[go: up one dir, main page]

WO2019196397A1 - 一种基于区块链和雾计算的大数据计算方法及系统 - Google Patents

一种基于区块链和雾计算的大数据计算方法及系统 Download PDF

Info

Publication number
WO2019196397A1
WO2019196397A1 PCT/CN2018/113896 CN2018113896W WO2019196397A1 WO 2019196397 A1 WO2019196397 A1 WO 2019196397A1 CN 2018113896 W CN2018113896 W CN 2018113896W WO 2019196397 A1 WO2019196397 A1 WO 2019196397A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
data
resource
computing
smart contract
Prior art date
Application number
PCT/CN2018/113896
Other languages
English (en)
French (fr)
Inventor
孙善宝
于治楼
张爱成
Original Assignee
济南浪潮高新科技投资发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南浪潮高新科技投资发展有限公司 filed Critical 济南浪潮高新科技投资发展有限公司
Publication of WO2019196397A1 publication Critical patent/WO2019196397A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/405Establishing or using transaction specific rules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/02Payment architectures, schemes or protocols involving a neutral party, e.g. certification authority, notary or trusted third party [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/50Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q2220/00Business processing using cryptography

Definitions

  • the present invention relates to the field of computer technology, and in particular, to a big data calculation method and system based on blockchain and fog calculation.
  • a data node having resource data is usually required to directly provide a resource data that can satisfy the calculation requirement of a big data calculation demand node having a large data calculation requirement, that is, the data node needs to calculate a demand node to the big data.
  • Direct sharing of resource data may cause resource data of the data node to leak through the big data computing demand node.
  • Embodiments of the present invention provide a big data calculation method and system based on fog calculation and blockchain, which can prevent resource data of a data node from leaking through a big data calculation demand node.
  • the present invention provides a big data calculation method based on blockchain and fog calculation, comprising:
  • At least one target data node is triggered by the verification node according to the task smart contract and each of the data information
  • Each of the target resource data is calculated according to the demand information by the selected at least one resource node to generate a calculation result, and the generated calculation result is stored to the storage location.
  • the demand information includes: a target data type, a target data identifier, and a calculation method.
  • the at least one resource node is selected from the fog computing network by the fog computing resource node, and the task intelligence contract is generated according to the selected at least one resource node and the demand information carried by the smart data computing smart contract, and the A mission intelligence contract is posted to the blockchain network, including:
  • the at least one target data node is triggered by the verification node according to the task smart contract and each of the data information, including: selecting, by the verification node, at least one target data from the at least one data node according to the storage task smart contract a node, and triggering the at least one target data node;
  • the triggering of the verification node stores the target resource data to the idle storage node according to the target data type carried by the storage task smart contract and the target data identifier.
  • the selecting a free storage node and an idle computing node from the fog computing network by the fog computing resource node further includes: generating a private key and a public key corresponding to the idle storage node;
  • the carried public key encrypts the target resource data to form a ciphertext corresponding to the target resource data, and sends a ciphertext corresponding to the target resource data to the idle storage node.
  • an embodiment of the present invention provides a big data computing system based on blockchain and fog calculation, including:
  • An information publishing node at least one data node, a big data computing demand node, a fog computing resource node, a verification node, a blockchain network, and a fog computing network including at least one resource node;
  • the information publishing node is configured to determine a data resource directory, form a smart contract according to the data resource directory, and publish the smart contract to a blockchain network;
  • the at least one data node is configured to: publish, according to the data resource directory carried by the smart contract, data information of resource data owned by the current data node to the blockchain network;
  • the verification node is triggered, the target resource data corresponding to the requirement information is sent to the selected at least one resource node;
  • the big data computing demand node is configured to generate a big data computing smart contract according to each of the data information and the data resource directory carried by the smart contract, and publish the smart contract to the blockchain network, where the large
  • the data computing smart contract carries the demand information and the storage location;
  • the fog computing resource node is configured to select at least one resource node from the fog computing network, generate a task smart contract according to the selected at least one resource node and the big data computing the demand information carried by the smart contract, and The task smart contract is issued to the blockchain network;
  • the verification node is configured to trigger at least one target data node according to the task smart contract and each of the data information
  • the at least one resource node after being selected by the fog computing resource node, calculates each target resource data according to the demand information to generate a calculation result, and stores the generated calculation result to the storage position.
  • the demand information includes: a target data type, a target data identifier, and a calculation method.
  • the fog computing resource node is configured to select one idle storage node and one idle computing node from the fog computing network; and calculate, according to the first node identifier of the idle storage node, the big data, the smart contract carrying Generating a storage task smart contract according to the target data type and the target data identifier; generating a computing task smart contract according to the second node identifier of the idle computing node and the computing method carried by the big data computing smart contract;
  • the verification node is configured to select at least one target data node from the at least one data node according to the storage task smart contract, and trigger the at least one target data node;
  • the data node is configured to store target resource data to the idle storage node according to the target data type and the target data identifier carried by the storage task smart contract when the target data node is triggered by the verification node.
  • the resource node is configured to: when the selected one of the target storage resource data stored in the idle storage node is selected as the idle computing node, and according to the computing task smart contract
  • the calculation method calculates each of the target resource data to generate a calculation result, and stores the generated calculation result to the storage location.
  • the fog computing resource node includes: a secret key generating module and a contract processing module; wherein
  • the secret key generating module is configured to generate a private key and a public key corresponding to the idle storage node;
  • the contract processing module is configured to generate a storage task smart contract according to the first node identifier of the idle storage node, the target data type carried by the big data computing smart contract, the public key, and the target data identifier ;
  • the data node is configured to determine target resource data according to the target data type and the target data identifier carried by the storage task smart contract when the target data node is triggered by the verification node, and according to the storage task
  • the public key carried by the smart contract encrypts the target resource data to form a ciphertext corresponding to the target resource data, and sends a ciphertext corresponding to the target resource data to the idle storage node.
  • the embodiment of the invention provides a big data calculation method based on fog calculation and blockchain.
  • a smart contract carrying a data resource directory is issued to a blockchain through an information publishing node, and each data node can be based on a block.
  • the resource catalog carried by the smart contract in the chain network publishes the data information of the resource data that can be used for big data calculation to the blockchain network, and the big data computing demand node can be based on the data resource catalog carried by the smart contract and
  • Each piece of data information in the blockchain network issues a big data computing smart contract carrying the demand information and the storage location to the blockchain network, and subsequent, the fog computing resource node may select one or more resource nodes from the fog computing network.
  • each target data node may be generated by the verification node.
  • the big data calculation requirement node does not need to access the data node, and the calculation process of the big data calculation is performed only on one or more resource nodes in the fog calculation network, and each data is performed.
  • the resource data of the node is not directly shared to the big data computing demand node, which can prevent the resource data of the data node from leaking through the big data computing demand node.
  • FIG. 1 is a flowchart of a big data calculation method based on blockchain and fog calculation according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a big data computing system based on blockchain and fog calculation according to an embodiment of the present invention.
