[go: up one dir, main page]

WO2019198147A1 - チタン合金およびその製造方法 - Google Patents

チタン合金およびその製造方法 Download PDF

Info

Publication number
WO2019198147A1
WO2019198147A1 PCT/JP2018/015065 JP2018015065W WO2019198147A1 WO 2019198147 A1 WO2019198147 A1 WO 2019198147A1 JP 2018015065 W JP2018015065 W JP 2018015065W WO 2019198147 A1 WO2019198147 A1 WO 2019198147A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
titanium alloy
phase
corrosion resistance
titanium
Prior art date
Application number
PCT/JP2018/015065
Other languages
English (en)
French (fr)
Inventor
浩史 神尾
一浩 ▲高▼橋
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2018/015065 priority Critical patent/WO2019198147A1/ja
Priority to RU2020128914A priority patent/RU2752094C1/ru
Priority to JP2020512970A priority patent/JP6927418B2/ja
Priority to CN201880091738.XA priority patent/CN111902550B/zh
Priority to KR1020207026577A priority patent/KR102340036B1/ko
Publication of WO2019198147A1 publication Critical patent/WO2019198147A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a titanium alloy and a manufacturing method thereof.
  • Industrial pure titanium exhibits excellent corrosion resistance even in seawater that is corroded by general-purpose stainless steel such as SUS304. Utilizing this high corrosion resistance, it is used in seawater desalination plants.
  • materials for chemical plants may be used in environments that are more corrosive than seawater such as hydrochloric acid. Under such circumstances, industrial pure titanium also corrodes significantly.
  • Patent Document 1 discloses an alloy to which a platinum group element such as Pd is added.
  • Patent Document 2 and Non-Patent Document 1 disclose alloys in which intermetallic compounds are precipitated in addition to the addition of platinum group elements.
  • titanium alloys use rare elements such as Pd, the material cost is improved. Therefore, there is a problem of improving the corrosion resistance of titanium without using an expensive rare element. Accordingly, various proposals have been made regarding titanium alloys that use general-purpose elements without using rare elements.
  • Patent Document 3 discloses an invention in which Ti is used to improve the corrosion resistance and strength of Ti.
  • the titanium alloy described in Patent Document 3 has a problem in workability because TiC is precipitated, which causes a problem when actually applied to a heat exchanger or a plant member.
  • An object of the present invention is to provide a titanium alloy having improved corrosion resistance while maintaining high workability by adding C instead of a rare element.
  • a titanium alloy added with 0.10 to 0.30% C is heat-treated at 750 to 820 ° C. and cooled at a rate of 0.001 ° C./sec or more.
  • the present inventors have found that the surface texture can be made into an ⁇ single phase, and the corrosion resistance can be improved while maintaining excellent workability.
  • the gist of the present invention is as follows. (1) By mass%, C: 0.10 to 0.30%, N: 0.001 to 0.03%, S: 0.001 to 0.03%, P: 0.001 to 0.03% , Si: 0.001 to 0.10%, Fe: 0.01 to 0.3%, H: 0.015% or less, O: 0.25% or less, the balance being Ti and inevitable impurities , Titanium alloy whose surface structure is ⁇ single phase.
  • a method for producing a titanium alloy comprising subjecting a titanium alloy to a finish heat treatment at 750 to 820 ° C. and cooling at a rate of 0.001 ° C./sec or more.
  • the present invention it is possible to provide a titanium alloy having good corrosion resistance while maintaining high workability. Specifically, when a titanium alloy having the composition range of the present invention is produced by the production method of the present invention, the surface structure becomes an ⁇ single phase, and both workability and corrosion resistance are improved.
  • the titanium alloy of the present invention has C: 0.10 to 0.30%, N: 0.001 to 0.03%, S: 0.001 to 0.03%, P: 0.001 to 0.03% , Si: 0.001 to 0.10%, Fe: 0.01 to 0.3%, H: 0.015% or less (including 0%), O: 0.25% or less (including 0%)
  • the balance is Ti and inevitable impurities. In the following description, all contents indicated by “%” indicate “% by mass”.
  • ⁇ C 0.10 to 0.30%> C plays an important role in improving the corrosion resistance in the present invention.
  • the corrosion rate decreases and the corrosion resistance improves (FIG. 1).
  • the effect of improving corrosion resistance due to the C content is remarkably exhibited when the content is 0.10% or more.
  • the effect of improving corrosion resistance by adding C is most remarkable when an ⁇ single-phase structure is formed and C exists as an interstitial solid solution element in the ⁇ phase.
  • the addition of a large amount of C is not preferable because it promotes the precipitation of TiC which adversely affects workability. Addition of a large amount of C not only adversely affects the workability but also does not sufficiently exhibit the effect of improving corrosion resistance.
  • the C content is 0.10 to 0.30%.
  • a more preferable lower limit of the content of solid solution C is 0.12%, and a more preferable upper limit of the content of solid solution C is 0.28%.
  • the ⁇ phase in which C dissolves as an interstitial solid solution element is the ⁇ phase of the surface texture described later.
  • N is an essential element effective for improving the strength, but as its content increases, ductility and toughness deteriorate.
  • N is an interstitial solid solution element, like C, which plays an important role in improving corrosion resistance in the present invention. Therefore, there is a possibility that the solid solution content of C is lowered due to the increase of the N content. Therefore, the N content is set to 0.001 to 0.03%. A more preferable upper limit of the N content is 0.025%.
  • S is an essential element effective for improving the strength, but as its content increases, ductility and toughness deteriorate. Further, S is an interstitial solid solution element as C plays an important role in improving the corrosion resistance in the present invention. Therefore, there is a possibility that the solid solution content of C is lowered due to the increase of the S content. Therefore, the S content is set to 0.001 to 0.03%. A more preferable upper limit of the S content is 0.025%.
  • P is an essential element effective for improving the strength, but the ductility and toughness deteriorate as the content increases. Further, P is an interstitial solid solution element like C that plays an important role in improving the corrosion resistance in the present invention. Therefore, there exists a possibility that the solid solution content of C may fall by the increase in P content. Therefore, the P content is 0.001 to 0.03%. A more preferable upper limit of the P content is 0.025%.
  • Si 0.001 to 0.10%>
  • Si is a relatively inexpensive element and is an effective element for improving heat resistance (oxidation resistance, high temperature strength).
  • heat resistance oxidation resistance, high temperature strength
  • the Si content is 0.001 to 0.10%.
  • a more preferable lower limit of the Si content is 0.003%, and a more preferable upper limit of the Si content is 0.08%.
  • Fe is an element effective for improving the strength, but the ductility and toughness deteriorate as the content increases. Moreover, Fe is a strong ⁇ -stabilizing element among the elements contained in the titanium alloy of the present invention, and when added in a large amount, it becomes difficult to obtain an ⁇ single-phase structure described later. Therefore, the Fe content is set to 0.01 to 0.30%. A more preferable lower limit of the Fe content is 0.03%, and a more preferable upper limit of the Fe content is 0.25%.
  • H is an element that forms titanium hydride and degrades the ductility and toughness of the material. Therefore, it is better that the content is small, but an increase in H is inevitable in the manufacturing process.
  • H is an interstitial solid solution element as well as C which plays an important role in improving the corrosion resistance in the present invention. Therefore, there is a possibility that the solid solution content of C is lowered due to the increase of the H content. Therefore, the H content is limited to 0.015% or less.
  • high-purity sponge titanium may be used, but if too much high-purity sponge titanium is used, the cost increases.
  • H is an impurity element and may be 0%, but H is preferably 0.001% or more from the viewpoint of cost. A more preferable upper limit of the H content is 0.005%.
  • O is an essential element effective for improving the strength, but the ductility and toughness deteriorate as the content increases.
  • O is an interstitial solid solution element as C plays an important role in improving the corrosion resistance in the present invention. Therefore, there is a possibility that the solid solution content of C decreases due to an increase in the O content. Therefore, the O content is 0.25% or less.
  • high-purity sponge titanium may be used, but if too much high-purity sponge titanium is used, the cost increases.
  • O is an impurity element and may be 0%. From the viewpoint of cost, O is preferably 0.01% or more. A more preferable upper limit of the O content is 0.20%.
  • ⁇ Surface is ⁇ single phase>
  • the surface layer is ⁇ single phase means that the surface layer structure is ⁇ phase and the intensity of the X-ray diffraction peak of TiC is 10% or less compared to the background intensity.
  • the surface layer is a range from the surface to a depth of 5 ⁇ m.
  • the ⁇ phase does not include the ⁇ ′ phase or the acicular ⁇ phase.
  • FIG. 3 shows the state of the surface of the titanium alloy manufactured by the manufacturing method of the present invention.
  • the ⁇ phase is composed of a hexagonal close packed structure, and has a different crystal structure and grain boundary distribution from the ⁇ ′ phase and the acicular ⁇ phase formed by transformation from the ⁇ phase.
