[go: up one dir, main page]

WO2019198581A1 - Anti-glare front panel, and display device and vehicle information display device using same - Google Patents

Anti-glare front panel, and display device and vehicle information display device using same Download PDF

Info

Publication number
WO2019198581A1
WO2019198581A1 PCT/JP2019/014735 JP2019014735W WO2019198581A1 WO 2019198581 A1 WO2019198581 A1 WO 2019198581A1 JP 2019014735 W JP2019014735 W JP 2019014735W WO 2019198581 A1 WO2019198581 A1 WO 2019198581A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
display device
front plate
antiglare layer
Prior art date
Application number
PCT/JP2019/014735
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 昇平
正晴 橋爪
Original Assignee
株式会社ポラテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ポラテクノ filed Critical 株式会社ポラテクノ
Publication of WO2019198581A1 publication Critical patent/WO2019198581A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present disclosure relates to a front plate with an antiglare function installed on the front surface of an information display device such as a vehicle meter, a display device using the same, and a vehicle information display device.
  • a gray smoke-like translucent acrylic resin having a transmittance of about 20% to 70% is used as the front plate.
  • a gray-smoke-like translucent front plate (cover) with a transmittance of about 20 to 70% is usually manufactured by injection molding mainly using a colored resin such as acrylic resin or polycarbonate. Yes.
  • the gray smoke-like front plate it is possible to reduce the external reflection light on the surface of the liquid crystal display and increase the display contrast. Further, by using a gray smoke-like front plate so that the liquid crystal display or the like does not show the inside of the information display device when it is not displayed, it is possible to prevent the judgment from being complicated due to excess information.
  • a front plate has been proposed in which a polarizing plate and a transparent resin are integrally formed instead of a gray smoke-like resin.
  • the display unit such as a liquid crystal
  • the emitted light from the image display unit can be efficiently extracted without attenuating the emitted light by the front plate even in a gray smoke tone. it can.
  • an anti-glare process such as matting may be imparted to the surface of the front plate.
  • a method of transferring the unevenness against a molten or softened resin using a mold having a rough surface or a film having unevenness in advance as a mold A method of imparting antiglare properties to the surface of a molded product by sandblasting the resin surface after injection molding is employed.
  • the antiglare layer used for liquid crystal or the like is obtained by applying a UV curable resin such as an acrylic resin mixed with organic or inorganic fine particles (filler) on the film surface and curing it.
  • a UV curable resin such as an acrylic resin mixed with organic or inorganic fine particles (filler)
  • the said film may be laminated
  • a front plate formed by insert molding a film having an antiglare layer and a resin is disclosed.
  • the present disclosure aims to provide a glare-proof front plate that suppresses glare even in a high-definition display device and has high sharpness.
  • the applicant has formed a film provided with an antiglare layer having an uneven phase separation structure and a resin, thereby suppressing glare even in a high-definition display device, and high
  • the inventors have found that the present invention has clearness and have completed the present disclosure.
  • one aspect of the present disclosure is that a film provided with an antiglare layer having a phase separation structure having irregularities and a resin are integrally formed, and the antiglare layer is disposed on the viewing side. It is the front board of the display apparatus characterized.
  • the antiglare layer may include at least one thermoplastic resin and a cured product of at least one curable resin, and may have a phase separation structure of the thermoplastic resin and the curable resin.
  • the curable resin may include at least one selected from an acrylic resin, a polymethyl methacrylate resin, and a polycarbonate resin.
  • the film may include a polarizing film containing a dichroic dye and a support film that sandwiches both surfaces of the polarizing film, and at least one of the support films may include the antiglare layer.
  • the antiglare layer has a haze value of 1% or more and 10% or less, the antiglare layer has a transmitted image definition of 40% or more at an optical comb width of 0.05 mm, and an optical comb is provided.
  • the transmitted image definition at 0.125 mm may be 70% or more.
  • the antiglare layer has a difference in change between a haze value before integrally molding the film and the resin and a haze value after integral molding being 1.5% or less, and the film and the resin
  • the ratio of the change in arithmetic mean roughness, root mean square height, and maximum height in the surface roughness before integrally molding and the surface roughness after integrally molding may be 10% or less, respectively.
  • the resin may be a gray smoke resin having a transmittance of 20 to 70%.
  • an adhesive layer may be provided between the antiglare layer and the resin, and the adhesive layer may include amorphous polyester.
  • Another aspect of the present disclosure is a display device including the front plate.
  • Another aspect of the present disclosure is an in-vehicle information display device that includes the front plate and is used in an in-vehicle display device.
  • an anti-glare front plate having high definition and suppressing glare even in a high-definition display device.
  • the front plate 100 in the embodiment of the present disclosure is configured by laminating a resin layer 10, an adhesive layer 12, a support film 14, and an antiglare layer 16 as shown in the schematic cross-sectional view of FIG.
  • the application range of this indication should just be the structure by which the resin layer 10 and the glare-proof layer 16 were shape
  • FIG. 1 is a schematic diagram to the last, and the actual film thickness and the like of each layer are not as illustrated.
  • the front plate 100 is provided on the viewing side of an information display device that displays various types of information during driving, such as a liquid crystal display (liquid crystal) such as a car or an instrument panel.
  • a liquid crystal display liquid crystal
  • the front plate 100 can protect the display device from dust and scratches.
  • the front plate 100 may be referred to as a cover or a front panel.
  • the front plate 100 can be used to protect a display device that displays information from the outside world.
  • it is referred to as a front plate 100, but is not necessarily limited to the one used on the front surface of the display device, and may be used on the side surface, back surface, and upper and lower surfaces of the display device. That is, the front plate 100 only needs to be disposed on a surface for visually recognizing information from the display device.
  • a display device means a device that displays information by at least one light emission. That is, the display device only needs to display certain information that can be recognized by a person or a machine by emitting emitted light to the outside.
  • the display device may emit light by itself, or may be light supplied from another source such as a backlight or reflected light. Examples of the display device include a liquid crystal display (liquid crystal) and an organic EL (OLED).
  • the display device include a liquid crystal display (liquid crystal) and an organic EL (OLED).
  • the display device may be for displaying fixed information for displaying the state, or for displaying variable information such as a speedometer and a tachometer.
  • the antiglare layer 16 is a surface-treated layer provided on the viewing side, and is generally referred to as an “antiglare layer (abbreviated as an AG layer)”, and is otherwise referred to as a “matte layer”. .
  • the antiglare layer 16 is a layer in which a fine uneven structure is provided on the surface of a film or resin.
  • the antiglare layer 16 is disposed on the front surface of the display device, for example, and diffuses and reflects light with its fine structure, so that external light or room light is reflected on the screen of the display device, making it difficult to see the display image. It can be used to reduce feelings.
  • the surface of an automobile interior member is generally subjected to unevenness processing such as embossing and matting, and there is a case where a harmonious design is required between the interior part and the display device. Therefore, the antiglare layer 16 is applied to the front plate for the display device in the vehicle.
  • the hard coat property (or scratch resistance) can be imparted to the antiglare layer 16 by curing the curable resin.
  • the front plate 100 can be hardly scratched by scratches or the like.
  • the antiglare layer 16 can be imparted with antifouling properties by including, for example, a silicon-based or fluorine-based additive. Thereby, it is possible to easily wipe off fingerprints and dirt on the front plate 100.
  • the anti-glare layer 16 in the present embodiment is characterized in that the uneven structure is a phase separation structure.
  • the phase separation structure is composed of a resin composition containing a thermoplastic resin and a curable resin. That is, the phase separation structure refers to a structure formed by spinodal decomposition (wet spinodal decomposition) from a liquid phase in which a thermoplastic resin and a curable resin are mixed in a solvent. More specifically, spinodal decomposition is usually performed by applying a mixed solution or a resin composition containing at least one thermoplastic resin, at least one curable resin, and a solvent to a support, and the solvent is evaporated from the coating layer.
  • the curable resin may be, for example, an epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, silicone (meth) acrylate, a polyfunctional monomer having at least two polymerizable unsaturated bonds, or the like. Good.
  • the thermoplastic resin may be any resin that can be phase-separated by spinodal decomposition, such as cellulose derivatives, styrene resins, (meth) acrylic resins, alicyclic olefin resins, polycarbonate resins, polyester resins, and the like. Also good.
  • additives may be added to the antiglare layer 16 as necessary.
  • Additives include additives such as antistatic agents, plasticizers, surfactants, antioxidants, ultraviolet absorbers, etc., in addition to surface modifiers such as silicon and fluorine.
  • the antiglare layer 16 can be formed on a transparent film. Specifically, a film having the antiglare layer 16 can be formed on the transparent film by a method such as applying or transferring the antiglare layer 16.
  • the antiglare layer 16 can be formed on the surface of a support film or the like using a known method (for example, see JP-A-2006-103070).
  • a resin forming the support film a cycloolefin resin, a polyester resin, an acrylic resin, a polycarbonate resin, a polysulfone resin, an alicyclic polyimide resin, an acetyl cellulose resin, or the like can be applied.
  • an acetyl cellulose resin more preferably triacetyl cellulose (TAC).
  • TAC triacetyl cellulose
  • the film which has an anti-glare layer may use a commercially available thing, for example, can use commercially available Daicel Chemical Industries PFT80000HNP.
  • a film having the antiglare layer 16 can also be used as a support for the polarizing plate. Then, the structure which applied the film which has the glare-proof layer 16 as a support body of a polarizing plate is demonstrated.
  • FIG. 2 shows the configuration of the front plate 100 when a film having the antiglare layer 16 is used as a support for a polarizing plate.
  • the front plate 100 is configured by laminating the resin layer 10, the adhesive layer 12, the first support film 14 a, the polarizing film 18, the second support film 14 b, and the antiglare layer 16.
  • the resin layer 10 the polarizing film 18, and the glare-proof layer 16 were shape
  • the front board 100 is the example.
  • FIG. 2 is a schematic diagram to the last, and the film thickness and the like of each actual layer are not as illustrated.
  • the polarizing plate has a configuration in which a supporting film 14 (in FIG. 2, a first supporting film 14a and a second supporting film 14b are bonded to both surfaces) on one or both surfaces of a polarizing film 18 that functions as a polarizing element.
  • a supporting film 14 in FIG. 2, a first supporting film 14a and a second supporting film 14b are bonded to both surfaces
  • a polarizing film 18 that functions as a polarizing element.
  • the polarizing film 18 it is preferable to use it as a polarizing plate in which both surfaces of the polarizing film 18 are sandwiched between the first support film 14a and the second support film 14b. This is because, since the polarizing film 18 is generally a uniaxially stretched polyvinyl alcohol dyed with a dichroic dye and is a thin film, it is sandwiched between the first support film 14a and the second support film 14b.
  • the polarizing film 18 is a film having a function of converting natural light into linearly polarized light, and may be obtained by adsorbing and orienting a dichroic dye on a polyvinyl alcohol resin film.
  • dichroic dye iodine or an azo, anthraquinone, or tetrazine dichroic dye can be used.
  • iodine when used as the dichroic dye, after the polyvinyl alcohol resin film is dyed with iodine, or at the same time, the drawing treatment, boric acid treatment, and if necessary, in a chlorine compound-containing aqueous solution It can manufacture by performing the complementary color process immersed in.
  • an azo, anthraquinone, or tetrazine dichroic dye may be used as a dichroic dye.
  • the dichroic dye include azo compound dyes, C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 28, C.I. I. Direct Yellow 44, C.I. I. Direct Orange 26, C.I. I. Direct Orange 39, C.I. I. Direct Orange 107, C.I. I. Direct Red 2, C.I. I. Direct Red 31, C.I. I. It can be either Direct Red 79.
  • a dye described in JP-A No. 2003-215338 and a dye described in WO 2007/138980 may be used.
  • the polarizing film 18 is usually about 10 to 40 ⁇ m.
  • a dichroic dye When a dichroic dye is used as a dichroic dye, durability of optical properties under high temperature conditions and high temperature and high humidity conditions is superior to iodine, and color change during molding is less than that of iodine. Therefore, the hue adjustment in the polarizing film 18 is easy, and the yellowness can be lowered as compared with the case where iodine is used as the dichroic dye.
  • the polarizing film 18 may be an achromatic polarizing film 18 instead of the conventional colored polarizing film 18.
  • the achromatic polarizing film 18 has an absolute value of hue a * and hue b * in parallel Nicols (the hue coordinates a * and b * are color coordinates determined by the International Commission on Illumination (CIE)). May be 1.0 or less.
  • Such an achromatic polarizing film 18 can be produced by a known method (for example, a method disclosed in International Publication WO2014 / 162634A1).
  • the single transmittance Ys of the polarizing film 18 suitable for the front plate 100 is 20 to 50% and the polarization degree Py is 90% or more.
  • the productivity is lowered because a high concentration dyeing solution is used or the dyeing needs to be performed for a long time.
  • the unit transmittance Ys may not be reduced to 20 to 30% or less. Therefore, in order to obtain a desired transmittance in the front plate 100, a polarizing plate and a gray smoke resin may be used in combination.
  • the transmittance and the degree of polarization can be measured by JASCO Corporation V-7100 and Hitachi, Ltd. U-4100. Specifically, a polarizing plate is produced, and the transmittance when one polarizing plate is used is the transmittance when the single polarizing plate Ys and the two polarizing plates are stacked so that the absorption axis directions are the same. Let the transmittance be the parallel transmittance Yp, and let the transmittance when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other be the orthogonal transmittance Yc.
  • the respective transmittances are calculated from the formula (1) by obtaining the spectral transmittance ⁇ at predetermined wavelength intervals d ⁇ (here, 5 nm) in the wavelength region of 380 to 700 nm.
  • d ⁇ the spectral transmittance
  • P ⁇ represents the spectral distribution of the standard light (C light source)
  • y ⁇ represents the color matching function of the double field of view
  • represents the spectral transmittance.
  • the degree of polarization Py is obtained from the parallel transmittance Tp and the orthogonal transmittance Tc by the mathematical formula (2).
  • the support film 14 When using the support film 14 as a polarizing plate, the support film 14 is bonded to one side or both sides of the polarizing film 18.
  • the resin that forms the support film 14 include cycloolefin resin, polyester resin, acrylic resin, polycarbonate resin, polysulfone resin, and alicyclic polyimide resin. An acetyl cellulose resin or the like can be applied.
  • the antiglare layer 16 is provided on the second support film 14b on the viewing side of the front plate 100. As described above, the antiglare layer 16 can be formed on the second support film 14b.
  • the interface can be welded together by heating when the support film 14 and the resin 10 are integrally formed.
  • the polarizing film 18 may be disposed so that the side on which the polarizing film 18 is provided is inside the information display device.
  • the polarizing film 18 exists inside the information display device, it is possible to suppress the effects of depolarization caused by the resin and the occurrence of rainbow unevenness due to optically anisotropic components. Furthermore, it is good also as a structure which does not provide the support film for protecting the polarizing film 18.
  • the depolarization property and optical anisotropy component caused by the resin 10 can be adjusted by selecting the material of the resin 10 and the conditions at the time of molding, the polarizing plate is installed outside the information display device. Also good.
  • Phase difference film When the polarizing plate having the film having the antiglare layer 16 and the polarizing film 18 is used, a retardation film may be provided on the viewing side of the polarizing plate.
  • the front plate 100 having a polarizing plate is arranged on the viewing side of the liquid crystal display device, the polarization axes of the polarizing film 18 and the polarized sunglasses coincide, and the display image is displayed. May not be visible. Therefore, the visibility problem can be solved by providing a retardation film on the viewing side of the front plate 100, that is, the viewing side of the polarizing plate.
  • a retardation film having the antiglare layer 16 by directly forming the antiglare layer 16 on the retardation film may be used. Furthermore, you may use this as the support film 14 of a polarizing plate.
  • a retardation film is a film-like optical member made of a birefringent material.
  • the thickness of the retardation film may be 5 ⁇ m or more and 500 ⁇ m or less, and may be 10 ⁇ m or more and 300 ⁇ m or less. When the thickness of the retardation film is less than 5 ⁇ m, the handleability as an industrial material is lowered.
  • the retardation of the retardation film may be in the range of 300 nm to 30000 nm. When the retardation is higher than 30000 nm, the film thickness is correspondingly increased, and the handleability as an industrial material is lowered.
  • the retardation film include a ⁇ / 4 retardation film and a ⁇ / 2 retardation film.
  • integral molding means that the film having the resin 10 and the antiglare layer 16 is physically integrated.
  • the integral molding may be performed not only by molding means such as injection molding or insert molding, but also by bonding with an adhesive or an adhesive.
  • injection molding is performed so that the film having the antiglare layer 16 and the resin 10 can be processed following each other. It is preferable to apply molding means by insert molding.
  • the film having the antiglare layer 16 is shaped in advance so that the film having the antiglare layer 16 and the resin 10 can be easily followed.
  • the front plate 100 has a shape other than a flat surface or has irregularities, the method of bonding the film having the antiglare layer 16 to the resin 10 with an adhesive or a pressure sensitive adhesive, There is a possibility that air may be caught in the adhesive layer or the pressure-sensitive adhesive layer, and it is not easy to finish with a good appearance.
  • Resin 10 is not particularly limited as long as it is a material that can be integrally molded and has a mechanical strength that can be protected from the outside world.
  • a polycarbonate resin (PC resin) is used to obtain stable performance under high temperature conditions and high temperature and high humidity conditions. Also good.
  • the polarizing film 18 needs high heat resistance. Therefore, the polarizing film 18 using a dichroic dye is preferable.
  • the resin 10 is desirably transparent, but is not limited to being transparent, and may be smoked such as gray smoke.
  • the transmittance of the entire front plate is adjusted by integrating the polarizing plate and gray smoke resin together. May be.
  • the polarization degree of the polarizing plate is 90% or more, the effect of the front plate 100 having the polarizing plate can be sufficiently obtained.
  • the front plate 100 may be configured by combining the support film 14 provided with the antiglare layer 16 and the transparent or gray smoke resin 10.
  • the transmittance of the gray smoked resin 10 may be 20% or more, and preferably 20% or more and 50% or less. When the transmittance is less than 20%, the display appears dark when the display is on (the liquid crystal display is being performed). Further, when the transmittance exceeds 50%, the internal mechanism such as the speedometer needle is seen through when the display is turned off (when the liquid crystal or the like is being displayed), which deteriorates the appearance.
  • Examples of the material of the resin 10 suitable for integral molding include acrylic resin, polymethyl methacrylate resin (PMMA resin), PC resin, and the like.
  • the material of the resin 10 may be a PMMA resin from the viewpoints of price, transparency, difficulty in scattering when damaged, and the like.
  • the material of these resin 10 can use the pellet-shaped material marketed.
  • Resin 10 contains antioxidants, lubricants, UV absorbers, colorants, flame retardants, crosslinking aids, inorganic fillers as necessary for the purpose of improving hardness, strength, moldability, durability, water resistance, and hue. Additives such as materials may be added.
  • the antioxidant is not particularly limited, and those generally used can be used. Specifically, phenolic antioxidants and amine antioxidants that are radical chain inhibitors are preferred, and phenolic antioxidants are particularly preferred. Examples of phenolic antioxidants include 2,6-t-butyl-p-cresol, 2,6-t-butyl-4-ethylphenol, 2,2′-methylenebis (4-methyl-6-t-butylphenol) and Examples thereof include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane.
  • benzophenone ultraviolet absorbers there is no restriction
  • benzophenone ultraviolet absorbers e.g., benzotriazole ultraviolet absorbers, and cyanoacrylate ultraviolet absorbers are preferred, and benzophenone ultraviolet absorbers are particularly preferred.
  • benzophenone ultraviolet absorbers include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-butylphenyl) benzotriazole, and 2- (2-hydroxy-3 '-T-butylphenyl) benzotriazole and the like.
  • colorant there are no particular restrictions on the colorant, and anthraquinone, azo, carbonium, quinoline, quinoneimine, indigoid, phthalocyanine, and other organic pigments, azoic dyes, sulfur dyes and other organic dyes, titanium yellow, yellow oxidation
  • examples thereof include inorganic pigments such as iron, zinc yellow, chrome orange, molybdenum red, cobalt violet, cobalt blue, cobalt green, chromium oxide, titanium oxide, zinc sulfide, and carbon black.
  • the blending amount is not particularly limited.
  • the flame retardant is not particularly limited, and bromine-containing compounds such as brominated epoxy compounds, acid-modified brominated epoxy compounds, brominated epoxy compounds having an acryloyl group, acid-modified brominated epoxy compounds having an acryloyl group, red Phosphorus, tin oxide, antimony compounds, zirconium hydroxide, barium metaborate, aluminum hydroxide, magnesium hydroxide and other inorganic flame retardants, ammonium phosphate compounds, phosphate compounds, aromatic condensed phosphate esters, halogen-containing condensed phosphorus Examples thereof include phosphorus compounds such as acid esters, nitrogen-containing phosphorus compounds, and phosphazene compounds.
  • bromine-containing compounds such as brominated epoxy compounds, acid-modified brominated epoxy compounds, brominated epoxy compounds having an acryloyl group, acid-modified brominated epoxy compounds having an acryloyl group, red Phosphorus, tin oxide, antimony compounds, zirconium hydrox
  • the degree of decrease in the antiglare performance before and after being integrally formed is, for example, surface roughness measurement, haze measurement, and transmission. It can be evaluated from the measurement of image definition. These values change with a correlation with the change in the concavo-convex shape.
  • changes in measured values before and after molding are the changes in arithmetic mean roughness (Ra), root mean square height (Rq), and maximum height (Rz) in surface roughness.
  • Ra arithmetic mean roughness
  • Rq root mean square height
  • Rz maximum height
  • Each ratio is 10% or less
  • the difference between the haze value before molding and the haze value after molding is 1.5% or less
  • the difference between before molding and after molding is 0.05 mm in the width of the optical comb. In this case, it may be 15% or less, and may be 5% or less when the width of the optical comb is 0.125 mm. That is, the front plate 100 in the present embodiment has almost no change in appearance or a decrease in anti-glare performance before and after molding.
  • Surface roughness refers to the state of unevenness on the surface of parts, films, etc., and refers to a periodic shape in which peaks and valleys with different heights, depths, and intervals are continuous.
  • the surface roughness can be evaluated using values such as arithmetic average surface roughness Ra, root mean square roughness Rq, and maximum height Rz. That is, using these evaluation values, it is possible to evaluate the fineness of the unevenness of the antiglare layer 16 and the change in the height of the unevenness before and after the molding process.
  • Arithmetic average surface roughness Ra is an evaluation value indicating the height of the unevenness on the surface, and a part of the roughness curve measured with a roughness meter is extracted at the reference length, and the average value of the unevenness height in that section.
  • Is a value representing The root mean square roughness Rq is a value representing the root mean square of the height of the unevenness in the reference length section, and means a standard deviation of the surface roughness.
  • the maximum height Rz is obtained from the sum of the highest part (maximum peak height) and the lowest part (maximum valley depth) by extracting a part of the roughness curve measured with a roughness meter at the reference length.
  • the evaluation value regarding the surface roughness in the present embodiment is measured using a surf test SJ-310 manufactured by Mitutoyo Corporation. Specifically, the film is fixed on a smooth glass plate with the antiglare layer 16 on the upper side, and a standard detector of the measuring machine (measuring force is 0.75 mN, Stalice shape is tip radius 2 ⁇ , tip angle 60 degrees. Place a standard drive unit with a) on the uneven surface of the film. Then, the height information of the continuous surface unevenness is obtained by linearly moving the tip of the detector in contact with the surface unevenness. At this time, the measurement distance of the detector was 4.8 mm, and the moving speed was 0.5 cm / s.
  • Haze means the degree of cloudiness and represents the degree of transparency of glass, plastic, liquid, or the like.
  • the haze value H (unit:%) is calculated from the mathematical formula (3).
  • ⁇ d represents diffuse transmittance
  • ⁇ t represents total light transmittance.
  • the haze value is obtained as the sum of scattering due to irregularities on the surface of the antiglare layer 16 (external scattering) and scattering inside the antiglare layer 16 (internal scattering). For example, when organic fine particles are contained inside the antiglare layer 16, the haze value is caused by internal scattering due to the difference in refractive index between the fine particles and the resin layer serving as a binder, even if the surface has no uneven structure. Is measured.
  • the haze value in the present embodiment is measured using HM-150 manufactured by Murakami Color Research Laboratory.
  • the haze measurement may be performed directly in the state of a polarizing plate or a front plate including a film having the antiglare layer 16 as long as there is no scattering component inside the measurement sample structure and is smooth, but it is precisely antiglare.
  • it is preferable to carry out in the state of a single film.
  • an adhesive layer and a glass plate are sequentially laminated on the surface of the film having the antiglare layer 16, and the surface irregularities are buried in the adhesive layer.
  • the haze value of the antiglare layer provided on the front surface of a liquid crystal display device or the like is 1% or more and 30% or less.
  • the haze value exceeds 10%, the display image appears to be blurred white.
  • the antiglare layer 16 having a haze value of 1 to 4% a display image with a blackened color can be obtained. Therefore, the haze value of the antiglare layer 16 may be 1% or more and 10% or less.
  • the transmitted image definition is an evaluation value obtained by quantifying blur and distortion of light transmitted through the film.
  • the transmitted image definition is calculated based on the amount of light in the bright and dark portions of the optical comb by measuring the transmitted light from the film through the moving optical comb. That is, when the film blurs the transmitted light, the slit image formed on the optical comb becomes thick, so that the amount of light at the transmissive portion is less than 100%, while the light leaks at the non-transmissive portion, and 0%. The value exceeds.
  • the transmitted image definition C is defined by Equation (4) from the transmitted light maximum value M of the transparent portion of the optical comb and the transmitted light minimum value m of the opaque portion. That is, it can be said that the blur of the image by the film is smaller as the value of the transmitted image definition C approaches 100%.
  • the image clarity measuring instrument ICM-1 manufactured by Suga Test Instruments Co., Ltd. was used to measure the transmitted image definition C.
  • the transmitted image definition may be measured directly in the state of a polarizing plate or a front plate including a film having the antiglare layer 16 as long as there is no scattering component inside the measurement sample structure and is smooth.
  • it is preferably performed in the state of a single film.
  • the measuring machine is equipped with optical combs of 0.05, 0.125, 0.5, 1.0 and 2.0 mm, and the transmission image definition C can be measured in each optical comb.
  • the transmission image definition C When there is a light scattering component such as fine particles in the sample, the amount of light at the transmission portion decreases as the width of the optical comb becomes smaller depending on the size of the scattering component. Therefore, it can be evaluated that the higher the transmitted image definition C is, the finer the concavo-convex structure of the antiglare layer 16 is, and the more the transmitted image is less blurred. Therefore, it is preferable that the transmitted image definition C has a higher value when the width of the optical comb is 0.05 mm and 0.125 mm.
  • the transmitted image definition C may be 40% or more and 70% or less when the width of the optical comb is 0.05 mm, and 70% or more and 90% or less when the width of the optical comb is 0.125 mm.
  • the transmitted image definition C in an optical comb having a width of 0.5 mm or more may have 80% or more.
  • the display image is displayed because there is a distance between the antiglare layer 16 and the display portion as compared with the case where the antiglare layer 16 is attached to the display portion of the information display device. Becomes easy to blur. Therefore, by setting the transmitted image definition C in the above preferable range, it is possible to make the display image of the display device clear while having an antiglare function.
  • the transmitted image definition C can also be used as an index as to whether or not the antiglare layer 16 corresponds to a high-definition display device.
  • the transmitted image clarity C is smaller than the appropriate range, display glare is likely to occur, and when the transmitted image clarity C is larger than the above range, sufficient antiglare performance cannot be obtained.
  • the glare means that the uneven structure works as a lens, and the red (R), green (G), and blue (B) pixels of the display body can be seen or the brightness is uneven. It means a phenomenon that looks flickering. As the display device becomes higher definition, unevenness is relatively increased due to pixel miniaturization, and the problem of glare is easily revealed (https://www.daicel.com/research/features.html) .
  • an injection molding method may be applied.
  • an insert molding method for injection molding a film (which may be a polarizing plate) having an antiglare layer 16 is cut or preformed into a desired shape in advance, and then placed in an injection mold, and simultaneously with the molding of the resin 10.
  • the film is formed integrally with the resin 10.
  • the resin and the polarizing plate can be attached simultaneously with the molding of the resin in the mold. Therefore, the manufacturing process can be greatly simplified.
  • the film is stretched by the injection pressure of the molten resin to follow the shape of the mold, so that the three-dimensional front plate 100 having a curved surface or the like can be easily manufactured.
  • an adhesive layer may be provided between the resin and the film having the antiglare layer 16 in order to improve the adhesiveness of the film having the resin 10 and the antiglare layer 16.
  • an adhesive layer may be provided when the support film 14 and the resin 10 are different materials.
  • the adhesive used include polyacrylic resin and polyester resin. Polyacrylic resin or the like can obtain high adhesion to the resin, but the adhesive layer may be eluted by heat during integral molding, and the appearance of the front plate 100 may be significantly deteriorated. Therefore, the adhesive used may be an amorphous polyester resin.
  • the adhesive layer is preferably provided in advance on one side of the film having the antiglare layer 16 by a coating apparatus or the like.
  • the thickness of the adhesive layer is preferably 1 to 50 ⁇ m, more preferably 10 to 30 ⁇ m. As a result, it is possible to obtain the front plate 100 that is excellent in adhesion with the resin, further in conformity with the resin shape, and in appearance after integral molding.
  • an infrared heater, a nichrome heater or the like may be arranged in the vicinity of the film having the antiglare layer 16 and heated.
  • the temperature of the mold may be 50 ° C. or more and 100 ° C. or less, more preferably 50 ° C. or more and 80 ° C. or less.
  • the film (or polarizing plate) having the antiglare layer 16 is fixed along a predetermined direction at a predetermined position in the molding die, and after closing the molding die, the resin 10 is melted from a gate provided in the stationary mold. Is injected into the cavity.
  • the cylinder temperature may be a temperature range of 200 ° C. or more and 290 ° C. or less, for example, depending on the type of resin.
  • the injection pressure of the resin 10 may be a pressure range of 70 MPa to 150 MPa. After the molten resin 10 is injected and filled in the cavity, the molded product is cooled, the mold is opened, and the molded product is taken out. Then, a film having an antiglare layer 16 at a specific position with respect to the resin 10 ( Alternatively, the front plate 100 in which the polarizing plate) is integrally formed can be manufactured.
  • a film having the antiglare layer 16, the polarizing film 18, and the resin 10 may be laminated in order from the viewing side through an adhesive layer or the like. Or you may laminate
  • the polarizing plate is outside the display device, that is, the viewing side of the front plate 100.
  • the resin 10 when laminating the polarizing film 18 and the resin 10 sequentially on the front plate through the adhesive layer from the viewing side, the resin 10 is disposed between the polarizing film 18 and the polarizing layer on the display device side. For this reason, the optical anisotropy of the resin 10 developed by injection molding causes optical axis misalignment, display image unevenness, and the like, and it may not be possible to extract light emitted from the display device to the maximum extent.
  • a resin 10 that is molecularly designed so as not to have retardation (or to be almost zero).
  • a resin 10 that is molecularly designed so as not to have retardation (or to be almost zero).
  • commercially available zero birefringence transparent acrylic resin Hyperlite (trademark registered) manufactured by Kaneka Corporation can be used.
  • the resin 10 is oriented to the inflow direction, which is a factor causing the optical anisotropy. Therefore, for example, it is preferable to optimally design the size, position, and number of gates, and it is preferable to optimally control processing conditions such as the melting temperature and inflow speed of the resin.
  • the front plate 100 having the polarizing film 18 on the viewing side can be attached to the front surface of the display device.
  • the front plate 100 sequentially connects the film having the antiglare layer 16, the resin 10, and the polarizing film 18 from the viewing side through the adhesive layer. It is preferable to laminate.
  • the injection molding method has been described as a method of integrally molding the front plate 100.
  • a method of bonding a film (or a polarizing plate) having the antiglare layer 16 to the surface of the molded resin 10 is described. May be used.
  • the film (or polarizing plate) having the antiglare layer 16 on the front plate 100 need not be provided on the entire surface of the resin 10.
  • 1 and 2 show an embodiment in which a film (or a polarizing plate) having the antiglare layer 16 is formed on the entire surface of the resin 10, but these are only examples schematically shown.
  • Example 1 ⁇ Manufacture of polarizing film 18> A polyvinyl alcohol resin film (VF-PS (75 ⁇ m) manufactured by Kuraray Co., Ltd.) was swollen in water at 30 ° C. for 5 minutes, and then dyed at 30 ° C. (1000 parts by weight of water and 1 part by weight of sodium tripolyphosphate).
  • VF-PS polyvinyl alcohol resin film manufactured by Kuraray Co., Ltd.
  • the obtained polarizing film 18 was measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. As a result, the single transmittance Ys was 30% and the polarization degree Py was 99%.
  • dipentaerythritol hexaacrylate manufactured by Nippon Kayaku Co., Ltd., DPHA
  • acrylic manufactured by Negami Kogyo Co., Ltd., M-5001
  • Irgacure 184 as a
  • This solution was applied to one side of a triacetyl cellulose film (80 ⁇ m) by a micro gravure coating method, the solvent was evaporated at 80 ° C., and then cured by irradiating light with an 80 W / cm high pressure mercury lamp. A film having an antiglare layer 16 having an uneven structure was obtained. The film thickness of this antiglare layer was about 6 ⁇ m.
  • polarizing plate including film having antiglare layer 16 A TAC film (thickness: 80 ⁇ m) was laminated on both surfaces of the polarizing film 18 with an aqueous adhesive containing polyvinyl alcohol (PVA) as a component, and then dried at 70 ° C. for 5 minutes to obtain a polarizing plate. At this time, a film having an antiglare layer 16 is used as the second support film 14b on one surface to be laminated, and a TAC film (TD80 made by Fuji Film) having no antiglare layer 16 is used on the other surface as the first support film 14a. Used as.
  • PVA polyvinyl alcohol
  • the adhesive layer can be obtained by providing a non-crystalline polyester resin adhesive (byron manufactured by Toyobo Co., Ltd.) on the support film 14 on the side where the antiglare layer 16 is not provided in the polarizing plate. Specifically, an amorphous polyester resin was used as the main agent, cyclohexanone was added as a diluent, and isocyanate was added as a curing agent. An adhesive was produced in which the amorphous polyester resin was 1, and cyclohexanone was mixed at a ratio of 0.33 and isocyanate at a ratio of 0.04. Next, the blended adhesive was applied on a release film, and the solvent was volatilized in the drying step.
  • a non-crystalline polyester resin adhesive byron manufactured by Toyobo Co., Ltd.
  • the solvent was volatilized from the release film coated with the adhesive using a plurality of drying furnaces each set in a temperature range of 40 ° C to 100 ° C. At this time, the coating amount was adjusted so that the thickness of the coating layer after drying was 15 ⁇ m or more and 30 ⁇ m or less. Then, the application surface was bonded together toward the 1st support film 14a without the glare-proof layer 16 of a polarizing plate.
  • a polarizing plate is integrally formed with a transparent resin 10.
  • Manufactured By keeping the mold temperature at 50 to 100 ° C., it was possible to make the polarizing plate conform to the shape of the mold.
  • the total thickness of the front plate 100 obtained from this was 2 mm.
  • Example 2 ⁇ Preparation of film having antiglare layer 16>
  • the adhesive produced in Example 1 was applied on the release film, and the solvent was volatilized in the drying step.
  • the solvent was volatilized from the release film coated with the adhesive using a plurality of drying furnaces each set in a temperature range of 40 ° C to 100 ° C.
  • the coating amount was adjusted so that the thickness of the coating layer after drying was 15 ⁇ m or more and 30 ⁇ m or less.
  • the said application surface was bonded together toward the surface without the glare-proof layer 16 of the TAC film with glare-proof property (PFT80 000HNP by Daicel Chemical Industries).
  • a photopolymerization initiator Irgacure 184, manufactured by Ciba Geigy
  • the acrylic resin was stirred at a high speed in a solvent in which 100 parts by weight, toluene and isopropyl alcohol were mixed, and then 1.3 parts by weight of hydroxypropyl cellulose was added to the mixed solution of toluene and isopropyl alcohol, so that the solid content was 50.
  • a dispersion was prepared so as to have a weight%. It was applied to one side of a 80 ⁇ m thick triacetyl cellulose film by a micro gravure coating method, the solvent was evaporated at 80 ° C., and then cured by irradiation with light with an 80 W / cm high pressure mercury lamp. A film having an antiglare layer having a glare layer thickness of about 4 ⁇ m was obtained.
  • a polarizing plate was produced in the same manner as in Example 1 using the obtained film having an antiglare layer. That is, the formation of the adhesive layer and the molding process with the resin were performed in the same manner as described in Example 1. However, in the antiglare layer, a curable resin having irregularities on the surface mixed with fine particles was formed on the TAC film.
  • a polarizing plate As a TAC film with antiglare properties, a polarizing plate was produced in the same manner as in Example 1 using DSR3 manufactured by Dai Nippon Printing. That is, the formation of the adhesive layer and the molding process with the resin were performed in the same manner as described in Example 1. In the antiglare layer, a curable resin having irregularities on the surface mixed with fine particles was formed on the TAC film.
  • Example 1 and Comparative Examples 1 and 2 The haze values of the antiglare polarizing plates obtained in Example 1 and Comparative Examples 1 and 2 were measured.
  • HM-150 manufactured by Murakami Color Research Laboratory was used for the measurement of the haze value.
  • Table 1 shows the measurement results of haze values.
  • the haze value of the antiglare polarizing plate was almost the same as that of the film having an antiglare layer alone.
  • the haze measurement after integral molding measured the thing of the state which isolated the polarizing plate with glare-proof from the resin part, and removed the remaining contact bonding layer completely.
  • the front plate 100 in Example 1 had almost no change in haze value before and after integral molding with the resin, compared to the front plates of Comparative Examples 1 and 2. Moreover, when the haze value for the internal scattering of the antiglare layer was measured by the above-described method, Example 1 and Comparative Example 1 had almost no internal scattering haze, but Comparative Example 2 had a haze of about 20%. Had a value.
  • the front plate 100 of Example 1 had almost no change in surface roughness before and after integral molding with the resin, compared to the front plates of Comparative Examples 1 and 2.
  • Example 1 and Comparative Example 2 were smaller than Comparative Example 1 and showed close values for arithmetic average roughness (Ra) and root mean square height (Rq) before molding. This indicates that the antiglare layer of Comparative Example 2 has a fine surface structure equivalent to the antiglare layer 16 of Actual Example 1. However, the maximum height (Rz) after the molding process is almost unchanged in Example 1, whereas Comparative Examples 1 and 2 are greatly reduced. This is considered to be because the convex portions of the antiglare layer were crushed by the molding process in Comparative Examples 1 and 2, and it can be said that the collapse of the convex portions was suppressed in Example 1.
  • Ra arithmetic average roughness
  • Rq root mean square height
  • the anti-glare layer is formed by mixing conventional organic or inorganic fine particles and a curable resin as in Comparative Examples 1 and 2, the surface irregularities are expressed as "sea and islands".
  • the portions are interspersed and the heights of the convex portions are not uniform. In such a structure, the pressure is concentrated on the convex portion during the integral molding process, the convex portion is crushed, and the originally designed anti-glare performance is diminished.
  • the film having the antiglare layer 16 having the unevenness having the phase separation structure as in Example 1 was used, the antiglare performance was hardly changed even after the integral molding process. This is thought to be because, in the phase separation structure, the convex portions are continuously connected, and the height of the convex portions is substantially uniform, the pressure applied to the convex portions is dispersed during integral molding, and the deformation of the convex portions is reduced. .
  • the front plate manufactured in Example 1 and Comparative Examples 1 and 2 was evaluated for display image glare.
  • the front plate manufactured in Example 1 and Comparative Examples 1 and 2 on the tablet iPad (registered trademark) MD513J / A (resolution: 264 ppi) manufactured by APPLE is set so that the antiglare layer is on the viewer side. installed.
  • the display image of the tablet was set to green.
  • the distance between the front plate and the display image portion was changed from 0 to 10 cm, and the presence or absence of glare when the display image was visually observed through the front plate was evaluated.
  • Comparative Example 1 the display image was glaring when the distance from the display device was short. The glare was eliminated by increasing the distance, but the display image became invisible because of the low transparency of the transmitted image.
  • Comparative Example 2 the glare-proof layer 16 is high definition compatible, and the transmitted image definition is high, so that glare hardly occurs. However, the image became whitish due to the haze caused by internal scattering. On the other hand, in Example 1, the glare was small and high sharpness was maintained regardless of the distance from the display device.
  • the front plate 100 in the present embodiment hardly loses the anti-glare performance after the integral molding with the resin 10 and can maintain the originally designed anti-glare performance. Further, even when used in a high-definition information display device, glare can be suppressed and a display device having high definition can be obtained.
  • resin layer 10 resin (resin layer), 12 adhesive layer, 14 (14a, 14b) support film, 16 anti-glare layer, 18 polarizing film, 20 transmittance, 100 front plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention provides a front panel (100) wherein a film including an anti-glare layer (16) with an irregular phase-separated structure is integrally formed with a resin (10), with the anti-glare layer (16) arranged on the viewer side.