  • an embodiment of the present invention provides a big data calculation method based on blockchain and fog calculation, including:
  • Step 101 Determine a data resource directory by using an information publishing node, form a smart contract according to the data resource directory, and publish the smart contract to a blockchain network;
  • Step 102 The data information of the resource data owned by the current data node is released to the blockchain network by the at least one data node according to the data resource directory carried by the smart contract.
  • Step 103 Generate, by the big data computing requirement node, a big data computing smart contract according to each of the data information and the data resource directory carried by the smart contract, and publish the smart contract to the blockchain network, where the big data is Calculate the smart contract carrying demand information and storage location;
  • Step 104 Select, by the fog computing resource node, at least one resource node from the fog computing network, and generate a task smart contract according to the selected at least one resource node and the big data computing the demand information carried by the smart contract, and The task smart contract is posted to the blockchain network;
  • Step 105 The at least one target data node is triggered by the verification node according to the task smart contract and each of the data information.
  • Step 106 Send, by the at least one target data node, target resource data corresponding to the requirement information to the selected at least one resource node, triggered by the verification node;
  • Step 107 Calculate each target resource data according to the requirement information by the selected at least one resource node to generate a calculation result, and store the generated calculation result to the storage location.
  • the smart contract carrying the data resource directory is issued to the blockchain through the information publishing node, and each data node can be used according to the resource directory carried by the smart contract in the blockchain network.
  • the data information of the resource data calculated by the big data is released to the blockchain network, and the big data computing demand node can be released to the blockchain network according to the data resource directory carried by the smart contract and each data information in the blockchain network.
  • the big data computing smart contract carrying the demand information and the storage location, and subsequent, the fog computing resource node may select one or more resource nodes from the fog computing network, and generate a task smart contract according to the selected resource nodes and then publish to the zone.
  • the verification node triggers one or more target data nodes that meet the demand information according to the task smart contract and each data information, and each target data node can trigger the selected resource node in the network under the trigger of the verification node.
  • the selected resource node calculates each target resource data to generate a calculation result, and then sends the calculation result to the storage location carried by the big data calculation smart contract.
  • the big data calculation requirement node does not need to access the data node, and the calculation process of the big data calculation is performed only on one or more resource nodes in the fog calculation network, and each data is performed.
  • the resource data of the node is not directly shared to the big data computing demand node, which can prevent the resource data of the data node from leaking through the big data computing demand node.
  • the information publishing node may also identify all participating nodes, including identifying the identity of the data node, the big data computing demand node, the verification node, and the fog computing resource node.
  • the identification smart contract is formed by using each participating node identity, and then posted to the blockchain network, so that all participating nodes can understand the identity of each participating node by viewing the identification smart contract.
  • the requirement information includes: a target data type, a target data identifier, and a calculation method. It is not difficult to understand that a requirement information may include multiple decomposition tasks, and each decomposition task may correspond to a corresponding target data type, target data identifier, and calculation method, respectively.
  • the cloud computing resource node selects at least one resource node from the fog computing network, and generates the task according to the selected at least one resource node and the big data computing the demand information carried by the smart contract.
  • Smart contracting and publishing the task smart contract to the blockchain network including:
  • the at least one target data node is triggered by the verification node according to the task smart contract and each of the data information, including: selecting, by the verification node, at least one target data from the at least one data node according to the storage task smart contract a node, and triggering the at least one target data node;
  • the triggering of the verification node stores the target resource data to the idle storage node according to the target data type carried by the storage task smart contract and the target data identifier.
  • the fog computing resource node may select a relatively idle idle storage node and an idle computing node from the fog computing network, according to the first node identifier of the idle storage node, the target data type carried in the demand information, and the target data identifier.
  • the verification node may be from the at least one data node according to the storage task smart contract Selecting at least one target data node (each target data node should be able to provide resource data with a target data identifier and a data format of the target data type), and trigger each target data node, so that each target data node is carried according to the storage task smart contract
  • the first node identifier stores target resource data to the idle storage node.
  • the resource data that needs to be used in the big data calculation process can be stored in the relatively idle storage node in the fog computing network, and the idle storage node in the fog computing network can more efficiently complete the access of the target resource data. Improve the efficiency of big data calculations.
  • the selected at least one resource node calculates each target resource data according to the demand information to generate a calculation result, and stores the generated calculation result into the
  • the storage location includes: reading, by the idle computing node, each of the target resource data stored in the idle storage node, and performing, according to the calculation method carried in the computing task smart contract, each target resource data The calculation is performed to generate a calculation result, and the generated calculation result is stored to the storage location.
  • the verification node may trigger the selected idle computing node according to the second node identifier carried in the computing task smart contract summary, so that the idle computing is performed.
  • the node reads each target resource data stored in the idle storage node, and calculates each target resource data according to a calculation method carried in the computing task smart contract to generate a calculation result, and then stores the generated calculation result to the storage location.
  • the calculation task in the process of performing big data calculation by the relatively idle computing nodes in the fog computing network can be realized, and the idle computing node can more efficiently complete the computing task of the big data computing process and improve the computing efficiency of the big data.
  • the idle calculation node should calculate the corresponding target resource data according to the calculation method corresponding to the decomposition task for each decomposition task, and the obtained intermediate result may be obtained.
  • the intermediate result stored to the idle storage node can continue to be used for subsequent decomposition tasks, until after each decomposition task is completed, a calculation result that meets the requirements of big data calculation can be obtained, and only the obtained calculation result can be obtained. It is stored under the storage location carried in the big data computing smart contract, so that the big data computing demand node reads the calculation result from the storage location.
  • the selecting a free storage node and an idle computing node from the fog computing network by the fog computing resource node further includes: generating a private key and a public key corresponding to the idle storage node;
  • the carried public key encrypts the target resource data to form a ciphertext corresponding to the target resource data, and sends a ciphertext corresponding to the target resource data to the idle storage node.
  • the fog computing resource node selects the corresponding free storage node from the fog computing network
  • the private key and the public key corresponding to the idle storage node may be generated, and in the subsequent process, the target data node triggered by each verified node is
  • the target resource data may be encrypted according to the public key carried in the storage task smart contract to form a ciphertext corresponding to the target resource data.
  • the idle storage node may decrypt according to the corresponding private key.
  • the corresponding target resource data is obtained, and thus, the target resource data can be prevented from being maliciously stolen from the data node to the idle storage node.
  • the public key and the private key corresponding to the idle computing node may also be generated, and the method for preventing the target resource data from being transmitted from the idle storage node to the idle computing node is prevented by a method similar to the above embodiment. Malicious stealing.