  • C atoms dissolved in the ⁇ phase are likely to exist as interstitial solid solution elements between Ti atoms, and the corrosion resistance can be improved by acting on the electronic state existing around the Ti nucleus to suppress the anode reaction.
  • An anode reaction refers to a reaction in which a metal corrodes and becomes ionized. When the metal is ionized, it is necessary to dissociate the electrons from the Ti nucleus, and by dissolving C in the ⁇ phase, it is difficult for the electrons to dissociate and the corrosion resistance is improved.
  • the ⁇ ′ phase is not a close-packed structure, and the acicular ⁇ phase is largely affected by segregation at the grain boundaries, so that a sufficient corrosion resistance improvement effect cannot be obtained compared to the ⁇ phase.
  • TiC is a hard compound and significantly deteriorates the workability of the material.
  • the carbon of the titanium alloy of the present invention is almost solid-solved and TiC hardly precipitates, the workability is not deteriorated.
  • the heat treatment temperature is 750 to 820 ° C.
  • the holding time is no particular limitation on the holding time in this temperature range, and holding for 1 sec or longer, preferably 30 sec or longer is sufficient.
  • FIG. 4 shows a surface layer of a titanium alloy manufactured by a conventional method in which heat treatment is performed outside this temperature range. In the surface layer, island-like TiC precipitates are generated (FIG. 4). TiC is a hard compound and significantly deteriorates the workability of the material. Therefore, the workability of the titanium alloy manufactured by the conventional method is deteriorated.
  • the cooling rate of the present invention is 0.001 ° C./sec or more, preferably 1 ° C./sec or more. A higher cooling rate can suppress the precipitation of TiC. However, an excessively high cooling rate adversely affects the shape maintenance of the titanium plate, so the upper limit is set to 2000 ° C./sec.
  • the manufacturing method of the titanium alloy of this invention is demonstrated.
  • the titanium alloy of the present invention as with normal industrial pure titanium, may be used at any time between each process such as casting ⁇ bullet rolling (or hot forging) ⁇ hot rolling ⁇ annealing ( ⁇ cold rolling ⁇ final annealing). By using blasting, pickling treatment, etc., it can be produced without using any special method.
  • the step of parentheses ⁇ cold rolling ⁇ final annealing
  • Titanium ingots having respective component compositions shown in Table 1 were cast in a vacuum arc melting furnace using a melting raw material containing sponge titanium and a predetermined additive element.
  • the additive elements Fe was added with electrolytic iron, and C was added with TiC powder.
  • Al, V, Cr, Ru, Pd, Ni, and Co are not intentionally added elements, and the values in the table indicate that the content of each of the above elements is at an impurity level. Is.
  • test piece for corrosion resistance evaluation is produced by pickling and machining. did. Then, vacuum annealing was implemented at each temperature shown in Table 2, and corrosion resistance was evaluated.
  • the surface texture was identified by XRD (X-ray diffraction) and microstructure observation.
  • the X-ray diffraction conditions were CoK ⁇ rays as characteristic X-rays, a voltage of 30 kV, and a current of 100 mA.
  • the range of X-ray diffraction was 10 ° ⁇ 2 ⁇ ⁇ 110 °, the step was 0.04 °, the integration time was 2 s, and the X-ray incident angle was 0.3 °.
  • the corrosion resistance was evaluated based on the calculated corrosion rate by immersing the test piece at 90 ° C. in a 3 mass% hydrochloric acid aqueous solution for 168 hours and comparing the weight before and after the immersion. The case where the corrosion rate was 2 mm / year or less was regarded as acceptable. Table 2 shows the results of the corrosion resistance evaluation test.
  • the workability was evaluated by the tensile test by the method described in JIS Z 2241 and the elongation. The measurement of elongation was performed by an extensometer, and the case where the total elongation was 40% or more was regarded as acceptable.
  • No. 10 to 16 are material components such as carbon within the scope of the present invention, but the heat treatment temperature or cooling rate is outside the scope of the present invention, so the surface texture does not become ⁇ single phase and the corrosion rate is greatly satisfied.
  • No elongation was shown. No. Since 14, 16, 18, and 20 had a slow cooling rate, TiC precipitated during the cooling process. No. In elements 17 to 24, elements such as S, P, Si and the like that lower the solid solubility limit of C are added beyond the range of the present invention. Further, the corrosion resistance was not improved, and TiC was precipitated, so that the elongation was low. Nos. 1 and 5 showed almost no discoloration or the like in the outdoor environment, whereas Nos. 23 and 24 had a brown surface in the outdoor environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

