[go: up one dir, main page]

WO2019196003A1 - 烟具设备及用于该烟具设备的测温控温方法 - Google Patents

烟具设备及用于该烟具设备的测温控温方法 Download PDF

Info

Publication number
WO2019196003A1
WO2019196003A1 PCT/CN2018/082460 CN2018082460W WO2019196003A1 WO 2019196003 A1 WO2019196003 A1 WO 2019196003A1 CN 2018082460 W CN2018082460 W CN 2018082460W WO 2019196003 A1 WO2019196003 A1 WO 2019196003A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
generating device
heat generating
real
power source
Prior art date
Application number
PCT/CN2018/082460
Other languages
English (en)
French (fr)
Inventor
王国庆
孙国立
Original Assignee
绿烟实业(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绿烟实业(深圳)有限公司 filed Critical 绿烟实业(深圳)有限公司
Priority to PCT/CN2018/082460 priority Critical patent/WO2019196003A1/zh
Publication of WO2019196003A1 publication Critical patent/WO2019196003A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present disclosure relates to the technical field of an electronic smoking device, in particular a heated non-combustion smoking device, and the present invention relates in particular to a heated non-combustion smoking device capable of accurately measuring temperature and temperature, and an accurate temperature measurement for such a smoking device
  • the field of temperature control methods relates to the technical field of an electronic smoking device, in particular a heated non-combustion smoking device, and the present invention relates in particular to a heated non-combustion smoking device capable of accurately measuring temperature and temperature, and an accurate temperature measurement for such a smoking device.
  • the existing heated non-combustion smoking device can heat the smoking article by, for example, a plug-in electric heating baking method, that is, insert the ceramic heating piece in the electronic cigarette into the smoking article, so that the ceramic heating piece heats the smoking article to Produces smoke for the user to smoke.
  • a plug-in electric heating baking method that is, insert the ceramic heating piece in the electronic cigarette into the smoking article, so that the ceramic heating piece heats the smoking article to Produces smoke for the user to smoke.
  • the heater temperatures of some electronic smoking implements are controlled to be within a particular temperature range so that the smoking article does not produce and release undesirable volatile compounds or even burn.
  • the heater temperature needs to be monitored. For example, it is known to directly measure the temperature of a heater by a separate temperature sensor, or to design the heater to function as both a resistance heater and a temperature sensor to determine its resistance by its temperature coefficient of resistance. This type of method is costly.
  • a temperature measuring method is also known in which an additional resistor is connected in series between the heater and the grounding device, and the voltage across the two terminals is measured by a microcontroller connected to the additional resistor to determine the real-time heater resistance. The value, based on which the heater temperature is adjusted in real time via a microcontroller directly connected to the resistor.
  • the present disclosure is directed to an electrically heated non-combustion smoking article apparatus that at least partially solves the aforementioned problems by an innovative temperature measurement temperature control circuit arrangement.
  • the present disclosure provides a smoking device that includes:
  • the power source being coupled to the heat generating device for providing power to the heat generating device;
  • controller unit for connecting to the heat generating device and the power source, the controller unit being configured to control a power supply from the power source to the heat generating device to adjust the temperature of the heat generating device
  • controller unit is further configured to: determine resistance R of the solid heat-generating device in real time when the power supplied by the power source using a power source in series between the heating device and the temperature sensing resistor, in order to achieve a temperature of the heating device Real-time monitoring allows the heating device to maintain a constant preset target temperature.
  • the ground disturbance generated in the prior art can be eliminated, thereby allowing the temperature detection accuracy to be improved to improve the temperature control accuracy.
  • At least one comparison amplifier unit is coupled between the controller unit and the temperature sensing resistor for monitoring a voltage V2-V1 across the temperature sensing resistor and amplifying a signal representative of the detected voltage across the two ends, The amplified signal is then transmitted to the controller unit.
  • the comparison amplifier unit outputs the amplified voltage signal using the gain of the comparison amplifier unit based on the detected signal of the voltage across the two ends.
  • V OUT (I LOAD x R SHUNT )GAIN+V REF
  • V OUT represents the voltage output from the output pin OUT of the comparison amplifier unit
  • I LOAD represents the real-time current flowing through the heat-generating device
  • R SHUNT represents the known resistance value of the temperature-sensing detection resistor
  • GAIN represents the gain of the comparison amplifier unit. That is, the amplification factor, V REF represents the ground voltage applied to the reference pin of the comparison amplifier unit;
  • V OUT (V2-V1) GAIN + V REF .
  • the comparison amplifier unit is connected in parallel to both sides of the temperature sensing resistor external thereto.
  • the temperature sensing resistor is integrated inside the comparison amplifier unit.
  • the signal can be amplified to avoid the detection precision of the voltage signal V2-V1 being too small, so that the accuracy of the temperature measurement and temperature control can be further improved.
  • controller unit can be configured to detect a short circuit of the heat generating device for short circuit protection.
  • comparison amplifier unit can be configured to perform short circuit detection of the power source to ground for short circuit protection.
  • the operational safety of the device can also be improved.
  • the determination of the real-time resistance is:
  • the controller unit is further configured to compare the real resistance value R and the preset target temperature with a solid heat-generating device corresponding to a preset resistance value R of the heat generating devices preset, the device in order to monitor the temperature of the heating in accordance with the comparison result reaches the preset target temperature .
  • the controller unit then controls the power supply of the power source to the heat generating device based on the comparison.
  • the controller unit includes a microcontroller that is programmable to control the power supply from the power source to the heat generating device via PWM control via a switch coupled between the power source and the heat generating device.
  • the switch is a pMOS type switch tube.
  • the predetermined target temperature of the heat generating device is fixed or adjustable.
  • controller unit is configured to:
  • Controlling the power source is reduced in the case of real-time greater than a preset value R of the real resistance value R of the heat generating device to a predetermined power is supplied to the heating means so that the temperature fall below the preset target temperature.
  • the smoking device is a heated non-combustion smoking device.
  • the smoking implement is configured to receive a smoking article that contacts the heat generating device.
  • the power source is a rechargeable battery.
  • the present disclosure also relates to a temperature measurement and temperature control method for a smoking article device, the smoking device comprising: a heat generating device for heating a smoking article; a power source connected to the heat generating device for The heat generating device provides power; and a controller unit for connecting to the heat generating device and the power source, the controller unit being configured to control a power supply from the power source to the heat generating device to adjust the heat generating device temperature, the method being characterized in that
  • the heating device is determined by the controller unit by the resistance R of the real-time real-time power source power supply, in order to achieve real-time monitoring of the temperature of the heating device, so that the heat generating devices Can maintain a constant preset target temperature.
  • At least one comparison amplifier unit is provided, which is connected between the controller unit and the temperature detecting resistor for monitoring the voltage V2-V1 across the temperature detecting resistor and representing the detected voltage across the two ends.
  • the signal is amplified so that the amplified signal is then transmitted to the controller unit.
  • the amplified voltage signal is output using the gain of the comparison amplifier unit based on the detected signal across the voltage.
  • V OUT (I LOAD x R SHUNT )GAIN+V REF
  • V OUT represents the voltage output from the output pin OUT of the comparison amplifier unit
  • I LOAD represents the real-time current flowing through the heat-generating device
  • R SHUNT represents the known resistance value of the temperature-sensing detection resistor
  • GAIN represents the gain of the comparison amplifier unit. That is, the amplification factor, V REF represents the ground voltage applied to the reference pin of the comparison amplifier unit;
  • V OUT (V2-V1) GAIN + V REF .
  • the comparator amplifier unit is connected in parallel to both sides of the temperature sensing resistor external thereto.
  • the temperature sensing resistor is integrated inside the comparison amplifier unit.
  • controller unit is used to detect a short circuit of the heat generating device for short circuit protection.
  • short-circuit detection of power source to ground is performed by the comparison amplifier unit for short-circuit protection.
  • the determination of the real-time resistance is:
  • the controller unit compares the resistance value R and the preset target temperature with a solid heat-generating device corresponding to a preset resistance value R of the heat generating devices preset, the device in order to monitor the temperature of the heating in accordance with the comparison result reaches a preset target temperature.
  • the controller unit controls the power supply of the power source to the heat generating device based on the comparison result.
  • the power supply from the power source to the heat generating device is controlled by PWM control of the controller unit via a switch connected between the power source and the heat generating device.
  • the switch is a pMOS type switch tube.
  • the predetermined target temperature of the heat generating device is fixed or adjustable.
  • control is carried out as follows:
  • Controlling the power source is reduced in the case of real-time greater than a preset value R of the real resistance value R of the heat generating device to a predetermined power is supplied to the heating means so that the temperature fall below the preset target temperature.
  • the smoking device is a heated non-combustion smoking device.
  • the smoking implement is configured to receive a smoking article that contacts the heat generating device.
  • the power source is a rechargeable battery.
  • Figure 1 is a schematic view showing the structural elements of the basic components of the heating type non-combustion smoking device
  • Fig. 2 shows a TCR curve in which the resistance value of the heat generating device shown on the ordinate becomes larger as the temperature shown on the abscissa increases;
  • FIG. 3 is a schematic circuit diagram showing temperature measurement and temperature control of a heat generating device for a heating type non-burning smoking device according to the present disclosure
  • FIG. 4 is a detailed circuit diagram showing the temperature measurement and temperature control of the heat generating device for the heating type non-combustion smoking device according to the present disclosure, from which the corresponding positions and connection relationships of the respective components can be seen;
  • Figure 5 shows, by way of example, a comparison amplifier unit for use in the present disclosure
  • FIG. 6 is a block diagram showing a simple flow of a temperature measurement and temperature control method according to an embodiment of the present disclosure.
  • the terms “installation”, “connected”, “coupled”, “connected”, “fixed” and the like are to be understood broadly, and may be, for example, a fixed connection, or a It is a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • a fixed connection or a It is a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the term "smoke article”, which is equivalent to "aerosol-generating article”, refers to an article comprising a smoking substrate or an aerosol-forming substrate capable of releasing a volatile compound. These volatile compounds can form an aerosol, and such volatile compounds can be released by heating the aerosol to form a matrix.
  • the aerosol-forming substrate may conveniently be part of an aerosol-generating article or a smoking article.
  • an aerosol is a suspension of solid particles or droplets or both solid particles and droplets in a gas such as air.
  • the aerosol-forming substrate can comprise a tobacco-containing material comprising a volatile tobacco flavoring compound that is released from the substrate upon heating.
  • the aerosol-forming substrate may comprise a tobacco-free material.
  • the aerosol-forming substrate may also include an aerosol former.
  • suitable aerosol formers are glycerin and propylene glycol.
  • the aerosol-generating article or smoking article produces an aerosol that is directly inhalable into the user's lungs through the user's mouth.
  • the aerosol-generating article or smoking article can be disposable.
  • the term "smoke article" is generally used hereinafter.
  • the present disclosure relates to a smoking article apparatus, and more particularly to a heated non-combustion smoking article apparatus, and more particularly to an electrically heated non-combustion smoking rod 100.
  • a smoking article apparatus and more particularly to a heated non-combustion smoking article apparatus, and more particularly to an electrically heated non-combustion smoking rod 100.
  • the term "pipestick" is used below for related description.
  • the tobacco rod 100 typically includes a heating chamber 31 into which the smoking article F is inserted, and further includes a heat generating device L, a power source Sb, and a controller unit 50.
  • the controller unit 50 is coupled to the heat generating device L and the power source Sb, and the controller unit is also connectable to a user interface such as a button or display 60 for transmitting information about the tobacco rod to the user, such as display system information, such as battery power. , temperature, status of the smoking article, other information, or a combination thereof.
  • display system information such as battery power.
  • the smoking article F has been pushed into the interior of the heating chamber 31 to be in contact with the heat generating device L, here the inside of the smoking substrate into which the heat generating device is inserted into the smoking article.
  • the smoking article F releases a series of volatile compounds at different heating temperatures.
  • the power source disposed within the housing of the tobacco rod 100 can be any suitable source of power, such as a DC voltage source for the battery.
  • a DC voltage source for the battery for example, it is a rechargeable lithium ion battery.
  • the power source can be a nickel metal hydride battery, a nickel cadmium battery, or a lithium based battery. The following simply uses the term "battery" Sb for illustration.
  • the heat generating device L also referred to as a heater, may take any suitable form, such as the illustrated heat generating sheet L. It can also be in the form of a heated needle or rod that passes through the center of the smoking article when heated. Alternatively, the heat generating device may take the form of a housing or substrate having a different conductive portion or a resistive metal plate. Alternatively, the heat generating device may be a disc heater or a combination of a disc heater and a heating pin or rod, and may also include a heating wire or wire such as Ni-Cr (nickel-chromium), platinum, gold, silver, tungsten. Or alloy wire or heating plate. Optionally, but not necessarily, the heater element can be deposited in or on the rigid carrier material. Further, one or more heat generating devices may be provided as needed, and the heat generating device may be appropriately arranged to heat the smoking article most efficiently.
  • the term "heating device” is used hereinafter as an example and for simplicity.
  • the tobacco rod 100 may optionally include means for detecting the smoking article for detecting the presence of the smoking article F in proximity to the heat generating device L on the heat transfer path and/or Its characteristics, and the signal of the presence of the smoking article F is sent to the controller unit 50 connected to the device.
  • the tobacco rod 100 is provided with an interface 40 at an end remote from the heating chamber 31, which interface 40 can be coupled to the controller unit 50.
  • the interface can be connected to an external device such as a smart terminal, such as a mobile phone, a pad, a computer, etc., to transmit related information such as a temperature detection signal, temperature adjustment information, and the like in a one-way or two-way manner.
  • the interface 40 can be designed to be used for charging at the same time, in which case the interface 40 is connected to the battery Sb (not shown here).
  • the heated non-combustion smoking implement apparatus 100 may also be provided with an extractor 20 and a housing 10 that operates in conjunction with the extractor, if desired.
  • the first end of the extractor 20 is mounted in the heating chamber 31, and the second end thereof is provided with an insertion chamber 21 into which the smoking article F is inserted.
  • the outer casing 10 is hollowly disposed on the end side of the tobacco rod 100 provided with a heating chamber.
  • the outer casing 10 is here arranged such that the extractor 20 can be moved into or out of the heating chamber 31 in a rotational or translational manner.
  • controller unit 50 In the process of working on the heating non-combustion smoking device, in order to enhance the user experience, it is necessary to perform certain temperature monitoring and control on the heat generating device. This is typically done by controller unit 50.
  • the controller unit can be arranged to receive relevant information and transform the received information to generate an output.
  • the controller unit can include any type of computing device, computing circuit, or any type of processor or processing circuit capable of executing a series of instructions stored in memory.
  • the controller unit may include multiple processors and/or multi-core central processing units (CPUs) and may include any type of processor, such as a microprocessor, digital signal processor, microcontroller, or the like.
  • the controller unit can also include a memory to store data and/or algorithms to execute a series of instructions.
  • the term "memory” can include a mechanism that provides (eg, stores and/or transmits) information in a machine readable format, such as a processor, computer, or digital processing device.
  • the memory can include read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, or any other volatile or nonvolatile storage device.
  • ROM read only memory
  • RAM random access memory
  • microcontroller in the case where the controller unit 50 includes a microcontroller (MCU). But the reminder is that this is not restrictive.
  • the heating temperature of the heat generating device L is controlled by the microcontroller Cr, it is necessary to detect the operating temperature of the heat generating device L.
  • the temperature of the heat generating device can be detected by a dedicated temperature sensor.
  • the temperature of a heat generating device element is determined by monitoring its resistivity. The resistivity increases with increasing temperature. Thus, the resistivity known at any given time can be used to derive the actual operating temperature of the heat generating device.
  • the microcontroller controls the power source based on the measured temperature signal to turn on and off the switch between the battery Sb and the heat generating device L, thereby achieving precise control of the temperature of the heated non-burning smoking device, for example, to meet different cigarettes.
  • the temperature requirements of the product are described below.
  • a temperature-sensing temperature control circuit of a tobacco rod wherein the heat-generating device is connected to the battery by a wire, and an additional resistor connected in series with the heat-generating device is connected to the grounding device.
  • the microcontroller collects the voltage across the additional resistor directly through the input, and adjusts the current supplied to the heating device via the output based on the calculated resistance of the heating device through the output.
  • the measured temperature output is not accurate for the following reasons: the additional resistance for detection introduces ground disturbances; the sense voltage varies with the battery current causing the battery voltage to change.
  • the present disclosure aims to provide a temperature measurement and temperature control circuit to improve temperature detection accuracy and improve temperature control accuracy.
  • a temperature detecting resistor Rs is connected in series between the battery Sb and the heat generating device L.
  • the resistance r of the temperature detecting resistor Rs is known, and the current flowing through the temperature detecting resistor Rs is equal to the current flowing through the heat detecting device L through the temperature detecting resistor, thereby detecting the temperature by detecting the temperature.
  • I U / R.
  • the battery voltage is constant at a relatively fixed voltage value and the battery voltage value U source represents the current voltage across the heat generating device, and the battery voltage is directly determined by the microcontroller Cr, it has been determined based on the foregoing.
  • the microcontroller can adjust the real-time heat-generating device resistance value with the preset The resistance values corresponding to the temperature of the heating device are compared.
  • the microcontroller performs corresponding regulation according to the comparison result: if the resistance value of the real-time heating device is equal to the preset resistance value corresponding to the preset target temperature, it indicates that the temperature of the heating device has reached a range of, for example, about 250° C.-450° C.
  • the preset target temperature can be controlled by the microcontroller through the switch Q1 to reduce the power supply to the heat generating device to maintain the temperature; if the real-time resistance value is less than the preset resistance value, the control supplies the additional power to the heat generating device to make the temperature Raising to a preset target temperature; if the real-time resistance is greater than the preset resistance, the control reduces or even suspends power supply to the heat generating device to lower its temperature to a preset target temperature.
  • the battery positive electrode is connected in series with the temperature detecting resistor Rs through the switch Q1, and then in the terminal 1 of the heat generating device L, and the terminal 2 of the heat generating device L is connected to the battery negative electrode.
  • the temperature detecting resistor Rs is used to provide a voltage value for detecting the resistance value of the heat generating device.
  • the switch Q1 is, in particular, a p-channel MOSFET, that is, a pMOS field effect transistor, hereinafter referred to as a MOS transistor.
  • the temperature sensing resistor Rs any suitable type of resistor can be used, but the choice is usually determined by the following factors: accuracy required at small load currents; power consumption at maximum load current. In other words, it is necessary to select such a temperature detecting resistor based on a trade-off between the measurement accuracy and the power consumption of the detecting resistor.
  • a comparison amplifier unit Am as shown in FIG. 4 may be connected in parallel across the temperature detecting resistor Rs.
  • comparison amplifier unit first compares the voltage signals V2 and V1 input from the temperature detecting resistor to calculate V2-V1, which is, for example, step 100 shown in FIG. 6;
  • Amplification means that the differential voltage signal V2-V1 input from the temperature detecting resistor Rs may be too small, which may result in insufficient detection accuracy, for example, due to possible interference from noise, etc., and thus the signal needs to be amplified, and the amplified signal is then It is transmitted to the microcontroller Cr, which corresponds to step 200 shown in FIG. Of course this is the case when such a unit is provided. If such a comparison amplifier unit is not provided, the voltage across the resistor Rs is directly detected by the controller and calculated and compared accordingly.
  • the pins 4 and 5 of the comparison amplifier unit Am are connected to both sides of the temperature detecting resistor Rs through resistors R12 and R13, respectively, to monitor the two ends of the resistor Rs by comparing the input voltage signals V2 and V1.
  • the voltage is V2-V1 (corresponding to step 100); in the loop formed by the comparison amplifier unit and the resistor Rs, wherein the series resistors R12, R13 are arranged to suppress the pulse voltage of the small energy of the detection signals V1 and V2 to damage the comparison amplifier unit .
  • the wire between pin 4 and resistor R12 and the capacitor C5 between pin 5 and resistor R13 are used to increase the immunity to external interference.
  • the resistors R12, R13, and capacitor C5 are not indispensable here, and can be set according to actual needs.
  • the resistances R12 and R13 are generally 1% accurate, and their resistances must be the same, for example, 3 ohms in the figure; in general, the accuracy of the capacitor C5 is required to be ⁇ 1 PF (ply method).
  • the pin 6 of the comparison amplifier unit Am is a voltage feedback pin, that is, the input signal for inputting the amplified feedback signal to the corresponding pin of the associated microcontroller; and the reference of the comparison amplifier unit Pin 1 indicates the reference voltage access pin, pin 2 indicates the reference ground access pin, and pin 3 indicates the power supply access pin, which is connected to the microcontroller's integrated circuit power supply pin to supply power to it;
  • a capacitor C6 is provided in the loop formed by the pin 1, 2, 3 and the microcontroller integrated circuit power supply, where the capacitor is a filter capacitor for voltage regulation.
  • comparison amplifier unit Am for example, an embodiment of such a comparison amplifier unit schematically shown in Fig. 5 can be seen, and its simple internal circuit configuration is shown in Fig. 5.
  • the corresponding pins are similar to those described above in connection with FIG. 4, and thus will not be described again here.
  • the comparator amplifier unit integrates a very accurate low-drift gain resistor network such as resistor R3-R4, which maximizes the achievable accuracy while allowing small parallel resistors such as resistors R1-R2. These gain resistors are built into this device to improve matching and temperature drift stability.
  • one end of the gain resistor R4 is connected to the connection terminal between the sense resistor Rs and the battery Sb through the pin 4 (IN+), and the other end is connected to the non-inverting input terminal of the operational amplifier U1A of the comparison amplifier unit.
  • One end of the gain resistor R3 is connected to the connection terminal between the detecting resistor Rs and the heat generating device through the pin 5 (IN-), and the other end is connected to the negative phase input terminal of the operational amplifier U1A.
  • the output of the op amp is the output of the comparator unit.
  • the resistor R1 is connected in parallel at one end between the resistor R3 and the negative phase input of the operational amplifier U1A, and at the other end to the input of the operational amplifier.
  • the resistor R2 is connected in parallel at one end between the resistor R4 and the non-inverting input of the operational amplifier U1A, and at the other end to the reference voltage pin of the comparator unit, that is, the pin 1 shown in FIG.
  • the working principle of the solution according to the present disclosure is that inserting a low-resistance value, for example 0.01 ohm, of the temperature-sensing detecting resistor Rs in series in the current path forms a small voltage drop, which can be amplified to be regarded as A signal proportional to the current.
  • the comparison amplifier unit Am acquires the voltage drop across the temperature detecting resistor Rs through the gain resistors R3 and R4, and then inputs it to the operational amplifier U1A for amplification to correct an inherent error affecting the measurement accuracy, such as an input compensation voltage. This converts the potentially lower differential voltage to a higher output voltage.
  • the amplified voltage signal is then fed to the microcontroller.
  • V OUT (I LOAD x R SHUNT )GAIN+V REF
  • V out represents the voltage outputted by the output pin OUT (pin 6), which reflects the real-time current I LOAD of the heat generating device L flowing through the temperature detecting resistor Rs.
  • GAIN indicates that the gain of the comparison amplifier unit is, for example, 50 times the magnification.
  • V REF represents a small ground-to-ground voltage applied to the amplifier's reference pin, REF (Pin 1).
  • V2-V1 I LOAD x R SHUNT representing the voltage across the resistor Rs, from which the following equation can be derived:
  • V OUT (V2-V1) GAIN + V REF
  • thermo sensing resistors in the measurement process is that high precision measurements of temperature stability can be performed using precision components.
  • the measurement function of the precision comparator unit is optimized for connecting very small signals to meet the requirements of low value resistors and low power consumption.
  • the smoking article F When the smoking article F is inserted into the tobacco rod 100, or when the battery is supplied to the heat generating device by detecting a cigarette in the tobacco rod by a switch provided on the tobacco rod 100 or by detecting the inside of the tobacco rod through the internal detecting element, the battery current is passed through The turned-on switch Q1 flows to the heat generating device L through the temperature detecting resistor Rs.
  • the temperature detecting resistor Rs provides a voltage value to detect the resistance of the heat generating device.
  • the voltage signal provided by the temperature sensing resistor may be too small, so that the detection accuracy is insufficient. In this case, the signal needs to be amplified and then detected.
  • the aforementioned comparison amplifier unit Am is added between the temperature detecting resistor Rs and the microcontroller Cr.
  • the pins 4 and 5 of the comparison amplifier unit Am are connected to both sides of the temperature detecting resistor Rs to detect the voltage across it, that is, V2-V1 (step 100), and for the above reason, the signal A certain multiple is amplified by the comparator unit Am, for example by a factor of 50, and then fed back to the microcontroller Cr via a pin 6 connected to the microcontroller Cr (step 200).
  • the microcontroller After the microcontroller receives the feedback signal, then using real-time battery voltage directly measured in real time representative of the voltage across the heating device, heat generating device to calculate the resistance value R L of real solid software algorithm stored inside the microcontroller Cr And comparing the real-time resistance value with a preset heat-generating device resistance R preset stored in the microcontroller by the look-up table (step 300 shown in FIG. 6), wherein the preset heat-generating device resistance value R is preset Corresponding to the preset heating device temperature; based on the comparison result, the PWM controller of the microcontroller controls the switch Q1 connected between the battery Sb and the heat generating device L, here is the MOS tube (step 400 shown in FIG.
  • the PWM controller controls to provide additional power to the heating device to raise its temperature until the preset target temperature is reached;
  • the resistance value is higher than the preset resistance value, which means that the temperature of the heat generating device is higher than the preset target temperature, and the PWM controller controls to reduce or even stop supplying power to the heat generating device to lower the temperature to the preset target temperature.
  • a comparative amplifier unit capable of achieving the above functions in the field of a heated non-combustion smoking device can be selected.
  • the number of comparison amplifier units is also not limited to only one as in the foregoing examples, and more than one, for example, two such comparison amplifier units may be set according to actual needs.
  • the MOS transistor is disposed between the heat generating device L and the battery Sb, and can be turned on and off by the MOS tube to ensure that the battery supplies power to the heat generating device and disconnects the battery to supply power to the heat generating device.
  • the PWM controller of the microcontroller Cr is connected to the gate of the MOS transistor, that is, the gate G through the resistor R10, wherein the resistor R10 is provided to prevent the breakdown of the switch tube. A large current damages the PWM pin of the microcontroller.
  • the positive electrode of the battery is connected to the wire between the PWM controller of the microcontroller and the resistor R10 via a resistor R7, and to the source S, S2 of the switching MOS transistor.
  • a resistor R7 is provided to serve as a pull-up resistor for the switching MOS transistor to provide conditions for the MOS transistor to be turned on.
  • the pins D1-D5 of the MOS transistor are connected to each other as a drain.
  • the negative pole of the battery is connected to the wire between the resistor R10 and the gate G through the capacitor C4.
  • the capacitor C4 connected in parallel on the resistor R10 functions to improve the switching stability of the MOS transistor.
  • the MOS tube is maintained in an on-state, corresponding to the switch Q1 being in a closed position, which allows current to flow from the battery Sb through the temperature-sensing detecting resistor Rs to the heat-generating device L.
  • the comparison amplifier unit Am monitors the voltage across the resistor: the voltage V2-V1 at both ends is obtained by internally comparing the operation detection signals V2 and V1, and is amplified and fed to the micro-control.
  • the microcontroller is additionally connected to the battery that supplies power to the heating device L to directly measure its real-time voltage, thereby using its internal software algorithm to calculate the resistance of the starting thermal element and look up the table for comparison: according to the comparison result, controlled by the PWM controller
  • the magnitude of the gate G voltage can control the magnitude of the current of the drain D1-D5, thereby controlling the power supply to change the battery Sb to the heat generating device L. This control is achieved by PWM controlling the pulse width or duty cycle of the modulated signal so that the temperature of the heat generating device L can be maintained at a relatively constant temperature point by PWM adjustment.
  • the adjustment of the power supply of the heat generating device L by the battery Sb is realized by the combination of the PWM control and the MOS tube, so that the heat generating device L is maintained at a relatively constant temperature point.
  • this is only a non-limiting example.
  • any other simple switching device such as a transistor such as a transistor which can realize such a function can also be used.
  • the controller can implement any suitable control technique to adjust the temperature, such as a simple thermostatic feedback loop.
  • a microcontroller is used here as an example.
  • any device capable of providing a signal capable of controlling the heat-generating device can be connected with the comparison amplifier unit Am, which is also disposed between the battery Sb and the heat-generating device L, in parallel with the innovation according to the present disclosure.
  • the arrangement of the temperature detecting resistors Rs is used together.
  • the microcontroller Cr can also be configured to detect a short circuit of the heat generating device L so as to protect the main board of the heated non-burning smoking device when the heat generating device is short-circuited, thereby preventing the short circuit of the heat generating device from being damaged, including the microcontroller and, if necessary, Compare the motherboard of the amplifier unit.
  • the terminal 1 of the heat generating device L is connected to the ground via the resistor R6 in series with the resistor R15, and the tap conductor between the resistor R6 and the resistor R15 is connected to the heat generating device of the microcontroller via the resistor R14. Short circuit detection pin.
  • the resistors R6 and R15 are arranged to provide a voltage dividing signal for detecting the short circuit of the heating device L by the microcontroller Cr, and the resistor R14 is arranged to prevent the large current from damaging the detecting I/O port of the microcontroller Cr, that is, its input/output. port. If the short detection pin detects a low signal, it is judged that the heat generating device is short-circuited, for example, 0 volt is detected to indicate that it is short-circuited to ground; if a high signal is detected, it is judged that the heat-generating device is not short-circuited.
  • the accuracy may be, for example, 5%, the resistances of the resistors R6 and R15 are the same, and the resistance of the resistor R14 is not required to be uniform.
  • the comparison amplifier unit Am can also be configured to detect an accidental short circuit from the battery to the system, if necessary, thereby preventing damage to the motherboard, the switch.
  • the temperature detecting resistor Rs and the comparison amplifier unit Am are separate devices.
  • the temperature sensing resistor can be integrated inside the comparator unit. Its operation mode is similar to the foregoing, and will not be described here.
  • the parasitic resistance in series with the sense resistor may cause additional measurement errors, and the integrated method can avoid the influence of parasitic resistance and further improve the measurement accuracy.
  • the temperature of the heat generating device can be monitored for a predetermined period of time, such as every few milliseconds or every 100 milliseconds. This monitoring can be carried out continuously or when only the power of the heating device is supplied.
  • the microcontroller is for example programmable.
  • the preset target temperature value that is, the preset resistance value
  • the user can also set himself or set a plurality of values set in the smoking article as needed to precisely control the temperature of the heat generating device to a relatively constant level.
  • the present disclosure may include any feature or combination of features or a summary thereof that is implicitly or explicitly disclosed herein, and is not limited to any of the defined ranges set forth above. Any of the elements, features and/or structural arrangements described herein may be combined in any suitable manner.

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

一种烟具设备及其测温控温方法。烟具设备包括:发热器件(L);连接到发热器件(L)的功率源(Sb),用于向发热器件(L)提供功率;以及控制器单元(50),用于连接到发热器件(L)和功率源(Sb),配置成控制从功率源(Sb)到发热器件(L)的功率供给以调节发热器件(L)温度。控制器单元(50)利用串联在功率源(Sb)与发热器件(L)之间的测温检测电阻(Rs)来确定发热器件(L)在由功率源(Sb)供给功率时的实时阻值R ,以实现对发热器件(L)温度的实时监控,使得其能保持于恒定的预设目标温度,从而提高温度检测精确度以提高控温准确性。

Description

烟具设备及用于该烟具设备的测温控温方法 技术领域
本公开涉及一种电子烟具设备、尤其是加热式非燃烧烟具设备的技术领域,本公开特别是涉及可精确测温控温的加热式非燃烧烟具设备以及用于这种烟具设备的精确测温控温方法的领域。
背景技术
随着现代社会中人对身体健康的关注度上升,人们逐渐意识到了通过将发烟制品燃烧以供用户吸食这一传统抽烟方式对身体的危害,因此产生了加热式非燃烧烟具设备。现有的加热式非燃烧烟具设备可通过例如插入式电加热的烘烤方式来加热发烟制品,即将电子烟中的陶瓷发热片插入至发烟制品中,使得陶瓷发热片加热发烟制品以产生烟雾来供用户吸食。出于进一步的健康考虑,已知一些电子烟具的加热器温度被控制处于特定的温度范围内,以使发烟制品不会产生和释放不期望的挥发性化合物甚至燃烧。
为进行这种温度控制则需要对加热器温度进行监测。例如,已知通过单独温度传感器直接测量加热器的温度,或者使加热器设计成既用作电阻加热器又用作温度传感器,以通过其电阻温度系数确定其电阻。这类方法成本较高。
另外还已知一种测温方法,其在于在加热器与接地装置之间串联一个额外电阻器,由与该额外电阻器相连的微控制器测量其两端电压,以确定实时的加热器电阻值,从而基于此通过与电阻器直接相连的微控制器对加热器温度进行实时调整。
但是对于这种检测方法,其缺点之一在于检测电阻引入的地线干扰,较高的负载电流则会使该问题更加严重。再者,由于检测电压随电池电流而变,这样就会改变电池电压,由此会导致温度输出不精确,从而使得无法精确控制加热器温度。其另外一个缺点体现在电池和地之间意外短路所导致的短路电流不能被检测到,而这种短路可能会产生足够毁坏开关的大电流。
发明内容
因此,本公开旨在提供一种电加热式非燃烧烟具设备,其通过一种创新的测温控温电路布置能至少部分地解决前述问题。
为此,一方面,本公开提出一种烟具设备,其包括:
发热器件,用于加热发烟制品;
功率源,功率源连接到发热器件,用于向发热器件提供功率;以及
控制器单元,用于连接到发热器件和功率源,控制器单元配置成控制从功率源到发热器件的功率供给以调节发热器件温度,
其特征在于,控制器单元还配置成:利用串联在功率源与发热器件之间的测温检测电阻来确定发热器件在由功率源供给功率时的实时阻值R ,以便实现对发热器件温度的实时监控,使得发热器件能保持于恒定的预设目标温度。
利用具有根据本公开的这种测温检测电阻的电加热式非燃烧烟具设备,可以消除现有技术中产生的地线干扰,从而允许提高温度检测精确度以提高控温准确性。
有利地,至少一个比较放大器单元连接在控制器单元与测温检测电阻之间,用于监测所述测温检测电阻的两端电压V2-V1并将代表检测到的两端电压的信号放大,以便放大后的信号继而被传输到控制器单元。
有利地,比较放大器单元基于检测到的两端电压的信号利用比较放大器单元的增益输出放大的电压信号。
进一步地,由比较放大器单元放大输出的电压信号以下式表示:
V OUT=(I LOAD x R SHUNT)GAIN+V REF
其中,V OUT表示比较放大器单元的输出引脚OUT输出的电压,I LOAD表示流过发热器件的实时电流,R SHUNT表示测温检测电阻已知的阻值r,GAIN则表示比较放大器单元的增益即放大倍数,V REF表示在比较放大器单元的参考引脚所加的对地电压;
而所述测温检测电阻的两端电压即V2-V1=I LOAD x R SHUNT,由此可得:
V OUT=(V2-V1)GAIN+V REF
有利地,比较放大器单元并联于在其外部的测温检测电阻两侧。
还有利地,测温检测电阻集成于比较放大器单元内部。
通过设置前述比较放大器单元,可以放大信号,避免电压信号V2-V1可能太小而导致的检测精度不够,从而能进一步提高测温控温的精确度。
此外,控制器单元还可配置成检测发热器件短路以进行短路保护。
另外,比较放大器单元还可配置成进行功率源到地的短路检测以进行短路保护。
通过前述短路检测保护,还可提高设备的运行安全性。
根据本公开方案,所述实时阻值的确定在于:
测温检测电阻的阻值r已知,通过检测其两端电压V2-V1,利用欧姆定律I=U/R计算出流过发热器件的实时电流I :I =(V2-V1)/r;然后
利用控制器单元直接测得的功率源电压U ,再次基于欧姆定律I=U/R计算出发热器件的当前的实时阻值R :R =U /I
控制器单元还配置成比较实时阻值R 与同发热器件的预设目标温度相对应的预设的发热器件阻值R 预设,以根据比较结果来监测发热器件温度是否达到预设目标温度。
控制器单元于是基于比较结果来控制功率源给发热器件的功率供给。
有利地,控制器单元包括微控制器,微控制器可编程成通过PWM控制经由连接于功率源与发热器件之间的开关,控制从功率源到发热器件的功率供给。
有利地,开关是pMOS型开关管。
有利地,发热器件的预设目标温度是固定的或是可调的。
有利地,控制器单元配置成:
在实时阻值R 等于预设的发热器件阻值R 预设的情况下判定发热器件温度达到预设目标温度,从而控制减小功率源向发热器件供给功率以使其温度维持于预设目标温度,
在实时阻值R 小于预设的发热器件阻值R 预设的情况下控制功率源向发热器件供给额外功率以使发热器件温度达到预设目标温度,
在实时阻值R 大于预设的发热器件阻值R 预设的情况下控制减小功率源向发热器件供给功率以使温度降到预设目标温度。
有利地,烟具设备是加热式非燃烧烟具设备。
有利地,烟具设备配置成接收接触发热器件的发烟制品。
有利地,功率源是可充电电池。
另一方面,本公开还涉及一种用于烟具设备的测温控温方法,所述烟具设备包括:发热器件,用于加热发烟制品;功率源,功率源连接到发热器件,用于向发热 器件提供功率;以及控制器单元,用于连接到发热器件和功率源,控制器单元配置成控制从功率源到发热器件的功率供给以调节发热器件温度,所述方法的特征在于,
利用串联在功率源与发热器件之间的测温检测电阻,由控制器单元确定发热器件在由功率源供给功率时的实时阻值R ,以便实现对发热器件温度的实时监控,使得发热器件能保持于恒定的预设目标温度。
有利地,设置至少一个比较放大器单元,其连接在控制器单元与测温检测电阻之间,用于监测所述测温检测电阻的两端电压V2-V1并将代表检测到的两端电压的信号放大,以便放大后的信号继而被传输到控制器单元。
有利地,基于检测到的两端电压的信号利用比较放大器单元的增益输出放大的电压信号。
进一步地,由比较放大器单元放大输出的电压信号以下式表示:
V OUT=(I LOAD x R SHUNT)GAIN+V REF
其中,V OUT表示比较放大器单元的输出引脚OUT输出的电压,I LOAD表示流过发热器件的实时电流,R SHUNT表示测温检测电阻已知的阻值r,GAIN则表示比较放大器单元的增益即放大倍数,V REF表示在比较放大器单元的参考引脚所加的对地电压;
而所述测温检测电阻的两端电压即V2-V1=I LOAD x R SHUNT,由此可得:
V OUT=(V2-V1)GAIN+V REF
有利地,将比较放大器单元并联于在其外部的测温检测电阻两侧。
还有利地,将测温检测电阻集成于比较放大器单元内部。
此外,利用控制器单元检测发热器件短路以进行短路保护。
另外,利用比较放大器单元进行功率源到地的短路检测以进行短路保护。
根据本公开的方法,所述实时阻值的确定在于:
测温检测电阻的阻值r已知,通过检测其两端电压V2-V1,利用欧姆定律I=U/R计算出流过发热器件的实时电流I :I =(V2-V1)/r;然后
利用控制器单元直接测得的功率源电压U ,再次基于欧姆定律I=U/R计算出发热器件的当前的实时阻值R :R =U /I
利用控制器单元比较实时阻值R 与同发热器件的预设目标温度相对应的预设的发热器件阻值R 预设,以根据比较结果来监测发热器件温度是否达到预设目标温度。
利用控制器单元基于比较结果来控制功率源给发热器件的功率供给。
有利地,通过控制器单元的PWM控制经由连接于功率源与发热器件之间的开关,控制从功率源到发热器件的功率供给。
有利地,开关是pMOS型开关管。
有利地,发热器件的预设目标温度是固定的或是可调的。
有利地,所述控制这样进行:
在实时阻值R 等于预设的发热器件阻值R 预设的情况下判定发热器件温度达到预设目标温度,从而控制减小功率源向发热器件供给功率以使其温度维持于预设目标温度,
在实时阻值R 小于预设的发热器件阻值R 预设的情况下控制功率源向发热器件供给额外功率以使发热器件温度达到预设目标温度,
在实时阻值R 大于预设的发热器件阻值R 预设的情况下控制减小功率源向发热器件供给功率以使温度降到预设目标温度。
有利地,烟具设备是加热式非燃烧烟具设备。
有利地,烟具设备配置成接收接触发热器件的发烟制品。
有利地,功率源是可充电电池。
根据本公开的上述方法具有前述类似的优点,这里就不再重述。
参照示例性实施例的如下详细描述并结合附图和根据附带的权利要求书,可以更全面地明白本公开的其它目的、特征和细节。
本领域技术人员通过参照下面列出的附图阅读相应实施例的如下详细描述,将会明白相应实施例以及各种另外的实施例的优点。此外,下面所讨论的附图的各个特征没有必要按比例绘制。附图中的各个特征和元件的尺寸可以扩大或缩小,以更清楚地示出本公开的实施例。
附图说明
下面结合附图和实施例对本公开进一步的说明,其中相同的参考标号在整个附图及其描述中指代相似或相同的元件。
附图中:
图1示意性示出加热式非燃烧烟具设备的基本元件的结构图;
图2表示TCR曲线,其中,纵坐标上所示的发热器件的电阻值随横坐标上所示 的温度升高而变大;
图3示意性表示根据本公开的用于加热式非燃烧烟具设备的发热器件测温和控温的简单电路图;
图4详细地示出根据本公开的用于加热式非燃烧烟具设备的发热器件测温和控温的总体电路图,从中可看出相关各元器件的相应位置、连接关系;
图5以示例的方式表示用于本公开的一种比较放大器单元;
图6为表示根据本公开的一实施例的测温控温方法的简单流程框图。
具体实施方式
下面描述本公开的相关说明性实施例。在本说明书中,仅为了解释起见,在附图中示意性地描绘各个系统、方法、结构和装置,但未描述实际系统、方法、结构和装置的所有特征,比如熟知的功能或结构并未详细描述,以避免不必要的细节使得本公开模糊不清。当然应该明白,在任何实际应用时,需要作出许多具体实施决策以达到开发者或使用者的特定目标,并且需要遵从与系统相关和行业相关的限制,这些特定目标可能随着实际应用的不同而不同。此外,应该明白,这样的具体实施决策虽然是复杂的且耗费大量时间的,然而这对于受益于本申请的本领域普通技术人员来说是例行任务。
本文使用的术语和短语应该被理解和解释为具有与相关领域技术人员对这些术语和短语的理解一致的含义。本文的术语或短语的一致用法不意在暗示术语或短语的特殊定义,即,与本领域技术人员所理解的普通和惯常含义不同的定义。对于意在具有特殊含义的术语或短语,即,与技术人员所理解的不同的含义,这种特殊定义将在说明书中以定义方式明确列出,直接且毫不含糊地给出术语或短语的特殊定义。
除非内容要求,否则在下文的整个说明书以及权利要求中,词语“包括”及其变型、诸如“包含”将以开放式的、包容的意义来解释,也就是如“包括但不限于”。
在本说明书的整个描述中,参考术语“一实施例”、“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、步骤、材料或者特点包含于本公开的至少一个实施例或示例中。因而,整个该说明书中不同地方出现的短语“在一个实施例中”或者“在一实施例中”不是必须都涉及相同实施例。而且,描述的具体特征、结构、步骤、材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
正如在本说明书和所附的权利要求中使用的,除非另有明确的规定和限定,单数形式的不定冠词“一”以及定冠词“该”包括一个或多个指称对象。还应该注意的是,除非另有明确的规定和限定,术语“或”从意思上来说一般包括“和/或”。为了这种说明的目的,以“A或B”的形式的词组意味着“(A)、(B)或者(A和B)”。为了说明的目的,以“A、B或C中的至少一个”的形式的词组意味着“(A)、(B)、(C)、(A和B)、(A和C)、(B和C)或者(A、B和C)”。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“联接”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
如这里使用的那样,术语“发烟制品”,等同于“气雾生成制品”,是指包括发烟基体或气雾形成基体的制品,该发烟基体或气雾形成基体能够释放易挥发化合物,这些易挥发化合物可形成气雾,这样的易挥发化合物可以通过加热气雾形成基体而释放。气雾形成基体可以方便地是气雾生成制品或发烟制品的一部分。如对于本领域的技术人员已知的那样,气雾是固体颗粒或液滴或者固体颗粒和液滴两者在气体(如空气)中的悬浮物。气雾形成基体可以包括含烟草的材料,该含烟草的材料包含易挥发烟草调味化合物,这些易挥发烟草调味化合物在加热时从基体释放。可选择地,气雾形成基体可以包括无烟草材料。气雾形成基体还可以包括气雾形成剂。适当的气雾形成剂的例子是甘油和丙二醇。气雾生成制品或发烟制品产生通过用户的嘴直接可吸入到用户的肺中的气雾。气雾生成制品或发烟制品可以是一次性的。下文一般使用术语“发烟制品”。
下面将结合附图详细解释本公开的特定实施例。
参见图1,本公开涉及一种烟具设备、特别是一种加热式非燃烧烟具设备,这里尤其涉及电加热式非燃烧烟杆100。出于简便起见,下面采用术语“烟杆”进行相关描述。
图1中简单示出烟杆一实施例的内部,其中烟杆的元件不是按比例绘制并且出于图示简单清楚的原因,省去了与本公开方案不相关的元器件。
如图1所示,典型地,烟杆100包括供发烟制品F插入的加热腔31,还包括发 热器件L、功率源Sb和控制器单元50。控制器单元50与发热器件L以及电源Sb相连接,控制器单元还可连接到使用者界面如按钮或显示器60,用以向使用者传送关于烟杆的信息,例如显示系统信息,例如电池功率、温度、发烟制品的状态、其它信息或其组合。图1中,发烟制品F已被推压到加热腔31内部以与发热器件L接触,这里是发热器件插入发烟制品的发烟基体内部。发烟制品F会在不同加热温度下释放系列挥发性化合物。通过控制烟杆100的操作温度使其低于一些挥发性化合物的释放温度,可避免一些有害烟气成分的释放或形成。
设置在烟杆100的壳体内的功率源可以是任何适当的功率源,例如为电池的DC电压源。例如,其为可充电锂离子电池。可替代地,功率源可以是镍金属氢化物电池、镍镉电池或锂基电池。下面简单地用术语“电池”Sb来进行说明。
发热器件L又称加热器,可以采用任何适当形式,例如图示的发热片L。其也可呈加热时穿过发烟制品中心的加热针或棒的形式。可替代地,发热器件可采用具有不同导电部分的壳体或基板或电阻金属板的形式。可替换地,发热器件可以是圆盘加热器或圆盘加热器与加热针或棒的组合,也可以包括加热线或丝,例如Ni-Cr(镍-铬)、铂、金、银、钨或合金线或加热板。可选而非必要地,加热器元件可以沉积在刚性载体材料中或上。另外可以根据需要设置一个或更多个发热器件,发热器件可被适当地布置以便最有效地加热发烟制品。下文中作为示例说明和简单起见,采用术语“发热器件”。
此外尽管图中未示出,但可选地,烟杆100可包括用于检测发烟制品的器件,用以检测与发热器件L在传热路径上接近的发烟制品F的存在和/或其特性,且将发烟制品F的存在的信号发送给与该器件相连的控制器单元50。
需要时,烟杆100在远离加热腔31的一端开设有接口40,该接口40可与控制器单元50连接。可以通过该接口与外部设备如智能终端,例如手机、Pad、电脑等相连以便以单向或双向的方式传递相关信息例如温度检测信号、调温信息等。另外,接口40也可设计成同时用于充电,在这种情况下接口40与电池Sb相连(这里图中未示出)。
如图1所示,以非限制性的方式,加热式非燃烧烟具设备100必要时还可设置有提取器20和与提取器协同运行的外壳10。提取器20的第一端安装于加热腔31中,其第二端开设有供发烟制品F插入的插入腔21。外壳10中空设置,套接在烟杆100的设有加热腔的端部侧上。外壳10这里布置成使得能以旋转的方式或者以平移的方 式使提取器20进入到加热腔31中或从加热腔31脱出。
通常,在加热式非燃烧烟具设备工作的过程中,为了增强用户体验,需要对发热器件进行一定的温度监测和控制。这一般通过控制器单元50进行。
典型地,控制器单元可设置用以接收相关信息并变换所接收的信息以生成输出。该控制器单元可包括任意类型的计算装置、计算电路或者任意类型的处理器或能够执行存储在存储器中的一系列指令的处理电路。该控制器单元可包括多个处理器和/或多核中央处理单元(CPU)并且可包括任意类型的处理器,诸如微处理器、数字信号处理器、微控制器等。该控制器单元还可包括存储器以存储数据和/或算法以执行一系列指令。
而术语“存储器”可包括提供(例如,存储和/或传送)以由诸如处理器、计算机或数字处理设备的机器可读格式的信息的机构。例如,存储器可包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光学存储介质、闪存设备或任意其他易失性或非易失性存储设备。包含在其上的代码或指令可由载波信号、红外信号、数字信号和其他相似的信号表示。
在下文中,将在控制器单元50包括微控制器(MCU)的情况下使用术语“微控制器”进行示例性说明。但提醒的是,这并非限制性的。
如上所述,在利用微控制器Cr控制发热器件L的加热温度时,需要对发热器件L的操作温度进行检测。在现有技术中,已知发热器件的温度可通过专用温度传感器检测。还已知在现有技术中,发热器件元件的温度通过监控其电阻率而确定。电阻率随着温度增加而增加。因而,在任何给定时间获知的电阻率可被用来推导发热器件的实际操作温度。
微控制器则基于所测得的温度信号控制功率源这里为电池Sb与发热器件L之间的开关通断,从而实现对加热式非燃烧烟具设备温度的精确控制,例如用以满足不同发烟制品的温度需求。
下面将以举例方式对根据本公开的测温控温电路进行详细说明。
已知地,从如图2所示的TCR曲线可看出,发热器件阻值会随温度升高而变大,呈一种基本线性的关系。由此可以无需计算发热器件实际温度,而直接借助通过确定其电阻值来进行后序相关控制操作。
根据现有技术的烟杆的一种测温控温电路,其中发热器件通过导线连接到电池,与发热器件串联的附加电阻连接到接地装置。微控制器直接通过输入端收集附 加电阻两端的电压,基于计算出的发热器件的电阻通过输出端经开关调整供给发热器件的电流。
对于根据现有技术的这种电路,其所测温度输出并不精确,原因如下:用于检测的附加电阻引入了地线干扰;检测电压随电池电流而变从而导致电池电压会改变。
因此相对于现有技术,本公开旨在提供一种测温控温电路,以提高温度检测精度从而提高控温准确性。
下面将参照图3-4以非限制性举例方式对本公开提出的方案进行说明。
如图3-4所示,在电池Sb与发热器件L之间串联有测温检测电阻Rs。
首先,测温检测电阻Rs的阻值r是已知的,流过测温检测电阻Rs的电流与经过测温检测电阻继而流过发热器件L的电流是相等的,由此通过检测测温检测电阻Rs的两端电压即V2-V1,则可以通过欧姆定律I=U/R来计算出通过发热片的实时电流I =(V2-V1)/r。可选地,出于进一步提高检测准确性考虑,可以考虑在测温检测电阻Rs的两端并联比较放大器单元Am。后文将进一步对此进行详细说明。
继而,由于电池电压会恒定在一个相对固定的电压值并且该电池电压值U 即代表发热器件的当前的两端电压,而电池电压是可由微控制器Cr直接测定的,因此基于前面已经确定的通过发热片的实时电流值I ,可以再次通过欧姆定律R=U/I计算出在当前特定温度下的当前实时的发热器件阻值R =U /I
然后,通过查询储存在微控制器的存储器中的有关与预设的发热器件温度相对应的预设的发热器件阻值表,则微控制器可以将实时的发热器件阻值同与预设的发热器件温度对应的阻值进行比较。
最后微控制器根据比较结果进行相应调控:如果实时的发热器件阻值同与预设目标温度对应的预设阻值相等,则表明发热器件温度已经达到一般例如在约250℃-450℃范围内的预设目标温度,则可由微控制器通过开关Q1控制减少对发热器件的功率供给以维持该温度;如果实时阻值小于预设阻值,则控制向发热器件供给额外供给功率以使其温度升高到预设目标温度;如果实时阻值大于预设阻值,则控制减少、甚至暂停给发热器件供给功率以使其温度降低到预设目标温度。
更具体地,如根据本公开的图4所示,电池正极通过开关Q1与测温检测电阻Rs、继而与发热器件L的端子1串联,发热器件L的端子2连接到电池负极。测温检测电阻Rs用于为检测发热器件电阻值提供电压值。这里,开关Q1尤其是p沟道 MOSFET,即为pMOS场效应管,下面简称MOS管。对于测温检测电阻Rs,可以选用任何适合类型的电阻,但其选取通常取决于以下因素:小负载电流下所需的精度;最大负载电流下的功耗。换言之即需基于测量精度与检测电阻功耗之间的折衷考虑选用这种温度检测电阻。
如上面提到的,为进一步提高监测准确性,可以在测温检测电阻Rs的两端并联如图4中所示的一个比较放大器单元Am。
之所以称为“比较放大器单元”是在于:该比较放大器单元首先将从测温检测电阻输入的电压信号V2、V1进行比较以运算V2-V1,这例如为图6所示的步骤100;所谓放大,则意指从测温检测电阻Rs输入的差分电压信号V2-V1可能太小,由此会导致检测精度不够,例如因可能受到噪声等干扰,因而需要放大该信号,放大后的信号继而被传输给微控制器Cr,这对应于图6所示的步骤200。当然这是在设置有这种单元的情况下。如果未设置有这种比较放大器单元,则电阻Rs的两端电压则直接由控制器检测并进行相应计算和比较。
如图4所示,比较放大器单元Am的引脚4、5分别通过电阻R12和R13连接到测温检测电阻Rs的两侧以通过比较输入的电压信号V2、V1而监测得到电阻Rs的两端电压即V2-V1(对应于步骤100);在比较放大器单元与电阻Rs形成的回路中,其中串联的电阻R12、R13设置用于抑制检测信号V1和V2的小能量的脉冲电压损坏比较放大器单元。设置在引脚4与电阻R12之间的导线以及引脚5与电阻R13之间的导线间的电容C5则用于增加抗外部干扰的能力。当然,这里电阻R12、R13、电容C5并非必不可少的,可以根据实际需要设置。另外,电阻R12、R13精度一般为1%,它们的阻值须相同,例如均为图示中的3欧姆;通常,电容C5的精度要求±1PF(皮法)。
另外,在图4中,该比较放大器单元Am的引脚6为电压反馈脚,即用于将放大后的反馈信号输入到相关联的微控制器的对应引脚;而该比较放大器单元的引脚1位表示参考电压接入脚,引脚2位表示参考地接入脚,引脚3位表示电源接入引脚,其与微控制器的集成电路电源供应引脚相连以为其供电;在由引脚1、2、3与微控制器集成电路电源供应所形成的回路中,设置有电容C6,这里该电容为一种滤波电容,用于稳压。
关于这种比较放大器单元Am,例如可参见图5中示意表示的这种比较放大器单元的一种实施例,图5中示出其简单的内部电路结构。其相应引脚与前面结合图4 所描述的类似,因此这里不再赘述。这里,该比较放大器单元内部集成有非常精确的低漂移增益电阻器网络如电阻R3-R4,该网络能最大限度地实现可达到的准确度,同时允许小型并联电阻器如电阻R1-R2。这些增益电阻内置到这种器件中可以提高匹配度和温漂稳定性。
具体地,增益电阻R4一端通过引脚4(IN+)连接到检测电阻Rs与电池Sb之间的连接端,而另一端与比较放大器单元的运算放大器U1A的正相输入端相连。增益电阻R3一端通过引脚5(IN-)连接到检测电阻Rs与发热器件之间的连接端,而另一端与运算放大器U1A的负相输入端相连。运算放大器的输出端即为比较放大器单元的输出端。
电阻R1以并联的方式在其一端连接在电阻R3与运算放大器U1A的负相输入端之间,在另一端连接到运算放大器的输入端。电阻R2以并联的方式在其一端连接在电阻R4与运算放大器U1A的正相输入端之间,在另一端连接到比较放大器单元的参考电压引脚,即图4所示的引脚1。
根据本公开的方案的工作原理在于:在电流路径中以串联的方式插入一个低阻值例如0.01欧姆的测温检测电阻Rs会形成一个小的电压降,该压降可被放大从而被当作一个正比于电流的信号。为此,比较放大器单元Am通过增益电阻R3、R4采集测温检测电阻Rs的两端压降,继而将其输入到运算放大器U1A以进行放大来修正影响测量精度的固有误差,如输入补偿电压,从而将该可能较低的差分电压转换为较高输出电压。放大后的电压信号后面于是被馈送到微控制器。
例如对于图5所示的这种结构的比较放大器单元,其计算方式如下:
V OUT=(I LOAD x R SHUNT)GAIN+V REF
其中,V out表示输出引脚OUT(引脚6)输出的电压,其反映的是流过测温检测电阻Rs的也即为发热器件L的实时电流I LOAD。输出电压越大,流过测温检测电阻Rs的电流越大。GAIN则表示该比较放大器单元的增益即放大倍数例如50倍。V REF表示在放大器的参考引脚REF(引脚1)所加的一个不大的对地电压。
如上所述,代表电阻Rs两端电压的V2-V1=I LOAD x R SHUNT,由此可得出下式:
V OUT=(V2-V1)GAIN+V REF
因此,在测量过程中使用温度检测电阻的一个优点是可使用精密组件执行温度稳定的高精度测量。精密比较放大器单元的测量功能针对连接极小信号进行了优化,以满足使用低值电阻和低功耗要求。
当发烟制品F插到烟杆100中,或通过设置在烟杆100上的开关或通过内部的检测元件检测到烟杆内存在发烟制品而启动电池向发热器件供电时,电池电流通过处于导通的开关Q1经过测温检测电阻Rs流到发热器件L。而测温检测电阻Rs提供电压值以便检测发热器件阻值。但是测温检测电阻提供的电压信号可能太小,使得检测精度不够。在这种情况下需要将信号放大后来进行检测。为此根据本公开,在测温检测电阻Rs与微控制器Cr之间增设了前述比较放大器单元Am。如前所述,该比较放大器单元Am的引脚4和5连接到测温检测电阻Rs的两侧,以检测其两端电压即V2-V1(步骤100),并且出于上述缘由,该信号由比较大器单元Am放大一定倍数,例如放大50倍,然后通过与微控制器Cr相连的引脚6反馈给微控制器Cr(步骤200)。微控制器接收到反馈信号后,再利用其直接测得的代表实时的发热器件两端电压的实时电池电压,通过微控制器Cr内部存储的软件算法计算出发热器件L的实时阻值R ,并将该实时阻值通过查表与微控制器内部储存的预设的发热器件阻值R 预设相比较(图6所示的步骤300),其中预设的发热器件阻值R 预设对应于预设的发热器件温度;基于该比较结果由微控制器的PWM控制器对连接于电池Sb与发热器件L之间的开关Q1、这里是MOS管进行操控(图6所示的步骤400):如果实时阻值低于预设阻值,这表示发热器件温度低于预设目标温度,则PWM控制器控制为发热器件提供额外电能以升高其温度直到达到预设目标温度;如果实时阻值高于预设阻值,这表示发热器件温度高于预设目标温度,则PWM控制器控制减少、甚至停止为发热器件供给功率以使其温度降低到预设目标温度。
对于本公开而言,只要在加热式非燃烧烟具设备的领域内能够实现上述功能的比较放大器单元都可以选用。比较放大器单元的数量也并不限于如前述示例中的仅一个,可以根据实际需要设定多于一个、例如两个这样的比较放大器单元。
现在回到电池Sb与MOS管及微控制器Cr。
从图4中看到,MOS管设置在发热器件L与电池Sb之间,可通过MOS管通断来确保电池给发热器件供给功率和断开电池给发热器件供给功率。
这里以示例的方式,如图4所示的,微控制器Cr的PWM控制器经过电阻R10连接到MOS管的控制极即栅极G,其中电阻R10设置用于防止万一开关管击穿时大电流损坏微控制器的PWM引脚。而电池正极一方面经过电阻R7连接到在微控制器的PWM控制器与电阻R10之间的导线上,另一方面连接到开关MOS管的源极S、S2上。其中提供电阻R7以用作开关MOS管的上拉电阻,以便为MOS管打开提供条件。 MOS管的引脚D1-D5作为漏极相互连接。电池负极通过电容C4连接到电阻R10与栅极G之间的导线上,这里电阻R10上并联的电容C4的作用是提高MOS管的开关稳定性能。
在烟杆的正常启动操作期间,MOS管维持开启即导通状态,对应于开关Q1处于关闭位置,这允许电流从电池Sb经过测温检测电阻Rs流动到发热器件L。当电流流经检测电阻Rs时,比较放大器单元Am监测该电阻的两端电压:通过在内部比较运算检测信号V2、V1获得其两端电压V2-V1,并将其经放大后馈至微控制器Cr;微控制器另外与供电给发热器件L的电池相连以直接测其实时电压,从而利用其内部软件算法计算出发热元件阻值并查表进行比较:根据比较结果,通过PWM控制器控制栅极G电压的大小就可以控制漏极D1-D5电流的大小,从而控制改变电池Sb给发热器件L的功率供给。这种控制是通过PWM控制调制信号的脉冲宽度或占空比实现的,从而通过PWM调节使得发热器件L的温度可保持在比较恒定的温度点。
这里是通过PWM控制与MOS管相结合的方式实现电池Sb对发热器件L功率供给的调节,从而使发热器件L保持在比较恒定的温度点。但这仅是一种非限制性示例。
尽管这里优选使用MOS管,但例如也可以采用能实现这种功能的其它任何简单开关器件例如晶体管如三极管。控制器可实施任何适当控制技术来调整温度,例如简单的恒温反馈回路。
这里作为示例采用的是微控制器(MCU)。而实际上,如前所述,能够提供可控制发热器件的信号的任何装置都可以与根据本公开的创新的设置在电池Sb与发热器件L之间的可能还并联有比较放大器单元Am的测温检测电阻Rs的布置一起使用。
必要时,微控制器Cr还可配置成能检测发热器件L的短路,以便在发热器件短路时保护加热式非燃烧烟具设备的主板,从而避免发热器件短路损坏包括微控制器和必要时还有比较放大器单元的主板。从图4中可看到,发热器件L的端子1经电阻R6串联电阻R15继而再接到地;另外从电阻R6和电阻R15之间的分接导线经由电阻R14连接到微控制器的发热器件短路检测引脚。其中,电阻R6、R15设置用于为微控制器Cr检测发热器件L短路提供一个分压信号,而电阻R14设置用于防止大电流损坏微控制器Cr的检测I/O口即其输入/输出端口。如果所述短路检测引脚检测到低信号,则判断发热器件短路,例如检测到0伏则表示其与地短路;如果 检测到为高信号则判断发热器件没有短路。对于其中的电阻R6、R15、R14,其精度例如可为5%,电阻R6、R15阻值相同,而R14阻值不要求一致。
另外需要指出的是,对于前面所述的根据现有技术的检测电路,电池和地之间意外短路所导致的短路电流不能被检测到,从而正极电源和地之间短路会产生足够毁坏开关46的大电流。
而与现有技术相反的是,借助根据本公开的这种测温控温布置,如果需要,比较放大器单元Am还可配置成检测电池到系统地的意外短路,从而防止损坏主板、开关。
再者,这里,在上述示例性说明中,测温检测电阻Rs与比较放大器单元Am是分立的器件。作为变型,测温检测电阻可以集成于比较放大器单元内部。其运行方式与前述类似,这里不再赘述。对于分立的电阻Rs与比较放大器单元Am,与检测电阻串联的寄生电阻可能会引发附加测量误差,而集成方式则可避免寄生电阻产生的影响,进一步提高测量精度。
另外,可以在预先设定的时间周期例如每几毫秒或每100毫秒对发热器件温度进行监测。这种监测可以连续进行,也可以在仅供给发热器件功率时进行。
微控制器例如是可编程的。
从上述公开可清楚看出,利用本公开提供的方案,可获得更高精确度的反馈信号,从而可以更精确地控制发热器件的加热温度。当然,这种预设目标温度值、也即预设阻值,可以是固定的,也可以是变化的。对于后者,用户也可以根据需要自行设置或在烟具中设定的多个值中进行选择,以将发热器件的温度精确控制于相对恒定的水平。
本公开可以包括在此隐含或明确公开的任何特征或特征组合或其概括,不局限于上述罗列的任何限定的范围。在此所述的有关任何元件、特征和/或结构布置可以以任何适合的方式组合。
以上公开的特定实施例仅是示例性的,对于受益于本文的教导的本领域技术人员来说显然的是,可以以不同但等同的方式修改和实施本公开。例如,可以按不同的顺序执行上述方法步骤。此外,除了以下权利要求中所述的之外,并不限制本文示出的构造或设计的细节。因此显然的是,可对以上公开的具体实施例进行改变和修改,并且所有这些变型都被认为是落入本公开的范围和精神之内。因此,本文寻求的保护在所附的权利要求中列出。

Claims (34)

  1. 一种烟具设备,包括:
    发热器件,用于加热发烟制品;
    功率源,功率源连接到发热器件,用于向发热器件提供功率;以及
    控制器单元,用于连接到发热器件和功率源,控制器单元配置成控制从功率源到发热器件的功率供给以调节发热器件温度,
    其特征在于,控制器单元还配置成:利用串联在功率源与发热器件之间的测温检测电阻来确定发热器件在由功率源供给功率时的实时阻值R ,以便实现对发热器件温度的实时监控,使得发热器件能保持于恒定的预设目标温度。
  2. 根据权利要求1所述的烟具设备,其特征在于,至少一个比较放大器单元连接在控制器单元与测温检测电阻之间,用于监测所述测温检测电阻的两端电压V2-V1并将代表检测到的两端电压的信号放大,以便放大后的信号继而被传输到控制器单元。
  3. 根据权利要求2所述的烟具设备,其特征在于,比较放大器单元基于检测到的两端电压的信号利用比较放大器单元的增益输出放大的电压信号。
  4. 根据权利要求2所述的烟具设备,其特征在于,比较放大器单元并联于在其外部的测温检测电阻两侧。
  5. 根据权利要求2所述的烟具设备,其特征在于,测温检测电阻集成于比较放大器单元内部。
  6. 根据权利要求1至5中任一项所述的烟具设备,其特征在于,控制器单元还配置成检测发热器件短路以进行短路保护。
  7. 根据权利要求1至5中任一项所述的烟具设备,其特征在于,比较放大器单元还配置成进行功率源到地的短路检测以进行短路保护。
  8. 根据权利要求7所述的烟具设备,其特征在于,控制器单元配置成比较实时阻值R 与同发热器件的预设目标温度相对应的预设的发热器件阻值R 预设,以根据比较结果来监测发热器件温度是否达到预设目标温度。
  9. 根据权利要求8所述的烟具设备,其特征在于,控制器单元包括微控制器,微控制器可编程成通过PWM控制经由连接于功率源与发热器件之间的开关,控制从功率源到发热器件的功率供给。
  10. 根据权利要求9所述的烟具设备,其特征在于,开关是pMOS型开关管。
  11. 根据权利要求3所述的烟具设备,其特征在于,由比较放大器单元放大输出的电压信号以下式表示:
    V OUT=(I LOAD x R SHUNT)GAIN+V REF
    其中,V OUT表示比较放大器单元的输出引脚OUT输出的电压,I LOAD表示流过发热器件的实时电流,R SHUNT表示测温检测电阻已知的阻值r,GAIN则表示比较放大器单元的增益即放大倍数,V REF表示在比较放大器单元的参考引脚所加的对地电压;
    而所述测温检测电阻的两端电压即V2-V1=I LOAD x R SHUNT,由此可得:
    V OUT=(V2-V1)GAIN+V REF
  12. 根据权利要求1至5中任一项所述的烟具设备,其特征在于,所述实时阻值的确定在于:
    测温检测电阻的阻值r已知,通过检测其两端电压V2-V1,利用欧姆定律I=U/R计算出流过发热器件的实时电流I :I =(V2-V1)/r;然后
    利用控制器单元直接测得的功率源电压U ,再次基于欧姆定律I=U/R计算出发热器件的当前的实时阻值R :R =U /I
  13. 根据权利要求1至5中任一项所述的烟具设备,其特征在于,发热器件的预设目标温度是固定的或是可调的。
  14. 根据权利要求8所述的烟具设备,其特征在于,控制器单元配置成:
    在实时阻值R 等于预设的发热器件阻值R 预设的情况下判定发热器件温度达到预设目标温度,从而控制减小功率源向发热器件供给功率以使其温度维持于预设目标温度,
    在实时阻值R 小于预设的发热器件阻值R 预设的情况下控制功率源向发热器件供给额外功率以使发热器件温度达到预设目标温度,
    在实时阻值R 大于预设的发热器件阻值R 预设的情况下控制减小功率源向发热器件供给功率以使温度降到预设目标温度。
  15. 根据权利要求1至5中任一项所述的烟具设备,其特征在于,烟具设备是加热式非燃烧烟具设备。
  16. 根据权利要求1至5中任一项所述的烟具设备,其特征在于,烟具设备配置成接收接触发热器件的发烟制品。
  17. 根据权利要求1至5中任一项所述的烟具设备,其特征在于,功率源是可 充电电池。
  18. 一种用于烟具设备的测温控温方法,所述烟具设备包括:发热器件,用于加热发烟制品;功率源,功率源连接到发热器件,用于向发热器件提供功率;以及控制器单元,用于连接到发热器件和功率源,控制器单元配置成控制从功率源到发热器件的功率供给以调节发热器件温度,
    所述测温控温方法的特征在于,利用串联在功率源与发热器件之间的测温检测电阻,由控制器单元确定发热器件在由功率源供给功率时的实时阻值R ,以便实现对发热器件温度的实时监控,使得发热器件能保持于恒定的预设目标温度。
  19. 根据权利要求18所述的测温控温方法,其特征在于,设置至少一个比较放大器单元,其连接在控制器单元与测温检测电阻之间,用于监测所述测温检测电阻的两端电压V2-V1并将代表检测到的两端电压的信号放大,以便放大后的信号继而被传输到控制器单元。
  20. 根据权利要求19所述的测温控温方法,其特征在于,基于检测到的两端电压的信号利用比较放大器单元的增益输出放大的电压信号。
  21. 根据权利要求19所述的测温控温方法,其特征在于,将比较放大器单元并联于在其外部的测温检测电阻两侧。
  22. 根据权利要求19所述的测温控温方法,其特征在于,将测温检测电阻集成于比较放大器单元内部。
  23. 根据权利要求18至22中任一项所述的测温控温方法,其特征在于,利用控制器单元检测发热器件短路以进行短路保护。
  24. 根据权利要求18至22中任一项所述的测温控温方法,其特征在于,利用比较放大器单元进行功率源到地的短路检测以进行短路保护。
  25. 根据权利要求24所述的测温控温方法,其特征在于,利用控制器单元比较实时阻值R 与同发热器件的预设目标温度相对应的预设的发热器件阻值R 预设,以根据比较结果来监测发热器件温度是否达到预设目标温度。
  26. 根据权利要求25所述的测温控温方法,其特征在于,通过控制器单元的PWM控制经由连接于功率源与发热器件之间的开关,控制从功率源到发热器件的功率供给。
  27. 根据权利要求26所述的测温控温方法,其特征在于,开关是pMOS型开关管。
  28. 根据权利要求20所述的测温控温方法,其特征在于,由比较放大器单元放大输出的电压信号以下式表示:
    V OUT=(I LOAD x R SHUNT)GAIN+V REF
    其中,V OUT表示比较放大器单元的输出引脚OUT输出的电压,I LOAD表示流过发热器件的实时电流,R SHUNT表示测温检测电阻已知的阻值r,GAIN则表示比较放大器单元的增益即放大倍数,V REF表示在比较放大器单元的参考引脚所加的对地电压;
    而所述测温检测电阻的两端电压即V2-V1=I LOAD x R SHUNT,由此可得:
    V OUT=(V2-V1)GAIN+V REF
  29. 根据权利要求18至22中任一项所述的测温控温方法,其特征在于,所述实时阻值的确定在于:
    测温检测电阻的阻值r已知,通过检测其两端电压V2-V1,利用欧姆定律I=U/R计算出流过发热器件的实时电流I :I =(V2-V1)/r;然后
    利用控制器单元直接测得的功率源电压U ,再次基于欧姆定律I=U/R计算出发热器件的当前的实时阻值R :R =U /I
  30. 根据权利要求18至22中任一项所述的测温控温方法,其特征在于,发热器件的预设目标温度是固定的或是可调的。
  31. 根据权利要求25所述的测温控温方法,其特征在于,所述控制这样进行:
    在实时阻值R 等于预设的发热器件阻值R 预设的情况下判定发热器件温度达到预设目标温度,从而控制减小功率源向发热器件供给功率以使其温度维持于预设目标温度,
    在实时阻值R 小于预设的发热器件阻值R 预设的情况下控制功率源向发热器件供给额外功率以使发热器件温度达到预设目标温度,
    在实时阻值R 大于预设的发热器件阻值R 预设的情况下控制减小功率源向发热器件供给功率以使温度降到预设目标温度。
  32. 根据权利要求18至22中任一项所述的测温控温方法,其特征在于,烟具设备是加热式非燃烧烟具设备。
  33. 根据权利要求18至22中任一项所述的测温控温方法,其特征在于,烟具设备配置成接收接触发热器件的发烟制品。
  34. 根据权利要求18至22中任一项所述的测温控温方法,其特征在于,功率源是可充电电池。
PCT/CN2018/082460 2018-04-10 2018-04-10 烟具设备及用于该烟具设备的测温控温方法 WO2019196003A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082460 WO2019196003A1 (zh) 2018-04-10 2018-04-10 烟具设备及用于该烟具设备的测温控温方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082460 WO2019196003A1 (zh) 2018-04-10 2018-04-10 烟具设备及用于该烟具设备的测温控温方法

Publications (1)

Publication Number Publication Date
WO2019196003A1 true WO2019196003A1 (zh) 2019-10-17

Family

ID=68163447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082460 WO2019196003A1 (zh) 2018-04-10 2018-04-10 烟具设备及用于该烟具设备的测温控温方法

Country Status (1)

Country Link
WO (1) WO2019196003A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110652043A (zh) * 2019-10-21 2020-01-07 东莞市美迪云电子科技有限公司 一种可调节功率的烟雾发生器以及调节控制方法
CN112075667A (zh) * 2020-10-09 2020-12-15 西安稳先半导体科技有限责任公司 一种电子烟、用于电子烟的烟弹和安全电路
CN114468383A (zh) * 2020-11-11 2022-05-13 湖南中烟工业有限责任公司 发热元件、低温烘焙烟具及其发热体拆装方法
WO2025001529A1 (zh) * 2023-06-26 2025-01-02 湖北中烟工业有限责任公司 一种加热烟具及温控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081554A1 (zh) * 2013-12-06 2015-06-11 吉瑞高新科技股份有限公司 烟盒控制电路、电子烟盒及其温湿度检测方法
CN104720119A (zh) * 2015-02-06 2015-06-24 董金明 自动恒温电子烟及其控制方法
CN106455718A (zh) * 2014-06-14 2017-02-22 进化有限公司 具有温度感测和限值的电子汽化器
CN106858724A (zh) * 2017-03-22 2017-06-20 东莞市哈维电子科技有限公司 电子吸烟器的温度控制装置
WO2018050701A1 (en) * 2016-09-14 2018-03-22 Philip Morris Products S.A. Aerosol-generating system and method for controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081554A1 (zh) * 2013-12-06 2015-06-11 吉瑞高新科技股份有限公司 烟盒控制电路、电子烟盒及其温湿度检测方法
CN106455718A (zh) * 2014-06-14 2017-02-22 进化有限公司 具有温度感测和限值的电子汽化器
CN104720119A (zh) * 2015-02-06 2015-06-24 董金明 自动恒温电子烟及其控制方法
WO2018050701A1 (en) * 2016-09-14 2018-03-22 Philip Morris Products S.A. Aerosol-generating system and method for controlling the same
CN106858724A (zh) * 2017-03-22 2017-06-20 东莞市哈维电子科技有限公司 电子吸烟器的温度控制装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110652043A (zh) * 2019-10-21 2020-01-07 东莞市美迪云电子科技有限公司 一种可调节功率的烟雾发生器以及调节控制方法
CN110652043B (zh) * 2019-10-21 2024-05-07 东莞市美迪格电子科技有限公司 一种可调节功率的烟雾发生器以及调节控制方法
CN112075667A (zh) * 2020-10-09 2020-12-15 西安稳先半导体科技有限责任公司 一种电子烟、用于电子烟的烟弹和安全电路
CN112075667B (zh) * 2020-10-09 2024-01-05 无锡市稳先微电子有限公司 一种电子烟、用于电子烟的烟弹和安全电路
CN114468383A (zh) * 2020-11-11 2022-05-13 湖南中烟工业有限责任公司 发热元件、低温烘焙烟具及其发热体拆装方法
WO2025001529A1 (zh) * 2023-06-26 2025-01-02 湖北中烟工业有限责任公司 一种加热烟具及温控方法

Similar Documents

Publication Publication Date Title
CN108618206B (zh) 烟具设备及用于该烟具设备的测温控温方法
US11454996B2 (en) Electronic cigarette temperature control system and method, and electronic cigarette with the same
US12262755B1 (en) Method of making circuit with bypass line that bypasses internal circuitry
CN204440191U (zh) 温控系统及其含有温控系统的电子烟
WO2019196003A1 (zh) 烟具设备及用于该烟具设备的测温控温方法
EP3883411B1 (en) Aerosol generating device and operation method thereof
WO2016202028A1 (zh) 电子烟雾化温度控制方法、控制电路及可控温电子烟雾化芯
EP3210480B1 (en) Electronic cigarette having temperature control
US12082620B2 (en) Aerosol generating device and operation method thereof
WO2018170800A1 (zh) 电子吸烟装置及其温度控制方法
CN204861167U (zh) 电子烟雾化温度控制电路及可控温电子烟雾化芯
UA127382C2 (uk) Пристрій, що генерує аерозоль, який має управління на основі температури
BR112014012734B1 (pt) sistema de geração de aerossol e método para prover dados de fornecimento de aerossol para um usuário final
CN108873976A (zh) 电子烟的温度控制系统
US11925214B2 (en) Aerosol generating device and operating method thereof
US20220192273A1 (en) Electric heating smoking system and release control method for volatile compound
CN111351985B (zh) 电阻检测系统和方法
KR102318694B1 (ko) 에어로졸 발생 장치 및 그의 온도 측정 방법
US11503671B2 (en) Temperature controller for electronic smoking device
CN116133544A (zh) 用于控制气溶胶产生装置的方法
KR102277888B1 (ko) 에어로졸 발생 장치 및 그의 제어 방법
US20230165315A1 (en) Device for air conduction heating
CN222466096U (zh) 气溶胶生成装置
CN119924588A (zh) 用于气溶胶生成装置的控制方法和气溶胶生成装置
WO2023193647A1 (zh) 气溶胶产生装置及统计用户的抽吸口数的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914376

Country of ref document: EP

Kind code of ref document: A1