  • smart contracts described in the foregoing various embodiments are corresponding computer programs, which can be published to a blockchain network, and the participating nodes connected to the blockchain network can be read. Get the information carried in these computer programs.
  • an embodiment of the present invention provides a big data computing system based on blockchain and fog calculation, including:
  • An information publishing node 201 at least one data node 202, a big data computing demand node 203, a fog computing resource node 204, a verification node 205, a blockchain network 206, and a fog computing network 207 including at least one resource node 2071;
  • the information publishing node 201 is configured to determine a data resource directory, form a smart contract according to the data resource directory, and publish the smart contract to the blockchain network 206;
  • the at least one data node 202 is configured to publish, according to the data resource directory carried by the smart contract, data information of resource data currently owned by the data node 202 to the blockchain network 206;
  • the target resource data corresponding to the demand information is sent to the selected at least one resource node 2071;
  • the big data calculation requirement node 203 is configured to generate a big data calculation smart contract according to each of the data information and the data resource directory carried by the smart contract, and distribute the smart contract to the blockchain network 206, where
  • the big data computing smart contract carries demand information and storage location;
  • the fog computing resource node 204 is configured to select at least one resource node 2071 from the fog computing network 207, and generate task intelligence according to the selected at least one resource node 2071 and the big data computing the demand information carried by the smart contract. Contracting, and publishing the task smart contract to the blockchain network 206;
  • the verification node 205 is configured to trigger at least one target data node according to the task smart contract and each of the data information;
  • the at least one resource node 2071 is configured to, after being selected by the fog computing resource node 204, calculate each target resource data according to the demand information to generate a calculation result, and store the generated calculation result to the Store the location.
  • the demand information includes: a target data type, a target data identifier, and a calculation method.
  • the fog computing resource node 204 is configured to select one idle storage node and one idle computing node from the fog computing network 206; according to the first node identifier according to the idle storage node, Generating a storage task smart contract according to the target data type carried by the big data computing smart contract and the target data identifier; calculating the computing method carried by the smart contract according to the second node identifier of the idle computing node Generate a computing task smart contract;
  • the verification node 205 is configured to select at least one target data node from the at least one data node 202 according to the storage task smart contract, and trigger the at least one target data node;
  • the data node 202 is configured to store target resource data to the idle storage node according to the target data type and the target data identifier carried by the storage task smart contract when the target data node is triggered by the verification node. .
  • the resource node 2071 is configured to read, when the floating computing resource node 204 is selected as an idle computing node, each target resource data stored in the idle storage node, and according to The calculation method carried by the calculation task smart contract calculates each of the target resource data to generate a calculation result, and stores the generated calculation result to the storage location.
  • the fog computing resource node 204 includes: a secret key generating module (not shown in the drawing) and a contract processing module (not shown in the drawing);
  • the secret key generating module is configured to generate a private key and a public key corresponding to the idle storage node;
  • the contract processing module is configured to generate a storage task smart contract according to the first node identifier of the idle storage node, the target data type carried by the big data computing smart contract, the public key, and the target data identifier ;
  • the data node 202 is configured to determine target resource data according to the target data type and the target data identifier carried by the storage task smart contract when the target data node is triggered by the verification node 205, and according to the The public key carried by the storage task smart contract encrypts the target resource data to form a ciphertext corresponding to the target resource data, and sends a ciphertext corresponding to the target resource data to the idle storage node.
  • each node in various embodiments of the present invention may specifically be a personal computer or a server.
  • a smart contract carrying a data resource directory is issued to a blockchain by an information publishing node, and each data node can be used according to a resource directory carried by a smart contract in a blockchain network.
  • the data information of the resource data calculated by the big data is released to the blockchain network, and the big data computing demand node can be released to the blockchain network according to the data resource directory carried by the smart contract and each data information in the blockchain network.
  • the big data computing smart contract carrying the demand information and the storage location, and subsequent, the fog computing resource node may select one or more resource nodes from the fog computing network, and generate a task smart contract according to the selected resource nodes and then publish to the zone.
  • the verification node triggers one or more target data nodes that meet the demand information according to the task smart contract and each data information, and each target data node can trigger the selected resource node in the network under the trigger of the verification node.
  • the selected resource node calculates each target resource data to generate a calculation result, and then sends the calculation result to the storage location carried by the big data calculation smart contract.
  • the big data calculation requirement node does not need to access the data node, and the calculation process of the big data calculation is performed only on one or more resource nodes in the fog calculation network, and each data is performed.
  • the resource data of the node is not directly shared to the big data computing demand node, which can prevent the resource data of the data node from leaking through the big data computing demand node.
  • the fog computing resource node may select a relatively idle idle storage node and an idle computing node from the fog computing network, according to the first node identifier of the idle storage node, and the target data type carried in the demand information.
  • the target data identifier generates a storage task intelligent contract, and generates a computing task smart contract according to the second node identifier of the idle computing node and the calculation method carried in the demand information;
  • the verification node may be at least according to the storage task smart contract, from at least Selecting at least one target data node in a data node (each target data node should be able to provide resource data having a target data identifier and a data format of the target data type), and trigger each target data node, so that each target data node is based on the storage task
  • the first node identifier carried in the smart contract stores the target resource data to the idle storage node.
  • the resource data that needs to be used in the big data calculation process can be stored in the relatively idle storage node in the fog computing network, and the idle storage node in the fog computing network can more efficiently complete the access of the target resource data. Improve the efficiency of big data calculations.
  • the verification node may trigger the selected idle computing node according to the second node identifier carried in the summary of the computing task smart contract after each target data node stores the corresponding target resource data to the selected idle storage node. So that the idle computing node reads each target resource data stored in the idle storage node, and calculates each target resource data according to a calculation method carried in the computing task smart contract to generate a calculation result, and then stores the generated calculation result to the storage. position. In this way, the calculation task in the process of performing big data calculation by the relatively idle computing nodes in the fog computing network can be realized, and the idle computing node can more efficiently complete the computing task of the big data computing process and improve the computing efficiency of the big data.
  • the fog computing resource node selects the corresponding free storage node from the fog computing network
  • the private key and the public key corresponding to the idle storage node may be generated, and in the subsequent process, each verified node triggers.
  • the target data node may encrypt the target resource data according to the public key carried in the storage task smart contract to form a ciphertext corresponding to the target resource data.
  • the idle storage node may be based on the corresponding private
  • the key is decrypted to obtain corresponding target resource data, and thus, the target resource data can be prevented from being maliciously stolen from the data node to the idle storage node.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Computer Security & Cryptography (AREA)
  • Marketing (AREA)
  • Technology Law (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Storage Device Security (AREA)

Abstract

本发明提供了一种基于区块链和雾计算的大数据计算方法及系统,方法包括:信息发布节点向区块链网络发布携带数据资源目录的智能合约;数据节点将数据信息发布至区块链网络;大数据计算需求节点根据数据信息及智能合约生成携带需求信息及存储位置的大数据计算智能合约;雾计算资源节点从雾计算网络中选择资源节点,向区块链网络发布对应的任务智能合约;验证节点根据任务智能合约、需求信息及数据信息触发目标数据节点;目标数据节点向选择的资源节点发送目标资源数据;选择的资源节点根据需求信息对目标资源数据进行计算以生成计算结果,并存储至存储位置。通过本发明的技术方案,可防止数据节点的资源数据通过大数据计算需求节点发生泄漏。

Description

一种基于区块链和雾计算的大数据计算方法及系统 技术领域
本发明涉及计算机技术领域,特别涉及一种基于区块链和雾计算的大数据计算方法及系统。
背景技术
近年来,大数据计算在科学、商务和社会等各个领域都带来了革命性的突破,大数据的相关技术和服务得到了长足的发展。
目前,在大数据计算过程中,通常需要拥有资源数据的数据节点向具有大数据计算需求的大数据计算需求节点直接提供能够满足其计算需求的资源数据,即数据节点需要向大数据计算需求节点直接共享资源数据,可能导致数据节点的资源数据通过大数据计算需求节点发生泄漏。
技术问题
本发明实施例提供了一种基于雾计算和区块链的大数据计算方法及系统,可防止数据节点的资源数据通过大数据计算需求节点发生泄漏。
技术解决方案
第一方面,本发明提供了一种基于区块链和雾计算的大数据计算方法,包括:
通过信息发布节点确定数据资源目录,根据所述数据资源目录形成智能合约,并将所述智能合约发布至区块链网络;
通过至少一个数据节点根据所述智能合约携带的所述数据资源目录,将当前所述数据节点拥有的资源数据的数据信息发布至所述区块链网络;
通过大数据计算需求节点根据各个所述数据信息及所述智能合约携带的所述数据资源目录,生成大数据计算智能合约并发布至所述区块链网络,其中,所述大数据计算智能合约携带需求信息及存储位置;
通过雾计算资源节点从雾计算网络中选择至少一个资源节点,根据选择的所述至少一个资源节点及所述大数据计算智能合约携带的所述需求信息生成任务智能合约,并将所述任务智能合约发布至所述区块链网络;
通过验证节点根据所述任务智能合约及各个所述数据信息触发至少一个目标数据节点;
通过所述至少一个目标数据节点在所述验证节点的触发下向选择的所述至少一个资源节点发送对应于所述需求信息的目标资源数据;
通过选择的所述至少一个资源节点根据所述需求信息对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
优选地,
所述需求信息,包括:目标数据类型、目标数据标识及计算方法。
优选地,
所述通过雾计算资源节点从雾计算网络中选择至少一个资源节点,根据选择的所述至少一个资源节点及所述大数据计算智能合约携带的所述需求信息生成任务智能合约,并将所述任务智能合约发布至所述区块链网络,包括:
通过雾计算资源节点从所述雾计算网络中选择一个空闲存储节点和一个空闲计算节点;
通过所述雾计算资源节点根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型及所述目标数据标识生成存储任务智能合约;
通过所述雾计算资源节点根据所述空闲计算节点的第二节点标识、所述大数据计算智能合约携带的所述计算方法生成计算任务智能合约;
则,
所述通过验证节点根据所述任务智能合约及各个所述数据信息触发至少一个目标数据节点,包括:通过验证节点根据所述存储任务智能合约,从所述至少一个数据节点中选择至少一个目标数据节点,并触发所述至少一个目标数据节点;
所述通过所述至少一个目标数据节点在所述验证节点的触发下向选择的所述至少一个资源节点发送对应于所述需求信息的目标资源数据,包括:通过所述至少一个目标数据节点在所述验证节点的触发下根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识向所述空闲存储节点存储目标资源数据。
优选地,
所述通过选择的所述至少一个资源节点根据所述需求信息对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置,包括:
通过所述空闲计算节点读取所述空闲存储节点中存储的各个所述目标资源数据,并根据所述计算任务智能合约携带的所述计算方法对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
优选地,
所述通过雾计算资源节点从所述雾计算网络中选择一个空闲存储节点和一个空闲计算节点,进一步包括:生成所述空闲存储节点所对应的私钥及公钥;
则,所述通过所述雾计算资源节点根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型及所述目标数据标识生成存储任务智能合约,包括:通过所述雾计算资源节点根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型、所述公钥及所述目标数据标识生成存储任务智能合约;
所述通过所述至少一个目标数据节点在所述验证节点的触发下根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识向所述空闲存储节点存储目标资源数据,包括:通过所述至少一个目标数据节点在所述验证节点的触发下根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识确定目标资源数据,并根据所述存储任务智能合约携带的所述公钥对所述目标资源数据进行加密以形成对应于所述目标资源数据的密文,将对应于所述目标资源数据的密文发送至所述空闲存储节点。
第二方面,本发明实施例提供了一种基于区块链和雾计算的大数据计算系统,包括:
信息发布节点、至少一个数据节点、大数据计算需求节点、雾计算资源节点、验证节点、区块链网络及包括有至少一个资源节点的雾计算网络;其中,
所述信息发布节点,用于确定数据资源目录,根据所述数据资源目录形成智能合约,并将所述智能合约发布至区块链网络;
所述至少一个数据节点,用于根据所述智能合约携带的所述数据资源目录,将当前所述数据节点拥有的资源数据的数据信息发布至所述区块链网络;在作为目标数据节点被所述验证节点触发时,向选择的所述至少一个资源节点发送对应于所述需求信息的目标资源数据;
所述大数据计算需求节点,用于根据各个所述数据信息及所述智能合约携带的所述数据资源目录,生成大数据计算智能合约并发布至所述区块链网络,其中,所述大数据计算智能合约携带需求信息及存储位置;
所述雾计算资源节点,用于从雾计算网络中选择至少一个资源节点,根据选择的所述至少一个资源节点及所述大数据计算智能合约携带的所述需求信息生成任务智能合约,并将所述任务智能合约发布至所述区块链网络;
所述验证节点,用于根据所述任务智能合约及各个所述数据信息触发至少一个目标数据节点;
所述至少一个资源节点,用于在被所述雾计算资源节点选择后,根据所述需求信息对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
优选地,
所述需求信息,包括:目标数据类型、目标数据标识及计算方法。
优选地,
所述雾计算资源节点,用于从所述雾计算网络中选择一个空闲存储节点和一个空闲计算节点;根据根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型及所述目标数据标识生成存储任务智能合约;根据所述空闲计算节点的第二节点标识、所述大数据计算智能合约携带的所述计算方法生成计算任务智能合约;
则,
所述验证节点,用于根据所述存储任务智能合约,从所述至少一个数据节点中选择至少一个目标数据节点,并触发所述至少一个目标数据节点;
所述数据节点,用于在作为目标数据节点被所述验证节点触发时根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识向所述空闲存储节点存储目标资源数据。
优选地,
所述资源节点,用于在被所述雾计算资源节点选择为空闲计算节点时,读取所述空闲存储节点中存储的各个所述目标资源数据,并根据所述计算任务智能合约携带的所述计算方法对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
优选地,
所述雾计算资源节点,包括:秘钥生成模块和合约处理模块;其中,
所述秘钥生成模块,用于生成所述空闲存储节点所对应的私钥及公钥;
所述合约处理模块,用于根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型、所述公钥及所述目标数据标识生成存储任务智能合约;
所述数据节点,用于在作为目标数据节点被所述验证节点触发时根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识确定目标资源数据,并根据所述存储任务智能合约携带的所述公钥对所述目标资源数据进行加密以形成对应于所述目标资源数据的密文,将对应于所述目标资源数据的密文发送至所述空闲存储节点。
有益效果
本发明实施例提供了一种基于雾计算和区块链的大数据计算方法,该方法中,通过信息发布节点向区块链发布携带数据资源目录的智能合约,各个数据节点则可根据区块链网络中的智能合约所携带的资源目录,将其可以用于大数据计算的资源数据的数据信息发布至区块链网络,大数据计算需求节点则可根据智能合约所携带的数据资源目录以及区块链网络中的各个数据信息,向区块链网络发布携带需求信息及存储位置的大数据计算智能合约,后续的,雾计算资源节点则可从雾计算网络中选择一个或多个资源节点,并根据选择的各个资源节点生成任务智能合约后发布至区块链网络,由验证节点根据任务智能合约及各个数据信息触发符合需求信息的一个或多个目标数据节点,各个目标数据节点则可在验证节点的触发下向雾计算网络中被选择的资源节点发送符合需求信息的目标资源数据,进而由雾计算网络中被选择的资源节点对各个目标资源数据进行计算以生成计算结果,然后将计算结果发送至大数据计算智能合约所携带的存储位置。综上可见,通过本发明的技术方案实现大数据计算时,大数据计算需求节点无需访问数据节点,大数据计算的计算过程仅在雾计算网络中的一个或多个资源节点上进行,各个数据节点的资源数据不会直接共享给大数据计算需求节点,可防止数据节点的资源数据通过大数据计算需求节点发生泄漏。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例提供的一种基于区块链和雾计算的大数据计算方法的流程图;
图2是本发明一实施例提供的一种基于区块链和雾计算的大数据计算系统的结构示意图。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种基于区块链和雾计算的大数据计算方法,包括:
步骤101,通过信息发布节点确定数据资源目录,根据所述数据资源目录形成智能合约,并将所述智能合约发布至区块链网络;
步骤102,通过至少一个数据节点根据所述智能合约携带的所述数据资源目录,将当前所述数据节点拥有的资源数据的数据信息发布至所述区块链网络;
步骤103,通过大数据计算需求节点根据各个所述数据信息及所述智能合约携带的所述数据资源目录,生成大数据计算智能合约并发布至所述区块链网络,其中,所述大数据计算智能合约携带需求信息及存储位置;
步骤104,通过雾计算资源节点从雾计算网络中选择至少一个资源节点,根据选择的所述至少一个资源节点及所述大数据计算智能合约携带的所述需求信息生成任务智能合约,并将所述任务智能合约发布至所述区块链网络;
步骤105,通过验证节点根据所述任务智能合约及各个所述数据信息触发至少一个目标数据节点;
步骤106,通过所述至少一个目标数据节点在所述验证节点的触发下向选择的所述至少一个资源节点发送对应于所述需求信息的目标资源数据;
步骤107,通过选择的所述至少一个资源节点根据所述需求信息对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
如图1所示的实施例,通过信息发布节点向区块链发布携带数据资源目录的智能合约,各个数据节点则可根据区块链网络中的智能合约所携带的资源目录,将其可以用于大数据计算的资源数据的数据信息发布至区块链网络,大数据计算需求节点则可根据智能合约所携带的数据资源目录以及区块链网络中的各个数据信息,向区块链网络发布携带需求信息及存储位置的大数据计算智能合约,后续的,雾计算资源节点则可从雾计算网络中选择一个或多个资源节点,并根据选择的各个资源节点生成任务智能合约后发布至区块链网络,由验证节点根据任务智能合约及各个数据信息触发符合需求信息的一个或多个目标数据节点,各个目标数据节点则可在验证节点的触发下向雾计算网络中被选择的资源节点发送符合需求信息的目标资源数据,进而由雾计算网络中被选择的资源节点对各个目标资源数据进行计算以生成计算结果,然后将计算结果发送至大数据计算智能合约所携带的存储位置。综上可见,通过本发明的技术方案实现大数据计算时,大数据计算需求节点无需访问数据节点,大数据计算的计算过程仅在雾计算网络中的一个或多个资源节点上进行,各个数据节点的资源数据不会直接共享给大数据计算需求节点,可防止数据节点的资源数据通过大数据计算需求节点发生泄漏。
上述实施例中,为了实现对各个节点的身份进行标识,信息发布节点还可以标识出所有的参与节点,包括对数据节点、大数据计算需求节点、验证节点及雾计算资源节点等的身份进行标识,利用各个参与节点身份标识形成标识智能合约,然后发布到区块链网络中,如此,所有的参与节点均可通过查看标识智能合约对各个参与节点的身份进料了解。
具体地,所述需求信息,包括:目标数据类型、目标数据标识及计算方法。不难理解的,一个需求信息可以包括多个分解任务,每一个分解任务可分别对应相应的目标数据类型、目标数据标识及计算方法。
本发明一个实施例中,所述通过雾计算资源节点从雾计算网络中选择至少一个资源节点,根据选择的所述至少一个资源节点及所述大数据计算智能合约携带的所述需求信息生成任务智能合约,并将所述任务智能合约发布至所述区块链网络,包括:
通过雾计算资源节点从所述雾计算网络中选择一个空闲存储节点和一个空闲计算节点;
通过所述雾计算资源节点根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型及所述目标数据标识生成存储任务智能合约;
通过所述雾计算资源节点根据所述空闲计算节点的第二节点标识、所述大数据计算智能合约携带的所述计算方法生成计算任务智能合约;
则,
所述通过验证节点根据所述任务智能合约及各个所述数据信息触发至少一个目标数据节点,包括:通过验证节点根据所述存储任务智能合约,从所述至少一个数据节点中选择至少一个目标数据节点,并触发所述至少一个目标数据节点;
所述通过所述至少一个目标数据节点在所述验证节点的触发下向选择的所述至少一个资源节点发送对应于所述需求信息的目标资源数据,包括:通过所述至少一个目标数据节点在所述验证节点的触发下根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识向所述空闲存储节点存储目标资源数据。
上述实施例中,雾计算资源节点可从雾计算网络中选择出相对空闲的空闲存储节点和空闲计算节点,根据空闲存储节点的第一节点标识、需求信息中携带的目标数据类型及目标数据标识生成存储任务智能合约,并根据空闲计算节点的第二节点标识、需求信息中携带的计算方法生成计算任务智能合约;后续过程中,验证节点则可根据存储任务智能合约,从至少一个数据节点中选择至少一个目标数据节点(各个目标数据节点应当能够提供具有目标数据标识且其数据格式为目标数据类型的资源数据),并触发各个目标数据节点,使得各个目标数据节点根据存储任务智能合约中携带的第一节点标识向空闲存储节点存储目标资源数据。如此,则可实现将大数据计算过程中需要用到的资源数据存储到雾计算网络中相对较为空闲的存储节点,雾计算网络中较为空闲的存储节点能够更加高效的完成目标资源数据的存取,提高大数据计算效率。
相应的,本发明一个实施例中,所述通过选择的所述至少一个资源节点根据所述需求信息对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置,包括:通过所述空闲计算节点读取所述空闲存储节点中存储的各个所述目标资源数据,并根据所述计算任务智能合约携带的所述计算方法对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
上述实施例中,验证节点可在各个目标数据节点将相应的目标资源数据存储至选择的空闲存储节点之后,根据计算任务智能合约汇总携带的第二节点标识触发选择的空闲计算节点,使得空闲计算节点读取空闲存储节点中存储的各个目标资源数据,并根据计算任务智能合约中携带的计算方法对各个目标资源数据进行计算以生成计算结果,然后将生成的计算结果存储至存储位置。如此,则可实现通过雾计算网络中较为空闲的计算节点执行大数据计算过程中的计算任务,空闲计算节点能够更加高效的完成大数据计算过程的计算任务,提高大数据计算效率。
应当理解的是,当需求信息中携带多个分解任务时,空闲计算节点应当针对于每一个分解任务,根据该分解任务所对应的计算方法对相应的目标资源数据进行计算,得到的中间结果可暂时存储到空闲存储节点,存储到空闲存储节点的中间结果可继续用于后续的分解任务,直到完成每一个分解任务之后即可得到一个符合大数据计算需求的计算结果,只有得到的计算结果可以被存储至大数据计算智能合约中携带的存储位置下,以便大数据计算需求节点从该存储位置读取该计算结果。
本发明一个实施例中,所述通过雾计算资源节点从所述雾计算网络中选择一个空闲存储节点和一个空闲计算节点,进一步包括:生成所述空闲存储节点所对应的私钥及公钥;
则,所述通过所述雾计算资源节点根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型及所述目标数据标识生成存储任务智能合约,包括:通过所述雾计算资源节点根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型、所述公钥及所述目标数据标识生成存储任务智能合约;
所述通过所述至少一个目标数据节点在所述验证节点的触发下根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识向所述空闲存储节点存储目标资源数据,包括:通过所述至少一个目标数据节点在所述验证节点的触发下根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识确定目标资源数据,并根据所述存储任务智能合约携带的所述公钥对所述目标资源数据进行加密以形成对应于所述目标资源数据的密文,将对应于所述目标资源数据的密文发送至所述空闲存储节点。
上述实施例中,雾计算资源节点从雾计算网络中选择相应的空闲存储节点时,可生成空闲存储节点所对应的私钥及公钥,后续过程中,各个被验证节点触发的目标数据节点则可根据存储任务智能合约中携带的公钥对目标资源数据进行加密以形成对应于目标资源数据的密文,密文被存储至空闲存储节点后,空闲存储节点可根据对应的私钥进行解密以得到相应的目标资源数据,如此,可防止目标资源数据从数据节点传输至空闲存储节点的过程中被恶意窃取。
在另一种可能实现的方式中,还可以生成空闲计算节点所对应的公钥及私钥,通过与上述实施例相似的方法防止目标资源数据从空闲存储节点传输至空闲计算节点的过程中被恶意窃取。
本领域技术人员应当理解的,前述各个实施例中所述的智能合约均为相应的计算机程序,这些计算机程序可被发布至区块链网络,与区块链网络相连的各个参与节点则可读取到这些计算机程序中携带的信息。
如图2所示,本发明实施例提供了一种基于区块链和雾计算的大数据计算系统,包括:
信息发布节点201、至少一个数据节点202、大数据计算需求节点203、雾计算资源节点204、验证节点205、区块链网络206及包括有至少一个资源节点2071的雾计算网络207;其中,
所述信息发布节点201,用于确定数据资源目录,根据所述数据资源目录形成智能合约,并将所述智能合约发布至区块链网络206;
所述至少一个数据节点202,用于根据所述智能合约携带的所述数据资源目录,将当前所述数据节点202拥有的资源数据的数据信息发布至所述区块链网络206;在作为目标数据节点被所述验证节点205触发时,向选择的至少一个资源节点2071发送对应于所述需求信息的目标资源数据;
所述大数据计算需求节点203,用于根据各个所述数据信息及所述智能合约携带的所述数据资源目录,生成大数据计算智能合约并发布至所述区块链网络206,其中,所述大数据计算智能合约携带需求信息及存储位置;
所述雾计算资源节点204,用于从雾计算网络207中选择至少一个资源节点2071,根据选择的所述至少一个资源节点2071及所述大数据计算智能合约携带的所述需求信息生成任务智能合约,并将所述任务智能合约发布至所述区块链网络206;
所述验证节点205,用于根据所述任务智能合约及各个所述数据信息触发至少一个目标数据节点;
所述至少一个资源节点2071,用于在被所述雾计算资源节点204选择后,根据所述需求信息对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
本发明一个实施例中,所述需求信息,包括:目标数据类型、目标数据标识及计算方法。
本发明一个实施例中,所述雾计算资源节点204,用于从所述雾计算网络206中选择一个空闲存储节点和一个空闲计算节点;根据根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型及所述目标数据标识生成存储任务智能合约;根据所述空闲计算节点的第二节点标识、所述大数据计算智能合约携带的所述计算方法生成计算任务智能合约;
则,
所述验证节点205,用于根据所述存储任务智能合约,从所述至少一个数据节点202中选择至少一个目标数据节点,并触发所述至少一个目标数据节点;
所述数据节点202,用于在作为目标数据节点被所述验证节点触发时根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识向所述空闲存储节点存储目标资源数据。
本发明一个实施例中,所述资源节点2071,用于在被所述雾计算资源节点204选择为空闲计算节点时,读取所述空闲存储节点中存储的各个所述目标资源数据,并根据所述计算任务智能合约携带的所述计算方法对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
本发明一个实施例中,所述雾计算资源节点204,包括:秘钥生成模块(附图中未示出)和合约处理模块(附图中未示出);其中,
所述秘钥生成模块,用于生成所述空闲存储节点所对应的私钥及公钥;
所述合约处理模块,用于根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型、所述公钥及所述目标数据标识生成存储任务智能合约;
所述数据节点202,用于在作为目标数据节点被所述验证节点205触发时根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识确定目标资源数据,并根据所述存储任务智能合约携带的所述公钥对所述目标资源数据进行加密以形成对应于所述目标资源数据的密文,将对应于所述目标资源数据的密文发送至所述空闲存储节点。
应当理解的,本发明各个实施例中各个节点具体可以为个人计算机或服务器。
上述装置内的各单元之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
综上所述,本发明各个实施例至少具有如下有益效果:
1、本发明一实施例中,通过信息发布节点向区块链发布携带数据资源目录的智能合约,各个数据节点则可根据区块链网络中的智能合约所携带的资源目录,将其可以用于大数据计算的资源数据的数据信息发布至区块链网络,大数据计算需求节点则可根据智能合约所携带的数据资源目录以及区块链网络中的各个数据信息,向区块链网络发布携带需求信息及存储位置的大数据计算智能合约,后续的,雾计算资源节点则可从雾计算网络中选择一个或多个资源节点,并根据选择的各个资源节点生成任务智能合约后发布至区块链网络,由验证节点根据任务智能合约及各个数据信息触发符合需求信息的一个或多个目标数据节点,各个目标数据节点则可在验证节点的触发下向雾计算网络中被选择的资源节点发送符合需求信息的目标资源数据,进而由雾计算网络中被选择的资源节点对各个目标资源数据进行计算以生成计算结果,然后将计算结果发送至大数据计算智能合约所携带的存储位置。综上可见,通过本发明的技术方案实现大数据计算时,大数据计算需求节点无需访问数据节点,大数据计算的计算过程仅在雾计算网络中的一个或多个资源节点上进行,各个数据节点的资源数据不会直接共享给大数据计算需求节点,可防止数据节点的资源数据通过大数据计算需求节点发生泄漏。
2、本发明一实施例中,雾计算资源节点可从雾计算网络中选择出相对空闲的空闲存储节点和空闲计算节点,根据空闲存储节点的第一节点标识、需求信息中携带的目标数据类型及目标数据标识生成存储任务智能合约,并根据空闲计算节点的第二节点标识、需求信息中携带的计算方法生成计算任务智能合约;后续过程中,验证节点则可根据存储任务智能合约,从至少一个数据节点中选择至少一个目标数据节点(各个目标数据节点应当能够提供具有目标数据标识且其数据格式为目标数据类型的资源数据),并触发各个目标数据节点,使得各个目标数据节点根据存储任务智能合约中携带的第一节点标识向空闲存储节点存储目标资源数据。如此,则可实现将大数据计算过程中需要用到的资源数据存储到雾计算网络中相对较为空闲的存储节点,雾计算网络中较为空闲的存储节点能够更加高效的完成目标资源数据的存取,提高大数据计算效率。
3、本发明一实施例中,验证节点可在各个目标数据节点将相应的目标资源数据存储至选择的空闲存储节点之后,根据计算任务智能合约汇总携带的第二节点标识触发选择的空闲计算节点,使得空闲计算节点读取空闲存储节点中存储的各个目标资源数据,并根据计算任务智能合约中携带的计算方法对各个目标资源数据进行计算以生成计算结果,然后将生成的计算结果存储至存储位置。如此,则可实现通过雾计算网络中较为空闲的计算节点执行大数据计算过程中的计算任务,空闲计算节点能够更加高效的完成大数据计算过程的计算任务,提高大数据计算效率。
4、本发明一实施例中,雾计算资源节点从雾计算网络中选择相应的空闲存储节点时,可生成空闲存储节点所对应的私钥及公钥,后续过程中,各个被验证节点触发的目标数据节点则可根据存储任务智能合约中携带的公钥对目标资源数据进行加密以形成对应于目标资源数据的密文,密文被存储至空闲存储节点后,空闲存储节点可根据对应的私钥进行解密以得到相应的目标资源数据,如此,可防止目标资源数据从数据节点传输至空闲存储节点的过程中被恶意窃取。
需要说明的是,在本文中,诸如第一和第二之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个······”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同因素。
最后需要说明的是:以上所述仅为本发明的较佳实施例,仅用于说明本发明的技术方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所做的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

  1. 一种基于区块链和雾计算的大数据计算方法,其特征在于,包括:
    通过信息发布节点确定数据资源目录,根据所述数据资源目录形成智能合约,并将所述智能合约发布至区块链网络;
    通过至少一个数据节点根据所述智能合约携带的所述数据资源目录,将当前所述数据节点拥有的资源数据的数据信息发布至所述区块链网络;
    通过大数据计算需求节点根据各个所述数据信息及所述智能合约携带的所述数据资源目录,生成大数据计算智能合约并发布至所述区块链网络,其中,所述大数据计算智能合约携带需求信息及存储位置;
    通过雾计算资源节点从雾计算网络中选择至少一个资源节点,根据选择的所述至少一个资源节点及所述大数据计算智能合约携带的所述需求信息生成任务智能合约,并将所述任务智能合约发布至所述区块链网络;
    通过验证节点根据所述任务智能合约及各个所述数据信息触发至少一个目标数据节点;
    通过所述至少一个目标数据节点在所述验证节点的触发下向选择的所述至少一个资源节点发送对应于所述需求信息的目标资源数据;
    通过选择的所述至少一个资源节点根据所述需求信息对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
  2. 根据权利要求1所述的方法,其特征在于,
    所述需求信息,包括:目标数据类型、目标数据标识及计算方法。
  3. 根据权利要求2所述的方法,其特征在于,
    所述通过雾计算资源节点从雾计算网络中选择至少一个资源节点,根据选择的所述至少一个资源节点及所述大数据计算智能合约携带的所述需求信息生成任务智能合约,并将所述任务智能合约发布至所述区块链网络,包括:
    通过雾计算资源节点从所述雾计算网络中选择一个空闲存储节点和一个空闲计算节点;
    通过所述雾计算资源节点根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型及所述目标数据标识生成存储任务智能合约;
    通过所述雾计算资源节点根据所述空闲计算节点的第二节点标识、所述大数据计算智能合约携带的所述计算方法生成计算任务智能合约;
    则,
    所述通过验证节点根据所述任务智能合约及各个所述数据信息触发至少一个目标数据节点,包括:通过验证节点根据所述存储任务智能合约,从所述至少一个数据节点中选择至少一个目标数据节点,并触发所述至少一个目标数据节点;
    所述通过所述至少一个目标数据节点在所述验证节点的触发下向选择的所述至少一个资源节点发送对应于所述需求信息的目标资源数据,包括:通过所述至少一个目标数据节点在所述验证节点的触发下根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识向所述空闲存储节点存储目标资源数据。
  4. 根据权利要求3所述的方法,其特征在于,
    所述通过选择的所述至少一个资源节点根据所述需求信息对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置,包括:
    通过所述空闲计算节点读取所述空闲存储节点中存储的各个所述目标资源数据,并根据所述计算任务智能合约携带的所述计算方法对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
  5. 根据权利要求3所述的方法,其特征在于,
    所述通过雾计算资源节点从所述雾计算网络中选择一个空闲存储节点和一个空闲计算节点,进一步包括:生成所述空闲存储节点所对应的私钥及公钥;
    则,所述通过所述雾计算资源节点根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型及所述目标数据标识生成存储任务智能合约,包括:通过所述雾计算资源节点根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型、所述公钥及所述目标数据标识生成存储任务智能合约;
    所述通过所述至少一个目标数据节点在所述验证节点的触发下根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识向所述空闲存储节点存储目标资源数据,包括:通过所述至少一个目标数据节点在所述验证节点的触发下根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识确定目标资源数据,并根据所述存储任务智能合约携带的所述公钥对所述目标资源数据进行加密以形成对应于所述目标资源数据的密文,将对应于所述目标资源数据的密文发送至所述空闲存储节点。
  6. 一种基于区块链和雾计算的大数据计算系统,其特征在于,包括:
    信息发布节点、至少一个数据节点、大数据计算需求节点、雾计算资源节点、验证节点、区块链网络及包括有至少一个资源节点的雾计算网络;其中,
    所述信息发布节点,用于确定数据资源目录,根据所述数据资源目录形成智能合约,并将所述智能合约发布至区块链网络;
    所述至少一个数据节点,用于根据所述智能合约携带的所述数据资源目录,将当前所述数据节点拥有的资源数据的数据信息发布至所述区块链网络;在作为目标数据节点被所述验证节点触发时,向选择的所述至少一个资源节点发送对应于所述需求信息的目标资源数据;
    所述大数据计算需求节点,用于根据各个所述数据信息及所述智能合约携带的所述数据资源目录,生成大数据计算智能合约并发布至所述区块链网络,其中,所述大数据计算智能合约携带需求信息及存储位置;
    所述雾计算资源节点,用于从雾计算网络中选择至少一个资源节点,根据选择的所述至少一个资源节点及所述大数据计算智能合约携带的所述需求信息生成任务智能合约,并将所述任务智能合约发布至所述区块链网络;
    所述验证节点,用于根据所述任务智能合约及各个所述数据信息触发至少一个目标数据节点;
    所述至少一个资源节点,用于在被所述雾计算资源节点选择后,根据所述需求信息对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
  7. 根据权利要求6所述的系统,其特征在于,
    所述需求信息,包括:目标数据类型、目标数据标识及计算方法。
  8. 根据权利要求7所述的系统,其特征在于,
    所述雾计算资源节点,用于从所述雾计算网络中选择一个空闲存储节点和一个空闲计算节点;根据根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型及所述目标数据标识生成存储任务智能合约;根据所述空闲计算节点的第二节点标识、所述大数据计算智能合约携带的所述计算方法生成计算任务智能合约;
    则,
    所述验证节点,用于根据所述存储任务智能合约,从所述至少一个数据节点中选择至少一个目标数据节点,并触发所述至少一个目标数据节点;
    所述数据节点,用于在作为目标数据节点被所述验证节点触发时根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识向所述空闲存储节点存储目标资源数据。
  9. 根据权利要求8所述的系统,其特征在于,
    所述资源节点,用于在被所述雾计算资源节点选择为空闲计算节点时,读取所述空闲存储节点中存储的各个所述目标资源数据,并根据所述计算任务智能合约携带的所述计算方法对各个所述目标资源数据进行计算以生成计算结果,并将生成的计算结果存储至所述存储位置。
  10. 根据权利要求8所述的系统,其特征在于,
    所述雾计算资源节点,包括:秘钥生成模块和合约处理模块;其中,
    所述秘钥生成模块,用于生成所述空闲存储节点所对应的私钥及公钥;
    所述合约处理模块,用于根据所述空闲存储节点的第一节点标识、所述大数据计算智能合约携带的所述目标数据类型、所述公钥及所述目标数据标识生成存储任务智能合约;
    所述数据节点,用于在作为目标数据节点被所述验证节点触发时根据所述存储任务智能合约携带的所述目标数据类型及所述目标数据标识确定目标资源数据,并根据所述存储任务智能合约携带的所述公钥对所述目标资源数据进行加密以形成对应于所述目标资源数据的密文,将对应于所述目标资源数据的密文发送至所述空闲存储节点。
PCT/CN2018/113896 2018-04-11 2018-11-05 一种基于区块链和雾计算的大数据计算方法及系统 WO2019196397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810324751.7 2018-04-11
CN201810324751.7A CN108596627B (zh) 2018-04-11 2018-04-11 一种基于区块链和雾计算的大数据计算方法及系统

