WO2019192624A1 - 一种非金属柔性管及其制造方法 - Google Patents
一种非金属柔性管及其制造方法 Download PDFInfo
- Publication number
- WO2019192624A1 WO2019192624A1 PCT/CN2019/083893 CN2019083893W WO2019192624A1 WO 2019192624 A1 WO2019192624 A1 WO 2019192624A1 CN 2019083893 W CN2019083893 W CN 2019083893W WO 2019192624 A1 WO2019192624 A1 WO 2019192624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- pressure
- fiber
- bearing
- flexible pipe
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000010410 layer Substances 0.000 claims abstract description 232
- 239000002346 layers by function Substances 0.000 claims abstract description 38
- 239000011241 protective layer Substances 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 26
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 22
- 239000013307 optical fiber Substances 0.000 claims abstract description 10
- 239000000805 composite resin Substances 0.000 claims abstract description 8
- 239000004744 fabric Substances 0.000 claims description 50
- 239000000835 fiber Substances 0.000 claims description 38
- 238000001816 cooling Methods 0.000 claims description 33
- 238000004804 winding Methods 0.000 claims description 16
- 229920005989 resin Polymers 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 229920006351 engineering plastic Polymers 0.000 claims description 4
- 239000004416 thermosoftening plastic Substances 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 238000009941 weaving Methods 0.000 claims 1
- 238000002955 isolation Methods 0.000 abstract description 12
- 230000007797 corrosion Effects 0.000 abstract description 8
- 238000005260 corrosion Methods 0.000 abstract description 8
- 239000002657 fibrous material Substances 0.000 abstract 1
- 238000001125 extrusion Methods 0.000 description 56
- 238000000034 method Methods 0.000 description 38
- 230000008569 process Effects 0.000 description 34
- 239000004760 aramid Substances 0.000 description 32
- 229920003235 aromatic polyamide Polymers 0.000 description 32
- 229920001721 polyimide Polymers 0.000 description 19
- 239000004642 Polyimide Substances 0.000 description 17
- -1 polyethylene Polymers 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 15
- 239000003822 epoxy resin Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 229920000647 polyepoxide Polymers 0.000 description 12
- 229920001707 polybutylene terephthalate Polymers 0.000 description 11
- 229920006231 aramid fiber Polymers 0.000 description 10
- 238000009954 braiding Methods 0.000 description 10
- 229920001778 nylon Polymers 0.000 description 10
- 239000004696 Poly ether ether ketone Substances 0.000 description 9
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 9
- 229920002530 polyetherether ketone Polymers 0.000 description 9
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 9
- 229920000049 Carbon (fiber) Polymers 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 8
- 239000004917 carbon fiber Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 230000001066 destructive effect Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 5
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 5
- STLFZKZBGXSIQJ-UHFFFAOYSA-N 1,1'-biphenyl;naphthalene Chemical group C1=CC=CC2=CC=CC=C21.C1=CC=CC=C1C1=CC=CC=C1 STLFZKZBGXSIQJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229920000110 poly(aryl ether sulfone) Polymers 0.000 description 4
- 239000004693 Polybenzimidazole Substances 0.000 description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229920006376 polybenzimidazole fiber Polymers 0.000 description 3
- 229920001470 polyketone Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000006163 transport media Substances 0.000 description 3
- ASDNIIDZSQLDMR-UHFFFAOYSA-N 2-[2-(1,3-benzoxazol-2-yl)phenyl]-1,3-benzoxazole Chemical compound C1=CC=C2OC(C=3C(C=4OC5=CC=CC=C5N=4)=CC=CC=3)=NC2=C1 ASDNIIDZSQLDMR-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C69/00—Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/08—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
- F16L11/085—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers
- F16L11/087—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0013—Extrusion moulding in several steps, i.e. components merging outside the die
- B29C48/0015—Extrusion moulding in several steps, i.e. components merging outside the die producing hollow articles having components brought in contact outside the extrusion die
- B29C48/0016—Extrusion moulding in several steps, i.e. components merging outside the die producing hollow articles having components brought in contact outside the extrusion die using a plurality of extrusion dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/15—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
- B29C48/151—Coating hollow articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/23—Articles comprising two or more components, e.g. co-extruded layers the components being layers with means for avoiding adhesion of the layers, e.g. for forming peelable layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/02—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
- B29C63/04—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
- B29C63/08—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically
- B29C63/10—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles
- B29C63/105—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles continuously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D23/00—Producing tubular articles
- B29D23/001—Pipes; Pipe joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/08—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/14—Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/285—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/286—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/288—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/322—Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B29/00—Layered products comprising a layer of paper or cardboard
- B32B29/02—Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/30—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/026—Knitted fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/028—Net structure, e.g. spaced apart filaments bonded at the crossing points
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/08—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/08—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/14—Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics
- F16L11/18—Articulated hoses, e.g. composed of a series of rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/12—Thermoplastic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/005—Hoses, i.e. flexible
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
- B32B2262/0269—Aromatic polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
- B32B2262/0284—Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/14—Mixture of at least two fibres made of different materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/51—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/546—Flexural strength; Flexion stiffness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/554—Wear resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
Definitions
- the invention relates to a non-metallic flexible pipe and a manufacturing method thereof, in particular to a multifunctional non-metallic flexible pipe and a manufacturing process thereof for a marine riser, a deep sea pipeline and the like.
- the deep-sea pipeline is the "lifeline" of the marine oil and gas production system. It is the fastest, safest and most economical way of transporting offshore oil and gas. It plays an important role in the development and export of submarine oil and natural gas.
- the service conditions of deep-sea pipelines are harsh, and the internal high temperature, high pressure and hydrogen sulfide and carbon dioxide in the pipeline are likely to cause deterioration of material properties.
- the service conditions of marine risers are more demanding. In addition to the above factors, they also have to bear the combined effects of hydrostatic pressure, bending moment and axial tension, so they play a dual role in harsh environments and complex transport fluids. The safety of submarine pipelines has been greatly threatened.
- Deep sea pipelines and marine risers can be divided into metal pipes and non-metallic flexible pipes. Due to the difficulty in laying and repairing metal pipes, corrosion is more likely to occur in complex fluid environments.
- the non-metallic flexible pipe is made of a variety of polymer materials, has many advantages such as light weight, resistance to multiple corrosive fluids, wear resistance and low laying cost, and therefore tends to use non-metallic flexible pipes.
- the mainstream non-metallic flexible pipe is a cemented flexible pipe, which is generally composed of a plurality of layers of materials, and the adjacent layer materials are mostly connected by rigid bonding to form a bonded composite pipe structure, such as the patent CN106287027A.
- the adhesive non-metallic flexible pipe disclosed in the present invention comprises an inner liner layer, a reinforcing layer, a functional layer and a protective layer in order from the inside to the outside, wherein the inner liner layer and the reinforcing layer are welded to ensure the corrosion resistance of the inner liner layer. , gas permeability resistance and pipe flexibility.
- the main improvement is that the three-layer structure of the inner liner layer together forms a bonded stone wall structure, which further improves the above properties of the inner liner layer.
- the present invention provides a non-metallic flexible tube which not only has good corrosion resistance, gas permeability and flexibility, but also has good temperature resistance and resistance. Pressure performance, able to adapt to the harsh conditions in the ocean.
- the present invention firstly provides a non-metallic flexible pipe which is provided with an inner liner layer, a pressure bearing layer, a separation layer, a tensile layer, a functional layer and a protective layer from the inside to the outside, and two adjacent layers.
- a non-metallic flexible pipe which is provided with an inner liner layer, a pressure bearing layer, a separation layer, a tensile layer, a functional layer and a protective layer from the inside to the outside, and two adjacent layers.
- the inner liner is made of a thermoplastic polymer
- the pressure-bearing layer is made of a fiber-reinforced resin-based composite material
- the separator is made of a thermoplastic polymer
- the tensile layer is made of a resin-reinforced material, in a functional layer.
- the cloth is provided with at least one of a fiber, a cable, a heating cable, a pipe for conveying a heat transfer medium, a pressure sensor and a temperature sensor
- the protective layer is made of a thermoplastic polymer.
- the non-rigid bonding described in the present invention is a concept opposite to the current "rigid bonding", and refers to a flexible bonding method formed by physical adsorption or enthalpy action, inlay bonding or the like.
- the material used for the inner liner layer can be reasonably selected according to the actual conditions such as the corrosion characteristics, temperature, pressure and wear performance of the transport medium, and in particular, it can be selected to maintain stable performance in the transport medium and have good barrier properties to the transport medium.
- Thermoplastic engineering plastics including but not limited to polyethylene, nylon, polybutylene terephthalate, polyketone, polyphenylene sulfide, polyetheretherketone, polyvinylidene fluoride, thermoplastic polyurethane, fusible polytetrafluoroethylene And one or more of polyphenylene ether.
- the particles of the one or more thermoplastic polymers are melt extruded, and subjected to a setting process during the extrusion process, such as heating and pressurizing the materials in the extruder.
- the thermoplastic polymer inner liner having the required diameter and length, which is an inner liner, is obtained by die-forming in a flowing state and then cooling and setting.
- the inner liner is a single-layer structure, and its thickness can be controlled within the range of 1-20 mm, so that it can not only maintain good corrosion resistance, but also facilitate the bending and coiling of the non-metallic flexible pipe.
- the size of the inner liner determines the inner diameter of the non-metallic flexible tube.
- the size of the inner liner can be reasonably set according to the application environment of the actual non-metallic flexible tube.
- the non-metallic flexible tube can have an inner diameter of 2-20 inches.
- the pressure-bearing layer functions to withstand external and internal pressures and has a large relative deformation ability when the whole tube is bent.
- the material is a fiber-reinforced resin-based composite material, that is, fiber-reinforced composite.
- Material (FRP) which is based on a resin and disperses fibers.
- the fiber may specifically be carbon fiber, glass fiber, aramid fiber, nylon fiber, polybenzimidazole fiber (PBI), polyimide fiber (PI), polysulfonamide fiber (PSA), and polyethylene terephthalate.
- PET diol ester fibers
- PBO diol ester fibers
- PBO polyimide
- Oxygen resin-based composite material carbon fiber reinforced polyimide resin-based composite material, carbon fiber reinforced polyimide resin-based composite material, and the like.
- the pressure-bearing layer may be formed by winding at least one pair of pressure-bearing belts on the inner liner layer and extending along the axial direction of the inner liner layer.
- the inner surface of the rear wound pressure belt is covered on the outer surface of the first wound pressure belt, and an interlocking structure is formed between the two surfaces so that the two pressure belts are on the shaft No relative displacement occurs in the direction.
- each pressure belt is wound on the surface of the inner liner at an angle of 20 to 60 degrees, for example, at an angle of 30 degrees.
- the pressure-bearing belts wound one by one are staggered, and the two surfaces in contact with each other are inlaid.
- the outer surface of the pressure-receiving belt which is first wound and the inner surface of the pressure-retaining belt which is wound on the back may be respectively provided with a concave-convex structure which can cooperate with each other, so that the outer surface of the first pressure-bearing belt and the inner surface of the rear-wrapped pressure-bearing belt are A damascene structure is formed to form an interlocking structure.
- the pressure belt wound around each turn covers at least the surface of the two winding belts of the first wound pressure belt, and at least two turns of the pressure belt which is wound first and the pressure belt of the rear winding form a mosaic structure, that is, Two pressure belts in each pair of pressure belts are alternately arranged to further ensure that the two pressure belts do not have relative displacement in the axial direction.
- the pressure-bearing belt wound around each turn and the two-contracted pressure-bearing belt form a mosaic structure, and at the same time, the pressure-bearing belt which is wound first and the pressure-bearing belt which is wound after two turns form a mosaic structure.
- the mosaic structure may be an interlocking structure commonly used in the art, such as a double T type, a TTM type, a CT type, etc., and the structural schematic diagrams thereof may be respectively referred to FIG. 1 to FIG. In this way, when the whole pipe is deformed, the pressure belt can be relatively displaced, so that the whole pipe has a certain flexibility, and the entire winding structure can withstand the external hydrostatic pressure.
- the pressure-receiving belt used in the above non-metallic flexible pipe can process the fiber-reinforced resin-based composite material into a strip-shaped material having the above-mentioned uneven structure on the surface, and the width thereof is generally 10-100 mm, and the thickness is generally 1-20 mm, and then The surface of the inner liner was sequentially wound in the above manner to obtain a pressure-bearing layer.
- the fibers are twisted into bundles, and the obtained strands are subjected to extrusion molding and resin impregnation, and the impregnated resin is cured.
- the fibers are twisted into bundles, the purpose of which is to increase the cohesion between the individual fibers, avoid breakage or turbulence during subsequent processing, and at the same time increase the breaking strength of the fibers, and then squeeze
- the machine is heated and pressurized to form a continuous die-forming die, and grooves and/or protrusions are formed in the process, and then the tension is pulled by the shaping die and the tension is maintained, so that the wire bundle is impregnated to the resin to reach saturation. Finally, the resin is subjected to heat curing or photocuring to obtain a pressure belt.
- the main function of the barrier layer is to prevent mutual wear between the pressure-bearing layer and the tensile layer.
- thermoplastic engineering plastics may be used, and the materials used may be the same as or different from the inner liner.
- the thickness of the separator is 1-20 mm.
- the material of the tensile layer is a resin-reinforced material of the fiber, which may be a single layer structure or a non-rigidly bonded multi-layer structure.
- the resin-reinforced material of the fiber is a fiber mesh woven layer after dipping and curing.
- a fiber cloth is woven outside the separator layer, and the resin is impregnated and the resin is applied. Curing gives a resin-reinforced material of the fiber.
- the thickness of the above-mentioned tensile layer is generally 1-25 mm, which may be a single layer structure or a multilayer structure, such as 1-5 layers, wherein each layer is manufactured in the same manner as above, and will not be described again.
- a certain relative displacement may occur between adjacent layers of the tensile layer, and may be added between adjacent layers.
- the fiber may specifically be carbon fiber, glass fiber, aramid fiber, nylon fiber, polybenzimidazole fiber, polyimide fiber, polysulfonamide fiber and polyparaphenylene.
- the resin may be an epoxy resin, an unsaturated polyester resin, a biphenyl type naphthalene biphenyl polyaryl ether sulfone, a phenylene benzobisoxazole, and a polyimide. One or more of them.
- a pressure bearing layer and a functional layer disposed adjacent to each other are set as a group, and 1-3 sets of bearing layer and functional layer are disposed between the bearing layer and the functional layer. That is, the separation layer and the tensile layer are combined into one repeating unit, and the repeating unit is repeated 1-3 times to form an "liner layer-pressure layer-isolation layer-tensile layer-isolation layer-tensile layer... ...the structure of the functional layer - protective layer.
- the protective layer is used to protect the entire non-metallic flexible tube, which is generally a single layer structure, and the thickness is usually controlled at 1-20 mm.
- the material of the protective layer can also be thermoplastic engineering plastics. According to different working conditions, polyethylene (PE), polyamide (PA), polybutylene terephthalate (PBT) and polyketone (POK) can be selected. , one of polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyvinylidene fluoride (PVDF), thermoplastic polyurethane elastomer rubber (TPU), polyfluoro (PF), and polyphenylene ether (PPO) or A variety of blends.
- PPS polyphenylene sulfide
- PEEK polyetheretherketone
- PVDF polyvinylidene fluoride
- TPU thermoplastic polyurethane elastomer rubber
- PF polyfluoro
- PPO polyphenylene ether
- the protective layer can also be melt extruded, firstly extruding the molten polymer onto the functional layer, and then performing the shaping cooling to complete the coating of the protective layer, and finally the tube can be obtained. Finished product.
- the non-metallic flexible tube provided by the invention has the material and structure used to ensure that the non-metallic flexible tube has light weight, corrosion resistance, gas permeability and certain flexibility, and also has good elasticity and fatigue resistance.
- the inventors have also found that the non-metallic flexible pipe also has outstanding temperature and pressure resistance, and can withstand a large degree of axial load, and can adapt to the harsh working conditions in the ocean.
- Still another aspect of the present invention provides a method of manufacturing the above non-metallic flexible tube, comprising the steps of:
- thermoplastic polymer is extruded outside the functional layer, and the coating of the protective layer is completed by setting and cooling.
- step (2) can be carried out 1-5 times, wherein the pressure-bearing belt is obtained by twisting a fiber into a bundle, extruding and resin-impregnating, and curing the impregnated resin.
- step (2) can be carried out at least once, and generally carried out 1-5 times.
- step (5) Before performing step (5), the above steps (3) and (4) may be alternately performed 1-4 times to form 1-3 sets of alternating isolation layers and tensile layers between the pressure receiving layer and the functional layer. .
- the non-metallic flexible pipe provided by the invention not only has good corrosion resistance, gas permeability and flexibility, but also can withstand high temperature of 80 ° C or even 180 ° C or higher, pressure of 15 MPa or more and even 50 Mpa or more, and its non-destructive axis
- the tension is not less than 300kN, and even 700kN and above. Therefore, the non-metallic flexible pipe has good temperature and pressure resistance, and can withstand a large degree of axial load, thereby being able to adapt to the harsh working conditions in the sea, and is normally used in a water depth of 500 meters or even 3,000 meters. Therefore, it can be well applied to marine risers and submarine pipelines in oil, natural gas, marine minerals and combustible ice mining.
- the non-metallic flexible pipe has a wide range of raw materials and can be flexibly configured according to actual needs.
- the method for manufacturing the non-metallic flexible pipe provided by the invention has simple and feasible steps and is convenient for large-scale promotion and application.
- FIG. 1 is a schematic diagram 1 showing an interlocking manner of a pressure belt according to an embodiment of the present invention
- FIG. 2 is a second schematic diagram of an interlocking manner of a pressure belt according to an embodiment of the present invention
- FIG. 3 is a schematic diagram 3 of an interlocking manner of a pressure belt according to an embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional structural view of a non-metallic flexible pipe provided by an embodiment of the present invention.
- the non-metallic flexible hoses manufactured in the following examples are tested and characterized according to API RP 17B-2008 standard and API SPEC17J-2014 for non-bonded flexible pipe test specifications.
- the main test content is standard prototype test. Such as blasting test, crush test, axial tensile test and temperature test.
- the embodiment provides a non-metallic flexible pipe with an inner diameter of 16 inches, and the structure thereof is as shown in FIG. 4, and an inner liner layer 1, a pressure bearing layer 2, an isolating layer 3, a tensile layer 4, and a bottom layer are sequentially arranged from the inside to the outside.
- the functional layer 5 and the protective layer 6 are manufactured in the following steps:
- the pressure belt has a thickness of 5 mm and a width of 40 mm, and one surface has a concave-convex structure.
- a pressure belt is wound on the extruded PE pipe by a winding machine at a 30° flat surface, and the surface having the concave-convex structure faces outward; the second pressure-bearing belt is wound, and the surface of the concave-convex structure is buckled inwardly.
- the two pressure belts form an interlocking structure. Referring to Figure 1, the double T-type interlock is used to complete the preparation of the pressure-bearing layer 2.
- a nylon cloth is woven on the outer layer of the separator 3 by a braiding machine.
- the nylon cloth is immersed in the epoxy resin, and then heated and solidified to bond the nylon cloth into a whole and the nylon cloth is improved.
- optical fiber, the cable and the pressure sensor are wound around the tensile layer to form a functional layer 5.
- thermoplastic polyurethane Extrusion of the thermoplastic polyurethane through the extruder and coating on the functional layer 5, after the cooling is completed, the processing of the protective layer 6 is completed, and the thickness thereof is 4 mm, and the finished product is obtained by using a tube-receiving machine.
- the non-metallic flexible pipe manufactured in this embodiment is equivalent to a thick-walled pipe composed of different layers.
- the stress analysis shows that the non-metallic flexible pipe has a maximum internal pressure of 40 MPa and a maximum external pressure of 6 MPa.
- the non-metallic flexible pipe can be coiled, its non-destructive axial tension is 300kN, and can be applied to marine risers and submarine pipelines for oil and gas gathering and transportation with a maximum pressure of 15 MPa, a temperature of 80 ° C and a water depth of 300 m.
- the embodiment provides a non-metallic flexible tube with an inner diameter of 12 inches, which is provided with an inner liner layer 1, a pressure bearing layer 2, an isolating layer 3, a tensile layer 4, an isolating layer 3, and a tensile layer in this order from the inside to the outside. 4.
- UHMWPE ultra-high molecular weight polyethylene
- the extrusion process conditions are as follows: The thickness was 7 mm and the extrusion temperature was 320 °C.
- the glass fiber After the glass fiber is twisted, it is passed through a pressure-bearing die, and then immersed in epoxy resin. The excess epoxy resin is removed by a scraping rubber plate, and heated to 120 ° C with hot air to cure the epoxy resin to form a pressure belt.
- the pressure belt has a thickness of 7 mm and a width of 40 mm, and one of the surfaces has a concave-convex structure.
- a pressure is applied to the extruded UHMWPE pipe by a winding machine at a 30° flattening, and the surface having the concave-convex structure faces outward; and the surface of the second pressure-bearing belt having the concave-convex structure is reversely buckled in the wrapped On one pressure belt, the two pressure belts form an interlocking structure.
- the TTM type interlocking structure is completed to complete the preparation of the pressure bearing layer 2.
- a layer of aramid cloth is woven outside the separator layer 3 by a braiding machine.
- the layer of aramid cloth is immersed in a phenolic epoxy resin, and then heated and solidified to bond the aramid cloth into a whole.
- the ability to increase the internal pressure of the aramid cloth is completed, thus completing the preparation of the first tensile layer 4, which has a thickness of 6 mm.
- a layer of aramid cloth is woven outside the second layer of the separator 3 by a braiding machine.
- the layer of aramid cloth is immersed in a phenolic epoxy resin, and then heated and solidified to bond the aramid cloth into As a whole, the ability to increase the internal pressure of the aramid cloth is completed, thus completing the preparation of the second layer of the tensile layer 4, which has a thickness of 6 mm.
- the optical fiber, the cable, and the pressure sensor are wound around the second layer of the tensile layer 4 to form the functional layer 5.
- thermoplastic polyurethane is extrusion-coated on the outside of the functional layer 5 through an extruder, and after cooling and cooling, the processing of the protective layer 6 is completed, and the thickness thereof is 6 mm, and the finished product is obtained by using a tube-receiving machine.
- the non-metallic flexible pipe manufactured in this embodiment is equivalent to a thick-walled pipe composed of different layers.
- the stress analysis shows that the non-metallic flexible pipe has a maximum internal pressure of 40 MPa and a maximum external pressure of 6 MPa.
- the non-metallic flexible pipe can be coiled, and its non-destructive axial tension is 400kN. It is suitable for marine risers and submarine pipelines for oil and gas gathering and transportation with a maximum pressure of 35 MPa, a temperature of 100 ° C and a water depth of 500 m.
- the embodiment provides a non-metallic flexible tube with an inner diameter of 10 inches, which is provided with an inner liner layer 1, a pressure bearing layer 2, a separation layer 3, a tensile layer 4, a separation layer 3, and a tensile layer in this order from the inside to the outside. 4.
- the extruder was used to extrude polyvinylidene fluoride (PVDF), and the PVDF pipe was obtained by setting and cooling.
- PVDF polyvinylidene fluoride
- the extrusion process conditions were as follows: extrusion thickness 10 mm, extrusion temperature 180-230 °C.
- the carbon fiber After the carbon fiber is twisted, it is passed through a pressure-bearing die, and then immersed in polyimide (PI). The excess PI is removed by a squeegee plate, and heated to 350 ° C with hot air to form a pressure-bearing zone.
- the belt has a thickness of 7 mm and a width of 40 mm, and one of the surfaces has a concave-convex structure.
- a pressure is applied to the extruded UHMWPE pipe by a winding machine at a 30° flattening, and the surface having the concave-convex structure faces outward; and the surface of the second pressure-bearing belt having the concave-convex structure is reversely buckled in the wrapped On one pressure belt, the two pressure belts form an interlocking structure.
- the CT type interlocking is completed to complete the preparation of the pressure bearing layer 2.
- a layer of aramid cloth is woven on the outer layer 3 of the first layer by a braiding machine, and the layer of aramid cloth is immersed in PI, and then heated and solidified to bond the aramid cloth into a whole.
- the ability to increase the internal pressure of the aramid cloth is completed, thus completing the preparation of the first tensile layer 4, which has a thickness of 6 mm.
- a layer of aramid cloth is woven outside the second layer of the separator 3 by a braiding machine.
- the layer of aramid cloth is immersed in PI, and then heat-cured to bond the aramid cloth into a whole.
- the ability to increase the internal pressure of the aramid cloth is completed, thus completing the preparation of the second layer of the tensile layer 4, which has a thickness of 6 mm.
- the optical fiber, the cable, and the pressure sensor are wound around the second layer of the tensile layer 4 to form the functional layer 5.
- thermoplastic polyurethane is extrusion-coated on the outside of the functional layer 5 through an extruder, and after cooling and cooling, the processing of the protective layer 6 is completed, and the thickness thereof is 6 mm, and the finished product is obtained by using a tube-receiving machine.
- the non-metallic flexible pipe manufactured in this embodiment is equivalent to a thick-walled pipe composed of different layers.
- the stress analysis shows that the non-metallic flexible pipe has a maximum internal pressure of 40 MPa and a maximum external pressure of 6 MPa.
- the polymer materials used in the non-metallic flexible tubes manufactured in this case were all used at temperatures above 120 °C.
- the non-metallic flexible pipe can be coiled, its non-destructive axial tension is 550KN, and can be applied to marine risers and submarine pipelines for oil and gas gathering and transportation with a maximum pressure of 35 MPa, a temperature of 120 ° C and a water depth of 500 m.
- the embodiment provides a non-metallic flexible pipe with an inner diameter of 9 inches, which is provided with an inner liner layer 1, a pressure bearing layer 2, a separation layer 3, a tensile layer 4, a separation layer 3, and a tensile layer from the inside to the outside. 4.
- the carbon fiber After the carbon fiber is twisted, it is passed through a pressure-bearing die, and then immersed in polyimide (PI). The excess PI is removed by a squeegee plate, and heated to 350 ° C with hot air to form a pressure-bearing zone.
- the belt has a thickness of 10 mm and a width of 40 mm, and one of the surfaces has a concave-convex structure.
- a pressure is applied to the extruded PFA pipe by a winding machine at a flattening angle of 30°, and the surface having the concave-convex structure faces outward; and the surface of the second pressure-bearing belt having the concave-convex structure is reversely buckled in the wrapped On one pressure belt, the two pressure belts form an interlocking structure.
- the CT type interlocking is completed to complete the preparation of the pressure bearing layer 2.
- a layer of aramid cloth is woven on the outer layer 3 of the first layer by a braiding machine, and the layer of aramid cloth is immersed in PI, and then heated and solidified to bond the aramid cloth into a whole.
- the ability to increase the internal pressure of the aramid cloth is completed, thus completing the preparation of the first tensile layer 4, which has a thickness of 6 mm.
- a layer of aramid cloth is woven outside the second layer of the separator 3 by a braiding machine.
- the layer of aramid cloth is immersed in PI, and then heat-cured to bond the aramid cloth into a whole.
- the ability to increase the internal pressure of the aramid cloth is completed, thus completing the preparation of the second layer of the tensile layer 4, which has a thickness of 6 mm.
- the optical fiber, the cable, and the pressure sensor are wound around the second layer of the tensile layer 4 to form the functional layer 5.
- thermoplastic polyurethane is extrusion-coated on the outside of the functional layer 5 by an extruder, and after cooling and cooling, the processing of the protective layer 6 is completed, and the thickness thereof is 10 mm, and the finished product is obtained by using a tube-receiving machine.
- the non-metallic flexible pipe manufactured in this embodiment is equivalent to a thick-walled pipe composed of different layers.
- the stress analysis shows that the non-metallic flexible pipe has a maximum internal pressure of 60 MPa and a maximum external pressure of 11 MPa.
- the non-metallic flexible pipe can be coiled, its non-destructive axial tension is 500kN, and can be applied to marine risers and submarine pipelines for oil and gas gathering and transportation with a maximum pressure of 50 MPa, a temperature of 150 ° C and a water depth of 1000 m.
- the embodiment provides a non-metallic flexible tube with an inner diameter of 7 inches, which is provided with an inner liner layer 1, a pressure bearing layer 2, a separation layer 3, a tensile layer 4, a separation layer 3, and a tensile layer from the inside to the outside. 4.
- a pressure is applied to the extruded PEEK pipe by a winding machine at a flattening angle of 30°, and the surface having the concave-convex structure faces outward; and the surface of the second pressure-bearing belt having the concave-convex structure is reversely buckled in the wrapped On one pressure belt, the two pressure belts form an interlocking structure.
- the CT type interlocking is completed to complete the preparation of the pressure bearing layer 2.
- a layer of aramid cloth is woven outside the first layer of the separator 3 by a braiding machine.
- the layer of aramid cloth is immersed in PPBESK, and then heat-cured to bond the aramid cloth into a whole.
- the ability to increase the internal pressure of the aramid cloth is completed, thus completing the preparation of the first layer of the tensile layer 4, which has a thickness of 8 mm.
- a layer of aramid cloth is woven outside the second layer of the separator 3 by a braiding machine.
- the layer of aramid cloth is immersed in PPBESK, and then heat-cured to bond the aramid cloth into a whole.
- the ability to increase the internal pressure of the aramid cloth is completed, thus completing the preparation of the second layer of the tensile layer 4, which has a thickness of 8 mm.
- the optical fiber, the cable, and the pressure sensor are wound around the second layer of the tensile layer 4 to form the functional layer 5.
- thermoplastic polyurethane Extrusion of the thermoplastic polyurethane through the extruder outside the functional layer 5, after cooling and cooling, the processing of the protective layer 6 is completed, the thickness of which is 15 mm, and the finished product is obtained by using a tube-receiving machine.
- the non-metallic flexible pipe manufactured in the present embodiment is equivalent to a thick-walled pipe composed of different layers, and the stress analysis shows that the maximum internal pressure of the flexible pipe is 80 MPa, and the maximum external pressure is 20 MPa.
- the non-metallic flexible pipe can be coiled, its non-destructive axial tension is 600kN, and can be applied to marine risers and submarine pipelines for oil and gas gathering and transportation with a maximum pressure of 70 MPa, a temperature of 150 ° C and a water depth of 1,500 m.
- the embodiment provides a non-metallic flexible tube with an inner diameter of 2.5 inches, which is provided with an inner liner layer 1, a pressure bearing layer 2, an isolating layer 3, a tensile layer 4, an isolating layer 3, and a tensile layer in this order from the inside to the outside. 4, the isolation layer 3, the tensile layer 4, the functional layer 5 and the protective layer 6, the manufacturing method comprises the following steps in sequence:
- the polyetheretherketone (PEEK) was extruded by an extruder, shaped, and cooled to obtain a PFA pipe as the inner liner 1.
- the extrusion process conditions were as follows: extrusion thickness 20 mm, extrusion temperature 400 °C.
- a pressure is applied to the extruded PFA pipe by a winding machine at a flattening angle of 30°, and the surface having the concave-convex structure faces outward; and the surface of the second pressure-bearing belt having the concave-convex structure is reversely buckled in the wrapped On one pressure belt, the two pressure belts form an interlocking structure.
- FIG 3 it is a CT type interlocking structure.
- the fifth pressure belt which is wound on the pressure belt at 30°, and the surface with the concave-convex structure faces outward, and then the sixth pressure belt is wound and formed with the fifth pressure belt.
- Double T-type interlocking structure Double T-type interlocking structure.
- the optical fiber, the cable, and the pressure sensor are wound around the third tensile layer 4 to form the functional layer 5.
- thermoplastic polyurethane Extrusion of the thermoplastic polyurethane through the extruder to the outside of the functional layer 5, after cooling and cooling, the processing of the protective layer 6 is completed, and the thickness thereof is 20 mm, and the finished product is obtained by using a tube-receiving machine.
- the non-metallic flexible pipe manufactured in the present embodiment is equivalent to a thick-walled pipe composed of different layers, and the stress analysis shows that the maximum internal pressure of the flexible pipe is 120 MPa, and the maximum external pressure is 45 MPa.
- the non-metallic flexible pipe can be coiled, its non-destructive axial tension is 700kN, and can be applied to marine risers and submarine pipelines for oil and gas gathering and transportation with a maximum pressure of 105 MPa, a temperature of 177 ° C and a water depth of 3000 m.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Laminated Bodies (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
一种非金属柔性管及其制造方法,非金属柔性管由内至外依次设有内衬层(1)、承压层(2)、隔离层(3)、抗拉层(4)、功能层(5)和保护层(6),且相邻两层之间为非刚性粘结,内衬层(1)的材质为热塑性聚合物,承压层(2)的材质为纤维增强树脂基复合材料,隔离层(3)的材质为热塑性聚合物,抗拉层(4)的材质为纤维经树脂增强的材料,功能层(5)中布设有光纤、电缆、伴热带、输送热传导介质的管道、压力传感器和温度传感器中的至少一种,保护层(6)的材质为热塑性聚合物。非金属柔性管不仅具有良好的耐腐蚀性、耐气体渗透性和柔性,而且具有良好的耐温和耐压性能,能够适应海洋中的恶劣工况,用于海洋立管、深海管道。
Description
本发明涉及一种非金属柔性管及其制造方法,尤其是涉及一种用于海洋立管、深海管道等的多功能非金属柔性管及制造工艺。
深海管道是海洋油气生产系统的“生命线”,是目前最快捷、最安全和经济可靠的海上油气运输方式,对海底石油以及天然气的开发输出起着十分重要的作用。但是深海管道的服役工况苛刻,管道内部高温、高压及硫化氢和二氧化碳等共同作用易造成材料性能的劣化。与深海管道相比,海洋立管的服役工况更加苛刻,除了上述因素之外,还要承受静水压力、弯矩以及轴向拉力等共同作用,因此在恶劣的环境和复杂的输送流体双重作用下,海底管道的安全性受到了极大的威胁。
深海管道和海洋立管可分为金属管和非金属柔性管。由于金属管道的铺设和维修都较为困难,且在复杂的流体环境中更易发生腐蚀。非金属柔性管是由多种高分子材料制造而成,具有质量轻、耐多种腐蚀流体、耐磨损和铺设成本低等多种优点,因此多倾向于使用非金属柔性管。目前主流的非金属柔性管为粘结性柔性管,其一般是多层材料构成,且相邻层材料之间多以刚性粘结的方式连接,以形成粘结式复合管结构,比如专利CN106287027A中公开的粘结性非金属柔性管,从里至外依次包括内衬层、增强层、功能层和保护层,其中内衬层与增强层之间熔接,以保证内衬层的耐腐蚀性、耐气体渗透性和管道的柔软性。另外,其主要改进点还在于内衬层的三层结构共同形成了粘结式的石壁结构,进一步提高了内衬层的上述性能。
但是研究发现,上述粘结性柔性管一旦用于海洋环境,极易在应力作用下发生开裂,且耐温性较差,致使其无法适应海洋中的恶劣环境,带来安全隐患。
发明内容
针对现有技术中的上述缺陷,本发明提供一种非金属柔性管及其制造方法,该非金属柔性管不仅具有良好的耐腐蚀性、耐气体渗透性和柔性,而且具有良好的耐温和耐压性能,能够适应海洋中的恶劣工况。
为实现上述目的,本发明首先提供一种非金属柔性管,其由内至外依次设有内衬层、承压层、隔离层、抗拉层、功能层和保护层,且相邻两层之间为非刚性粘结,
其中,内衬层的材质为热塑性聚合物,承压层的材质为纤维增强树脂基复合材料,隔离层的材质为热塑性聚合物,抗拉层的材质为纤维经树脂增强的材料,功能层中布设有光纤、电缆、 伴热带、输送热传导介质的管道、压力传感器和温度传感器中的至少一种,保护层的材质为热塑性聚合物。
本发明中所述的非刚性粘结,是与目前“刚性粘结”相对的概念,指的是通过物理吸附或卯榫作用、镶嵌结合等方式所形成的柔性粘结方式。
具体的,可根据输送介质的腐蚀特性、温度、压力和磨损性能等实际情况,合理选择内衬层所用的材料,尤其是可以选择在输送介质中保持性能稳定且对输送介质具有良好阻隔性能的热塑性工程塑料,包括但不限于聚乙烯、尼龙、聚对苯二甲酸丁二醇酯、聚酮、聚苯硫醚、聚醚醚酮、聚偏氟乙烯、热塑性聚氨酯、可熔聚四氟乙烯和聚苯醚中的一种或多种。
在本发明具体实施过程中,是将上述一种或多种热塑性聚合物的颗粒通过熔融挤出,并在挤出过程中实施定型处理,比如在挤出机中通过加热、加压而使物料以流动状态通过口模成型,然后再经冷却定型,得到具有要求直径和长度的热塑性聚合物内衬管,即为内衬层。
一般情况下,内衬层为单层结构,其厚度可控制在1-20mm的范围内,使其不仅能够保持良好的耐腐蚀性能,而且在利于非金属柔性管的弯折及盘卷。
可以理解,内衬层的尺寸决定了非金属柔性管的内径大小,一般情况下,可以根据实际非金属柔性管的应用环境合理设置内衬层的尺寸。通常非金属柔性管的内径可以达到2-20英寸。
顾名思义,承压层的作用在于承受外部和内部的压力,并在整管弯曲时具有较大的相对形变能力,本发明的实施方案中,其材料为纤维增强树脂基复合材料,即纤维增强复合材料(FRP),该复合材料以树脂为基体,以纤维为分散质。该纤维具体可以是碳纤维、玻璃纤维、芳纶纤维、尼龙纤维、聚苯并咪唑纤维(PBI)、聚酰亚胺纤维(PI)、聚砜基酰胺纤维(PSA)和聚对苯二甲酸乙二醇酯纤维(PET)中的一种或多种的混纺纤维,该树脂为环氧树脂、不饱和聚脂树脂、联苯型杂萘联苯聚芳醚砜(PPBESK)、苯撑苯并二噁唑(PBO)和聚酰亚胺中的一种或多种的混合物,当然也可以分别是其它纤维和树脂形成的复合材料,比如尼龙纤维增强环氧树脂基复合材料、玻璃纤维增强环氧树脂基复合材料、碳纤维增强聚酰亚胺树脂基复合材料、碳纤维增强聚酰亚胺树脂基复合材料等。
具体的,承压层可以是由至少一对承压带先后缠绕在内衬层上,并沿内衬层的轴向延伸所形成,
在每对承压带中,后缠绕的承压带的内表面覆盖在先缠绕的承压带的外表面上,且该两个表面之间形成互锁结构,使两个承压带在轴向方向不发生相对位移。
其中,每个承压带以20度至60度角缠绕在内衬层表面,比如以30度角缠绕。
具体的,为实现上述互锁结构,可以在每对承压带中,先后缠绕的承压带呈交错设置,且 相互接触的两个表面之间镶嵌连接。
比如可以在先缠绕的承压带外表面和后缠绕的承压带内表面分别设置能相互配合的凹凸结构,这样先缠绕的承压带的外表面与后缠绕的承压带的内表面之间形成镶嵌结构,从而形成互锁结构。并且,每匝后缠绕的承压带至少覆盖在先缠绕的承压带的两匝的表面,同时每匝先缠绕的承压带与后缠绕的承压带的至少两匝形成镶嵌结构,即,每对承压带中的两个承压带交替设置,以进一步保证两个承压带在轴向方向不发生相对位移。
在本发明具体实施过程中,每匝后缠绕的承压带与两匝先缠绕的承压带形成镶嵌结构,同时每匝先缠绕的承压带与两匝后缠绕的承压带形成镶嵌结构。且该镶嵌结构可以是本领域常用的互锁结构,比如双T型、TTM型、CT型等,其结构示意图可分别参见图1至图3。这样在整管发生变形时,承压带能够一定的相对位移,使整管具有一定柔软性的同时还能够使整个缠绕结构可以承受外来的静水压力。
上述非金属柔性管中所使用的承压带,可以将纤维增强树脂基复合材料加工成一个表面具有上述凹凸结构的带状材料,其宽度一般为10-100mm,厚度一般为1-20mm,然后按照上述方式依次缠绕在内衬层表面,得到承压层。
在本发明具体实施过程中,是将纤维加捻成束,再将得到的线束通过挤出成型和树脂浸渍,并对浸渍的树脂实施固化得到。
在上述承压带的制造过程中,将纤维加捻成束,目的是增加单根纤维间的抱合力,避免在后续加工时发生断头或紊乱现象,同时提高纤维的断裂强度,然后在挤出机中通过加热、加压,使其以连续通过口模成型,并在此过程中形成凹槽和/或凸起,然后经定型口模牵引并保持牵引张力,使线束浸渍树脂至达到饱和,最后对树脂实施热固化或光固化,得到承压带。
可以理解,承压带的层数越多,承压能力就越高,但是相应的,整管的变形能力受到了约束,根据不同的管径和承压需求,一般设置1-10层承压带,或者说1-5对承压带,最终整个承压层的厚度为2-30mm。每对承压带的制造和缠绕方式同上,不赘述。
隔离层的主要作用是防止承压层与抗拉层之间相互磨损,其具体也可以选用热塑性工程塑料,所用材料可以与内衬层相同或不同。一般情况下,隔离层的厚度为1-20mm。
抗拉层的材质为纤维经树脂增强的材料,其具体可以为单层结构,也可以非刚性粘结的多层结构。
具体的,上述纤维经树脂增强的材料,是浸胶固化经后的纤维网状编织层,在本发明具体实施过程中,是在隔离层外编织一层纤维布后浸渍树脂,并对树脂实施固化,得到纤维经树脂增强的材料。
上述抗拉层的厚度一般为1-25mm,其具体可以是单层结构,也可以是多层结构,比如1-5层,其中每层的制造方法同上,不赘述。同时,为避免相邻两层之间发生粘连,以在整管弯曲形变的过程中,抗拉层的相邻两层之间可发生一定的相对位移,也可以在相邻两层之间加设衬纸。
在抗拉层的纤维经树脂增强的材料中,纤维具体可以为碳纤维、玻璃纤维、芳纶纤维、尼龙纤维、聚苯并咪唑纤维、聚酰亚胺纤维、聚砜基酰胺纤维和聚对苯二甲酸乙二醇酯纤维中的至少一种,树脂可以为环氧树脂、不饱和聚脂树脂、联苯型杂萘联苯聚芳醚砜、苯撑苯并二噁唑和聚酰亚胺中的一种或多种。
在本发明具体实施过程中,以相邻设置的承压层和功能层为一组,承压层和功能层之间设有1-3组承压层和功能层。,即以隔离层和抗拉层组合成一个重复单元,并将该重复单元重复1-3次,形成“内衬层-承压层-隔离层-抗拉层-隔离层-抗拉层……功能层-保护层”的结构。
保护层用于保护整个非金属柔性管,其一般为单层结构,厚度通常控制在1-20mm。保护层的材质一般也可以是热塑性工程塑料,根据不同的工况,可以选择聚乙烯(PE)、聚酰胺(PA)、聚对苯二甲酸丁二醇酯(PBT)、聚酮(POK)、聚苯硫醚(PPS)、聚醚醚酮(PEEK)、聚偏氟乙烯(PVDF)、热塑性聚氨酯弹性体橡胶(TPU)、聚氟(PF)和聚苯醚(PPO)的一种或多种共混物。
在本发明具体实施过程中,保护层同样可以采用熔融挤出的方式,首先将熔融的聚合物挤出到功能层上,再进行定型冷却,完成保护层的包覆,最后收管即可得到成品。
本发明所提供的非金属柔性管,其所用材质和结构保证了该非金属柔性管具有质轻、耐腐蚀、耐气体渗透性和一定的柔性,并且还具有良好的弹性和抗疲劳性能。同时发明人还发现,该非金属柔性管还具有非常突出耐温和耐压性能,并且能够承受较大程度的轴向载荷,能够适应海洋中的恶劣工况。
本发明的再一个方面是提供上述非金属柔性管的制造方法,包括如下步骤:
(1)将热塑性聚合物熔融挤出,经定型、冷却,得到具有预设尺寸的内衬管,作为内衬层;
(2)将两个材质为纤维增强树脂基复合材料的承压带先后缠绕在内衬管表面并沿内衬管的轴向延伸,形成承压层;
(3)将热塑性聚合物熔融挤出并缠绕在承压层表面,经定型、冷却,形成隔离层;
(4)在隔离层表面编织纤维,使编织成的纤维布包覆在隔离层表面;采用树脂浸渍纤维布或涂覆在纤维布上,经固化后形成抗拉层;
(5)将光纤、电缆、伴热带、输送热传导介质的管道、压力传感器和温度传感器中的至少一种缠绕在抗拉层表面,得到功能层;
(6)将热塑性聚合物挤出到功能层外,经定型、冷却,完成保护层的包覆。
具体的,上述步骤(2)可以实施1-5次,其中,该承压带是将纤维加捻成束,经挤出成型和树脂浸渍,并对浸渍的树脂实施固化得到。
具体的,上述步骤(2)可实施至少1次,一般实施1-5次。
在执行步骤(5)之前,上述步骤(3)和步骤(4)可交替实施1-4次,从而在承压层和功能层之间形成1-3组交替设置的隔离层和抗拉层。
本发明提供的非金属柔性管,不仅具有良好的耐腐蚀性、耐气体渗透性和柔性,而且能够耐受80℃甚至180℃以上的高温、15MPa以上甚至50Mpa以上的压力,且其非破坏轴向张力不低于300kN,甚至可达到700kN及以上。因此,该非金属柔性管具有良好的耐温和耐压性能,并能够承受较大程度的轴向载荷,从而能够适应海洋中的恶劣工况,在水深为500米以上甚至3000米中正常使用,从而能够很好的应用于石油、天然气、海洋矿藏及可燃冰开采中的海洋立管和海底管线等。
并且,该非金属柔性管的原料来源广泛,可根据实际需求灵活配置。
本发明提供的非金属柔性管的制造方法,步骤简单可行,便于大规模推广和应用。
图1为本发明一具体实施方式所述提供的承压带互锁方式示意图一;
图2为本发明一具体实施方式所述提供的承压带互锁方式示意图二;
图3为本发明一具体实施方式所述提供的承压带互锁方式示意图三;
图4为本发明一具体实施方式所述提供的非金属柔性管的径向剖面结构示意图。
附图标记说明:
1-内衬层; 2-承压层; 3-隔离层;
4-抗拉层; 5-功能层; 6-保护层。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
以下实施例中所制造的非金属柔性软管,均参照API RP 17B-2008标准以及API SPEC17J-2014中针对非粘结型柔性管道测试规范进行测试和表征,主要测试内容为标准的原型试验,如爆破试验、压溃试验、轴向拉伸试验和温度试验。
实施例1
本实施例提供一种内径为16英寸的非金属柔性管,其结构如图4所示,从内至外依次设有内衬层1、承压层2、隔离层3、抗拉层4、功能层5和保护层6,其制造方法依次包括如下步骤:
1、使用挤出机将聚乙烯挤出,定型、冷却得到PE管道,作为内衬层1,挤出工艺条件如下:挤出厚度5mm,挤出温度140-190℃。
2、将尼龙纤维加捻后通过承压带口模,再浸入环氧树脂,通过刮胶板除去多余的环氧树脂,用热空气加热到120℃使环氧树脂固化形成承压带,承压带的厚度为5mm,宽度为40mm,且一个表面具有凹凸结构。
通过缠绕机将一条承压带以30°平铺缠绕在挤出的PE管道上,具有凹凸结构的表面朝外;再缠绕第二条承压带,并将凹凸结构的表面朝里反扣在缠好的第一条承压带上,这两条承压带形成互锁结构,具体参见图1,为双T型互锁,完成承压层2的制备。
4、使用挤出机将PE挤出在已缠绕好的承压层2外,挤出工艺与内衬层的挤出工艺相同,经定型冷却完成隔离层3的包覆,其厚度为3mm。
5、将尼龙纤维加捻成线后,通过编织机在隔离层3外编织一层尼龙布,这层尼龙布浸入环氧树脂,再加热固化,使尼龙布粘接成一个整体,提高尼龙布的承内压的能力,这样就完成了抗拉层4的制备,其厚度为4mm。
6、将光纤、电缆和压力传感器缠绕在抗拉层外,形成功能层5。
7、通过挤出机将热塑性聚氨酯挤出并包覆在功能层5外,定型冷却后,完成保护层6的加工,其厚度为4mm,使用收管机进行收管得到成品。
将本实施例中制造的非金属柔性管等效成不同层组成的厚壁管,进行受力情况分析可知:该非金属柔性管的最大承受内压为40MPa,最大承受外压为6MPa。
该非金属柔性管可进行盘卷,其非破坏轴向张力为300kN,并能够适用于最高压力为15MPa,温度80℃,水深为300米的油气集输用海洋立管、海底管线等。
实施例2
本实施例提供一种内径为12英寸的非金属柔性管,其从内至外依次设有内衬层1、承压层2、隔离层3、抗拉层4、隔离层3、抗拉层4、功能层5和保护层6,其制造方法依次包括 如下步骤:
1、使用挤出机将超高分子量聚乙烯(UHMWPE,分子量为150万以上的无支链线性聚乙烯)挤出,定型、冷却得到UHMWPE管道作为内衬层1,挤出工艺条件如下:挤出厚度7mm,挤出温度320℃。
2、将玻璃纤维加捻后通过承压带口模,再浸入环氧树脂,通过刮胶板除去多余的环氧树脂,用热空气加热到120℃使环氧树脂固化形成承压带,承压带的厚度为7mm,宽度为40mm,且其中一个表面具有凹凸结构。
通过缠绕机将一条承压以30°平铺缠绕在挤出的UHMWPE管道上,具有凹凸结构的表面朝外;再将第二条承压带具有凹凸结构的表面朝里反扣在缠好的第一条承压带上,这两条承压带形成互锁结构,具体参见图2,为TTM型互锁结构,完成承压层2的制备。
3、使用挤出机将聚对苯二甲酸丁二醇酯(PBT)挤出在已缠绕好的承压层2外,挤出工艺与内衬的挤出工艺相同,经定型冷却完成第一层隔离层3的包覆,其厚度为3mm。
4、将芳纶纤维加捻后,通过编织机在隔离层3外编织一层芳纶布,这层芳纶布浸入酚醛环氧树脂,再加热固化,使芳纶布粘接成一个整体,提高芳纶布的承内压的能力,这样就完成了第一层抗拉层4的制备,其厚度为6mm。
5、使用挤出机将PBT挤出在已固化的第一层抗拉层4外,挤出工艺与内衬的挤出工艺相同,经定型冷却完成第二层隔离层3的包覆,其厚度为3mm。
6、将芳纶纤维加捻后,通过编织机在第二层隔离层3外编织一层芳纶布,这层芳纶布浸入酚醛环氧树脂,再加热固化,使芳纶布粘接成一个整体,提高芳纶布的承内压的能力,这样就完成了第二层抗拉层4的制备,其厚度为6mm。
7、将光纤、电缆、压力传感器缠绕在第二层抗拉层4外,形成功能层5。
8、通过挤出机将热塑性聚氨酯挤出包覆在功能层5外,定型冷却后,完成保护层6的加工,其厚度为6mm,使用收管机进行收管得到成品。
将本实施例中制造的非金属柔性管等效成不同层组成的厚壁管,进行受力情况分析可知:该非金属柔性管的最大承受内压为40MPa,最大承受外压为6MPa。
该非金属柔性管可进行盘卷,其非破坏轴向张力为400kN,适用于最高压力为35MPa,温度100℃,水深为500米的油气集输用海洋立管、海底管线。
实施例3
本实施例提供一种内径为10英寸的非金属柔性管,其从内至外依次设有内衬层1、承压层2、隔离层3、抗拉层4、隔离层3、抗拉层4、功能层5和保护层6,其制造方法依次包括 如下步骤:
1、使用挤出机将聚偏氟乙烯(PVDF)挤出,定型、冷却得到PVDF管道,作为内衬层1,挤出工艺条件如下:挤出厚度10mm,挤出温度180-230℃。
2、将碳纤维加捻后通过承压带口模,再浸入聚酰亚胺(PI),通过刮胶板除去多余的PI,用热空气加热到350℃使PI固化形成承压带,承压带的厚度为7mm,宽度为40mm,且其中一个表面具有凹凸结构。
通过缠绕机将一条承压以30°平铺缠绕在挤出的UHMWPE管道上,具有凹凸结构的表面朝外;再将第二条承压带具有凹凸结构的表面朝里反扣在缠好的第一条承压带上,这两条承压带形成互锁结构,具体参见图3,为CT型互锁,完成承压层2的制备。
3、使用挤出机将聚对苯二甲酸丁二醇酯(PBT)挤出在已缠绕好的承压层2外,挤出工艺与内衬的挤出工艺相同,经定型冷却完成第一层隔离层3的包覆,其厚度为3mm。
4、将芳纶纤维加捻后,通过编织机在第一层隔离层3外编织一层芳纶布,这层芳纶布浸入PI,再加热固化,使芳纶布粘接成一个整体,提高芳纶布的承内压的能力,这样就完成了第一层抗拉层4的制备,其厚度为6mm。
5、使用挤出机将PBT挤出在固化的第一层抗拉层4外,挤出工艺与内衬的挤出工艺相同,经定型冷却完成第二层隔离层3的包覆,其厚度为3mm。
6、将芳纶纤维加捻后,通过编织机在第二层隔离层3外编织一层芳纶布,这层芳纶布浸入PI,再加热固化,使芳纶布粘接成一个整体,提高芳纶布的承内压的能力,这样就完成了第二层抗拉层4的制备,其厚度为6mm。
7、将光纤、电缆、压力传感器缠绕在第二层抗拉层4外,形成功能层5。
8、通过挤出机将热塑性聚氨酯挤出包覆在功能层5外,定型冷却后,完成保护层6的加工,其厚度为6mm,使用收管机进行收管得到成品。
将本实施例中制造的非金属柔性管等效成不同层组成的厚壁管,进行受力情况分析可知:该非金属柔性管的最大承受内压为40MPa,最大承受外压为6MPa。本案例中制造的非金属柔性管所使用的高分子材料其使用温度均高于120℃。
该非金属柔性管可进行盘卷,其非破坏轴向张力为550KN,并能够适用于最高压力为35MPa,温度120℃,水深为500米的油气集输用海洋立管、海底管线等。
实施例4
本实施例提供一种内径为9英寸的非金属柔性管,其从内至外依次设有内衬层1、承压层2、隔离层3、抗拉层4、隔离层3、抗拉层4、功能层5和保护层6,其制造方法依次包括如 下步骤:
1、使用挤出机将可熔聚四氟乙烯(PFA)挤出,定型、冷却得到PFA管道,作为内衬层1,挤出工艺条件如下:挤出厚度15mm,挤出温度360℃。
2、将碳纤维加捻后通过承压带口模,再浸入聚酰亚胺(PI),通过刮胶板除去多余的PI,用热空气加热到350℃使PI固化形成承压带,承压带的厚度为10mm,宽度为40mm,且其中一个表面具有凹凸结构。
通过缠绕机将一条承压以30°平铺缠绕在挤出的PFA管道上,具有凹凸结构的表面朝外;再将第二条承压带具有凹凸结构的表面朝里反扣在缠好的第一条承压带上,这两条承压带形成互锁结构,具体参见图3,为CT型互锁,完成承压层2的制备。
3、使用挤出机将PBT挤出在已缠绕好的承压层2外,挤出工艺与内衬层的挤出工艺相同,经定型冷却,完成第一层隔离层3的包覆,其厚度为3mm。
4、将芳纶纤维加捻后,通过编织机在第一层隔离层3外编织一层芳纶布,这层芳纶布浸入PI,再加热固化,使芳纶布粘接成一个整体,提高芳纶布的承内压的能力,这样就完成了第一层抗拉层4的制备,其厚度为6mm。
5、使用挤出机将PBT挤出在已固化的第一层抗拉层4外,挤出工艺与内衬的挤出工艺相同,经定型冷却完成第二层隔离层3的包覆,其厚度为3mm。
6、将芳纶纤维加捻后,通过编织机在第二层隔离层3外编织一层芳纶布,这层芳纶布浸入PI,再加热固化,使芳纶布粘接成一个整体,提高芳纶布的承内压的能力,这样就完成了第二层抗拉层4的制备,其厚度为6mm。
7、将光纤、电缆、压力传感器缠绕在第二层抗拉层4外,形成功能层5。
8、通过挤出机将热塑性聚氨酯挤出包覆在功能层5外,定型冷却后,完成保护层6的加工,其厚度为10mm,使用收管机进行收管得到成品。
将本实施例中制造的非金属柔性管等效成不同层组成的厚壁管,进行受力情况分析可知:该非金属柔性管的最大承受内压为60MPa,最大承受外压为11MPa。
该非金属柔性管可进行盘卷,其非破坏轴向张力为500kN,并能够适用于最高压力为50MPa,温度150℃,水深为1000米的油气集输用海洋立管、海底管线等。
实施例5
本实施例提供一种内径为7英寸的非金属柔性管,其从内至外依次设有内衬层1、承压层2、隔离层3、抗拉层4、隔离层3、抗拉层4、功能层5和保护层6,其制造方法依次包括如下步骤:
1、使用挤出机将聚醚醚酮(PEEK)挤出,定型、冷却得到PEEK管道,作为内衬层1,挤出工艺条件如下:挤出厚度15mm,挤出温度400℃。
2、将碳纤维加捻后通过承压带口模,再浸入联苯型杂萘联苯聚芳醚砜(PPBESK),通过刮胶板除去多余的PPBESK,用热空气加热到370℃使PI固化形成承压带,承压带的厚度为10mm,宽度为40mm,且其中一个表面具有凹凸结构。
通过缠绕机将一条承压以30°平铺缠绕在挤出的PEEK管道上,具有凹凸结构的表面朝外;再将第二条承压带具有凹凸结构的表面朝里反扣在缠好的第一条承压带上,这两条承压带形成互锁结构,具体参见图3,为CT型互锁,完成承压层2的制备。
3、使用挤出机将PFA挤出在已缠绕好的承压层2外,挤出工艺与内衬的挤出工艺相同,经定型冷却,完成第一层隔离层3的包覆,其厚度为3mm。
4、将芳纶纤维加捻后,通过编织机在第一层隔离层3外编织一层芳纶布,这层芳纶布浸入PPBESK,再加热固化,使芳纶布粘接成一个整体,提高芳纶布的承内压的能力,这样就完成了第一层抗拉层4的制备,其厚度为8mm。
5、使用挤出机将PFA挤出在已固化的第一层抗拉层4外,挤出工艺与内衬的挤出工艺相同,经定型冷却,完成第二层隔离层3的包覆,其厚度为3mm。
6、将芳纶纤维加捻后,通过编织机在第二层隔离层3外编织一层芳纶布,这层芳纶布浸入PPBESK,再加热固化,使芳纶布粘接成一个整体,提高芳纶布的承内压的能力,这样就完成了第二层抗拉层4的制备,其厚度为8mm。
7、将光纤、电缆、压力传感器缠绕在第二层抗拉层4外,形成功能层5。
8、通过挤出机将热塑性聚氨酯挤出包覆在功能层5外,定型冷却后,完成保护层6的加工,其厚度为15mm,使用收管机进行收管得到成品。
将本实施例中制造的非金属柔性管等效成不同层组成的厚壁管,进行受力情况分析可知:该柔性管的最大承受内压为80MPa,最大承受外压为20MPa。
上述非金属柔性管可进行盘卷,其非破坏轴向张力为600kN,并能够适用于最高压力为70MPa,温度150℃,水深为1500米的油气集输用海洋立管、海底管线等。
实施例6
本实施例提供一种内径为2.5英寸的非金属柔性管,其从内至外依次设有内衬层1、承压层2、隔离层3、抗拉层4、隔离层3、抗拉层4、隔离层3、抗拉层4、功能层5和保护层6,其制造方法依次包括如下步骤:
1、使用挤出机将聚醚醚酮(PEEK)挤出,定型、冷却得到PFA管道,作为内衬层1,挤 出工艺条件如下:挤出厚度20mm,挤出温度400℃。
2、将碳纤维加捻后通过承压带口模,再浸入联苯型杂萘联苯聚芳醚砜(PPBESK),通过刮胶板除去多余的PPBESK,用热空气加热到370℃使PI固化形成承压带,承压带的厚度为10mm,宽度为40mm,且其中一个表面具有凹凸结构。
通过缠绕机将一条承压以30°平铺缠绕在挤出的PFA管道上,具有凹凸结构的表面朝外;再将第二条承压带具有凹凸结构的表面朝里反扣在缠好的第一条承压带上,这两条承压带形成互锁结构,具体参见图3,为CT型互锁结构。
再取第三条承压带,以-30°平铺缠绕在上述承压带上,且具有凹凸结构的表面朝外,然后缠绕第四条承压带,与第三条承压带之间形成双T型互锁结构。
再取第五条承压带,以30°平铺缠绕在上述承压带上,且具有凹凸结构的表面朝外,然后缠绕第六条承压带,与第五条承压带之间形成双T型互锁结构。
上述六条共三对承压带共同形成了承压层2。
3、使用挤出机将PFA挤出在已缠绕好的承压层2外,挤出工艺与内衬的挤出工艺相同,经定型冷却完成第一层隔离层3的包覆,其厚度为3mm。
4、将苯撑苯并二噁唑(PBO)纤维加捻后,通过编织机在第一层隔离层3的外编织一层PBO布,这层PBO布浸入PPBESK,再加热固化,使PBO布粘接成一个整体,提高PBO布的承内压的能力,这样就完成了第一层抗拉层4的制备,其厚度为8mm。
5、依次重复上述步骤3-4两遍,形成三层隔离层3与三层抗拉层4交替包覆的结构。
6、将光纤、电缆、压力传感器缠绕在第三层抗拉层4外,形成功能层5。
7、通过挤出机将热塑性聚氨酯挤出包覆在功能层5外,定型冷却后,完成保护层6的加工,其厚度为20mm,使用收管机进行收管得到成品。
将本实施例中制造的非金属柔性管等效成不同层组成的厚壁管,进行受力情况分析可知:该柔性管的最大承受内压为120MPa,最大承受外压为45MPa。
该非金属柔性管可进行盘卷,其非破坏轴向张力为700kN,并能够适用于最高压力为105MPa,温度177℃,水深为3000米的油气集输用海洋立管、海底管线。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (10)
- 一种非金属柔性管,其特征在于,由内至外依次设有内衬层、承压层、隔离层、抗拉层、功能层和保护层,且相邻两层之间为非刚性粘结,其中,所述内衬层的材质为热塑性聚合物,所述承压层的材质为纤维增强树脂基复合材料,所述隔离层的材质为热塑性聚合物,所述抗拉层的材质为纤维经树脂增强的材料,所述功能层中布设有光纤、电缆、伴热带、输送热传导介质的管道、压力传感器和温度传感器中的至少一种,所述保护层的材质为热塑性聚合物。
- 根据权利要求1所述的非金属柔性管,其特征在于,所述内衬层所用的热塑性聚合物为热塑性工程塑料,所述内衬层的厚度为1-20mm。
- 根据权利要求1所述的非金属柔性管,其特征在于,所述承压层是由至少一对承压带先后缠绕在内衬层上,并沿内衬层的轴向延伸所形成,在每对承压带中,后缠绕的承压带的内表面覆盖在先缠绕的承压带的外表面上,且该两个表面之间形成互锁结构,使两个承压带在轴向方向不发生相对位移。
- 根据权利要求3所述的非金属柔性管,其特征在于,在每对承压带中,先后缠绕的承压带呈交错设置,且相互接触的两个表面之间镶嵌连接。
- 根据权利要求3或4所述的非金属柔性管,其特征在于,所述承压带是将纤维加捻成束,经挤出成型和树脂浸渍,并对浸渍的树脂实施固化得到,所述承压带的宽度为10-100mm,厚度为1-20mm。
- 根据权利要求1所述的非金属柔性管,其特征在于,所述抗拉层为单层结构,或者相互之间为非刚性粘结的多层结构,所述抗拉层的厚度为1-25mm。
- 根据权利要求6所述的非金属柔性管,其特征在于,每一层所述抗拉层为纤维经编织得到的包覆在隔离层表面的纤维布,并向纤维布中浸入树脂并经树脂固化所形成。
- 根据权利要求1、6-7任一项所述的非金属柔性管,其特征在于,以相邻设置的承压层和功能层为一组,所述承压层和功能层之间设有1-3组承压层和功能层。
- 一种权利要求1-8任一项所述非金属柔性管的制造方法,其特征在于,包括以下步骤:(1)将热塑性聚合物熔融挤出,经定型、冷却,得到具有预设尺寸的内衬管,作为所述内衬层;(2)将两个材质为纤维增强树脂基复合材料的承压带先后缠绕在内衬管表面并沿内衬管 的轴向延伸,形成所述承压层;(3)将热塑性聚合物熔融挤出并缠绕在承压层表面,经定型、冷却,形成所述隔离层;(4)在所述隔离层表面编织纤维,使编织成的纤维布包覆在隔离层表面;采用树脂浸渍纤维布或涂覆在纤维布上,经固化后形成所述抗拉层;(5)将光纤、电缆、伴热带、输送热传导介质的管道、压力传感器和温度传感器中的至少一种缠绕在抗拉层表面,得到所述功能层;(6)将热塑性聚合物挤出到所述功能层外,经定型、冷却,完成所述保护层的包覆。
- 根据权利要求9所述的制造方法,其特征在于,步骤(2)实施1-5次,其中,所述承压带是将纤维加捻成束,经挤出成型和树脂浸渍,并对浸渍的树脂实施固化得到。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19781030.2A EP3744499B1 (en) | 2018-04-04 | 2019-04-23 | Nonmetallic flexible pipe and manufacturing method thereof |
ES19781030T ES2955682T3 (es) | 2018-04-04 | 2019-04-23 | Tubería flexible no metálica y método de fabricación de la misma |
SG11202007607SA SG11202007607SA (en) | 2018-04-04 | 2019-04-23 | Nonmetallic flexible pipe and manufacturing method thereof |
US16/971,677 US11635157B2 (en) | 2018-04-04 | 2019-04-23 | Non-metallic flexible pipe and manufacturing method thereof |
MYPI2020004285A MY205001A (en) | 2018-04-04 | 2019-04-23 | Non-metallic flexible pipe and manufacturing method thereof |
NO20201088A NO20201088A1 (en) | 2018-04-04 | 2020-10-07 | Non-metallic flexible pipe and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810301037.6 | 2018-04-04 | ||
CN201810301037.6A CN108527807B (zh) | 2018-04-04 | 2018-04-04 | 一种非金属柔性管及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019192624A1 true WO2019192624A1 (zh) | 2019-10-10 |
Family
ID=63483256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/083893 WO2019192624A1 (zh) | 2018-04-04 | 2019-04-23 | 一种非金属柔性管及其制造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11635157B2 (zh) |
EP (1) | EP3744499B1 (zh) |
CN (1) | CN108527807B (zh) |
ES (1) | ES2955682T3 (zh) |
MY (1) | MY205001A (zh) |
NO (1) | NO20201088A1 (zh) |
SG (1) | SG11202007607SA (zh) |
WO (1) | WO2019192624A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111207249A (zh) * | 2020-03-03 | 2020-05-29 | 威海鸿通管材股份有限公司 | 一种新型低温柔性管道 |
CN118952768A (zh) * | 2024-10-15 | 2024-11-15 | 东营新达德安新材料科技有限责任公司 | 一种海洋用高强度复合管材料及其制备方法、装置 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108527807B (zh) | 2018-04-04 | 2020-03-27 | 中国石油大学(北京) | 一种非金属柔性管及其制造方法 |
CN109458502A (zh) * | 2018-12-27 | 2019-03-12 | 宁波安浮新能源科技有限公司 | 一种超高压柔性软管 |
CN110283446A (zh) * | 2019-05-25 | 2019-09-27 | 招商局重工(江苏)有限公司 | 非金属柔性复合管的内衬材料及其制备方法 |
FR3100303B1 (fr) * | 2019-08-28 | 2021-07-30 | Technip France | Conduite flexible avec passage de gaz radial, procédé de fabrication et utilisation associée |
JP7560282B2 (ja) * | 2020-07-10 | 2024-10-02 | 宇部エクシモ株式会社 | 海苔養殖用支柱、及びその製造方法 |
CN114571699B (zh) * | 2020-11-30 | 2024-02-06 | 中国石油化工股份有限公司 | 一种耐压高密度聚乙烯保温油管内衬及其制备方法 |
CN112664729A (zh) * | 2020-12-17 | 2021-04-16 | 威海纳川管材有限公司 | 一种玻璃钢柔性复合管、生产装置及生产方法 |
FR3118774B1 (fr) * | 2021-01-12 | 2024-03-01 | Arkema France | Materiau composite thermoplastique pour structures tubulaires composites |
CN115042463A (zh) * | 2021-03-09 | 2022-09-13 | 中国石油化工股份有限公司 | 一种热塑性非金属管的制备方法 |
CN113338908B (zh) * | 2021-07-12 | 2022-12-16 | 中国石油大学(华东) | 一种多功能碳纤维光纤复合杆及其制造方法 |
NO20220134A1 (en) * | 2022-01-28 | 2023-07-31 | Hovem As | A pipe section and method for completion of a pipe string for deployment into a subsurface well |
CN115183067B (zh) * | 2022-07-07 | 2023-07-21 | 中国船舶科学研究中心 | 深海矿物与动力一体化混输轻质复合柔性缆管的制造方法 |
CN115899533A (zh) * | 2022-10-31 | 2023-04-04 | 河南中烟工业有限责任公司 | 一种卷烟包装设备用移动式润滑油更换装置 |
CN116428425A (zh) * | 2023-02-17 | 2023-07-14 | 大连理工大学 | 一种用于海洋环境下的热塑性复合材料柔性管 |
US20240319002A1 (en) * | 2023-03-22 | 2024-09-26 | Saudi Arabian Oil Company | Nanomaterial plastic optical fiber for pipeline nerve system |
US20240400771A1 (en) * | 2023-06-01 | 2024-12-05 | Polyflow, Llc | Composite material |
CN117146071B (zh) * | 2023-08-24 | 2024-06-11 | 中国石油大学(北京) | 深海采矿非金属非粘结柔性混输管及其制造方法 |
CN118149183A (zh) * | 2024-05-11 | 2024-06-07 | 东营新达德安新材料科技有限责任公司 | 一种耐腐蚀高强度海底复合柔性管材及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102927383A (zh) * | 2012-11-01 | 2013-02-13 | 中国海洋石油总公司 | 一种复合软管牙状截面抗压铠装层 |
US20160089846A1 (en) * | 2014-06-23 | 2016-03-31 | Shoreline Plastic, LLC | Extruded heat shrink protective seamless pvc piling sleeve and method |
CN106287027A (zh) | 2016-10-08 | 2017-01-04 | 威海纳川管材有限公司 | 超深水多用途柔性管及其制造方法 |
CN106979391A (zh) * | 2017-05-12 | 2017-07-25 | 威海纳川管材有限公司 | 一种非粘结热塑性复合材料柔性管及其制备工艺 |
CN108527807A (zh) * | 2018-04-04 | 2018-09-14 | 中国石油大学(北京) | 一种非金属柔性管及其制造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5908049A (en) * | 1990-03-15 | 1999-06-01 | Fiber Spar And Tube Corporation | Spoolable composite tubular member with energy conductors |
CA2490967C (en) * | 1995-09-28 | 2010-03-02 | Fiberspar Corporation | Composite spoolable tube |
US8678042B2 (en) * | 1995-09-28 | 2014-03-25 | Fiberspar Corporation | Composite spoolable tube |
US5921285A (en) * | 1995-09-28 | 1999-07-13 | Fiberspar Spoolable Products, Inc. | Composite spoolable tube |
FR2744511B1 (fr) * | 1996-02-02 | 1998-03-06 | Coflexip | Conduite flexible a fluage limite de la gaine d'etancheite interne dans des armures |
US6296066B1 (en) * | 1997-10-27 | 2001-10-02 | Halliburton Energy Services, Inc. | Well system |
US6769454B2 (en) * | 1999-11-05 | 2004-08-03 | Wellstream International Limited | Flexible pipe including a vent passage and method of manufacturing same |
JP2010190343A (ja) * | 2009-02-19 | 2010-09-02 | Toyox Co Ltd | 多層耐圧ホース及びその製造方法 |
GB201121876D0 (en) * | 2011-12-20 | 2012-02-01 | Wellstream Int Ltd | Flexible pipe body and method of producing same |
GB201122364D0 (en) * | 2011-12-28 | 2012-02-01 | Wellstream Int Ltd | Flexible pipe body and method |
EP2825802A4 (en) * | 2012-03-13 | 2015-12-02 | Nat Oilwell Varco Denmark Is | STIFFING ELEMENT FOR AN UNCONNECTED FLEXIBLE TUBE |
US9494260B2 (en) * | 2012-04-13 | 2016-11-15 | Ticona Llc | Dynamically vulcanized polyarylene sulfide composition |
EP2874791B2 (en) * | 2012-07-20 | 2022-08-17 | MAG Aerospace Industries, LLC | Composite waste and water transport elements and methods of manufacture for use on aircraft |
DK177627B1 (en) * | 2012-09-03 | 2013-12-16 | Nat Oilwell Varco Denmark Is | An unbonded flexible pipe |
CN102889437B (zh) * | 2012-10-08 | 2015-11-11 | 孟庆义 | 一种柔性复合油管 |
GB2514785A (en) * | 2013-06-03 | 2014-12-10 | Wellstream Int Ltd | Flexible pipe body layer and method of producing same |
-
2018
- 2018-04-04 CN CN201810301037.6A patent/CN108527807B/zh active Active
-
2019
- 2019-04-23 ES ES19781030T patent/ES2955682T3/es active Active
- 2019-04-23 US US16/971,677 patent/US11635157B2/en active Active
- 2019-04-23 WO PCT/CN2019/083893 patent/WO2019192624A1/zh unknown
- 2019-04-23 SG SG11202007607SA patent/SG11202007607SA/en unknown
- 2019-04-23 MY MYPI2020004285A patent/MY205001A/en unknown
- 2019-04-23 EP EP19781030.2A patent/EP3744499B1/en active Active
-
2020
- 2020-10-07 NO NO20201088A patent/NO20201088A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102927383A (zh) * | 2012-11-01 | 2013-02-13 | 中国海洋石油总公司 | 一种复合软管牙状截面抗压铠装层 |
US20160089846A1 (en) * | 2014-06-23 | 2016-03-31 | Shoreline Plastic, LLC | Extruded heat shrink protective seamless pvc piling sleeve and method |
CN106287027A (zh) | 2016-10-08 | 2017-01-04 | 威海纳川管材有限公司 | 超深水多用途柔性管及其制造方法 |
CN106979391A (zh) * | 2017-05-12 | 2017-07-25 | 威海纳川管材有限公司 | 一种非粘结热塑性复合材料柔性管及其制备工艺 |
CN108527807A (zh) * | 2018-04-04 | 2018-09-14 | 中国石油大学(北京) | 一种非金属柔性管及其制造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111207249A (zh) * | 2020-03-03 | 2020-05-29 | 威海鸿通管材股份有限公司 | 一种新型低温柔性管道 |
CN118952768A (zh) * | 2024-10-15 | 2024-11-15 | 东营新达德安新材料科技有限责任公司 | 一种海洋用高强度复合管材料及其制备方法、装置 |
Also Published As
Publication number | Publication date |
---|---|
NO20201088A1 (en) | 2020-10-07 |
EP3744499C0 (en) | 2023-08-23 |
MY205001A (en) | 2024-09-26 |
SG11202007607SA (en) | 2020-09-29 |
ES2955682T3 (es) | 2023-12-05 |
CN108527807A (zh) | 2018-09-14 |
US20200408337A1 (en) | 2020-12-31 |
EP3744499B1 (en) | 2023-08-23 |
EP3744499A1 (en) | 2020-12-02 |
US11635157B2 (en) | 2023-04-25 |
CN108527807B (zh) | 2020-03-27 |
EP3744499A4 (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019192624A1 (zh) | 一种非金属柔性管及其制造方法 | |
DK2959199T3 (en) | FLEXIBLE CORD FOR TRANSPORTING CARBON HYDRADES WITH AN EXTERNAL REINFORCED SEALING CAP | |
US7781040B2 (en) | Flexible composite tubular assembly with high insulation properties and method for making same | |
CN106979391B (zh) | 一种非粘结热塑性复合材料柔性管及其制备工艺 | |
CA2505851C (en) | Improvements relating to hose | |
CN108286627B (zh) | 具有多层中间片层的热塑性复合管 | |
US10619767B2 (en) | Tubular pipe with a composite holding strip | |
US11958259B2 (en) | Thermoplastic composite | |
EP3105055B1 (en) | Composite | |
CN118188892A (zh) | 一种非金属非粘结型纤维增强复合柔性管及其制造方法 | |
JP2004503732A (ja) | ホース | |
CN206738760U (zh) | 一种非粘结热塑性复合材料柔性管 | |
US20240019051A1 (en) | Flexible fluid transport pipe and associated methods | |
CN111457171A (zh) | 非粘接同方向缠绕热塑性柔性管及其制造方法 | |
BR112018012948B1 (pt) | Perfil longitudinal de reforço, processo de fabricação por pultrusão de perfil longitudinal e condutor tubular flexível | |
WO2024175995A1 (en) | Subsea umbilical composite tube and method of manufacture | |
CN115614561A (zh) | 一种耐高温非粘结挠性复合管线及制造方法 | |
CN113330240A (zh) | 海底环境中输送流体用软管和相关方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19781030 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019781030 Country of ref document: EP Effective date: 20200828 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |