WO2019198571A1 - Air discharge device - Google Patents
Air discharge device Download PDFInfo
- Publication number
- WO2019198571A1 WO2019198571A1 PCT/JP2019/014657 JP2019014657W WO2019198571A1 WO 2019198571 A1 WO2019198571 A1 WO 2019198571A1 JP 2019014657 W JP2019014657 W JP 2019014657W WO 2019198571 A1 WO2019198571 A1 WO 2019198571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- main
- hole
- main hole
- flow path
- auxiliary
- Prior art date
Links
- 238000011161 development Methods 0.000 claims abstract description 25
- 230000001629 suppression Effects 0.000 claims abstract description 16
- 238000007664 blowing Methods 0.000 claims description 180
- 238000005192 partition Methods 0.000 claims description 60
- 238000011144 upstream manufacturing Methods 0.000 claims description 37
- 230000008602 contraction Effects 0.000 claims description 29
- 238000004891 communication Methods 0.000 claims description 18
- 230000007246 mechanism Effects 0.000 claims description 16
- 230000009471 action Effects 0.000 claims description 13
- 230000009467 reduction Effects 0.000 claims description 12
- 238000013459 approach Methods 0.000 claims description 11
- 238000007599 discharging Methods 0.000 abstract 1
- 230000004048 modification Effects 0.000 description 30
- 238000012986 modification Methods 0.000 description 30
- 238000004378 air conditioning Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 16
- 230000001143 conditioned effect Effects 0.000 description 15
- 230000008859 change Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000470 constituent Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001595 contractor effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/34—Nozzles; Air-diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/02—Ducting arrangements
- F24F13/06—Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
Definitions
- the present disclosure relates to an air blowing device including a blowing unit that blows out an air flow.
- an air nozzle in which an auxiliary air outlet is provided around a main hole that forms an air flow serving as a working airflow, and an auxiliary air outlet that forms a support airflow that prevents the air around the main hole being drawn into the working airflow.
- an auxiliary air outlet that forms a support airflow that prevents the air around the main hole being drawn into the working airflow.
- the present inventors diligently studied the air drawing action when the air flow is blown out from the main hole in order to further increase the reach distance of the air flow. As a result, it has been found that the air drawing action is caused by a lateral vortex generated by a shearing force due to the velocity gradient of the working fluid when the working air current is blown from the main hole.
- the horizontal vortex is a vortex having a vortex center perpendicular to the mainstream flow direction.
- the present disclosure aims to provide an air blowing device that can increase the reach of the working air flow blown from the main hole.
- the air blowing device includes a blowing unit that blows out an air flow.
- the blow-out unit has at least one main hole that blows out an air flow that is a working air flow, and at least one main air that blows out a support air flow that is formed around the main hole and suppresses air drawing action by the working air flow blown out of the main hole.
- an auxiliary hole Moreover, the blow-out part includes a vortex suppressing structure that suppresses the development of a lateral vortex formed in the velocity boundary layer of the working airflow downstream of the outlet of the main hole.
- the vortex suppression structure has a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream of the outlet of the main hole and the mainstream of the support airflow are brought closer to the downstream of the outlet of the main hole.
- the configuration is such that the main part of the support airflow blown out from the auxiliary hole and the central part of the thickness of the velocity boundary layer formed downstream of the main hole and the auxiliary hole, the speed boundary is generated by the support airflow blown out from the auxiliary hole.
- Development of transverse vortices in the layer is sufficiently suppressed. As a result, the drawing of air from the surroundings into the working airflow blown out from the main hole is suppressed, and the attenuation of the flow velocity of the working airflow blown out from the main hole is reduced. The reach is longer.
- an air blowing device is provided with a blowing part which blows off air current.
- the blowout part includes at least one main hole that blows out an airflow serving as a working airflow.
- the main hole has a plurality of edges that form the opening edge of the main hole. The plurality of edges are connected so that edges having different curvatures are adjacent to each other, and connecting portions of the adjacent edges are rounded.
- connection part of each edge part which is a change point of the curvature in the opening edge of a main hole has roundness
- a main hole becomes an opening shape without a corner
- “connected so that the connecting portions of the adjacent edge portions are rounded” can be interpreted as a state in which the tangents at the connecting portions of the adjacent edge portions are connected to each other.
- Reference numerals in parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
- FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is explanatory drawing for demonstrating the velocity gradient of the airflow in the exit downstream of the 1st nozzle used as the 1st comparative example. It is explanatory drawing for demonstrating the state of the airflow in the exit downstream of the 1st nozzle used as the 1st comparative example. It is explanatory drawing for demonstrating the velocity gradient of the airflow in the exit downstream of the 2nd nozzle used as the 2nd comparative example.
- the air blowing device 1 of this embodiment is applied to an air outlet of an air conditioning unit that air-conditions a vehicle interior.
- the air conditioning unit is disposed inside an instrument panel provided in the foremost part of the vehicle interior.
- the air blower outlet of an air-conditioning unit is provided in the instrument panel and its inner side.
- the air blowing device 1 includes a blowing unit 10 that blows out an air flow.
- the blow-out unit 10 is formed with an air flow path for guiding an air flow adjusted to a desired temperature by the air conditioning unit into the room.
- the blowing part 10 includes a duct part 16, a hole forming part 12 that forms a main hole 14 that blows out an airflow that serves as a working airflow, and a flange part 20 that is provided outside the duct part 16.
- the duct portion 16 is a member that forms a flow path through which an airflow blown into the room is passed.
- the duct part 16 is comprised with the cylindrical member.
- the shape of the duct portion 16 as viewed from the air flow direction is a flat shape having a horizontal width larger than the vertical width. Further, the duct portion 16 has a shape in which the shape along the air flow direction is narrowed from the air flow upstream side to the downstream side.
- a partition portion 26 is provided in the duct portion 16 near the downstream portion than the upstream portion.
- the partition portion 26 is configured in a cylindrical shape, and is arranged inside the duct portion 16 so as to have a predetermined gap with respect to the duct portion 16.
- an inner flow path and an outer flow path are formed by the partition portion 26. That is, the duct part 16 has a double flow path structure by arranging the partition part 26 on the inside thereof.
- the main flow path 18 is formed in the center part inside the duct part 16.
- the main flow path 18 is configured by a space inside the partition portion 26.
- the main flow path 18 is a flow path through which a working air current blown from a main hole 14 described later passes.
- an auxiliary flow path 24 is formed inside the duct portion 16 at the outer portion of the main flow path 18.
- the auxiliary flow path 24 is configured by a gap formed between the partition portion 26 and the duct portion 16.
- the auxiliary flow path 24 is a flow path through which the support airflow blown out from the auxiliary hole 22 passes.
- the main flow path 18 and the auxiliary flow path 24 are partitioned by the partition portion 26 described above.
- the main flow path 18 and the auxiliary flow path 24 communicate with each other at a portion of the duct portion 16 that is located on the upstream side of the upstream end portion of the partition portion 26.
- the duct part 16 is fitted into an air outlet of an air conditioning unit (not shown) on the upstream side of the air flow. Further, the duct portion 16 is connected to the outer periphery of the hole forming portion 12 at the downstream side of the air flow.
- the hole forming part 12 is positioned at the end of the duct part 16 on the downstream side of the air flow.
- the hole forming portion 12 is a plate-like member that constitutes an end surface of the duct portion 16 on the downstream side of the air flow, and has a predetermined thickness in the air flow direction.
- the hole forming part 12 is also a connection part that connects the duct part 16 and the partition part 26.
- the hole formation part 12 is comprised by the cylinder shape so that air can be blown out.
- the shape of the hole forming portion 12 as viewed from the air flow direction is a flat shape whose horizontal width is larger than the vertical width.
- the hole forming portion 12 has a main hole 14 opened as a single hole at the center thereof.
- the main hole 14 is an opening for blowing out the conditioned air whose temperature is adjusted by the air conditioning unit as a working air flow into the vehicle interior.
- the shape of the main hole 14 as viewed from the air flow direction is an oval shape whose horizontal width is larger than vertical width.
- the main hole 14 has a shape formed by connecting parallel line segments of equal length with a pair of curved curves.
- the main hole 14 is a hole connected to the main flow path 18.
- the main hole 14 is formed in the partition 26 in a range located upstream from the end on the downstream side of the air flow by the thickness of the hole forming part 12.
- the main hole 14 has an inner wall surface 141 extending along the air flow direction.
- auxiliary holes 22 are formed in the hole forming portion 12 so as to surround the periphery of the main hole 14.
- the auxiliary hole 22 is an opening for blowing out a support airflow for suppressing the air drawing action by the working airflow blown out from the main hole 14.
- the plurality of auxiliary holes 22 are formed so as to surround the main hole 14 in the hole forming portion 12.
- the plurality of auxiliary holes 22 are formed outside the portion of the hole forming portion 12 that forms the outer edge portion of the main hole 14.
- the plurality of auxiliary holes 22 are formed so that the intervals between them are equal.
- the plurality of auxiliary holes 22 are formed as round holes having a smaller cross-sectional area than the main hole 14.
- the auxiliary hole 22 is a hole that continues to the auxiliary flow path 24.
- the auxiliary hole 22 is formed in a range of the partition portion 26 and the duct portion 16 that is located upstream from the end on the downstream side of the air flow by the thickness of the hole forming portion 12.
- the auxiliary hole 22 has an inner wall surface 221 that extends along the air flow direction.
- the flange part 20 is a member for attaching the blowing part 10 to an instrument panel (not shown).
- the flange portion 20 is composed of a rectangular member provided so as to protrude from the duct portion 16 with respect to the outer periphery of the duct portion 16.
- the flange portion 20 is attached to the instrument panel by a connecting member such as a screw in a state where the upstream portion of the duct portion 16 is fitted to the air outlet of the air conditioning unit.
- the flange portion 20 is formed with through holes 201 through which connecting members such as screws are passed in the vicinity of the four corners forming the corner portions.
- Each of the hole forming part 12, the duct part 16, the flange part 20, and the partition part 26 constituting the blowing part 10 is made of resin.
- the hole forming part 12, the duct part 16, the flange part 20, and the partition part 26 are formed of an integrally molded product that is integrally formed by a molding technique such as injection molding.
- the hole formation part 12, the duct part 16, the flange part 20, and the partition part 26 may be comprised by the part separately.
- the blowing unit 10 configured in this manner is installed on an instrument panel (not shown).
- the instrument panel has been required to be thin in the vertical direction of the vehicle from the viewpoint of expansion of the passenger compartment and design.
- the instrument panel tends to be provided with a large information device for notifying various information indicating the driving state of the vehicle at a central portion in the vehicle width direction or a portion facing the occupant in the vehicle longitudinal direction.
- the air conditioning unit requires measures such as making the air outlet thin, but if the air outlet is made thin, it blows out from the air outlet due to the lateral vortex Vt generated downstream of the air outlet. The collapse of the core portion of the airflow is accelerated, and the reach distance of the airflow in the passenger compartment is shortened. For this reason, the air blowing device 1 is required to increase the reach of the airflow blown into the vehicle interior.
- the present inventors diligently studied the air drawing action when the airflow was blown out from the main hole 14. As a result, it has been found that the air drawing action is caused by the lateral vortex Vt generated by the shearing force due to the velocity gradient of the working air flow when the working air flow is blown out from the main hole 14.
- the air drawing action will be described with reference to FIGS. 4 and 5.
- FIG. 4 is a schematic diagram showing a first nozzle CE1 that is a first comparative example of the air blowing device 1 of the present embodiment.
- the first nozzle CE1 is formed of a cylindrical tube having a substantially constant cross-sectional area, and the opening on one end side forms the main hole Hm1.
- the velocity boundary layer BL is a layer that is affected by stationary air among the airflows blown from the main hole Hm1 of the first nozzle CE1.
- innumerable transverse vortices Vt are generated by the shearing force due to the velocity gradient.
- innumerable transverse vortices Vt generated in the velocity boundary layer BL are synthesized in the vicinity of the central portion BLc of the thickness ⁇ of the velocity boundary layer BL and developed into a large-scale one. It was found that the air drawing action tends to be stronger.
- the thickness ⁇ of the velocity boundary layer BL reaches a position where it becomes 99% (that is, 0.99 ⁇ U ⁇ ) of the velocity U ⁇ of the main flow (that is, potential flow) that flows outside the velocity boundary layer BL from the wall surface. Is defined as the length of The thickness ⁇ of the velocity boundary layer BL is calculated based on the following formula F1, for example.
- ⁇ 5 ⁇ ( ⁇ ⁇ x / U ⁇ ) 1/2 (F1)
- ⁇ represents a kinematic viscosity coefficient
- x represents a position in the main flow direction
- U ⁇ represents a main flow speed (that is, a uniform flow speed).
- a definition formula based on the excluded thickness or a definition formula based on the momentum thickness can be used.
- FIG. 6 is a schematic diagram showing a second nozzle CE2 which is a second comparative example of the air blowing device 1 of the present embodiment.
- the second nozzle CE2 is configured by a cylindrical tube in which a main hole Hm2 and a plurality of auxiliary holes Hs surrounding the main hole Hm2 are formed on one end side thereof.
- the velocity boundary layer BL of the working air flow along the inner wall surface of the main hole Hm2 downstream of the main hole Hm2. Is formed.
- the velocity boundary layer BL it is considered that the lateral vortex Vt is likely to occur near the central portion BLc of the thickness ⁇ .
- the main flow of the support airflow blown out from the auxiliary hole Hs is blown out in parallel with the working airflow from the main hole Hm2 in a state where there is a predetermined interval LS from the central portion BLc of the thickness ⁇ of the velocity boundary layer BL. . That is, in the second nozzle CE2, the mainstream AFs of the support airflow blown out from the auxiliary hole Hs flows away from the center portion BLc of the thickness ⁇ of the velocity boundary layer BL.
- the main flow of the support airflow is separated from the vortex center of the horizontal vortex Vt generated in the velocity boundary layer BL, the horizontal vortex Vt is not easily broken by the support airflow, and the development of the lateral vortex Vt generated in the velocity boundary layer BL It is considered that the suppression effect is difficult to obtain.
- the inventors of the present invention can suppress the development of the lateral vortex Vt generated in the velocity boundary layer BL by bringing the main flow of the support airflow close to the vortex of the lateral vortex Vt generated in the velocity boundary layer BL of the working airflow.
- the vortex suppressing structure is added to the blowing portion 10.
- the blowout portion 10 of the present embodiment has an enlarged portion in which the cross-sectional area Sc is larger than the opening area Sm of the main hole 14 with respect to the main flow path 18 of the duct portion 16 as a vortex suppression structure. 180 is provided.
- the inner wall surface 181 of the partition portion 26 that forms the main flow path 18 has a shape in which the wall surface shape tapers from the portion having the largest cross-sectional area in the enlarged portion 180 toward the main hole 14.
- the enlarged portion 180 is configured by a portion of the inner wall surface 181 of the partition portion 26 that forms the main flow path 18 that has a cross-sectional area that decreases from the air flow upstream side to the downstream side.
- the cross-sectional area of the enlarged portion 180 is continuously reduced as it approaches the main hole 14 so as to be continuously connected to the main hole 14.
- the enlarged portion 180 is set so that the ratio between the maximum cross-sectional area Sc and the opening area Sm of the main hole 14 is, for example, 7 to 2.
- the cross-sectional area Sc of the enlarged portion 180 is a cross-sectional area at a portion where the flow path cross-sectional area is the largest in the main flow path 18. Specifically, the cross-sectional area Sc of the enlarged portion 180 is a cross-sectional area at the end of the partition portion 26 on the upstream side of the air flow.
- the opening area Sm of the main hole 14 is a cross-sectional area at the end of the partitioning portion 26 on the downstream side of the air flow.
- the blowout portion 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 16, the conditioned air is passed through the main channel 18 through the main hole 18. It flows toward 14.
- the main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14.
- the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
- the reason why the flow velocity of the air flow near the inner wall surface 181 forming the main flow path 18 is increased is that centrifugal force acts on the air flow along the wall surface by the action of the curvature of the inner wall surface 181 forming the main flow path 18.
- the contracted flow is a phenomenon in which the difference between the flow velocity near the flow channel wall surface of the air flow and the flow velocity of the main flow is reduced by reducing the cross section of the flow channel.
- the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
- the thickness ⁇ of the velocity boundary layer BL is smaller than that of the second comparative example due to contraction of the main flow path 18.
- the main portion of the support airflow blown out from the center portion BLc of the thickness ⁇ of the velocity boundary layer BL and the auxiliary hole 22 is mainly used. It will be in the state which approaches at the exit downstream of the hole 14. That is, in the blowout portion 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL. Specifically, the interval LS between the main flow of the support airflow and the central portion BLc of the thickness ⁇ of the velocity boundary layer BL is smaller than that in the second comparative example.
- the main flow of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, and the transverse vortex Vt is easily collapsed by the support airflow.
- the effect of suppressing the development of the lateral vortex Vt that occurs in the velocity boundary layer BL downstream of the outlet of the gas can be easily obtained.
- the development of the lateral vortex Vt generated in the velocity boundary layer BL downstream of the outlet of the main hole 14 can be suppressed by the enlarged portion 180 provided in the main flow path 18.
- the enlarged portion 180 provided in the main channel 18 functions as a vortex suppression structure. More specifically, the enlarged portion 180 functions as a layer reduction structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
- a vortex suppression structure is realized by the enlarged portion 180 provided in the main flow path 18.
- the airflow blown out from the central part BLc of the thickness boundary ⁇ of the velocity boundary layer BL formed at the outlet downstream of the main hole 14 and the auxiliary hole 22 approaches downstream of the outlet of the main hole 14. That is, if the main flow path 18 is provided with the enlarged portion 180, the flow velocity difference between the center line CLm of the main hole 14 and the vicinity of the inner wall surface 141 is reduced due to contraction in the vicinity of the main hole 14.
- the thickness ⁇ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14 can be reduced.
- the present embodiment is different from the first embodiment in that the reduced flow fins 28 for reducing the airflow flowing through the main flow path 18 are provided inside the duct portion 16.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the blowing portion 10 of the present embodiment is provided with a contracted fin 28 inside the duct portion 16.
- the contraction fin 28 is formed at a substantially central portion of the short side of the inner wall surface 141 of the main hole 14 so that the main flow path 18 formed inside the duct portion 16 is vertically divided.
- the main hole 14 extends along the long side of the inner wall surface 141.
- the contracted fins 28 are connected to the inside of the duct portion 16 at both ends in the longitudinal direction.
- the contracted fins 28 are positioned at a portion where the main flow path 18 inside the duct portion 16 is formed so as not to protrude from the main hole 14.
- the contracted fin 28 is a position that overlaps a part of the partition portion 26 in the direction perpendicular to the center line CLm of the main flow path 18 within the duct portion 16, and is inside the main hole 14. It is arranged at a position that does not overlap the wall surface 141.
- the contracted fin 28 has a teardrop shape with a cross section having excellent aerodynamic characteristics.
- the contracted fin 28 has a curved surface with a rounded front edge portion on the upstream side of the air flow, and a sharp curved surface on the downstream edge of the downstream side of the air flow as compared with the front edge portion.
- the contraction fin 28 has a maximum cross-sectional thickness at a position closer to the front edge portion than to the rear edge portion.
- blowing unit 10 of the present embodiment configured as described above, as shown in FIG. 12, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows through the main channel 18 through the main hole 18. It flows toward 14.
- the main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14. For this reason, a contracted flow occurs from the enlarged portion 180 to the main hole 14.
- the main flow path 18 is bifurcated by the reduced flow fins 28, so that a reduced flow is generated before reaching the main hole 14.
- the contraction fin 28 is positioned at a portion where the main flow path 18 inside the duct portion 16 is formed so as not to protrude from the main hole 14. For this reason, on the inner side of the duct portion 16, the upstream section A in which the channel cross-sectional area is reduced by the contraction fin 28, the intermediate section B in which the channel cross-sectional area is larger than the upstream section A, and the channel cross-sectional area are almost changed. A downstream section C is formed.
- the flow cross-sectional area is reduced by the contracted fins 28 and the airflow is compressed, whereby the flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 that forms the main flow path 18.
- the difference is sufficiently small. That is, in the upstream section A, the thickness ⁇ of the velocity boundary layer BL in the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced toward the downstream side due to the contraction effect by the contraction fins 28.
- the flow path cross-sectional area is not small, so the thickness ⁇ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is downstream. Grows toward the side.
- the thickness ⁇ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 gradually increases toward the downstream side.
- the amount of change in the thickness of the cross section on the trailing edge side on the downstream side of the air flow is smaller than that on the leading edge side.
- the change in the channel cross-sectional area in the intermediate section B becomes gentler than the change in the upstream section A, and the increase amount of the thickness ⁇ of the speed boundary layer BL in the intermediate section B is the speed boundary layer BL in the upstream section A. This is sufficiently smaller than the reduction amount of the thickness ⁇ .
- the flow path cross-sectional area is constant, so the thickness ⁇ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is slightly lower toward the downstream side. growing.
- the increase amount of the thickness ⁇ of the velocity boundary layer BL in the downstream section C is extremely smaller than the decrease amount of the thickness ⁇ of the velocity boundary layer BL in the upstream section A.
- the amount of decrease in the thickness ⁇ of the velocity boundary layer BL in the upstream section A by the contraction fin 28 is sufficiently larger than the increase in the thickness ⁇ of the velocity boundary layer BL in the intermediate section B and the downstream section C. .
- the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small.
- the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
- the thickness ⁇ of the speed boundary layer BL is smaller than that in the first embodiment.
- the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL.
- the main flow of the support airflow flows in the vicinity of the vortex center of the horizontal vortex Vt generated in the velocity boundary layer BL. Therefore, the horizontal vortex Vt is collapsed by the support airflow and is generated in the velocity boundary layer BL downstream of the outlet of the main hole 14.
- the effect of suppressing the development of the lateral vortex Vt is easily obtained.
- the enlarged portion 180 and the contracted fin 28 provided in the main channel 18 function as a vortex suppressing structure. More specifically, each of the enlarged portion 180 and the contracted fin 28 functions as a layer reducing structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
- the air blowing device 1 of the present embodiment described above has the same configuration as that of the first embodiment, although the contracted fins 28 are added to the main flow path 18. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
- the layer contraction structure includes not only the enlarged portion 180 but also the contraction fins 28. According to this, it is possible to reduce the thickness ⁇ of the velocity boundary layer BL due to contraction while suppressing an increase in the size of the apparatus due to the expansion of the main flow path 18. Such a configuration is suitable when the installation space is greatly limited like a moving body such as a vehicle.
- the contracted fins 28 are exemplified with the cross-sectional shape being a teardrop shape, but are not limited thereto.
- the contracted fins 28 may have an oval cross-sectional shape extending along the airflow of the main flow path 18.
- the contraction fin 28 what has a grid
- the air blowing device 1 may be configured such that only the contracted fins 28 are arranged with respect to the main flow path 18 and the enlarged portion 180 is not provided with respect to the main flow path 18.
- the contraction fins 28 function as a layer contraction structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
- the present embodiment is different from the first embodiment in that the uneven portion 30 is provided on the inner wall surface 181 that forms the main flow path 18.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the concave portions and the convex portions are alternately arranged along the flow direction of the air flow in the main flow path 18 with respect to the inner wall surface 181 that forms the main flow path 18.
- An uneven portion 30 is provided.
- the concavo-convex portion 30 is formed in substantially the entire area inside the partition portion 26 that partitions the main flow path 18 and the auxiliary flow path 24 inside the duct portion 16.
- the concavo-convex portion 30 is formed by a plurality of grooves 301 provided on the inner wall surface 181 that forms the main flow path 18.
- the plurality of grooves 301 are formed so as to be arranged at predetermined intervals along the airflow direction in the main flow path 18.
- the groove 301 is configured by a circular or polygonal depression.
- channel 301 may be comprised by the slit groove
- blowing unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16 as shown in FIG. It flows toward 14.
- the main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14.
- the inner wall surface 181 that forms the main flow path 18 is formed with a concavo-convex part 30 in which concave parts and convex parts are alternately arranged in the main flow direction in the main flow path 18.
- the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
- the thickness ⁇ of the speed boundary layer BL is smaller than that of the first embodiment due to the effect of reducing the friction coefficient by the uneven portion 30.
- the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL.
- the distance LS between the main flow of the support airflow and the central portion BLc of the thickness ⁇ of the velocity boundary layer BL is smaller than that in the first embodiment.
- the main flow of the support airflow flows in the vicinity of the vortex center of the horizontal vortex Vt generated in the velocity boundary layer BL. Therefore, the horizontal vortex Vt is collapsed by the support airflow and is generated in the velocity boundary layer BL downstream of the outlet of the main hole 14.
- the enlarged portion 180 and the concavo-convex portion 30 provided in the main channel 18 function as a vortex suppressing structure. More specifically, each of the enlarged portion 180 and the concavo-convex portion 30 functions as a layer reduction structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
- the uneven portion 30 is added to the inner wall surface 181 that forms the main flow path 18, but other configurations are common to the first embodiment. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
- the layer reduction structure includes not only the enlarged portion 180 but also the uneven portion 30. Accordingly, the thickness ⁇ of the velocity boundary layer BL can be made sufficiently small by the effect of reducing the friction coefficient of the inner wall surface 181 forming the main flow path 18 as well as the contraction effect by the enlarged portion 180. .
- the uneven portion 30 is formed by a plurality of grooves 301 provided on the inner wall surface 181 of the main flow path 18. According to this, compared with the case where the uneven
- the concavo-convex portion 30 is illustrated as being formed by the plurality of grooves 301, but is not limited thereto.
- the uneven part 30 may be formed by a plurality of protrusions, for example.
- vortices are generated in the gaps between the plurality of protrusions when the airflow passes near the inner wall surface 181 forming the main flow path 18. Since this vortex plays a role like a ball bearing, the effect similar to the above-mentioned third embodiment can be obtained by this modification.
- the concavo-convex portion 30 is illustrated as being formed in substantially the entire area inside the partition portion 26 that partitions the main flow path 18 and the auxiliary flow path 24 inside the duct portion 16. It is not limited.
- the uneven portion 30 may be formed on a part of the inside of the partition portion 26.
- the air blowing device 1 may have a configuration in which the concavo-convex portion 30 is only disposed with respect to the main flow path 18 and the enlarged portion 180 is not provided with respect to the main flow path 18.
- the concavo-convex portion 30 functions as a layer reduction structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
- the structure including the enlarged portion 180 and the concavo-convex portion 30 is exemplified as the layer reduction structure, but the present invention is not limited to this.
- the layer contraction structure may be, for example, a structure including the enlarged portion 180, the contracted fin 28 and the uneven portion 30, or a structure including the contracted fin 28 and the uneven portion 30.
- FIGS. (Fourth embodiment) Next, a fourth embodiment will be described with reference to FIGS.
- the present embodiment is different from the first embodiment in that the main hole 14 is expanded in a trumpet shape.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the blowout portion 10 of the present embodiment has the main hole 14 expanded in a trumpet shape.
- the auxiliary hole is formed on the inner wall surface 141 of the main hole 14 such that a tangent line TLm extending along the inner wall surface 141 of the main hole 14 intersects the center line CLs of the auxiliary hole 22 downstream of the auxiliary hole 22.
- a main inclined structure 32 that is inclined with respect to the center line CLs of 22 is provided.
- the inner wall surface 141 of the main hole 14 is inclined so that the tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14 on the entire circumference.
- the tangent line TLm is a tangent line that extends along the inner wall surface 141 at the downstream end of the inner wall surface 141 of the main hole 14.
- the inner wall surface 141 of the main hole 14 is desirably set within a range where the angle ⁇ m formed between the tangent line TLm and the center line CLs is an acute angle (for example, within a range of 1 ° to 30 °).
- the cross-sectional area Sc of the main flow path 18 is smaller than the opening area Sm of the main hole 14. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment.
- the cross-sectional area Sc of the main flow path 18 is a cross-sectional area at an end portion on the upstream side of the partition portion 26.
- the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL. That is, as shown in FIG. 18, since the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the transverse vortex Vt is collapsed by the support airflow and downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt generated in the velocity boundary layer BL is easily obtained.
- the main inclined structure 32 provided on the inner wall surface 141 of the main hole 14 functions as a vortex suppressing structure.
- the main inclined structure 32 is provided on the inner wall surface 141 that forms the main hole 14.
- the velocity boundary layer BL formed on the downstream side of the main hole 14 by spreading the flow velocity distribution in the vicinity of the inner wall surface 141 of the main hole 14 to the support airflow from the auxiliary hole 22 on the downstream side of the main hole 14.
- the central portion BLc of the thickness ⁇ can be made closer to the air flow blown out from the auxiliary hole 22. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22.
- the drawing of air from the surroundings into the airflow blown out from the main hole 14 is suppressed, and the flow velocity of the airflow blown out from the main hole 14 is less attenuated. Therefore, the reach of the working air current blown out from the main hole 14 is increased.
- the inner wall surface 141 of the main hole 14 is inclined so that the tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14 on the entire circumference. Although illustrated, it is not limited to this. Even if the air blowing device 1 has a structure in which, for example, a portion of the inner wall surface 141 of the main hole 14 is inclined such that a tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14. Good.
- the inner wall surface 141 of the main hole 14 is illustrated as extending linearly, but is not limited thereto.
- the inner wall surface 141 of the main hole 14 may extend in a curved shape.
- the tangent TLm is a tangent at the downstream end of the inner wall surface 141 of the main hole 14.
- the main inclined structure 32 is applied to the main hole 14, and the enlarged portion 180, the contracted fin 28, and the uneven portion 30 described in the first to third embodiments are not applied.
- the present invention is not limited to this.
- the air blowing device 1 includes the expansion unit 180, the contraction fin 28, and the concavo-convex unit 30 described in the first to third embodiments. At least one layer reduction structure may be applied.
- the air blowing device 1 of the present embodiment has a structure in which a tangent line TLs extending along the inner wall surface 221 of each of the plurality of auxiliary holes 22 intersects the center line CLm of the main hole 14 downstream of the outlet of the main hole 14. This is different from the first embodiment.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the blowout portion 10 has a structure in which a tangent line TLs extending along the inner wall surface 221 of each of the plurality of auxiliary holes 22 intersects the center line CLm of the main hole 14 at the outlet downstream of the main hole 14. ing.
- the tangent line TLs is a tangent line extending along the inner wall surface 221 at the downstream end of the inner wall surface 221 of each auxiliary hole 22.
- a tangent line TLs extending along the inner wall surface 221 of the auxiliary hole 22 has a center line CLm of the main hole 14 downstream from the outlet of the main hole 14 at a part of the inner wall surface 221 of each auxiliary hole 22.
- An auxiliary inclined structure 34 that is inclined with respect to the center line CLm of the main hole 14 is provided so as to intersect.
- the inner wall surface 221 of each auxiliary hole 22 is inclined such that a tangent line TLs extending along the inner wall surface 221 intersects the center line CLm of the main hole 14.
- each auxiliary hole 22 is within a range where the angle ⁇ s formed by the tangent TLs and the center line CLm is an acute angle (for example, a range where the angle is 1 ° to 30 °). It is desirable to set to
- the cross-sectional area Sc of the main flow path 18 is smaller than the opening area Sm of the main hole 14. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment.
- blowing unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 16 as shown in FIG. It flows toward 14. And the airflow which flowed into the main flow path 18 blows off from the main hole 14 as a working airflow.
- the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
- the lateral vortex Vt is likely to occur near the central portion BLc of the thickness ⁇ .
- the main flow of the support airflow blown out from the auxiliary hole 22 is blown out from the main hole 14.
- the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL. That is, as shown in FIG. 21, since the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the transverse vortex Vt is collapsed by the support airflow and downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt generated in the velocity boundary layer BL is easily obtained.
- the auxiliary inclined structure 34 provided on the inner wall surface 221 of the auxiliary hole 22 functions as a vortex suppressing structure.
- the auxiliary inclined structure 34 is provided on the inner wall surface 241 that forms the auxiliary hole 22. According to this, the support airflow blown out from the auxiliary hole 22 can be brought close to the central portion BLc of the thickness ⁇ of the velocity boundary layer BL formed downstream of the outlet of the main hole 14. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22. Therefore, even with the air blowing device 1 of the present embodiment, the drawing of air from the surroundings into the airflow blown out from the main hole 14 is suppressed, and the attenuation of the flow velocity of the airflow blown out from the main hole 14 is reduced. The reach of the working air current blown out from the main hole 14 becomes longer.
- the inner wall surface 221 of each auxiliary hole 22 is illustrated as being inclined such that the tangent line TLs extending along the inner wall surface 221 intersects the center line CLm of the main hole 14. It is not limited to this.
- the air blowing device 1 is inclined such that the inner wall surface 221 of some of the auxiliary holes 22 has a tangent line TLs extending along the inner wall surface 221 intersects the center line CLm of the main hole 14. It may be a structure.
- the inner wall surface 221 of the auxiliary hole 22 is illustrated as extending linearly, but is not limited thereto.
- the inner wall surface 221 of the auxiliary hole 22 may extend in a curved shape.
- the tangent line TLs is a tangent line at the downstream end of the inner wall surface 221 of the auxiliary hole 22.
- the auxiliary inclined structure 34 is applied to the auxiliary hole 22, and the enlarged portion 180, the contracted fin 28, and the uneven portion 30 described in the first to third embodiments are not applied.
- the present invention is not limited to this.
- the air blowing device 1 includes the expansion unit 180, the contraction fin 28, and the concavo-convex unit 30 described in the first to third embodiments. At least one layer reduction structure may be applied.
- the air blowing device 1 is the main part demonstrated in 4th Embodiment with respect to the main hole 14 in the blowing part 10 to which the auxiliary
- the inclined structure 32 may be applied.
- a part of the main hole 14 and a part of the auxiliary hole 22 overlap each other in the circumferential direction around the center line CLm of the main hole 14.
- Structure 36 is formed.
- the main hole 14 has an oval shape as a whole, but has a curved shape in which the outer edge portion meanders in a wavy shape.
- the plurality of auxiliary holes 22 are formed so that a part of the auxiliary hole 22 protrudes inwardly at the outer edge portion of the main hole 14. That is, the plurality of auxiliary holes 22 are formed with respect to the hole forming portion 12 so as to be positioned inside the virtual line VL connecting at least a part of the main holes 14 to the outermost edge portions.
- FIG. 23 is a sectional view taken along line XXIII-XIII in FIG.
- FIG. 24 is a sectional view taken along line XXIV-XXIV in FIG.
- the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
- the lateral vortex Vt is likely to occur near the central portion BLc of the thickness ⁇ .
- the mainstream of the support airflow blown out from the auxiliary hole 22 has a part of the main hole 14 and a part of the auxiliary hole 22 overlap each other in the circumferential direction around the center line CLm of the main hole 14. It approaches the central portion BLc of the velocity boundary layer BL of the working air current blown out from the main hole 14. That is, as shown in FIG. 24, downstream of the outlet of the main hole 14, the main flow of the support airflow blown out from the auxiliary hole 22 approaches the central portion BLc of the velocity boundary layer BL of the working airflow.
- the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL. That is, as shown in FIG. 25, since the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the lateral vortex Vt is collapsed by the support airflow, and downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt generated in the velocity boundary layer BL is easily obtained.
- the enlarged portion 180 and the overlapping structure 36 function as a vortex suppressing structure.
- the superposition structure 36 in which the main hole 14 and the auxiliary hole 22 overlap each other in the circumferential direction centering on the center line CLm of the main hole 14 is provided for the blowing portion 10. It has been. According to this, the support airflow blown out from the auxiliary hole 22 can be brought close to the central portion BLc of the thickness ⁇ of the velocity boundary layer BL formed downstream of the outlet of the main hole 14. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22.
- the drawing of air from the surroundings into the airflow blown out from the main hole 14 is suppressed, and the attenuation of the flow velocity of the airflow blown out from the main hole 14 is reduced.
- the reach of the working air current blown out from the main hole 14 becomes longer.
- the superposition structure 36 a structure in which a part of the main hole 14 and a part of the auxiliary hole 22 overlap each other in the circumferential direction around the center line CLm of the main hole 14 is exemplified.
- the overlapping structure 36 may have a structure in which a part of the main hole 14 and the whole auxiliary hole 22 overlap each other in the circumferential direction centering on the center line CLm of the main hole 14.
- the air blowing device 1 may be configured such that only the superposition structure 36 is applied to the blowing portion 10 and the enlarged portion 180 is not provided to the main flow path 18.
- the enlarged portion 180 and the overlapping structure 36 are applied to the blowout portion 10, and the contracted fin 28 and the uneven portion 30 described in the second and third embodiments are not applied.
- the present invention is not limited to this.
- the air blowing device 1 reduces at least one layer of the contracted fin 28 and the concavo-convex unit 30 described in the second and third embodiments.
- a structure may be applied.
- the main inclined structure 32 described in the fourth embodiment may be applied to the main hole 14 in the blowing portion 10 in which the superposition structure 36 is applied to the blowing portion 10. .
- a seventh embodiment will be described with reference to FIG.
- the present embodiment is different from the first embodiment in that a communication hole 261 for communicating the main channel 18 and the auxiliary channel 24 is formed with respect to the partition portion 26.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the blowout unit 10 of the present embodiment has a communication hole 261 that allows the main channel 18 and the auxiliary channel 24 to communicate with the partition unit 26 that partitions the main channel 18 and the auxiliary channel 24. Is formed. A plurality of communication holes 261 are formed in the partition portion 26 from the upstream side to the downstream side of the air flow.
- the communication hole 261 is a through hole through which a part of the airflow flowing through the main channel 18 leads to the auxiliary channel 24.
- the communication hole 261 has a main opening 261 a that opens to the main flow path 18 side in the partition portion 26, and an auxiliary opening 261 b that opens to the auxiliary flow path 24 side in the partition portion 26.
- the communication hole 261 is formed at a position where the main opening 261a is on the upstream side of the air flow from the auxiliary opening 261b.
- a communication hole 261 is provided in the partition portion 26. For this reason, as shown by the arrow Fa in FIG. 26, a part of the airflow flowing through the main flow path 18 is guided to the auxiliary flow path 24 through the communication hole 261.
- the airflow that passes through the communication hole 261 facilitates the flow of the airflow along the inner wall surface 181 that forms the main flow path 18. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
- the thickness ⁇ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14 is smaller than that in the first embodiment.
- the mainstream of the support airflow blown out from the auxiliary hole 22 flows in a state of being closer to the central portion BLc of the thickness ⁇ of the velocity boundary layer BL.
- the air blowing device 1 of the present embodiment described above has the communication hole 261 formed with respect to the partition portion 26, other configurations are common to the first embodiment. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
- the vortex suppression structure includes a communication hole 261 formed in the partition portion 26 as well as the enlarged portion 180. This makes it possible to reduce the thickness ⁇ of the speed boundary layer BL without adding any parts, and is therefore suitable when the installation space is greatly limited as in a moving body such as a vehicle.
- the blow-out portion 10 may have one communication hole 261 with respect to the partition portion 26. Further, the communication hole 261 may have the main opening 261a and the auxiliary opening 261b formed at the same position in the air flow direction as long as the airflow flowing through the main flow path 18 can be guided to the auxiliary flow path 24. .
- the present invention is not limited to this.
- the air blowing device 1 may be configured such that the enlarged portion 180 is not provided with respect to the main flow path 18.
- FIGS. 1 (Eighth embodiment) Next, an eighth embodiment will be described with reference to FIGS.
- the present embodiment is different from the first embodiment in that a vertical vortex generating mechanism 263 is provided for the upstream end 262 of the partition portion 26.
- a vertical vortex generating mechanism 263 is provided for the upstream end 262 of the partition portion 26.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the partition portion 26 is provided with an uneven vertical vortex generating mechanism 263 at an upstream end portion 262 located on the upstream side of the air flow.
- the vertical vortex generating mechanism 263 generates a vertical vortex near the upstream end 262 of the partition portion 26.
- the vertical vortex is a spiral vortex in which the vortex core is oriented in the same direction as the main flow direction.
- the vertical vortex generating mechanism 263 is composed of a plurality of concavo-convex protruding pieces protruding from the upstream end 262 of the partition portion 26. Specifically, as shown in FIG. 28, the vertical vortex generating mechanism 263 is configured by a plurality of triangular projecting pieces formed at the upstream end 262. The protruding piece has a sharpened shape by linearly intersecting two sides extending toward the tip.
- a vertical vortex generating mechanism 263 is provided at the upstream end 262 of the partition unit 26. For this reason, a vertical vortex is generated when the airflow passes near the upstream end 262 of the partition portion 26.
- the vertical vortex generated by the vertical vortex generating mechanism 263 is a spiral vortex in which the vortex core is directed in the same direction as the airflow flowing around the partition portion 26, and includes a velocity component toward the surface of the partition portion 26. .
- the airflow flowing around the partition portion 26 is pressed so as to approach the surface of the partition portion 26 by the vertical vortex generated by the vertical vortex generating mechanism 263, and thereby the inner wall surface 181 that forms the main flow path 18. It becomes easy to flow along.
- the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
- the thickness ⁇ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14 is smaller than that in the first embodiment.
- the vertical vortex generating mechanism 263 is provided at the upstream end 262 of the partitioning portion 26. According to this, the airflow flowing around the partition portion 26 is likely to flow along the surface of the partition portion 26 (that is, the inner wall surface 181 forming the main flow path 18) by the vertical vortex generated by the vertical vortex generating mechanism 263. Therefore, it is possible to realize a structure in which the central portion BLc of the thickness ⁇ of the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is brought close to the mainstream of the support airflow.
- the air blowing device 1 may be configured such that the enlarged portion 180 is not provided with respect to the main flow path 18.
- the vertical vortex generating mechanism 263 may be added to the upstream end portion of the contracted fin 28 described in the second embodiment. According to this, the airflow that flows around the contracted fin 28 is likely to flow along the surface of the contracted fin 28 by the longitudinal vortex generated by the longitudinal vortex generating mechanism 263. As a result, the turbulence of the working air flow accompanying the addition of the contracted fins 28 can be sufficiently suppressed.
- FIG. 1 (Ninth embodiment) Next, a ninth embodiment will be described with reference to FIG.
- the present embodiment is different from the first embodiment in that a main flow guide 38 is provided for the main flow path 18.
- a main flow guide 38 is provided for the main flow path 18.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the cross-sectional area Sc of the main flow path 18 is approximately the same as the opening area Sm of the main hole 14. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment.
- the blow-out unit 10 has a main flow guide 38 that guides the airflow flowing along the inner wall surface 181 that forms the main flow path 18 to the outlet downstream of the auxiliary hole 22.
- the main flow guide 38 includes an upper main plate 381 and a lower main plate 382.
- the upper main plate 381 guides the airflow flowing along the upper wall surface 181a of the inner wall surface 181 forming the main flow path 18 to the downstream downstream of the auxiliary hole 22 close to the upper wall surface 181a.
- the upper main plate 381 is disposed between the upper wall surface 181 a forming the main flow path 18 and the center line CLm of the main flow path 18.
- the upper main plate 381 is disposed in a posture inclined with respect to the center line CLs of the auxiliary hole 22 so that the tangent TLg1 at the downstream end 381a intersects the center line CLs of the auxiliary hole 22 downstream of the outlet of the auxiliary hole 22. ing.
- the upper main plate 381 is disposed inside the duct portion 16 so that the downstream end 381a does not protrude from the main hole 14.
- the lower main plate 382 guides the airflow flowing along the lower wall surface 181b of the inner wall surface 181 forming the main flow path 18 to the downstream of the outlet of the auxiliary hole 22 close to the lower wall surface 181b.
- the lower main plate 382 is disposed between the lower wall surface 181 b that forms the main flow path 18 and the center line CLm of the main flow path 18.
- the lower main plate 382 is arranged in a posture inclined with respect to the center line CLs of the auxiliary hole 22 so that the tangent line TLg2 at the downstream end 382a intersects the center line CLs of the auxiliary hole 22 downstream of the outlet of the auxiliary hole 22. ing.
- the lower main plate 382 is disposed inside the duct portion 16 so that the downstream end 382a thereof does not protrude from the main hole 14.
- the main plates 381 and 382 extend along the long side of the inner wall surface 141 of the main hole 14 at a substantially central portion of the short side of the inner wall surface 141 of the main hole 14. Although not shown, the main plates 381 and 382 have both longitudinal ends connected to the inside of the duct portion 16.
- the blowout unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows toward the main hole 14 via the main flow path 18.
- the airflow flowing into the main flow path 18 is blown out from the main hole 14.
- the airflow flowing along the inner wall surface 181 forming the main flow path 18 is diffused up and down by the main flow guide 38 and blown out.
- the velocity boundary layer BL of the working airflow is formed downstream from the center line CLm of the main hole 14 at the outlet downstream of the main hole 14.
- the mainstream AFs of the support airflow blown out from the auxiliary hole 22 approaches the central portion BLc of the thickness ⁇ of the velocity boundary layer BL, as in the fourth embodiment.
- the mainstream guide 38 functions as a vortex suppression structure.
- the main flow guide 38 is provided in the main flow path 18.
- the velocity boundary layer BL formed on the downstream side of the main hole 14 by spreading the flow velocity distribution in the vicinity of the inner wall surface 141 of the main hole 14 to the support airflow from the auxiliary hole 22 on the downstream side of the main hole 14.
- the central portion BLc of the thickness ⁇ can be made closer to the air flow blown out from the auxiliary hole 22. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22.
- the present embodiment is different from the first embodiment in that an auxiliary guide 40 is provided for the auxiliary flow path 24.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the cross-sectional area Sc of the main flow path 18 is approximately the same as the opening area Sm of the main hole 14 as in the ninth embodiment. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment.
- the blowout unit 10 has an auxiliary guide 40 that guides the airflow flowing along the inner wall surface 241 that forms the auxiliary flow path 24 to the downstream of the outlet of the main hole 14.
- the auxiliary guide 40 is composed of a plurality of auxiliary plates 41 arranged in the auxiliary flow path 24.
- the plurality of auxiliary plates 41 are inclined with respect to the center line CLm of the main hole 14 so that the tangent line TLg3 at the downstream end 411 intersects the center line CLm of the main hole 14 downstream of the outlet of the main hole 14. Has been placed.
- the plurality of auxiliary plates 41 are arranged inside the duct portion 16 so that the downstream ends 411 thereof do not protrude from the main hole 14.
- blowout unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows toward the main hole 14 via the main flow path 18. The airflow flowing into the main flow path 18 is blown out from the main hole 14.
- the main stream of the support airflow blown out from the auxiliary hole 22 flows while being inclined with respect to the center line CLm of the main hole 14 by the auxiliary guide 40. That is, in the downstream of the outlet of the main hole 14, the main flow of the support airflow blown out from the auxiliary hole 22 is in a state of approaching the central portion BLc of the velocity boundary layer BL of the working airflow.
- the blowing part 10 of this embodiment in the state where the mainstream AFs of the support airflow blown out from the auxiliary hole 22 approaches the central portion BLc of the thickness ⁇ of the velocity boundary layer BL, as in the fifth embodiment.
- the support airflow collapses the transverse vortex Vt and generates in the velocity boundary layer BL downstream of the outlet of the main hole 14.
- the auxiliary guide 40 functions as a vortex suppressing structure.
- the auxiliary guide 40 is provided in the auxiliary flow path 24. Also in this manner, as in the fifth embodiment, the main flow of the support airflow blown out from the auxiliary hole 22 is brought closer to the central portion BLc of the thickness ⁇ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14. Can do.
- FIG. 31 an eleventh embodiment will be described with reference to FIGS. 31 and 32.
- FIG. 31 an opening shape of the main hole 14 that is suitable for increasing the reach of the working air current blown out from the main hole 14 will be described.
- the hole forming part 12 of the present embodiment has a main hole 14 as a single hole, as in the first embodiment. Unlike the first embodiment, the plurality of auxiliary holes 22 are not formed.
- the main hole 14 has a plurality of edge portions 142a, 142b, 142c, 142d that form the opening edge thereof.
- the plurality of edges 142a, 142b, 142c, 142d are obtained by dividing the opening edge of the main hole 14 at the curvature change point.
- the main hole 14 of the present embodiment is annularly connected so that the edge portions 142a to 142d having different curvatures are adjacent to each other and the connecting portions of the adjacent edge portions 142a to 142d are rounded. Yes.
- the main hole 14 includes an arcuate edge 142a, 142b having the same radius and arc length and a linear edge having a zero curvature so that the opening edge is an ellipse. 142c and 142d are connected alternately.
- the main hole 14 of the present embodiment is composed of two types of edge portions 142a to 142d having different curvatures.
- the main hole 14 of the present embodiment is composed of four edge portions 142a to 142d, and the four edge portions 142a to 142d are connected by four connection portions T1 to T4.
- the connecting portions of the edge portions 142a to 142d which are the changing points of curvature at the opening edge of the main hole 14, have roundness.
- the opening shape has no corners.
- the main hole 14 is composed of two kinds of edge portions 142a to 142d having different curvatures. According to this, since the amount of change in the curvature at the opening edge of the main hole 14 is small, interference of innumerable vortex rings formed when the air flow is blown out from the main hole 14 is suppressed, and the reach of the working air flow is reduced. Improvements can be made.
- the main hole 14 is composed of four edge portions 142a to 142d, and the four edge portions 142a to 142d are connected at four locations T1 to T4. According to this, since the change point of the curvature at the opening edge of the main hole 14 is small, the interference of innumerable vortex rings formed when the airflow is blown out from the main hole 14 is suppressed, and the reach of the working airflow Can be improved.
- the radius is less than a predetermined value (specifically, 0.1 mm)
- the lateral vortex Vt develops into a large one like the corner portion.
- the radius is preferably set to 0.1 mm or more.
- the opening edge of the main hole 14 is illustrated as an ellipse, but is not limited thereto.
- each of the edge portions 142a to 142d may have an arc shape.
- the main hole 14 may have an opening shape in which two kinds of arc-shaped edge portions 142a to 142d having different curvatures are connected in an annular shape.
- the main hole 14 may have an opening shape in which three kinds of arc-shaped edges 142a to 142d having different curvatures are connected in an annular shape.
- the main hole 14 may have an opening shape in which four types of arc-shaped edges 142a to 142d having different curvatures are connected in an annular shape.
- the fourth modification example in FIG. 36 when the main hole 14 is composed of four edge portions 142a to 142d, one of the edge portions 142a to 142d may be linear.
- the main hole 14 may be configured with six edge portions 142a to 142f instead of the four edge portions 142a to 142d.
- the main hole 14 includes three arc-shaped edges 142a to 142c having the same radius and arc length, and three straight edges 142d to 142f. May be formed in an opening shape in which the two are connected in an annular shape.
- the main hole 14 has an opening shape in which three arc-shaped edges 142a to 142c having different radii and three straight edges 142d to 142f are annularly connected. It may be.
- the main hole 14 may be constituted by eight edge portions 142a to 142h.
- the main hole 14 includes four arc-shaped edges 142a to 142d having the same radius and arc length, and straight lines having the same length of the opposing edges. It may be an opening shape in which the four edge portions 142e to 142h are connected in an annular shape.
- the main hole 14 includes four arc-shaped edges 142a to 142d having the same radius and arc length, and four linear edges having opposite edge lengths different from each other. It may have an opening shape in which the portions 142e to 142h are connected in an annular shape.
- the main hole 14 is formed by annularly forming four arc-shaped edges 142a to 142d having different radii and four straight edges 142e to 142h having the same length. It may have a connected opening shape.
- the main hole 14 is formed by annularly forming four arc-shaped edges 142a to 142d having different radii and four linear edges 142d to 142h having different lengths. It may have a connected opening shape.
- the main hole 14 has four arc-shaped edges 142a to 142d having partially different radii, and four linear edges 142e having equal lengths of the opposing edges.
- the main hole 14 is formed by annularly connecting four arc-shaped edges 142a to 142d having different radii and four linear edges 142d to 142h having different lengths. It may be an opening shape.
- FIG. 45 and 46 the blowout portion 10 of the present embodiment has auxiliary holes 22 formed around the main hole 14 in the blowout portion 10 of the eleventh embodiment.
- auxiliary holes 22 are formed around the main hole 14 having an elliptical opening edge so as to surround the main hole 14.
- Other configurations are the same as those in the eleventh embodiment. According to the blowing unit 10 of the present embodiment, the air flow of the working airflow can be suppressed by the support airflow that blows out from the auxiliary hole 22.
- the auxiliary hole 22 is formed around the main hole 14 whose opening edge is an ellipse.
- the present invention is not limited to this.
- the blowout portion 10 may have a configuration in which auxiliary holes 22 are formed around the main hole 14 whose opening edge is not an ellipse.
- the air blowing device 1 may have a structure in which a plurality of main holes 14 are formed in the hole forming portion 12.
- the plurality of auxiliary holes 22 are arranged so as to surround the plurality of main holes 14 as a single hole group, or to surround each of the plurality of main holes 14. That's fine.
- auxiliary hole 22 is configured by a plurality of round holes
- the auxiliary hole 22 may be configured by, for example, a curved slit hole surrounding the main hole 14.
- the auxiliary hole 22 is not limited to a plurality of slit holes, and can be constituted by a single slit hole.
- the main flow path 18 and the auxiliary flow path 24 are formed inside the single duct portion 16, but the present invention is not limited to this.
- a portion that forms the main flow path 18 and a portion that forms the auxiliary flow path 24 in the duct portion 16 may be configured separately.
- blowout portion 10 having the flange portion 20 is exemplified, but the present invention is not limited to this.
- the blow-out part 10 may have a configuration in which, for example, the hole forming part 12 and the duct part 16 are included and the flange part 20 is not included.
- the air blowing device 1 of the present disclosure is applied to the air blowing port of an air conditioning unit that air-conditions the vehicle interior, but the present invention is not limited to this.
- the air blowing device 1 according to the present disclosure is not limited to a moving body such as a vehicle, but can be widely applied to an air blowing port of an installation type air conditioning unit for home use or the like.
- the air blowing device 1 of the present disclosure is not limited to an air conditioning unit that air-conditions a room.
- a temperature control that blows out temperature-controlled air that adjusts the temperature of an air outlet of a humidifying device that humidifies the room, a heating element, or the like. It can also be applied to the air outlet of equipment.
- the air blowing device includes at least one main hole and at least one auxiliary hole formed around the main hole.
- the blowout portion is provided with a vortex suppressing structure that suppresses the development of a lateral vortex formed in the velocity boundary layer of the working airflow downstream of the outlet of the main hole.
- This vortex suppression structure has a structure in which the central portion of the velocity boundary layer of the working airflow formed downstream of the outlet of the main hole and the mainstream of the support airflow are brought closer to the downstream of the outlet of the main hole.
- the vortex suppressing structure of the air blowing device includes a layer reducing structure that reduces the thickness of the velocity boundary layer formed along the inner wall surface of the main hole.
- a layer reducing structure that reduces the thickness of the velocity boundary layer formed along the inner wall surface of the main hole.
- the blowing part of the air blowing apparatus contains the main flow path which allows the airflow which blows off from a main hole to pass through.
- the main flow path is provided with an enlarged portion having a cross-sectional area larger than the opening area of the main hole as a layer reduction structure.
- the main flow path is provided with a contracted fin that contracts the airflow flowing through the main flow path as a layer contraction structure.
- the layer contraction structure includes not only the enlarged portion but also the contraction fins, it is possible to reduce the thickness of the velocity boundary layer due to contraction while suppressing an increase in the size of the apparatus due to the expansion of the main flow path.
- Such a configuration is suitable when the installation space is greatly limited like a moving body.
- the blowing part of the air blowing apparatus contains the main flow path which allows the airflow which blows off from a main hole to pass through.
- the main flow path is provided with the contraction fin which contracts the airflow which flows through the main flow path as a layer contraction structure.
- the contraction fin which contracts the airflow which flows through the main flow path as a layer contraction structure.
- the blowing part of the air blowing device includes a main flow path through which the air flow blown from the main hole passes. At least a part of the main flow path is provided with a concavo-convex part in which a concave part and a convex part are alternately arranged along the flow direction of the air flow in the main flow path as a layer reduction structure.
- the structure is provided with a concavo-convex portion on a part of the inner wall surface of the main flow path, the vortex generated inside the concavo-convex portion plays a role like a ball bearing, so that the friction of the inner wall surface of the main flow path The coefficient becomes smaller.
- the difference in flow velocity between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced, and the thickness of the velocity boundary layer can be reduced. That is, it is possible to realize a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is brought close to the mainstream of the support airflow.
- the uneven portion of the air blowing device is formed by a plurality of grooves provided on the inner wall surface of the main flow path. If the concave and convex portion is configured with a plurality of grooves in this manner, the size of the main flow path can be secured and pressure loss in the main flow path can be suppressed as compared with the case where the concave and convex portion is configured with a plurality of protrusions. This greatly contributes to the improvement of the reach of the working airflow.
- the blowing unit of the air blowing device includes a main channel that allows the airflow blown from the main hole to pass through, an auxiliary channel that allows the airflow blown from the auxiliary hole to pass through, and a partition that partitions the main channel and the auxiliary channel. Contains.
- the partition portion is formed with at least one communication hole for guiding a part of the airflow flowing through the main channel to the auxiliary channel as a vortex suppressing structure.
- the airflow easily flows along the inner wall surface forming the main flow path by the airflow flowing from the main flow path to the auxiliary flow path through the communication hole. For this reason, the difference in flow velocity between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced, and the thickness of the velocity boundary layer can be reduced. That is, it is possible to realize a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is brought close to the mainstream of the support airflow.
- the blowing unit of the air blowing device includes a main channel that allows the airflow blown from the main hole to pass through, an auxiliary channel that allows the airflow blown from the auxiliary hole to pass through, and a partition that partitions the main channel and the auxiliary channel. Contains.
- the partition is provided with an uneven vertical vortex generating mechanism for generating vertical vortices at the upstream end located on the upstream side of the air flow.
- the airflow flowing around the partition portion is easily flown along the surface of the partition portion (that is, the inner wall surface forming the main flow path) by the vertical vortex generated by the vertical vortex generating mechanism. For this reason, the difference in flow velocity between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced, and the thickness of the velocity boundary layer can be reduced. That is, it is possible to realize a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is brought close to the mainstream of the support airflow.
- a tangent line extending along the inner wall surface of the main hole intersects with the center line of the auxiliary hole at the downstream side of the outlet of the auxiliary hole at least partially forming the inner wall surface.
- the main inclined structure is inclined with respect to the center line of the auxiliary hole.
- the vortex suppression structure contains the main inclination structure.
- the blow-out portion of the air blowing device passes a main flow guide through which the air flow blown from the main hole passes, and a main flow guide that guides the air flow flowing along the inner wall surface forming the main flow channel to the outlet downstream of the auxiliary hole.
- the vortex suppression structure includes a mainstream guide. This also spreads the flow velocity distribution near the inner wall surface forming the main hole to the air flow blown from the auxiliary hole downstream of the main hole, so that the center of the thickness of the velocity boundary layer formed downstream of the main hole outlet The part can be brought close to the air flow blown out from the auxiliary hole.
- the tangent line extending along the inner wall surface of the auxiliary hole intersects the center line of the main hole at the downstream of the outlet of the main hole at least at a part of the inner wall surface.
- the auxiliary inclined structure is inclined with respect to the center line of the main hole.
- the vortex suppressing structure includes an auxiliary inclined structure. According to this, the air flow blown out from the auxiliary hole can be brought closer to the central portion of the thickness of the velocity boundary layer formed downstream of the outlet of the main hole.
- the “center line of the main hole” is a line that passes through the center of the main hole and extends along the main stream of the airflow blown out of the main hole.
- the blowing unit of the air blowing device is an auxiliary channel that allows the airflow blown from the auxiliary hole to pass therethrough, and the auxiliary that guides the airflow that flows along the inner wall surface forming the auxiliary channel to the outlet downstream of the main hole.
- the vortex suppression structure includes an auxiliary guide. Also by this, the main flow of the support airflow blown out from the auxiliary hole can be brought closer to the central portion of the thickness of the velocity boundary layer formed downstream of the outlet of the main hole.
- the blowing portion of the air blowing device has a superposition structure in which a part of the main hole and at least a part of the auxiliary hole overlap each other in the circumferential direction around the center line of the main hole. ing. And the vortex suppression structure contains the superposition
- the main hole of the air blowing device has a plurality of edges that form the opening edge of the main hole.
- the plurality of edges are annularly connected so that edges having different curvatures are adjacent to each other, and connecting portions of the adjacent edges are rounded.
- the air blowing device includes a blowing unit that blows out an air flow.
- the blow-out part includes at least one main hole that blows out an air flow serving as a working air flow.
- the main hole has a plurality of edges that form the opening edge of the main hole. The plurality of edges are connected so that edges having different curvatures are adjacent to each other, and connecting portions of the adjacent edges are rounded.
- the blowing portion of the air blowing device has at least one auxiliary hole that blows out a support airflow that is formed around the main hole and suppresses the air drawing action by the working airflow blown out of the main hole. Is included. According to this, the drawing-in of the air of the working airflow can be suppressed by the support airflow that blows out from the auxiliary hole.
- the main hole of the air blowing device is composed of two types of the edge portions having different curvatures. According to this, since the amount of change in the curvature at the opening edge of the main hole is small, the interference of the infinite number of vortex rings formed when the airflow is blown from the main hole is suppressed, and the reach of the working airflow is improved. Can be achieved.
- the main hole of the air blowing device is composed of four edges, and the four edges are connected at four locations. According to this, since there are few change points of the curvature at the opening edge of the main hole, the interference of innumerable vortex rings formed when the airflow is blown out from the main hole is suppressed, and the reach of the working airflow is improved. Can be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
An air discharge device (1) equipped with a discharge section (10) for discharging a stream of air. The discharge section includes: a main opening (14) through which an airstream serving as an operating airstream is discharged; an auxiliary opening (22) which is formed at the periphery of the main opening and through which a supporting airstream is discharged; and a swirl suppression structure (180) for suppressing the development of lateral swirls formed inside a velocity boundary layer (BL) of the operating airstream downstream from an outlet of the main opening. The swirl suppression structure is a structure for causing the main flow of the supporting airstream and a center portion (BLc) of the thickness (δ) of the velocity boundary layer of the operating airstream formed downstream from the outlet of the main opening to converge downstream from the outlet of the main opening.
Description
本出願は、2018年4月11日に出願された日本特許出願番号2018-76325号と、2018年10月23日に出願された日本特許出願番号2018-199383号と、2018年12月25日に出願された日本特許出願番号2018-240805号に基づくもので、ここにその記載内容が参照により組み入れられる。
This application includes Japanese Patent Application No. 2018-76325 filed on April 11, 2018, Japanese Patent Application No. 2018-199383 filed on October 23, 2018, and December 25, 2018. Is based on Japanese Patent Application No. 2018-240805 filed in Japan, the contents of which are incorporated herein by reference.
本開示は、気流を吹き出す吹出部を備える空気吹出装置に関する。
The present disclosure relates to an air blowing device including a blowing unit that blows out an air flow.
従来、作動気流となる空気流を形成する主孔の周辺に、作動気流に引き込まれる主孔周りの空気の引き込みを阻む援護気流を形成する補助吹出口が設けられたエアーノズルが知られている(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, an air nozzle is known in which an auxiliary air outlet is provided around a main hole that forms an air flow serving as a working airflow, and an auxiliary air outlet that forms a support airflow that prevents the air around the main hole being drawn into the working airflow. (For example, refer to Patent Document 1).
本発明者らは、気流の到達距離を更に長くするために、主孔から気流を吹き出した際の空気の引き込み作用について鋭意検討した。この結果、空気の引き込み作用は、主孔から作動気流を吹き出した際、作動流体の速度勾配によるせん断力によって生ずる横渦に起因することが判った。なお、横渦は、主流の流れ方向に直交する渦心を有する渦である。
The present inventors diligently studied the air drawing action when the air flow is blown out from the main hole in order to further increase the reach distance of the air flow. As a result, it has been found that the air drawing action is caused by a lateral vortex generated by a shearing force due to the velocity gradient of the working fluid when the working air current is blown from the main hole. The horizontal vortex is a vortex having a vortex center perpendicular to the mainstream flow direction.
本発明者らが更に検討したところ、主孔の出口下流付近では、速度境界層に生ずる無数の横渦が速度境界層の厚みの中央付近で合成して大規模なものに発達することで、空気の引き込み作用がより強くなるとの知見を得た。
As a result of further investigation by the present inventors, in the vicinity of the downstream of the main hole outlet, innumerable transverse vortices generated in the velocity boundary layer are synthesized near the center of the thickness of the velocity boundary layer and developed into a large-scale one. The knowledge that the air drawing-in action becomes stronger was obtained.
しかしながら、上述の従来技術では、主孔の周囲に補助吹出口を設けることが開示されているだけで、本発明者らの知見について何ら示されていない。このため、気流の到達距離の更なる向上を見込むことが困難である。
However, the above-described conventional technology only discloses providing an auxiliary outlet around the main hole, and does not show any knowledge of the present inventors. For this reason, it is difficult to expect further improvement in the reach of the airflow.
本開示は、主孔から吹き出す作動気流の到達距離を長くすることが可能な空気吹出装置を提供することを目的とする。
The present disclosure aims to provide an air blowing device that can increase the reach of the working air flow blown from the main hole.
本開示の1つの観点によれば、空気吹出装置は、気流を吹き出す吹出部を備える。吹出部は、作動気流となる気流を吹き出す少なくとも1つの主孔と、主孔の周囲に形成されて主孔から吹き出される作動気流による空気の引き込み作用を抑えるための援護気流を吹き出す少なくとも1つの補助孔と、を含んでいる。また、吹出部は、主孔の出口下流において作動気流の速度境界層内に形成される横渦の発達を抑える渦抑制構造と、を含んでいる。渦抑制構造は、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分および援護気流の主流を主孔の出口下流で近づける構造になっている。
このように、主孔の出口下流に形成される速度境界層の厚みの中央部分および補助孔から吹き出される援護気流の主流を近づける構成とすれば、補助孔から吹き出される援護気流によって速度境界層での横渦の発達が充分に抑制される。これにより、主孔から吹き出される作動気流への周囲からの空気の引き込みが抑えられて、主孔から吹き出される作動気流の流速の減衰が少なくなるので、主孔から吹き出される作動気流の到達距離が長くなる。 According to one aspect of the present disclosure, the air blowing device includes a blowing unit that blows out an air flow. The blow-out unit has at least one main hole that blows out an air flow that is a working air flow, and at least one main air that blows out a support air flow that is formed around the main hole and suppresses air drawing action by the working air flow blown out of the main hole. And an auxiliary hole. Moreover, the blow-out part includes a vortex suppressing structure that suppresses the development of a lateral vortex formed in the velocity boundary layer of the working airflow downstream of the outlet of the main hole. The vortex suppression structure has a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream of the outlet of the main hole and the mainstream of the support airflow are brought closer to the downstream of the outlet of the main hole.
In this way, if the configuration is such that the main part of the support airflow blown out from the auxiliary hole and the central part of the thickness of the velocity boundary layer formed downstream of the main hole and the auxiliary hole, the speed boundary is generated by the support airflow blown out from the auxiliary hole. Development of transverse vortices in the layer is sufficiently suppressed. As a result, the drawing of air from the surroundings into the working airflow blown out from the main hole is suppressed, and the attenuation of the flow velocity of the working airflow blown out from the main hole is reduced. The reach is longer.
このように、主孔の出口下流に形成される速度境界層の厚みの中央部分および補助孔から吹き出される援護気流の主流を近づける構成とすれば、補助孔から吹き出される援護気流によって速度境界層での横渦の発達が充分に抑制される。これにより、主孔から吹き出される作動気流への周囲からの空気の引き込みが抑えられて、主孔から吹き出される作動気流の流速の減衰が少なくなるので、主孔から吹き出される作動気流の到達距離が長くなる。 According to one aspect of the present disclosure, the air blowing device includes a blowing unit that blows out an air flow. The blow-out unit has at least one main hole that blows out an air flow that is a working air flow, and at least one main air that blows out a support air flow that is formed around the main hole and suppresses air drawing action by the working air flow blown out of the main hole. And an auxiliary hole. Moreover, the blow-out part includes a vortex suppressing structure that suppresses the development of a lateral vortex formed in the velocity boundary layer of the working airflow downstream of the outlet of the main hole. The vortex suppression structure has a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream of the outlet of the main hole and the mainstream of the support airflow are brought closer to the downstream of the outlet of the main hole.
In this way, if the configuration is such that the main part of the support airflow blown out from the auxiliary hole and the central part of the thickness of the velocity boundary layer formed downstream of the main hole and the auxiliary hole, the speed boundary is generated by the support airflow blown out from the auxiliary hole. Development of transverse vortices in the layer is sufficiently suppressed. As a result, the drawing of air from the surroundings into the working airflow blown out from the main hole is suppressed, and the attenuation of the flow velocity of the working airflow blown out from the main hole is reduced. The reach is longer.
ところで、主孔の開口縁に角部がある場合、当該角部にて横渦が大規模なものに発達し易くなる傾向がある。このことは、主流から吹き出す作動気流の到達距離を縮める要因となることから好ましくない。
本開示の別の観点によれば、空気吹出装置は、気流を吹き出す吹出部を備える。吹出部は、作動気流となる気流を吹き出す少なくとも1つの主孔を含む。主孔は、主孔の開口縁を形成する複数の縁部を有する。複数の縁部は、異なる曲率となる縁部が隣接するとともに、隣接する縁部の接続部分が丸みを有するように接続されている。
これによれば、主孔の開口縁における曲率の変化点である各縁部の接続部分が丸みを有しているので、主孔が角部のない開口形状となる。これにより、主孔の出口下流付近での横渦の発達が充分に抑制されるので、主流から吹き出す作動気流の到達距離を長くすることが可能となる。
ここで、「隣接する縁部の接続部分が丸みを有するように接続される」とは、隣接する縁部それぞれの接続部分における接線が一致するように接続された状態として解釈することができる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 By the way, when there is a corner at the opening edge of the main hole, the horizontal vortex tends to easily develop into a large scale at the corner. This is not preferable because it causes a reduction in the reach of the working airflow blown from the mainstream.
According to another viewpoint of this indication, an air blowing device is provided with a blowing part which blows off air current. The blowout part includes at least one main hole that blows out an airflow serving as a working airflow. The main hole has a plurality of edges that form the opening edge of the main hole. The plurality of edges are connected so that edges having different curvatures are adjacent to each other, and connecting portions of the adjacent edges are rounded.
According to this, since the connection part of each edge part which is a change point of the curvature in the opening edge of a main hole has roundness, a main hole becomes an opening shape without a corner | angular part. As a result, the development of the lateral vortex near the outlet downstream of the main hole is sufficiently suppressed, so that the reach of the working air current blown out from the main flow can be increased.
Here, “connected so that the connecting portions of the adjacent edge portions are rounded” can be interpreted as a state in which the tangents at the connecting portions of the adjacent edge portions are connected to each other.
Reference numerals in parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
本開示の別の観点によれば、空気吹出装置は、気流を吹き出す吹出部を備える。吹出部は、作動気流となる気流を吹き出す少なくとも1つの主孔を含む。主孔は、主孔の開口縁を形成する複数の縁部を有する。複数の縁部は、異なる曲率となる縁部が隣接するとともに、隣接する縁部の接続部分が丸みを有するように接続されている。
これによれば、主孔の開口縁における曲率の変化点である各縁部の接続部分が丸みを有しているので、主孔が角部のない開口形状となる。これにより、主孔の出口下流付近での横渦の発達が充分に抑制されるので、主流から吹き出す作動気流の到達距離を長くすることが可能となる。
ここで、「隣接する縁部の接続部分が丸みを有するように接続される」とは、隣接する縁部それぞれの接続部分における接線が一致するように接続された状態として解釈することができる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 By the way, when there is a corner at the opening edge of the main hole, the horizontal vortex tends to easily develop into a large scale at the corner. This is not preferable because it causes a reduction in the reach of the working airflow blown from the mainstream.
According to another viewpoint of this indication, an air blowing device is provided with a blowing part which blows off air current. The blowout part includes at least one main hole that blows out an airflow serving as a working airflow. The main hole has a plurality of edges that form the opening edge of the main hole. The plurality of edges are connected so that edges having different curvatures are adjacent to each other, and connecting portions of the adjacent edges are rounded.
According to this, since the connection part of each edge part which is a change point of the curvature in the opening edge of a main hole has roundness, a main hole becomes an opening shape without a corner | angular part. As a result, the development of the lateral vortex near the outlet downstream of the main hole is sufficiently suppressed, so that the reach of the working air current blown out from the main flow can be increased.
Here, “connected so that the connecting portions of the adjacent edge portions are rounded” can be interpreted as a state in which the tangents at the connecting portions of the adjacent edge portions are connected to each other.
Reference numerals in parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiments are denoted by the same reference numerals, and the description thereof may be omitted. Further, in the embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements. The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.
(第1実施形態)
本実施形態について、図1~図8を参照して説明する。本実施形態の空気吹出装置1は、車室内を空調する空調ユニットの空気吹出口に適用される。図示しないが空調ユニットは、車室内の最前部に設けられたインストルメントパネルの内側に配置される。そして、空調ユニットの空気吹出口は、インストルメントパネルやその内側に設けられている。 (First embodiment)
This embodiment will be described with reference to FIGS. Theair blowing device 1 of this embodiment is applied to an air outlet of an air conditioning unit that air-conditions a vehicle interior. Although not shown, the air conditioning unit is disposed inside an instrument panel provided in the foremost part of the vehicle interior. And the air blower outlet of an air-conditioning unit is provided in the instrument panel and its inner side.
本実施形態について、図1~図8を参照して説明する。本実施形態の空気吹出装置1は、車室内を空調する空調ユニットの空気吹出口に適用される。図示しないが空調ユニットは、車室内の最前部に設けられたインストルメントパネルの内側に配置される。そして、空調ユニットの空気吹出口は、インストルメントパネルやその内側に設けられている。 (First embodiment)
This embodiment will be described with reference to FIGS. The
図1および図2に示すように、空気吹出装置1は、気流を吹き出す吹出部10を備える。吹出部10は、その内部に空調ユニットで所望の温度に調整された気流を室内に導く空気流路が形成されている。吹出部10は、ダクト部16、作動気流となる気流を吹き出す主孔14を形成する孔形成部12、ダクト部16の外側に設けられたフランジ部20を含んで構成されている。
As shown in FIGS. 1 and 2, the air blowing device 1 includes a blowing unit 10 that blows out an air flow. The blow-out unit 10 is formed with an air flow path for guiding an air flow adjusted to a desired temperature by the air conditioning unit into the room. The blowing part 10 includes a duct part 16, a hole forming part 12 that forms a main hole 14 that blows out an airflow that serves as a working airflow, and a flange part 20 that is provided outside the duct part 16.
ダクト部16は、室内へ吹き出す気流を通過させる流路を形成する部材である。ダクト部16は、筒状の部材で構成されている。ダクト部16は、空気の流れ方向から見た形状が、横幅が縦幅よりも大きい扁平な形状になっている。また、ダクト部16は、空気流れ方向に沿った形状が空気流れ上流側から下流側に向けて絞られた形状になっている。
The duct portion 16 is a member that forms a flow path through which an airflow blown into the room is passed. The duct part 16 is comprised with the cylindrical member. The shape of the duct portion 16 as viewed from the air flow direction is a flat shape having a horizontal width larger than the vertical width. Further, the duct portion 16 has a shape in which the shape along the air flow direction is narrowed from the air flow upstream side to the downstream side.
図3に示すように、ダクト部16の内部には、上流側の部位よりも下流側の部位の近くに仕切部26が設けられている。この仕切部26は、筒状に構成されており、ダクト部16の内側に、ダクト部16に対して所定の隙間があくように配置されている。ダクト部16の内部は、仕切部26によって内側の流路と外側の流路とが形成されている。すなわち、ダクト部16は、その内側に仕切部26が配置されることで二重の流路構造になっている。
As shown in FIG. 3, a partition portion 26 is provided in the duct portion 16 near the downstream portion than the upstream portion. The partition portion 26 is configured in a cylindrical shape, and is arranged inside the duct portion 16 so as to have a predetermined gap with respect to the duct portion 16. Inside the duct portion 16, an inner flow path and an outer flow path are formed by the partition portion 26. That is, the duct part 16 has a double flow path structure by arranging the partition part 26 on the inside thereof.
ダクト部16の内部には、その中央部分に主流路18が形成されている。主流路18は、仕切部26の内側の空間で構成されている。主流路18は、後述の主孔14から吹き出される作動気流を通過させる流路である。
The main flow path 18 is formed in the center part inside the duct part 16. The main flow path 18 is configured by a space inside the partition portion 26. The main flow path 18 is a flow path through which a working air current blown from a main hole 14 described later passes.
また、ダクト部16の内部には、主流路18の外側部分に補助流路24が形成されている。補助流路24は、仕切部26とダクト部16との間に形成される隙間で構成されている。補助流路24は、補助孔22から吹き出される援護気流を通過させる流路である。
Further, an auxiliary flow path 24 is formed inside the duct portion 16 at the outer portion of the main flow path 18. The auxiliary flow path 24 is configured by a gap formed between the partition portion 26 and the duct portion 16. The auxiliary flow path 24 is a flow path through which the support airflow blown out from the auxiliary hole 22 passes.
主流路18および補助流路24は、上述の仕切部26によって仕切られている。なお、主流路18および補助流路24は、ダクト部16のうち仕切部26の上流側の端部よりも上流側に位置する部位で互いに連通している。
The main flow path 18 and the auxiliary flow path 24 are partitioned by the partition portion 26 described above. The main flow path 18 and the auxiliary flow path 24 communicate with each other at a portion of the duct portion 16 that is located on the upstream side of the upstream end portion of the partition portion 26.
ダクト部16は、空気流れ上流側の部位が図示しない空調ユニットの空気吹出口に嵌合される。また、ダクト部16は、空気流れ下流側の部位が孔形成部12の外周に連なっている。
The duct part 16 is fitted into an air outlet of an air conditioning unit (not shown) on the upstream side of the air flow. Further, the duct portion 16 is connected to the outer periphery of the hole forming portion 12 at the downstream side of the air flow.
孔形成部12は、ダクト部16の空気流れ下流側の端部に位置付けられている。孔形成部12は、ダクト部16の空気流れ下流側の端面を構成する板状の部材であり、空気流れ方向において所定の厚みを有している。孔形成部12は、ダクト部16と仕切部26とを接続する接続部でもある。孔形成部12は、空気を吹き出すことが可能なように筒状に構成されている。孔形成部12は、空気流れ方向から見た形状が、横幅が縦幅よりも大きい扁平な形状になっている。孔形成部12には、その中央部分に主孔14が単一の孔として開口している。この主孔14は、空調ユニットで温度調整された空調風を作動気流として車室内へ吹き出すための開口である。
The hole forming part 12 is positioned at the end of the duct part 16 on the downstream side of the air flow. The hole forming portion 12 is a plate-like member that constitutes an end surface of the duct portion 16 on the downstream side of the air flow, and has a predetermined thickness in the air flow direction. The hole forming part 12 is also a connection part that connects the duct part 16 and the partition part 26. The hole formation part 12 is comprised by the cylinder shape so that air can be blown out. The shape of the hole forming portion 12 as viewed from the air flow direction is a flat shape whose horizontal width is larger than the vertical width. The hole forming portion 12 has a main hole 14 opened as a single hole at the center thereof. The main hole 14 is an opening for blowing out the conditioned air whose temperature is adjusted by the air conditioning unit as a working air flow into the vehicle interior.
主孔14は、空気流れ方向から見た形状が、横幅が縦幅よりも大きい長円形状になっている。具体的には、主孔14は、長さの等しい平行な線分を円弧状に湾曲した一対の曲線で接続してなる形状になっている。
The shape of the main hole 14 as viewed from the air flow direction is an oval shape whose horizontal width is larger than vertical width. Specifically, the main hole 14 has a shape formed by connecting parallel line segments of equal length with a pair of curved curves.
主孔14は、主流路18に連なる孔である。主孔14は、仕切部26において、空気流れ下流側の端から孔形成部12の厚みの分だけ上流側に位置する範囲に形成されている。主孔14は、空気流れ方向に沿って延びる内壁面141を有している。
The main hole 14 is a hole connected to the main flow path 18. The main hole 14 is formed in the partition 26 in a range located upstream from the end on the downstream side of the air flow by the thickness of the hole forming part 12. The main hole 14 has an inner wall surface 141 extending along the air flow direction.
また、孔形成部12には、主孔14の周囲を囲むように複数の補助孔22が形成されている。補助孔22は、主孔14から吹き出される作動気流による空気の引き込み作用を抑えるための援護気流を吹き出すための開口である。
Further, a plurality of auxiliary holes 22 are formed in the hole forming portion 12 so as to surround the periphery of the main hole 14. The auxiliary hole 22 is an opening for blowing out a support airflow for suppressing the air drawing action by the working airflow blown out from the main hole 14.
図2に示すように、複数の補助孔22は、孔形成部12において主孔14を取り囲むように形成されている。複数の補助孔22は、孔形成部12における主孔14の外縁部分を形成する部位の外側に形成されている。複数の補助孔22は、互いの間隔が等しくなるように形成されている。複数の補助孔22は、主孔14に比べて断面積が小さい丸孔として形成されている。
2, the plurality of auxiliary holes 22 are formed so as to surround the main hole 14 in the hole forming portion 12. The plurality of auxiliary holes 22 are formed outside the portion of the hole forming portion 12 that forms the outer edge portion of the main hole 14. The plurality of auxiliary holes 22 are formed so that the intervals between them are equal. The plurality of auxiliary holes 22 are formed as round holes having a smaller cross-sectional area than the main hole 14.
補助孔22は、補助流路24に連なる孔である。補助孔22は、仕切部26およびダクト部16のうち、空気流れ下流側の端から孔形成部12の厚みの分だけ上流側に位置する範囲に形成されている。補助孔22は、空気流れ方向に沿って延びる内壁面221を有している。
The auxiliary hole 22 is a hole that continues to the auxiliary flow path 24. The auxiliary hole 22 is formed in a range of the partition portion 26 and the duct portion 16 that is located upstream from the end on the downstream side of the air flow by the thickness of the hole forming portion 12. The auxiliary hole 22 has an inner wall surface 221 that extends along the air flow direction.
フランジ部20は、吹出部10を図示しないインストルメントパネルに対して取り付けるための部材である。フランジ部20は、ダクト部16の外周に対してダクト部16から突き出るように設けられた矩形状の部材で構成されている。フランジ部20は、ダクト部16の上流側の部位が空調ユニットの空気吹出口に嵌合された状態で、ビス等の連結部材によってインストルメントパネルに対して取り付けられる。なお、フランジ部20には、角部をなす四隅付近にビス等の連結部材を通すための貫通穴201が形成されている。
The flange part 20 is a member for attaching the blowing part 10 to an instrument panel (not shown). The flange portion 20 is composed of a rectangular member provided so as to protrude from the duct portion 16 with respect to the outer periphery of the duct portion 16. The flange portion 20 is attached to the instrument panel by a connecting member such as a screw in a state where the upstream portion of the duct portion 16 is fitted to the air outlet of the air conditioning unit. The flange portion 20 is formed with through holes 201 through which connecting members such as screws are passed in the vicinity of the four corners forming the corner portions.
吹出部10を構成する孔形成部12、ダクト部16、フランジ部20、仕切部26それぞれは、樹脂で構成されている。孔形成部12、ダクト部16、およびフランジ部20、仕切部26は、射出成形等の成形技術によって一体に成形された一体成形物で構成されている。なお、孔形成部12、ダクト部16、フランジ部20、仕切部26は、その一部が別体で構成されていてもよい。このように構成される吹出部10は、前述したように、図示しないインストルメントパネルに設置される。
Each of the hole forming part 12, the duct part 16, the flange part 20, and the partition part 26 constituting the blowing part 10 is made of resin. The hole forming part 12, the duct part 16, the flange part 20, and the partition part 26 are formed of an integrally molded product that is integrally formed by a molding technique such as injection molding. In addition, the hole formation part 12, the duct part 16, the flange part 20, and the partition part 26 may be comprised by the part separately. As described above, the blowing unit 10 configured in this manner is installed on an instrument panel (not shown).
ここで、近年、インストルメントパネルは、車室内の拡大や意匠性の観点で車両上下方向において薄型化が要求されている。また、インストルメントパネルは、車両幅方向の中央部分や車両前後方向において乗員に相対する部分に車両の運転状態を示す各種情報を報知するための大型の情報機器が設置される傾向がある。これらにより、空調ユニットでは、空気吹出口を薄幅にする等の対策が必要となるが、空気吹出口を薄幅にすると、空気吹出口の下流に生ずる横渦Vtによって、空気吹出口から吹き出す気流のコア部の崩壊が早まり、車室内における気流の到達距離が短くなる。このため、空気吹出装置1には、車室内へ吹き出される気流の到達距離を長くすることが求められつつある。
Here, in recent years, instrument panels have been required to be thin in the vertical direction of the vehicle from the viewpoint of expansion of the passenger compartment and design. In addition, the instrument panel tends to be provided with a large information device for notifying various information indicating the driving state of the vehicle at a central portion in the vehicle width direction or a portion facing the occupant in the vehicle longitudinal direction. As a result, the air conditioning unit requires measures such as making the air outlet thin, but if the air outlet is made thin, it blows out from the air outlet due to the lateral vortex Vt generated downstream of the air outlet. The collapse of the core portion of the airflow is accelerated, and the reach distance of the airflow in the passenger compartment is shortened. For this reason, the air blowing device 1 is required to increase the reach of the airflow blown into the vehicle interior.
本発明者らは、車室内へ吹き出す気流の到達距離を更に長くするために、主孔14から気流を吹き出した際の空気の引き込み作用について鋭意検討した。この結果、当該空気の引き込み作用は、主孔14から作動気流を吹き出した際に、作動気流の速度勾配によるせん断力によって生ずる横渦Vtに起因することが判った。以下、空気の引き込み作用について、図4、図5を参照して説明する。
In order to further increase the reach of the airflow blown into the vehicle interior, the present inventors diligently studied the air drawing action when the airflow was blown out from the main hole 14. As a result, it has been found that the air drawing action is caused by the lateral vortex Vt generated by the shearing force due to the velocity gradient of the working air flow when the working air flow is blown out from the main hole 14. Hereinafter, the air drawing action will be described with reference to FIGS. 4 and 5.
図4は、本実施形態の空気吹出装置1の第1比較例となる第1ノズルCE1を示す模式図である。第1ノズルCE1は、断面積が略一定となる円筒管で構成され、一端側の開口が主孔Hm1を構成している。
FIG. 4 is a schematic diagram showing a first nozzle CE1 that is a first comparative example of the air blowing device 1 of the present embodiment. The first nozzle CE1 is formed of a cylindrical tube having a substantially constant cross-sectional area, and the opening on one end side forms the main hole Hm1.
図4に示すように、第1ノズルCE1の主孔Hm1から気流が吹き出されると、主孔Hm1の出口下流において主孔Hm1からの気流とその周囲で静止した空気との速度差に起因して速度境界層BLが形成される。速度境界層BLは、第1ノズルCE1の主孔Hm1から吹き出された気流のうち静止した空気の影響を受ける層である。
As shown in FIG. 4, when the air flow is blown out from the main hole Hm1 of the first nozzle CE1, it is caused by the difference in velocity between the air flow from the main hole Hm1 and the air stationary around it at the outlet downstream of the main hole Hm1. Thus, the velocity boundary layer BL is formed. The velocity boundary layer BL is a layer that is affected by stationary air among the airflows blown from the main hole Hm1 of the first nozzle CE1.
速度境界層BLでは、図5に示すように、速度勾配によるせん断力によって無数の横渦Vtが生ずる。そして、本発明者らの検討によれば、速度境界層BLに生ずる無数の横渦Vtが速度境界層BLの厚みδの中央部分BLc付近で合成して大規模なものに発達することで、空気の引き込み作用がより強くなり易いことが判った。
In the velocity boundary layer BL, as shown in FIG. 5, innumerable transverse vortices Vt are generated by the shearing force due to the velocity gradient. According to the study by the present inventors, innumerable transverse vortices Vt generated in the velocity boundary layer BL are synthesized in the vicinity of the central portion BLc of the thickness δ of the velocity boundary layer BL and developed into a large-scale one. It was found that the air drawing action tends to be stronger.
ここで、速度境界層BLの厚みδは、壁面から速度境界層BLの外側を流れる主流(すなわち、ポテンシャル流)の速度U∞の99%(すなわち、0.99×U∞)となる位置までの長さとして定義される。速度境界層BLの厚みδは、例えば、次の式F1に基づいて算出される。
Here, the thickness δ of the velocity boundary layer BL reaches a position where it becomes 99% (that is, 0.99 × U ∞ ) of the velocity U ∞ of the main flow (that is, potential flow) that flows outside the velocity boundary layer BL from the wall surface. Is defined as the length of The thickness δ of the velocity boundary layer BL is calculated based on the following formula F1, for example.
δ=5×(ν×x/U∞)1/2 …(F1)
但し、式F1では、νが動粘性係数を示し、xが主流の流れ方向の位置、U∞が主流の速度(すなわち、一様流速度)を示している。なお、速度境界層BLの厚さδの定義式としては、上述の式F1以外に、例えば、排除厚さによる定義式や運動量厚さによる定義式を用いることも可能である。 δ = 5 × (ν × x / U ∞ ) 1/2 (F1)
However, in Formula F1, ν represents a kinematic viscosity coefficient, x represents a position in the main flow direction, and U ∞ represents a main flow speed (that is, a uniform flow speed). As the definition formula of the thickness δ of the velocity boundary layer BL, in addition to the formula F1 described above, for example, a definition formula based on the excluded thickness or a definition formula based on the momentum thickness can be used.
但し、式F1では、νが動粘性係数を示し、xが主流の流れ方向の位置、U∞が主流の速度(すなわち、一様流速度)を示している。なお、速度境界層BLの厚さδの定義式としては、上述の式F1以外に、例えば、排除厚さによる定義式や運動量厚さによる定義式を用いることも可能である。 δ = 5 × (ν × x / U ∞ ) 1/2 (F1)
However, in Formula F1, ν represents a kinematic viscosity coefficient, x represents a position in the main flow direction, and U ∞ represents a main flow speed (that is, a uniform flow speed). As the definition formula of the thickness δ of the velocity boundary layer BL, in addition to the formula F1 described above, for example, a definition formula based on the excluded thickness or a definition formula based on the momentum thickness can be used.
図6は、本実施形態の空気吹出装置1の第2比較例となる第2ノズルCE2を示す模式図である。第2ノズルCE2は、その一端側に主孔Hm2および当該主孔Hm2を取り囲む複数の補助孔Hsが形成された円筒管で構成されている。図6に示すように、第2ノズルCE2の主孔Hm2および補助孔Hsから気流が吹き出されると、主孔Hm2の出口下流に主孔Hm2の内壁面に沿って作動気流の速度境界層BLが形成される。この速度境界層BLには、その厚みδの中央部分BLc付近で横渦Vtが生じ易いと考えられる。
FIG. 6 is a schematic diagram showing a second nozzle CE2 which is a second comparative example of the air blowing device 1 of the present embodiment. The second nozzle CE2 is configured by a cylindrical tube in which a main hole Hm2 and a plurality of auxiliary holes Hs surrounding the main hole Hm2 are formed on one end side thereof. As shown in FIG. 6, when an air flow is blown out from the main hole Hm2 and the auxiliary hole Hs of the second nozzle CE2, the velocity boundary layer BL of the working air flow along the inner wall surface of the main hole Hm2 downstream of the main hole Hm2. Is formed. In the velocity boundary layer BL, it is considered that the lateral vortex Vt is likely to occur near the central portion BLc of the thickness δ.
一方、補助孔Hsから吹き出された援護気流の主流は、速度境界層BLの厚みδの中央部分BLcから所定の間隔LSがあいた状態で、主孔Hm2からの作動気流と並行して吹き出される。すなわち、第2ノズルCE2では、補助孔Hsから吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcから離れた状態で流れる。
On the other hand, the main flow of the support airflow blown out from the auxiliary hole Hs is blown out in parallel with the working airflow from the main hole Hm2 in a state where there is a predetermined interval LS from the central portion BLc of the thickness δ of the velocity boundary layer BL. . That is, in the second nozzle CE2, the mainstream AFs of the support airflow blown out from the auxiliary hole Hs flows away from the center portion BLc of the thickness δ of the velocity boundary layer BL.
このような場合、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心から離れることになり、援護気流によって横渦Vtが崩壊され難く、速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ難いと考えられる。
In such a case, the main flow of the support airflow is separated from the vortex center of the horizontal vortex Vt generated in the velocity boundary layer BL, the horizontal vortex Vt is not easily broken by the support airflow, and the development of the lateral vortex Vt generated in the velocity boundary layer BL It is considered that the suppression effect is difficult to obtain.
本発明者らは、援護気流の主流と作動気流の速度境界層BLに生ずる横渦Vtの渦心とを近づけることで、速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られると考え、吹出部10に対して渦抑制構造を追加することとした。
The inventors of the present invention can suppress the development of the lateral vortex Vt generated in the velocity boundary layer BL by bringing the main flow of the support airflow close to the vortex of the lateral vortex Vt generated in the velocity boundary layer BL of the working airflow. In consideration, the vortex suppressing structure is added to the blowing portion 10.
図3に示すように、本実施形態の吹出部10には、渦抑制構造として、ダクト部16の主流路18に対して、主孔14の開口面積Smよりも断面積Scが大きくなる拡大部180が設けられている。
As shown in FIG. 3, the blowout portion 10 of the present embodiment has an enlarged portion in which the cross-sectional area Sc is larger than the opening area Sm of the main hole 14 with respect to the main flow path 18 of the duct portion 16 as a vortex suppression structure. 180 is provided.
主流路18を形成する仕切部26の内壁面181は、拡大部180のうち断面積が最も大きくなる部位から主孔14に向かって壁面形状が先細りとなる形状になっている。拡大部180は、主流路18を形成する仕切部26の内壁面181のうち、空気流れ上流側から下流側に向かって断面積が小さくなっている部位で構成されている。すなわち、拡大部180は、主孔14に対して連続的に連なるように、主孔14に近づくにつれて断面積が連続的に小さくなっている。拡大部180は、最大となる断面積Scと主孔14の開口面積Smとの比が、例えば、7対2となるように設定されている。拡大部180の断面積Scは、主流路18において最も流路断面積が大きくなる部位での断面積である。具体的には、拡大部180の断面積Scは、仕切部26の空気流れ上流側の端部における断面積である。また、主孔14の開口面積Smは、仕切部26の空気流れ下流側の端部における断面積である。
The inner wall surface 181 of the partition portion 26 that forms the main flow path 18 has a shape in which the wall surface shape tapers from the portion having the largest cross-sectional area in the enlarged portion 180 toward the main hole 14. The enlarged portion 180 is configured by a portion of the inner wall surface 181 of the partition portion 26 that forms the main flow path 18 that has a cross-sectional area that decreases from the air flow upstream side to the downstream side. In other words, the cross-sectional area of the enlarged portion 180 is continuously reduced as it approaches the main hole 14 so as to be continuously connected to the main hole 14. The enlarged portion 180 is set so that the ratio between the maximum cross-sectional area Sc and the opening area Sm of the main hole 14 is, for example, 7 to 2. The cross-sectional area Sc of the enlarged portion 180 is a cross-sectional area at a portion where the flow path cross-sectional area is the largest in the main flow path 18. Specifically, the cross-sectional area Sc of the enlarged portion 180 is a cross-sectional area at the end of the partition portion 26 on the upstream side of the air flow. The opening area Sm of the main hole 14 is a cross-sectional area at the end of the partitioning portion 26 on the downstream side of the air flow.
このように構成される本実施形態の吹出部10では、図7に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。
As shown in FIG. 7, in the blowout portion 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 16, the conditioned air is passed through the main channel 18 through the main hole 18. It flows toward 14.
主流路18には、主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。主流路18を形成する内壁面181付近での気流の流速が大きくなる理由としては、主流路18を形成する内壁面181の曲率の作用によって壁面に沿う気流に遠心力が働くことが挙げられる。なお、縮流は、流路断面が縮小されることで気流の流路壁面付近の流速と主流の流速との差が小さくなる現象である。
The main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced. The reason why the flow velocity of the air flow near the inner wall surface 181 forming the main flow path 18 is increased is that centrifugal force acts on the air flow along the wall surface by the action of the curvature of the inner wall surface 181 forming the main flow path 18. The contracted flow is a phenomenon in which the difference between the flow velocity near the flow channel wall surface of the air flow and the flow velocity of the main flow is reduced by reducing the cross section of the flow channel.
そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、主流路18における縮流が生ずることで、第2比較例に比べて小さくなる。
Then, when the airflow is blown out from the main hole 14 and the auxiliary hole 22, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. The thickness δ of the velocity boundary layer BL is smaller than that of the second comparative example due to contraction of the main flow path 18.
主孔14の出口下流に形成される作動気流の速度境界層BLの厚みδが小さいと、速度境界層BLの厚みδの中央部分BLcおよび補助孔22から吹き出された援護気流の主流とが主孔14の出口下流で近づく状態になる。すなわち、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。具体的には、援護気流の主流と速度境界層BLの厚みδの中央部分BLcとの間隔LSが、第2比較例に比べて小さくなる。
When the thickness δ of the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is small, the main portion of the support airflow blown out from the center portion BLc of the thickness δ of the velocity boundary layer BL and the auxiliary hole 22 is mainly used. It will be in the state which approaches at the exit downstream of the hole 14. That is, in the blowout portion 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. Specifically, the interval LS between the main flow of the support airflow and the central portion BLc of the thickness δ of the velocity boundary layer BL is smaller than that in the second comparative example.
この場合、図8に示すように、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れることになり、援護気流によって横渦Vtが崩壊され易いので、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。
In this case, as shown in FIG. 8, the main flow of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, and the transverse vortex Vt is easily collapsed by the support airflow. The effect of suppressing the development of the lateral vortex Vt that occurs in the velocity boundary layer BL downstream of the outlet of the gas can be easily obtained.
このように、本実施形態の空気吹出装置1では、主流路18に設けた拡大部180によって、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達を抑制可能となる。本実施形態では、主流路18に設けた拡大部180が渦抑制構造として機能する。より具体的には、拡大部180は、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
As described above, in the air blowing device 1 according to the present embodiment, the development of the lateral vortex Vt generated in the velocity boundary layer BL downstream of the outlet of the main hole 14 can be suppressed by the enlarged portion 180 provided in the main flow path 18. In the present embodiment, the enlarged portion 180 provided in the main channel 18 functions as a vortex suppression structure. More specifically, the enlarged portion 180 functions as a layer reduction structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
以上説明した空気吹出装置1では、主流路18に設けた拡大部180によって渦抑制構造が実現されている。これによると、主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcおよび補助孔22から吹き出される気流が主孔14の出口下流で近づく。すなわち、主流路18に拡大部180を設ける構造とすれば、主孔14付近で縮流が生ずることで主孔14の中心線CLm付近と内壁面141付近との間の流速差が小さくなり、主孔14の出口下流に形成される速度境界層BLの厚みδを小さくすることができる。
In the air blowing device 1 described above, a vortex suppression structure is realized by the enlarged portion 180 provided in the main flow path 18. According to this, the airflow blown out from the central part BLc of the thickness boundary δ of the velocity boundary layer BL formed at the outlet downstream of the main hole 14 and the auxiliary hole 22 approaches downstream of the outlet of the main hole 14. That is, if the main flow path 18 is provided with the enlarged portion 180, the flow velocity difference between the center line CLm of the main hole 14 and the vicinity of the inner wall surface 141 is reduced due to contraction in the vicinity of the main hole 14. The thickness δ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14 can be reduced.
これにより、補助孔22から吹き出される援護気流によって速度境界層BLでの横渦Vtの発達が充分に抑制される。この結果、主孔14から吹き出される作動気流への周囲からの空気の引き込みが抑えられ、主孔14から吹き出される作動気流の流速の減衰が少なくなるので、主孔14から吹き出される作動気流の到達距離が長くなる。
Thereby, the development of the transverse vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the support airflow blown out from the auxiliary hole 22. As a result, the drawing of air from the surroundings to the working airflow blown out from the main hole 14 is suppressed, and the flow velocity of the working airflow blown out from the main hole 14 is less attenuated. The reach of the air current becomes longer.
特に、空調ユニットで温度調整された空調風を作動気流として主孔14から吹き出す場合、主孔14から吹き出される作動気流への周囲からの空気の引き込みが抑えられることで、空気の引き込み作用に起因する作動気流の温度変化を抑えることができる。すなわち、本実施形態の空気吹出装置1によれば、適温の気流を所望の箇所に到達させることができる。このことは、車室内におけるスポット的な空調を実現する上で特に有効である。
In particular, when air-conditioned air whose temperature has been adjusted by the air-conditioning unit is blown out from the main hole 14 as a working airflow, air drawing from the surroundings is suppressed to the working airflow blown out from the main hole 14, so that air can be drawn in. The temperature change of the working airflow resulting from it can be suppressed. That is, according to the air blowing device 1 of the present embodiment, an airflow having an appropriate temperature can reach a desired location. This is particularly effective in realizing spot-like air conditioning in the passenger compartment.
(第2実施形態)
次に、第2実施形態について、図9~図12を参照して説明する。本実施形態では、ダクト部16の内部に主流路18を流れる気流を縮流させる縮流フィン28が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the reducedflow fins 28 for reducing the airflow flowing through the main flow path 18 are provided inside the duct portion 16. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第2実施形態について、図9~図12を参照して説明する。本実施形態では、ダクト部16の内部に主流路18を流れる気流を縮流させる縮流フィン28が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the reduced
図9に示すように、本実施形態の吹出部10には、ダクト部16の内部に縮流フィン28が設けられている。この縮流フィン28は、図10に示すように、ダクト部16の内側に形成される主流路18が上下に分断されるように、主孔14の内壁面141の短辺の略中央部分において主孔14の内壁面141の長辺に沿って延びている。図示しないが、縮流フィン28は、その長手方向の両端部がダクト部16の内側に連結されている。
As shown in FIG. 9, the blowing portion 10 of the present embodiment is provided with a contracted fin 28 inside the duct portion 16. As shown in FIG. 10, the contraction fin 28 is formed at a substantially central portion of the short side of the inner wall surface 141 of the main hole 14 so that the main flow path 18 formed inside the duct portion 16 is vertically divided. The main hole 14 extends along the long side of the inner wall surface 141. Although not shown, the contracted fins 28 are connected to the inside of the duct portion 16 at both ends in the longitudinal direction.
図11に示すように、縮流フィン28は、主孔14から突き出ないようにダクト部16の内側の主流路18を形成する部位に位置付けられている。具体的には、縮流フィン28は、ダクト部16の内部のうち、主流路18の中心線CLmと直交する方向において、仕切部26の一部と重なり合う位置であって、主孔14の内壁面141と重なり合わない位置に配置されている。
As shown in FIG. 11, the contracted fins 28 are positioned at a portion where the main flow path 18 inside the duct portion 16 is formed so as not to protrude from the main hole 14. Specifically, the contracted fin 28 is a position that overlaps a part of the partition portion 26 in the direction perpendicular to the center line CLm of the main flow path 18 within the duct portion 16, and is inside the main hole 14. It is arranged at a position that does not overlap the wall surface 141.
また、縮流フィン28は、その断面が空力特性に優れたティアドロップ形状になっている。すなわち、縮流フィン28は、空気流れ上流側の前縁部分が丸みを有する曲面状となり、空気流れ下流側の後縁部分が前縁部分に比べて鋭利な曲面状になっている。また、縮流フィン28は、その断面の厚みが後縁部分よりも前縁部分に近い位置で最大となっている。
Also, the contracted fin 28 has a teardrop shape with a cross section having excellent aerodynamic characteristics. In other words, the contracted fin 28 has a curved surface with a rounded front edge portion on the upstream side of the air flow, and a sharp curved surface on the downstream edge of the downstream side of the air flow as compared with the front edge portion. Further, the contraction fin 28 has a maximum cross-sectional thickness at a position closer to the front edge portion than to the rear edge portion.
このように構成される本実施形態の吹出部10では、図12に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。
In the blowing unit 10 of the present embodiment configured as described above, as shown in FIG. 12, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows through the main channel 18 through the main hole 18. It flows toward 14.
主流路18には、主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられている。このため、拡大部180から主孔14に至るまでに縮流が生ずる。加えて、主流路18は、縮流フィン28によって二股に分岐されることで、主孔14に至るまでに縮流が生ずる。
The main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14. For this reason, a contracted flow occurs from the enlarged portion 180 to the main hole 14. In addition, the main flow path 18 is bifurcated by the reduced flow fins 28, so that a reduced flow is generated before reaching the main hole 14.
前述の如く、縮流フィン28は、主孔14から突き出ないようにダクト部16の内側の主流路18を形成する部位に位置付けられている。このため、ダクト部16の内側には、縮流フィン28によって流路断面積が小さくなる上流区間A、上流区間Aよりも流路断面積が拡大する中間区間B、流路断面積が殆ど変化しない下流区間Cが形成される。
As described above, the contraction fin 28 is positioned at a portion where the main flow path 18 inside the duct portion 16 is formed so as not to protrude from the main hole 14. For this reason, on the inner side of the duct portion 16, the upstream section A in which the channel cross-sectional area is reduced by the contraction fin 28, the intermediate section B in which the channel cross-sectional area is larger than the upstream section A, and the channel cross-sectional area are almost changed. A downstream section C is formed.
上流区間Aでは、縮流フィン28によって流路断面積が小さくなり、気流が圧縮されることで、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。すなわち、上流区間Aでは、縮流フィン28による縮流効果によって主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって小さくなる。
In the upstream section A, the flow cross-sectional area is reduced by the contracted fins 28 and the airflow is compressed, whereby the flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 that forms the main flow path 18. The difference is sufficiently small. That is, in the upstream section A, the thickness δ of the velocity boundary layer BL in the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced toward the downstream side due to the contraction effect by the contraction fins 28.
一方、上流区間Aの下流側である中間区間Bおよび下流区間Cでは、流路断面積が小さくなっていないので、主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって大きくなる。
On the other hand, in the intermediate section B and the downstream section C, which are downstream of the upstream section A, the flow path cross-sectional area is not small, so the thickness δ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is downstream. Grows toward the side.
具体的には、中間区間Bでは、流路断面積が拡大しているので、主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって徐々に大きくなる。しかし、縮流フィン28は、空気流れ下流側の後縁側における断面の厚みの変化量が前縁側に比べて小さくなっている。このため、中間区間Bでの流路断面積の変化が上流区間Aの変化に比べて緩やかとなり、中間区間Bにおける速度境界層BLの厚みδの増加量は、上流区間Aにおける速度境界層BLの厚みδの減少量に比べて充分に小さくなる。また、中間区間Bの下流側である下流区間Cでは、流路断面積が一定であるため、主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって若干大きくなる。しかし、下流区間Cにおける速度境界層BLの厚みδの増加量は、上流区間Aにおける速度境界層BLの厚みδの減少量に比べて極めて小さくなる。
Specifically, in the intermediate section B, since the cross-sectional area of the flow path is enlarged, the thickness δ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 gradually increases toward the downstream side. However, in the contracted fin 28, the amount of change in the thickness of the cross section on the trailing edge side on the downstream side of the air flow is smaller than that on the leading edge side. For this reason, the change in the channel cross-sectional area in the intermediate section B becomes gentler than the change in the upstream section A, and the increase amount of the thickness δ of the speed boundary layer BL in the intermediate section B is the speed boundary layer BL in the upstream section A. This is sufficiently smaller than the reduction amount of the thickness δ. Further, in the downstream section C, which is downstream of the intermediate section B, the flow path cross-sectional area is constant, so the thickness δ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is slightly lower toward the downstream side. growing. However, the increase amount of the thickness δ of the velocity boundary layer BL in the downstream section C is extremely smaller than the decrease amount of the thickness δ of the velocity boundary layer BL in the upstream section A.
このように、縮流フィン28による上流区間Aにおける速度境界層BLの厚みδの減少量は、中間区間Bおよび下流区間Cにおける速度境界層BLの厚みδの増加量に比べて充分に大きくなる。
As described above, the amount of decrease in the thickness δ of the velocity boundary layer BL in the upstream section A by the contraction fin 28 is sufficiently larger than the increase in the thickness δ of the velocity boundary layer BL in the intermediate section B and the downstream section C. .
これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、第1実施形態に比べて小さくなる。
Thereby, in the main flow path 18, the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small. When the airflow is blown out from the main hole 14 and the auxiliary hole 22, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. The thickness δ of the speed boundary layer BL is smaller than that in the first embodiment.
このため、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcにより近づいた状態で流れる。これにより、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主流路18に設けた拡大部180および縮流フィン28が渦抑制構造として機能する。より具体的には、拡大部180および縮流フィン28それぞれが、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
For this reason, in the blowing portion 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. As a result, the main flow of the support airflow flows in the vicinity of the vortex center of the horizontal vortex Vt generated in the velocity boundary layer BL. Therefore, the horizontal vortex Vt is collapsed by the support airflow and is generated in the velocity boundary layer BL downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt is easily obtained. In the present embodiment, the enlarged portion 180 and the contracted fin 28 provided in the main channel 18 function as a vortex suppressing structure. More specifically, each of the enlarged portion 180 and the contracted fin 28 functions as a layer reducing structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
以上説明した本実施形態の空気吹出装置1は、主流路18に対して縮流フィン28が追加されているものの、その他の構成が第1実施形態と共通している。このため、本実施形態の空気吹出装置1は、第1実施形態と共通の構成から得られる作用効果を第1実施形態と同様に得ることができる。
The air blowing device 1 of the present embodiment described above has the same configuration as that of the first embodiment, although the contracted fins 28 are added to the main flow path 18. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
特に、本実施形態では、層縮小構造が拡大部180だけでなく縮流フィン28を含めた構造となっている。これによれば、主流路18の拡大による装置の体格増大を抑えつつ、縮流による速度境界層BLの厚みδを小さくすることが可能となる。このような構成は、車両等の移動体の如く設置スペースが大きく制限されている場合に好適である。
In particular, in this embodiment, the layer contraction structure includes not only the enlarged portion 180 but also the contraction fins 28. According to this, it is possible to reduce the thickness δ of the velocity boundary layer BL due to contraction while suppressing an increase in the size of the apparatus due to the expansion of the main flow path 18. Such a configuration is suitable when the installation space is greatly limited like a moving body such as a vehicle.
(第2実施形態の変形例)
上述の第2実施形態では、縮流フィン28として、断面形状がティアドロップ形状となっているものを例示したが、これに限定されない。縮流フィン28は、例えば、断面形状が主流路18の気流に沿って延びる長円形状になっていてもよい。また、縮流フィン28としては、例えば、格子形状を有するものが採用されていてもよい。 (Modification of the second embodiment)
In the above-described second embodiment, the contractedfins 28 are exemplified with the cross-sectional shape being a teardrop shape, but are not limited thereto. For example, the contracted fins 28 may have an oval cross-sectional shape extending along the airflow of the main flow path 18. Moreover, as the contraction fin 28, what has a grid | lattice shape may be employ | adopted, for example.
上述の第2実施形態では、縮流フィン28として、断面形状がティアドロップ形状となっているものを例示したが、これに限定されない。縮流フィン28は、例えば、断面形状が主流路18の気流に沿って延びる長円形状になっていてもよい。また、縮流フィン28としては、例えば、格子形状を有するものが採用されていてもよい。 (Modification of the second embodiment)
In the above-described second embodiment, the contracted
上述の第2実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、主流路18に対して縮流フィン28が配置されるだけで、主流路18に対して拡大部180が設けられていない構成になっていてもよい。この場合、縮流フィン28が、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
In the second embodiment described above, the example in which the enlarged portion 180 is provided with respect to the main flow path 18 has been described, but the present invention is not limited to this. The air blowing device 1 may be configured such that only the contracted fins 28 are arranged with respect to the main flow path 18 and the enlarged portion 180 is not provided with respect to the main flow path 18. In this case, the contraction fins 28 function as a layer contraction structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
(第3実施形態)
次に、第3実施形態について、図13~図15を参照して説明する。本実施形態では、主流路18を形成する内壁面181に対して凹凸部30が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Third embodiment)
Next, a third embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that theuneven portion 30 is provided on the inner wall surface 181 that forms the main flow path 18. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第3実施形態について、図13~図15を参照して説明する。本実施形態では、主流路18を形成する内壁面181に対して凹凸部30が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Third embodiment)
Next, a third embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the
図13に示すように、本実施形態の吹出部10には、主流路18を形成する内壁面181に対して、主流路18における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部30が設けられている。具体的には、凹凸部30は、ダクト部16の内部において主流路18および補助流路24を仕切る仕切部26の内側の略全域に形成されている。
As shown in FIG. 13, in the blowing portion 10 of the present embodiment, the concave portions and the convex portions are alternately arranged along the flow direction of the air flow in the main flow path 18 with respect to the inner wall surface 181 that forms the main flow path 18. An uneven portion 30 is provided. Specifically, the concavo-convex portion 30 is formed in substantially the entire area inside the partition portion 26 that partitions the main flow path 18 and the auxiliary flow path 24 inside the duct portion 16.
図14に示すように、凹凸部30は、主流路18を形成する内壁面181に設けられた複数の溝301によって形成されている。複数の溝301は、主流路18における気流の流れ方向に沿って所定の間隔をあけて並ぶように形成されている。溝301は、円形または多角形の窪みで構成されている。なお、溝301は、例えば、主流路18における気流の流れ方向に交差して延びる断面がV字状のスリット溝で構成されていてもよい。
As shown in FIG. 14, the concavo-convex portion 30 is formed by a plurality of grooves 301 provided on the inner wall surface 181 that forms the main flow path 18. The plurality of grooves 301 are formed so as to be arranged at predetermined intervals along the airflow direction in the main flow path 18. The groove 301 is configured by a circular or polygonal depression. In addition, the groove | channel 301 may be comprised by the slit groove | channel where the cross section which cross | intersects the flow direction of the airflow in the main flow path 18 is V-shaped, for example.
このように構成される本実施形態の吹出部10では、図15に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。
In the blowing unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16 as shown in FIG. It flows toward 14.
主流路18には、主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。加えて、主流路18を形成する内壁面181には、主流路18における主流の流れ方向に凹部と凸部とが交互に並ぶ凹凸部30が形成されている。
The main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14. In addition, the inner wall surface 181 that forms the main flow path 18 is formed with a concavo-convex part 30 in which concave parts and convex parts are alternately arranged in the main flow direction in the main flow path 18.
図14に示すように、凹凸部30では、気流が主流路18を形成する内壁面181付近を通過する際に、複数の溝301内に渦が生ずる。そして、凹凸部30の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路18を形成する内壁面181の摩擦係数が小さくなる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。
As shown in FIG. 14, in the concavo-convex portion 30, vortices are generated in the plurality of grooves 301 when the airflow passes near the inner wall surface 181 that forms the main flow path 18. And the vortex which arises inside the uneven | corrugated | grooved part 30 plays a role like a ball bearing, and the friction coefficient of the inner wall surface 181 which forms the main flow path 18 becomes small. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、凹凸部30による摩擦係数の低減効果によって、第1実施形態に比べて小さくなる。
Then, when the airflow is blown out from the main hole 14 and the auxiliary hole 22, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. The thickness δ of the speed boundary layer BL is smaller than that of the first embodiment due to the effect of reducing the friction coefficient by the uneven portion 30.
このため、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。具体的には、援護気流の主流と速度境界層BLの厚みδの中央部分BLcとの間隔LSが、第1実施形態に比べて小さくなる。これにより、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主流路18に設けた拡大部180および凹凸部30が渦抑制構造として機能する。より具体的には、拡大部180および凹凸部30それぞれが、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
For this reason, in the blowing portion 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. Specifically, the distance LS between the main flow of the support airflow and the central portion BLc of the thickness δ of the velocity boundary layer BL is smaller than that in the first embodiment. As a result, the main flow of the support airflow flows in the vicinity of the vortex center of the horizontal vortex Vt generated in the velocity boundary layer BL. Therefore, the horizontal vortex Vt is collapsed by the support airflow and is generated in the velocity boundary layer BL downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt is easily obtained. In the present embodiment, the enlarged portion 180 and the concavo-convex portion 30 provided in the main channel 18 function as a vortex suppressing structure. More specifically, each of the enlarged portion 180 and the concavo-convex portion 30 functions as a layer reduction structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
以上説明した本実施形態の空気吹出装置1は、主流路18を形成する内壁面181に対して凹凸部30が追加されているものの、その他の構成が第1実施形態と共通している。このため、本実施形態の空気吹出装置1は、第1実施形態と共通の構成から得られる作用効果を第1実施形態と同様に得ることができる。
In the air blowing device 1 of the present embodiment described above, the uneven portion 30 is added to the inner wall surface 181 that forms the main flow path 18, but other configurations are common to the first embodiment. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
本実施形態では、層縮小構造が拡大部180だけでなく凹凸部30を含めた構造となっている。これによれば、拡大部180による縮流効果だけでなく、主流路18を形成する内壁面181の摩擦係数の低減効果によって、速度境界層BLの厚みδを充分に小さくすることが可能となる。
In the present embodiment, the layer reduction structure includes not only the enlarged portion 180 but also the uneven portion 30. Accordingly, the thickness δ of the velocity boundary layer BL can be made sufficiently small by the effect of reducing the friction coefficient of the inner wall surface 181 forming the main flow path 18 as well as the contraction effect by the enlarged portion 180. .
特に、本実施形態では、凹凸部30が主流路18の内壁面181に設けられた複数の溝301によって形成されている。これによれば、凹凸部30を複数の突起で構成する場合に比べて、主流路18の大きさを確保可能となり、主流路18における圧力損失を抑制することができる。このことは、作動気流の到達距離の向上に大きく寄与する。
In particular, in this embodiment, the uneven portion 30 is formed by a plurality of grooves 301 provided on the inner wall surface 181 of the main flow path 18. According to this, compared with the case where the uneven | corrugated | grooved part 30 is comprised with a some protrusion, the magnitude | size of the main flow path 18 can be ensured and the pressure loss in the main flow path 18 can be suppressed. This greatly contributes to the improvement of the reach of the working airflow.
(第3実施形態の変形例)
上述の第3実施形態では、凹凸部30が、複数の溝301によって形成されるものを例示したが、これに限定されない。凹凸部30は、例えば、複数の突起によって形成されていてもよい。凹凸部30が複数の突起によって形成される場合、気流が主流路18を形成する内壁面181付近を通過する際に複数の突起の隙間に渦が生ずる。この渦がボールベアリングのような役割を果たすため、本変形例によって上述の第3実施形態と同様の効果を得ることができる。 (Modification of the third embodiment)
In the third embodiment described above, the concavo-convex portion 30 is illustrated as being formed by the plurality of grooves 301, but is not limited thereto. The uneven part 30 may be formed by a plurality of protrusions, for example. When the concavo-convex portion 30 is formed by a plurality of protrusions, vortices are generated in the gaps between the plurality of protrusions when the airflow passes near the inner wall surface 181 forming the main flow path 18. Since this vortex plays a role like a ball bearing, the effect similar to the above-mentioned third embodiment can be obtained by this modification.
上述の第3実施形態では、凹凸部30が、複数の溝301によって形成されるものを例示したが、これに限定されない。凹凸部30は、例えば、複数の突起によって形成されていてもよい。凹凸部30が複数の突起によって形成される場合、気流が主流路18を形成する内壁面181付近を通過する際に複数の突起の隙間に渦が生ずる。この渦がボールベアリングのような役割を果たすため、本変形例によって上述の第3実施形態と同様の効果を得ることができる。 (Modification of the third embodiment)
In the third embodiment described above, the concavo-
上述の第3実施形態では、凹凸部30が、ダクト部16の内部において主流路18および補助流路24を仕切る仕切部26の内側の略全域に形成されているものを例示したが、これに限定されない。凹凸部30は、仕切部26の内側の一部に形成されていてもよい。
In the third embodiment described above, the concavo-convex portion 30 is illustrated as being formed in substantially the entire area inside the partition portion 26 that partitions the main flow path 18 and the auxiliary flow path 24 inside the duct portion 16. It is not limited. The uneven portion 30 may be formed on a part of the inside of the partition portion 26.
上述の第3実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、主流路18に対して凹凸部30が配置されるだけで、主流路18に対して拡大部180が設けられていない構成になっていてもよい。この場合、凹凸部30が、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
In the above-described third embodiment, the example in which the enlarged portion 180 is provided with respect to the main flow path 18 has been described, but the present invention is not limited to this. The air blowing device 1 may have a configuration in which the concavo-convex portion 30 is only disposed with respect to the main flow path 18 and the enlarged portion 180 is not provided with respect to the main flow path 18. In this case, the concavo-convex portion 30 functions as a layer reduction structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
また、上述の第3実施形態では、層縮小構造として拡大部180および凹凸部30を備える構造を例示したが、これに限定されない。層縮小構造は、例えば、拡大部180、縮流フィン28、および凹凸部30を備える構造や、縮流フィン28および凹凸部30を備える構造になっていてもよい。
In the above-described third embodiment, the structure including the enlarged portion 180 and the concavo-convex portion 30 is exemplified as the layer reduction structure, but the present invention is not limited to this. The layer contraction structure may be, for example, a structure including the enlarged portion 180, the contracted fin 28 and the uneven portion 30, or a structure including the contracted fin 28 and the uneven portion 30.
(第4実施形態)
次に、第4実施形態について、図16~図18を参照して説明する。本実施形態では、主孔14がラッパ状に拡開されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that themain hole 14 is expanded in a trumpet shape. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第4実施形態について、図16~図18を参照して説明する。本実施形態では、主孔14がラッパ状に拡開されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the
図16に示すように、本実施形態の吹出部10は、主孔14がラッパ状に拡開されている。具体的には、主孔14の内壁面141には、主孔14の内壁面141に沿って延びる接線TLmが補助孔22の出口下流で補助孔22の中心線CLsと交差するように補助孔22の中心線CLsに対して傾斜する主傾斜構造32が設けられている。換言すれば、主孔14の内壁面141は、その全周において、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜している。具体的には、接線TLmは、主孔14の内壁面141の下流端において当該内壁面141に沿って延びる接線である。
As shown in FIG. 16, the blowout portion 10 of the present embodiment has the main hole 14 expanded in a trumpet shape. Specifically, the auxiliary hole is formed on the inner wall surface 141 of the main hole 14 such that a tangent line TLm extending along the inner wall surface 141 of the main hole 14 intersects the center line CLs of the auxiliary hole 22 downstream of the auxiliary hole 22. A main inclined structure 32 that is inclined with respect to the center line CLs of 22 is provided. In other words, the inner wall surface 141 of the main hole 14 is inclined so that the tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14 on the entire circumference. Specifically, the tangent line TLm is a tangent line that extends along the inner wall surface 141 at the downstream end of the inner wall surface 141 of the main hole 14.
ここで、主孔14の出口下流に形成される速度境界層BLでは、主孔14の直後ではなく、主孔14から離れた位置で横渦Vtが生じ始める傾向がある。例えば、横渦Vtは、主孔14の短径の2倍以上離れた位置で生じ始めることがある。このため、主孔14の内壁面141は、接線TLmと中心線CLsとのなす角度θmが鋭角となる範囲内(例えば、1°~30°となる範囲内)に設定されることが望ましい。
Here, in the velocity boundary layer BL formed downstream from the outlet of the main hole 14, there is a tendency that the lateral vortex Vt starts to occur not at the position immediately after the main hole 14 but at a position away from the main hole 14. For example, the horizontal vortex Vt may begin to occur at a position separated by more than twice the minor axis of the main hole 14. Therefore, the inner wall surface 141 of the main hole 14 is desirably set within a range where the angle θm formed between the tangent line TLm and the center line CLs is an acute angle (for example, within a range of 1 ° to 30 °).
また、本実施形態の吹出部10は、主流路18の断面積Scが、主孔14の開口面積Smよりも小さくなっている。すなわち、本実施形態の吹出部10には、第1実施形態の拡大部180に相当する構成が設けられていない。なお、主流路18の断面積Scは、仕切部26の上流側の端部における断面積である。
Further, in the blowing part 10 of the present embodiment, the cross-sectional area Sc of the main flow path 18 is smaller than the opening area Sm of the main hole 14. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment. Note that the cross-sectional area Sc of the main flow path 18 is a cross-sectional area at an end portion on the upstream side of the partition portion 26.
このように構成される本実施形態の吹出部10では、図17に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主孔14がラッパ状に拡開されているので、主孔14の出口下流には、作動気流の速度境界層BLが主孔14の中心線CLmから離れるように形成される。すなわち、主孔14の出口下流では、作動気流の速度境界層BLの中央部分BLcが、補助孔22から吹き出される援護気流の主流に近づく状態となる。
In the blowing unit 10 of the present embodiment configured as described above, as shown in FIG. 17, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows through the main channel 18 through the main hole 18. It flows toward 14. The airflow flowing into the main flow path 18 is blown out from the main hole 14. At this time, since the main hole 14 is expanded in a trumpet shape, a velocity boundary layer BL of the working airflow is formed downstream from the center line CLm of the main hole 14 at the outlet downstream of the main hole 14. That is, in the downstream of the outlet of the main hole 14, the central portion BLc of the velocity boundary layer BL of the working airflow approaches the mainstream of the assisting airflow blown out from the auxiliary hole 22.
これにより、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。すなわち、図18に示すように、援護気流の主流AFsが速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主孔14の内壁面141に設けられた主傾斜構造32が、渦抑制構造として機能する。
Thereby, in the blowing unit 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. That is, as shown in FIG. 18, since the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the transverse vortex Vt is collapsed by the support airflow and downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt generated in the velocity boundary layer BL is easily obtained. In the present embodiment, the main inclined structure 32 provided on the inner wall surface 141 of the main hole 14 functions as a vortex suppressing structure.
以上説明した本実施形態の空気吹出装置1は、主孔14を形成する内壁面141に対して主傾斜構造32が設けられている。これによると、主孔14の内壁面141付近の流速分布が主孔14の出口下流にて補助孔22からの援護気流に拡がることで、主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcを補助孔22から吹き出される気流に近づけることができる。このため、補助孔22から吹き出される気流によって速度境界層BLでの横渦Vtの発達が充分に抑制される。
In the air blowing device 1 of the present embodiment described above, the main inclined structure 32 is provided on the inner wall surface 141 that forms the main hole 14. According to this, the velocity boundary layer BL formed on the downstream side of the main hole 14 by spreading the flow velocity distribution in the vicinity of the inner wall surface 141 of the main hole 14 to the support airflow from the auxiliary hole 22 on the downstream side of the main hole 14. The central portion BLc of the thickness δ can be made closer to the air flow blown out from the auxiliary hole 22. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22.
このように、本実施形態の空気吹出装置1によっても、主孔14から吹き出される気流への周囲からの空気の引き込みが抑えられて、主孔14から吹き出される気流の流速の減衰が少なくなるので、主孔14から吹き出される作動気流の到達距離が長くなる。
As described above, also by the air blowing device 1 of the present embodiment, the drawing of air from the surroundings into the airflow blown out from the main hole 14 is suppressed, and the flow velocity of the airflow blown out from the main hole 14 is less attenuated. Therefore, the reach of the working air current blown out from the main hole 14 is increased.
(第4実施形態の変形例)
上述の第4実施形態では、主孔14の内壁面141が、その全周において、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜しているものを例示したが、これに限定されない。空気吹出装置1は、例えば、主孔14の内壁面141の一部位が、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜した構造になっていてもよい。 (Modification of the fourth embodiment)
In the above-described fourth embodiment, theinner wall surface 141 of the main hole 14 is inclined so that the tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14 on the entire circumference. Although illustrated, it is not limited to this. Even if the air blowing device 1 has a structure in which, for example, a portion of the inner wall surface 141 of the main hole 14 is inclined such that a tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14. Good.
上述の第4実施形態では、主孔14の内壁面141が、その全周において、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜しているものを例示したが、これに限定されない。空気吹出装置1は、例えば、主孔14の内壁面141の一部位が、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜した構造になっていてもよい。 (Modification of the fourth embodiment)
In the above-described fourth embodiment, the
上述の第4実施形態では、主孔14の内壁面141が直線状に延びているものを例示したが、これに限定されない。主孔14の内壁面141は、曲線状に湾曲した状態で延びていてもよい。この場合、接線TLmは、主孔14の内壁面141の下流端における接線となる。
In the fourth embodiment described above, the inner wall surface 141 of the main hole 14 is illustrated as extending linearly, but is not limited thereto. The inner wall surface 141 of the main hole 14 may extend in a curved shape. In this case, the tangent TLm is a tangent at the downstream end of the inner wall surface 141 of the main hole 14.
上述の第4実施形態では、主孔14に対して主傾斜構造32が適用され、第1~第3実施形態で説明した拡大部180、縮流フィン28、凹凸部30が適用されていないものを例示したが、これに限定されない。空気吹出装置1は、例えば、主孔14に対して主傾斜構造32が適用された吹出部10において、第1~第3実施形態で説明した拡大部180、縮流フィン28、凹凸部30の少なくとも1つの層縮小構造が適用されていてもよい。
In the above-described fourth embodiment, the main inclined structure 32 is applied to the main hole 14, and the enlarged portion 180, the contracted fin 28, and the uneven portion 30 described in the first to third embodiments are not applied. However, the present invention is not limited to this. For example, in the blowout unit 10 in which the main inclined structure 32 is applied to the main hole 14, the air blowing device 1 includes the expansion unit 180, the contraction fin 28, and the concavo-convex unit 30 described in the first to third embodiments. At least one layer reduction structure may be applied.
(第5実施形態)
次に、第5実施形態について、図19~図21を参照して説明する。本実施形態の空気吹出装置1は、複数の補助孔22それぞれの内壁面221に沿って延びる接線TLsが、主孔14の出口下流において主孔14の中心線CLmと交差するような構造を有している点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. Theair blowing device 1 of the present embodiment has a structure in which a tangent line TLs extending along the inner wall surface 221 of each of the plurality of auxiliary holes 22 intersects the center line CLm of the main hole 14 downstream of the outlet of the main hole 14. This is different from the first embodiment. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第5実施形態について、図19~図21を参照して説明する。本実施形態の空気吹出装置1は、複数の補助孔22それぞれの内壁面221に沿って延びる接線TLsが、主孔14の出口下流において主孔14の中心線CLmと交差するような構造を有している点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. The
図19に示すように、吹出部10は、複数の補助孔22それぞれの内壁面221に沿って延びる接線TLsが、主孔14の出口下流において主孔14の中心線CLmと交差する構造になっている。具体的には、接線TLsは、補助孔22それぞれの内壁面221の下流端において当該内壁面221に沿って延びる接線である。
As shown in FIG. 19, the blowout portion 10 has a structure in which a tangent line TLs extending along the inner wall surface 221 of each of the plurality of auxiliary holes 22 intersects the center line CLm of the main hole 14 at the outlet downstream of the main hole 14. ing. Specifically, the tangent line TLs is a tangent line extending along the inner wall surface 221 at the downstream end of the inner wall surface 221 of each auxiliary hole 22.
具体的には、各補助孔22の内壁面221を形成する一部位には、補助孔22の内壁面221に沿って延びる接線TLsが主孔14の出口下流で主孔14の中心線CLmと交差するように主孔14の中心線CLmに対して傾斜する補助傾斜構造34が設けられている。換言すれば、各補助孔22の内壁面221は、内壁面221に沿って延びる接線TLsが主孔14の中心線CLmと交差するように傾斜している。なお、各補助孔22の内壁面221は、第4実施形態と同様の理由で、接線TLsと中心線CLmとのなす角度θsが鋭角となる範囲内(例えば、1°~30°となる範囲内)に設定されることが望ましい。
Specifically, a tangent line TLs extending along the inner wall surface 221 of the auxiliary hole 22 has a center line CLm of the main hole 14 downstream from the outlet of the main hole 14 at a part of the inner wall surface 221 of each auxiliary hole 22. An auxiliary inclined structure 34 that is inclined with respect to the center line CLm of the main hole 14 is provided so as to intersect. In other words, the inner wall surface 221 of each auxiliary hole 22 is inclined such that a tangent line TLs extending along the inner wall surface 221 intersects the center line CLm of the main hole 14. For the same reason as in the fourth embodiment, the inner wall surface 221 of each auxiliary hole 22 is within a range where the angle θs formed by the tangent TLs and the center line CLm is an acute angle (for example, a range where the angle is 1 ° to 30 °). It is desirable to set to
また、本実施形態の吹出部10は、主流路18の断面積Scが、主孔14の開口面積Smよりも小さくなっている。すなわち、本実施形態の吹出部10には、第1実施形態の拡大部180に相当する構成が設けられていない。
Further, in the blowing part 10 of the present embodiment, the cross-sectional area Sc of the main flow path 18 is smaller than the opening area Sm of the main hole 14. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment.
このように構成される本実施形態の吹出部10では、図20に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。そして、主流路18に流入した気流は、作動気流として主孔14から吹き出される。
In the blowing unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 16 as shown in FIG. It flows toward 14. And the airflow which flowed into the main flow path 18 blows off from the main hole 14 as a working airflow.
そして、主孔14から作動気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLには、その厚みδの中央部分BLc付近で横渦Vtが生じ易いと考えられる。
When the working airflow is blown out from the main hole 14, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. In the velocity boundary layer BL, it is considered that the lateral vortex Vt is likely to occur near the central portion BLc of the thickness δ.
一方、補助孔22から吹き出される援護気流の主流は、補助孔22の内壁面221に沿って延びる接線TLsが主孔14の中心線CLmに対して傾斜しているので、主孔14から吹き出された作動気流の速度境界層BLの中央部分BLcに近づく。すなわち、主孔14の出口下流では、補助孔22から吹き出される援護気流の主流が作動気流の速度境界層BLの中央部分BLcに近づく状態となる。
On the other hand, since the tangent TLs extending along the inner wall surface 221 of the auxiliary hole 22 is inclined with respect to the center line CLm of the main hole 14, the main flow of the support airflow blown out from the auxiliary hole 22 is blown out from the main hole 14. Approaches the central portion BLc of the velocity boundary layer BL of the generated working airflow. That is, in the downstream of the outlet of the main hole 14, the main flow of the support airflow blown out from the auxiliary hole 22 is in a state of approaching the central portion BLc of the velocity boundary layer BL of the working airflow.
これにより、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。すなわち、図21に示すように、援護気流の主流AFsが速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、補助孔22の内壁面221に設けられた補助傾斜構造34が、渦抑制構造として機能する。
Thereby, in the blowing unit 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. That is, as shown in FIG. 21, since the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the transverse vortex Vt is collapsed by the support airflow and downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt generated in the velocity boundary layer BL is easily obtained. In the present embodiment, the auxiliary inclined structure 34 provided on the inner wall surface 221 of the auxiliary hole 22 functions as a vortex suppressing structure.
以上説明した本実施形態の空気吹出装置1は、補助孔22を形成する内壁面241に対して補助傾斜構造34が設けられている。これによると、補助孔22から吹き出される援護気流を主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcに近づけることができる。このため、補助孔22から吹き出される気流によって速度境界層BLでの横渦Vtの発達が充分に抑制される。したがって、本実施形態の空気吹出装置1によっても、主孔14から吹き出される気流への周囲からの空気の引き込みが抑えられて、主孔14から吹き出される気流の流速の減衰が少なくなるので、主孔14から吹き出される作動気流の到達距離が長くなる。
In the air blowing device 1 of the present embodiment described above, the auxiliary inclined structure 34 is provided on the inner wall surface 241 that forms the auxiliary hole 22. According to this, the support airflow blown out from the auxiliary hole 22 can be brought close to the central portion BLc of the thickness δ of the velocity boundary layer BL formed downstream of the outlet of the main hole 14. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22. Therefore, even with the air blowing device 1 of the present embodiment, the drawing of air from the surroundings into the airflow blown out from the main hole 14 is suppressed, and the attenuation of the flow velocity of the airflow blown out from the main hole 14 is reduced. The reach of the working air current blown out from the main hole 14 becomes longer.
(第5実施形態の変形例)
上述の第5実施形態では、各補助孔22の内壁面221が、内壁面221に沿って延びる接線TLsが主孔14の中心線CLmと交差するように傾斜しているものを例示したが、これに限定されない。空気吹出装置1は、例えば、複数の補助孔22のうち一部の補助孔22の内壁面221が、内壁面221に沿って延びる接線TLsが主孔14の中心線CLmと交差するように傾斜した構造になっていてもよい。 (Modification of the fifth embodiment)
In the fifth embodiment described above, theinner wall surface 221 of each auxiliary hole 22 is illustrated as being inclined such that the tangent line TLs extending along the inner wall surface 221 intersects the center line CLm of the main hole 14. It is not limited to this. For example, the air blowing device 1 is inclined such that the inner wall surface 221 of some of the auxiliary holes 22 has a tangent line TLs extending along the inner wall surface 221 intersects the center line CLm of the main hole 14. It may be a structure.
上述の第5実施形態では、各補助孔22の内壁面221が、内壁面221に沿って延びる接線TLsが主孔14の中心線CLmと交差するように傾斜しているものを例示したが、これに限定されない。空気吹出装置1は、例えば、複数の補助孔22のうち一部の補助孔22の内壁面221が、内壁面221に沿って延びる接線TLsが主孔14の中心線CLmと交差するように傾斜した構造になっていてもよい。 (Modification of the fifth embodiment)
In the fifth embodiment described above, the
上述の第5実施形態では、補助孔22の内壁面221が直線状に延びているものを例示したが、これに限定されない。補助孔22の内壁面221は、曲線状に湾曲した状態で延びていてもよい。この場合、接線TLsは、補助孔22の内壁面221の下流端における接線となる。
In the above-described fifth embodiment, the inner wall surface 221 of the auxiliary hole 22 is illustrated as extending linearly, but is not limited thereto. The inner wall surface 221 of the auxiliary hole 22 may extend in a curved shape. In this case, the tangent line TLs is a tangent line at the downstream end of the inner wall surface 221 of the auxiliary hole 22.
上述の第5実施形態では、補助孔22に対して補助傾斜構造34が適用され、第1~第3実施形態で説明した拡大部180、縮流フィン28、凹凸部30が適用されていないものを例示したが、これに限定されない。空気吹出装置1は、例えば、補助孔22に対して補助傾斜構造34が適用された吹出部10において、第1~第3実施形態で説明した拡大部180、縮流フィン28、凹凸部30の少なくとも1つの層縮小構造が適用されていてもよい。
In the above-described fifth embodiment, the auxiliary inclined structure 34 is applied to the auxiliary hole 22, and the enlarged portion 180, the contracted fin 28, and the uneven portion 30 described in the first to third embodiments are not applied. However, the present invention is not limited to this. For example, in the blowout unit 10 in which the auxiliary inclined structure 34 is applied to the auxiliary hole 22, the air blowing device 1 includes the expansion unit 180, the contraction fin 28, and the concavo-convex unit 30 described in the first to third embodiments. At least one layer reduction structure may be applied.
また、空気吹出装置1は、上述の第4実施形態の如く、補助孔22に対して補助傾斜構造34が適用された吹出部10において、主孔14に対して第4実施形態で説明した主傾斜構造32が適用されていてもよい。
Moreover, the air blowing device 1 is the main part demonstrated in 4th Embodiment with respect to the main hole 14 in the blowing part 10 to which the auxiliary | assistant inclination structure 34 was applied with respect to the auxiliary hole 22 like the above-mentioned 4th Embodiment. The inclined structure 32 may be applied.
(第6実施形態)
次に、第6実施形態について、図22~図25を参照して説明する。本実施形態では、孔形成部12における主孔14と補助孔22との位置関係が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. In the present embodiment, the positional relationship between themain hole 14 and the auxiliary hole 22 in the hole forming portion 12 is different from that in the first embodiment. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第6実施形態について、図22~図25を参照して説明する。本実施形態では、孔形成部12における主孔14と補助孔22との位置関係が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. In the present embodiment, the positional relationship between the
図22に示すように、本実施形態の吹出部10には、主孔14の中心線CLmを中心とする周方向において、主孔14の一部と補助孔22の一部とが互いに重なり合う重合構造36になっている。
As shown in FIG. 22, in the blowing portion 10 of the present embodiment, a part of the main hole 14 and a part of the auxiliary hole 22 overlap each other in the circumferential direction around the center line CLm of the main hole 14. Structure 36 is formed.
具体的には、主孔14は、全体的には長円形状になっているものの、その外縁部分が波状に蛇行した曲線になっている。そして、複数の補助孔22は、主孔14の外縁部分における内側に突き出た部分に一部がかかるように形成されている。すなわち、複数の補助孔22は、少なくとも一部が主孔14の最外縁部となる部位同士を結んだ仮想線VLの内側に位置するように孔形成部12に対して形成されている。
More specifically, the main hole 14 has an oval shape as a whole, but has a curved shape in which the outer edge portion meanders in a wavy shape. The plurality of auxiliary holes 22 are formed so that a part of the auxiliary hole 22 protrudes inwardly at the outer edge portion of the main hole 14. That is, the plurality of auxiliary holes 22 are formed with respect to the hole forming portion 12 so as to be positioned inside the virtual line VL connecting at least a part of the main holes 14 to the outermost edge portions.
このように構成される本実施形態の吹出部10では、図23および図24に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。そして、主流路18に流入した気流は、作動気流として主孔14から吹き出される。なお、図23は、図22のXXIII-XIII断面図である。また、図24は、図22のXXIV-XXIV断面図である。
In the blowing unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16 as shown in FIGS. 23 and 24, the conditioned air passes through the main flow path 18. Flow toward the main hole 14. And the airflow which flowed into the main flow path 18 blows off from the main hole 14 as a working airflow. FIG. 23 is a sectional view taken along line XXIII-XIII in FIG. FIG. 24 is a sectional view taken along line XXIV-XXIV in FIG.
主孔14から作動気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLには、その厚みδの中央部分BLc付近で横渦Vtが生じ易いと考えられる。
When the working airflow is blown out from the main hole 14, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. In the velocity boundary layer BL, it is considered that the lateral vortex Vt is likely to occur near the central portion BLc of the thickness δ.
一方、補助孔22から吹き出される援護気流の主流は、主孔14の中心線CLmを中心とする周方向において主孔14の一部と補助孔22の一部とが互いに重なり合っているので、主孔14から吹き出された作動気流の速度境界層BLの中央部分BLcに近づく。すなわち、図24に示すように、主孔14の出口下流では、補助孔22から吹き出される援護気流の主流が作動気流の速度境界層BLの中央部分BLcに近づく状態となる。
On the other hand, since the mainstream of the support airflow blown out from the auxiliary hole 22 has a part of the main hole 14 and a part of the auxiliary hole 22 overlap each other in the circumferential direction around the center line CLm of the main hole 14. It approaches the central portion BLc of the velocity boundary layer BL of the working air current blown out from the main hole 14. That is, as shown in FIG. 24, downstream of the outlet of the main hole 14, the main flow of the support airflow blown out from the auxiliary hole 22 approaches the central portion BLc of the velocity boundary layer BL of the working airflow.
これにより、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。すなわち、図25に示すように、援護気流の主流AFsが速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、拡大部180および重合構造36が、渦抑制構造として機能する。
Thereby, in the blowing unit 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. That is, as shown in FIG. 25, since the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the lateral vortex Vt is collapsed by the support airflow, and downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt generated in the velocity boundary layer BL is easily obtained. In the present embodiment, the enlarged portion 180 and the overlapping structure 36 function as a vortex suppressing structure.
以上説明した本実施形態の空気吹出装置1は、吹出部10に対して、主孔14の中心線CLmを中心とする周方向において主孔14と補助孔22とが互いに重なり合う重合構造36が設けられている。これによると、補助孔22から吹き出される援護気流を主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcに近づけることができる。このため、補助孔22から吹き出される気流によって速度境界層BLでの横渦Vtの発達が充分に抑制される。したがって、本実施形態の空気吹出装置1によっても、主孔14から吹き出される気流への周囲からの空気の引き込みが抑えられて、主孔14から吹き出される気流の流速の減衰が少なくなるので、主孔14から吹き出される作動気流の到達距離が長くなる。
In the air blowing device 1 of the present embodiment described above, the superposition structure 36 in which the main hole 14 and the auxiliary hole 22 overlap each other in the circumferential direction centering on the center line CLm of the main hole 14 is provided for the blowing portion 10. It has been. According to this, the support airflow blown out from the auxiliary hole 22 can be brought close to the central portion BLc of the thickness δ of the velocity boundary layer BL formed downstream of the outlet of the main hole 14. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22. Therefore, even with the air blowing device 1 of the present embodiment, the drawing of air from the surroundings into the airflow blown out from the main hole 14 is suppressed, and the attenuation of the flow velocity of the airflow blown out from the main hole 14 is reduced. The reach of the working air current blown out from the main hole 14 becomes longer.
(第6実施形態の変形例)
上述の第6実施形態では、重合構造36として、主孔14の中心線CLmを中心とする周方向において、主孔14の一部と補助孔22の一部とが互いに重なり合うものを例示したが、これに限定されない。重合構造36は、主孔14の中心線CLmを中心とする周方向において、主孔14の一部と補助孔22の全体とが互いに重なり合う構造になっていてもよい。 (Modification of the sixth embodiment)
In the above-described sixth embodiment, as thesuperposition structure 36, a structure in which a part of the main hole 14 and a part of the auxiliary hole 22 overlap each other in the circumferential direction around the center line CLm of the main hole 14 is exemplified. However, the present invention is not limited to this. The overlapping structure 36 may have a structure in which a part of the main hole 14 and the whole auxiliary hole 22 overlap each other in the circumferential direction centering on the center line CLm of the main hole 14.
上述の第6実施形態では、重合構造36として、主孔14の中心線CLmを中心とする周方向において、主孔14の一部と補助孔22の一部とが互いに重なり合うものを例示したが、これに限定されない。重合構造36は、主孔14の中心線CLmを中心とする周方向において、主孔14の一部と補助孔22の全体とが互いに重なり合う構造になっていてもよい。 (Modification of the sixth embodiment)
In the above-described sixth embodiment, as the
上述の第6実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、吹出部10に対して重合構造36が適用されるだけで、主流路18に対して拡大部180が設けられていない構成になっていてもよい。
In the above-described sixth embodiment, the example in which the enlarged portion 180 is provided with respect to the main flow path 18 has been described, but the present invention is not limited to this. The air blowing device 1 may be configured such that only the superposition structure 36 is applied to the blowing portion 10 and the enlarged portion 180 is not provided to the main flow path 18.
上述の第6実施形態では、吹出部10に対して拡大部180および重合構造36が適用され、第2、第3実施形態で説明した、縮流フィン28および凹凸部30が適用されていないものを例示したが、これに限定されない。空気吹出装置1は、例えば、吹出部10に対して重合構造36が適用された吹出部10において、第2、第3実施形態で説明した縮流フィン28、凹凸部30の少なくとも1つの層縮小構造が適用されていてもよい。また、空気吹出装置1は、吹出部10に対して重合構造36が適用された吹出部10において、主孔14に対して第4実施形態で説明した主傾斜構造32が適用されていてもよい。
In the above-described sixth embodiment, the enlarged portion 180 and the overlapping structure 36 are applied to the blowout portion 10, and the contracted fin 28 and the uneven portion 30 described in the second and third embodiments are not applied. However, the present invention is not limited to this. For example, in the blowout unit 10 in which the superposition structure 36 is applied to the blowout unit 10, the air blowing device 1 reduces at least one layer of the contracted fin 28 and the concavo-convex unit 30 described in the second and third embodiments. A structure may be applied. In the air blowing device 1, the main inclined structure 32 described in the fourth embodiment may be applied to the main hole 14 in the blowing portion 10 in which the superposition structure 36 is applied to the blowing portion 10. .
(第7実施形態)
次に、第7実施形態について図26を参照して説明する。本実施形態では、仕切部26に対して、主流路18と補助流路24とを連通させる連通孔261が形成されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that acommunication hole 261 for communicating the main channel 18 and the auxiliary channel 24 is formed with respect to the partition portion 26. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第7実施形態について図26を参照して説明する。本実施形態では、仕切部26に対して、主流路18と補助流路24とを連通させる連通孔261が形成されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that a
図26に示すように、本実施形態の吹出部10は、主流路18と補助流路24とを仕切る仕切部26に対して、主流路18と補助流路24とを連通させる連通孔261が形成されている。仕切部26には、空気流れ上流側から下流側に沿って複数の連通孔261が形成されている。
As shown in FIG. 26, the blowout unit 10 of the present embodiment has a communication hole 261 that allows the main channel 18 and the auxiliary channel 24 to communicate with the partition unit 26 that partitions the main channel 18 and the auxiliary channel 24. Is formed. A plurality of communication holes 261 are formed in the partition portion 26 from the upstream side to the downstream side of the air flow.
連通孔261は、主流路18を流れる気流の一部が補助流路24に導く貫通孔である。連通孔261は、仕切部26における主流路18側に開口する主開口261a、および仕切部26における補助流路24側に開口する補助開口261bを有する。連通孔261は、主開口261aが補助開口261bよりも空気流れ上流側となる位置に形成されている。
The communication hole 261 is a through hole through which a part of the airflow flowing through the main channel 18 leads to the auxiliary channel 24. The communication hole 261 has a main opening 261 a that opens to the main flow path 18 side in the partition portion 26, and an auxiliary opening 261 b that opens to the auxiliary flow path 24 side in the partition portion 26. The communication hole 261 is formed at a position where the main opening 261a is on the upstream side of the air flow from the auxiliary opening 261b.
このように構成される本実施形態の吹出部10では、仕切部26に連通孔261が設けられている。このため、図26の矢印Faに示すように、主流路18を流れる気流の一部が連通孔261を介して補助流路24に導かれる。そして、連通孔261を通過する気流によって、主流路18を形成する内壁面181に沿って気流が流れ易くなる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。そして、主孔14の出口下流に形成される速度境界層BLの厚みδが第1実施形態に比べて小さくなる。
In the blowout portion 10 of the present embodiment configured as described above, a communication hole 261 is provided in the partition portion 26. For this reason, as shown by the arrow Fa in FIG. 26, a part of the airflow flowing through the main flow path 18 is guided to the auxiliary flow path 24 through the communication hole 261. The airflow that passes through the communication hole 261 facilitates the flow of the airflow along the inner wall surface 181 that forms the main flow path 18. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced. The thickness δ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14 is smaller than that in the first embodiment.
このため、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流が、速度境界層BLの厚みδの中央部分BLcにより近づいた状態で流れる。これにより、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流による主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主流路18に設けた拡大部180および仕切部26に形成した連通孔261が渦抑制構造として機能する。
For this reason, in the blowing portion 10 of the present embodiment, the mainstream of the support airflow blown out from the auxiliary hole 22 flows in a state of being closer to the central portion BLc of the thickness δ of the velocity boundary layer BL. Thereby, since the main flow of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the effect of suppressing the development of the lateral vortex Vt generated in the velocity boundary layer BL downstream of the outlet of the main hole 14 by the support airflow. Is easily obtained. In the present embodiment, the enlarged portion 180 provided in the main channel 18 and the communication hole 261 formed in the partition portion 26 function as a vortex suppressing structure.
以上説明した本実施形態の空気吹出装置1は、仕切部26に対して連通孔261が形成されているものの、その他の構成が第1実施形態と共通している。このため、本実施形態の空気吹出装置1は、第1実施形態と共通の構成から得られる作用効果を第1実施形態と同様に得ることができる。
Although the air blowing device 1 of the present embodiment described above has the communication hole 261 formed with respect to the partition portion 26, other configurations are common to the first embodiment. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
特に、本実施形態では、渦抑制構造が拡大部180だけでなく仕切部26に形成された連通孔261を含めた構造となっている。これによれば、部品を追加することなく、速度境界層BLの厚みδを小さくすることが可能となるので、車両等の移動体の如く設置スペースが大きく制限されている場合に好適である。
In particular, in this embodiment, the vortex suppression structure includes a communication hole 261 formed in the partition portion 26 as well as the enlarged portion 180. This makes it possible to reduce the thickness δ of the speed boundary layer BL without adding any parts, and is therefore suitable when the installation space is greatly limited as in a moving body such as a vehicle.
(第7実施形態の変形例)
上述の第7実施形態では、仕切部26に対して複数の連通孔261が形成される例について説明したが、これに限定されない。吹出部10は、仕切部26に対して1つの連通孔261が形成されていてもよい。また、連通孔261は、主流路18を流れる気流を補助流路24に導くことが可能であれば、主開口261aと補助開口261bとが空気流れ方向において同様の位置に形成されていてもよい。 (Modification of the seventh embodiment)
In the above-described seventh embodiment, the example in which the plurality ofcommunication holes 261 are formed in the partition portion 26 has been described, but the present invention is not limited to this. The blow-out portion 10 may have one communication hole 261 with respect to the partition portion 26. Further, the communication hole 261 may have the main opening 261a and the auxiliary opening 261b formed at the same position in the air flow direction as long as the airflow flowing through the main flow path 18 can be guided to the auxiliary flow path 24. .
上述の第7実施形態では、仕切部26に対して複数の連通孔261が形成される例について説明したが、これに限定されない。吹出部10は、仕切部26に対して1つの連通孔261が形成されていてもよい。また、連通孔261は、主流路18を流れる気流を補助流路24に導くことが可能であれば、主開口261aと補助開口261bとが空気流れ方向において同様の位置に形成されていてもよい。 (Modification of the seventh embodiment)
In the above-described seventh embodiment, the example in which the plurality of
上述の第7実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、主流路18に対して拡大部180が設けられていない構成になっていてもよい。
In the seventh embodiment described above, the example in which the enlarged portion 180 is provided with respect to the main flow path 18 has been described, but the present invention is not limited to this. The air blowing device 1 may be configured such that the enlarged portion 180 is not provided with respect to the main flow path 18.
(第8実施形態)
次に、第8実施形態について図27、図28を参照して説明する。本実施形態では、仕切部26の上流側端部262に対して縦渦発生機構263が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that a verticalvortex generating mechanism 263 is provided for the upstream end 262 of the partition portion 26. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第8実施形態について図27、図28を参照して説明する。本実施形態では、仕切部26の上流側端部262に対して縦渦発生機構263が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that a vertical
図27に示すように、仕切部26には、空気流れ上流側に位置する上流側端部262に凹凸状の縦渦発生機構263が設けられている。縦渦発生機構263は、仕切部26の上流側端部262付近に縦渦を発生させるものである。縦渦は、渦心が主流の流れ方向と同一方向を向いている螺旋状の渦である。
As shown in FIG. 27, the partition portion 26 is provided with an uneven vertical vortex generating mechanism 263 at an upstream end portion 262 located on the upstream side of the air flow. The vertical vortex generating mechanism 263 generates a vertical vortex near the upstream end 262 of the partition portion 26. The vertical vortex is a spiral vortex in which the vortex core is oriented in the same direction as the main flow direction.
縦渦発生機構263は、仕切部26の上流側端部262から突き出た複数の凹凸状の突出片で構成されている。具体的には、縦渦発生機構263は、図28に示すように、上流側端部262に形成された複数の三角形状の突出片で構成されている。この突出片は、先端に向かって延びる2辺が直線状に交差することで先鋭化された形状になっている。
The vertical vortex generating mechanism 263 is composed of a plurality of concavo-convex protruding pieces protruding from the upstream end 262 of the partition portion 26. Specifically, as shown in FIG. 28, the vertical vortex generating mechanism 263 is configured by a plurality of triangular projecting pieces formed at the upstream end 262. The protruding piece has a sharpened shape by linearly intersecting two sides extending toward the tip.
このように構成される吹出部10では、仕切部26の上流側端部262に縦渦発生機構263が設けられている。このため、気流が仕切部26の上流側端部262付近を通過する際に縦渦が発生する。縦渦発生機構263により発生する縦渦は、渦心が仕切部26の周囲を流れる気流と同一方向を向いた螺旋状の渦であり、仕切部26の表面に向かう速度成分が含まれている。このため、仕切部26の周囲を流れる気流は、縦渦発生機構263にて発生した縦渦によって、仕切部26の表面に近づくように押し付けられることで、主流路18を形成する内壁面181に沿って流れ易くなる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。そして、主孔14の出口下流に形成される速度境界層BLの厚みδが第1実施形態に比べて小さくなる。
In the blowout unit 10 configured as described above, a vertical vortex generating mechanism 263 is provided at the upstream end 262 of the partition unit 26. For this reason, a vertical vortex is generated when the airflow passes near the upstream end 262 of the partition portion 26. The vertical vortex generated by the vertical vortex generating mechanism 263 is a spiral vortex in which the vortex core is directed in the same direction as the airflow flowing around the partition portion 26, and includes a velocity component toward the surface of the partition portion 26. . For this reason, the airflow flowing around the partition portion 26 is pressed so as to approach the surface of the partition portion 26 by the vertical vortex generated by the vertical vortex generating mechanism 263, and thereby the inner wall surface 181 that forms the main flow path 18. It becomes easy to flow along. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced. The thickness δ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14 is smaller than that in the first embodiment.
その他の構成は第1実施形態と同様である。本実施形態の空気吹出装置1は、第1実施形態と共通の構成を有しているので、当該共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。
Other configurations are the same as those in the first embodiment. Since the air blowing device 1 of the present embodiment has the same configuration as that of the first embodiment, the effects obtained from the common configuration can be obtained similarly to the first embodiment.
特に、本実施形態の空気吹出装置1は、仕切部26の上流側端部262に縦渦発生機構263が設けられている。これによると、仕切部26の周囲を流れる気流が縦渦発生機構263にて発生した縦渦によって仕切部26の表面(すなわち、主流路18を形成する内壁面181)に沿って流れ易くなる。このため、主孔14の出口下流に形成される作動気流の速度境界層BLの厚みδの中央部分BLcを援護気流の主流に近づける構造を実現することができる。
Particularly, in the air blowing device 1 of the present embodiment, the vertical vortex generating mechanism 263 is provided at the upstream end 262 of the partitioning portion 26. According to this, the airflow flowing around the partition portion 26 is likely to flow along the surface of the partition portion 26 (that is, the inner wall surface 181 forming the main flow path 18) by the vertical vortex generated by the vertical vortex generating mechanism 263. Therefore, it is possible to realize a structure in which the central portion BLc of the thickness δ of the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is brought close to the mainstream of the support airflow.
(第8実施形態の変形例)
上述の第8実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、主流路18に対して拡大部180が設けられていない構成になっていてもよい。なお、縦渦発生機構263は、第2実施形態で説明した縮流フィン28の上流端部に対して追加してもよい。これによると、縮流フィン28の周囲を流れる気流が、縦渦発生機構263にて発生した縦渦によって縮流フィン28の表面に沿って流れ易くなる。この結果、縮流フィン28の追加に伴う作動気流の乱れを充分に抑制することができる。 (Modification of the eighth embodiment)
In the above-described eighth embodiment, the example in which theenlarged portion 180 is provided with respect to the main flow path 18 has been described, but the present invention is not limited to this. The air blowing device 1 may be configured such that the enlarged portion 180 is not provided with respect to the main flow path 18. The vertical vortex generating mechanism 263 may be added to the upstream end portion of the contracted fin 28 described in the second embodiment. According to this, the airflow that flows around the contracted fin 28 is likely to flow along the surface of the contracted fin 28 by the longitudinal vortex generated by the longitudinal vortex generating mechanism 263. As a result, the turbulence of the working air flow accompanying the addition of the contracted fins 28 can be sufficiently suppressed.
上述の第8実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、主流路18に対して拡大部180が設けられていない構成になっていてもよい。なお、縦渦発生機構263は、第2実施形態で説明した縮流フィン28の上流端部に対して追加してもよい。これによると、縮流フィン28の周囲を流れる気流が、縦渦発生機構263にて発生した縦渦によって縮流フィン28の表面に沿って流れ易くなる。この結果、縮流フィン28の追加に伴う作動気流の乱れを充分に抑制することができる。 (Modification of the eighth embodiment)
In the above-described eighth embodiment, the example in which the
(第9実施形態)
次に、第9実施形態について図29を参照して説明する。本実施形態では、主流路18に対して、主流ガイド38が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Ninth embodiment)
Next, a ninth embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that a main flow guide 38 is provided for themain flow path 18. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第9実施形態について図29を参照して説明する。本実施形態では、主流路18に対して、主流ガイド38が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Ninth embodiment)
Next, a ninth embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that a main flow guide 38 is provided for the
図29に示すように、本実施形態の吹出部10は、主流路18の断面積Scが、主孔14の開口面積Smと同程度になっている。すなわち、本実施形態の吹出部10には、第1実施形態の拡大部180に相当する構成が設けられていない。
As shown in FIG. 29, in the blowing unit 10 of the present embodiment, the cross-sectional area Sc of the main flow path 18 is approximately the same as the opening area Sm of the main hole 14. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment.
また、吹出部10は、主流路18を形成する内壁面181に沿って流れる気流を補助孔22の出口下流に導く主流ガイド38を有している。主流ガイド38は、上主板381および下主板382で構成されている。
Further, the blow-out unit 10 has a main flow guide 38 that guides the airflow flowing along the inner wall surface 181 that forms the main flow path 18 to the outlet downstream of the auxiliary hole 22. The main flow guide 38 includes an upper main plate 381 and a lower main plate 382.
上主板381は、主流路18を形成する内壁面181のうち上壁面181aに沿って流れる気流を上壁面181aに近接する補助孔22の出口下流に導くものである。上主板381は、主流路18を形成する上壁面181aと主流路18の中心線CLmとの間に配置されている。上主板381は、その下流端381aにおける接線TLg1が、補助孔22の出口下流で補助孔22の中心線CLsと交差するように、補助孔22の中心線CLsに対して傾斜した姿勢で配置されている。上主板381は、その下流端381aが主孔14から突き出ないようにダクト部16の内側に配置されている。
The upper main plate 381 guides the airflow flowing along the upper wall surface 181a of the inner wall surface 181 forming the main flow path 18 to the downstream downstream of the auxiliary hole 22 close to the upper wall surface 181a. The upper main plate 381 is disposed between the upper wall surface 181 a forming the main flow path 18 and the center line CLm of the main flow path 18. The upper main plate 381 is disposed in a posture inclined with respect to the center line CLs of the auxiliary hole 22 so that the tangent TLg1 at the downstream end 381a intersects the center line CLs of the auxiliary hole 22 downstream of the outlet of the auxiliary hole 22. ing. The upper main plate 381 is disposed inside the duct portion 16 so that the downstream end 381a does not protrude from the main hole 14.
また、下主板382は、主流路18を形成する内壁面181のうち下壁面181bに沿って流れる気流を下壁面181bに近接する補助孔22の出口下流に導くものである。下主板382は、主流路18を形成する下壁面181bと主流路18の中心線CLmとの間に配置されている。下主板382は、その下流端382aにおける接線TLg2が、補助孔22の出口下流で補助孔22の中心線CLsと交差するように、補助孔22の中心線CLsに対して傾斜した姿勢で配置されている。下主板382は、その下流端382aが主孔14から突き出ないようにダクト部16の内側に配置されている。
The lower main plate 382 guides the airflow flowing along the lower wall surface 181b of the inner wall surface 181 forming the main flow path 18 to the downstream of the outlet of the auxiliary hole 22 close to the lower wall surface 181b. The lower main plate 382 is disposed between the lower wall surface 181 b that forms the main flow path 18 and the center line CLm of the main flow path 18. The lower main plate 382 is arranged in a posture inclined with respect to the center line CLs of the auxiliary hole 22 so that the tangent line TLg2 at the downstream end 382a intersects the center line CLs of the auxiliary hole 22 downstream of the outlet of the auxiliary hole 22. ing. The lower main plate 382 is disposed inside the duct portion 16 so that the downstream end 382a thereof does not protrude from the main hole 14.
各主板381、382は、主孔14の内壁面141の短辺の略中央部分において主孔14の内壁面141の長辺に沿って延びている。図示しないが、各主板381、382は、その長手方向の両端部がダクト部16の内側に連結されている。
The main plates 381 and 382 extend along the long side of the inner wall surface 141 of the main hole 14 at a substantially central portion of the short side of the inner wall surface 141 of the main hole 14. Although not shown, the main plates 381 and 382 have both longitudinal ends connected to the inside of the duct portion 16.
このように構成される本実施形態の吹出部10では、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主流路18を形成する内壁面181に沿って流れる気流は、主流ガイド38によって上下に拡散して吹き出される。このため、主孔14の出口下流には、作動気流の速度境界層BLが主孔14の中心線CLmから離れるように形成される。
In the blowout unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows toward the main hole 14 via the main flow path 18. The airflow flowing into the main flow path 18 is blown out from the main hole 14. At this time, the airflow flowing along the inner wall surface 181 forming the main flow path 18 is diffused up and down by the main flow guide 38 and blown out. For this reason, the velocity boundary layer BL of the working airflow is formed downstream from the center line CLm of the main hole 14 at the outlet downstream of the main hole 14.
これにより、本実施形態の吹出部10では、第4実施形態と同様に、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。すなわち、援護気流の主流AFsが速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主流ガイド38が、渦抑制構造として機能する。
Thereby, in the blowing part 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 approaches the central portion BLc of the thickness δ of the velocity boundary layer BL, as in the fourth embodiment. Flowing. That is, since the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the support airflow collapses the transverse vortex Vt and generates in the velocity boundary layer BL downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt is easily obtained. In the present embodiment, the mainstream guide 38 functions as a vortex suppression structure.
以上説明した本実施形態の空気吹出装置1は、主流路18に主流ガイド38が設けられている。これによると、主孔14の内壁面141付近の流速分布が主孔14の出口下流にて補助孔22からの援護気流に拡がることで、主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcを補助孔22から吹き出される気流に近づけることができる。このため、補助孔22から吹き出される気流によって速度境界層BLでの横渦Vtの発達が充分に抑制される。
In the air blowing device 1 of the present embodiment described above, the main flow guide 38 is provided in the main flow path 18. According to this, the velocity boundary layer BL formed on the downstream side of the main hole 14 by spreading the flow velocity distribution in the vicinity of the inner wall surface 141 of the main hole 14 to the support airflow from the auxiliary hole 22 on the downstream side of the main hole 14. The central portion BLc of the thickness δ can be made closer to the air flow blown out from the auxiliary hole 22. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22.
(第10実施形態)
次に、第10実施形態について図30を参照して説明する。本実施形態では、補助流路24に対して、補助ガイド40が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (10th Embodiment)
Next, a tenth embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that an auxiliary guide 40 is provided for theauxiliary flow path 24. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第10実施形態について図30を参照して説明する。本実施形態では、補助流路24に対して、補助ガイド40が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (10th Embodiment)
Next, a tenth embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that an auxiliary guide 40 is provided for the
図30に示すように、本実施形態の吹出部10は、第9実施形態と同様に、主流路18の断面積Scが、主孔14の開口面積Smと同程度になっている。すなわち、本実施形態の吹出部10には、第1実施形態の拡大部180に相当する構成が設けられていない。
As shown in FIG. 30, in the blowing unit 10 of the present embodiment, the cross-sectional area Sc of the main flow path 18 is approximately the same as the opening area Sm of the main hole 14 as in the ninth embodiment. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment.
また、吹出部10は、補助流路24を形成する内壁面241に沿って流れる気流を主孔14の出口下流に導く補助ガイド40を有している。補助ガイド40は、補助流路24に配置された複数の補助板41で構成されている。
Further, the blowout unit 10 has an auxiliary guide 40 that guides the airflow flowing along the inner wall surface 241 that forms the auxiliary flow path 24 to the downstream of the outlet of the main hole 14. The auxiliary guide 40 is composed of a plurality of auxiliary plates 41 arranged in the auxiliary flow path 24.
複数の補助板41は、その下流端411における接線TLg3が、主孔14の出口下流で主孔14の中心線CLmと交差するように、主孔14の中心線CLmに対して傾斜した姿勢で配置されている。複数の補助板41は、その下流端411が主孔14から突き出ないようにダクト部16の内側に配置されている。
The plurality of auxiliary plates 41 are inclined with respect to the center line CLm of the main hole 14 so that the tangent line TLg3 at the downstream end 411 intersects the center line CLm of the main hole 14 downstream of the outlet of the main hole 14. Has been placed. The plurality of auxiliary plates 41 are arranged inside the duct portion 16 so that the downstream ends 411 thereof do not protrude from the main hole 14.
このように構成される本実施形態の吹出部10では、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。そして、主流路18に流入した気流は、主孔14から吹き出される。
In the blowout unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows toward the main hole 14 via the main flow path 18. The airflow flowing into the main flow path 18 is blown out from the main hole 14.
一方、補助孔22から吹き出される援護気流の主流は、補助ガイド40によって主孔14の中心線CLmに対して傾いた状態で流れる。すなわち、主孔14の出口下流では、補助孔22から吹き出される援護気流の主流が作動気流の速度境界層BLの中央部分BLcに近づく状態となる。
On the other hand, the main stream of the support airflow blown out from the auxiliary hole 22 flows while being inclined with respect to the center line CLm of the main hole 14 by the auxiliary guide 40. That is, in the downstream of the outlet of the main hole 14, the main flow of the support airflow blown out from the auxiliary hole 22 is in a state of approaching the central portion BLc of the velocity boundary layer BL of the working airflow.
これにより、本実施形態の吹出部10では、第5実施形態と同様に、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。すなわち、援護気流の主流AFsが速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、補助ガイド40が、渦抑制構造として機能する。
Thereby, in the blowing part 10 of this embodiment, in the state where the mainstream AFs of the support airflow blown out from the auxiliary hole 22 approaches the central portion BLc of the thickness δ of the velocity boundary layer BL, as in the fifth embodiment. Flowing. That is, since the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the support airflow collapses the transverse vortex Vt and generates in the velocity boundary layer BL downstream of the outlet of the main hole 14. The effect of suppressing the development of the lateral vortex Vt is easily obtained. In the present embodiment, the auxiliary guide 40 functions as a vortex suppressing structure.
以上説明した本実施形態の空気吹出装置1は、補助流路24に補助ガイド40が設けられている。これによっても、第5実施形態と同様に、補助孔22から吹き出される援護気流の主流を主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcに対して近づけることができる。
In the air blowing device 1 of the present embodiment described above, the auxiliary guide 40 is provided in the auxiliary flow path 24. Also in this manner, as in the fifth embodiment, the main flow of the support airflow blown out from the auxiliary hole 22 is brought closer to the central portion BLc of the thickness δ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14. Can do.
(第11実施形態)
次に、第11実施形態について、図31および図32を参照して説明する。本実施形態では、主孔14から吹き出す作動気流の到達距離を長くするのに適した主孔14の開口形状について説明する。 (Eleventh embodiment)
Next, an eleventh embodiment will be described with reference to FIGS. 31 and 32. FIG. In the present embodiment, an opening shape of themain hole 14 that is suitable for increasing the reach of the working air current blown out from the main hole 14 will be described.
次に、第11実施形態について、図31および図32を参照して説明する。本実施形態では、主孔14から吹き出す作動気流の到達距離を長くするのに適した主孔14の開口形状について説明する。 (Eleventh embodiment)
Next, an eleventh embodiment will be described with reference to FIGS. 31 and 32. FIG. In the present embodiment, an opening shape of the
図31に示すように、本実施形態の孔形成部12には、第1実施形態と同様に、主孔14が単一の孔として開口している、また、孔形成部12には、第1実施形態と異なり複数の補助孔22が形成されていない。
As shown in FIG. 31, the hole forming part 12 of the present embodiment has a main hole 14 as a single hole, as in the first embodiment. Unlike the first embodiment, the plurality of auxiliary holes 22 are not formed.
主孔14は、その開口縁を形成する複数の縁部142a、142b、142c、142dを有している。複数の縁部142a、142b、142c、142dは、主孔14の開口縁を曲率の変化点で分割したものである。
The main hole 14 has a plurality of edge portions 142a, 142b, 142c, 142d that form the opening edge thereof. The plurality of edges 142a, 142b, 142c, 142d are obtained by dividing the opening edge of the main hole 14 at the curvature change point.
本発明者らの調査によれば、主孔14の開口縁に角部がある場合、当該角部にて横渦Vtが大規模なものに発達し易くなる傾向があり、主流から吹き出す作動気流の到達距離が短くなってしまうことが判った。また、主孔14の開口縁における曲率の変化量が大きいと、主孔14から気流が吹き出される際に形成される無数の渦輪同士が干渉し易くなることで、主流から吹き出す作動気流の到達距離が短くなってしまう傾向もある。
According to the investigation by the present inventors, when there is a corner at the opening edge of the main hole 14, the lateral vortex Vt tends to develop into a large-scale one at the corner, and the working air current blown out from the main flow It has been found that the reach of will be shortened. In addition, when the amount of change in curvature at the opening edge of the main hole 14 is large, the countless vortex rings formed when the air flow is blown out from the main hole 14 easily interfere with each other, so that the arrival of the working air flow blown out from the main flow is reached. There is also a tendency for the distance to become shorter.
これらを加味して、本実施形態の主孔14は、異なる曲率となる縁部142a~142dが隣接するとともに、隣接する縁部142a~142dの接続部分が丸みを有するように環状に接続されている。
In consideration of these, the main hole 14 of the present embodiment is annularly connected so that the edge portions 142a to 142d having different curvatures are adjacent to each other and the connecting portions of the adjacent edge portions 142a to 142d are rounded. Yes.
具体的には、本実施形態の主孔14は、開口縁が長円となるように、半径および弧長さの等しい円弧状の縁部142a、142bと曲率がゼロとなる直線状の縁部142c、142dとが交互に接続されて構成されている。なお、本実施形態の主孔14は、異なる曲率となる2種の縁部142a~142dで構成されている。また、本実施形態の主孔14は、4つの縁部142a~142dで構成され、4つの縁部142a~142dが4箇所の接続部T1~T4で接続されている。
Specifically, the main hole 14 according to the present embodiment includes an arcuate edge 142a, 142b having the same radius and arc length and a linear edge having a zero curvature so that the opening edge is an ellipse. 142c and 142d are connected alternately. Note that the main hole 14 of the present embodiment is composed of two types of edge portions 142a to 142d having different curvatures. Further, the main hole 14 of the present embodiment is composed of four edge portions 142a to 142d, and the four edge portions 142a to 142d are connected by four connection portions T1 to T4.
このような主孔14が形成された吹出部10は、主孔14の開口縁における曲率の変化点である各縁部142a~142dの接続部分が丸みを有しているので、主孔14が角部のない開口形状となる。これにより、主孔14の出口下流付近での横渦Vtの発達が充分に抑制されるので、主孔14から吹き出す作動気流の到達距離を長くすることが可能となる。
In the blow-out portion 10 in which the main hole 14 is formed, the connecting portions of the edge portions 142a to 142d, which are the changing points of curvature at the opening edge of the main hole 14, have roundness. The opening shape has no corners. As a result, the development of the lateral vortex Vt in the vicinity of the outlet downstream of the main hole 14 is sufficiently suppressed, so that the reach of the working air current blown out from the main hole 14 can be increased.
また、主孔14は、異なる曲率となる2種の縁部142a~142dで構成されている。これによると、主孔14の開口縁における曲率の変化量が少ないので、主孔14から気流が吹き出される際に形成される無数の渦輪同士の干渉を抑制して、作動気流の到達距離の向上を図ることができる。
The main hole 14 is composed of two kinds of edge portions 142a to 142d having different curvatures. According to this, since the amount of change in the curvature at the opening edge of the main hole 14 is small, interference of innumerable vortex rings formed when the air flow is blown out from the main hole 14 is suppressed, and the reach of the working air flow is reduced. Improvements can be made.
さらに、主孔14は、4つの縁部142a~142dで構成され、4つの縁部142a~142dが4箇所T1~T4で接続されている。これによれば、主孔14の開口縁における曲率の変化点が少ないので、主孔14から気流が吹き出される際に形成される無数の渦輪同士の干渉を抑制して、作動気流の到達距離の向上を図ることができる。
Furthermore, the main hole 14 is composed of four edge portions 142a to 142d, and the four edge portions 142a to 142d are connected at four locations T1 to T4. According to this, since the change point of the curvature at the opening edge of the main hole 14 is small, the interference of innumerable vortex rings formed when the airflow is blown out from the main hole 14 is suppressed, and the reach of the working airflow Can be improved.
ここで、円弧状の縁部142a、142bについては、その半径が所定値(具体的には、0.1mm)未満となる場合、角部と同様に、横渦Vtが大規模なものに発達し易くなる虞がある。このため、複数の縁部142a~142dに円弧状の縁部142a、142bが含まれる場合、その半径を0.1mm以上とすることが望ましい。
Here, as for the arc-shaped edge portions 142a and 142b, when the radius is less than a predetermined value (specifically, 0.1 mm), the lateral vortex Vt develops into a large one like the corner portion. There is a possibility that it becomes easy to do. For this reason, when the arc-shaped edges 142a and 142b are included in the plurality of edges 142a to 142d, the radius is preferably set to 0.1 mm or more.
(第11実施形態の変形例)
上述の第11実施形態では、主孔14の開口縁が長円となるものを例示したが、これに限定されない。主孔14は、4つの縁部142a~142dで構成される場合、各縁部142a~142dそれぞれが円弧状になっていてもよい。 (Modification of the eleventh embodiment)
In the eleventh embodiment described above, the opening edge of themain hole 14 is illustrated as an ellipse, but is not limited thereto. When the main hole 14 includes four edge portions 142a to 142d, each of the edge portions 142a to 142d may have an arc shape.
上述の第11実施形態では、主孔14の開口縁が長円となるものを例示したが、これに限定されない。主孔14は、4つの縁部142a~142dで構成される場合、各縁部142a~142dそれぞれが円弧状になっていてもよい。 (Modification of the eleventh embodiment)
In the eleventh embodiment described above, the opening edge of the
例えば、主孔14は、図33の第1変形例に示すように、異なる曲率となる2種の円弧状の縁部142a~142dを環状に接続した開口形状になっていてもよい。主孔14は、図34の第2変形例に示すように、異なる曲率となる3種の円弧状の縁部142a~142dを環状に接続した開口形状になっていてもよい。主孔14は、図35の第3変形例に示すように、異なる曲率となる4種の円弧状の縁部142a~142dを環状に接続した開口形状になっていてもよい。主孔14は、図36の第4変形例に示すように、4つの縁部142a~142dで構成される場合、各縁部142a~142dの1つが直線状になっていてもよい。
For example, as shown in the first modification of FIG. 33, the main hole 14 may have an opening shape in which two kinds of arc-shaped edge portions 142a to 142d having different curvatures are connected in an annular shape. As shown in the second modification example in FIG. 34, the main hole 14 may have an opening shape in which three kinds of arc-shaped edges 142a to 142d having different curvatures are connected in an annular shape. As shown in the third modification of FIG. 35, the main hole 14 may have an opening shape in which four types of arc-shaped edges 142a to 142d having different curvatures are connected in an annular shape. As shown in the fourth modification example in FIG. 36, when the main hole 14 is composed of four edge portions 142a to 142d, one of the edge portions 142a to 142d may be linear.
また、主孔14は、4つの縁部142a~142dではなく、6つの縁部142a~142fで構成されていてもよい。具体的には、主孔14は、図37の第5変形例に示すように、半径および弧長さの等しい円弧状の3つの縁部142a~142c、直線状の3つの縁部142d~142fを環状に接続した開口形状になっていてもよい。主孔14は、図38の第6変形例に示すように、半径が一部異なる円弧状の3つの縁部142a~142c、直線状の3つの縁部142d~142fを環状に接続した開口形状になっていてもよい。
Further, the main hole 14 may be configured with six edge portions 142a to 142f instead of the four edge portions 142a to 142d. Specifically, as shown in the fifth modified example of FIG. 37, the main hole 14 includes three arc-shaped edges 142a to 142c having the same radius and arc length, and three straight edges 142d to 142f. May be formed in an opening shape in which the two are connected in an annular shape. As shown in the sixth modification of FIG. 38, the main hole 14 has an opening shape in which three arc-shaped edges 142a to 142c having different radii and three straight edges 142d to 142f are annularly connected. It may be.
さらに、主孔14は、8つの縁部142a~142hで構成されていてもよい。具体的には、主孔14は、図39の第7変形例に示すように、半径および弧長さの等しい円弧状の4つの縁部142a~142d、対向する縁部の長さが等しい直線状の4つの縁部142e~142hを環状に接続した開口形状になっていてもよい。主孔14は、図40の第8変形例に示すように、半径および弧長さの等しい円弧状の4つの縁部142a~142d、対向する縁部の長さが異なる直線状の4つの縁部142e~142hを環状に接続した開口形状になっていてもよい。主孔14は、図41の第9変形例に示すように、半径が一部異なる円弧状の4つの縁部142a~142d、長さの等しい直線状の4つの縁部142e~142hを環状に接続した開口形状になっていてもよい。主孔14は、図42の第10変形例に示すように、半径が一部異なる円弧状の4つの縁部142a~142d、長さの異なる直線状の4つの縁部142d~142hを環状に接続した開口形状になっていてもよい。主孔14は、図43の第11変形例に示すように、半径が一部異なる円弧状の4つの縁部142a~142d、対向する縁部の長さの等しい直線状の4つの縁部142e~142hを環状に接続した開口形状になっていてもよい。主孔14は、図44の第12変形例に示すように、半径の異なる円弧状の4つの縁部142a~142d、長さの異なる直線状の4つの縁部142d~142hを環状に接続した開口形状になっていてもよい。
Furthermore, the main hole 14 may be constituted by eight edge portions 142a to 142h. Specifically, as shown in the seventh modified example of FIG. 39, the main hole 14 includes four arc-shaped edges 142a to 142d having the same radius and arc length, and straight lines having the same length of the opposing edges. It may be an opening shape in which the four edge portions 142e to 142h are connected in an annular shape. As shown in the eighth modified example of FIG. 40, the main hole 14 includes four arc-shaped edges 142a to 142d having the same radius and arc length, and four linear edges having opposite edge lengths different from each other. It may have an opening shape in which the portions 142e to 142h are connected in an annular shape. As shown in the ninth modification of FIG. 41, the main hole 14 is formed by annularly forming four arc-shaped edges 142a to 142d having different radii and four straight edges 142e to 142h having the same length. It may have a connected opening shape. As shown in the tenth modified example in FIG. 42, the main hole 14 is formed by annularly forming four arc-shaped edges 142a to 142d having different radii and four linear edges 142d to 142h having different lengths. It may have a connected opening shape. As shown in the eleventh modified example of FIG. 43, the main hole 14 has four arc-shaped edges 142a to 142d having partially different radii, and four linear edges 142e having equal lengths of the opposing edges. It may have an opening shape in which .about.142h is annularly connected. As shown in the twelfth modification of FIG. 44, the main hole 14 is formed by annularly connecting four arc-shaped edges 142a to 142d having different radii and four linear edges 142d to 142h having different lengths. It may be an opening shape.
(第12実施形態)
次に、第12実施形態について、図45および図46を参照して説明する。図45および図46に示すように、本実施形態の吹出部10は、第11実施形態の吹出部10において主孔14の周囲に補助孔22が形成されている。 (Twelfth embodiment)
Next, a twelfth embodiment will be described with reference to FIGS. 45 and 46. FIG. As shown in FIGS. 45 and 46, theblowout portion 10 of the present embodiment has auxiliary holes 22 formed around the main hole 14 in the blowout portion 10 of the eleventh embodiment.
次に、第12実施形態について、図45および図46を参照して説明する。図45および図46に示すように、本実施形態の吹出部10は、第11実施形態の吹出部10において主孔14の周囲に補助孔22が形成されている。 (Twelfth embodiment)
Next, a twelfth embodiment will be described with reference to FIGS. 45 and 46. FIG. As shown in FIGS. 45 and 46, the
具体的には、開口縁が長円となる主孔14の周囲には、主孔14を囲むように複数の補助孔22が形成されている。その他の構成は、第11実施形態と同様である。本実施形態の吹出部10によれば、作動気流の空気の引き込みを補助孔22から吹き出す援護気流によって抑えることができる。
Specifically, a plurality of auxiliary holes 22 are formed around the main hole 14 having an elliptical opening edge so as to surround the main hole 14. Other configurations are the same as those in the eleventh embodiment. According to the blowing unit 10 of the present embodiment, the air flow of the working airflow can be suppressed by the support airflow that blows out from the auxiliary hole 22.
(第12実施形態の変形例)
上述の第12実施形態では、開口縁が長円となる主孔14の周囲に補助孔22が形成されているものを例示したが、これに限定されない。吹出部10は、例えば、図47に示すように、開口縁が長円ではない主孔14の周囲に補助孔22が形成された構成になっていてもよい。 (Modification of the twelfth embodiment)
In the above-described twelfth embodiment, theauxiliary hole 22 is formed around the main hole 14 whose opening edge is an ellipse. However, the present invention is not limited to this. For example, as shown in FIG. 47, the blowout portion 10 may have a configuration in which auxiliary holes 22 are formed around the main hole 14 whose opening edge is not an ellipse.
上述の第12実施形態では、開口縁が長円となる主孔14の周囲に補助孔22が形成されているものを例示したが、これに限定されない。吹出部10は、例えば、図47に示すように、開口縁が長円ではない主孔14の周囲に補助孔22が形成された構成になっていてもよい。 (Modification of the twelfth embodiment)
In the above-described twelfth embodiment, the
(他の実施形態)
以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。 (Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。 (Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
上述の実施形態では、孔形成部12に対して主孔14が1つ形成されている例について説明したが、これに限定されない。空気吹出装置1は、孔形成部12に対して複数の主孔14が形成された構造になっていてもよい。この場合、例えば、複数の補助孔22については、複数の主孔14を単一の孔群として当該孔群を取り囲むように配置したり、複数の主孔14それぞれを取り囲むように配置したりすればよい。
In the above-described embodiment, the example in which one main hole 14 is formed in the hole forming portion 12 has been described, but the present invention is not limited to this. The air blowing device 1 may have a structure in which a plurality of main holes 14 are formed in the hole forming portion 12. In this case, for example, the plurality of auxiliary holes 22 are arranged so as to surround the plurality of main holes 14 as a single hole group, or to surround each of the plurality of main holes 14. That's fine.
上述の実施形態では、補助孔22が複数の丸孔で構成されている例について説明したが、これに限定されない。補助孔22は、例えば、主孔14の周囲を囲む曲線状のスリット孔で構成されていてもよい。この場合、補助孔22は、複数のスリット孔に限らず、単一のスリット孔で構成することが可能である。
In the above-described embodiment, the example in which the auxiliary hole 22 is configured by a plurality of round holes has been described, but the present invention is not limited to this. The auxiliary hole 22 may be configured by, for example, a curved slit hole surrounding the main hole 14. In this case, the auxiliary hole 22 is not limited to a plurality of slit holes, and can be constituted by a single slit hole.
上述の実施形態では、単一のダクト部16の内部に主流路18および補助流路24が形成される構成になっているが、これに限定されない。空気吹出装置1は、例えば、ダクト部16における主流路18を形成する部分と補助流路24を形成する部分とが別々に構成されていてもよい。
In the above-described embodiment, the main flow path 18 and the auxiliary flow path 24 are formed inside the single duct portion 16, but the present invention is not limited to this. In the air blowing device 1, for example, a portion that forms the main flow path 18 and a portion that forms the auxiliary flow path 24 in the duct portion 16 may be configured separately.
上述の実施形態では、吹出部10としてフランジ部20を有するものを例示したが、これに限定されない。吹出部10は、例えば、孔形成部12およびダクト部16を有し、フランジ部20を有していない構成になっていてもよい。
In the above-described embodiment, the blowout portion 10 having the flange portion 20 is exemplified, but the present invention is not limited to this. The blow-out part 10 may have a configuration in which, for example, the hole forming part 12 and the duct part 16 are included and the flange part 20 is not included.
上述の実施形態では、車室内を空調する空調ユニットの空気吹出口に本開示の空気吹出装置1を適用するものを例示したが、これに限定されない。本開示の空気吹出装置1は、車両等の移動体に限らず、家庭用等の設置型の空調ユニットの空気吹出口等にも広く適用可能である。また、本開示の空気吹出装置1は、室内を空調する空調ユニットに限らず、例えば、室内を加湿する加湿機器の空気吹出口や、発熱体等の温度を調整する温調風を吹き出す温調機器の空気吹出口にも適用可能である。
In the above-described embodiment, an example in which the air blowing device 1 of the present disclosure is applied to the air blowing port of an air conditioning unit that air-conditions the vehicle interior is illustrated, but the present invention is not limited to this. The air blowing device 1 according to the present disclosure is not limited to a moving body such as a vehicle, but can be widely applied to an air blowing port of an installation type air conditioning unit for home use or the like. The air blowing device 1 of the present disclosure is not limited to an air conditioning unit that air-conditions a room. For example, a temperature control that blows out temperature-controlled air that adjusts the temperature of an air outlet of a humidifying device that humidifies the room, a heating element, or the like. It can also be applied to the air outlet of equipment.
上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.
上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、空気吹出装置は、少なくとも1つの主孔と、主孔の周囲に形成される少なくとも1つの補助孔とを含む吹出部を備える。吹出部には、主孔の出口下流において作動気流の速度境界層内に形成される横渦の発達を抑える渦抑制構造が設けられている。この渦抑制構造は、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分および援護気流の主流を主孔の出口下流で近づける構造になっている。 (Summary)
According to the first aspect shown in a part or all of the above-described embodiments, the air blowing device includes at least one main hole and at least one auxiliary hole formed around the main hole. A part. The blowout portion is provided with a vortex suppressing structure that suppresses the development of a lateral vortex formed in the velocity boundary layer of the working airflow downstream of the outlet of the main hole. This vortex suppression structure has a structure in which the central portion of the velocity boundary layer of the working airflow formed downstream of the outlet of the main hole and the mainstream of the support airflow are brought closer to the downstream of the outlet of the main hole.
上述の実施形態の一部または全部で示された第1の観点によれば、空気吹出装置は、少なくとも1つの主孔と、主孔の周囲に形成される少なくとも1つの補助孔とを含む吹出部を備える。吹出部には、主孔の出口下流において作動気流の速度境界層内に形成される横渦の発達を抑える渦抑制構造が設けられている。この渦抑制構造は、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分および援護気流の主流を主孔の出口下流で近づける構造になっている。 (Summary)
According to the first aspect shown in a part or all of the above-described embodiments, the air blowing device includes at least one main hole and at least one auxiliary hole formed around the main hole. A part. The blowout portion is provided with a vortex suppressing structure that suppresses the development of a lateral vortex formed in the velocity boundary layer of the working airflow downstream of the outlet of the main hole. This vortex suppression structure has a structure in which the central portion of the velocity boundary layer of the working airflow formed downstream of the outlet of the main hole and the mainstream of the support airflow are brought closer to the downstream of the outlet of the main hole.
第2の観点によれば、空気吹出装置の渦抑制構造は、主孔の内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造を含んでいる。このように、主孔の内壁面に沿って形成される速度境界層の厚みを小さくする構造によれば、主孔の出口下流に形成される速度境界層の厚みの中央部分を補助孔から吹き出される気流に近づけることができる。
According to the second aspect, the vortex suppressing structure of the air blowing device includes a layer reducing structure that reduces the thickness of the velocity boundary layer formed along the inner wall surface of the main hole. Thus, according to the structure in which the thickness of the velocity boundary layer formed along the inner wall surface of the main hole is reduced, the central part of the thickness of the velocity boundary layer formed downstream of the outlet of the main hole is blown out from the auxiliary hole. Can be close to the airflow.
第3の観点によれば、空気吹出装置の吹出部は、主孔から吹き出す気流を通過させる主流路を含んでいる。そして、主流路には、層縮小構造として主孔の開口面積よりも断面積が大きい拡大部が設けられている。このように、主流路に対して拡大部を設ける構造とすれば、主流路に生ずる縮流によって、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を援護気流の主流に近づける構造を実現することができる。
According to the 3rd viewpoint, the blowing part of the air blowing apparatus contains the main flow path which allows the airflow which blows off from a main hole to pass through. The main flow path is provided with an enlarged portion having a cross-sectional area larger than the opening area of the main hole as a layer reduction structure. Thus, if the structure is provided with an enlarged portion with respect to the main flow path, the flow velocity difference between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced due to the contracted flow generated in the main flow path, and the velocity boundary layer The thickness can be reduced. That is, it is possible to realize a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is brought close to the mainstream of the support airflow.
第4の観点によれば、空気吹出装置は、主流路に、層縮小構造として主流路を流れる気流を縮流させる縮流フィンが設けられている。層縮小構造を拡大部だけでなく縮流フィンを含めた構造とすれば、主流路の拡大による装置の体格増大を抑えつつ、縮流による速度境界層の厚みを小さくすることが可能となる。このような構成は、移動体の如く設置スペースが大きく制限されている場合に好適である。
According to the fourth aspect, in the air blowing device, the main flow path is provided with a contracted fin that contracts the airflow flowing through the main flow path as a layer contraction structure. If the layer contraction structure includes not only the enlarged portion but also the contraction fins, it is possible to reduce the thickness of the velocity boundary layer due to contraction while suppressing an increase in the size of the apparatus due to the expansion of the main flow path. Such a configuration is suitable when the installation space is greatly limited like a moving body.
第5の観点によれば、空気吹出装置の吹出部は、主孔から吹き出す気流を通過させる主流路を含んでいる。そして、主流路には、層縮小構造として主流路を流れる気流を縮流させる縮流フィンが設けられている。このように、主流路に対して縮流フィンを設ける構造とすれば、主流路に生ずる縮流によって、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を援護気流の主流に近づける構造を実現することができる。
According to the 5th viewpoint, the blowing part of the air blowing apparatus contains the main flow path which allows the airflow which blows off from a main hole to pass through. And the main flow path is provided with the contraction fin which contracts the airflow which flows through the main flow path as a layer contraction structure. Thus, if the structure is provided with the contracted fins for the main channel, the contracted flow generated in the main channel reduces the difference in flow velocity between the center line of the main hole and the inner wall surface, and the velocity boundary layer Can be reduced in thickness. That is, it is possible to realize a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is brought close to the mainstream of the support airflow.
第6の観点によれば、空気吹出装置の吹出部は、主孔から吹き出す気流を通過させる主流路を含んでいる。主流路の少なくとも一部には、層縮小構造として主流路における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部が設けられている。このように、主流路の内壁面の一部に対して凹凸部を設ける構造とすれば、凹凸部の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路の内壁面の摩擦係数が小さくなる。このため、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を援護気流の主流に近づける構造を実現することができる。
According to the sixth aspect, the blowing part of the air blowing device includes a main flow path through which the air flow blown from the main hole passes. At least a part of the main flow path is provided with a concavo-convex part in which a concave part and a convex part are alternately arranged along the flow direction of the air flow in the main flow path as a layer reduction structure. In this way, if the structure is provided with a concavo-convex portion on a part of the inner wall surface of the main flow path, the vortex generated inside the concavo-convex portion plays a role like a ball bearing, so that the friction of the inner wall surface of the main flow path The coefficient becomes smaller. For this reason, the difference in flow velocity between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced, and the thickness of the velocity boundary layer can be reduced. That is, it is possible to realize a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is brought close to the mainstream of the support airflow.
第7の観点によれば、空気吹出装置の凹凸部は、主流路の内壁面に設けられた複数の溝によって形成されている。このように凹凸部を複数の溝で構成すれば、凹凸部を複数の突起で構成する場合に比べて、主流路の大きさを確保可能となり、主流路における圧力損失を抑制することができる。このことは、作動気流の到達距離の向上に大きく寄与する。
According to the seventh aspect, the uneven portion of the air blowing device is formed by a plurality of grooves provided on the inner wall surface of the main flow path. If the concave and convex portion is configured with a plurality of grooves in this manner, the size of the main flow path can be secured and pressure loss in the main flow path can be suppressed as compared with the case where the concave and convex portion is configured with a plurality of protrusions. This greatly contributes to the improvement of the reach of the working airflow.
第8の観点によれば、空気吹出装置の吹出部は、主孔から吹き出す気流を通過させる主流路、補助孔から吹き出す気流を通過させる補助流路、主流路および補助流路を仕切る仕切部を含んでいる。仕切部には、渦抑制構造として主流路を流れる気流の一部を補助流路に導く連通孔が少なくとも1つ形成されている。
According to the eighth aspect, the blowing unit of the air blowing device includes a main channel that allows the airflow blown from the main hole to pass through, an auxiliary channel that allows the airflow blown from the auxiliary hole to pass through, and a partition that partitions the main channel and the auxiliary channel. Contains. The partition portion is formed with at least one communication hole for guiding a part of the airflow flowing through the main channel to the auxiliary channel as a vortex suppressing structure.
これによると、連通孔を介して主流路から補助流路に流れる気流によって主流路を形成する内壁面に沿って気流が流れ易くなる。このため、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を援護気流の主流に近づける構造を実現することができる。
According to this, the airflow easily flows along the inner wall surface forming the main flow path by the airflow flowing from the main flow path to the auxiliary flow path through the communication hole. For this reason, the difference in flow velocity between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced, and the thickness of the velocity boundary layer can be reduced. That is, it is possible to realize a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is brought close to the mainstream of the support airflow.
第9の観点によれば、空気吹出装置の吹出部は、主孔から吹き出す気流を通過させる主流路、補助孔から吹き出す気流を通過させる補助流路、主流路および補助流路を仕切る仕切部を含んでいる。仕切部には、空気流れ上流側に位置する上流側端部に、縦渦を発生させる凹凸状の縦渦発生機構が設けられている。
According to the ninth aspect, the blowing unit of the air blowing device includes a main channel that allows the airflow blown from the main hole to pass through, an auxiliary channel that allows the airflow blown from the auxiliary hole to pass through, and a partition that partitions the main channel and the auxiliary channel. Contains. The partition is provided with an uneven vertical vortex generating mechanism for generating vertical vortices at the upstream end located on the upstream side of the air flow.
これによると、仕切部の周囲を流れる気流が縦渦発生機構にて発生した縦渦によって仕切部の表面(すなわち、主流路を形成する内壁面)に沿って流れ易くなる。このため、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を援護気流の主流に近づける構造を実現することができる。
According to this, the airflow flowing around the partition portion is easily flown along the surface of the partition portion (that is, the inner wall surface forming the main flow path) by the vertical vortex generated by the vertical vortex generating mechanism. For this reason, the difference in flow velocity between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced, and the thickness of the velocity boundary layer can be reduced. That is, it is possible to realize a structure in which the central part of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is brought close to the mainstream of the support airflow.
第10の観点によれば、空気吹出装置の主孔は、その内壁面を形成する少なくとも一部位において主孔の内壁面に沿って延びる接線が補助孔の出口下流において補助孔の中心線と交差するように補助孔の中心線に対して傾斜する主傾斜構造を有している。そして、渦抑制構造は、主傾斜構造を含んでいる。これによると、主孔を形成する内壁面付近の流速分布が主孔の出口下流にて補助孔から吹き出される気流に拡がることで、主孔の出口下流に形成される速度境界層の厚みの中央部分を補助孔から吹き出される気流に近づけることができる。なお、「補助孔の中心線」とは、補助孔の中心を通過するとともに、補助孔から吹き出される気流の主流に沿って延びる線である。
According to the tenth aspect, in the main hole of the air blowing device, a tangent line extending along the inner wall surface of the main hole intersects with the center line of the auxiliary hole at the downstream side of the outlet of the auxiliary hole at least partially forming the inner wall surface. Thus, the main inclined structure is inclined with respect to the center line of the auxiliary hole. And the vortex suppression structure contains the main inclination structure. According to this, the flow velocity distribution in the vicinity of the inner wall surface forming the main hole spreads to the air flow blown out from the auxiliary hole downstream of the main hole, so that the thickness of the velocity boundary layer formed downstream of the main hole outlet is reduced. The central portion can be brought close to the airflow blown out from the auxiliary hole. The “center line of the auxiliary hole” is a line that passes through the center of the auxiliary hole and extends along the main flow of the airflow blown from the auxiliary hole.
第11の観点によれば、空気吹出装置の吹出部は、主孔から吹き出す気流を通過させる主流路、主流路を形成する内壁面に沿って流れる気流を補助孔の出口下流に導く主流ガイドを含んでいる。渦抑制構造は、主流ガイドを含んでいる。これによっても、主孔を形成する内壁面付近の流速分布が主孔の出口下流にて補助孔から吹き出される気流に拡がるので、主孔の出口下流に形成される速度境界層の厚みの中央部分を補助孔から吹き出される気流に近づけることができる。
According to the eleventh aspect, the blow-out portion of the air blowing device passes a main flow guide through which the air flow blown from the main hole passes, and a main flow guide that guides the air flow flowing along the inner wall surface forming the main flow channel to the outlet downstream of the auxiliary hole. Contains. The vortex suppression structure includes a mainstream guide. This also spreads the flow velocity distribution near the inner wall surface forming the main hole to the air flow blown from the auxiliary hole downstream of the main hole, so that the center of the thickness of the velocity boundary layer formed downstream of the main hole outlet The part can be brought close to the air flow blown out from the auxiliary hole.
第12の観点によれば、空気吹出装置の補助孔は、その内壁面を形成する少なくとも一部位において補助孔の内壁面に沿って延びる接線が主孔の出口下流において主孔の中心線と交差するように主孔の中心線に対して傾斜する補助傾斜構造を有している。そして、渦抑制構造は、補助傾斜構造を含んでいる。これによると、補助孔から吹き出される気流を主孔の出口下流に形成される速度境界層の厚みの中央部分に対して近づけることができる。なお、「主孔の中心線」とは、主孔の中心を通過するとともに、主孔から吹き出される気流の主流に沿って延びる線である。
According to the twelfth aspect, in the auxiliary hole of the air blowing device, the tangent line extending along the inner wall surface of the auxiliary hole intersects the center line of the main hole at the downstream of the outlet of the main hole at least at a part of the inner wall surface. Thus, the auxiliary inclined structure is inclined with respect to the center line of the main hole. The vortex suppressing structure includes an auxiliary inclined structure. According to this, the air flow blown out from the auxiliary hole can be brought closer to the central portion of the thickness of the velocity boundary layer formed downstream of the outlet of the main hole. Note that the “center line of the main hole” is a line that passes through the center of the main hole and extends along the main stream of the airflow blown out of the main hole.
第13の観点によれば、空気吹出装置の吹出部は、補助孔から吹き出す気流を通過させる補助流路、補助流路を形成する内壁面に沿って流れる気流を主孔の出口下流に導く補助ガイドを含んでいる。渦抑制構造は、補助ガイドを含んでいる。これによっても、補助孔から吹き出される援護気流の主流を主孔の出口下流に形成される速度境界層の厚みの中央部分に対して近づけることができる。
According to the thirteenth aspect, the blowing unit of the air blowing device is an auxiliary channel that allows the airflow blown from the auxiliary hole to pass therethrough, and the auxiliary that guides the airflow that flows along the inner wall surface forming the auxiliary channel to the outlet downstream of the main hole. Includes a guide. The vortex suppression structure includes an auxiliary guide. Also by this, the main flow of the support airflow blown out from the auxiliary hole can be brought closer to the central portion of the thickness of the velocity boundary layer formed downstream of the outlet of the main hole.
第14の観点によれば、空気吹出装置の吹出部は、主孔の中心線を中心とする周方向において、主孔の一部と補助孔の少なくとも一部とが、互いに重なり合う重合構造になっている。そして、渦抑制構造は、重合構造を含んでいる。これによっても、補助孔から吹き出される援護気流の主流を主孔の出口下流に形成される速度境界層の厚みの中央部分に対して近づけることができる。
According to the fourteenth aspect, the blowing portion of the air blowing device has a superposition structure in which a part of the main hole and at least a part of the auxiliary hole overlap each other in the circumferential direction around the center line of the main hole. ing. And the vortex suppression structure contains the superposition | polymerization structure. Also by this, the main flow of the support airflow blown out from the auxiliary hole can be brought closer to the central portion of the thickness of the velocity boundary layer formed downstream of the outlet of the main hole.
第15の観点によれば、空気吹出装置の主孔は、前記主孔の開口縁を形成する複数の縁部を有している。複数の縁部は、異なる曲率となる縁部が隣接するとともに、隣接する縁部の接続部分が丸みを有するように環状に接続されている。これによれば、主孔の開口縁における曲率の変化点である各縁部の接続部分が丸みを有しているので、主孔が角部のない開口形状となる。これにより、主孔の出口下流付近での横渦の発達が充分に抑制されるので、主流から吹き出す作動気流の到達距離を長くすることが可能となる。
According to the fifteenth aspect, the main hole of the air blowing device has a plurality of edges that form the opening edge of the main hole. The plurality of edges are annularly connected so that edges having different curvatures are adjacent to each other, and connecting portions of the adjacent edges are rounded. According to this, since the connection part of each edge part which is a change point of the curvature in the opening edge of a main hole has roundness, a main hole becomes an opening shape without a corner | angular part. As a result, the development of the lateral vortex near the outlet downstream of the main hole is sufficiently suppressed, so that the reach of the working air current blown out from the main flow can be increased.
第16の観点によれば、空気吹出装置は、気流を吹き出す吹出部を備える。吹出部は、作動気流となる気流を吹き出す少なくとも1つの主孔を含んでいる。主孔は、主孔の開口縁を形成する複数の縁部を有している。複数の縁部は、異なる曲率となる縁部が隣接するとともに、隣接する縁部の接続部分が丸みを有するように接続されている。
According to a sixteenth aspect, the air blowing device includes a blowing unit that blows out an air flow. The blow-out part includes at least one main hole that blows out an air flow serving as a working air flow. The main hole has a plurality of edges that form the opening edge of the main hole. The plurality of edges are connected so that edges having different curvatures are adjacent to each other, and connecting portions of the adjacent edges are rounded.
第17の観点によれば、空気吹出装置の吹出部は、主孔の周囲に形成されて主孔から吹き出される作動気流による空気の引き込み作用を抑えるための援護気流を吹き出す少なくとも1つの補助孔を含んでいる。これによると、作動気流の空気の引き込みを補助孔から吹き出す援護気流によって抑えることができる。
According to the seventeenth aspect, the blowing portion of the air blowing device has at least one auxiliary hole that blows out a support airflow that is formed around the main hole and suppresses the air drawing action by the working airflow blown out of the main hole. Is included. According to this, the drawing-in of the air of the working airflow can be suppressed by the support airflow that blows out from the auxiliary hole.
第18の観点によれば、空気吹出装置の主孔は、異なる曲率となる2種の前記縁部で構成されている。これによれば、主孔の開口縁における曲率の変化量が少ないので、主孔から気流が吹き出される際に形成される無数の渦輪同士の干渉を抑制して、作動気流の到達距離の向上を図ることができる。
According to an eighteenth aspect, the main hole of the air blowing device is composed of two types of the edge portions having different curvatures. According to this, since the amount of change in the curvature at the opening edge of the main hole is small, the interference of the infinite number of vortex rings formed when the airflow is blown from the main hole is suppressed, and the reach of the working airflow is improved. Can be achieved.
第19の観点によれば、空気吹出装置の主孔は、4つの縁部で構成され、4つの縁部が4箇所で接続されている。これによれば、主孔の開口縁における曲率の変化点が少ないので、主孔から気流が吹き出される際に形成される無数の渦輪同士の干渉を抑制して、作動気流の到達距離の向上を図ることができる。
According to the nineteenth aspect, the main hole of the air blowing device is composed of four edges, and the four edges are connected at four locations. According to this, since there are few change points of the curvature at the opening edge of the main hole, the interference of innumerable vortex rings formed when the airflow is blown out from the main hole is suppressed, and the reach of the working airflow is improved. Can be achieved.
Claims (19)
- 空気吹出装置であって、
気流を吹き出す吹出部(10)を備え、
前記吹出部は、
作動気流となる気流を吹き出す少なくとも1つの主孔(14)と、
前記主孔の周囲に形成されて前記主孔から吹き出される前記作動気流による空気の引き込み作用を抑えるための援護気流を吹き出す少なくとも1つの補助孔(22)と、
前記主孔の出口下流において前記作動気流の速度境界層(BL)内に形成される横渦の発達を抑える渦抑制構造(180、28、30、32、34、36、261、263、38、40)と、を含んで構成されており、
前記渦抑制構造は、前記主孔の出口下流に形成される前記作動気流の速度境界層の厚み(δ)の中央部分(BLc)および前記援護気流の主流を前記主孔の出口下流で近づける構造になっている空気吹出装置。 An air blowing device,
It has a blowout part (10) that blows out airflow,
The blowing section is
At least one main hole (14) that blows out an airflow that is a working airflow;
At least one auxiliary hole (22) for blowing out a support airflow for suppressing an air drawing action by the working airflow formed around the main hole and blown out of the main hole;
A vortex suppression structure (180, 28, 30, 32, 34, 36, 261, 263, 38, which suppresses the development of a lateral vortex formed in the velocity boundary layer (BL) of the working airflow downstream of the outlet of the main hole. 40), and
The vortex suppression structure has a structure in which the central portion (BLc) of the velocity boundary layer thickness (δ) of the working airflow formed downstream of the outlet of the main hole and the mainstream of the support airflow approach the outlet downstream of the main hole. Air blowing device that is. - 前記渦抑制構造は、前記主孔の内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造(180、28、30)を含んでいる請求項1に記載の空気吹出装置。 The air blowing device according to claim 1, wherein the vortex suppressing structure includes a layer reduction structure (180, 28, 30) for reducing a thickness of a velocity boundary layer formed along an inner wall surface of the main hole.
- 前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)を含んでおり、
前記主流路には、前記層縮小構造として前記主孔の開口面積よりも断面積が大きい拡大部(180)が設けられている請求項2に記載の空気吹出装置。 The blowout part includes a main flow path (18) that allows an airflow blown from the main hole to pass therethrough,
The air blowing device according to claim 2, wherein the main channel is provided with an enlarged portion (180) having a cross-sectional area larger than an opening area of the main hole as the layer reducing structure. - 前記主流路には、前記層縮小構造として前記主流路を流れる気流を縮流させる縮流フィン(30)が設けられている請求項3に記載の空気吹出装置。 The air blowing device according to claim 3, wherein the main flow path is provided with a contraction fin (30) for contracting an airflow flowing through the main flow path as the layer contraction structure.
- 前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)を含んでおり、
前記主流路には、前記層縮小構造として前記主流路を流れる気流を縮流させる縮流フィン(30)が設けられている請求項2に記載の空気吹出装置。 The blowout part includes a main flow path (18) that allows an airflow blown from the main hole to pass therethrough,
The air blowing device according to claim 2, wherein the main flow path is provided with a contraction fin (30) for contracting an airflow flowing through the main flow path as the layer contraction structure. - 前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)を含んでおり、
前記主流路の少なくとも一部には、前記層縮小構造として前記主流路における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部(30)が設けられている請求項2に記載の空気吹出装置。 The blowout part includes a main flow path (18) that allows an airflow blown from the main hole to pass therethrough,
The concavo-convex portion (30) in which concave portions and convex portions are alternately arranged along the flow direction of the air flow in the main flow channel is provided in at least a part of the main flow channel as the layer reducing structure. Air blowing device. - 前記凹凸部は、前記主流路の内壁面(181)に設けられた複数の溝(301)によって形成されている請求項6に記載の空気吹出装置。 The air blowout device according to claim 6, wherein the uneven portion is formed by a plurality of grooves (301) provided in an inner wall surface (181) of the main flow path.
- 前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)、前記補助孔から吹き出す気流を通過させる補助流路(24)、前記主流路および前記補助流路を仕切る仕切部(26)を含んでおり、
前記仕切部には、前記渦抑制構造として前記主流路を流れる気流の一部を前記補助流路に導く連通孔(261)が少なくとも1つ形成されている請求項1または2に記載の空気吹出装置。 The blow-out section includes a main flow path (18) that allows an air flow blown from the main hole to pass therethrough, an auxiliary flow path (24) that allows an air flow blown from the auxiliary hole to pass through, and a partition section (26 that divides the main flow path and the auxiliary flow path. )
The air blowout according to claim 1 or 2, wherein at least one communication hole (261) for guiding a part of the airflow flowing through the main flow path to the auxiliary flow path as the vortex suppressing structure is formed in the partition part. apparatus. - 前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)、前記補助孔から吹き出す気流を通過させる補助流路(24)、前記主流路および前記補助流路を仕切る仕切部(26)を含んでおり、
前記仕切部には、空気流れ上流側に位置する上流側端部(262)に、縦渦を発生させる凹凸状の縦渦発生機構(263)が設けられている請求項1または2に記載の空気吹出装置。 The blow-out section includes a main flow path (18) that allows an air flow blown from the main hole to pass therethrough, an auxiliary flow path (24) that allows an air flow blown from the auxiliary hole to pass through, and a partition section (26 that divides the main flow path and the auxiliary flow path. )
The said partition part is provided with the uneven | corrugated vertical vortex generating mechanism (263) which generate | occur | produces a vertical vortex in the upstream edge part (262) located in an air flow upstream. Air blowing device. - 前記主孔は、前記主孔の内壁面(141)を形成する少なくとも一部位において前記主孔の内壁面に沿って延びる接線(TLm)が前記補助孔の出口下流において前記補助孔の中心線(CLs)と交差するように前記補助孔の中心線に対して傾斜する主傾斜構造(32)を有しており、
前記渦抑制構造は、前記主傾斜構造を含んでいる請求項1ないし9のいずれか1つに記載の空気吹出装置。 The main hole has a tangent line (TLm) extending along the inner wall surface of the main hole at least partially forming the inner wall surface (141) of the main hole. CLs) has a main inclined structure (32) that is inclined with respect to the center line of the auxiliary hole,
The air blowing device according to any one of claims 1 to 9, wherein the vortex suppressing structure includes the main inclined structure. - 前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)、前記主流路を形成する内壁面(181)に沿って流れる気流を前記補助孔の出口下流に導く主流ガイド(38)を含んでおり、
前記渦抑制構造は、前記主流ガイドを含んでいる請求項1または2に記載の空気吹出装置。 The blow-out portion is a main flow guide (38) for guiding the air flow flowing along the inner wall surface (181) forming the main flow path to the main flow path (18) through which the air flow blown out from the main hole is downstream. Contains
The air blowing device according to claim 1, wherein the vortex suppressing structure includes the main flow guide. - 前記補助孔は、前記補助孔の内壁面(221)を形成する少なくとも一部位において前記補助孔の内壁面に沿って延びる接線(TLs)が前記主孔の出口下流において前記主孔の中心線(CLm)と交差するように前記主孔の中心線に対して傾斜する補助傾斜構造(34)を有しており、
前記渦抑制構造は、前記補助傾斜構造を含んでいる請求項1ないし11のいずれか1つに記載の空気吹出装置。 The auxiliary hole has a tangent line (TLs) extending along the inner wall surface of the auxiliary hole at least partially forming the inner wall surface (221) of the auxiliary hole. CLm) having an auxiliary inclined structure (34) that is inclined with respect to the center line of the main hole,
The air blowing device according to any one of claims 1 to 11, wherein the vortex suppressing structure includes the auxiliary inclined structure. - 前記吹出部は、前記補助孔から吹き出す気流を通過させる補助流路(24)、前記補助流路を形成する内壁面(241)に沿って流れる気流を前記主孔の出口下流に導く補助ガイド(39)を含んでおり、
前記渦抑制構造は、前記補助ガイドを含んでいる請求項1ないし7のいずれか1つに記載の空気吹出装置。 The blow-out section includes an auxiliary flow path (24) that allows an air flow blown out of the auxiliary hole to pass therethrough, and an auxiliary guide that guides an air flow that flows along an inner wall surface (241) that forms the auxiliary flow path to an outlet downstream of the main hole ( 39),
The air blowing device according to any one of claims 1 to 7, wherein the vortex suppressing structure includes the auxiliary guide. - 前記吹出部は、前記主孔の中心線(CLm)を中心とする周方向において、前記主孔の一部と前記補助孔の少なくとも一部とが、互いに重なり合う重合構造(36)になっており、
前記渦抑制構造は、前記重合構造を含んでいる請求項1ないし10のいずれか1つに記載の空気吹出装置。 The blowout part has a superposition structure (36) in which a part of the main hole and at least a part of the auxiliary hole overlap each other in the circumferential direction centering on the center line (CLm) of the main hole. ,
The air blowing device according to any one of claims 1 to 10, wherein the vortex suppressing structure includes the superposed structure. - 前記主孔は、前記主孔の開口縁を形成する複数の縁部(142a~142h)を有し、
前記複数の縁部は、異なる曲率となる縁部が隣接するとともに、隣接する縁部の接続部分が丸みを有するように環状に接続されている請求項1ないし14のいずれか1つに記載の空気吹出装置。 The main hole has a plurality of edges (142a to 142h) forming an opening edge of the main hole,
15. The plurality of edges according to any one of claims 1 to 14, wherein edges having different curvatures are adjacent to each other and are connected in an annular shape so that a connecting portion of the adjacent edges has a roundness. Air blowing device. - 空気吹出装置であって、
気流を吹き出す吹出部(10)を備え、
前記吹出部は、作動気流となる気流を吹き出す少なくとも1つの主孔(14)を含み、
前記主孔は、前記主孔の開口縁を形成する複数の縁部(142a~142h)を有し、
複数の前記縁部は、異なる曲率となる前記縁部が隣接するとともに、隣接する前記縁部の接続部分が丸みを有するように接続されている空気吹出装置。 An air blowing device,
It has a blowout part (10) that blows out airflow,
The blowout part includes at least one main hole (14) for blowing out an airflow serving as a working airflow,
The main hole has a plurality of edges (142a to 142h) forming an opening edge of the main hole,
The plurality of the edge portions are air blowing devices in which the edge portions having different curvatures are adjacent to each other, and the connection portions of the adjacent edge portions are connected so as to have a roundness. - 前記吹出部は、前記主孔の周囲に形成されて前記主孔から吹き出される前記作動気流による空気の引き込み作用を抑えるための援護気流を吹き出す少なくとも1つの補助孔(22)を含んでいる請求項16に記載の空気吹出装置。 The blow-out portion includes at least one auxiliary hole (22) that is formed around the main hole and blows out a support airflow for suppressing an air drawing action by the working airflow blown out of the main hole. Item 17. The air blowing device according to Item 16.
- 前記主孔は、異なる曲率となる2種の前記縁部で構成されている請求項15ないし17のいずれか1つに記載の空気吹出装置。 The air blowing device according to any one of claims 15 to 17, wherein the main hole is configured by two types of the edge portions having different curvatures.
- 前記主孔は、4つの前記縁部で構成され、4つの前記縁部が4箇所で接続されている請求項15ないし18のいずれか1つに記載の空気吹出装置。 The air blowing device according to any one of claims 15 to 18, wherein the main hole includes four edge portions, and the four edge portions are connected at four positions.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019001873.6T DE112019001873B4 (en) | 2018-04-11 | 2019-04-02 | air ejection device |
CN201980024737.8A CN111989524B (en) | 2018-04-11 | 2019-04-02 | Air blowing device |
US17/065,267 US11718157B2 (en) | 2018-04-11 | 2020-10-07 | Air discharge device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018076325 | 2018-04-11 | ||
JP2018-076325 | 2018-04-11 | ||
JP2018199383 | 2018-10-23 | ||
JP2018-199383 | 2018-10-23 | ||
JP2018240805A JP6977706B2 (en) | 2018-04-11 | 2018-12-25 | Air blower |
JP2018-240805 | 2018-12-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/065,267 Continuation US11718157B2 (en) | 2018-04-11 | 2020-10-07 | Air discharge device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019198571A1 true WO2019198571A1 (en) | 2019-10-17 |
Family
ID=68162861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/014657 WO2019198571A1 (en) | 2018-04-11 | 2019-04-02 | Air discharge device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019198571A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112747366A (en) * | 2019-10-31 | 2021-05-04 | 广东美的制冷设备有限公司 | Vortex ring delivery device, air conditioner indoor unit and air conditioner |
WO2021117440A1 (en) * | 2019-12-13 | 2021-06-17 | 株式会社デンソー | Air blowing device |
WO2021117439A1 (en) * | 2019-12-13 | 2021-06-17 | 株式会社デンソー | Air-blowing device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60256747A (en) * | 1984-06-01 | 1985-12-18 | Nippon Denso Co Ltd | Blow-off port of air conditioner |
JPH0420346A (en) * | 1990-05-15 | 1992-01-23 | Tabai Espec Corp | Ethylene oxide vaporizer for sterilization |
JP2000280736A (en) * | 1999-03-30 | 2000-10-10 | Denso Corp | Blowout grill |
JP2009034604A (en) * | 2007-08-01 | 2009-02-19 | Sharp Corp | Air cleaner |
WO2014017208A1 (en) * | 2012-07-24 | 2014-01-30 | 学校法人福岡大学 | Fluid transportation device and fluid transportation method |
US20140357178A1 (en) * | 2013-05-29 | 2014-12-04 | Faurecia Innenraum Systeme Gmbh | Air Vent |
-
2019
- 2019-04-02 WO PCT/JP2019/014657 patent/WO2019198571A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60256747A (en) * | 1984-06-01 | 1985-12-18 | Nippon Denso Co Ltd | Blow-off port of air conditioner |
JPH0420346A (en) * | 1990-05-15 | 1992-01-23 | Tabai Espec Corp | Ethylene oxide vaporizer for sterilization |
JP2000280736A (en) * | 1999-03-30 | 2000-10-10 | Denso Corp | Blowout grill |
JP2009034604A (en) * | 2007-08-01 | 2009-02-19 | Sharp Corp | Air cleaner |
WO2014017208A1 (en) * | 2012-07-24 | 2014-01-30 | 学校法人福岡大学 | Fluid transportation device and fluid transportation method |
US20140357178A1 (en) * | 2013-05-29 | 2014-12-04 | Faurecia Innenraum Systeme Gmbh | Air Vent |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112747366A (en) * | 2019-10-31 | 2021-05-04 | 广东美的制冷设备有限公司 | Vortex ring delivery device, air conditioner indoor unit and air conditioner |
WO2021117440A1 (en) * | 2019-12-13 | 2021-06-17 | 株式会社デンソー | Air blowing device |
WO2021117439A1 (en) * | 2019-12-13 | 2021-06-17 | 株式会社デンソー | Air-blowing device |
JP2021094874A (en) * | 2019-12-13 | 2021-06-24 | 株式会社デンソー | Air blowout device |
JP7259727B2 (en) | 2019-12-13 | 2023-04-18 | 株式会社デンソー | air blower |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11718157B2 (en) | Air discharge device | |
WO2019198571A1 (en) | Air discharge device | |
KR102317333B1 (en) | Blower and outdoor unit of air conditioner having the same | |
US11255346B2 (en) | Fan and inlet guide grid for a fan | |
JP5935769B2 (en) | Air conditioner for vehicles | |
US10633097B2 (en) | Three dimensional pinched airflow nozzle and methods for use thereof | |
JP7499302B2 (en) | Attachment and airflow outlet structure | |
US20210016634A1 (en) | Air discharge device | |
CN112105516A (en) | Fluid blowing device | |
KR20200122307A (en) | Device for reducing drag force of transverse duct outlet flow | |
CN112343865B (en) | Air duct structure and air treatment device | |
JPH0510574B2 (en) | ||
JP2002349944A (en) | Uniform flow blowing device | |
WO2019198573A1 (en) | Air discharge device | |
WO2019198572A1 (en) | Air discharge device | |
JPH058346B2 (en) | ||
JP2017190134A (en) | Air blowing device | |
WO2022228558A1 (en) | Air door of air conditioning module and air conditioning module | |
US3261162A (en) | Lifting apparatus | |
CN114322077A (en) | Air conditioner indoor unit and air conditioner | |
JPH09145534A (en) | Supersonic nozzle | |
WO2019216157A1 (en) | Fluid discharge apparatus | |
JP2020163911A (en) | Cooling duct device of intercooler for vehicle | |
JP6813973B2 (en) | Chamber duct for air conditioning | |
JP2021139548A (en) | register |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19786067 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19786067 Country of ref document: EP Kind code of ref document: A1 |