質量%で、C :0.10~0.30%、N :0.001~0.03%、S :0.001~0.03%、P :0.001~0.03%、Si:0.001~0.10%、Fe:0.01~0.3%、H :0.015%以下、O :0.25%以下であり、残部がTi及び不可避的不純物であり、表層がα単相であることを特徴とするチタン合金。

Description

チタン合金およびその製造方法
 本発明は、チタン合金及びその製造方法に関する。
 工業用純チタンは、SUS304などの汎用ステンレス鋼では腐食してしまう海水においても優れた耐食性を示す。この高い耐食性を活かして海水淡水化プラント等で使用されている。
 一方で、化学プラント用の材料は、塩酸等の海水以上に腐食性の高い環境下で使用される場合がある。このような環境下では、工業用純チタンも顕著に腐食する。
 このような腐食性の高い環境下での使用を企図して、工業用純チタンよりも腐食性の高い環境下での耐食性に優れた耐食チタン合金が開発されてきた。
 特許文献1には、Pdなどの白金族元素を添加した合金が開示されている。特許文献2及び非特許文献1には、白金族元素添加に加えて金属間化合物を析出させた合金が開示されている。
 これらのチタン合金は、Pd等の希少元素を使用するため、素材コストを向上させる。そのため、高価な希少元素を使用せず、チタンの耐食性を向上させるという課題を有している。そこで、希少元素を使用せず、汎用元素を活用したチタン合金に関して、様々な提案がなされている。
 そこで、特許文献3には、Cを使用してTiの耐食性と強度を向上させた発明が開示されている。しかしながら、図4に示す通り、特許文献3に記載のチタン合金は、TiCが析出し、加工性に課題があり、実際に熱交換器やプラント部材に適用する場合に問題となる。
国際公開第2007/077645号 特開平6-25779号公報 特表第2009-509038号公報
「鉄と鋼」、vol.80,No.4(1994),P353-358
 本発明は、希少元素に代えて、Cを添加することで、高い加工性を維持しつつ、耐食性を向上させたチタン合金を提供することを課題とする。
 本発明者らが研究を進めた結果、0.10~0.30%のCを添加したチタン合金を、750~820℃で熱処理を施し、0.001℃/sec以上の速度で冷却することで、表面組織をα単相にすることできて、優れた加工性を維持しつつ、耐食性も向上させることができることを見出した。
 本発明の要旨は以下のとおりである。
 (1)質量%で、C :0.10~0.30%、N :0.001~0.03%、S :0.001~0.03%、P :0.001~0.03%、Si:0.001~0.10%、Fe:0.01~0.3%、H :0.015%以下、O :0.25%以下であり、残部がTi及び不可避的不純物であり、表面組織がα単相であるチタン合金。
 (2)質量%で、C :0.10~0.30%、N :0.001~0.03%、S :0.001~0.03%、P :0.001~0.03%、Si:0.001~0.10%、Fe:0.01~0.3%、H :0.015%以下、O :0.25%以下であり、残部がTi及び不可避的不純物であるチタン合金に750~820℃で仕上熱処理を施し、0.001℃/sec以上の速度で冷却するチタン合金の製造方法。
 本発明によれば、高い加工性を維持しつつ耐食性の良好なチタン合金を提供することができる。具体的には、本発明の組成範囲のチタン合金を、本発明の製造方法で製造すると、表面組織がα単相となり、加工性と耐食性の両方が向上していた。
塩酸浸漬試験における腐食速度とC添加量の関係を示した図である。 塩酸浸漬試験における腐食速度と熱処理温度の関係を示した図である。 本発明の製造方法で製造したチタン合金の金属組織写真の一例である。 従来の製造方法で製造したチタン合金の金属写真の一例である。
 (成分組成)
 本発明のチタン合金は、C:0.10~0.30%、N:0.001~0.03%、S:0.001~0.03%、P:0.001~0.03%、Si:0.001~0.10%、Fe:0.01~0.3%、H:0.015%以下(0%を含む)、O:0.25%以下(0%を含む)であり、残部がTi及び不可避的不純物である。なお、以下の説明において「%」で示す含有量は、全て「質量%」を示す。
 <C:0.10~0.30%>
 Cは、本発明において耐食性向上に重要な役割を果たす。Cの含有量増大に伴い腐食速度は低下し、耐食性が向上する(図1)。C含有による耐食性向上効果は0.10%以上の場合に顕著に発現する。一方、後述するように、C添加による耐食性向上効果はα単相組織を形成し、Cがα相に侵入型固溶元素として存在する場合に最も顕著になる。さらに、多量のC添加は加工性に悪影響を及ぼすTiCの析出を促進するため好ましくない。多量のC添加は、加工性に悪影響を及ぼすことに加え、耐食性向上効果を充分には発現しない。よって、Cの含有量は0.10~0.30%とする。なお、より好ましい固溶Cの含有量の下限は0.12%、より好ましい固溶Cの含有量の上限は0.28%である。Cが侵入型固溶元素として固溶するα相は、後述する表面組織のα相である。
 <N:0.001~0.03%>
