WO2019205249A1 - 变压器、供电装置和微波烹饪电器 - Google Patents
变压器、供电装置和微波烹饪电器 Download PDFInfo
- Publication number
- WO2019205249A1 WO2019205249A1 PCT/CN2018/091304 CN2018091304W WO2019205249A1 WO 2019205249 A1 WO2019205249 A1 WO 2019205249A1 CN 2018091304 W CN2018091304 W CN 2018091304W WO 2019205249 A1 WO2019205249 A1 WO 2019205249A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- winding
- transformer
- secondary winding
- primary
- groove
- Prior art date
Links
- 238000010411 cooking Methods 0.000 title claims abstract description 28
- 238000004804 winding Methods 0.000 claims abstract description 306
- 238000009730 filament winding Methods 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 125000006850 spacer group Chemical group 0.000 claims description 14
- 230000008901 benefit Effects 0.000 description 56
- 238000004519 manufacturing process Methods 0.000 description 21
- 239000003990 capacitor Substances 0.000 description 15
- 230000008878 coupling Effects 0.000 description 14
- 238000010168 coupling process Methods 0.000 description 14
- 238000005859 coupling reaction Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
Definitions
- the present application relates to the field of household appliances, and more particularly to a transformer, a power supply device, and a microwave cooking appliance.
- a transformer in the related art, includes a primary winding, a secondary winding, and an insulated bobbin, and the primary winding and the secondary winding are wound on the bobbin.
- the winding width and winding height of the primary and secondary windings tend to affect the coupling ratio of the transformer.
- the related art In order to adjust the proper coupling ratio, the related art generally adjusts by setting the winding stack height of the winding, the winding width of the winding, and the magnetic gap between the two cores of the transformer.
- the magnetic gap is biased toward the primary winding, so that the secondary winding has a large cross-sectional area, so the winding of the secondary winding is complicated during production, and in order to ensure the winding effect, it is often required to set multiple times on the secondary side.
- the winding of the secondary winding requires a jumper when the winding of the secondary winding is wound between the plurality of secondary winding slots, which increases the difficulty and size of the skeleton of the transformer.
- Embodiments of the present application provide a transformer, a power supply device, and a microwave cooking appliance.
- a winding width of the primary winding being greater than a stack height of the primary winding
- the secondary winding spaced apart from the primary winding, the secondary winding having a winding width that is less than a stacking height of the secondary winding.
- the transformer of the above embodiment since the winding width of the primary winding is larger than the stack height of the primary winding, and the winding width of the secondary winding is smaller than the stacking height of the secondary winding, the transformer can be maintained in a suitable coupling. At the same time, the structure of the transformer is simplified and miniaturized, and the transformer of the present embodiment does not need to be designed with a jumper groove, and the magnetic gap accuracy is not required to be excessively high.
- the embodiment of the present application further provides a power supply device.
- the power supply device includes a rectifier module and a power conversion module.
- the rectifier module is used to connect the AC source.
- a power conversion module is coupled to the rectifier module.
- the power conversion module includes a transformer, the transformer including: a primary winding, a winding width of the primary winding being greater than a stack height of the primary winding; and a secondary winding spaced apart from the primary winding, the secondary winding The winding width is less than the stack height of the secondary winding.
- the power supply device of the above embodiment since the winding width of the primary winding is larger than the stack height of the primary winding, and the winding width of the secondary winding is smaller than the stack height of the secondary winding, the power supply device can be maintained at a suitable level.
- the coupling ratio also simplifies and miniaturizes the structure of the transformer, and the power supply device of the present embodiment does not require a jumper slot design, and does not require excessive magnetic gap accuracy.
- the embodiment of the present application also provides a microwave cooking appliance.
- the microwave cooking appliance includes a power supply device and a microwave generator, the power supply device is coupled to the microwave generator, the power supply device includes: a rectifier module for connecting an AC source; and a power conversion module connected to the rectifier module;
- the power conversion module includes a transformer, the transformer including: a primary winding having a winding width greater than a stack height of the primary winding; and a secondary winding spaced apart from the primary winding, a winding of the secondary winding The width is less than the stack height of the secondary windings.
- the microwave cooking appliance of the above embodiment since the winding width of the primary winding is larger than the stacking height of the primary winding, and the winding width of the secondary winding is smaller than the stacking height of the secondary winding, the microwave cooking appliance can be maintained at A suitable coupling ratio also simplifies and miniaturizes the structure of the microwave cooking appliance, and the microwave cooking appliance of the present embodiment does not require a jumper slot design and does not require excessive magnetic gap precision.
- FIG. 1 is a schematic cross-sectional view of a transformer of an embodiment of the present application.
- FIG. 2 is a schematic view showing a winding structure of a transformer according to an embodiment of the present application.
- FIG. 3 is a circuit diagram of a power supply device according to an embodiment of the present application.
- FIG. 4 is a schematic structural view of a microwave cooking appliance according to an embodiment of the present application.
- Fig. 5 is a schematic cross-sectional view of a transformer in the related art.
- Fig. 6 is another schematic sectional view of a transformer in the related art.
- Microwave cooking appliance 200 transformer 100, primary winding 10, secondary winding 20, magnetic core 30, bobbin 40, primary winding slot 42, secondary winding slot 44, filament winding slot 45, spacer 46, pre- a magnetic gap 50, a filament winding 60, a cover portion 70, a power supply device 110, a rectifier module 112, a rectifier 1122, an inductor 1124, a first capacitor 1126, a power conversion module 114, a switch tube 115, a diode 1152, a semiconductor device 1154, and a second Capacitor 1144, current detecting unit 1146, control module 1147, voltage doubler rectifier module 1148, first voltage doubler diode 1141, second voltage doubler diode 1143, third capacitor 1145, third capacitor 1149, AC source 116, microwave generator 120 The cavity 130, the fan 150, and the tray 160.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
- the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
- the terms “installation”, “connected”, and “connected” should be understood broadly, and may be a fixed connection, for example, or It is a detachable connection, or is integrally connected; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements.
- installation should be understood broadly, and may be a fixed connection, for example, or It is a detachable connection, or is integrally connected; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements.
- the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include the first The second feature is not in direct contact but through additional features between them.
- the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
- an embodiment of the present application provides a transformer 100 .
- the transformer 100 includes a primary winding 10 and a secondary winding 20.
- the secondary winding 20 is spaced apart from the primary winding 10.
- the winding width W1 of the primary winding 10 is greater than the stack height H1 of the primary winding 10, that is, W1 > H1.
- the winding width W2 of the secondary winding 20 is smaller than the stack height H2 of the secondary winding 20, that is, W2 ⁇ H2.
- the transformer 100 in the above embodiment since the winding width W1 of the primary winding 10 is larger than the stack height H1 of the primary winding 10, and the winding width W2 of the secondary winding 20 is smaller than the stack height H1 of the primary winding 10, the transformer 100 can be maintained
- the structure of the transformer 100 is also simplified and miniaturized at the same time as a suitable coupling ratio, and the transformer 100 of the present embodiment does not require a jumper slot design, and does not require the magnetic gap accuracy of the transformer 100 to be excessively high.
- the transformer 100 includes two opposing magnetic cores 30.
- the magnetic gap width between the two magnetic cores 30 affects the coupling ratio of the transformer 100, and on the other hand, the winding width and winding height of the transformer 100. It is easy to affect the coupling ratio of the transformer 100.
- the coupling ratio is preferably stable between 0.5 and 1.2.
- the transformer 300 is composed of a primary winding 1, a secondary winding 2, and a heater winding 3.
- a magnetic gap 5 is disposed between the two magnetic cores 4.
- the primary winding 1, the secondary winding 2, and the heater winding 3 are arranged in the width direction of the transformer 300, that is, in the left-right direction of FIG.
- the relationship between the lateral width (W1) of the winding of the primary winding 1 and the stack height (H1) of the primary winding 1 is: W1 ⁇ H1.
- the relationship between the lateral width (W2) of the winding of the secondary winding 2 and the stacking height (H2) of the secondary winding 2 is: W2 ⁇ H2.
- the transformer 400 is composed of a primary winding 1, a secondary winding 2, and a heater winding 3.
- a magnetic gap 5 is disposed between the two magnetic cores 4.
- the primary winding 1, the secondary winding 2, and the heater winding 3 are arranged in the width direction of the transformer 300, that is, in the left-right direction of FIG.
- the relationship between the lateral width (W1) of the winding of the primary winding 1 and the stack height (H1) of the primary winding is: H1 > W1.
- the relationship between the lateral width (W2) of the winding of the secondary winding 2 and the stack height (H2) of the primary and secondary windings is: H2 > W2.
- the transformer of Fig. 6 places the magnetic gap 5 in the middle position between the primary winding 1 and the secondary winding 2, where a higher matching efficiency is achieved, and the adjustment accuracy of the magnetic gap 5 is also reduced.
- such a structure has the difficulty of regulating production accuracy.
- the winding group is the most The voltage of the winding layer of the bottom winding layer L1 is 0, and as the number of layers increases, for example, from L1->L2->L3->L4->L5->L6->L7->L8->L9-> L10, the voltage of the winding layer is gradually increased, and since the voltage difference between the winding layer of the L1 winding layer and the highest winding layer L10 is small due to the small H1, it is not easy to cause a dielectric between the winding layers.
- the phenomenon of breakdown is beneficial to improve the service life of the transformer 100.
- the magnetic gap 50 is biased toward the primary winding 10, so that the coupling ratio of the transformer 100 is easily adjusted, and the coupling ratio of the transformer 100 can be stabilized at about 0.5 to 1.2, so that the transformer 100 can be Meet the performance requirements, and the accuracy of the magnetic gap is relatively low, such a structure meets the current specification production accuracy, reducing production difficulty and cost.
- the winding width W2 of the secondary winding 20 is smaller than the stack height H2 of the secondary winding 20
- the cross-sectional area of the secondary winding 20 is relatively small in the structural design of the transformer 100, and The secondary winding of the embodiment does not need to be jumpered when winding, which simplifies and miniaturizes the structure of the transformer, and at the same time reduces production difficulty and improves production efficiency.
- the transformer 100 includes an insulated bobbin 40 having a spaced apart single primary winding slot 42 and a single secondary winding slot 44, primary winding The winding of 10 is wound around the primary winding groove 42, and the winding of the secondary winding 20 is wound around the secondary winding groove 44.
- the winding of the transformer 100 of the present embodiment does not need to be jumpered when winding, so that the production difficulty of the transformer 100 can be reduced and the production efficiency can be improved. .
- the bobbin 40 only has a single secondary winding groove 44, and the winding width W2 of the secondary winding 20 wound on the secondary winding groove 44 is smaller than
- the stack height H2 of the secondary winding 20 is such that while maintaining the voltage difference between the winding layers of the secondary winding 20 within a suitable range, the structure of the transformer 100 can be simplified and miniaturized, and it is not required to be wound. Jumpers are used to reduce the difficulty of production and increase production efficiency.
- the secondary winding of the transformer 100 only has a single secondary winding slot 44, the design of the present embodiment can overcome the production process difficulties, so that the transformer 100 of the present embodiment can still meet the requirements. Process requirements and performance requirements.
- the stack height H2 of the secondary winding 20 and the winding width W2 of the secondary winding 20 satisfy the following relationship, 1.1 ⁇ H2 / W2 ⁇ 2.5, H2 represents the stack height of the secondary winding 20, and W2 represents the second The winding width of the stage winding 20.
- this enables the secondary winding 20 to meet the performance requirements of the transformer 100.
- the stack height H2 of the secondary winding 20 and the winding width W2 of the secondary winding 20 satisfy the following relationship, 1.1 ⁇ H2 / W2 ⁇ 2.5, such that the voltage difference between the respective winding layers of the secondary winding 20 is made. Can be maintained in a suitable range.