Publications (1)

Publication Number Publication Date
WO2019196397A1 true WO2019196397A1 (zh) 2019-10-17

Family

ID=63622177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113896 WO2019196397A1 (zh) 2018-04-11 2018-11-05 一种基于区块链和雾计算的大数据计算方法及系统

Country Status (2)

Country Link
CN (1) CN108596627B (zh)
WO (1) WO2019196397A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112364317A (zh) * 2020-11-17 2021-02-12 中国传媒大学 一种基于区块链技术的物联网雾环境管理架构及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108596627B (zh) * 2018-04-11 2022-03-01 山东浪潮科学研究院有限公司 一种基于区块链和雾计算的大数据计算方法及系统
CN109358969B (zh) * 2018-10-09 2021-11-23 浙江工业大学 一种在单个边缘计算服务器场景下基于线性搜索的移动区块链优化算力分配方法
CN111107122B (zh) * 2018-10-29 2023-08-18 上海诺基亚贝尔股份有限公司 用于发现网络中雾资源的方法、设备及计算机可读介质
CN109302405B (zh) * 2018-10-31 2020-11-17 北京邮电大学 基于边缘计算的工业数据检测区块链网络系统及检测方法
CN109583891B (zh) * 2018-11-14 2021-08-24 咪咕文化科技有限公司 一种信息处理方法、装置及存储介质
CN110866067B (zh) * 2019-11-06 2022-06-24 华南理工大学 基于雾计算和区块链的体域网实时数据处理方法及系统
CN114168604A (zh) * 2021-11-10 2022-03-11 卓尔智联(武汉)研究院有限公司 一种资源匹配方法、装置、设备及存储介质
CN114745379B (zh) * 2022-03-21 2023-07-11 北京卓视智通科技有限责任公司 基于区块链和雾计算监控物联网设备系统和方法
CN115019901A (zh) * 2022-06-14 2022-09-06 浪潮集团有限公司 基于区块链和量子计算的药物筛选合成处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106682530A (zh) * 2017-01-10 2017-05-17 杭州电子科技大学 一种基于区块链技术的医疗信息共享隐私保护方法及装置
US20170352027A1 (en) * 2016-06-07 2017-12-07 Cornell University Authenticated data feed for blockchains
WO2018019364A1 (en) * 2016-07-26 2018-02-01 NEC Laboratories Europe GmbH Method for controlling access to a shared resource
CN107819848A (zh) * 2017-11-08 2018-03-20 济南浪潮高新科技投资发展有限公司 一种基于区块链的物联网设备自治互联方法
CN108596627A (zh) * 2018-04-11 2018-09-28 济南浪潮高新科技投资发展有限公司 一种基于区块链和雾计算的大数据计算方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106101199A (zh) * 2016-06-02 2016-11-09 西安电子科技大学 一种基于sdn的云/雾混合网络架构
CN106529932A (zh) * 2016-11-01 2017-03-22 西安电子科技大学 一种基于比特币的外包计算公平支付方法
CN107071033A (zh) * 2017-04-20 2017-08-18 济南浪潮高新科技投资发展有限公司 一种基于雾计算的车联网部署系统
CN107465656B (zh) * 2017-06-14 2020-09-11 广州宏和网络科技有限公司 一种基于云计算的安防监控大数据处理方法及系统
GB201710373D0 (en) * 2017-06-28 2017-08-09 Wfs Technologies Ltd Subsea communication system
CN107249046A (zh) * 2017-08-15 2017-10-13 李俊庄 一种基于区块链的分布式云存储系统构建方法
CN107483446A (zh) * 2017-08-23 2017-12-15 上海点融信息科技有限责任公司 用于区块链的加密方法、设备以及系统
CN107528856A (zh) * 2017-09-27 2017-12-29 福建实达电脑设备有限公司 基于区块链的物联网雾端设备在云端平台接入认证方法
CN107786639A (zh) * 2017-09-28 2018-03-09 山东鲁能智能技术有限公司 一种基于区块链技术的电动汽车车联网系统及其工作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170352027A1 (en) * 2016-06-07 2017-12-07 Cornell University Authenticated data feed for blockchains
WO2018019364A1 (en) * 2016-07-26 2018-02-01 NEC Laboratories Europe GmbH Method for controlling access to a shared resource
CN106682530A (zh) * 2017-01-10 2017-05-17 杭州电子科技大学 一种基于区块链技术的医疗信息共享隐私保护方法及装置
CN107819848A (zh) * 2017-11-08 2018-03-20 济南浪潮高新科技投资发展有限公司 一种基于区块链的物联网设备自治互联方法
CN108596627A (zh) * 2018-04-11 2018-09-28 济南浪潮高新科技投资发展有限公司 一种基于区块链和雾计算的大数据计算方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112364317A (zh) * 2020-11-17 2021-02-12 中国传媒大学 一种基于区块链技术的物联网雾环境管理架构及方法
CN112364317B (zh) * 2020-11-17 2024-04-19 中国传媒大学 一种基于区块链技术的物联网雾环境管理架构及方法

Also Published As

Publication number Publication date
CN108596627A (zh) 2018-09-28
CN108596627B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2019196397A1 (zh) 一种基于区块链和雾计算的大数据计算方法及系统
CN110992027B (zh) 在区块链中实现隐私保护的高效交易方法及装置
CN113438289B (zh) 基于云计算的区块链数据处理方法及装置
CN110580262B (zh) 基于智能合约的隐私数据查询方法及装置
TWI798483B (zh) 區塊鏈交易的產生方法和裝置
CN110580413B (zh) 基于链下授权的隐私数据查询方法及装置
CN110033267B (zh) 区块链中实现隐私保护的方法、节点、系统和存储介质
CN111475829A (zh) 基于区块链账户的隐私数据查询方法及装置
CN111008228A (zh) 区块链中账户隐私信息的查询方法及装置
CN110580412B (zh) 基于链代码的权限查询配置方法及装置
CN111475849A (zh) 基于区块链账户的隐私数据查询方法及装置
CN110580245B (zh) 隐私数据的共享方法及装置
WO2020042822A1 (zh) 密码运算、创建工作密钥的方法、密码服务平台及设备
WO2020042798A1 (zh) 密码运算、创建工作密钥的方法、密码服务平台及设备
CN110580411B (zh) 基于智能合约的权限查询配置方法及装置
Murugesan et al. Analysis on homomorphic technique for data security in fog computing
US11601258B2 (en) Selector derived encryption systems and methods
CN115459928B (zh) 数据共享方法、装置、设备及介质
CN114270778B (zh) 针对在可信执行环境中执行的可验证性
CN117155549A (zh) 密钥分发方法、装置、计算机设备和存储介质
CN112418850A (zh) 一种基于区块链的交易方法、装置及电子设备
CN117395012A (zh) 一种基于批验证签名的工业物联网数据安全共享方法
CN111478764A (zh) 区块链网络中的数据处理方法、节点及存储介质
CN110716724A (zh) 基于fpga实现隐私区块链的方法及装置
Kumaraswamy et al. Cryptanalysis of the privacy-preserving ride-hailing service TRACE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914462

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914462

Country of ref document: EP

Kind code of ref document: A1