 Nは強度向上に有効な必須元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Nは、本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、N含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Nの含有量は0.001~0.03%とする。より好ましいNの含有量の上限は0.025%である。
 <S:0.001~0.03%>
 Sは強度向上に有効な必須元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Sは、本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、S含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Sの含有量は0.001~0.03%とする。より好ましいSの含有量の上限は0.025%である。
 <P:0.001~0.03%>
 Pは強度向上に有効な必須元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Pは、本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、P含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Pの含有量は0.001~0.03%とする。より好ましいPの含有量の上限は0.025%である。
 <Si:0.001~0.10%>
 Siは比較的安価な元素であり、耐熱性(耐酸化性、高温強度)向上に有効な元素であるが、多量の添加は化合物析出を促し、延性及び靭性を劣化させる。したがって、Siの含有量は0.001~0.10%とする。より好ましいSiの含有量の下限は0.003%、より好ましいSiの含有量の上限は0.08%である。
 <Fe:0.01~0.3%>
 Feは強度向上に有効な元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Feは、本発明のチタン合金に含有される元素の中では強力なβ安定化元素であり、多量に添加されると、後述するα単相組織を得にくくなる。したがって、Feの含有量は0.01~0.30%とする。より好ましいFeの含有量の下限は0.03%、より好ましいFeの含有量の上限は0.25%である。
 <H:0.015%以下>
 Hは、チタン水素化物を形成し素材の延性及び靭性を劣化させる元素である。そのため含有量は少ない方がよいが、製造工程でHの増加は不可避である。また、Hは本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、H含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Hの含有量は0.015%以下に制限する。また、このような低Hのチタン合金を得る場合は高純度スポンジチタンを用いればよいが、高純度のスポンジチタンを使用しすぎるとコスト増となる。本発明において、Hは不純物元素であり、0%でも良いが、コスト面からHは0.001%以上が好ましい。より好ましいHの含有量の上限は0.005%である。
 <O:0.25%以下>
 Oは、強度向上に有効な必須元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Oは本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、O含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Oの含有量は0.25%以下とする。また、このような低Oのチタン合金を得る場合は高純度スポンジチタンを用いればよいが、高純度のスポンジチタンを使用しすぎるとコスト増となる。本発明において、Oは不純物元素であり、0%でも良い、コスト面からはOは0.01%以上が好ましい。より好ましいOの含有量の上限は0.20%である。
<表層がα単相>
 表層がα単相とは、表層の組織がα相であり、TiCのX線回析ピークの強度がバックグラウンドの強度に比較して10%以下であることを意味する。ここで、表層とは、表面から深さ5μmまでの範囲である。α相には、α’相や針状α相は含まれない。図3は、本願発明の製造方法で製造したチタン合金の表面の様子である。
α相は、六方細密充填構造から構成され、β相から変態して形成するα'相や針状α相とは結晶構造や粒界分布が異なる。α相に固溶したC原子はTi原子間に侵入型固溶元素として存在しやすく、Ti原子核の周囲に存在する電子状態に作用することでアノード反応を抑制することで耐食性を向上できる。アノード反応とは金属が腐食してイオン化する反応を指す。金属がイオン化する際にTi原子核から電子を乖離させる必要があり、α相にCを固溶させることで、電子を乖離しがたくし耐食性を向上させている。α'相は最密構造でないこと、針状α相は粒界偏析の影響が大きいことが原因となり、α相に比べて十分な耐食性向上効果を得られない。