Description

防眩機能付き前面板、それを用いた表示装置及び車両用情報表示装置Front plate with antiglare function, display device using the same, and vehicle information display device
 本開示は、車両メーター等の情報表示装置の前面に設置される防眩機能付き前面板、それを用いた表示装置及び車両用情報表示装置に関する。 The present disclosure relates to a front plate with an antiglare function installed on the front surface of an information display device such as a vehicle meter, a display device using the same, and a vehicle information display device.
 自動車等の液晶ディスプレイ(液晶)や計器盤等、運転時の各種情報を表示する情報表示装置の外側には、埃や液晶等を保護するための前面板(カバー、またはフロントパネルとも称される)が設けられている。また、近年では、メータークラスター部だけでなく、センターインフォメーションディスプレイの広面積化、その他に、サイドミラー代替等に表示装置を適用するデザインが進んでおり、それに伴い、当該表示装置部へ前面板が適用されている。 Outside the information display device that displays various information during driving such as liquid crystal displays (liquid crystal) and instrument panels of automobiles, etc., it is also called a front plate (cover or front panel) for protecting dust, liquid crystal, etc. ) Is provided. Also, in recent years, not only the meter cluster part, but also the design of applying a display device to a wide area of the center information display, as well as side mirror replacement, etc. has progressed. Has been applied.
 前面板(カバー)が透明な場合、外光によって内部の液晶ディスプレイが照らされ、液晶ディスプレイの液晶面の反射により、ディスプレイの偏光板や透明電極が見え、非表示時の見栄えが悪くなる。そこで、前面板として、透過率20%~70%程度のグレースモーク調の半透明のアクリル樹脂等が使用されている。透過率20~70%程度のグレースモーク調の半透明の前面板(カバー)は、通常はアクリル樹脂やポリカーボネート等の樹脂自体が着色されたものを原料として、主に射出成形にて製造されている。 When the front plate (cover) is transparent, the internal liquid crystal display is illuminated by external light, and the polarizing plate and the transparent electrode of the display are visible due to the reflection of the liquid crystal surface of the liquid crystal display, so that the appearance when not displaying is deteriorated. Therefore, a gray smoke-like translucent acrylic resin having a transmittance of about 20% to 70% is used as the front plate. A gray-smoke-like translucent front plate (cover) with a transmittance of about 20 to 70% is usually manufactured by injection molding mainly using a colored resin such as acrylic resin or polycarbonate. Yes.
 このように、グレースモーク調の前面板を用いることで、液晶ディスプレイの表面での反射外光を減少させ、表示のコントラストを上げることができる。また、グレースモーク調の前面板を用いて液晶ディスプレイ等が非表示時に情報表示装置の内部を見せないようにすることにより、余分な情報によって判断が煩雑になることを防いでいる。 As described above, by using the gray smoke-like front plate, it is possible to reduce the external reflection light on the surface of the liquid crystal display and increase the display contrast. Further, by using a gray smoke-like front plate so that the liquid crystal display or the like does not show the inside of the information display device when it is not displayed, it is possible to prevent the judgment from being complicated due to excess information.
 また、グレースモーク調の樹脂の代りに偏光板と透明樹脂を一体に成形する前面板が提案されている。この場合、液晶等の表示装置部からは偏光光が出射されるため、グレースモーク調であっても前面板で出射光を減衰させることなく、効率良く画像表示部からの出射光を取り出すことができる。 Also, a front plate has been proposed in which a polarizing plate and a transparent resin are integrally formed instead of a gray smoke-like resin. In this case, since polarized light is emitted from the display unit such as a liquid crystal, the emitted light from the image display unit can be efficiently extracted without attenuating the emitted light by the front plate even in a gray smoke tone. it can.
 また、自動車等の情報表示装置においては、表示部と内装部品のデザインとの一体性をもたらす目的のため、又は、当該表示部においては車内に入り込む太陽光等の外光反射によって当該表示画像が見づらくならないようにするため、当該前面板の表面に艶消し等の防眩性(アンチグレア)加工を付与する場合がある。例えば、射出成形品の表面に防眩性を付与するためには、表面を荒らした金型や予め凹凸を有するフィルムを型として、溶融又は軟化した樹脂に当該凹凸を押し当てて転写する方法や、射出成形後の樹脂表面をサンドブラストすることで、成形品の表面に防眩性を付与する方法が採用されている。また、例えば、液晶等に用いられる防眩層は、有機系又は無機系の微粒子(フィラー)を混合したアクリル樹脂等の紫外線硬化樹脂をフィルム表面に薄膜状に塗布し硬化させたものが用いられる。さらに、当該フィルムは偏光板の支持フィルムとして接着層を介して偏光フィルムに積層されて用いることもある。具体的には、防眩層を有するフィルムと樹脂とをインサート成形してなる前面板が開示されている。 In addition, in an information display device such as an automobile, the display image is displayed for the purpose of bringing unity between the display unit and the design of interior parts, or in the display unit by reflection of external light such as sunlight entering the vehicle. In order not to be difficult to see, an anti-glare process such as matting may be imparted to the surface of the front plate. For example, in order to impart anti-glare properties to the surface of an injection-molded product, a method of transferring the unevenness against a molten or softened resin using a mold having a rough surface or a film having unevenness in advance as a mold, A method of imparting antiglare properties to the surface of a molded product by sandblasting the resin surface after injection molding is employed. In addition, for example, the antiglare layer used for liquid crystal or the like is obtained by applying a UV curable resin such as an acrylic resin mixed with organic or inorganic fine particles (filler) on the film surface and curing it. . Furthermore, the said film may be laminated | stacked and used for a polarizing film through an adhesive layer as a support film of a polarizing plate. Specifically, a front plate formed by insert molding a film having an antiglare layer and a resin is disclosed.
 しかしながら、これらの方法では車両の内装デザインや光学設計が変わるごとに防眩層の光学特性を調整することは容易ではない。 However, with these methods, it is not easy to adjust the optical characteristics of the antiglare layer every time the interior design or optical design of the vehicle changes.
 また、防眩性フィルムやそれを積層した偏光板を樹脂と一体に成形する場合、成形時の高温高圧な処理により、防眩性フィルムの表面の凹凸が潰れ、加工後に防眩性能が低下してしまい、本来設計された防眩性フィルムの防眩性機能を十分に活かすことができない問題がある。 In addition, when molding an anti-glare film or a polarizing plate laminated therewith with a resin, the surface irregularities of the anti-glare film are crushed by the high-temperature and high-pressure treatment during molding, and the anti-glare performance decreases after processing. Therefore, there is a problem that the anti-glare function of the originally designed anti-glare film cannot be fully utilized.
 また、近年、液晶等の表示装置の表示パネルは高精細化が進み、従来からある微粒子を混合した防眩性フィルムでは表示がギラついてしまい、高精細化に十分に対応できなくなってきている。特に、表示装置に前面板が設けられる場合、車内の設置箇所や用途等の設計に応じて、表示装置と前面板との距離が変わる。距離が近い場合は、防眩層による表示像のギラつきが問題となる。一方、距離が離れる場合は、防眩層によって表示像の鮮明性に影響が出てしまう。従って、表示装置の前面板には、これらの課題に対応し得る防眩層を付する必要がある。 In recent years, display panels of liquid crystal display devices have been improved in definition, and conventional anti-glare films mixed with fine particles have become glaring, making it impossible to sufficiently cope with higher definition. In particular, when a front plate is provided on the display device, the distance between the display device and the front plate changes depending on the design of the installation location in the vehicle and the application. When the distance is short, glare of the display image due to the antiglare layer becomes a problem. On the other hand, when the distance increases, the anti-glare layer affects the sharpness of the display image. Therefore, it is necessary to attach an antiglare layer to the front plate of the display device that can cope with these problems.
 本開示は、上記問題に鑑み、高精細な表示装置においてもギラつきを抑え、かつ高い鮮明性を備えた防眩性付き前面板を提供することを目的とする。 In view of the above problems, the present disclosure aims to provide a glare-proof front plate that suppresses glare even in a high-definition display device and has high sharpness.
 出願人は、鋭意検討した結果、凹凸を有する相分離構造を備えた防眩層が設けられたフィルムと樹脂とが一体成形することによって、高精細な表示装置においてもギラつきを抑え、かつ高い鮮明性を有することを見出し、本開示を完成するに至った。 As a result of diligent examination, the applicant has formed a film provided with an antiglare layer having an uneven phase separation structure and a resin, thereby suppressing glare even in a high-definition display device, and high The inventors have found that the present invention has clearness and have completed the present disclosure.
 すなわち、本開示の1つの態様は、凹凸を有する相分離構造を備えた防眩層が設けられたフィルムと樹脂とが一体成形されており、前記防眩層が視認側に配置されることを特徴とする表示装置の前面板である。 That is, one aspect of the present disclosure is that a film provided with an antiglare layer having a phase separation structure having irregularities and a resin are integrally formed, and the antiglare layer is disposed on the viewing side. It is the front board of the display apparatus characterized.
 ここで、前記防眩層は、少なくとも1つの熱可塑性樹脂と少なくとも1つの硬化性樹脂の硬化物とを含み、前記熱可塑性樹脂と前記硬化性樹脂との相分離構造を備えてもよい。 Here, the antiglare layer may include at least one thermoplastic resin and a cured product of at least one curable resin, and may have a phase separation structure of the thermoplastic resin and the curable resin.
 また、前記硬化性樹脂は、アクリル樹脂、ポリメタクリル酸メチル樹脂、ポリカーボネート樹脂から選ばれる少なくとも1種を含んでもよい。 The curable resin may include at least one selected from an acrylic resin, a polymethyl methacrylate resin, and a polycarbonate resin.
 また、前記フィルムは、二色性染料を含む偏光フィルムと、前記偏光フィルムの両面を挟持する支持フィルムと、を備え、前記支持フィルムの少なくとも一方は、前記防眩層を備えてもよい。 The film may include a polarizing film containing a dichroic dye and a support film that sandwiches both surfaces of the polarizing film, and at least one of the support films may include the antiglare layer.
 また、前記防眩層は、ヘイズ値が1%以上10%以下であり、前記防眩層は、光学櫛幅が0.05mmにおける透過像鮮明度が40%以上であり、かつ、光学櫛が0.125mmにおける透過像鮮明度が70%以上としてもよい。 The antiglare layer has a haze value of 1% or more and 10% or less, the antiglare layer has a transmitted image definition of 40% or more at an optical comb width of 0.05 mm, and an optical comb is provided. The transmitted image definition at 0.125 mm may be 70% or more.
 また、前記防眩層は、前記フィルムと前記樹脂とを一体成形する前のヘイズ値と一体成形した後のヘイズ値との変化の差が1.5%以下であり、前記フィルムと前記樹脂とを一体成形する前の表面粗さと一体成形した後の表面粗さにおける算術平均粗さ、二乗平均平方根高さ及び最大高さの変化の比がそれぞれ10%以下としてもよい。 The antiglare layer has a difference in change between a haze value before integrally molding the film and the resin and a haze value after integral molding being 1.5% or less, and the film and the resin The ratio of the change in arithmetic mean roughness, root mean square height, and maximum height in the surface roughness before integrally molding and the surface roughness after integrally molding may be 10% or less, respectively.
 また、前記樹脂は、透過率20~70%のグレースモーク色の樹脂としてもよい。 The resin may be a gray smoke resin having a transmittance of 20 to 70%.
 また、前記防眩層と樹脂との間に接着層を備え、前記接着層は、非晶性ポリエステルを含んでもよい。 Further, an adhesive layer may be provided between the antiglare layer and the resin, and the adhesive layer may include amorphous polyester.
 本開示の別の態様は、上記前面板を備えることを特徴とする表示装置である。 Another aspect of the present disclosure is a display device including the front plate.
 本開示の別の態様は、上記前面板を備え、車載された表示装置に用いられることを特徴とする車載用情報表示装置である。 Another aspect of the present disclosure is an in-vehicle information display device that includes the front plate and is used in an in-vehicle display device.
 本開示によれば、高精細な表示装置においてもギラつきを抑え、高い鮮明性を備えた防眩性付き前面板を提供することができる。 According to the present disclosure, it is possible to provide an anti-glare front plate having high definition and suppressing glare even in a high-definition display device.
本開示の実施の形態における前面板の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the front plate in embodiment of this indication. 本開示の実施の形態における前面板の構成の別例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of a structure of the front plate in embodiment of this indication.
実施するための形態Form to carry out
 本開示の実施の形態における前面板100は、図1の断面模式図に示すように、樹脂層10、接着層12、支持フィルム14及び防眩層16を積層して構成される。なお、本開示の適用範囲は、樹脂層10及び防眩層16が一体に成形された構成であればよく、前面板100はその一例である。また、図1はあくまで模式図であり、実際の各層の膜厚等については図示のとおりではない。 The front plate 100 in the embodiment of the present disclosure is configured by laminating a resin layer 10, an adhesive layer 12, a support film 14, and an antiglare layer 16 as shown in the schematic cross-sectional view of FIG. In addition, the application range of this indication should just be the structure by which the resin layer 10 and the glare-proof layer 16 were shape | molded integrally, and the front plate 100 is the example. Moreover, FIG. 1 is a schematic diagram to the last, and the actual film thickness and the like of each layer are not as illustrated.
 前面板100は、自動車等の液晶ディスプレイ(液晶)や計器盤等、運転時の各種情報を表示する情報表示装置の視認側に設けられる。前面板100によって、表示装置を埃や傷から保護することができる。 The front plate 100 is provided on the viewing side of an information display device that displays various types of information during driving, such as a liquid crystal display (liquid crystal) such as a car or an instrument panel. The front plate 100 can protect the display device from dust and scratches.
 なお、前面板100は、カバー又はフロントパネルと称されることもある。本実施の形態において、前面板100は、情報を表示する表示装置を外界から保護するために用いることができる。本実施の形態では前面板100と呼ぶが、必ずしも表示装置の前面に用いるものに限定されることはなく、表示装置の側面、裏面、上下面に使用されてもよい。すなわち、前面板100は、表示装置からの情報を視認するための面に配置されるものであればよい。 Note that the front plate 100 may be referred to as a cover or a front panel. In the present embodiment, the front plate 100 can be used to protect a display device that displays information from the outside world. In the present embodiment, it is referred to as a front plate 100, but is not necessarily limited to the one used on the front surface of the display device, and may be used on the side surface, back surface, and upper and lower surfaces of the display device. That is, the front plate 100 only needs to be disposed on a surface for visually recognizing information from the display device.
 また、本実施の形態において表示装置とは、少なくとも一つの発光によって情報を表示する装置を意味する。すなわち、表示装置は、発光した光を外部に放出することにより、人又は機械が認識し得る一定の情報を表示するものであればよい。表示装置の発光は、自発光でもよいし、バックライトや反射光のような他から供給される光でもよい。表示装置としては、液晶ディスプレイ(液晶)、有機EL(OLED)等が挙げられる。表示装置は複数であってもよいし、それらは同一の形式のものでもよいし、異なる形式のものであってもよい。また、同一の色調のものであってもよいし、異なる色調のものであってもよい。表示装置は、状態を表示する固定情報を表示するためのものであってもよいし、スピードメーターやタコメーター等の可変情報を表示するものであってもよい。 In the present embodiment, a display device means a device that displays information by at least one light emission. That is, the display device only needs to display certain information that can be recognized by a person or a machine by emitting emitted light to the outside. The display device may emit light by itself, or may be light supplied from another source such as a backlight or reflected light. Examples of the display device include a liquid crystal display (liquid crystal) and an organic EL (OLED). There may be a plurality of display devices, and they may be of the same type or of different types. Moreover, it may be the same color tone or different color tone. The display device may be for displaying fixed information for displaying the state, or for displaying variable information such as a speedometer and a tachometer.
[防眩層16]
 本開示に係る防眩層16は、視認側に設けられる表面処理された層であって、一般に「アンチグレア層(AG層と略される)」、その他には「艶消し層」と称される。防眩層16は、フィルムや樹脂等の表面に微細な凹凸構造を設けた層である。
[Anti-glare layer 16]
The antiglare layer 16 according to the present disclosure is a surface-treated layer provided on the viewing side, and is generally referred to as an “antiglare layer (abbreviated as an AG layer)”, and is otherwise referred to as a “matte layer”. . The antiglare layer 16 is a layer in which a fine uneven structure is provided on the surface of a film or resin.
 防眩層16は、例えば、表示装置の前面に配置され、その微細構造で光を拡散反射させることによって、表示装置の画面に外光や室内灯が反射して表示画像が見づらくなったり、眩しく感じたりすることを軽減するために用いることができる。また、自動車の内装部材の表面は一般的にエンボスや艶消し等の凹凸加工が施されており、当該内装部品と表示装置部とで調和性のあるデザインが求められることがある。したがって、防眩層16は、車内の表示装置に対する前面板に適用される。 The antiglare layer 16 is disposed on the front surface of the display device, for example, and diffuses and reflects light with its fine structure, so that external light or room light is reflected on the screen of the display device, making it difficult to see the display image. It can be used to reduce feelings. In addition, the surface of an automobile interior member is generally subjected to unevenness processing such as embossing and matting, and there is a case where a harmonious design is required between the interior part and the display device. Therefore, the antiglare layer 16 is applied to the front plate for the display device in the vehicle.
 なお、硬化性樹脂の硬化により、防眩層16にハードコート性(又は耐擦傷性)を付与することができる。これにより、前面板100に対して擦傷等によってキズが付き難くすることができる。また、防眩層16は、例えばシリコン系やフッ素系の添加剤を含ませることにより防汚性を付与することができる。これにより、前面板100において指紋や汚れをふき取り易くすることができる。 In addition, the hard coat property (or scratch resistance) can be imparted to the antiglare layer 16 by curing the curable resin. Thereby, the front plate 100 can be hardly scratched by scratches or the like. Further, the antiglare layer 16 can be imparted with antifouling properties by including, for example, a silicon-based or fluorine-based additive. Thereby, it is possible to easily wipe off fingerprints and dirt on the front plate 100.
 本実施の形態における防眩層16は、その凹凸構造が相分離構造であることを特徴とする。相分離構造は、熱可塑性樹脂と硬化性樹脂とを含む樹脂組成物から構成される。すなわち、相分離構造とは、熱可塑性樹脂と硬化性樹脂とを溶媒に混合させた液相からスピノーダル分解(湿式スピノーダル分解)により形成される構造をいう。より具体的には、スピノーダル分解は、通常、少なくとも1つの熱可塑性樹脂と少なくとも1の硬化性樹脂と溶媒とを含む混合液又は樹脂組成物を支持体に塗布し、塗布層から溶媒が蒸発されることにより生ずる。熱可塑性樹脂と硬化性樹脂とを溶媒に混合させた液相から乾燥等により溶媒を蒸発させる過程において、濃度の濃縮に伴ってスピノーダル分解が起こり、熱可塑性樹脂と硬化性樹脂との相分離により相分離構造が得られる。相分離構造では、その凹凸の距離が比較的規則的になる。 The anti-glare layer 16 in the present embodiment is characterized in that the uneven structure is a phase separation structure. The phase separation structure is composed of a resin composition containing a thermoplastic resin and a curable resin. That is, the phase separation structure refers to a structure formed by spinodal decomposition (wet spinodal decomposition) from a liquid phase in which a thermoplastic resin and a curable resin are mixed in a solvent. More specifically, spinodal decomposition is usually performed by applying a mixed solution or a resin composition containing at least one thermoplastic resin, at least one curable resin, and a solvent to a support, and the solvent is evaporated from the coating layer. Caused by In the process of evaporating the solvent from the liquid phase in which the thermoplastic resin and curable resin are mixed with the solvent by drying or the like, spinodal decomposition occurs as the concentration increases, and phase separation between the thermoplastic resin and the curable resin occurs. A phase separation structure is obtained. In the phase separation structure, the distance between the irregularities is relatively regular.
