, and connection box

Country Status (2)

Country Link
JP (1) JP7108859B2 (en)
WO (1) WO2019208027A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630502A (en) * 2020-12-28 2021-04-09 宁波希磁电子科技有限公司 Sensor capable of simultaneously detecting direct current and arc discharge current
JPWO2021182263A1 (en) * 2020-03-11 2021-09-16
CN115151830A (en) * 2020-03-11 2022-10-04 松下知识产权经营株式会社 Arc detection devices, power conditioners, indoor wiring systems, circuit breakers, solar panels, solar panel accessory modules, and junction boxes
EP4120495A4 (en) * 2020-03-11 2023-09-13 Panasonic Intellectual Property Management Co., Ltd. Arc detection device, power conditioner, indoor wiring system, circuit breaker, solar panel, solar panel attachment module, and junction box

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037030A (en) * 1998-07-17 2000-02-02 Furukawa Electric Co Ltd:The Method and device for detecting abnormal load current
JP2000166279A (en) * 1998-12-01 2000-06-16 Mitsubishi Electric Corp Current detection circuit
JP2002125310A (en) * 2000-10-13 2002-04-26 Fujikura Ltd Discharge monitoring device
US20130092208A1 (en) * 2011-10-13 2013-04-18 Steven Andrew Robbins System and Apparatus for Arc Detection and Location in Solar Arrays
JP2017161242A (en) * 2016-03-07 2017-09-14 オムロン株式会社 Arc detector
JP2017161240A (en) * 2016-03-07 2017-09-14 オムロン株式会社 Ark detector
JP2018028498A (en) * 2016-08-19 2018-02-22 富士電機機器制御株式会社 Arc fault detection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037030A (en) * 1998-07-17 2000-02-02 Furukawa Electric Co Ltd:The Method and device for detecting abnormal load current
JP2000166279A (en) * 1998-12-01 2000-06-16 Mitsubishi Electric Corp Current detection circuit
JP2002125310A (en) * 2000-10-13 2002-04-26 Fujikura Ltd Discharge monitoring device
US20130092208A1 (en) * 2011-10-13 2013-04-18 Steven Andrew Robbins System and Apparatus for Arc Detection and Location in Solar Arrays
JP2017161242A (en) * 2016-03-07 2017-09-14 オムロン株式会社 Arc detector
JP2017161240A (en) * 2016-03-07 2017-09-14 オムロン株式会社 Ark detector
JP2018028498A (en) * 2016-08-19 2018-02-22 富士電機機器制御株式会社 Arc fault detection system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021182263A1 (en) * 2020-03-11 2021-09-16
WO2021182263A1 (en) * 2020-03-11 2021-09-16 パナソニックIpマネジメント株式会社 Arc detection device, power conditioner, indoor wiring system, breaker, solar panel, solar panel-attached module, and connection box
CN115151830A (en) * 2020-03-11 2022-10-04 松下知识产权经营株式会社 Arc detection devices, power conditioners, indoor wiring systems, circuit breakers, solar panels, solar panel accessory modules, and junction boxes
CN115210980A (en) * 2020-03-11 2022-10-18 松下知识产权经营株式会社 Arc detection device, power conditioner, indoor wiring system, circuit breaker, solar panel accessory module, and junction box
EP4120495A4 (en) * 2020-03-11 2023-09-13 Panasonic Intellectual Property Management Co., Ltd. Arc detection device, power conditioner, indoor wiring system, circuit breaker, solar panel, solar panel attachment module, and junction box
US11923670B2 (en) 2020-03-11 2024-03-05 Panasonic Intellectual Property Management Co., Ltd. ARC detection device, solar inverter, indoor wiring system, circuit breaker, solar panel, solar panel attachment module, and junction box
US12184055B2 (en) 2020-03-11 2024-12-31 Panasonic Intellectual Property Management Co., Ltd. Arc detection device, solar inverter, indoor wiring system, breaker, solar panel, solar panel- attached module, and junction box
CN112630502A (en) * 2020-12-28 2021-04-09 宁波希磁电子科技有限公司 Sensor capable of simultaneously detecting direct current and arc discharge current

Also Published As

Publication number Publication date
JP7108859B2 (en) 2022-07-29
JPWO2019208027A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2019208027A1 (en) Arc detecting circuit, breaker, power conditioner, solar panel, module with solar panel, and connection box
EP3270172B1 (en) Arc detection device and arc detection method
EP3279677B1 (en) Insulation detecting circuit, power converting device and insulation impedance value detecting method
US20140191589A1 (en) Safety device for a photovoltaic system
EP2980980B1 (en) Inverter device
JP5385688B2 (en) Insulation resistance detector
US20130265016A1 (en) Direct Current Converter for Bootstrap Circuit
KR102080811B1 (en) Photovoltaic junction box with fire complex sensing function and control method thereof
JP2020139925A (en) Arc detector, breaker, power conditioner, solar panel, solar panel accessory module and junction box
US20170366125A1 (en) Fault detection system for isolated two-switch exciter drive gate driver
KR101376725B1 (en) Solar cell module connecting apparatus
JPWO2018150877A1 (en) Arc detection circuit, switch system, power conditioner system, and arc detection method
US20190288500A1 (en) Arc detecting apparatus and control method thereof, non-transitory computer readable recording medium, and dc power system
JP7262014B2 (en) Arc detection circuits, breakers, power conditioners, solar panels, modules attached to solar panels, junction boxes
WO2019159582A1 (en) Arc detection circuit, breaker, power conditioner, photovoltaic panel, photovoltaic panel attachment module, and junction box
JP7437812B2 (en) Arc detection equipment, power conditioners, indoor wiring systems, breakers, solar panels, solar panel attachment modules and connection boxes
JP7325010B2 (en) Arc detection device, breaker, power conditioner, solar panel, junction box, arc detection system and arc detection method
JPH11122819A (en) DC ground fault detector
JP2018100877A (en) Arc fault detection system
CN208539775U (en) Current detection circuit and frequency converter for inverter
WO2022168255A1 (en) Arc detector, breaker, power conditioner, solar panel, solar panel-attached module, connection box, arc detection system, and arc detection method
JPWO2019208026A1 (en) Arc detection circuit, breaker, power conditioner, solar panel, module attached to solar panel, junction box, arc detection method and program
JP7304532B2 (en) Arc detectors, indoor power line systems, photovoltaic power generation systems and storage battery systems
CN214795020U (en) A phase loss detection circuit and electronic equipment
WO2020065857A1 (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791831

Country of ref document: EP

Kind code of ref document: A1