- the stack height H2 of the secondary winding 20 may be 1.2 to 2 times the winding width W2 of the secondary winding 20. It should be noted that, in actual production, a specific numerical value or numerical range can be obtained according to the magnetic gap precision of the production line.
- the magnetic gap can be designed to be relatively small, but the accuracy of the magnetic gap is relatively high.
- the ratio of H2 to W2 is satisfied between 1.1 and 2.5, if the need for W2 is designed to be large, the magnetic gap can be designed to be large, but the accuracy of the magnetic gap is relatively low.
- the transformer 100 includes two opposing magnetic cores 30.
- the bobbin 40 includes spacers 46, one end of each of the magnetic cores 30 being located within the bobbin 40 and abutting respectively On opposite sides of the spacer 46.
- the spacer 46 is used to enable the two interposed magnetic cores 30 to satisfy the preset magnetic gap 50, so that the coupling ratio of the transformer 100 can be maintained within a suitable range.
- the two magnetic cores 30 are respectively abutted on opposite sides of the spacer 46, so that a predetermined magnetic gap 50 can be formed between the two magnetic cores 30, so that the magnetic gap of the transformer 100 can be satisfied.
- the number of spacers 46 may be two, one spacer 46 for spacing one end of the two cores 30, and the other spacer 46 for spacing the other ends of the two cores 30.
- the transformer 100 includes a filament winding 60 having a filament winding slot 45 defined therein, the secondary winding slot 44 being located between the filament winding slot 45 and the primary winding slot 42, the filament winding 60 The winding is wound around the filament winding groove 45.
- an external microwave generator can be connected through the filament winding 60 to supply power to the microwave generator.
- transformer 100 includes an insulative cover portion 70 that partially covers primary winding slot 42, secondary winding slot 44, and filament winding slot 45.
- the cover portion 70 functions to protect the magnetic core 30 and has a simple structure.
- an embodiment of the present application further provides a power supply device 110 .
- the power supply device 110 includes a rectifier module 112 and a power conversion module 114.
- the rectifier module 112 is connected to the AC source 116.
- the power conversion module 114 is connected to the rectifier module 112.
- Power conversion module 114 includes transformer 100 of any of the above embodiments.
- the power supply device 110 since the winding width W1 of the primary winding 10 is larger than the stack height H1 of the primary winding 10, and the winding width W2 of the secondary winding 20 is smaller than the stack height H1 of the primary winding 10, the power supply device 110 can be made Maintaining a suitable coupling ratio also simplifies and miniaturizes the structure of the power supply device 110, and the power supply device 110 of the present embodiment does not require a jumper slot design, and does not require excessively high magnetic gap accuracy.
- the rectifier module 112 includes a rectifier 1122, an inductor 1124, and a first capacitor 1126.
- the rectifier module 112 can convert the AC voltage generated by the AC source 116 into a DC voltage.
- the AC source 116 is a commercial power source, and the AC voltage generated is approximately 220 V, and the frequency is approximately 50 Hz.
- the rectifier module 112 can also employ other forms of circuitry without being limited to being composed of the rectifier 1122, the inductor 1124, and the capacitor.
- the power conversion module 114 includes a switch tube 115, a second capacitor 1144, and a current detecting unit 1146.
- One end of the first capacitor 1126 is connected to one end of the primary winding 10 of the transformer 100, and the other end thereof is connected to the current detecting unit 1146.
- One end of the second capacitor 1144 is connected to one end of the 1126 and one end of the primary winding 10 of the transformer 100, and the other end is connected to the other end of the primary winding 10 of the transformer 100 and the collector of the switching transistor 115.
- the power conversion module 114 is used to increase the output power of the transformer 100.
- the power conversion module 114 includes a control module 1147 coupled to the primary side of the transformer 100 and a voltage doubler rectifier module 1148 coupled to the secondary side of the transformer 100.
- control module 1147 is configured to detect the AC source 116 to acquire a detection signal, and control the switching frequency of the switch tube 115 according to the detection signal.
- detection signal may be the voltage of the AC power source 116 and the operating current of the transformer 100.
- the control module 1147 can generate a corresponding pulse width modulation signal (PWM) according to the detected detection signal, and control the on-time of the switch tube 115 according to the pulse width modulation signal to change the switching frequency of the switch tube 115.
- PWM pulse width modulation signal
- the pulse width modulation signal is a pulse with equal pulse widths.
- the output frequency can be adjusted by changing the period of the pulse train, and the output voltage can be adjusted by changing the pulse width or duty ratio, that is, It can be said that the voltage and the frequency can be coordinated and changed by an appropriate control method, so that the current of the power supply device 110 can be controlled by adjusting the period of the PWM and the duty ratio of the PWM.
- the voltage doubler rectifier module 1148 includes a first voltage doubler diode 1141, a second voltage doubler diode 1143, a third capacitor 1145, and a third capacitor 1149.
- the first voltage doubler diode 1141 is connected to both ends of the secondary side of the transformer 100, respectively.
- One end of the second voltage doubler diode 1143 is connected to one end of the secondary side of the transformer 100, and the other end thereof is connected to the third capacitor 1149 and the microwave generator 120.
- One end of the third capacitor 1149 is connected to one end of the second voltage doubler diode 1143 and the microwave generator 120.
- the fourth capacitor is connected to one end of the secondary side of the transformer 100, and the other end is connected to the third capacitor 1149.
- the embodiment of the present application further provides a microwave cooking appliance 200 .
- the microwave cooking appliance 200 includes the transformer 100 and the microwave generator 120 of any of the above embodiments.
- the microwave generator 120 is connected to the transformer 100.
- the microwave cooking appliance 200 can maintain a suitable coupling ratio and also simplify and miniaturize the structure of the microwave cooking appliance 200, and the microwave cooking appliance 200 of the present embodiment does not need to perform a jumper slot design, and does not require excessively high magnetic gap precision. .
- the filament winding 45 of the transformer 100 is coupled to the microwave generator 120.
- the microwave generator 120 may be a magnetron.
- a magnetron is an electrical vacuum device used to generate microwave energy. The electrons in the magnetron interact with the high-frequency electromagnetic field under the control of a constant magnetic field and a constant electric field perpendicular to each other, and convert the energy obtained from the output power of the transformer 100 into microwave energy, thereby achieving the purpose of generating microwave energy.
- the microwave cooking appliance 200 further includes a cavity 130, a door body (not shown) and a fan 150.
- a tray 160 is disposed in the cavity 130.
- the tray 160 is used for placing food to be heated, and the door body is rotatably disposed in front of the cavity 130 for opening or closing the opening of the cavity 130, and the microwave generator 120 is installed with the transformer 100. It is disposed outside the cavity 130 and disposed in the blowing direction of the fan 150.
- the transformer 100 provides an operating current to the microwave generator 120, and the microwave generator 120 generates microwave energy for heating the food within the cavity 130.
- the fan 150 can absorb air from the outside and form a gas flow, the air flow can be conducted through the air duct in the transformer 100, and the transformer 100 is cooled and cooled. After the transformer 100 is cooled, the air flow can be discharged from the transformer 100 to the transformer 100.
- the microwave cooking appliance 200 is external.
- a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
- computer readable media include the following: electrical connections (control methods) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
- the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
- portions of the embodiments of the present application can be implemented in hardware, software, firmware, or a combination thereof.
- multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
- a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
- each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
- the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
- the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Coils Of Transformers For General Uses (AREA)
Abstract
一种变压器(100)、供电装置(110)和微波烹饪电器(200)。变压器(100)包括初级绕组(10)和次级绕组(20),次级绕组(20)与初级绕组(10)隔开,初级绕组(10)的绕组宽度(W1)大于初级绕组(10)的堆叠高度(H1),次级绕组(20)的绕组宽度(W2)小于次级绕组(20)的堆叠高度(H2)。
Description
优先权信息
本申请请求2018年04月26日向中国国家知识产权局提交的、专利申请号为201810388063.7、201820617357.8的专利申请的优先权和权益,并且通过参照将其全文并入此处。
本申请涉及家用电器技术领域,更具体而言,涉及一种变压器、供电装置和微波烹饪电器。
在相关技术中,变压器包括初级绕组、次级绕组和绝缘绕线管,初级绕组和次级绕组绕制在绕线管上。初级绕组和次级绕组的绕线宽度和绕线高度容易影响变压器的耦合率。
为了调节合适的耦合率,相关技术一般通过设置绕组的绕线堆叠高度、绕组的绕线宽度、变压器的两个磁芯之间的磁隙来进行调整。在一种方案中,磁隙偏向初级绕组,这样次级绕组的横截面积较大,因此在生产时次级绕组的绕线复杂,为了保证绕线效果往往需要在次级侧设置多个次级绕线槽,次级绕组的绕线在多个次级绕线槽之间绕线时需要进行跳线,这样会增加变压器的骨架设置难度及尺寸。同时,由于批量生产变压器时,跳线往往需要消耗较多时间,进而影响生产效率。另外,如果变压器的次级侧不设置多个绕线槽位,基于目前生产工艺,绕线时候容易绕错,从而产生电晕效应,影响变压器的稳定性。在另一种方案中,虽然不存在次级绕组的次级绕线槽跳线的问题,但是为了保证绕线的精度和较高的匹配率,需要将磁隙放置在初级绕组和次级绕组之间的位置,这样使得对磁隙的精度的要求极高,增加了生产难度和成本。
发明内容
本申请实施方式提供一种变压器、供电装置和微波烹饪电器。
本申请实施方式的变压器包括:
初级绕组,所述初级绕组的绕组宽度大于所述初级绕组的堆叠高度;和
与所述初级绕组隔开的次级绕组,所述次级绕组的绕组宽度小于所述次级绕组的堆叠高度。
上述实施方式中的变压器中,由于初级绕组的绕组宽度大于所述初级绕组的堆叠高度,并且次级绕组的绕组宽度小于所述次级绕组的堆叠高度,这样使得变压器能保持在一个合适的耦合率的同时也使得变压器的结构简化和小型化,并且本实施方式的变压器无需进行跳线槽设计,也无需过高地要求磁隙精度。
本申请实施方式还提供一种供电装置。供电装置包括整流模块和功率转换模块。整流模块用于连接交流源。功率转换模块连接所述整流模块。所述功率转换模块包括变压器,所述变压器包括:初级绕组,所述初级绕组的绕组宽度大于所述初级绕组的堆叠高度;和与所述初级绕组隔开的次级绕组,所述次级绕组的绕组宽度小于所述次级绕组的堆叠高度。
上述实施方式中的供电装置中,由于初级绕组的绕组宽度大于所述初级绕组的堆叠高度,并且次级绕组的绕组宽度小于所述次级绕组的堆叠高度,这样使得供电装置能保持在一个合适的耦合率的同时也使得变压器的结构简化和小型化,并且本实施方式的供电装置无需进行跳线槽设计,也无需过高地要求磁隙精度。
本申请实施方式还提供一种微波烹饪电器。微波烹饪电器包括供电装置和微波发生器,所述供电装置连接所述微波发生器,所述供电装置包括:用于连接交流源的整流模块;和连接所述整流模块的功率转换模块;所述功率转换模块包括变压器,所述变压器包括:初级绕组,所述初级绕组的绕组宽度大于所述初级绕组的堆叠高度;和与所述初级绕组隔开的次级绕组,所述次级绕组的绕组宽度小于所述次级绕组的堆叠高度。
上述实施方式中的微波烹饪电器中,由于初级绕组的绕组宽度大于所述初级绕组的堆叠高度,并且次级绕组的绕组宽度小于所述次级绕组的堆叠高度,这样使得微波烹饪电器能保持在一个合适的耦合率的同时也使得微波烹饪电器的结构简化和小型化,并且本实施方式的微波烹饪电器无需进行跳线槽设计,也无需过高地要求磁隙精度。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的变压器的截面示意图。
图2是本申请实施方式的变压器的绕线结构示意图。
图3是本申请实施方式的供电装置的电路图。
图4是本申请实施方式的微波烹饪电器的结构示意图。
图5是相关技术中的变压器的截面示意图。
图6是相关技术中的变压器的另一截面示意图。
主要元件符号说明:
微波烹饪电器200、变压器100、初级绕组10、次级绕组20、磁芯30、绕线管40、初级绕线槽42、次级绕线槽44、灯丝绕线槽45、间隔件46、预设磁隙50、灯丝绕组60、盖部70、供电装置110、整流模块112、整流器1122、电感1124、第一电容1126、功率转换模块114、开关管115、二极管1152、半导体元件1154、第二电容1144、电流检测单元1146、控制模块1147、倍压整流模块1148、第一倍压二极管1141、第二倍压二极管1143、第三电容1145、第三电容1149、交流源116、微波产生器120、腔体130、风扇150、托盘160。
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的实施方式的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请的实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的实施方式的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言, 可以根据具体情况理解上述术语在本申请的实施方式中的具体含义。
在本申请的实施方式中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的实施方式的不同结构。为了简化本申请的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本申请实施方式提供一种变压器100。变压器100包括初级绕组10和次级绕组20。次级绕组20与初级绕组10隔开。初级绕组10的绕组宽度W1大于初级绕组10的堆叠高度H1,即W1>H1。次级绕组20的绕组宽度W2小于次级绕组20的堆叠高度H2,即W2<H2。
上述实施方式中的变压器100中,由于初级绕组10的绕组宽度W1大于初级绕组10的堆叠高度H1,并且次级绕组20的绕组宽度W2小于初级绕组10的堆叠高度H1,这样使得变压器100能保持在一个合适的耦合率的同时也使得变压器100的结构简化和小型化,并且本实施方式的变压器100无需进行跳线槽设计,也无需过高地要求变压器100的磁隙精度。
具体的,变压器100包括两个对插的磁芯30,一方面,两个磁芯30之间的磁隙宽度影响变压器100的耦合率,另一方面,变压器100的绕线宽度和绕线高度容易影响变压器100的耦合率,变压器100在使用的过程中,耦合率最好能稳定在0.5-1.2之间。
在一个相关技术中,请参阅图5,变压器300由初级绕组1,次级绕组2和加热器绕组3构成。两个磁芯4之间设置有磁隙5。初级绕组1,次级绕组2和加热器绕组3排列在变压器300的宽度方向上,即图5的左右方向上排列。初级绕组1的绕组横向宽度(W1)和初级绕组1的堆叠高度(H1)的关系为:W1≥H1。次级绕组2的绕组横向宽度(W2)和次级绕组2的堆叠高度(H2)的关系为:W2≥H2。在图5的示例中,由于次级绕组2的绕组横向宽度(W2)的横截面积较大,因此生产时候绕线较为 复杂,为保证绕线效果往往需要进行设置多个绕线槽位9并在一个绕线槽位9完成绕线时需要进行跳线到另一个绕线槽位9继续绕线。这样一方面增加变压器300的骨架设置难度,另一方面,由于批量生产时候,跳线的时候往往需要消耗较多时间,进而影响了变压器300的生产效率。另外,如果不设置多个绕线槽位9,基于目前生产工艺,绕线时候容易绕错位,从而产生电晕效应,影响变压器300的稳定性。
在另一个相关技术中,请参阅图6,变压器400由初级绕组1,次级绕组2和加热器绕组3构成。两个磁芯4之间设置有磁隙5。初级绕组1,次级绕组2和加热器绕组3排列在变压器300的宽度方向上,即图6的左右方向上排列。初级绕组1的绕组横向宽度(W1)和初级绕组的堆叠高度(H1)的关系为:H1>W1。次级绕组2的绕组横向宽度(W2)和初次级绕组的堆叠高度(H2)的关系为:H2>W2。在图6的示例中,虽然初级绕组1和次级绕组2的横截面积较小且无需设置相应多个槽位和不会出现绕错现象,但是,当初级绕组1的绕组横向宽度(W1)和次级绕组2的绕组横向宽度(W2)都缩小时,磁隙5需要进行正比例相应调整,从而对磁隙5的精度要求极高。因此,图6的变压器把磁隙5放于初级绕组1和次级绕组2之间中部位置,此处达到较高匹配效率,同时也减少了磁隙5的调整精度。但是,这样的结构有规范生产精度的难度问题。
另外,如图6的变压器中,由于初级绕组1的堆叠高度H1比较高,并且H1>W1,这样使得初级绕组1的最低绕线层和最高绕线层之间的电压差较大,这样容易导致初级绕组发生电介质击穿,从而降低变压器的使用寿命。而在本申请实施方式的变压器100中,由于H1<W1,这样使得H1较小,不容易发生电介质击穿的现象,具体地,请参阅图2,在一个实施方式中,绕线组的最底绕线层L1绕线层的电压为0,随着层数的升高,例如从L1->L2->L3->L4->L5->L6->L7->L8->L9->L10,绕线层的电压逐渐增大,由于H1较小,使得L1绕线层与最高绕线层L10绕线层之间的电压差较小,则不容易使得各绕线层之间发生电介质的击穿的现象,有利于提高变压器100的使用寿命。
另外,在本实施方式中,请参阅图1,磁隙50偏向初级绕组10,这样使得变压器100的耦合率容易调整,并且变压器100的耦合率可以稳定在0.5至1.2左右,从而使得变压器100可以满足使用性能需求,并且对磁隙的精度要求比较低,这样的结构符合了当前规范生产精度,降低了生产难度和成本。
再有,在本实施方式中,由于次级绕组20的绕组宽度W2小于次级绕组20的堆叠高度H2,这样在变压器100的结构设计上,次级绕组20的横截面积比较小,并且本实施方式的次级绕组绕线时不需要进行跳线,这样使得变压器的结构简化和小型化, 同时可以降低了生产难度和提高了生产效率。
进一步地,请参阅图1,在某些实施方式中,变压器100包括绝缘的绕线管40,绕线管40开设有间隔的单个初级绕线槽42和单个次级绕线槽44,初级绕组10的绕线绕在初级绕线槽42,次级绕组20的绕线绕在次级绕线槽44。
如此,本实施方式的变压器100的绕组在进行绕线时不需要进行跳线,从而可以降低变压器100的生产难度和提高生产效率。。
具体的,相对于图5,在本实施方式中,绕线管40只开设单个次级绕线槽44,并且使得绕在次级绕线槽44上的次级绕组20的绕线宽度W2小于次级绕组20的堆叠高度H2,这样在维持次级绕组20的绕线层之间的电压差在适合的范围内的同时,可以使得变压器100的结构简化和小型化,并且绕线时不需要进行跳线,这样可以降低生产的难度,提高生产效率。需要说明的是,在本实施方式中变压器100虽然次级绕组只开设单个次级绕线槽44,但是本实施方式的设计可以克服生产工艺上的难题,使得本实施方式的变压器100仍能满足工艺上的要求和使用性能的要求。
在某些实施方式中,次级绕组20的堆叠高度H2和次级绕组20的绕组宽度W2满足以下关系式,1.1<H2/W2<2.5,H2表示次级绕组20的堆叠高度,W2表示次级绕组20的绕组宽度。
如此,这样使得次级绕组20能够满足变压器100的使用性能的需求。
可以理解,由于次级绕组20的堆叠高度H2和次级绕组20的绕组宽度W2满足以下关系式,1.1<H2/W2<2.5,这样使得次级绕组20的各个绕线层之间的电压差可以维持在一个合适的范围。较佳的,次级绕组20的堆叠高度H2可为次级绕组20的绕组宽度W2的1.2至2倍。需要说明的是,在实际的生产时,可以根据生产线的磁隙精度来获取具体的数值或数值范围。在保持H2与W2的比值满足在1.1与2.5之间的情况下,如果W2的需要设计得比较小,则可以将磁隙设计得比较小,但是对磁隙的精度要求就比较高。同样的,在保持H2与W2的比值满足在1.1与2.5之间的情况下,如果W2的需要设计得比较大,则可以将磁隙设计得比较大,但是对磁隙的精度要求就比较低。
请参阅图1,在某些实施方式中,变压器100包括两个对插的磁芯30,绕线管40包括间隔件46,每个磁芯30的一端位于绕线管40内且分别抵靠在间隔件46相背的两侧。
如此,通过间隔件46以使两个对插的磁芯30能够满足预设磁隙50,从而使得变压器100的耦合率能够维持在合适的范围。
具体的,两个对插的磁芯30分别抵靠在间隔件46相背的两侧,这样使得两个磁芯30之间可以形成预设磁隙50,从而使得变压器100的磁隙能满足使用需求。需要说 明的是,间隔件46的数量可以为两个,一个间隔件46用于隔开两个磁芯30的一端,另一个间隔件46用于隔开两个磁芯30的另一端。
在某些实施方式中,变压器100包括灯丝绕组60,绕线管40开设有灯丝绕线槽45,次级绕线槽44位于灯丝绕线槽45和初级绕线槽42之间,灯丝绕组60的绕线绕在灯丝绕线槽45。如此,通过灯丝绕组60可连接外部的微波发生器,从而可给微波发生器供电。
在某些实施方式中,变压器100包括绝缘的盖部70,盖部70部分地覆盖初级绕线槽42、次级绕线槽44和灯丝绕线槽45。如此,盖部70起到保护磁芯30的作用,结构简单。
请参阅图3,本申请实施方式还提供一种供电装置110。供电装置110包括整流模块112和功率转换模块114。整流模块112连接交流源116。功率转换模块114连接整流模块112。功率转换模块114包括上述任一实施方式的变压器100。
上述实施方式的供电装置110中,由于初级绕组10的绕组宽度W1大于初级绕组10的堆叠高度H1,并且次级绕组20的绕组宽度W2小于初级绕组10的堆叠高度H1,这样使得供电装置110能保持在一个合适的耦合率的同时也使得供电装置110的结构简化和小型化,并且本实施方式的供电装置110无需进行跳线槽设计,也无需过高地要求磁隙精度。
具体的,整流模块112包括整流器1122、电感1124和第一电容1126。整流模块112可以将交流源116产生的交流电压转换为直流电压。需要说明的是,在一个例子中,交流源116为市电,其产生的交流电压大概为220V,频率大概为50HZ。可以理解,整流模块112还可采用其它形式的电路而不限于由整流器1122、电感1124、电容组成。功率转换模块114包括开关管115、第二电容1144和电流检测单元1146,第一电容1126的一端连接变压器100的初级绕组10一端,其另一端连接电流检测单元1146。第二电容1144的一端连接1126的一端和变压器100的初级绕组10的一端,其另一端连接变压器100的初级绕组10的另一端及开关管115的集电极。功率转换模块114用于将增大变压器100的输出功率。
在某些实施方式中,功率转换模块114包括控制模块1147和倍压整流模块1148,控制模块1147连接在变压器100的初级侧,倍压整流模块1148连接在变压器100的次级侧。
具体地,控制模块1147用于对交流源116检测以获取检测信号,并且根据检测信号控制开关管115的开关频率。需要指出的是,检测信号可为交流电源116的电压和变压器100的工作电流。控制模块1147可根据检测的检测信号产生相应的脉宽调制信 号(PWM,Pulse Width Modulation),并且根据脉宽调制信号来控制开关管115的导通时间,以改变开关管115的开关频率。需要说明的是,在一个例子中,脉宽调制信号为每一脉冲宽度均相等的脉冲,通过改变脉冲列的周期可以调节输出频率,改变脉冲的宽度或占空比可以调节输出电压,也就是说采用适当控制方法即可使电压与频率协调变化,从而可以通过调整PWM的周期、PWM的占空比而达到控制供电装置110的电流的目的。
倍压整流模块1148包括第一倍压二极管1141、第二倍压二极管1143、第三电容1145和第三电容1149。第一倍压二极管1141分别连接变压器100的次级侧的两端。第二倍压二极管1143的一端连接在变压器100的次级侧的一端,其另一端连接在第三电容1149和微波产生器120。第三电容1149的一端连接第二倍压二极管1143的一端和微波发生器120。第四电容连接在变压器100的次级侧的一端,其另一端连接在第三电容1149。
请参阅4,本申请实施方式还提供一种微波烹饪电器200。微波烹饪电器200包括上述任一实施方式的变压器100和微波产生器120。微波产生器120连接变压器100。
上述实施方式中的微波烹饪电器200中,由于初级绕组10的绕组宽度W1大于初级绕组10的堆叠高度H1,并且次级绕组20的绕组宽度W2小于次级绕组20的堆叠高度H2,这样使得微波烹饪电器200能保持在一个合适的耦合率的同时也使得微波烹饪电器200的结构简化和小型化,并且本实施方式的微波烹饪电器200无需进行跳线槽设计,也无需过高地要求磁隙精度。
可以理解,变压器100的灯丝绕组45连接微波产生器120。具体的,微波产生器120可以是磁控管。磁控管是一种用来产生微波能的电真空器件。磁控管内的电子在相互垂直的恒定磁场和恒定电场的控制下,与高频电磁场发生相互作用,把从变压器100的输出功率中获得能量转变成微波能量,从而达到产生微波能的目的。
具体的,微波烹饪电器200还包括腔体130,门体(图未示)与风扇150。腔体130内设有托盘160,托盘160用于放置待加热的食物,门体转动地设置于腔体130的前方,用于打开或关闭腔体130的开口,微波产生器120与变压器100安装在腔体130的外侧并设置于风扇150的吹风方向。在微波烹饪电器200工作时,变压器100向微波产生器120提供工作电流,微波产生器120产生用于加热腔体130内食物的微波能量。同时,风扇150可吸收来自外界的空气,并形成气流,气流可穿过风道在变压器100内传导,并对变压器100进行降温散热,在冷却变压器100后,气流可再从变压器100内排出至微波烹饪电器200外。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意 性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理模块的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(控制方法),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的实施方式的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施实施进行变化、修改、替换和变型。
Claims (20)
- 一种变压器,其特征在于,包括:初级绕组,所述初级绕组的绕组宽度大于所述初级绕组的堆叠高度;和与所述初级绕组隔开的次级绕组,所述次级绕组的绕组宽度小于所述次级绕组的堆叠高度。
- 如权利要求1所述的变压器,其特征在于,所述变压器包括绝缘的绕线管,所述绕线管开设有间隔的单个初级绕线槽和单个次级绕线槽,所述初级绕组的绕线绕在所述初级绕线槽,所述次级绕组的绕线绕在所述次级绕线槽。
- 如权利要求1所述的变压器,其特征在于,所述次级绕组的堆叠高度和所述次级绕组的绕组宽度满足以下关系式,1.1<H2/W2<2.5,H2表示所述次级绕组的堆叠高度,W2表示所述次级绕组的绕组宽度。
- 如权利要求2所述的变压器,其特征在于,所述变压器包括两个对插的磁芯,所述绕线管包括间隔件,每个所述磁芯的一端位于所述绕线管内且分别抵靠在所述间隔件相背的两侧。
- 如权利要求2所述的变压器,其特征在于,所述变压器包括灯丝绕组,所述绕线管开设有灯丝绕线槽,所述次级绕线槽位于所述灯丝绕线槽和所述初级绕线槽之间,所述灯丝绕组的绕线绕在所述灯丝绕线槽。
- 如权利要求5所述的变压器,其特征在于,所述变压器包括绝缘的盖部,所述盖部部分地覆盖所述初级绕线槽、所述次级绕线槽和所述灯丝绕线槽。
- 一种供电装置,其特征在于,包括:用于连接交流源的整流模块;和连接所述整流模块的功率转换模块;所述功率转换模块包括变压器,所述变压器包括:初级绕组,所述初级绕组的绕组宽度大于所述初级绕组的堆叠高度;和与所述初级绕组隔开的次级绕组,所述次级绕组的绕组宽度小于所述次级绕组的堆叠高度。
- 如权利要求7所述的供电装置,其特征在于,所述变压器包括绝缘的绕线管,所述绕线管开设有间隔的单个初级绕线槽和单个次级绕线槽,所述初级绕组的绕线绕在所述初级绕线槽,所述次级绕组的绕线绕在所述次级绕线槽。
- 如权利要求7所述的供电装置,其特征在于,所述次级绕组的堆叠高度和所述次级绕组的绕组宽度满足以下关系式,1.1<H2/W2<2.5,H2表示所述次级绕组的堆叠高度,W2表示所述次级绕组的绕组宽度。
- 如权利要求8所述的供电装置,其特征在于,所述变压器包括两个对插的磁芯,所述绕线管包括间隔件,每个所述磁芯的一端位于所述绕线管内且分别抵靠在所述间隔件相背的两侧。
- 如权利要求8所述的供电装置,其特征在于,所述变压器包括灯丝绕组,所述绕线管开设有灯丝绕线槽,所述次级绕线槽位于所述灯丝绕线槽和所述初级绕线槽之间,所述灯丝绕组的绕线绕在所述灯丝绕线槽。
- 如权利要求11所述的供电装置,其特征在于,所述变压器包括绝缘的盖部,所述盖部部分地覆盖所述初级绕线槽、所述次级绕线槽和所述灯丝绕线槽。
- 如权利要求7至12任一项所述的供电装置,其特征在于,所述功率转换模块包括控制模块和倍压整流模块,所述控制模块连接在所述变压器的初级侧,所述倍压整流模块连接在所述变压器的次级侧。
- 一种微波烹饪电器,其特征在于,包括供电装置和微波发生器,所述供电装置连接所述微波发生器;所述供电装置包括:用于连接交流源的整流模块;和连接所述整流模块的功率转换模块;所述功率转换模块包括变压器,所述变压器包括:初级绕组,所述初级绕组的绕组宽度大于所述初级绕组的堆叠高度;和与所述初级绕组隔开的次级绕组,所述次级绕组的绕组宽度小于所述次级绕组的堆叠高度。
- 如权利要求14所述的微波烹饪电器,其特征在于,所述变压器包括绝缘的绕线管,所述绕线管开设有间隔的单个初级绕线槽和单个次级绕线槽,所述初级绕组的绕线绕在所述初级绕线槽,所述次级绕组的绕线绕在所述次级绕线槽。
- 如权利要求14所述的微波烹饪电器,其特征在于,所述次级绕组的堆叠高度和所述次级绕组的绕组宽度满足以下关系式,1.1<H2/W2<2.5,H2表示所述次级绕组的堆叠高度,W2表示所述次级绕组的绕组宽度。
- 如权利要求15所述的微波烹饪电器,其特征在于,所述变压器包括两个对插的磁芯,所述绕线管包括间隔件,每个所述磁芯的一端位于所述绕线管内且分别抵靠在所述间隔件相背的两侧。
- 如权利要求15所述的微波烹饪电器,其特征在于,所述变压器包括灯丝绕组,所述绕线管开设有灯丝绕线槽,所述次级绕线槽位于所述灯丝绕线槽和所述初级绕线槽之间,所述灯丝绕组的绕线绕在所述灯丝绕线槽。
- 如权利要求18所述的微波烹饪电器,其特征在于,所述变压器包括绝缘的盖部,所述盖部部分地覆盖所述初级绕线槽、所述次级绕线槽和所述灯丝绕线槽。
- 如权利要求14至19任一项所述的微波烹饪电器,其特征在于,所述功率转换模块包括控制模块和倍压整流模块,所述控制模块连接在所述变压器的初级侧,所述倍压整流模块连接在所述变压器的次级侧。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810388063.7 | 2018-04-26 | ||
CN201810388063.7A CN108389702B (zh) | 2018-04-26 | 2018-04-26 | 变压器、供电装置和微波烹饪电器 |
CN201820617357.8 | 2018-04-26 | ||
CN201820617357.8U CN208189366U (zh) | 2018-04-26 | 2018-04-26 | 变压器、供电装置和微波烹饪电器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019205249A1 true WO2019205249A1 (zh) | 2019-10-31 |
Family
ID=68294386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/091304 WO2019205249A1 (zh) | 2018-04-26 | 2018-06-14 | 变压器、供电装置和微波烹饪电器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019205249A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1316173A (zh) * | 1999-06-15 | 2001-10-03 | 松下电器产业株式会社 | 磁控管驱动升压变压器和磁控管驱动电源的变压器 |
CN201489965U (zh) * | 2009-08-17 | 2010-05-26 | 王奉瑾 | 一种变压器 |
US20130033351A1 (en) * | 2011-08-04 | 2013-02-07 | Eun Soo Kim | Power supply apparatus |
CN103985526A (zh) * | 2014-05-15 | 2014-08-13 | 广东美的厨房电器制造有限公司 | 变压器 |
CN104505217A (zh) * | 2014-12-24 | 2015-04-08 | 江苏康尔臭氧有限公司 | 一种新型高频高压变压器 |
-
2018
- 2018-06-14 WO PCT/CN2018/091304 patent/WO2019205249A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1316173A (zh) * | 1999-06-15 | 2001-10-03 | 松下电器产业株式会社 | 磁控管驱动升压变压器和磁控管驱动电源的变压器 |
CN201489965U (zh) * | 2009-08-17 | 2010-05-26 | 王奉瑾 | 一种变压器 |
US20130033351A1 (en) * | 2011-08-04 | 2013-02-07 | Eun Soo Kim | Power supply apparatus |
CN103985526A (zh) * | 2014-05-15 | 2014-08-13 | 广东美的厨房电器制造有限公司 | 变压器 |
CN104505217A (zh) * | 2014-12-24 | 2015-04-08 | 江苏康尔臭氧有限公司 | 一种新型高频高压变压器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6449178B1 (en) | Magnetron drive step-up transformer and transformer of magnetron drive power supply | |
JP7089057B2 (ja) | 電子式変圧器及び電子レンジ調理器 | |
CN108389702B (zh) | 变压器、供电装置和微波烹饪电器 | |
CN110556233A (zh) | 一种系列化的漏感集成型高频变压器结构及实现方法 | |
WO2019205249A1 (zh) | 变压器、供电装置和微波烹饪电器 | |
JP3477085B2 (ja) | 高周波加熱装置用インバータ電源 | |
JP2010004633A (ja) | 直流電源装置 | |
CN102623143A (zh) | 用于微波炉的具有通风管的高压变压器 | |
CN108365763B (zh) | 电子变压器和微波烹饪电器 | |
CN208189366U (zh) | 变压器、供电装置和微波烹饪电器 | |
JP3735490B2 (ja) | 電子レンジ | |
JP2000357617A (ja) | マグネトロン駆動用電源のトランス | |
JPH04338615A (ja) | インバータトランス | |
US20250149298A1 (en) | Plasma processing apparatus | |
JP3069979U (ja) | マグネトロン駆動用昇圧トランス | |
US11508510B2 (en) | Inductors with core structure supporting multiple air flow modes | |
CN108750407B (zh) | 一种利用涡流技术的蓄冷保温箱温控设备 | |
CN108449822A (zh) | 供电装置和微波烹饪电器 | |
JP3168838B2 (ja) | 高周波加熱装置 | |
WO2025126437A1 (ja) | プラズマ処理装置 | |
CN113192731A (zh) | 变压组件、电源组件和烹饪器具 | |
JPH06112063A (ja) | マグネトロン駆動装置 | |
CN113643886A (zh) | 变压器、开关电源及电子设备 | |
KR20200113569A (ko) | 멀티레벨 인버터용 출력 변압기 | |
WO2018120817A1 (zh) | 变频器及微波炉 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18916588 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18916588 Country of ref document: EP Kind code of ref document: A1 |