 硬化性樹脂は、例えば、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、シリコーン(メタ)アクリレート、少なくとも2つの重合性不飽和結合を有する多官能性単量体等としてもよい。 The curable resin may be, for example, an epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, silicone (meth) acrylate, a polyfunctional monomer having at least two polymerizable unsaturated bonds, or the like. Good.
 熱可塑性樹脂は、スピノーダル分解により相分離可能な樹脂であればよく、例えば、セルロース誘導体、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂等としてもよい。 The thermoplastic resin may be any resin that can be phase-separated by spinodal decomposition, such as cellulose derivatives, styrene resins, (meth) acrylic resins, alicyclic olefin resins, polycarbonate resins, polyester resins, and the like. Also good.
 また、防眩層16には、必要に応じて、種々の添加剤を添加してもよい。添加剤として、シリコン系やフッ素系等の表面調整剤の他、帯電防止剤、可塑剤、界面活性剤、酸化防止剤、紫外線吸収剤等の添加剤が挙げられる。 In addition, various additives may be added to the antiglare layer 16 as necessary. Additives include additives such as antistatic agents, plasticizers, surfactants, antioxidants, ultraviolet absorbers, etc., in addition to surface modifiers such as silicon and fluorine.
 防眩層16は、透明フィルム上に形成することができる。具体的には、透明フィルム上に防眩層16を塗布や転写等の方法により防眩層16を有するフィルムを形成することができる。 The antiglare layer 16 can be formed on a transparent film. Specifically, a film having the antiglare layer 16 can be formed on the transparent film by a method such as applying or transferring the antiglare layer 16.
 防眩層16は、公知の方法を用いて、支持フィルム等の表面に形成することができる(例えば、特開2006-103070号公報を参照)。支持フィルムを形成する樹脂としては、シクロオレフィン系樹脂、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリサルホン系樹脂、脂環式ポリイミド系樹脂、アセチルセルロース系樹脂等を適用することができる。偏光フィルムと容易に接着し偏光板を得るという観点では、アセチルセルロース系樹脂、より好ましくはトリアセチルセルロース(TAC)を用いることが好ましい。また、防眩層を有するフィルムは、市販のものを用いてもよく、例えば、市販のダイセル化学工業製PFT80000HNPを用いることができる。 The antiglare layer 16 can be formed on the surface of a support film or the like using a known method (for example, see JP-A-2006-103070). As the resin forming the support film, a cycloolefin resin, a polyester resin, an acrylic resin, a polycarbonate resin, a polysulfone resin, an alicyclic polyimide resin, an acetyl cellulose resin, or the like can be applied. From the viewpoint of easily adhering to a polarizing film and obtaining a polarizing plate, it is preferable to use an acetyl cellulose resin, more preferably triacetyl cellulose (TAC). Moreover, the film which has an anti-glare layer may use a commercially available thing, for example, can use commercially available Daicel Chemical Industries PFT80000HNP.
[偏光板]
 防眩層16を有するフィルムを偏光板の支持体として利用することもできる。そこで、防眩層16を有するフィルムを偏光板の支持体として適用した構成について説明する。
[Polarizer]
A film having the antiglare layer 16 can also be used as a support for the polarizing plate. Then, the structure which applied the film which has the glare-proof layer 16 as a support body of a polarizing plate is demonstrated.
 図2は、防眩層16を有するフィルムを偏光板の支持体とした場合の前面板100の構成を示す。この場合、前面板100は、樹脂層10、接着層12、第1支持フィルム14a、偏光フィルム18、第2支持フィルム14b及び防眩層16を積層して構成される。なお、樹脂層10、偏光フィルム18及び防眩層16が一体に成形された構成であればよく、前面板100はその一例である。また、図2はあくまで模式図であり、実際の各層の膜厚等については図示のとおりではない。 FIG. 2 shows the configuration of the front plate 100 when a film having the antiglare layer 16 is used as a support for a polarizing plate. In this case, the front plate 100 is configured by laminating the resin layer 10, the adhesive layer 12, the first support film 14 a, the polarizing film 18, the second support film 14 b, and the antiglare layer 16. In addition, what is necessary is just the structure by which the resin layer 10, the polarizing film 18, and the glare-proof layer 16 were shape | molded integrally, and the front board 100 is the example. Moreover, FIG. 2 is a schematic diagram to the last, and the film thickness and the like of each actual layer are not as illustrated.
 偏光板は、偏光素子として機能する偏光フィルム18の片面又は両面に支持フィルム14(図2では、両面にそれぞれ第1支持フィルム14a,第2支持フィルム14b)を貼り合せた構成を有する。偏光フィルム18のみを使用することもできるが、偏光フィルム18の両面を第1支持フィルム14a及び第2支持フィルム14bで挟持した偏光板として用いる方が好ましい。なぜなら、偏光フィルム18は、一般に、二色性色素を染着したポリビニルアルコールを一軸延伸されたものであり、且つ薄膜状のものであるから、第1支持フィルム14a及び第2支持フィルム14bで挟持されていない状態では、熱や水分により容易に変形し、さらには当該偏光特性を損ねてしまうおそれがあるからである。したがって、第1支持フィルム14a及び第2支持フィルム14bにより挟持された偏光板として用いることによって、一体に成形する場合における加工性を向上させることができる。 The polarizing plate has a configuration in which a supporting film 14 (in FIG. 2, a first supporting film 14a and a second supporting film 14b are bonded to both surfaces) on one or both surfaces of a polarizing film 18 that functions as a polarizing element. Although only the polarizing film 18 can be used, it is preferable to use it as a polarizing plate in which both surfaces of the polarizing film 18 are sandwiched between the first support film 14a and the second support film 14b. This is because, since the polarizing film 18 is generally a uniaxially stretched polyvinyl alcohol dyed with a dichroic dye and is a thin film, it is sandwiched between the first support film 14a and the second support film 14b. This is because, in a state where it is not done, it may be easily deformed by heat or moisture, and the polarization characteristics may be impaired. Therefore, by using as a polarizing plate sandwiched between the first support film 14a and the second support film 14b, it is possible to improve workability when integrally molding.
 偏光フィルム18は、自然光を直線偏光に変換する機能を有するフィルムであり、ポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させたものとしてもよい。 The polarizing film 18 is a film having a function of converting natural light into linearly polarized light, and may be obtained by adsorbing and orienting a dichroic dye on a polyvinyl alcohol resin film.
 二色性色素としては、ヨウ素、又はアゾ系、アントラキノン系、若しくはテトラジン系等の二色性染料を用いることができる。 As the dichroic dye, iodine or an azo, anthraquinone, or tetrazine dichroic dye can be used.
 例えば、二色性色素としてヨウ素を用いる場合には、ポリビニルアルコール系樹脂フィルムにヨウ素により染色処理を施した後、又はこれと同時に、延伸処理、硼酸処理、さらに必要であれば塩素化合物含有水溶液中に浸漬する補色処理を施すことにより製造することができる。 For example, when iodine is used as the dichroic dye, after the polyvinyl alcohol resin film is dyed with iodine, or at the same time, the drawing treatment, boric acid treatment, and if necessary, in a chlorine compound-containing aqueous solution It can manufacture by performing the complementary color process immersed in.
 また、例えば、二色性色素としてアゾ系、アントラキノン系、又はテトラジン系等の二色性染料を用いて染色処理してもよい。二色性染料としては、例えば、アゾ化合物系染料、C.I.Direct Yellow 12、C.I.Direct Yellow 28、 C.I.Direct Yellow 44、C.I.Direct Orange 26、C.I.Direct Orange 39、C.I.Direct Orange 107、C.I.Direct Red 2、C.I.Direct Red 31、C.I.Direct Red 79のいずれかとすることができる。また、特開2003-215338号公報に記載の染料やWO2007/138980号公報に記載の染料を用いてもよい。また、可視域の各波長における偏光特性を補うようにこれらの染料を2種又は3種以上配合し、これらの染料によりポリビニルアルコール(PVA)を染着することによって、ニュートラルグレーを呈する色相とすることが好ましい。なお、偏光フィルム18の厚さは、通常は10~40μm程度である。 Further, for example, an azo, anthraquinone, or tetrazine dichroic dye may be used as a dichroic dye. Examples of the dichroic dye include azo compound dyes, C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 28, C.I. I. Direct Yellow 44, C.I. I. Direct Orange 26, C.I. I. Direct Orange 39, C.I. I. Direct Orange 107, C.I. I. Direct Red 2, C.I. I. Direct Red 31, C.I. I. It can be either Direct Red 79. Further, a dye described in JP-A No. 2003-215338 and a dye described in WO 2007/138980 may be used. In addition, two or more of these dyes are blended so as to supplement the polarization characteristics at each wavelength in the visible range, and the hue of neutral gray is obtained by dyeing polyvinyl alcohol (PVA) with these dyes. It is preferable. The thickness of the polarizing film 18 is usually about 10 to 40 μm.
 二色性色素として二色性染料を用いた場合、高温条件下や高温高湿条件下における光学特性の耐久性がヨウ素よりも優れ、また、成形時での色変化もヨウ素より少ない。したがって、偏光フィルム18における色相調整が容易と共に、二色性色素としてヨウ素を用いた場合に比べて黄色味を低くすることができる。 When a dichroic dye is used as a dichroic dye, durability of optical properties under high temperature conditions and high temperature and high humidity conditions is superior to iodine, and color change during molding is less than that of iodine. Therefore, the hue adjustment in the polarizing film 18 is easy, and the yellowness can be lowered as compared with the case where iodine is used as the dichroic dye.
 また、偏光フィルム18は、従来の着色されている偏光フィルム18ではなく、無彩色の偏光フィルム18としてもよい。この場合、無彩色の偏光フィルム18は、平行ニコル(パラレルニコル)における色相a*及び色相b*(色相a*及びb*は国際照明委員会(CIE)により定められた色座標)の絶対値が共に1.0以下としてもよい。このような無彩色の偏光フィルム18は、公知の方法(例えば、国際公開WO2014/162634A1に開示の方法)で製造することができる。 The polarizing film 18 may be an achromatic polarizing film 18 instead of the conventional colored polarizing film 18. In this case, the achromatic polarizing film 18 has an absolute value of hue a * and hue b * in parallel Nicols (the hue coordinates a * and b * are color coordinates determined by the International Commission on Illumination (CIE)). May be 1.0 or less. Such an achromatic polarizing film 18 can be produced by a known method (for example, a method disclosed in International Publication WO2014 / 162634A1).
 具体的には、前面板100に適した偏光フィルム18の単体透過率Ysは20~50%、偏光度Pyは90%以上であることが好ましい。ここで、単体透過率Ysが20~30%以下の偏光板を生産する場合、高濃度の染着液を用いたり、染着を長時間行う必要があったりすることから生産性が低下する。また、二色性色素をPVA等のフィルムへ吸着させる際に吸着量が飽和することで、単体透過率Ysを20~30%以下まで低下させることができないおそれがある。そこで、前面板100において所望する透過率を得るためには、偏光板とグレースモークの樹脂を併用するようにしてもよい。 Specifically, it is preferable that the single transmittance Ys of the polarizing film 18 suitable for the front plate 100 is 20 to 50% and the polarization degree Py is 90% or more. Here, when a polarizing plate having a single transmittance Ys of 20 to 30% or less is produced, the productivity is lowered because a high concentration dyeing solution is used or the dyeing needs to be performed for a long time. Further, when the amount of adsorption is saturated when the dichroic dye is adsorbed to a film such as PVA, the unit transmittance Ys may not be reduced to 20 to 30% or less. Therefore, in order to obtain a desired transmittance in the front plate 100, a polarizing plate and a gray smoke resin may be used in combination.
 透過率及び偏光度は、日本分光株式会社製V-7100及び株式会社日立製作所製U-4100により測定することができる。具体的には、偏光板を作製し、該偏光板を1枚使用したときの透過率を単体透過率Ys、2枚の該偏光板を吸収軸方向が同一となるように重ねた場合の透過率を平行位透過率Yp、2枚の該偏光板を吸収軸が直交するように重ねた場合の透過率を直交位透過率Ycとする。それぞれの透過率は、380~700nmの波長領域で、所定波長間隔dλ(ここでは5nm)おきに分光透過率τλを求め、数式(1)により算出する。数式(1)において、Pλは標準光(C光源)の分光分布を表し、yλは2度視野等色関数を表し、τλは分光透過率を表す。
Figure JPOXMLDOC01-appb-M000001
The transmittance and the degree of polarization can be measured by JASCO Corporation V-7100 and Hitachi, Ltd. U-4100. Specifically, a polarizing plate is produced, and the transmittance when one polarizing plate is used is the transmittance when the single polarizing plate Ys and the two polarizing plates are stacked so that the absorption axis directions are the same. Let the transmittance be the parallel transmittance Yp, and let the transmittance when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other be the orthogonal transmittance Yc. The respective transmittances are calculated from the formula (1) by obtaining the spectral transmittance τλ at predetermined wavelength intervals dλ (here, 5 nm) in the wavelength region of 380 to 700 nm. In Equation (1), Pλ represents the spectral distribution of the standard light (C light source), yλ represents the color matching function of the double field of view, and τλ represents the spectral transmittance.
Figure JPOXMLDOC01-appb-M000001
 また偏光度Pyを、平行位透過率Tp及び直交位透過率Tcから、数式(2)により求める。
Figure JPOXMLDOC01-appb-M000002
Further, the degree of polarization Py is obtained from the parallel transmittance Tp and the orthogonal transmittance Tc by the mathematical formula (2).
Figure JPOXMLDOC01-appb-M000002
 偏光板として支持フィルム14を用いる場合、偏光フィルム18の片面又は両面に支持フィルム14を貼り合せる。支持フィルム14(第1支持フィルム14a,第2支持フィルム14b)を形成する樹脂としては、シクロオレフィン系樹脂、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリサルホン系樹脂、脂環式ポリイミド系樹脂、アセチルセルロース系樹脂等を適用することができる。 When using the support film 14 as a polarizing plate, the support film 14 is bonded to one side or both sides of the polarizing film 18. Examples of the resin that forms the support film 14 (first support film 14a, second support film 14b) include cycloolefin resin, polyester resin, acrylic resin, polycarbonate resin, polysulfone resin, and alicyclic polyimide resin. An acetyl cellulose resin or the like can be applied.
 本実施の形態の場合、前面板100の視認側の第2支持フィルム14bに防眩層16を設ける。防眩層16は、上記のように、第2支持フィルム14b上に形成することができる。 In the case of the present embodiment, the antiglare layer 16 is provided on the second support film 14b on the viewing side of the front plate 100. As described above, the antiglare layer 16 can be formed on the second support film 14b.
 なお、支持フィルム14を設けることによって、前面板100を構成する樹脂10と一体に成形する際に、支持フィルム14と樹脂10とが同質の材料であれば加熱により界面を互いに溶着させることができる。 By providing the support film 14, when the support film 14 and the resin 10 are made of the same material, the interface can be welded together by heating when the support film 14 and the resin 10 are integrally formed. .
 偏光板が一体に成形される場合、偏光フィルム18を設けた側が情報表示装置の内側となるように配置してもよい。このように配置した場合、偏光フィルム18が情報表示装置の内側に存在することから、樹脂起因の偏光解消性や光学異方性成分によるや虹ムラの発生の影響を抑制することができる。さらに、偏光フィルム18を保護するための支持フィルムを設けない構成としてもよい。ただし、樹脂10に起因する偏光解消性や光学異方性成分は樹脂10の材料の選択や成形加工時の条件によって調整することもできるため、偏光板を情報表示装置の外側に設置する構成としてもよい。 When the polarizing plate is integrally formed, the polarizing film 18 may be disposed so that the side on which the polarizing film 18 is provided is inside the information display device. When arranged in this manner, since the polarizing film 18 exists inside the information display device, it is possible to suppress the effects of depolarization caused by the resin and the occurrence of rainbow unevenness due to optically anisotropic components. Furthermore, it is good also as a structure which does not provide the support film for protecting the polarizing film 18. FIG. However, since the depolarization property and optical anisotropy component caused by the resin 10 can be adjusted by selecting the material of the resin 10 and the conditions at the time of molding, the polarizing plate is installed outside the information display device. Also good.
[位相差フィルム]
 防眩層16を有するフィルムと偏光フィルム18とを有する偏光板とする場合、偏光板の視認側に位相差フィルムを設けてもよい。
[Phase difference film]
When the polarizing plate having the film having the antiglare layer 16 and the polarizing film 18 is used, a retardation film may be provided on the viewing side of the polarizing plate.
 自動車の運転者らが偏光サングラスを装着した場合、液晶表示装置の視認側に偏光板を有する前面板100を配置しているとその偏光フィルム18と偏光サングラスとの偏光軸が一致し、表示画像が視認できなくなるおそれがある。そこで、前面板100の視認側、すなわち偏光板の視認側に位相差フィルムを設けることによって視認性の問題を解消することができる。 When automobile drivers wear polarized sunglasses, if the front plate 100 having a polarizing plate is arranged on the viewing side of the liquid crystal display device, the polarization axes of the polarizing film 18 and the polarized sunglasses coincide, and the display image is displayed. May not be visible. Therefore, the visibility problem can be solved by providing a retardation film on the viewing side of the front plate 100, that is, the viewing side of the polarizing plate.
 本実施の形態では、位相差フィルム上に防眩層16を直接形成して防眩層16を有する位相差フィルムとしてもよい。さらに、これを偏光板の支持フィルム14として用いてもよい。 In the present embodiment, a retardation film having the antiglare layer 16 by directly forming the antiglare layer 16 on the retardation film may be used. Furthermore, you may use this as the support film 14 of a polarizing plate.
 位相差フィルムとは、複屈折材料でできたフィルム状の光学部材である。位相差フィルムの厚さは、5μm以上500μm以下としてもよく、さらに10μm以上300μm以下としてもよい。位相差フィルムの厚さが5μm未満であると、工業材料としての取り扱い性が低下する。 A retardation film is a film-like optical member made of a birefringent material. The thickness of the retardation film may be 5 μm or more and 500 μm or less, and may be 10 μm or more and 300 μm or less. When the thickness of the retardation film is less than 5 μm, the handleability as an industrial material is lowered.
 位相差フィルムのレターデーションは、300nm以上30000nm以下の範囲としてもよい。レターデーションが30000nmより高いと、フィルムの膜厚が相応に厚くなり、工業材料としての取り扱い性が低下する。位相差フィルムとしては、λ/4位相差フィルムやλ/2位相差フィルムが挙げられる。 The retardation of the retardation film may be in the range of 300 nm to 30000 nm. When the retardation is higher than 30000 nm, the film thickness is correspondingly increased, and the handleability as an industrial material is lowered. Examples of the retardation film include a λ / 4 retardation film and a λ / 2 retardation film.
[樹脂10との一体成形]
 前面板100では、樹脂10と防眩層16を有するフィルムが一体に成形されている。本実施の形態において、一体成形とは、樹脂10と防眩層16を有するフィルムが物理的に一体化されていることを意味する。一体成形は、射出成形やインサート成形等の成形手段によるだけでなく、接着剤や粘着剤による貼り合せによってもよい。
 なお、前面板100の形態が湾曲していたり、三次元な構造を有していたりする場合は、防眩層16を有するフィルムと樹脂10とを追随させて加工できるようにするため、射出成形やインサート成形による成形手段を適用することが好ましい。また、さらに複雑な構造を有する前面板100の場合、防眩層16を有するフィルムに予め賦形処理を施し、防眩層16を有するフィルムと樹脂10とをより追随し易くすることが好ましい。一方、平面以外の形状であったり、凹凸を有したりする前面板100である場合、接着剤や粘着剤により防眩層16を有するフィルムを樹脂10に貼り合せる方法では、貼り合せの際に接着層又は粘着層に空気を巻き込むおそれがあり、外観よく仕上げることは容易ではない。
[Integrated molding with resin 10]
In front plate 100, a film having resin 10 and antiglare layer 16 is integrally formed. In the present embodiment, integral molding means that the film having the resin 10 and the antiglare layer 16 is physically integrated. The integral molding may be performed not only by molding means such as injection molding or insert molding, but also by bonding with an adhesive or an adhesive.
In addition, when the form of the front plate 100 is curved or has a three-dimensional structure, injection molding is performed so that the film having the antiglare layer 16 and the resin 10 can be processed following each other. It is preferable to apply molding means by insert molding. In the case of the front plate 100 having a more complicated structure, it is preferable that the film having the antiglare layer 16 is shaped in advance so that the film having the antiglare layer 16 and the resin 10 can be easily followed. On the other hand, when the front plate 100 has a shape other than a flat surface or has irregularities, the method of bonding the film having the antiglare layer 16 to the resin 10 with an adhesive or a pressure sensitive adhesive, There is a possibility that air may be caught in the adhesive layer or the pressure-sensitive adhesive layer, and it is not easy to finish with a good appearance.
 樹脂10は、一体成形が可能な材料であって、外界から保護できる機械的強度を有する材料であれば特に制限はない。 Resin 10 is not particularly limited as long as it is a material that can be integrally molded and has a mechanical strength that can be protected from the outside world.
 自動車においてメータークラスター部ではなく、センターインフォメーション部に前面板100を用いる場合等は、高温条件下や高温高湿条件下においても安定した性能を得るためには、ポリカーボネート樹脂(PC樹脂)を用いてもよい。この場合、より高い成形温度を必要とするため、偏光フィルム18には高い耐熱性が必要となる。したがって、二色性染料を用いた偏光フィルム18とすることが好ましい。 When the front plate 100 is used in the center information section instead of the meter cluster section in an automobile, a polycarbonate resin (PC resin) is used to obtain stable performance under high temperature conditions and high temperature and high humidity conditions. Also good. In this case, since a higher molding temperature is required, the polarizing film 18 needs high heat resistance. Therefore, the polarizing film 18 using a dichroic dye is preferable.
 樹脂10は、透明であることが望ましいが、透明であることに限定されるものではなく、グレースモーク等のスモークされたものでもよい。例えば、偏光板単体のみで所望する低透過率の前面板を設計することが不可能である場合は、偏光板とグレースモークの樹脂と一体に合わせて、前面板全体での透過率を調整してもよい。この場合、偏光板の偏光度は、90%以上有しているものであれば、偏光板を有する前面板100の効果を十分に得ることができる。また、前面板100に偏光板を用いない場合、防眩層16を設けた支持フィルム14と透明又はグレースモークの樹脂10とを組み合わせて前面板100を構成してもよい。 The resin 10 is desirably transparent, but is not limited to being transparent, and may be smoked such as gray smoke. For example, if it is impossible to design a front plate with the desired low transmittance using only the polarizing plate alone, the transmittance of the entire front plate is adjusted by integrating the polarizing plate and gray smoke resin together. May be. In this case, if the polarization degree of the polarizing plate is 90% or more, the effect of the front plate 100 having the polarizing plate can be sufficiently obtained. In the case where a polarizing plate is not used for the front plate 100, the front plate 100 may be configured by combining the support film 14 provided with the antiglare layer 16 and the transparent or gray smoke resin 10.
 グレースモークの樹脂10の透過率は、20%以上であればよく、好ましくは20%以上50%以下の範囲である。透過率が20%未満である場合、表示がオンの状態(液晶等の表示が行われている状態)において表示が暗く見えてしまう。また、透過率が50%を超える場合、表示がオフの状態(液晶等の表示が行われている状態)においてスピードメーターの針等の内部機構が透けて見えてしまって見栄えが悪くなる。 The transmittance of the gray smoked resin 10 may be 20% or more, and preferably 20% or more and 50% or less. When the transmittance is less than 20%, the display appears dark when the display is on (the liquid crystal display is being performed). Further, when the transmittance exceeds 50%, the internal mechanism such as the speedometer needle is seen through when the display is turned off (when the liquid crystal or the like is being displayed), which deteriorates the appearance.
 一体成形に適している樹脂10の材料としては、アクリル樹脂、ポリメタクリル酸メチル樹脂(PMMA樹脂)、PC樹脂等が挙げられる。樹脂10の材料は、価格、透明性、破損した際の飛散し難さ等の観点からPMMA樹脂としてもよい。また、これらの樹脂10の材料は、市販されているペレット状の材料を使用することができる。 Examples of the material of the resin 10 suitable for integral molding include acrylic resin, polymethyl methacrylate resin (PMMA resin), PC resin, and the like. The material of the resin 10 may be a PMMA resin from the viewpoints of price, transparency, difficulty in scattering when damaged, and the like. Moreover, the material of these resin 10 can use the pellet-shaped material marketed.
 樹脂10には、硬度、強度、成形性、耐久性、耐水性、色相を改良する目的で必要に応じて酸化防止剤、滑剤、紫外線吸収剤、着色剤、難燃剤、架橋助剤、無機充填材等の添加剤を添加してもよい。 Resin 10 contains antioxidants, lubricants, UV absorbers, colorants, flame retardants, crosslinking aids, inorganic fillers as necessary for the purpose of improving hardness, strength, moldability, durability, water resistance, and hue. Additives such as materials may be added.
 酸化防止剤としては、特に制限はなく、一般に用いられているものを用いることができる。具体的には、ラジカル連鎖禁止剤であるフェノール系酸化防止剤やアミン系酸化防止剤が好ましく、フェノール系酸化防止剤が特に好ましい。フェノール系酸化防止剤としては2,6-t-ブチル-p-クレゾール、2,6-t-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)及び1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン等が挙げられる。 The antioxidant is not particularly limited, and those generally used can be used. Specifically, phenolic antioxidants and amine antioxidants that are radical chain inhibitors are preferred, and phenolic antioxidants are particularly preferred. Examples of phenolic antioxidants include 2,6-t-butyl-p-cresol, 2,6-t-butyl-4-ethylphenol, 2,2′-methylenebis (4-methyl-6-t-butylphenol) and Examples thereof include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane.
 紫外線吸収剤としては、特に制限はなく、一般に用いられているものを用いることができる。具体的には、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤が好ましく、特に、ベンゾフェノン系紫外線吸収剤が好ましい。ベンゾフェノン系紫外線吸収剤としては、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-ブチルフェニル)ベンゾトリアゾール及び2-(2-ヒドロキシ-3’-t-ブチルフェニル)ベンゾトリアゾール等が挙げられる。 There is no restriction | limiting in particular as a ultraviolet absorber, The thing generally used can be used. Specifically, benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, and cyanoacrylate ultraviolet absorbers are preferred, and benzophenone ultraviolet absorbers are particularly preferred. Examples of benzophenone ultraviolet absorbers include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-butylphenyl) benzotriazole, and 2- (2-hydroxy-3 '-T-butylphenyl) benzotriazole and the like.
 着色剤としては、特に制限はなく、アントラキノン系、アゾ系、カルボニウム系、キノリン系、キノンイミン系、インジゴイド系、フタロシアニン系等の有機顔料、アゾイック染料、硫化染料等の有機染料、チタンイエロー、黄色酸化鉄、亜鉛黄、クロムオレンジ、モリブデンレッド、コバルト紫、コバルトブルー、コバルトグリーン、酸化クロム、酸化チタン、硫化亜鉛、カーボンブラック等の無機顔料等が挙げられる。その配合量は、特に限定されない。 There are no particular restrictions on the colorant, and anthraquinone, azo, carbonium, quinoline, quinoneimine, indigoid, phthalocyanine, and other organic pigments, azoic dyes, sulfur dyes and other organic dyes, titanium yellow, yellow oxidation Examples thereof include inorganic pigments such as iron, zinc yellow, chrome orange, molybdenum red, cobalt violet, cobalt blue, cobalt green, chromium oxide, titanium oxide, zinc sulfide, and carbon black. The blending amount is not particularly limited.
 難燃剤としては、特に制限はなく、臭素化エポキシ化合物、酸変性臭素化エポキシ化合物、アクリロイル基を有する臭素化エポキシ化合物、アクリロイル基を有する酸変性臭素化エポキシ化合物等のような臭素含有化合物、赤リン、酸化スズ、アンチモン系化合物、水酸化ジルコニウム、メタホウ酸バリウム、水酸化アルミニウム、水酸化マグネシウム等の無機系難燃剤、リン酸アンモニウム化合物、ホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル、含窒素リン化合物、ホスファゼン化合物等のリン系化合物等が挙げられる。 The flame retardant is not particularly limited, and bromine-containing compounds such as brominated epoxy compounds, acid-modified brominated epoxy compounds, brominated epoxy compounds having an acryloyl group, acid-modified brominated epoxy compounds having an acryloyl group, red Phosphorus, tin oxide, antimony compounds, zirconium hydroxide, barium metaborate, aluminum hydroxide, magnesium hydroxide and other inorganic flame retardants, ammonium phosphate compounds, phosphate compounds, aromatic condensed phosphate esters, halogen-containing condensed phosphorus Examples thereof include phosphorus compounds such as acid esters, nitrogen-containing phosphorus compounds, and phosphazene compounds.
 防眩層16を有するフィルムと樹脂10とを一体に成形された前面板100において、一体に成形される前後における防眩性能の低下の度合いは、例えば、表面粗さ測定、ヘイズ測定、及び透過像鮮明度の測定から評価することができる。これらの値は、凹凸形状の変化に対して相関性をもって変化する。 In the front plate 100 in which the film having the antiglare layer 16 and the resin 10 are integrally formed, the degree of decrease in the antiglare performance before and after being integrally formed is, for example, surface roughness measurement, haze measurement, and transmission. It can be evaluated from the measurement of image definition. These values change with a correlation with the change in the concavo-convex shape.
 本実施の形態における前面板100では、成形前後における測定値の変化が、表面粗さにおいては算術平均粗さ(Ra)、二乗平均平方根高さ(Rq)および最大高さ(Rz)の変化の比がそれぞれ10%以下、成形前のヘイズ値と成形後のヘイズ値の差分が1.5%以下、透過像鮮明度においては成形前と成形後の差分が、光学櫛の幅が0.05mmのときに15%以下であり、光学櫛の幅が0.125mmのときに5%以下としてもよい。すなわち、本実施の形態における前面板100は、成形加工の前後において外観の変化や防眩性能の低下が殆どないものとなる。 In front plate 100 in the present embodiment, changes in measured values before and after molding are the changes in arithmetic mean roughness (Ra), root mean square height (Rq), and maximum height (Rz) in surface roughness. Each ratio is 10% or less, the difference between the haze value before molding and the haze value after molding is 1.5% or less, and in the transmitted image definition, the difference between before molding and after molding is 0.05 mm in the width of the optical comb. In this case, it may be 15% or less, and may be 5% or less when the width of the optical comb is 0.125 mm. That is, the front plate 100 in the present embodiment has almost no change in appearance or a decrease in anti-glare performance before and after molding.
 表面粗さとは、部品やフィルム等の表面の凹凸の状態を表し、凹凸の高さ、深さ、間隔が異なる山及び谷が連続する周期的な形状を指す。表面粗さは、算術平均表面粗さRa、二乗平均平方根粗さRq、最大高さRz等の値を用いて評価することができる。すなわち、これらの評価値を用いて、防眩層16の凹凸の精細度や成形加工前後の凹凸の高さの変化等を評価することができる。 Surface roughness refers to the state of unevenness on the surface of parts, films, etc., and refers to a periodic shape in which peaks and valleys with different heights, depths, and intervals are continuous. The surface roughness can be evaluated using values such as arithmetic average surface roughness Ra, root mean square roughness Rq, and maximum height Rz. That is, using these evaluation values, it is possible to evaluate the fineness of the unevenness of the antiglare layer 16 and the change in the height of the unevenness before and after the molding process.
 算術平均表面粗さRaは、表面の凹凸の高さを示す評価値であり、粗さ計で測定した粗さ曲線の一部を基準長さで抜き出し、その区間の凹凸の高さの平均値を表した値である。二乗平均平方根粗さRqは、基準長さの区間における凹凸の高さの二乗平均平方根を表した値であり、表面粗さの標準偏差を意味する。最大高さRzは、粗さ計で測定した粗さ曲線の一部を基準長さで抜き出し、最も高い部分(最大山高さ)と最も低い部分(最大谷深さ)の和の値で求める。 Arithmetic average surface roughness Ra is an evaluation value indicating the height of the unevenness on the surface, and a part of the roughness curve measured with a roughness meter is extracted at the reference length, and the average value of the unevenness height in that section. Is a value representing The root mean square roughness Rq is a value representing the root mean square of the height of the unevenness in the reference length section, and means a standard deviation of the surface roughness. The maximum height Rz is obtained from the sum of the highest part (maximum peak height) and the lowest part (maximum valley depth) by extracting a part of the roughness curve measured with a roughness meter at the reference length.
 本実施の形態における表面粗さに関する評価値は、株式会社ミツトヨ製サーフテストSJ-310を用いて測定したものである。具体的には、平滑なガラス板上に防眩層16を上側にしてフィルムを固定し、測定機の標準検出器(測定力が0.75mN、スタライス形状が先端半径2μ、先端角度60度である)を備えた標準駆動ユニットをフィルムの凹凸面に置く。そして、検出器の先端を表面の凹凸に接触させながら直線移動させることによって連続的な表面凹凸の高さ情報を得る。この時、検出器の測定距離は4.8mm、移動速度は0.5cm/sとした。 The evaluation value regarding the surface roughness in the present embodiment is measured using a surf test SJ-310 manufactured by Mitutoyo Corporation. Specifically, the film is fixed on a smooth glass plate with the antiglare layer 16 on the upper side, and a standard detector of the measuring machine (measuring force is 0.75 mN, Stalice shape is tip radius 2 μ, tip angle 60 degrees. Place a standard drive unit with a) on the uneven surface of the film. Then, the height information of the continuous surface unevenness is obtained by linearly moving the tip of the detector in contact with the surface unevenness. At this time, the measurement distance of the detector was 4.8 mm, and the moving speed was 0.5 cm / s.
 ヘイズは、曇りの度合を意味し、ガラス、プラスチックや液体等の透明さの程度を表す。ヘイズ値H(単位:%)は、数式(3)より算出される。数式(3)においてτdは拡散透過率、τtは全光線透過率を表す。
Figure JPOXMLDOC01-appb-M000003
Haze means the degree of cloudiness and represents the degree of transparency of glass, plastic, liquid, or the like. The haze value H (unit:%) is calculated from the mathematical formula (3). In Equation (3), τd represents diffuse transmittance, and τt represents total light transmittance.
Figure JPOXMLDOC01-appb-M000003
 ヘイズ値は、防眩層16の表面の凹凸による散乱(外部散乱)と防眩層16の内部の散乱(内部散乱)との和として求められる。例えば、防眩層16の内部に有機系微粒子を内在させた場合、表面に凹凸構造を有していなくても、微粒子とバインダーとなる樹脂層との屈折率差に起因する内部散乱によってヘイズ値が測定される。 The haze value is obtained as the sum of scattering due to irregularities on the surface of the antiglare layer 16 (external scattering) and scattering inside the antiglare layer 16 (internal scattering). For example, when organic fine particles are contained inside the antiglare layer 16, the haze value is caused by internal scattering due to the difference in refractive index between the fine particles and the resin layer serving as a binder, even if the surface has no uneven structure. Is measured.
 本実施の形態におけるヘイズ値は、(株)村上色彩技術研究所製HM-150を用いて測定したものである。ヘイズ測定は、測定試料構成内部に散乱成分が無く且つ平滑なものであれば、直接、防眩層16を有するフィルムを含む偏光板や前面板の状態で行ってもよいが、正確に防眩層16のヘイズ値を求めるためにはフィルム単体の状態で行うことが好ましい。また、内部散乱分のヘイズ値を得る場合、例えば、防眩層16を有するフィルムの表面に粘着層とガラス板とを順に積層し、表面の凹凸が粘着層で埋もれた状態とする。この状態においてヘイズ値を測定することによって、外部散乱分のヘイズ値は測定されず、内部散乱分のみのヘイズ値を得ることができる。 The haze value in the present embodiment is measured using HM-150 manufactured by Murakami Color Research Laboratory. The haze measurement may be performed directly in the state of a polarizing plate or a front plate including a film having the antiglare layer 16 as long as there is no scattering component inside the measurement sample structure and is smooth, but it is precisely antiglare. In order to obtain the haze value of the layer 16, it is preferable to carry out in the state of a single film. Moreover, when obtaining the haze value for internal scattering, for example, an adhesive layer and a glass plate are sequentially laminated on the surface of the film having the antiglare layer 16, and the surface irregularities are buried in the adhesive layer. By measuring the haze value in this state, the haze value for the external scattering is not measured, and the haze value for only the internal scattering can be obtained.
 一般的に、液晶表示装置等の前面に設けられる防眩層のヘイズ値は、1%以上30%以下である。ヘイズ値が10%を越えると表示画像が白ボケして見えるようになる。一方、ヘイズ値を1~4%にした防眩層16を用いることにより、黒色が締まった表示画像を得ることができる。そこで、防眩層16のヘイズ値は、1%以上10%以下としてもよい。 Generally, the haze value of the antiglare layer provided on the front surface of a liquid crystal display device or the like is 1% or more and 30% or less. When the haze value exceeds 10%, the display image appears to be blurred white. On the other hand, by using the antiglare layer 16 having a haze value of 1 to 4%, a display image with a blackened color can be obtained. Therefore, the haze value of the antiglare layer 16 may be 1% or more and 10% or less.
 透過像鮮明度は、フィルムを透過した光のボケや歪みを定量化した評価値である。透過像鮮明度は、移動する光学櫛を通してフィルムからの透過光を測定し、光学櫛の明暗部の光量に基づいて算出される。すなわち、フィルムが透過光をぼやかす場合、光学櫛上に結像されるスリットの像は太くなるため、透過部での光量は100%未満となり、一方、不透過部では光が漏れるため0%を超える値となる。透過像鮮明度Cは、光学櫛の透明部の透過光最大値Mと不透明部の透過光最小値mから数式(4)により定義される。すなわち、透過像鮮明度Cの値が100%に近づく程、フィルムによる像のボケは小さいといえる。
Figure JPOXMLDOC01-appb-M000004
The transmitted image definition is an evaluation value obtained by quantifying blur and distortion of light transmitted through the film. The transmitted image definition is calculated based on the amount of light in the bright and dark portions of the optical comb by measuring the transmitted light from the film through the moving optical comb. That is, when the film blurs the transmitted light, the slit image formed on the optical comb becomes thick, so that the amount of light at the transmissive portion is less than 100%, while the light leaks at the non-transmissive portion, and 0%. The value exceeds. The transmitted image definition C is defined by Equation (4) from the transmitted light maximum value M of the transparent portion of the optical comb and the transmitted light minimum value m of the opaque portion. That is, it can be said that the blur of the image by the film is smaller as the value of the transmitted image definition C approaches 100%.
Figure JPOXMLDOC01-appb-M000004
 本実施の形態において、透過像鮮明度Cの測定にはスガ試験機(株)製写像性測定器ICM-1を使用した。透過像鮮明度の測定は、測定試料構成の内部に散乱成分が無く且つ平滑なものであれば、直接、防眩層16を有するフィルムを含む偏光板や前面板の状態で行ってもよいが、正確に防眩層16の透過像鮮明度を求めるためにはフィルム単体の状態で行うことが好ましい。 In the present embodiment, the image clarity measuring instrument ICM-1 manufactured by Suga Test Instruments Co., Ltd. was used to measure the transmitted image definition C. The transmitted image definition may be measured directly in the state of a polarizing plate or a front plate including a film having the antiglare layer 16 as long as there is no scattering component inside the measurement sample structure and is smooth. In order to accurately determine the transmitted image clarity of the antiglare layer 16, it is preferably performed in the state of a single film.