TiCは硬質な化合物であり、素材の加工性を著しく劣化させる。しかし、本発明のチタン合金の表層には、炭素がほとんど固溶し、TiCもほとんど析出しないため、加工性が劣化することはない。
 <熱処理温度>
 上述した成分組成を満足する素材であっても、熱処理温度によって表層の組織が変化する。そのため発揮される性能も変わってくる。図2に示されるように、800℃付近の熱処理で製造したチタン合金の腐食速度が最も抑制される。したがって、本発明においては、熱処理温度を750~820℃である。この温度域での保持時間については特別な限定はなく、1sec以上、望ましくは30sec以上の時間保持すれば充分である。
750~820℃でチタン合金の腐食速度が抑制される理由としては、この温度域以外で熱処理を施すとTiCが析出したり、組織がα’相や針状α相になったりするためである。たとえば、図4には、この温度域以外で熱処理を施した従来の方法で製造されるチタン合金の表層の様子が示されている。表層には、島状のTiC析出物が発生している(図4)。TiCは硬質な化合物であり、素材の加工性を著しく劣化させる。そのため、従来の方法で製造されたチタン合金は加工性が劣化している。
<冷却速度>
 熱処理温度が上記の範囲であっても、冷却速度が遅い場合は、冷却過程でTiCが析出するため、表層がαにならない。本発明の冷却速度は、0.001℃/sec以上、好ましくは1℃/sec以上がよい。また、冷却速度は速い方がTiCの析出を抑制できるが、速すぎる冷却速度はチタン板の形状維持に悪影響をもたらすため、上限を2000℃/secとする。
 <製造方法>
 次に、本発明のチタン合金の製造方法について説明する。本発明のチタン合金は、通常の工業用純チタンと同様に、鋳造→分塊圧延(又は熱間鍛造)→熱間圧延→焼鈍(→冷間圧延→最終焼鈍)といった各工程間に、随時ブラスト、酸洗処理を入れること等によって、特に特殊な方法を用いることなく製造することができる。なお、上記工程の説明で、括弧書きの(→冷間圧延→最終焼鈍)という工程は必ずしも必要ではないが、製造するチタンの板厚、形状、大きさなどによって適宜実施する。
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例に限定されるものではない。
 スポンジチタン及び所定の添加元素を含む溶解原料と用い、真空アーク溶解炉により、表1に示す各成分組成のチタンインゴットを鋳造した。添加元素のうち、Feは電解鉄、CはTiC粉末をそれぞれ添加した。
 なお、表中の、Al、V、Cr、Ru、Pd、Ni、及びCoは意図的に添加する元素ではなく、表中の値は上記のそれぞれの元素含有量が不純物レベルであることを示すものである。
Figure JPOXMLDOC01-appb-T000001
 鋳造したチタン鋳塊を用いて、800~1000℃の加熱温度で鍛造、熱間圧延を行い、厚さ4.0mmの熱延板とし、酸洗と機械加工により耐食性評価用の試験片を作製した。その後、表2に示すそれぞれ温度で真空焼鈍を実施し、耐食性を評価した。
 表面組織の同定は、XRD(X線回折)とミクロ組織観察により行った、X線回折の条件は、特性X線としてCoKα線を用い、電圧は30kV、電流は100mAとした。X線回折の範囲は10°≦2θ≦110°、ステップは0.04°、積算時間は2sとし、X線入射角は0.3°とした。試験片(縦20mm、横20mm)のX線回折ピークの位置からα相、β相、α’相、TiCの有無を調査し、ミクロ組織観察により針状αの有無を含めて総合的に表面組織を調査した。X線回折ピーク強度がバックグラウンドよりも10%を超えて検出された場合にβ相、α’相、TiCの形成を認め、そのほかの場合にはα単相であると判断した。 
 耐食性は、試験片を90℃、3mass%の塩酸水溶液に168h浸漬し、浸漬前後の重量を比較することで、算出した腐食速度の大小により評価した。腐食速度が2mm/year以下の場合を合格とした。耐食性評価試験の結果を表2に示す。加工性は、JIS Z 2241に記載された方法で引張試験を行い、その伸びによって評価した。伸びの測定は、伸び計によって行い、全伸びが40%以上の場合を合格とした。
Figure JPOXMLDOC01-appb-T000002
 本発明で規定する素材成分、熱処理温度、表層組織の全てを満足するNo.1~9では腐食速度が顕著に低く、耐食性が向上し、十分な伸びを示すことから耐食性と加工性の両立が確認できた。
No.10~16は炭素などの素材成分は本発明の範囲内にあるが、熱処理温度もしくは冷却速度が本発明の範囲外であるため、表面組織がα単相とならず、腐食速度が大きく満足する伸びを示さなかった。No.14、16、18、20は冷却速度が遅いため、冷却過程でTiCが析出した。
No.17~24は、S、P、SiなどCの固溶限を低下させる元素が、本発明の範囲以上に添加されており、本発明の温度や冷却速度を満足してもα単相にならず、耐食性も向上せず、TiCも析出しているために伸びが低かった。
No.1、5は、屋外の環境では変色等がほとんど見られなかったのに対して、No.23、24は、屋外の環境では表面が褐色となった。

Claims (2)

  1.  質量%で、
      C :0.10~0.30%、
      N :0.001~0.03%、
      S :0.001~0.03%、
      P :0.001~0.03%、
      Si:0.001~0.10%、
      Fe:0.01~0.3%、
      H :0.015%以下、
      O :0.25%以下
    であり、残部がTi及び不可避的不純物であり、表層がα単相であることを特徴とするチタン合金。
  2.  質量%で、
      C :0.10~0.30%、
      N :0.001~0.03%、
      S :0.001~0.03%、
      P :0.001~0.03%、
      Si:0.001~0.10%、
      Fe:0.01~0.3%、
      H :0.015%以下、
      O :0.25%以下
    であり、残部がTi及び不可避的不純物であるチタン合金に750~820℃で仕上熱処理を施し、0.001℃/sec以上の速度で冷却することを特徴とするチタン合金の製造方法。
PCT/JP2018/015065 2018-04-10 2018-04-10 チタン合金およびその製造方法 WO2019198147A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/015065 WO2019198147A1 (ja) 2018-04-10 2018-04-10 チタン合金およびその製造方法
RU2020128914A RU2752094C1 (ru) 2018-04-10 2018-04-10 Титановый сплав и способ его получения
JP2020512970A JP6927418B2 (ja) 2018-04-10 2018-04-10 チタン合金およびその製造方法
CN201880091738.XA CN111902550B (zh) 2018-04-10 2018-04-10 钛合金及其制造方法
KR1020207026577A KR102340036B1 (ko) 2018-04-10 2018-04-10 티타늄 합금 및 그의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015065 WO2019198147A1 (ja) 2018-04-10 2018-04-10 チタン合金およびその製造方法

Publications (1)

Publication Number Publication Date
WO2019198147A1 true WO2019198147A1 (ja) 2019-10-17

Family

ID=68163163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015065 WO2019198147A1 (ja) 2018-04-10 2018-04-10 チタン合金およびその製造方法

Country Status (5)

Country Link
JP (1) JP6927418B2 (ja)
KR (1) KR102340036B1 (ja)
CN (1) CN111902550B (ja)
RU (1) RU2752094C1 (ja)
WO (1) WO2019198147A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100802A1 (ja) * 2022-11-09 2024-05-16 日本製鉄株式会社 チタン材、化学装置部品、及び化学装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102678251B1 (ko) * 2021-11-19 2024-06-26 한국생산기술연구원 급랭으로 미세 석출물을 가지는 고내식성 타이타늄 합금 제조방법 및 이를 통해 제조된 고내식성 타이타늄 합금

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144413A (ja) * 2010-01-13 2011-07-28 Kobe Steel Ltd 超音波探傷試験における欠陥検出能力に優れたチタン合金ビレット
JP2013095964A (ja) * 2011-10-31 2013-05-20 Kobe Steel Ltd チタン板、チタン板の製造方法、およびプレート式熱交換器の熱交換プレートの製造方法
JP2014205904A (ja) * 2013-03-19 2014-10-30 株式会社神戸製鋼所 チタン板
WO2017018522A1 (ja) * 2015-07-29 2017-02-02 新日鐵住金株式会社 チタン複合材および熱間加工用チタン材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727821Y2 (ja) * 1976-02-27 1982-06-17
JPH0625779A (ja) 1992-07-08 1994-02-01 Nkk Corp 硫酸及び塩酸に対する耐食性に優れたチタン合金
EP0767245B1 (en) * 1995-04-21 2000-10-04 Nippon Steel Corporation High-strength, high-ductility titanium alloy and process for preparing the same
US20070062614A1 (en) 2005-09-19 2007-03-22 Grauman James S Titanium alloy having improved corrosion resistance and strength
JP3916088B2 (ja) 2005-12-28 2007-05-16 住友金属工業株式会社 耐食材用チタン合金
JP5491882B2 (ja) * 2010-01-27 2014-05-14 株式会社神戸製鋼所 冷間圧延性に優れた高強度チタン板
RU2643736C2 (ru) * 2014-01-22 2018-02-05 Ниппон Стил Энд Сумитомо Метал Корпорейшн Титановый материал или материал из титанового сплава, имеющий поверхностную электропроводность, а также использующие его сепаратор топливной ячейки и топливная ячейка
CN104099531B (zh) * 2014-07-31 2016-08-24 宁国市宁武耐磨材料有限公司 一种高硬度耐磨球及其制备方法
JP6719216B2 (ja) * 2015-03-26 2020-07-08 株式会社神戸製鋼所 α−β型チタン合金

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144413A (ja) * 2010-01-13 2011-07-28 Kobe Steel Ltd 超音波探傷試験における欠陥検出能力に優れたチタン合金ビレット
JP2013095964A (ja) * 2011-10-31 2013-05-20 Kobe Steel Ltd チタン板、チタン板の製造方法、およびプレート式熱交換器の熱交換プレートの製造方法
JP2014205904A (ja) * 2013-03-19 2014-10-30 株式会社神戸製鋼所 チタン板
WO2017018522A1 (ja) * 2015-07-29 2017-02-02 新日鐵住金株式会社 チタン複合材および熱間加工用チタン材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIMBI D. J. ET AL.: "The effect of residual interstitial elements and iron on mechanical properties of commercially pure titanium", MATERIALS LETTERS, vol. 26, no. 1 / 2, January 1996 (1996-01-01), pages 35 - 39, XP022268755, DOI: 10.1016/0167-577X(95)00204-9 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100802A1 (ja) * 2022-11-09 2024-05-16 日本製鉄株式会社 チタン材、化学装置部品、及び化学装置

Also Published As

Publication number Publication date
JPWO2019198147A1 (ja) 2021-01-14
RU2752094C1 (ru) 2021-07-22
CN111902550A (zh) 2020-11-06
KR102340036B1 (ko) 2021-12-16
JP6927418B2 (ja) 2021-08-25
KR20200118878A (ko) 2020-10-16
CN111902550B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
JP4605514B2 (ja) チタン板ならびにチタン板製造方法
CN1590570A (zh) 可时效硬化的耐腐蚀镍-铬-钼合金
WO2015132932A1 (ja) 構造用アルミニウム合金及びその製造方法
JP2014500907A (ja) Ni−Fe−Cr−Mo−合金
CN1954087B (zh) 钛合金以及钛合金材的制造方法
US8562763B2 (en) High strength α+β type titanuim alloy
JP5505214B2 (ja) 圧延方向の0.2%耐力が大きい高耐食チタン合金とその製造方法
JP6927418B2 (ja) チタン合金およびその製造方法
US20050260433A1 (en) Titanium alloys excellent in hydrogen absorption-resistance
JP7387139B2 (ja) チタン合金、その製造方法およびそれを用いたエンジン部品
CN107429329A (zh) 钛薄板以及其的制造方法
JPH083670A (ja) 加工性および耐食性に優れたNi基合金
JP6085211B2 (ja) スケール付着抑制性と成形性に優れたチタン合金材およびその製造方法、ならびに熱交換器または海水蒸発器
JP5228708B2 (ja) 耐クリープ性および高温疲労強度に優れた耐熱部材用チタン合金
TWI650428B (zh) 鈦合金及其製造方法
JP2013001973A (ja) 耐水素吸収性ならびに造管性に優れるチタン合金溶接管および溶接管用フープ製品とそれらの製造方法
JP3274175B2 (ja) 熱交換器用銅基合金およびその製造法
JP7087861B2 (ja) チタン合金及びその製造方法
JP2005139494A (ja) 成形加工用アルミニウム合金板およびその製造方法
JP4065146B2 (ja) 耐食性に優れたチタン合金及びその製造方法
WO2008047869A1 (en) Nickel material for chemical plant
JP7599685B2 (ja) チタン合金、その製造方法およびそれを用いたエンジン部品
JPH07316699A (ja) 高硬度および高強度を有する耐食性窒化物分散型Ni基合金
KR20250069637A (ko) 티타늄재, 화학 장치 부품, 및 화학 장치
JP2022024243A (ja) β型チタン合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512970

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207026577

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914402

Country of ref document: EP

Kind code of ref document: A1