 測定機には、0.05、0.125、0.5、1.0及び2.0mmの光学櫛が備えられており、透過像鮮明度Cの測定は各光学櫛において行うことができる。試料中に微粒子等の光の散乱成分ある場合、散乱成分のサイズに依存して光学櫛の幅が細かいほど透過部での光量が低下する。そのため、光学櫛の幅がより細かい条件において透過像鮮明度Cがより高い値であるほど防眩層16の凹凸構造が微細であり、且つ透過像がボケにくいと評価できる。したがって、透過像鮮明度Cは、光学櫛の幅が0.05mm及び0.125mmの場合における値がより高いことが好ましい。具体的には、透過像鮮明度Cは、光学櫛の幅が0.05mmのときに40%以上70%以下、光学櫛の幅が0.125mmのときに70%以上90%以下としてもよい。また、このとき、0.5mm以上の幅の光学櫛における透過像鮮明度Cは80%以上を有してもよい。 The measuring machine is equipped with optical combs of 0.05, 0.125, 0.5, 1.0 and 2.0 mm, and the transmission image definition C can be measured in each optical comb. When there is a light scattering component such as fine particles in the sample, the amount of light at the transmission portion decreases as the width of the optical comb becomes smaller depending on the size of the scattering component. Therefore, it can be evaluated that the higher the transmitted image definition C is, the finer the concavo-convex structure of the antiglare layer 16 is, and the more the transmitted image is less blurred. Therefore, it is preferable that the transmitted image definition C has a higher value when the width of the optical comb is 0.05 mm and 0.125 mm. Specifically, the transmitted image definition C may be 40% or more and 70% or less when the width of the optical comb is 0.05 mm, and 70% or more and 90% or less when the width of the optical comb is 0.125 mm. . At this time, the transmitted image definition C in an optical comb having a width of 0.5 mm or more may have 80% or more.
 特に、防眩層16を前面板100に付する場合、情報表示装置の表示部に防眩層16を付する場合よりも防眩層16と表示部との間に距離があるため、表示像がボケやすくなる。したがって、透過像鮮明度Cを上記の好ましい範囲とすることで、防眩機能を有しつつ表示装置の表示像を鮮明にすることができる。 In particular, when the antiglare layer 16 is attached to the front plate 100, the display image is displayed because there is a distance between the antiglare layer 16 and the display portion as compared with the case where the antiglare layer 16 is attached to the display portion of the information display device. Becomes easy to blur. Therefore, by setting the transmitted image definition C in the above preferable range, it is possible to make the display image of the display device clear while having an antiglare function.
 また、透過像鮮明度Cは、防眩層16が高精細な表示装置に対応するか否か指標としても用いることができる。透過像鮮明度Cが上記適切な範囲より小さい場合は表示のギラがつき易く、上記範囲より値が大きい場合は防眩性能が十分に得られない。ここで、ギラつきとは、凹凸構造がレンズとして働き、表示体の赤(R)、緑(G)、青(B)の画素が見えてしまったり、明るさにムラが生じたりすることによってチラついて見える現象のことを意味する。表示装置の高精細化に伴い、画素が微細化されることで凹凸が相対的に増大し、ギラツキの問題が顕在化し易くなる(https://www.daicel.com/research/features.html)。 Further, the transmitted image definition C can also be used as an index as to whether or not the antiglare layer 16 corresponds to a high-definition display device. When the transmitted image clarity C is smaller than the appropriate range, display glare is likely to occur, and when the transmitted image clarity C is larger than the above range, sufficient antiglare performance cannot be obtained. Here, the glare means that the uneven structure works as a lens, and the red (R), green (G), and blue (B) pixels of the display body can be seen or the brightness is uneven. It means a phenomenon that looks flickering. As the display device becomes higher definition, unevenness is relatively increased due to pixel miniaturization, and the problem of glare is easily revealed (https://www.daicel.com/research/features.html) .
 防眩層16を有するフィルムと樹脂10とを一体に成形する方法としては、射出成形法を適用してもよい。射出成形にはインサート成形法がある。インサート成形法とは、防眩層16を有するフィルム(偏光板としてもよい)を予め所望の形状に切断又は予備成形し、それを射出成形の金型内に配置し、樹脂10の成形と同時にフィルムを樹脂10に一体的に成形する方法である。インサート成形法では、金型内で樹脂の成形と同時に偏光板との貼り付けができる。したがって、製造工程を非常に簡素化することができる。また、インサート成形法では、溶融された樹脂の射出圧力によりフィルムが伸ばされて金型の形状に追随するため、曲面等を有する3次元形状の前面板100を容易に製造することができる。 As a method of integrally molding the film having the antiglare layer 16 and the resin 10, an injection molding method may be applied. There is an insert molding method for injection molding. In the insert molding method, a film (which may be a polarizing plate) having an antiglare layer 16 is cut or preformed into a desired shape in advance, and then placed in an injection mold, and simultaneously with the molding of the resin 10. In this method, the film is formed integrally with the resin 10. In the insert molding method, the resin and the polarizing plate can be attached simultaneously with the molding of the resin in the mold. Therefore, the manufacturing process can be greatly simplified. Further, in the insert molding method, the film is stretched by the injection pressure of the molten resin to follow the shape of the mold, so that the three-dimensional front plate 100 having a curved surface or the like can be easily manufactured.
 インサート成形法において、樹脂10と防眩層16を有するフィルムの接着性を向上させるために、樹脂と防眩層16を有するフィルムの間に接着層を設けてもよい。例えば、支持フィルム14と樹脂10とが異種材料である場合に接着層を設けてもよい。使用する接着剤は、例えば、ポリアクリル樹脂やポリエステル樹脂等が挙げられる。ポリアクリル樹脂等は、樹脂と高い密着性が得られるが、一体成形時の熱によって接着層が溶出し、前面板100の外観が著しく低下する可能性がある。そこで、使用する接着剤は非晶質ポリエステル樹脂としてもよい。この場合、当該接着層は、防眩層16を有するフィルムの片側に塗工装置等によって予め設けておくことが好ましい。また、接着層の厚みは、1~50μm、より好ましくは10~30μmとすることが好ましい。これによって、樹脂との密着性、さらには樹脂形状との追随性、一体成形後の外観に優れた前面板100を得ることができる。 In the insert molding method, an adhesive layer may be provided between the resin and the film having the antiglare layer 16 in order to improve the adhesiveness of the film having the resin 10 and the antiglare layer 16. For example, an adhesive layer may be provided when the support film 14 and the resin 10 are different materials. Examples of the adhesive used include polyacrylic resin and polyester resin. Polyacrylic resin or the like can obtain high adhesion to the resin, but the adhesive layer may be eluted by heat during integral molding, and the appearance of the front plate 100 may be significantly deteriorated. Therefore, the adhesive used may be an amorphous polyester resin. In this case, the adhesive layer is preferably provided in advance on one side of the film having the antiglare layer 16 by a coating apparatus or the like. The thickness of the adhesive layer is preferably 1 to 50 μm, more preferably 10 to 30 μm. As a result, it is possible to obtain the front plate 100 that is excellent in adhesion with the resin, further in conformity with the resin shape, and in appearance after integral molding.
 防眩層16を有するフィルムが金型に沿いやすくするために、防眩層16を有するフィルムの近傍に、赤外線ヒーターやニクロムヒーター等を配置して加熱してもよい。ただし、防眩層16を有するフィルムに偏光フィルム18が含まれる場合、あまり高温に曝されると光学特性が劣化するおそれがあるので、金型の温度を必要以上に高温にするのは好ましくない。そこで、金型の温度は、50℃以上100℃以下としてもよく、より好ましくは50℃以上80℃以下としてもよい。成形金型を所定の位置において所定の方向に沿って防眩層16を有するフィルム(又は偏光板)を固定し、成形金型を閉じた後、固定型に設けたゲートより溶融させて樹脂10をキャビティ内に射出充満させる。シリンダー温度は、樹脂の種類にもよるが、例えば200℃以上290℃以下の温度範囲としてもよい。樹脂10の射出圧力は、70MPa以上150MPa以下の圧力範囲としてもよい。溶融させた樹脂10をキャビティ内に射出充満させた後、成形品を冷却し、成形金型を開いて成形品を取り出せば、樹脂10に対して特定の位置に防眩層16を有するフィルム(又は偏光板)が一体に成形された前面板100を製造することができる。 In order to make it easy for the film having the antiglare layer 16 to follow the mold, an infrared heater, a nichrome heater or the like may be arranged in the vicinity of the film having the antiglare layer 16 and heated. However, when the polarizing film 18 is included in the film having the antiglare layer 16, it is not preferable to raise the mold temperature to an unnecessarily high temperature because the optical properties may deteriorate if exposed to a very high temperature. . Therefore, the temperature of the mold may be 50 ° C. or more and 100 ° C. or less, more preferably 50 ° C. or more and 80 ° C. or less. The film (or polarizing plate) having the antiglare layer 16 is fixed along a predetermined direction at a predetermined position in the molding die, and after closing the molding die, the resin 10 is melted from a gate provided in the stationary mold. Is injected into the cavity. The cylinder temperature may be a temperature range of 200 ° C. or more and 290 ° C. or less, for example, depending on the type of resin. The injection pressure of the resin 10 may be a pressure range of 70 MPa to 150 MPa. After the molten resin 10 is injected and filled in the cavity, the molded product is cooled, the mold is opened, and the molded product is taken out. Then, a film having an antiglare layer 16 at a specific position with respect to the resin 10 ( Alternatively, the front plate 100 in which the polarizing plate) is integrally formed can be manufactured.
 また、前面板100に偏光板を一体に成形する場合、防眩層16を有するフィルムと偏光フィルム18と樹脂10とを接着層等を介して視認側から順に積層すればよい。または、防眩層16を有するフィルムと樹脂10と偏光フィルム18とを接着層を介して視認側から順に積層してもよい。このとき、上記のように偏光フィルム18に防眩層16を有するフィルムを支持フィルム14として貼り合せた偏光板を用いることが好ましい。この場合、偏光板は表示装置の外側、即ち、前面板100の視認側となる。これによって、前面板100を一体に成形する場合において、フィルム数や工程数を減らすことができる。 Further, when the polarizing plate is integrally formed on the front plate 100, a film having the antiglare layer 16, the polarizing film 18, and the resin 10 may be laminated in order from the viewing side through an adhesive layer or the like. Or you may laminate | stack the film which has the glare-proof layer 16, resin 10, and the polarizing film 18 in order from the visual recognition side through an adhesive layer. At this time, it is preferable to use a polarizing plate in which a film having the antiglare layer 16 is bonded to the polarizing film 18 as the support film 14 as described above. In this case, the polarizing plate is outside the display device, that is, the viewing side of the front plate 100. Thereby, when the front plate 100 is formed integrally, the number of films and the number of steps can be reduced.
 なお、前面板に偏光フィルム18と樹脂10とを接着層を介して視認側から順に積層する場合は、偏光フィルム18と表示装置側の偏光層との間に、樹脂10が配置されることになるため、射出成形により発現した樹脂10の光学異方性により光軸のズレや表示像のムラ等が生じ、表示装置からの出射光を最大限に取り出せなくなる場合がある。 In addition, when laminating the polarizing film 18 and the resin 10 sequentially on the front plate through the adhesive layer from the viewing side, the resin 10 is disposed between the polarizing film 18 and the polarizing layer on the display device side. For this reason, the optical anisotropy of the resin 10 developed by injection molding causes optical axis misalignment, display image unevenness, and the like, and it may not be possible to extract light emitted from the display device to the maximum extent.
 そのため、前述の記載の積層とする場合には、樹脂10はリターデーションを有しないように(またはほぼゼロとなるように)分子設計されたものを用いることが好ましい。例えば、市販のカネカ社製射出成形用ゼロ複屈折透明アクリル樹脂ハイパーライト(商標登録)等が挙げられる。 Therefore, in the case of the above-described lamination, it is preferable to use a resin 10 that is molecularly designed so as not to have retardation (or to be almost zero). For example, commercially available zero birefringence transparent acrylic resin Hyperlite (trademark registered) manufactured by Kaneka Corporation can be used.
 さらに、射出成形加工においては、溶融した樹脂10をゲートから充満させる際に、一般に、樹脂10は当該高分子鎖が流入方向に対して配向してしまうことが光学異方性を発現させる要因であるため、例えば、ゲートの大きさ、位置および数を最適に設計することが好ましく、さらに、樹脂の溶融温度、流入速度等の加工条件を最適に制御することが好ましい。このようにして得られた樹脂10を用いることで、視認側に偏光フィルム18を備えた前面板100を表示装置の前面に付することができる。 Furthermore, in the injection molding process, when the molten resin 10 is filled from the gate, generally, the resin 10 is oriented to the inflow direction, which is a factor causing the optical anisotropy. Therefore, for example, it is preferable to optimally design the size, position, and number of gates, and it is preferable to optimally control processing conditions such as the melting temperature and inflow speed of the resin. By using the resin 10 thus obtained, the front plate 100 having the polarizing film 18 on the viewing side can be attached to the front surface of the display device.
 一方、前述の樹脂10の光学異方性による影響が解消されない場合には、前面板100は、防眩層16を有するフィルムと樹脂10と偏光フィルム18とを接着層を介して視認側から順に積層することが好ましい。 On the other hand, when the influence due to the optical anisotropy of the resin 10 is not eliminated, the front plate 100 sequentially connects the film having the antiglare layer 16, the resin 10, and the polarizing film 18 from the viewing side through the adhesive layer. It is preferable to laminate.
 また、本実施の形態では、前面板100を一体成形する方法として射出成形法について説明したが、成形された樹脂10の表面に防眩層16を有するフィルム(又は、偏光板)を接着する方法を用いてもよい。 In the present embodiment, the injection molding method has been described as a method of integrally molding the front plate 100. However, a method of bonding a film (or a polarizing plate) having the antiglare layer 16 to the surface of the molded resin 10 is described. May be used.
 また、前面板100において防眩層16を有するフィルム(又は偏光板)は樹脂10の全面に設ける必要はない。図1及び図2では、樹脂10の全面に防眩層16を有するフィルム(又は偏光板)が成形された態様を示したが、これらは模式的に示した例示に過ぎない。 Further, the film (or polarizing plate) having the antiglare layer 16 on the front plate 100 need not be provided on the entire surface of the resin 10. 1 and 2 show an embodiment in which a film (or a polarizing plate) having the antiglare layer 16 is formed on the entire surface of the resin 10, but these are only examples schematically shown.
 以下、実施例により本開示を更に具体的に説明するが、本開示はかかる実施例に限定されない。 Hereinafter, the present disclosure will be described more specifically with reference to examples, but the present disclosure is not limited to such examples.
[実施例1]
<偏光フィルム18の製造>
 ポリビニルアルコール樹脂製フィルム(株式会社クラレ製 VF-PS(75μm))を30℃の水中で5分間膨潤させた後、30℃の染色液(水1000重量部、トリポリリン酸ナトリウム1重量部に対して、市販のアゾ化合物C.I.Direct Red 81を0.3重量部、日本化薬(株)製アゾ化合物KAYAFECT BLUE KWを0.7重量部、市販のC.I.Direct Orange 39を0.3重量部、市販のアゾ化合物C.I.Direct Violet 9 0.06重量部含有)の中に5分間浸して染料による染色処理を行った。次いで、50℃の3重量%の硼酸水溶液中で4~5倍に延伸し延伸フィルムを得た。延伸処理の後、50℃の5重量%の硼酸水溶液中に延伸フィルムを2分間浸し、水洗後、30~80℃の空気中で乾燥してニュートラルグレー色の偏光フィルム18を得た。得られた偏光フィルム18の厚さは30μmであった。
[Example 1]
<Manufacture of polarizing film 18>
A polyvinyl alcohol resin film (VF-PS (75 μm) manufactured by Kuraray Co., Ltd.) was swollen in water at 30 ° C. for 5 minutes, and then dyed at 30 ° C. (1000 parts by weight of water and 1 part by weight of sodium tripolyphosphate). 0.3 parts by weight of commercially available azo compound CI Direct Red 81, 0.7 parts by weight of azo compound KAYAFECT BLUE KW manufactured by Nippon Kayaku Co., Ltd., and 0.1% of commercially available CI Direct Orange 39 3 parts by weight in a commercially available azo compound CI Direct Violet 9 containing 0.06 parts by weight) was dyed with a dye for 5 minutes. Subsequently, the film was stretched 4 to 5 times in a 3% by weight boric acid aqueous solution at 50 ° C. to obtain a stretched film. After the stretching treatment, the stretched film was immersed in a 5 wt% boric acid aqueous solution at 50 ° C. for 2 minutes, washed with water, and dried in air at 30 to 80 ° C. to obtain a neutral gray polarizing film 18. The thickness of the obtained polarizing film 18 was 30 μm.
 得られた偏光フィルム18を、日立製作所製分光光度計U-4100を用いて測定を行ったところ、単体透過率Ysは30%、偏光度Pyは99%であった。 The obtained polarizing film 18 was measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. As a result, the single transmittance Ys was 30% and the polarization degree Py was 99%.
<防眩層16を有するフィルムの作製>
 ジペンタエリスリトールヘキサアクリレート(日本化薬(株)製、DPHA)を25.87重量部、アクリル(根上工業(株)製、M-5001)を0.35重量部、重合開始剤としてイルガキュア184(チバ・スペシャリティ・ケミカルズ社製)を2.24重量部、イルガキュア907(チバ・スペシャリティ・ケミカルズ社製)を0.56重量部、硬化促進剤としてジエタノールアミンを0.56重量部、を配合し、シクロペンタノン70重量部に溶解させた。この溶液をトリアセチルセルロースフィルム(80μm)の片面にマイクログラビアコート法にて塗布し、80℃で溶剤を蒸発させた後、80W/cmの高圧水銀ランプにて光を照射して硬化させ、表面に凹凸構造を有する防眩層16を有するフィルムを得た。この防眩層の膜厚は約6μmであった。
<Preparation of film having antiglare layer 16>
25.87 parts by weight of dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA), 0.35 parts by weight of acrylic (manufactured by Negami Kogyo Co., Ltd., M-5001), Irgacure 184 (as a polymerization initiator) Ciba Specialty Chemicals Co., Ltd.) 2.24 parts by weight, Irgacure 907 (Ciba Specialty Chemicals Co., Ltd.) 0.56 parts by weight, diethanolamine 0.56 parts by weight as a curing accelerator, Dissolved in 70 parts by weight of pentanone. This solution was applied to one side of a triacetyl cellulose film (80 μm) by a micro gravure coating method, the solvent was evaporated at 80 ° C., and then cured by irradiating light with an 80 W / cm high pressure mercury lamp. A film having an antiglare layer 16 having an uneven structure was obtained. The film thickness of this antiglare layer was about 6 μm.
 得られた防眩層16を有するフィルムを透過型光学顕微鏡により観察したところ、液滴状相分離構造を有していた。 When the obtained film having the antiglare layer 16 was observed with a transmission optical microscope, it had a droplet-like phase separation structure.
<防眩層16を有するフィルムを含む偏光板の作製>
 偏光フィルム18の両面にTACフィルム(厚さ80μm)を、ポリビニルアルコール(PVA)を成分とする水系接着剤にてラミネートした後、70℃で5分間乾燥して偏光板を得た。このとき、ラミネートする一面には第2支持フィルム14bとして、防眩層16を有するフィルムを使用し、他面には防眩層16の無いTACフィルム(富士フィルム製TD80)を第1支持フィルム14aとして使用した。
<Preparation of polarizing plate including film having antiglare layer 16>
A TAC film (thickness: 80 μm) was laminated on both surfaces of the polarizing film 18 with an aqueous adhesive containing polyvinyl alcohol (PVA) as a component, and then dried at 70 ° C. for 5 minutes to obtain a polarizing plate. At this time, a film having an antiglare layer 16 is used as the second support film 14b on one surface to be laminated, and a TAC film (TD80 made by Fuji Film) having no antiglare layer 16 is used on the other surface as the first support film 14a. Used as.
<接着層の形成>
 防眩層16を有するフィルム(偏光板)と樹脂10とを接着させるための接着層の形成方法について説明する。
<Formation of adhesive layer>
A method for forming an adhesive layer for bonding the film (polarizing plate) having the antiglare layer 16 and the resin 10 will be described.
 接着層は、偏光板において防眩層16が設けられていない側の支持フィルム14に非結晶性ポリエステル樹脂接着剤(東洋紡社製バイロン)を設けることで得られる。具体的には、主剤を非晶系ポリエステル樹脂として、希釈剤としてシクロヘキサノン及び硬化剤としてイソシアネートを添加した。非晶質ポリエステル樹脂を1としてシクロヘキサノンを0.33及びイソシアネートを0.04の割合で混合した接着剤を生成した。次に、当該配合された接着剤を離型フィルム上に塗布し、乾燥工程において溶剤を揮発させた。乾燥工程は、それぞれ40℃から100℃の温度範囲に設定された複数の乾燥炉を用いて、接着剤を塗布した離型フィルムから溶剤を揮発させた。このとき、乾燥後の塗布層の厚みが15μm以上30μm以下となるように塗布量を調整した。その後、塗布面を偏光板の防眩層16の無い第1支持フィルム14aに向けて貼り合わせた。 The adhesive layer can be obtained by providing a non-crystalline polyester resin adhesive (byron manufactured by Toyobo Co., Ltd.) on the support film 14 on the side where the antiglare layer 16 is not provided in the polarizing plate. Specifically, an amorphous polyester resin was used as the main agent, cyclohexanone was added as a diluent, and isocyanate was added as a curing agent. An adhesive was produced in which the amorphous polyester resin was 1, and cyclohexanone was mixed at a ratio of 0.33 and isocyanate at a ratio of 0.04. Next, the blended adhesive was applied on a release film, and the solvent was volatilized in the drying step. In the drying step, the solvent was volatilized from the release film coated with the adhesive using a plurality of drying furnaces each set in a temperature range of 40 ° C to 100 ° C. At this time, the coating amount was adjusted so that the thickness of the coating layer after drying was 15 μm or more and 30 μm or less. Then, the application surface was bonded together toward the 1st support film 14a without the glare-proof layer 16 of a polarizing plate.
<前面板100の製造>
 射出成形機を用いて、防眩層16を有するフィルムを含む偏光板と樹脂10による成形品との一体成形を行った。成形機の金型内部に偏光板を吸引により固定した。このとき、接着層に設けられている離型フィルムを剥離し、偏光板の防眩層16が金型面に接触し、一方、接着層面は注入される樹脂10の側となるように金型に挟み込んだ。そこにシリンダー温度200℃から290℃で溶融した状態のPMMA樹脂(株式会社クラレ製パラペットHR-L)を流し込むことにより、透明な樹脂10に偏光板が一体となって成形された前面板100を製造した。なお、金型の温度は50~100℃で保持することによって、偏光板を金型の形状に沿ったものとすることができた。これより得られた前面板100の総厚は2mmであった。
<Manufacture of front plate 100>
Using an injection molding machine, integral molding of a polarizing plate including a film having the antiglare layer 16 and a molded product of the resin 10 was performed. The polarizing plate was fixed inside the mold of the molding machine by suction. At this time, the release film provided on the adhesive layer is peeled off, and the mold is so that the antiglare layer 16 of the polarizing plate contacts the mold surface, while the adhesive layer surface is on the side of the injected resin 10. Sandwiched between. A PMMA resin (Parapet HR-L manufactured by Kuraray Co., Ltd.) in a melted state at a cylinder temperature of 200 ° C. to 290 ° C. is poured into the front plate 100 in which a polarizing plate is integrally formed with a transparent resin 10. Manufactured. By keeping the mold temperature at 50 to 100 ° C., it was possible to make the polarizing plate conform to the shape of the mold. The total thickness of the front plate 100 obtained from this was 2 mm.
[実施例2]
<防眩層16を有するフィルムの作製>
 実施例1にて生成した接着剤を離型フィルム上に塗布し、乾燥工程において溶剤を揮発させた。乾燥工程は、それぞれ40℃から100℃の温度範囲に設定された複数の乾燥炉を用いて、接着剤を塗布した離型フィルムから溶剤を揮発させた。このとき、乾燥後の塗布層の厚みが15μm以上30μm以下となるように塗布量を調整した。その後、前記塗布面を防眩性付きTACフィルム(ダイセル化学工業製PFT80 000HNP)の防眩層16の無い側の面に向けて貼り合せた。
[Example 2]
<Preparation of film having antiglare layer 16>
The adhesive produced in Example 1 was applied on the release film, and the solvent was volatilized in the drying step. In the drying step, the solvent was volatilized from the release film coated with the adhesive using a plurality of drying furnaces each set in a temperature range of 40 ° C to 100 ° C. At this time, the coating amount was adjusted so that the thickness of the coating layer after drying was 15 μm or more and 30 μm or less. Then, the said application surface was bonded together toward the surface without the glare-proof layer 16 of the TAC film with glare-proof property (PFT80 000HNP by Daicel Chemical Industries).
<前面板100の作製>
 射出成形機を用いて、防眩層16を有するフィルムと樹脂10による成形品との一体成形を行った。成形機の金型内部にフィルムを粘着テープ又は吸引により固定した。このとき、接着層に設けられている離型フィルムを剥離し、フィルムの防眩層16が金型面に接触し、一方、接着層面は注入される樹脂10の側となるように金型に挟み込んだ。そこにシリンダー温度200℃から290℃で溶融した状態にしたPMMA樹脂(株式会社クラレ製パラペットHR-L)を流し込むことにより、透明な樹脂10にフィルムが一体となって成形された前面板100を製造した。なお、金型の温度は50~100℃で保持することによって、フィルムを金型の形状に沿ったものとすることができた。これより得られた前面板100の総厚は2mmであった。
<Preparation of front plate 100>
Using an injection molding machine, the film having the antiglare layer 16 and the molded product made of the resin 10 were integrally formed. The film was fixed inside the mold of the molding machine with adhesive tape or suction. At this time, the release film provided on the adhesive layer is peeled off, and the antiglare layer 16 of the film is in contact with the mold surface, while the adhesive layer surface is on the side of the resin 10 to be injected. I caught it. PMMA resin (Parapet HR-L manufactured by Kuraray Co., Ltd.) melted at a cylinder temperature of 200 ° C. to 290 ° C. is poured into the front plate 100 in which the film is integrally formed with the transparent resin 10. Manufactured. By keeping the mold temperature at 50 to 100 ° C., it was possible to make the film conform to the shape of the mold. The total thickness of the front plate 100 obtained from this was 2 mm.
[比較例1]
 平均二次粒子径1.0μm、平均二次粒子径の標準偏差が0.5μmのシリカ微粒子を7.5重量部及び光重合開始剤(イルガキュアー184:チバガイギー社製)を5重量部、ジペンタエリスリトールヘキサアクリレートを50重量部、ペンタエリスリトールトリアクリレートを30重量部、N-ビニル-ε-カプロラクタムを20重量部、含有する紫外線硬化型のアクリル系樹脂を準備する。そのアクリル系樹脂を100重量部とトルエンとイソプロピルアルコールとを混合した溶媒中で高速撹拌後、1.3重量部のヒドロキシプロピルセルロースをトルエンとイソプロピルアルコールを混合した溶液に添加し、固形分が50重量%になるように分散液を調製した。それを厚さ80μmのトリアセチルセルロースフィルムの片面にマイクログラビアコート法にて塗布し、溶剤を80℃で蒸発させた後、80W/cmの高圧水銀ランプにて光を照射して硬化させ、防眩層の厚さが約4μmの防眩層を有するフィルムを得た。
[Comparative Example 1]
7.5 parts by weight of silica fine particles having an average secondary particle diameter of 1.0 μm and a standard deviation of the average secondary particle diameter of 0.5 μm, and 5 parts by weight of a photopolymerization initiator (Irgacure 184, manufactured by Ciba Geigy) An ultraviolet curable acrylic resin containing 50 parts by weight of pentaerythritol hexaacrylate, 30 parts by weight of pentaerythritol triacrylate, and 20 parts by weight of N-vinyl-ε-caprolactam is prepared. The acrylic resin was stirred at a high speed in a solvent in which 100 parts by weight, toluene and isopropyl alcohol were mixed, and then 1.3 parts by weight of hydroxypropyl cellulose was added to the mixed solution of toluene and isopropyl alcohol, so that the solid content was 50. A dispersion was prepared so as to have a weight%. It was applied to one side of a 80 μm thick triacetyl cellulose film by a micro gravure coating method, the solvent was evaporated at 80 ° C., and then cured by irradiation with light with an 80 W / cm high pressure mercury lamp. A film having an antiglare layer having a glare layer thickness of about 4 μm was obtained.
 得られた防眩層を有するフィルムを用いて、実施例1と同様に偏光板を作製した。すなわち、接着層の形成や、樹脂との成形加工は、実施例1の記載内容と同様に行った。ただし、防眩層は、微粒子を混合した表面に凹凸を有する硬化性樹脂がTACフィルム上に形成されたものとなった。 A polarizing plate was produced in the same manner as in Example 1 using the obtained film having an antiglare layer. That is, the formation of the adhesive layer and the molding process with the resin were performed in the same manner as described in Example 1. However, in the antiglare layer, a curable resin having irregularities on the surface mixed with fine particles was formed on the TAC film.
[比較例2]
 防眩性付きTACフィルムとして、大日本印刷製DSR3を用いて、実施例1と同様に偏光板を作製した。すなわち、接着層の形成や、樹脂との成形加工は、実施例1の記載内容と同様に行った。防眩層は、微粒子を混合した表面に凹凸を有する硬化性樹脂がTACフィルム上に形成されたものとなった。
[Comparative Example 2]
As a TAC film with antiglare properties, a polarizing plate was produced in the same manner as in Example 1 using DSR3 manufactured by Dai Nippon Printing. That is, the formation of the adhesive layer and the molding process with the resin were performed in the same manner as described in Example 1. In the antiglare layer, a curable resin having irregularities on the surface mixed with fine particles was formed on the TAC film.
[ヘイズ測定]
 実施例1及び比較例1、2で得られた防眩性付き偏光板のヘイズ値を測定した。ヘイズ値の測定には、村上色彩技術研究所製HM-150を用いた。表1は、ヘイズ値の測定結果を示す。実施例1及び比較例1、2のいずれも、防眩性付き偏光板のヘイズ値は、防眩層を有するフィルムのみの場合と殆ど差はなかった。なお、一体成形後のヘイズ測定は、防眩性付き偏光板を樹脂部から単離し、残存した接着層を完全に除去した状態のものを測定した。
Figure JPOXMLDOC01-appb-T000005
[Haze measurement]
The haze values of the antiglare polarizing plates obtained in Example 1 and Comparative Examples 1 and 2 were measured. For the measurement of the haze value, HM-150 manufactured by Murakami Color Research Laboratory was used. Table 1 shows the measurement results of haze values. In both Example 1 and Comparative Examples 1 and 2, the haze value of the antiglare polarizing plate was almost the same as that of the film having an antiglare layer alone. In addition, the haze measurement after integral molding measured the thing of the state which isolated the polarizing plate with glare-proof from the resin part, and removed the remaining contact bonding layer completely.
Figure JPOXMLDOC01-appb-T000005
 実施例1における前面板100は、比較例1,2の前面板に比べて、樹脂との一体成形前後において殆どヘイズ値が変化していなかった。また、上述の方法により防眩層の内部散乱分のヘイズ値を測定したところ、実施例1及び比較例1は内部散乱分のヘイズ値は殆どなかったが、比較例2は約20%のヘイズ値を有していた。 The front plate 100 in Example 1 had almost no change in haze value before and after integral molding with the resin, compared to the front plates of Comparative Examples 1 and 2. Moreover, when the haze value for the internal scattering of the antiglare layer was measured by the above-described method, Example 1 and Comparative Example 1 had almost no internal scattering haze, but Comparative Example 2 had a haze of about 20%. Had a value.
[透過像鮮明度測定]
 実施例1及び比較例1、2で製造した防眩性付き偏光板の透過像鮮明度を測定した。透過像鮮明度の測定には、スガ試験機(株)製写像性測定器ICM-1DPを用いた。測定には、ヘイズ測定で測定したサンプル片を使用した。実施例1及び比較例1、2のいずれにおいて、防眩性付き偏光板の透過像鮮明度は、防眩層を有するフィルムのみの場合と殆ど差はなかった。表2は、透過像鮮明度の測定結果を示す。
Figure JPOXMLDOC01-appb-T000006
[Transmission image clarity measurement]
The transmitted image clarity of the antiglare polarizing plates produced in Example 1 and Comparative Examples 1 and 2 was measured. For the measurement of transmitted image clarity, image clarity measuring device ICM-1DP manufactured by Suga Test Instruments Co., Ltd. was used. For the measurement, a sample piece measured by haze measurement was used. In any of Example 1 and Comparative Examples 1 and 2, the transmitted image definition of the polarizing plate with antiglare property was almost the same as that of the film having the antiglare layer alone. Table 2 shows the measurement results of the transmission image definition.
Figure JPOXMLDOC01-appb-T000006
 実施例1の前面板100は、比較例1,2の前面板に比べて、樹脂との一体成形前後において殆ど透過像鮮明度が変化していなかった。 In the front plate 100 of Example 1, the transmitted image definition was hardly changed before and after the integral molding with the resin, compared to the front plates of Comparative Examples 1 and 2.
[表面粗さ]
 実施例1及び比較例1、2で製造した防眩性付き偏光板の表面粗さを測定した。表面粗さの測定には、株式会社ミツトヨ製サーフテストSJ-310を用いた。測定には、ヘイズ測定で測定したサンプル片を使用した。表3は、表面粗さの測定結果を示す。
Figure JPOXMLDOC01-appb-T000007
[Surface roughness]
The surface roughness of the antiglare polarizing plate produced in Example 1 and Comparative Examples 1 and 2 was measured. For the measurement of the surface roughness, a surf test SJ-310 manufactured by Mitutoyo Corporation was used. For the measurement, a sample piece measured by haze measurement was used. Table 3 shows the measurement results of the surface roughness.
Figure JPOXMLDOC01-appb-T000007
 実施例1の前面板100は、比較例1,2の前面板に比べて、樹脂との一体成形前後において殆ど表面粗さが変化していなかった。 The front plate 100 of Example 1 had almost no change in surface roughness before and after integral molding with the resin, compared to the front plates of Comparative Examples 1 and 2.
 成形前における算術平均粗さ(Ra)と二乗平均平方根高さ(Rq)について、実施例1と比較例2は、比較例1よりも小さく、共に近い値を示した。これは、比較例2の防眩層は、実際例1の防眩層16と同等のきめ細かい表面構造を有していることを示している。しかしながら、成形加工後における最大高さ(Rz)は、実施例1では殆ど変化がないのに対し、比較例1及び2は大きく低下した。これは、比較例1及び2では防眩層の凸部が成形加工により潰れてしまったためと考えられ、実施例1では凸部の潰れが抑制されたといえる。 Example 1 and Comparative Example 2 were smaller than Comparative Example 1 and showed close values for arithmetic average roughness (Ra) and root mean square height (Rq) before molding. This indicates that the antiglare layer of Comparative Example 2 has a fine surface structure equivalent to the antiglare layer 16 of Actual Example 1. However, the maximum height (Rz) after the molding process is almost unchanged in Example 1, whereas Comparative Examples 1 and 2 are greatly reduced. This is considered to be because the convex portions of the antiglare layer were crushed by the molding process in Comparative Examples 1 and 2, and it can be said that the collapse of the convex portions was suppressed in Example 1.
 比較例1,2のような従来の有機系又は無機系の微粒子と硬化性樹脂とを混合して防眩層を構成した場合、表面の凹凸が「海と島」で表現されるように凸部が点在し、且つ凸部の高さが不均一となる。このような構造では、一体成形加工時において圧力が凸部に集中して掛かることになり、凸部が潰れてしまい、本来設計された防眩性能が薄れてしまう。 When the anti-glare layer is formed by mixing conventional organic or inorganic fine particles and a curable resin as in Comparative Examples 1 and 2, the surface irregularities are expressed as "sea and islands". The portions are interspersed and the heights of the convex portions are not uniform. In such a structure, the pressure is concentrated on the convex portion during the integral molding process, the convex portion is crushed, and the originally designed anti-glare performance is diminished.
 一方、実施例1のように相分離構造からなる凹凸を有する防眩層16を有するフィルムを用いる場合、一体成形加工後においても防眩性能の変化が殆どなかった。これは、相分離構造では凸部が連続的に繋がり、且つ凸部の高さが略均一となり、一体成形加工時に凸部に掛かる圧力が分散され、凸部の変形が小さくなるためと考えられる。 On the other hand, when the film having the antiglare layer 16 having the unevenness having the phase separation structure as in Example 1 was used, the antiglare performance was hardly changed even after the integral molding process. This is thought to be because, in the phase separation structure, the convex portions are continuously connected, and the height of the convex portions is substantially uniform, the pressure applied to the convex portions is dispersed during integral molding, and the deformation of the convex portions is reduced. .
[ギラつきの評価]
 実施例1及び比較例1、2で製造した前面板について表示像のギラつきの評価を行った。高精細表示装置としてAPPLE社製タブレットiPad(登録商標) MD513J/A(解像度:264ppi)上に実施例1及び比較例1、2で製造した前面板をそれぞれ防眩層が視認側に来るように設置した。このとき、タブレットの表示画像は緑色に設定した。前面板と表示画像部の距離を0から10cmまで変化させて、前面板を通して表示画像を目視により観察したときのギラつきの有無を評価した。
[Evaluation of glare]
The front plate manufactured in Example 1 and Comparative Examples 1 and 2 was evaluated for display image glare. As a high-definition display device, the front plate manufactured in Example 1 and Comparative Examples 1 and 2 on the tablet iPad (registered trademark) MD513J / A (resolution: 264 ppi) manufactured by APPLE is set so that the antiglare layer is on the viewer side. installed. At this time, the display image of the tablet was set to green. The distance between the front plate and the display image portion was changed from 0 to 10 cm, and the presence or absence of glare when the display image was visually observed through the front plate was evaluated.
[表示の鮮明性の評価]
 上述と同様に、実施例1及び比較例1、2で製造した前面板について表示像のボケの評価を行った。APPLE社製タブレットiPad(登録商標) MD513J/Aに実施例1及び比較例1、2で製造した前面板をそれぞれ防眩層が視認側に来るように設置した。このとき、タブレットの表示画像は文字と白色から黒色が段階的に階調で示してあるテストチャートを表示させた。前面板と表示部の距離を0から10cmにし、前面板を通して表示画像を目視により観察したときの見え方を評価した。なお、本評価における前面板と表示部の距離は、車載において表示装置の前面板が適用される範囲を想定したものであるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-T000008
[Evaluation of display clarity]
In the same manner as described above, the blur of the display image was evaluated for the front plates manufactured in Example 1 and Comparative Examples 1 and 2. The front plate manufactured in Example 1 and Comparative Examples 1 and 2 was placed on a tablet iPad (registered trademark) MD513J / A manufactured by APPLE so that the antiglare layer was on the viewing side. At this time, the display image of the tablet displayed a test chart in which characters and white to black are indicated by gradation in stages. The distance between the front plate and the display unit was set to 0 to 10 cm, and the appearance when the display image was visually observed through the front plate was evaluated. In addition, although the distance of the front plate in this evaluation and a display part assumes the range to which the front plate of a display apparatus is applied in vehicle mounting, it is not limited to this.
Figure JPOXMLDOC01-appb-T000008
 比較例1では、表示装置との距離が近いと表示像がギラついて見えた。距離を離すことによってギラつきは解消されたが、透過像鮮明度が低いため、表示像が鮮明に見えなくなった。比較例2では、防眩層16が高精細対応であり、透過像鮮明度が高いためギラつきが発生し難かった。しかしながら、内部散乱起因のヘイズがあるため、像が白っぽくなった。これに対して、実施例1では、表示装置との距離に関わらず、ギラつきは小さく、高い鮮明性が維持された。 In Comparative Example 1, the display image was glaring when the distance from the display device was short. The glare was eliminated by increasing the distance, but the display image became invisible because of the low transparency of the transmitted image. In Comparative Example 2, the glare-proof layer 16 is high definition compatible, and the transmitted image definition is high, so that glare hardly occurs. However, the image became whitish due to the haze caused by internal scattering. On the other hand, in Example 1, the glare was small and high sharpness was maintained regardless of the distance from the display device.
 以上の試験結果より、本実施の形態における前面板100は、樹脂10との一体成形後において防眩性能を殆ど損ねておらず、本来設計された防眩性能を維持できる。また、高精細な情報表示装置に用いても、ギラつきを抑え、高い鮮明度を有する表示装置とすることができる。 From the above test results, the front plate 100 in the present embodiment hardly loses the anti-glare performance after the integral molding with the resin 10 and can maintain the originally designed anti-glare performance. Further, even when used in a high-definition information display device, glare can be suppressed and a display device having high definition can be obtained.
 10 樹脂(樹脂層)、12 接着層、14(14a,14b) 支持フィルム、16 防眩層、18 偏光フィルム、20 透過率、100 前面板。 10 resin (resin layer), 12 adhesive layer, 14 (14a, 14b) support film, 16 anti-glare layer, 18 polarizing film, 20 transmittance, 100 front plate.

Claims (10)

  1.  表示装置の前面板であって、
     凹凸を有する相分離構造を備えた防眩層が設けられたフィルムと樹脂とが一体成形されており、前記防眩層が視認側に配置される。
    A front plate of a display device,
    A film provided with an antiglare layer having a phase-separated structure having irregularities and a resin are integrally formed, and the antiglare layer is disposed on the viewing side.
  2.  請求項1に記載の表示装置の前面板であって、
     前記防眩層は、少なくとも1つの熱可塑性樹脂と少なくとも1つの硬化性樹脂の硬化物とを含み、前記熱可塑性樹脂と前記硬化性樹脂との相分離構造を備える。
    A front plate of the display device according to claim 1,
    The antiglare layer includes at least one thermoplastic resin and a cured product of at least one curable resin, and includes a phase separation structure of the thermoplastic resin and the curable resin.
  3.  請求項2に記載の表示装置の前面板であって、
     前記硬化性樹脂は、アクリル樹脂、ポリメタクリル酸メチル樹脂、ポリカーボネート樹脂から選ばれる少なくとも1種を含む。
    A front plate of the display device according to claim 2,
    The curable resin contains at least one selected from an acrylic resin, a polymethyl methacrylate resin, and a polycarbonate resin.
  4.  請求項1~3のいずれか1項に記載の表示装置の前面板であって、
     前記フィルムは、
     二色性染料を含む偏光フィルムと、
     前記偏光フィルムの両面を挟持する支持フィルムと、
    を備え、
     前記支持フィルムの少なくとも一方は、前記防眩層を備える。
    A front plate of a display device according to any one of claims 1 to 3,
    The film is
    A polarizing film containing a dichroic dye;
    A support film sandwiching both sides of the polarizing film;
    With
    At least one of the support films includes the antiglare layer.
  5.  請求項1~4のいずれか1項に記載の表示装置の前面板であって、
     前記防眩層は、ヘイズ値が1%以上10%以下であり、
     前記防眩層は、光学櫛幅が0.05mmにおける透過像鮮明度が40%以上であり、かつ、光学櫛が0.125mmにおける透過像鮮明度が70%以上である。
    A front plate of a display device according to any one of claims 1 to 4,
    The antiglare layer has a haze value of 1% or more and 10% or less,
    The antiglare layer has a transmitted image definition of 40% or more when the optical comb width is 0.05 mm, and a transmitted image definition of 70% or more when the optical comb is 0.125 mm.
  6.  請求項1~5のいずれか1項に記載の表示装置の前面板であって、
     前記防眩層は、
     前記フィルムと前記樹脂とを一体成形する前のヘイズ値と一体成形した後のヘイズ値との変化の差が1.5%以下であり、
     前記フィルムと前記樹脂とを一体成形する前の表面粗さと一体成形した後の表面粗さにおける算術平均粗さ、二乗平均平方根高さ及び最大高さの変化の比がそれぞれ10%以下である。
    A front plate of a display device according to any one of claims 1 to 5,
    The antiglare layer is
    The difference in change between the haze value before integrally molding the film and the resin and the haze value after integral molding is 1.5% or less,
    Ratios of change in arithmetic mean roughness, root mean square height, and maximum height in the surface roughness before the film and the resin are integrally molded and the surface roughness after the integral molding are each 10% or less.
  7.  請求項1~6のいずれか1項に記載の表示装置の前面板であって、
     前記樹脂は、透過率20~70%のグレースモーク色の樹脂である。
    A front plate of a display device according to any one of claims 1 to 6,
    The resin is a gray smoke resin having a transmittance of 20 to 70%.
  8.  請求項1~7のいずれか1項に記載の表示装置の前面板であって、
     前記防眩層と樹脂との間に接着層を備え、
     前記接着層は、非晶性ポリエステルを含む。
    A front plate of a display device according to any one of claims 1 to 7,
    An adhesive layer is provided between the antiglare layer and the resin,
    The adhesive layer includes amorphous polyester.
  9.  表示装置であって、
     請求項1~8のいずれか一項に記載の前面板を備える。
    A display device,
    A front plate according to any one of claims 1 to 8 is provided.
  10.  車載用情報表示装置であって、
     請求項1~8のいずれか一項に記載の前面板を備え、車載された表示装置に用いられる。
     
    An in-vehicle information display device,
    A front plate according to any one of claims 1 to 8, which is used in a display device mounted on a vehicle.
PCT/JP2019/014735 2018-04-11 2019-04-03 Anti-glare front panel, and display device and vehicle information display device using same WO2019198581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076014A JP2021105627A (en) 2018-04-11 2018-04-11 Front plate with antiglare function, display device using the same, and information display device for vehicle
JP2018-076014 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198581A1 true WO2019198581A1 (en) 2019-10-17

Family

ID=68163171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014735 WO2019198581A1 (en) 2018-04-11 2019-04-03 Anti-glare front panel, and display device and vehicle information display device using same

Country Status (3)

Country Link
JP (1) JP2021105627A (en)
TW (1) TW201944105A (en)
WO (1) WO2019198581A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166636A1 (en) * 2020-02-18 2021-08-26
EP4186690A4 (en) * 2020-07-22 2024-06-19 Agc Inc. TRANSPARENT SUBSTRATE ATTACHED TO ANTI-REFLECTIVE FILM AND IMAGE DISPLAY DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917731B (en) * 2020-10-12 2023-07-25 友达光电股份有限公司 Display device and manufacturing method thereof
TWI790565B (en) * 2020-10-12 2023-01-21 友達光電股份有限公司 Transparent display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126495A (en) * 2001-12-17 2004-04-22 Daicel Chem Ind Ltd Anti-glare film, optical member and liquid crystal display using the same
JP2006103070A (en) * 2004-10-01 2006-04-20 Daicel Chem Ind Ltd Anti-glare film
JP2008509829A (en) * 2004-08-17 2008-04-03 セット ヨーロッパ リミテッド Resin molded part having anti-reflection and anti-glare characteristics and method for manufacturing the same
JP2016109764A (en) * 2014-12-03 2016-06-20 株式会社ポラテクノ Front plate for information display device and information display device using the front plate
JP2017177480A (en) * 2016-03-29 2017-10-05 日油株式会社 Anti-glare antireflection film for insert molding and resin molded product using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126495A (en) * 2001-12-17 2004-04-22 Daicel Chem Ind Ltd Anti-glare film, optical member and liquid crystal display using the same
JP2008509829A (en) * 2004-08-17 2008-04-03 セット ヨーロッパ リミテッド Resin molded part having anti-reflection and anti-glare characteristics and method for manufacturing the same
JP2006103070A (en) * 2004-10-01 2006-04-20 Daicel Chem Ind Ltd Anti-glare film
JP2016109764A (en) * 2014-12-03 2016-06-20 株式会社ポラテクノ Front plate for information display device and information display device using the front plate
JP2017177480A (en) * 2016-03-29 2017-10-05 日油株式会社 Anti-glare antireflection film for insert molding and resin molded product using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166636A1 (en) * 2020-02-18 2021-08-26
WO2021166636A1 (en) * 2020-02-18 2021-08-26 三菱瓦斯化学株式会社 Laminated resin sheet for molding, and molded article using same
CN114929478A (en) * 2020-02-18 2022-08-19 三菱瓦斯化学株式会社 Laminated resin sheet for molding and molded article using the same
US11897980B2 (en) 2020-02-18 2024-02-13 Mitsubishi Gas Chemical Company, Inc. Laminated resin sheet for molding, and molded article using same
EP4186690A4 (en) * 2020-07-22 2024-06-19 Agc Inc. TRANSPARENT SUBSTRATE ATTACHED TO ANTI-REFLECTIVE FILM AND IMAGE DISPLAY DEVICE

Also Published As

Publication number Publication date
TW201944105A (en) 2019-11-16
JP2021105627A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
WO2019198581A1 (en) Anti-glare front panel, and display device and vehicle information display device using same
TWI486256B (en) An optical laminate having a polarizing film
KR102090123B1 (en) Optical layered body, polarizing plate, polarizing plate fabrication method, image display device, image display device manufacturing method, and image display device visual recognizability improvement method
TWI461791B (en) Liquid crystal display device
US20110080643A1 (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for evaluating the same
JP5131983B2 (en) Optical laminate and image display device
KR101482288B1 (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
CN101470214A (en) Glare-proof film, glare-proof polarizing sheet and image display device
CN104516043A (en) Polarizing plate, image display device, and improvement method of photopic contrast in image display device
TW201632926A (en) Composite polarizer and liquid crystal display device
TWI573683B (en) Polarizing plate manufacturing method
KR102301279B1 (en) Polarizing plate and optical display device comprising the same
TW202212116A (en) Designed film and designed molded body
TWI611222B (en) Composite polarizer and liquid crystal display device
TW201447429A (en) Laminated polarizing plate and horizontal alignment liquid crystal display device
KR102070629B1 (en) Polarizing plate
WO2023085319A1 (en) Optical multilayer body and image display device
KR20160077564A (en) Optical sheet and liquid crystal display comprising the same
JP2020129069A (en) Image display device equipped with polarizing plate
WO2015076409A1 (en) Optical member and display device
KR101758440B1 (en) Module for liquid crystal display apparatus and liquid crystal display apparatus comprising the same
JPWO2006054695A1 (en) Liquid crystal display
JP6448182B2 (en) Image display device, method for producing polarizing plate composite, method for producing polarizing plate set, method for producing image display device, and method for improving visibility of image display device
KR20120038701A (en) Anti-glare film, polarizing plate and display device using the same
JP2006178123A (en) Antireflection laminate, polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP