[go: up one dir, main page]

WO2019192530A1 - 数据传输方法、终端设备和网络设备 - Google Patents

数据传输方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019192530A1
WO2019192530A1 PCT/CN2019/081301 CN2019081301W WO2019192530A1 WO 2019192530 A1 WO2019192530 A1 WO 2019192530A1 CN 2019081301 W CN2019081301 W CN 2019081301W WO 2019192530 A1 WO2019192530 A1 WO 2019192530A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
port
terminal device
information
mask
Prior art date
Application number
PCT/CN2019/081301
Other languages
English (en)
French (fr)
Inventor
刘显达
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019192530A1 publication Critical patent/WO2019192530A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • the present application relates to the field of communications, and in particular, to a data transmission method, a terminal device, and a network device in the field of communications.
  • the fifth generation mobile communication technology supports at least two downlink control information (DCI) formats for scheduling a physical uplink shared channel (PUSCH), and different DCI formats are corresponding.
  • DCI downlink control information
  • the content of the fields contained in the DCI and the corresponding DCI have different bit widths.
  • the DCI format 0_0 includes time-frequency resource allocation information, modulation coding strategy (MCS) information, and does not include a sounding reference signal resource indication (SRI), a transmission rank indication.
  • MCS modulation coding strategy
  • SRI sounding reference signal resource indication
  • DCI format 0_1 includes time-frequency resource allocation information, MCS, SRI , TRI and TPMI information, sounding reference signal (SRS) request information (SRS request for dynamically triggering SRS transmission), antenna port indication information, and the like.
  • SRS sounding reference signal
  • the bit widths corresponding to different DCI formats for scheduling PUSCH may be different.
  • the network device may configure at least one terminal device-specific search space by using a high-level signaling radio resource control (RRC), and each search space may correspond to time-frequency resource configuration information, so that the network device performs DCI on the resource. Detection.
  • RRC radio resource control
  • Each search space contains configuration information of the DCI format, and generally only contains one uplink scheduling DCI format, such as DCI format 0_0 or DCI format 0_1.
  • the terminal device determines the DCI format used for scheduling the PUSCH and the corresponding DCI information by blindly detecting different search spaces.
  • the network device configures at least one SRS resource for the terminal device by using the RRC signaling, and the terminal device sends the SRS on the SRS resource according to the configuration information of the received SRS resource; the network device receives and measures the SRS on the SRS resource, and
  • the resource scheduling information (including time-frequency resource allocation, transmission mode, and the like) of the terminal device is determined based on an implementation algorithm of the network device, and SRI, TRI, TPMI, MCS, and DMRS port information are indicated by DCI format 0_1.
  • the network device will use DCI format 0_0 to transmit the PDCCH scheduling PUSCH transmission.
  • the PUSCH transmission scheduled in the protocol adopts a single-port transmission mode.
  • the so-called single-port transmission mode is that the PUSCH and the DMRS corresponding to the PUSCH use a single port, and the number of transmission layers used for transmitting the PUSCH is 1.
  • DCI format 0_0 is a reduced DCI format compared to format 0_1, which does not include SRI, TRI, TPMI information, and antenna port indication information of DMRS.
  • the terminal device cannot pass the above information.
  • the terminal device may determine the physical port, the precoding vector, or the spatial filtering (referred to herein as port information) of the PUSCH based on the algorithm implemented by itself or in a predefined manner, so that the network device cannot directly pass the DCI to the terminal device. Indicates the port information used to transmit the PUSCH, and the reliability of data transmission is poor.
  • the present application provides a data transmission method, a terminal device, and a network device, which can indicate the port information of the PUSCH to the terminal device, which is beneficial to improving the reliability of data transmission.
  • a first aspect provides a data transmission method, including: receiving, by a terminal device, downlink information sent by a base station, where the downlink information is a cyclic redundancy check (CRC) code after mask scrambling;
  • CRC cyclic redundancy check
  • the mask Determining, by the terminal, the mask according to the downlink information, where the mask includes indication information for indicating whether the terminal device sends a first signal by using a port used by sending a second signal, where the terminal The device transmits the second signal before transmitting the first signal;
  • the terminal device determines, according to the indication information, a port that sends the first signal, and sends the first signal on the determined port.
  • the first indication information indicates whether the port used by the first signal currently sent by the terminal device is the same as the port used by the previously transmitted second signal, so that the terminal device determines according to the first indication information.
  • Sending the port information of the PUSCH is beneficial to improving the reliability of data transmission.
  • the port for transmitting the first signal comprises one or more of the following: an antenna port, a precoding matrix, and spatial filtering.
  • the first signal is a signal carried on a physical uplink shared channel PUSCH or a signal carried on a physical uplink control channel PUCCH.
  • the second signal is a signal carried on a PUSCH, a signal carried on a PUCCH, or a random access preamble sequence.
  • the downlink information is a CRC code of the downlink control information (DCI) that is scrambled by the mask.
  • the mask is 16 bits and the indication information is one or more bits of the mask.
  • the last bit of the mask when the last bit of the mask takes a value of 0, indicating that the port transmitting the first signal is the same as the port transmitting the second signal.
  • the last bit of the mask takes a value of 1, indicating that the port transmitting the first signal is different from the port transmitting the second signal.
  • the format of the DCI is format 0_0 or format 0_1.
  • the index value of the antenna port is X
  • an antenna port index of the port that sends the second signal is X+1 or X-1, where X is A positive integer greater than or equal to 1.
  • the index value of the precoding matrix is Z
  • an index value of a precoding matrix of a port that sends the second signal is Z+1 or Z.
  • Z is a positive integer greater than or equal to 1.
  • the frequency domain resource occupied by the second signal is the same as the frequency domain resource occupied by the first signal, or the second signal
  • the portion of the frequency domain resource that overlaps with the frequency domain resource occupied by the first signal is greater than a certain value.
  • the mask is configured to indicate whether a port of the first signal is the same as a mask of port information that was last used for indication.
  • another data transmission method including: receiving, by a terminal device, downlink control information DCI, where the DCI is used to indicate first indication information and second indication information; wherein the first indication information For the first mask information or the first scrambling code information, the first mask information is determined by the terminal device by using downlink control information DCI, and the DCI carries a cyclic redundancy of scrambling by using the first mask information. And the first scrambling code information is determined by the terminal device by using downlink control information DCI, where the DCI carries information bits scrambled by the first scrambling code information, and the second indication information is used by the second indicator information.
  • An index value indicating the SRS resource is received from a terminal device, downlink control information DCI, where the DCI is used to indicate first indication information and second indication information;
  • the terminal device Determining, by the terminal device, the first antenna port according to the first indication information, the second indication information, and the first mapping relationship, where the first mapping relationship is used to indicate the first indication information, the Corresponding relationship between the second indication information and an antenna port of the terminal device.
  • the format of the DCI is DCI format 0_1.
  • another data transmission method comprising: a base station scrambling a cyclic redundancy check (CRC) code using a mask to obtain a scrambled CRC code, wherein the mask is included for Instructing the terminal device whether to use the port used to send the second signal to send the indication information of the first signal, where the second signal and the first signal are sent by the terminal device, and the second signal is The first signal is sent before; the base station sends the scrambled CRC code to the terminal device.
  • CRC cyclic redundancy check
  • the port for transmitting the first signal includes one or more of the following: an antenna port, a precoding matrix, and spatial filtering.
  • the first signal is a signal carried on a physical uplink shared channel PUSCH or a signal carried on a physical uplink control channel PUCCH.
  • the second signal is a signal carried on a PUSCH, a signal carried on a PUCCH, or a random access preamble sequence.
  • the scrambled CRC code is a CRC code of the downlink control information (DCI) that is scrambled by the mask.
  • DCI downlink control information
  • the mask is 16 bits and the indication information is one or more bits of the mask.
  • the port indicating that the first signal is sent is the same as the port that sends the second signal.
  • the port indicating that the first signal is sent is different from the port that sends the second signal.
  • the format of the DCI is format 0_0 or format 0_1.
  • the index value of the antenna port is X
  • the index of the antenna port of the port that sends the second signal is X+1 or X-1, where X is A positive integer greater than or equal to 1.
  • the index value of the precoding matrix is Z
  • an index value of a precoding matrix of a port that sends the second signal is Z+1 or Z.
  • Z is a positive integer greater than or equal to 1.
  • the first indication information is used to indicate that the first port is the same as the second port; or the first indication information is used to indicate the
  • the index value of the first precoding matrix is Z, wherein the index value of the second precoding matrix is Z+1 or Z-1, and Z is a positive integer greater than 1.
  • the frequency domain resource occupied by the second signal is the same as the frequency domain resource occupied by the first signal, or the second signal The portion of the frequency domain resource that overlaps with the frequency domain resource occupied by the first signal is greater than a certain value.
  • the mask is configured to indicate whether a port of the first signal is the same as a mask of port information that was last used for indication.
  • a terminal device for performing the method of the first aspect or any possible implementation of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-mentioned first aspect or any of the possible implementations of the first aspect.
  • the network device comprises means for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • another terminal device comprising: a transceiver, a memory, and a processor.
  • the transceiver, the memory and the processor are in communication with each other via an internal connection path for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and to control the transmitter to transmit signals And when the processor executes the instructions stored by the memory, causing the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • another base station comprising: a transceiver, a memory, and a processor.
  • the transceiver, the memory and the processor are in communication with each other via an internal connection path for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and to control the transmitter to transmit signals And when the processor executes the instructions stored by the memory, causing the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a data transmission system comprising the terminal device in any one of the possible implementation manners of the third aspect or the third aspect, and any possible implementation manner of the fourth aspect or the fourth aspect Base station in; or
  • the system includes the terminal device in any one of the possible implementation manners of the fifth aspect or the fifth aspect, and the base station in any one of the sixth aspect or the sixth aspect.
  • a computer program product comprising: computer program code, when the computer program code is executed by a computer, causing the computer to perform any of the first aspect or the first aspect described above Possible methods in the implementation.
  • a computer program product comprising: computer program code, when the computer program code is executed by a computer, causing the computer to perform any of the second aspect or the second aspect Possible methods in the implementation.
  • a tenth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 shows a schematic diagram of a communication system of an embodiment of the present application.
  • FIG. 2 shows a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of a scene according to an embodiment of the present application.
  • FIG. 4 shows another schematic diagram of a scenario according to an embodiment of the present application.
  • FIG. 5 shows another schematic diagram of a scenario according to an embodiment of the present application.
  • FIG. 6 shows a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 shows a schematic block diagram of a base station according to an embodiment of the present application.
  • FIG. 8 shows a schematic block diagram of another terminal device according to an embodiment of the present application.
  • FIG. 9 shows a schematic block diagram of another base station according to an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • SCMA sparse code multiple access
  • SCMA sparse code multiple access
  • OFDM Orthogonal frequency division multiplexing
  • FBMC filter bank multi-carrier
  • GFDM generalized frequency division multiplexing
  • filtered-OFDM, F-OFDM filtered-OFDM, F-OFDM
  • the terminal device may communicate with one or more core networks via a radio access network (RAN), and the terminal device may be referred to as an access terminal and a user equipment (user Equipment, UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • PLMN public land mobile network
  • the network device may be used to communicate with the terminal device, where the network device may be a base transceiver station (BTS) in a GSM system or a CDMA system, or may be a base station in a WCDMA system ( Node B, NB), may also be an evolved base station (evolutional node B, eNB or eNode B) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, or a future 5G network.
  • BTS base transceiver station
  • Node B, NB Node B
  • eNB evolved base station
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, or a future 5G network.
  • Network side device or network device in a future evolved PLMN network may be used to communicate with the terminal device, where the network device may be a base transceiver station (BTS) in a GSM system
  • the embodiments of the present application can be applied to an LTE system and a subsequent evolved system, such as 5G, or other wireless communication systems using various radio access technologies, such as using code division multiple access, frequency division multiple access, time division multiple access, and orthogonal.
  • a system of access frequency division multiple access, single carrier frequency division multiple access, etc. is particularly suitable for scenarios requiring channel information feedback and/or applying secondary precoding techniques, such as a wireless network using Massive MIMO technology, and a distributed antenna for application.
  • MIMO multiple-input multiple-output
  • Antenna transmission and reception improve communication quality. It can make full use of space resources and achieve multiple transmission and reception through multiple antennas. It can multiply the system channel capacity without increasing spectrum resources and antenna transmission power.
  • MIMO can be divided into single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO).
  • SU-MIMO single-user MIMO
  • MU-MIMO multi-user MIMO
  • Massive MIMO arranges hundreds of antennas at the transmitting end, modulates the respective beams for dozens of target receivers, and transmits dozens of signals simultaneously on the same frequency resource through spatial signal isolation. Therefore, Massive MIMO technology can make full use of the spatial freedom brought by large-scale antenna configuration to improve spectrum efficiency.
  • the communication system 100 includes a network device 102, which may include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include various components related to signal transmission and reception, such as processors, modulators, multiplexers, solutions. Tuner, demultiplexer or antenna.
  • Network device 102 can communicate with a plurality of terminal devices, for example, network device 102 can communicate with terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 may utilize a different frequency band than reverse link 120
  • forward link 124 may utilize a different frequency band than reverse link 126.
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can be used in common. frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire a certain number of data bits to be transmitted to the wireless communication receiving device through a channel, for example, the wireless communication transmitting device may generate, receive from another communication device, or save in a memory, etc., to be transmitted through a channel.
  • a certain number of data bits to the wireless communication receiving device may be included in a transport block or a plurality of transport blocks of data, and the transport blocks may be segmented to produce a plurality of code blocks.
  • the communication system 100 may be a public land mobile network PLMN network or a device to device (D2D) network or a machine to machine (M2M) network or other network, and FIG. 1 is merely an example for convenience of understanding.
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • FIG. 1 is merely an example for convenience of understanding.
  • a simplified schematic diagram of the network may also include other network devices, which are not shown in FIG.
  • the downlink resources of the system are divided into multiple orthogonal frequency divisions in terms of time.
  • the Orthogonal Frequency Division Multiple (OFDM) symbol is divided into several subcarriers in terms of frequency.
  • the Physical Downlink Control Channel (PDCCH) in the downlink usually occupies the first two or three OFDM symbols in one subframe.
  • the PDCCH is used to carry Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the DCI carries terminal device specific resource allocation and other control information specific to the terminal device or shared by the cell.
  • the physical uplink shared channel (PUSCH) in the uplink of the system is used to carry uplink transmission data, and is usually generated by using discrete Fourier transform extended OFDM (DFT-Spread OFDM, DFT-S-OFDM). Frequency domain signal. In general, one slot typically includes 14 OFDM symbols.
  • the size of a physical resource block (PRB) is also defined in the system. One PRB includes 12 subcarriers in the frequency domain, and a certain subcarrier in a certain OFDM symbol is called a Resource Element (RE).
  • PRB physical resource block
  • the Sounding Reference Signal is mainly used by the network device to determine the uplink channel quality, thereby performing uplink frequency selective scheduling.
  • the time-frequency resource location occupied by the SRS and the related SRS transmission mode of the terminal device needs to be configured according to the configuration information of the SRS resource indicated by the network device through the RRC signaling or further according to the Medium Access Control-Control Element (MAC-CE).
  • the signaling is further determined based on DCI signaling.
  • the configuration information of each SRS resource includes at least an index number of the SRS resource, time-frequency location information occupied by the SRS resource, and a transmission port number corresponding to the SRS resource.
  • the uplink transmission mode includes a codebook-based uplink transmission mode.
  • a common method is to configure the SRS resource information by using the RRC signaling after the terminal device is in the RRC connection state, and the terminal device After successfully receiving the RRC configuration information, the SRS signal is sent on the corresponding uplink time-frequency resource according to the configuration parameter of the SRS, and the network device receives and measures the SRS to obtain the uplink channel information on the corresponding SRS time-frequency resource.
  • the network device determines, by its own implementation algorithm, a time-frequency resource used by the terminal device to transmit the PUSCH and a transmission scheme, and the network device indicates the information to the terminal device by using DCI signaling carried in the PDCCH for scheduling the uplink.
  • the transmission scheme includes at least spatial filtering information, a Rank Indicator (TRI), a Transmission Precoding Matrix Indicator (TPMI), and a Modulation and Coding Scheme (MCS) used by the terminal device to transmit the PUSCH. ), antenna port indication information, etc.
  • TRI Rank Indicator
  • TPMI Transmission Precoding Matrix Indicator
  • MCS Modulation and Coding Scheme
  • the terminal device After receiving the DCI for scheduling PUSCH transmission, the terminal device performs PUSCH transmission according to the time-frequency resource indicated in the DCI and the transmission scheme.
  • the role of the TPMI is to indicate phase weighting between transmitting antennas of the terminal device, thereby improving transmission performance. It should be noted that in the existing mechanism, the TPMI indicates that the precoding matrix weighting is a transmitting antenna used by the terminal device to transmit the SRS.
  • the phase weighting method between the transmitting antennas used by the terminal device to transmit the PUSCH refers to the SRS, which includes the indication result of the TPMI.
  • the terminal device needs to transmit a demodulation reference signal (DMRS) associated with the PUSCH while transmitting the PUSCH, and the network device needs to perform channel estimation according to the DMRS to complete the demodulation of the PUSCH.
  • the antenna port information included in the above transmission scheme is the port number used for transmitting the DMRS.
  • the network device allocates different DMRS ports for different terminal devices to distinguish MU-MIMO transmission. Data information sent by multiple terminal devices.
  • the DMRS in the NR and the PUSCH corresponding thereto are transmitted using the same port number, which means that the DMRS and the corresponding PUSCH adopt the same transmission mode.
  • the NR supports high frequency bands with a larger available bandwidth, especially the millimeter wave band. However, the high frequency band will result in greater path loss.
  • the beamformed signals may include a broadcast channel, a data channel, a control channel, a synchronization signal, and a cell-specific reference signal. For scenarios where a beamformed signal is required, beam training is required for the determination of the optimal transmit and receive beam.
  • the network device may indicate the result of the beam training to the terminal device by signaling (including RRC, MAC-CE, and DCI) to notify the terminal device to transmit and receive various reference signals and beams used by the channel.
  • signaling including RRC, MAC-CE, and DCI
  • the beam used by the terminal device to transmit information is referred to as spatial filtering information.
  • the spatial filtering information is used to associate the target resource with a certain reference signal.
  • the terminal device sends the SRS resource using the same spatial transmission filtering as the spatial domain transmission filter used by the SSB/PBCH; when the associated reference signal is CSI-RS The terminal device sends the SRS resource using the same spatial transmission filter as the spatial domain transmission filter used by the CSI-RS.
  • the terminal device sends the SRS resource to use and send.
  • the spatial transmission filter used by the associated SRS uses the same spatial transmission filtering. It should be understood that the spatial filtering information of the channel A reference channel B indicates that the transmission beam used by the transmission channel A is the same as the transmission beam used by the transmission channel B.
  • At least two DCI formats for scheduling the PUSCH are supported in the NR, and the field content included in the DCI corresponding to different DCI formats and the corresponding DCI bit width are different.
  • DCI format 0_1 which includes time-frequency resource allocation information, MCS, SRI, TRI, TPMI information, SRS request information (SRS request for dynamically triggering SRS transmission), and antenna port indication information.
  • DCI format 0_0 may include the following fields:
  • Frequency domain resource location indication information used to indicate frequency domain resources allocated for PUSCH
  • Time domain resource location indication information used to indicate time domain resources allocated for PUSCH
  • Modulation coding scheme used to indicate information such as modulation order and target code rate of the data block
  • SRS resource indication when the network device configures multiple SRS resources by using high layer signaling, the signaling is used to indicate that one or more SRS resources are selected from multiple SRS resources.
  • Precoding information and number of transmission layers a number of transmission layers used to indicate PUSCH transmission and a corresponding precoding matrix
  • Antenna port used to indicate the port number and number of ports of the DMRS associated with the PUSCH
  • CBG Code Block Group
  • the network device configures at least one SRS resource for the terminal device by using the RRC signaling, and the terminal device sends the SRS on the SRS resource according to the configuration information of the received SRS resource; the network device receives and measures the SRS on the SRS resource, and
  • the resource scheduling information (including time-frequency resource allocation, transmission mode, and the like) of the terminal device is determined based on an implementation algorithm of the network device, and SRI, TRI, TPMI, MCS, and DMRS port information are indicated by DCI format 0_1.
  • DCI format 0_0 contains time-frequency resource allocation information, MCS information, and does not include SRI, TRI, TPMI information, antenna port indication information, and so on.
  • DCI format 0_0 may include the following fields:
  • the network device will use DCI format 0_0 to transmit the PDCCH scheduling PUSCH transmission.
  • the network device does not use the high-layer signaling to configure the transmission mode, which is mainly the time period from the initial access until the RRC configuration is completed and takes effect; because the terminal device cannot receive any RRC signaling indication during this period of time.
  • Configuration information so the protocol needs to pre-define a transmission mechanism, that is, PUSCH single-port transmission based on DCI format 0_0 scheduling, mainly because the transmission mechanism does not depend on RRC signaling, and indicates necessary PUSCH transmission through DCI signaling.
  • the parameters can complete the transmission of the PUSCH;
  • the terminal device for the cell edge uses format 0_0 to schedule the PUSCH. Since the terminal equipment at the edge of the cell mainly needs to solve the coverage problem, the use of the simplified DCI format can effectively improve the coverage. It is reasonable to use the DCI format 0_0 to schedule the data.
  • the bit widths corresponding to different DCI formats for scheduling PUSCH may be different.
  • the network device configures at least one terminal device-specific search space through the high-layer signaling RRC, and each search space corresponds to the time-frequency resource configuration information, so that the terminal device performs DCI detection on the resource.
  • Each search space contains configuration information of the DCI format, and generally only contains one uplink scheduling DCI format, such as DCI format 0_0 or DCI format 0_1.
  • the terminal device can determine the DCI format used for scheduling the PUSCH and the corresponding DCI information by blindly detecting different search spaces.
  • the terminal device may determine the physical port, precoding information or spatial filtering (referred to herein as port information) for transmitting the PUSCH based on its own implementation algorithm or by a predefined manner, which may result in The network device cannot directly indicate the port information used by the PUSCH to the terminal device through the DCI, and the reliability of the data transmission is poor.
  • port information precoding information or spatial filtering
  • a port includes at least an antenna port (also referred to as a physical port), precoding information, or spatial filtering information, and the ports mentioned herein are all logical ports.
  • the antenna port refers to the antenna port of the terminal device, and the precoding information includes RI and TPMI for indicating the precoding matrix.
  • FIG. 2 shows a schematic flowchart of a data transmission method 200 in the embodiment of the present application.
  • the method 200 can be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the network device sends the downlink information that is scrambled by the first indication information, where the first indication information is used to indicate the first port used by the user terminal to send the first signal, and the second signal is sent. Whether the second port used is the same, the second signal is sent by the terminal device at the time of NK transmission, N and K are both positive integers, and N is greater than K; correspondingly, the terminal device receives the downlink information, And acquiring, according to the downlink information, the first indication information;
  • the terminal device sends the first signal according to the first indication information; and correspondingly, the network device receives the first signal. Specifically, the terminal device determines, according to the first indication information, a first port that sends the first signal, and sends the first signal to the network device on the first port.
  • the first port includes at least one of the following: a first antenna port used to transmit the first signal, a first precoding matrix used to transmit the first signal, and a first signal to be transmitted First spatial filtering used;
  • the second port includes at least one of the following: a second antenna port used to transmit the second signal, a second precoding matrix used to transmit the second signal, and a second signal to be transmitted The second spatial filtering used.
  • the network device may indicate, by using the first indication information, whether the first port used by the first signal to be sent by the terminal device is the same as the second port used by the second signal sent by the NK sending time, and the terminal device is configured according to the second port.
  • the first indication information determines whether to refer to the second port used by the second signal. It should be understood that the meaning of reference herein is to directly determine that the first port is the same as the second port, and the terminal device may refer to the antenna port, precoding matrix or spatial filtering information, and the like.
  • the terminal device may directly send the first signal by using the second port, where the first indication information indicates that the first port is different from the second port.
  • the terminal device may randomly select a port to send the first signal, and may also send the first signal according to a predefined rule, which is not limited in this embodiment of the present application.
  • the first indication information indicates whether the port used by the first signal currently sent by the terminal device is the same as the port used by the previously transmitted second signal, so that the terminal device determines according to the first indication information.
  • Sending the port information of the PUSCH is beneficial to improving the reliability of data transmission.
  • the first signal is: a signal carried on a physical uplink shared channel PUSCH, or a signal carried on a physical uplink control channel PUCCH.
  • the foregoing first signal may be a signal that is carried on the PUSCH, or may be a signal that is carried on the PUCCH, which is not limited in this embodiment of the present application.
  • the transmission time is a relative concept, representing the time at which the terminal device transmits a signal, for example, the first signal is transmitted at the second transmission time, and the second signal is transmitted at the first transmission time, the second transmission.
  • the time may be the fifth time unit, and the first sending time may be the third time unit, which is not limited by the embodiment of the present application, depending on the scheduling of the network device.
  • the terminal device may further transmit the first DMRS at the Nth transmission time by referring to the transmission manner of the second DMRS transmitted when the second signal is transmitted at the N-K transmission time.
  • the corresponding DMRS needs to be simultaneously used for the base station to estimate the channel information of the PUSCH or the PUCCH to successfully demodulate the PUSCH or the PUCCH, and the corresponding DMRS refers to the port of the DMRS and the port of the PUSCH or the PUCCH.
  • the first DMRS can also determine its port information according to the same mechanism as the PUSCH or PUCCH.
  • the second signal is any one of the following signals: a signal carried on a PUSCH, a signal carried on a PUCCH, a signal carried on a physical downlink control channel PDCCH, and random access. Lead sequence.
  • the foregoing second signal may be a signal that is carried on the PUSCH, and may be a signal that is carried on the PUCCH, or a signal that is carried on the PDCCH, or may be a random access preamble sequence. Not limited.
  • the terminal device transmits the PUCCH reference to the latest PUSCH. Since the port information used for transmitting the PUCCH is determined based on the implementation algorithm of the terminal device itself, for example, the PUCCH is fixedly transmitted by using a certain port, and its transmission port may not be most preferable due to the time-varying characteristics of the channel. At this time, since the port used for transmitting the PUSCH is based on the network device, the performance of transmitting data through the port may be better than the port of the PUCCH, and the transmission of the current PUCCH may refer to the PUSCH transmission.
  • the terminal device Since the terminal device always performs port adjustment of the first signal based on the last transmitted signal, this can improve the port adjustment efficiency and thereby improve the throughput of the system.
  • the first indication information is first mask information or first scrambling code information
  • the first mask information is used for cyclic redundancy check of downlink control information (DCI) (
  • DCI downlink control information
  • the CRC CRC
  • the first scrambling code information is used to scramble information bits in the downlink control information.
  • the control information bit that needs to be transmitted is encoded, and the control information bit after the encoding may generate a CRC code of the control information bit by using a check code generation polynomial, and send a CRC check.
  • the control information bit of the bit that is, the CRC code of the control information bit
  • the CRC code can be modulo 2 divided by the same generator polynomial, if the remainder is 0. , means that the terminal device correctly decodes the downlink information.
  • the correspondence between the different first masks and the port hypothesis information used by the different first signal transmissions may be defined in advance, or the base station includes different first masks and different firsts in the RRC signaling configuration through the high layer signaling.
  • the correspondence between the port hypothesis information used for signal transmission, and the port hypothesis information may be a port that references the second signal or a port that does not refer to the second signal.
  • the network device may perform a method of scrambling the CRC code by using different first masks according to different first masks and different port hypothesis information used by the first signal transmission.
  • a masked scrambled CRC code carries additional indication information.
  • the network device and the terminal device are known to have at least two first masks, and each of the first masks corresponds to one port indication information, where the port indication information includes a terminal device antenna port, a precoding matrix, etc., and the base station is based on The correspondence may select a first mask from the at least two first masks to scramble the CRC code, so that the base station transmits different port indication information by different first mask scrambling.
  • the terminal device learns, according to the correspondence between the different first masks of the pre-defined or RRC configurations and the port hypothesis information used by the different first signal transmissions, from the received CRC codes, that the base station adopts the at least two A certain first mask in a mask, thereby determining, according to the first indication information, a first port used for transmitting the first PUSCH.
  • the first indication information may also be the first scrambling code information.
  • the information bit needs to be scrambled by using the specific first scrambling code information.
  • the correspondence between the different first scrambling codes and the port hypothesis information used by the different first signal transmissions may be predefined, or the base station includes the first scrambling code with different RRC signaling configurations and different firsts through the high layer signaling.
  • the correspondence between the port hypothesis information used for signal transmission, and the port hypothesis information may be a port that references the second signal or a port that does not refer to the second signal.
  • the network device may perform scrambling on the CRC code by using different first scrambling codes based on the correspondence between the different first scrambling codes and the port hypothesis information used by the different first signal transmissions, so that after the first scrambling code is scrambled
  • the control information bits carry additional indication information.
  • the network device and the terminal device are known to have at least two first scrambling codes, and each of the first scrambling codes corresponds to one port indication information, and the base station may use the at least two first scrambling codes based on the correspondence.
  • the first scrambling code is selected to scramble the control information bits, so that the base station transmits different port indication information by different first scrambling codes.
  • the terminal device learns, according to the correspondence between different pre-defined or RRC-configured different first scrambling codes and different port hypothesis information used by the first signal transmission, from the received CRC code, that the base station adopts the at least two A first scrambling code of a scrambling code, thereby determining, according to the first indication information, a first port used for transmitting the first PUSCH.
  • the foregoing first downlink control information may specifically be RRC signaling and DCI, that is, the network device indicates, by using RRC signaling, different bits in the first indication information to transmit specific information, and then indicates a certain bit through the DCI. Thereby, the terminal device is notified of the specific information corresponding to the bit, and the terminal device can finally obtain the specific information indicated by the base station based on the RRC signaling and the DCI.
  • the first mask information includes 16 bits, and one or more of the 16 bits are used to indicate whether the terminal device sends by using the second port. The first signal.
  • the first indication information may be a bit of the first mask information or the first scrambling code information, where all the bits are 0, indicating that the first port is the same as the second port, and all the bits are taken as 1
  • the first port is different from the second port, or the first bit is the same as the second port. If the bit is 0, the first port is different from the second port, but the first port is different from the second port. The application embodiment does not limit this.
  • the first mask information or the first scrambling code information is used to indicate that the first port and the second port are the same, or
  • the first mask information or the first scrambling code information is used to indicate that the third port is the same as the third port used by the third signal sent by the NL sending moment, and L is a positive integer, L Less than N and greater than K;
  • the third port includes at least one of the following information:
  • a third antenna port used to transmit the third signal
  • a third precoding matrix used to transmit the third signal
  • a third spatial filter used to transmit the third signal
  • the first mask information or the first scrambling code information may indicate that the first port is the same as the second port corresponding to the second signal sent by the NK sending time, or the third signal sent by the first port and the NL sending time.
  • the corresponding third port is the same.
  • the network device and the terminal device pre-approve L different first mask information or L different first scrambling code information, respectively, indicating that the terminal device transmits the PUSCH port and the PUSCH transmitted at the Nn 1 time at the Nth time.
  • the port is the same, and the port used by the terminal device to transmit the PUSCH at the Nth time is the same as the port used by the PUSCH transmitted at the Nn 2nd time, ..., the terminal device transmits the PUSCH port and the PUSCH transmitted at the Nn L time at the Nth time.
  • Ports are the same, where n 1 , n 2 , ..., n L are positive integers less than N; or
  • the base station configures L different first mask information or L different first scrambling code information through RRC signaling to indicate that the port used by the terminal device to transmit the PUSCH at the Nth time is the same as the port used by the PUSCH transmitted at the Nn 1 time.
  • the port used by the terminal device to transmit the PUSCH at the Nth time is the same as the port used by the PUSCH transmitted at the Nn 2nd time, ..., the port used by the terminal device to transmit the PUSCH at the Nth time is the same as the port used by the PUSCH transmitted at the Nn L time.
  • n 1 , n 2 , . . . , n L are all positive integers less than N.
  • the base station When scheduling the PUSCH sent by the Nth time, the base station selects one of the L different first mask information or the L different first scrambling code information to scramble the DCI, and then indicates to the terminal device, where the terminal device receives the DCI. And determining, by using a decoding algorithm, the mask information used by the DCI is one of L different first mask information or L different first scrambling code information, so that the first mask information and port indication pre-agreed by the base station are used.
  • Corresponding relationship of the information, or the port information indicated by the base station is determined based on the correspondence between the first mask information and the port indication information that the base station configures through the RRC signaling, that is, the port used is the same as the port used by the PUSCH sent at the time of the Nn Kth , Where K is greater than or equal to 1 and less than or equal to L integers.
  • the first indication information is a first field in a DCI, where the first field is used to indicate the first port;
  • the first indication information is a second field in the DCI, and the second field is used to indicate a modulation and coding policy MCS used by the first signal, where the first port is determined according to the MCS. .
  • the network device may send the DCI to the terminal device, and use the first field or the second field in the DCI as the first indication information.
  • the first field is used to indicate the first port
  • the second field is used to indicate the MCS. Therefore, after the terminal device receives the DCI, if the first field is the first indication information, the terminal device may directly Determining, according to the first field in the DCI, a first port used for sending the first signal, where the second field is the first indication information, the terminal device may determine, according to the second field in the DCI, that the first signal is sent.
  • the used MCS determines the first port used to transmit the first signal according to the MCS.
  • first port is used to directly indicate the first port or the second field is used to indicate the first port, which may be a protocol or a high-level signaling configuration, which is not limited in this embodiment of the present application.
  • the first indication information is used to indicate that the first port is the same as the second port; or
  • the first indication information is used to indicate that the index value of the first antenna port is X, and the index value of the second antenna port is X+1 or X-1, and X is a positive integer greater than 1.
  • the switching criterion of the antenna port (ie, the physical port) used by the terminal device to send the first signal may be: according to the antenna port of the terminal device.
  • the index values are ordered (or reversed) to switch. For example, if the terminal device sends the second signal using physical port 1, the terminal device sends the first signal using physical port 2.
  • the first indication information is used to indicate that the first port is the same as the second port; or
  • the first indication information is used to indicate that the index value of the sounding reference signal SRS resource corresponding to the first signal is Y, and the index value of the SRS resource corresponding to the second signal is Y+1 or Y-1.
  • Y is a positive integer greater than one.
  • the switching criterion of the port used by the terminal device to send the first signal may be: according to the index value sequence of the SRS resource of the terminal device (or Reverse order) to switch.
  • the network device configures at least one SRS resource for the terminal device, and the SRS sent on the SRS resource is a pre-coded SRS, and the SRS sent on each SRS resource corresponds to a feature vector, that is, a precoding matrix, according to the sent SRS resource.
  • the index determines the switching sequence. If the terminal device sends the second signal to use the precoding matrix corresponding to the SRS resource 1, the terminal device may use the precoding matrix corresponding to the SRS resource 2 to send the first signal.
  • the first indication information is used to indicate that the first port is the same as the second port; or
  • the first indication information is used to indicate that an index value of the first precoding matrix is Z, where an index value of the second precoding matrix is Z+1 or Z-1, and Z is a positive integer greater than 1. .
  • the set of the pre-coding matrix index may be pre-defined, or may be configured by the network device by using the high-layer signaling, which is not limited in this embodiment of the present application.
  • the foregoing first indication information may be used to notify the terminal device whether to send the first signal by using a precoding matrix polling transmission manner, and may also be used to notify the terminal device to send the PUSCH precoding resource.
  • the precoding matrix polling means that data is sent by using different precoding matrices on time-frequency resources according to a predefined granularity. For example, a precoding matrix polling transmission with a granularity of 1 resource block (RB) is Each RB occupied by the PUSCH in the frequency domain uses a different precoding matrix to transmit the PUSCH.
  • the present application further provides another data transmission method, including: the terminal device receives the downlink control information DCI, where the DCI is used to indicate the first indication information and the second indication information; wherein the first indication information is the first mask Code information or first scrambling code information, the first mask information is determined by the terminal device by using downlink control information DCI, and the DCI carries a cyclic redundancy check code scrambled by the first mask information.
  • the first scrambling code information is determined by the terminal device by using downlink control information DCI, where the DCI carries information bits scrambled by the first scrambling code information, and the second indication information is used to indicate SRS resources. Index value
  • the terminal device Determining, by the terminal device, the first antenna port according to the first indication information, the second indication information, and the first mapping relationship, where the first mapping relationship is used to indicate the first indication information, the Corresponding relationship between the second indication information and the first antenna port.
  • the format of the DCI is DCI format 0_1.
  • the network device may jointly indicate, by using the first indication information and the second indication information, the first antenna port that is used to send the first signal.
  • there is a first mapping relationship where the first mapping relationship is used to indicate Correspondence between the first antenna port and the first indication information and the second indication information.
  • the first mapping relationship may be a protocol, or may be configured by the network device through the high layer signaling, which is not limited in this embodiment of the present application.
  • the foregoing second indication information may be an SRS resource indication field (SRI), and the network device configures more than one SRS resource (each SRS resource configuration information includes one SRS resource ID number), and the terminal The device sends an SRS on the SRS resource based on the configuration information of the SRS.
  • SRI SRS resource indication field
  • Each SRS selects a corresponding sending mode according to its configuration information (port used, time-frequency resources occupied, etc.), and the network device receives and measures multiple SRSs.
  • the network device instructs the terminal device to select one of the multiple SRS resources configured by the SRI in the DCI, and the transmission mode adopted by the terminal device to transmit the PUSCH may be sent by using the SRS resource indicated by the SRI. The way SRS is sent.
  • Step 1 The network device configures the DCI format of the terminal device in the specific search space by the high layer signaling to be format 0_0.
  • Step 2 The network device sends a DCI (corresponding to the first downlink control information) for scheduling PUSCH transmission on the time-frequency resource corresponding to the specific search space of the terminal device.
  • the status bit information (corresponding to the first indication information) of the DCI CRC mask (corresponding to the first mask) may be used to indicate port information used for PUSCH single port transmission, and the port information may include an antenna port and precoding. Matrix information, spatial filtering information, etc.
  • the status bit 0 of the CRC mask indicates that the terminal device sends the port information used by the PUSCH to refer to the transmission mode adopted by the last signal sent by the terminal device; the status bit 1 of the CRC mask indicates that the terminal device sends the current PUSCH.
  • the port information used does not refer to the transmission mode adopted by the latest signal, that is, the port information used by the terminal device to transmit the current PUSCH is different from the transmission mode used by the latest signal.
  • the signal can be PUSCH, PUCCH or PRACH.
  • FIG. 3 shows a schematic diagram of a scenario in which the above signal is a PUSCH.
  • the status bit of the CRC mask is 0, indicating that the last PUSCH transmission mode is referenced, and the status bit of the CRC mask is 1 indicating that the previous PUSCH transmission mode is not referenced.
  • the method for determining the current PUSCH, that is, the port information may also be determined according to the rules stipulated in the protocol, which is not limited in this embodiment of the present application.
  • FIG. 3 is only an example of a port index.
  • the port index of the PUSCH is 1, which is the same as the port index of the last PUSCH.
  • the status bit is 1, the port index of the PUSCH is 0, and The port index of the last PUSCH is different.
  • the network device can ensure that the PUSCH transmission performance is improved when the channel condition is deteriorated or the uplink interference control is considered, and the terminal device is notified to switch the port used for transmitting the PUSCH before the handover is performed. And the indication does not increase the overhead of DCI.
  • the PRACH or PUCCH transmission generally adopts a relatively robust manner, and the transmission of the PUSCH reference PRACH or PUCCH can effectively improve the reliability of the PUSCH transmission.
  • the frequency domain resources occupied by the PRACH/PUCCH are relatively limited, and the corresponding transmission mode is superior to the PUSCH scheduling in the frequency domain resources with similar frequency domain resources, and the PUSCH scheduling is uncorrelated in the frequency domain resources.
  • the frequency domain resource is not optimal. Therefore, the PRACH/PUCCH transmission mode may not be a preferred scheme for the PUSCH transmission.
  • the network device can be flexibly configured for the terminal part, which greatly improves the flexibility of the PUSCH transmission.
  • the status bit information may be the last bit of the CRC mask, which is 0 or 1, as shown in Table 1 below.
  • the terminal device may further determine the port information currently used to transmit the PUSCH according to the predefined rule, so that the terminal device and the network device are aligned. This is because the MCS used by the network device to determine the PUSCH transmission and the time-frequency resource allocation are calculated based on the PUSCH transmission using a specific port and a precoding matrix. If the terminal device switching port is not specified as a specific port, The MCS used for the PUSCH transmission indicated by the network device and the port on which the time-frequency resource allocation is based may not match the port used by the terminal device to actually transmit the PUSCH, which may cause loss of PUSCH performance.
  • the predefined rules can include the following:
  • the switching criterion of the physical port used by the terminal device to transmit the current PUSCH when the network device indicates the status bit 1 of the CRC mask is as follows:
  • Determining the switching order according to the order of the index values of the physical ports of the terminal device that is, if the terminal device sends the index value of the physical port of the last PUSCH to be 1, the terminal device sends the index value of the physical port of the PUSCH. Is 2;
  • the uplink channel and the downlink channel are irrelevant.
  • the terminal device cannot obtain the uplink channel through the downlink channel measurement, and the network device cannot perform measurement through the uplink channel to obtain the downlink. channel.
  • the switching criteria of the physical port used by the terminal device to transmit the current PUSCH when the network device indicates the status bit 1 of the CRC mask can be pre-defined:
  • the transmission mode is switched according to a certain order, that is, if the codebook index used by the terminal device to transmit the latest PUSCH is 1, the terminal device sends the codebook index used by the PUSCH to 2 ;
  • the terminal device can obtain the uplink channel through downlink channel measurement, and the network device can also measure through the uplink channel. Get the downlink channel.
  • the switching criteria of the physical port used by the terminal device to transmit the current PUSCH when the network device indicates the status bit 1 of the CRC mask can be pre-defined:
  • the switching sequence is determined from high to low, and may be, for example, switching from a feature vector corresponding to the obtained feature value to a feature vector having a low corresponding feature value; or
  • the network device configures at least one SRS resource for the terminal device, and the SRS sent on the SRS resource is a pre-coded SRS, and the SRS sent on each SRS resource corresponds to one feature vector, that is, a precoding matrix, according to the sent SRS.
  • the index of the resource determines the handover sequence. If the terminal device sends the precoding matrix corresponding to the SRS resource 1 in the last PUSCH, the terminal device sends the precoding matrix corresponding to the SRS resource 2 in the current PUSCH.
  • FIG. 4 shows another schematic diagram of the above signal as a PUSCH.
  • the status bit of the CRC mask is 0, indicating that the previous PUSCH transmission mode is referenced, and the status bit of the CRC mask is 1 indicating that the previous PUSCH transmission mode is not referred to.
  • the rules stipulated in the protocol directly refer to the transmission method adopted by the most recent PUCCH. It should be understood that FIG. 4 only takes the index of the port as an example.
  • the port index of the PUSCH is 1, which is the same as the port index of the previous PUSCH.
  • the status bit is 1
  • the port index of the PUSCH is 0, which is different from the port index of the last PUSCH and the same as the port index of the last PUCCH.
  • Step 1 The network device configures the DCI format of the terminal device in the specific search space by the high layer signaling to be format 0_0.
  • Step 2 The network device sends a DCI (corresponding to the first downlink control information) for scheduling PUSCH transmission on the time-frequency resource corresponding to the specific search space of the terminal device.
  • the frequency domain resource allocation field in the DCI format 0_0 indicates that the allocated frequency domain resource is 0 RB, and some fields in the DCI format 0_0, such as the TDRA/MCS/RV/NDI field, may be used.
  • the port information indicating that the terminal device currently transmits the PUSCH.
  • the network device may be used to indicate that the relevant field of the PUSCH transmission can be used to indicate the port information.
  • the terminal device determines whether other fields in the DCI format are used to indicate the port information by interpreting the value of the resource allocation field.
  • the network device may transmit the rank information, the precoding information, the PRG size, and the like of the PUSCH by multiplexing the foregoing fields. For example, when the base station indicates the PUSCH resource scheduling by using the DCI, the time domain resource allocation field/frequency domain resource allocation field is encoded as all 0s. And the corresponding bit of the MCS and NDI fields are sent according to the indication of the TPMI and TRI fields, that is, the MCS and NDI fields are used as existing TPMI and TRI fields, and a certain bit of the MCS and NDI fields at this time It indicates the corresponding information of a certain TPMI and TRI.
  • the terminal device When the terminal device learns that the bit corresponding to the frequency domain resource allocation field is all 0, the terminal device interprets the MCS and NDI fields in the above field as fields indicating TPMI and TRI, and the MCS and NDI fields obtained by the terminal device decoding at this time. The corresponding bits acquire TPMI and TRI information.
  • the PUSCH scheduled by the predefined DCI format 0_0 sends an indication of the DCI format 0_0 complying with the latest unscheduled frequency domain resource.
  • a block represents a time unit
  • 0_0+ indicated by the network device in the first time unit indicates that the frequency domain resource allocation in the DCI format 0_0 of the current indication is 0 RB.
  • the 0_0 indicated by the network device in the third time unit indicates that the frequency domain resource allocation in the DCI format 0_0 of the current indication is greater than 0 RB.
  • the PUSCH triggered by the DCI is adopted. Port 0, and so on.
  • the network device uses the special DCI format 0_0, that is, the DCI unscheduled PUSCH, to indicate the port information used by the subsequent PUSCH, so that the terminal device only needs to blindly detect the DCI of one format, thereby reducing the terminal device.
  • the complexity of blind detection is not limited to the DCI format 0_0, that is, the DCI unscheduled PUSCH, to indicate the port information used by the subsequent PUSCH, so that the terminal device only needs to blindly detect the DCI of one format, thereby reducing the terminal device.
  • the embodiment of the present application is directed to a scenario in which the number of SRS resource ports that the uplink device supports only the uplink single port transmission or the network device is set to 1.
  • the terminal device may be a scenario in which the terminal device has 4 receiving antennas but only one transmitting antenna, or a scenario in which the terminal device has 4 antennas and 4 antennas can be used for data reception at the same time but cannot be simultaneously used for data transmission.
  • Terminal device referred to as 1T4R
  • the network device cannot transmit the port indication of the PUSCH to the terminal device only through the field in the DCI format 0_1, and the status bit and the SRI information in the joint CRC mask are required to jointly indicate the port information used by the terminal device to transmit the PUSCH.
  • Step 1 The network device configures the DCI format of the terminal device in the specific search space by the high layer signaling to be format 0_1.
  • Step 2 The network device sends a DCI (corresponding to the first downlink control information) for scheduling PUSCH transmission on the time-frequency resource corresponding to the specific search space of the terminal device.
  • the SRI and the CRC mask in the DCI format 0_1 may jointly indicate the physical port information used by the terminal device to send the PUSCH.
  • the first to fourth antenna ports in Table 2 are associated with the SRS resource index used for SRS antenna switching, and can be defined in the protocol.
  • the SRS transmitted on the SRS resource for SRS antenna switching uses antenna ports of different terminal devices.
  • Antenna port CRC mask and SRI First antenna port ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>+’0’
  • Second antenna port ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>+’1’
  • Third antenna port ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>+’0’
  • Fourth antenna port ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>+’1’
  • the terminal device can directly determine the antenna port used for transmitting the PUSCH according to the status bit and the SRI in the CRC mask, and ensure that the network device and the terminal device understand the same, thereby improving data transmission. Reliability.
  • the data transmission method according to the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 5.
  • the network device and the terminal device according to the embodiment of the present application will be described in detail below with reference to FIG. 6 to FIG.
  • FIG. 6 shows a terminal device 600 provided by an embodiment of the present application.
  • the terminal device 600 includes:
  • the receiving unit 610 is configured to receive downlink information sent by the base station, where the downlink information is a cyclic redundancy check (CRC) code after mask scrambling;
  • CRC cyclic redundancy check
  • the processing unit 620 is configured to obtain the mask according to the downlink information, where the mask includes indication information for indicating whether the terminal device sends a first signal by using a port used by sending the second signal, where Transmitting, by the terminal device, the second signal before transmitting the first signal; and determining, according to the indication information, a port that sends the first signal; and
  • the sending unit 630 is configured to send the first signal on the determined port.
  • the terminal device of the embodiment of the present application indicates, by using the first indication information, whether the port used by the currently transmitted first signal is the same as the port used by the previously sent second signal, so that the terminal device is configured according to the first indication information. Determining the port information of the PUSCH is beneficial to improve the reliability of data transmission.
  • the port for transmitting the first signal includes one or more of the following information: an antenna port, a precoding matrix, and spatial filtering.
  • the first signal is: a signal carried on a physical uplink shared channel PUSCH, or a signal carried on a physical uplink control channel PUCCH.
  • the second signal is a signal carried on a PUSCH, a signal carried on a PUCCH, or a random access preamble sequence.
  • the downlink information is a CRC code that is scrambled by the mask of downlink control information (DCI).
  • DCI downlink control information
  • the mask is 16 bits, and the indication information is one or more bits of the mask.
  • the last bit of the mask takes a value of 0, indicating that the port that sends the first signal is the same as the port that sends the second signal.
  • the port that sends the first signal is different from the port that sends the second signal.
  • the format of the DCI is format 0_0 or format 0_1.
  • the index value of the antenna port of the port that sends the first signal is X
  • the antenna port index of the port that sends the second signal is X+1 or X-1
  • X is greater than or equal to 1. Positive integer.
  • the index value of the precoding matrix of the port that sends the first signal is Z
  • the index value of the precoding matrix of the port that sends the second signal is Z+1 or Z-1, where Z is A positive integer greater than or equal to 1.
  • the terminal device 600 herein is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (eg, a shared processor, a proprietary processor, or a group) for executing one or more software or firmware programs. Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • processor eg, a shared processor, a proprietary processor, or a group
  • memory merge logic, and/or other suitable components that support the described functionality.
  • the terminal device 600 may be specifically the terminal device in the foregoing embodiment, and the terminal device 600 may be used to perform various processes and/or corresponding to the terminal device in the foregoing method embodiments. Steps, to avoid repetition, will not be repeated here.
  • FIG. 7 shows a base station 700 provided by an embodiment of the present application, where the base station 700 includes:
  • the processing unit 710 is configured to perform scrambling on a cyclic redundancy check (CRC) code by using a mask to obtain a scrambled CRC code, where the mask includes indicating whether the terminal device uses the second signal to send The port used to transmit indication information of the first signal, wherein the second signal and the first signal are both sent by the terminal device, and the second signal is sent before the first signal; and
  • CRC cyclic redundancy check
  • the sending unit 720 is configured to send the scrambled CRC code to the terminal device.
  • the network device of the embodiment of the present application indicates, by using the first indication information, whether the port used by the currently transmitted first signal is the same as the port used by the previously sent second signal, so that the terminal device is configured according to the first indication information. Determining the port information of the PUSCH is beneficial to improve the reliability of data transmission.
  • the port for transmitting the first signal includes one or more of the following information: an antenna port, a precoding matrix, and spatial filtering.
  • the first signal is a signal carried on a physical uplink shared channel PUSCH or a signal carried on a physical uplink control channel PUCCH.
  • the second signal is a signal carried on a PUSCH, a signal carried on a PUCCH, or a random access preamble sequence.
  • the scrambled CRC code is a CRC code of the downlink control information (DCI) that is scrambled by the mask.
  • DCI downlink control information
  • the mask is 16 bits, and the indication information is one or more bits of the mask.
  • the last bit of the mask takes a value of 0, indicating that the port that sends the first signal is the same as the port that sends the second signal.
  • the port that sends the first signal is different from the port that sends the second signal.
  • the format of the DCI is format 0_0 or format 0_1.
  • the index value of the antenna port is X
  • the antenna port index of the port that sends the second signal is X+1 or X-1
  • X is a positive integer greater than or equal to 1.
  • the index value of the precoding matrix is Z, where an index value of a precoding matrix of a port that sends the second signal is Z+1 or Z-1, and Z is a positive integer greater than or equal to 1.
  • the base station 700 herein is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (eg, a shared processor, a proprietary processor, or a group) for executing one or more software or firmware programs. Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • the base station 700 may be specifically the network device in the foregoing embodiment, and the base station 700 may be used to perform various processes and/or steps corresponding to the network device in the foregoing method embodiment. To avoid repetition, we will not repeat them here.
  • FIG. 8 shows another terminal device 800 provided by an embodiment of the present application.
  • the terminal device 800 includes a processor 810, a transceiver 820, and a memory 830.
  • the processor 810, the transceiver 820, and the memory 830 communicate with each other through an internal connection path.
  • the memory 830 is configured to store instructions, and the processor 810 is configured to execute instructions stored in the memory 830 to control the transceiver 820 to send signals and / or receive signals.
  • the transceiver 820 is configured to receive downlink information sent by the base station, where the downlink information is a cyclically scrambled (CRC) code after mask scrambling; the processor 810 is configured to: according to the downlink Obtaining the mask, the mask including indication information indicating whether the terminal device uses a port used to send the second signal to send the first signal, where the terminal device is transmitting the first Transmitting the second signal before the signal; and determining, according to the indication information, a port for transmitting the first signal; the transceiver 820 is further configured to send the first signal on the determined port.
  • CRC cyclically scrambled
  • the terminal device 800 may be specifically the terminal device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the terminal device in the foregoing method embodiments.
  • the memory 830 can include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 810 can be configured to execute instructions stored in a memory, and when the processor 810 executes instructions stored in the memory, the processor 810 is configured to perform the various steps of the method embodiment corresponding to the terminal device described above and/or Or process.
  • FIG. 9 shows another base station 900 provided by an embodiment of the present application.
  • the base station 900 includes a processor 910, a transceiver 920, and a memory 930.
  • the processor 910, the transceiver 920, and the memory 930 communicate with each other through an internal connection path.
  • the memory 930 is configured to store instructions, and the processor 910 is configured to execute instructions stored in the memory 930 to control the transceiver 920 to send signals and / or receive signals.
  • the processor 910 is configured to use a mask to scramble a cyclic redundancy check (CRC) code to obtain a scrambled CRC code, where the mask includes a second device for indicating whether the terminal device uses the second transmission.
  • the transceiver 920 is configured to send the scrambled CRC code to the terminal device.
  • the base station 900 may be specifically the network device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the network device in the foregoing method embodiment.
  • the memory 930 can include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 910 can be configured to execute instructions stored in a memory, and when the processor 910 executes instructions stored in the memory, the processor 910 is configured to perform the various steps of the method embodiments corresponding to the network device described above and/or Or process.
  • the processor of the foregoing apparatus may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software units in the processor.
  • the software unit can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application may be in essence or part of the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法、终端设备和网络设备,该方法包括:终端设备在第N发送时刻获取第一指示信息,其中,所述第一指示信息用于指示发送第一信号所使用的第一端口与发送第二信号所使用的第二端口是否相同,所述第二信号是所述终端设备在N-K发送时刻发送的,N和K均为正整数,且N大于K;所述终端设备根据所述第一指示信息,发送所述第一信号;所述第一端口包括下列信息中的至少一种:发送所述第一信号所使用的第一天线端口、发送所述第一信号所使用的第一预编码矩阵以及发送所述第一信号所使用的第一空间滤波。本申请实施例的数据传输方法、终端设备和网络设备,有利于提高数据传输的可靠性。

Description

数据传输方法、终端设备和网络设备
本申请要求于2018年4月4日提交中国专利局、申请号为201810302369.6、申请名称为“数据传输方法、终端设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及通信领域中的数据传输方法、终端设备和网络设备。
背景技术
第五代移动通信技术(5th generation,5G)支持至少两种用于调度物理上行共享信道(physical uplink shared channel,PUSCH)的下行控制信息(downlink control information,DCI)格式,不同的DCI格式对应的DCI中包含的字段内容以及相应的DCI的位宽不同。例如,DCI格式0_0(DCI format 0_0)中包含了时频资源分配信息、调制编码策略(modulation coding strategy,MCS)信息,而不包含探测参考信号资源指示(SRS resource indication,SRI)、传输秩指示(Transmission rank indication,TRI)、传输预编码矩阵指示(Transmission precoding matrix indication,TPMI)信息、天线端口指示信息等;而DCI格式0_1(DCI format 0_1)中包含了时频资源分配信息、MCS、SRI、TRI和TPMI信息、探测参考信号(sounding reference signal,SRS)请求信息(SRS request,用于动态触发SRS的发送)、天线端口指示信息等。调度PUSCH的不同的DCI格式对应的比特位宽可以不相同。网络设备可以通过高层信令无线资源控制(radio resource control,RRC)配置至少一个终端设备特定的搜索空间,每个搜索空间会对应时频资源配置信息,以使得该网络设备在该资源上进行DCI的检测。每个搜索空间同时包含了DCI格式的配置信息,一般只包含一种上行调度的DCI格式,如DCI format 0_0或DCI format 0_1。终端设备通过盲检测不同的搜索空间确定调度PUSCH使用的DCI格式以及对应的DCI信息。
通常地,网络设备通过RRC信令为终端设备配置至少一个SRS资源,终端设备根据接收到的SRS资源的配置信息在SRS资源上发送SRS;网络设备在该SRS资源上接收并测量该SRS,并基于该网络设备自身的实现算法确定该终端设备的资源调度信息(包括时频资源分配、传输方式等),通过DCI format 0_1指示SRI、TRI、TPMI、MCS和DMRS端口信息。
在某些情况下,网络设备将使用DCI format 0_0发送PDCCH调度PUSCH的传输。当网络设备使用DCI format 0_0时,协议中规定调度的PUSCH传输采用单端口传输模式,所谓单端口传输模式就是PUSCH和与PUSCH对应的DMRS使用单端口,同时发送PUSCH采用的传输层数为1。这是因为DCI format 0_0相比于format 0_1而言是精简的DCI格式,其中不包含SRI、TRI、TPMI信息以及DMRS的天线端口指示信息,则对于多端口PUSCH传输模式,终端设备无法通过上述信息获得正确的多端口PUSCH传输方 式,比如PUSCH的传输端口、传输层数等等。因此,终端设备可能基于自身实现算法或者通过预定义的方式,确定发送PUSCH的物理端口、预编码向量或空间滤波(本文统称为端口信息),这样,会导致网络设备无法直接通过DCI向终端设备指示发送PUSCH所使用的端口信息,数据传输的可靠性较差。
发明内容
本申请提供一种数据传输方法、终端设备和网络设备,能够向终端设备指示发送PUSCH的端口信息,有利于提高数据传输的可靠性。
第一方面,提供了一种数据传输方法,包括:终端设备接收基站发送的下行信息,其中,所述下行信息为经过掩码加扰后的循环冗余校验(CRC)码;
所述终端根据所述下行信息得到所述掩码,所述掩码包含用于指示所述终端设备是否使用发送第二信号所使用的端口来发送第一信号的指示信息,其中,所述终端设备在发送所述第一信号前发送所述第二信号;和
所述终端设备根据所述指示信息确定发送所述第一信号的端口,并在确定出的端口上发送所述第一信号。
本申请实施例的数据传输方法,第一指示信息指示终端设备当前发送的第一信号所使用的端口与之前发送的第二信号所采用的端口是否相同,使得终端设备根据该第一指示信息确定发送PUSCH的端口信息,有利于提高数据传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,所述发送第一信号的端口包括以下信息中的一种或者多种:天线端口、预编码矩阵和空间滤波。
结合第一方面,在第一方面的某些实现方式中,所述第一信号为承载在物理上行共享信道PUSCH上的信号,或承载在物理上行控制信道PUCCH上的信号。
结合第一方面,在第一方面的某些实现方式中,所述第二信号为承载在PUSCH上的信号、承载在PUCCH上的信号或者随机接入前导序列。
结合第一方面,在第一方面的某些实现方式中,所述下行信息为下行控制信息(DCI)的经过所述掩码加扰后的CRC码。
结合第一方面,在第一方面的某些实现方式中,所述掩码为16比特,所述指示信息为所述掩码的一个或多个比特。
结合第一方面,在第一方面的某些实现方式中,所述掩码的最后一位取值为0时,指示发送所述第一信号的端口和发送第二信号的端口相同。
结合第一方面,在第一方面的某些实现方式中,所述掩码的最后一位取值为1时,指示发送所述第一信号的端口和发送第二信号的端口不同。
结合第一方面,在第一方面的某些实现方式中,所述DCI的格式为format 0_0或者format 0_1。
结合第一方面,在第一方面的某些实现方式中,所述天线端口的索引值为X,发送所述第二信号的端口的天线端口索引值为X+1或X-1,X为大于等于1的正整数。
结合第一方面,在第一方面的某些实现方式中,所述预编码矩阵的索引值为Z,其中,发送所述第二信号的端口的预编码矩阵的索引值为Z+1或Z-1,Z为大于等于1的正整数。
结合第一方面,在第一方面的某些实现方式中,所述第二信号所占的频域资源与所述 第一信号所占的频域资源相同,或者所述第二信号所占的频域资源与所述第一信号所占的频域资源重叠的部分大于某一特定的值。
结合第一方面,在第一方面的某些实现方式中,所述掩码用于指示所述第一信号的端口是否与最近一次用于指示的端口信息的掩码相同。
在本申请的其他方面,提供了另一种数据传输方法,包括:终端设备接收下行控制信息DCI,所述DCI用于指示第一指示信息和第二指示信息;其中,所述第一指示信息为第一掩码信息或第一扰码信息,所述第一掩码信息是所述终端设备通过下行控制信息DCI确定的,所述DCI携带通过所述第一掩码信息加扰的循环冗余校验码,所述第一扰码信息是所述终端设备通过下行控制信息DCI确定的,所述DCI携带通过所述第一扰码信息加扰的信息比特,所述第二指示信息用于指示SRS资源的索引值;
所述终端设备根据所述第一指示信息、所述第二指示信息以及第一映射关系,确定所述第一天线端口,所述第一映射关系用于表示所述第一指示信息、所述第二指示信息与所述终端设备的天线端口之间的对应关系。
可选地,上述DCI的格式为DCI format 0_1。
第二方面,提供了另一种数据传输方法,包括:基站使用掩码对循环冗余校验(CRC)码进行加扰,得到加扰后的CRC码,其中,所述掩码包含用于指示终端设备是否使用发送第二信号所使用的端口来发送第一信号的指示信息,其中,所述第二信号和所述第一信号均为所述终端设备发送,并且所述第二信号在所述第一信号前发送;所述基站将所述加扰后的CRC码发送给所述终端设备。
结合第二方面,在第二方面的某些实现方式中,所述发送第一信号的端口包括以下信息中的一种或者多种:天线端口、预编码矩阵和空间滤波。
结合第二方面,在第二方面的某些实现方式中,所述第一信号为承载在物理上行共享信道PUSCH上的信号,或承载在物理上行控制信道PUCCH上的信号。
结合第二方面,在第二方面的某些实现方式中,所述第二信号为承载在PUSCH上的信号、承载在PUCCH上的信号或者随机接入前导序列。
结合第二方面,在第二方面的某些实现方式中,所述加扰后的CRC码为下行控制信息(DCI)的经过所述掩码加扰后的CRC码。
结合第二方面,在第二方面的某些实现方式中,所述掩码为16比特,所述指示信息为所述掩码的一个或多个比特。
结合第二方面,在第二方面的某些实现方式中,所述掩码的最后一位取值为0时,指示发送所述第一信号的端口和发送第二信号的端口相同。
结合第二方面,在第二方面的某些实现方式中,所述掩码的最后一位取值为1时,指示发送所述第一信号的端口和发送第二信号的端口不同。
结合第二方面,在第二方面的某些实现方式中,所述DCI的格式为format 0_0或者format 0_1。
结合第二方面,在第二方面的某些实现方式中,所述天线端口的索引值为X,发送所述第二信号的端口的天线端口索引值为X+1或X-1,X为大于等于1的正整数。
结合第二方面,在第二方面的某些实现方式中,所述预编码矩阵的索引值为Z,其中,发送所述第二信号的端口的预编码矩阵的索引值为Z+1或Z-1,Z为大于等于1的正整数。
结合第二方面,在第二方面的某些实现方式中,所述第一指示信息用于指示所述第一端口与所述第二端口相同;或所述第一指示信息用于指示所述第一预编码矩阵的索引值为Z,其中,所述第二预编码矩阵的索引值为Z+1或Z-1,Z为大于1的正整数。
结合第二方面,在第二方面的某些实现方式中,所述第二信号所占的频域资源与所述第一信号所占的频域资源相同,或者所述第二信号所占的频域资源与所述第一信号所占的频域资源重叠的部分大于某一特定的值。
结合第二方面,在第二方面的某些实现方式中,所述掩码用于指示所述第一信号的端口是否与最近一次用于指示的端口信息的掩码相同。
第三方面,提供了一种终端设备,用于执行第一方面或第一方面任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法的单元。
第四方面,提供了另一种基站,用于执行第二方面或第二方面任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法的单元。
第五方面,提供了另一种终端设备,该终端设备包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,使得该处理器执行第一方面或第一方面的任一种可能的实现方式中的方法。
第六方面,提供了另一种基站,该基站包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,使得该处理器执行第二方面或第二方面的任一种可能的实现方式中的方法。
第七方面,提供了一种数据传输系统,该系统包括上述第三方面或第三方面的任一种可能实现方式中的终端设备以及第四方面或第四方面中的任一种可能实现方式中的基站;或者
该系统包括上述第五方面或第五方面的任一种可能实现方式中的终端设备以及第六方面或第六方面中的任一种可能实现方式中的基站。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述第一方面或第一方面任一种可能实现方式中的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述第二方面或第二方面任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十一方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
图1示出了本申请实施例的通信系统的示意图。
图2示出了根据本申请实施例的数据传输方法的示意性流程图。
图3示出了根据本申请实施例的场景示意图。
图4示出了根据本申请实施例的另一场景示意图。
图5示出了根据本申请实施例的另一场景示意图。
图6示出了根据本申请实施例的终端设备的示意性框图。
图7示出了根据本申请实施例的基站的示意性框图。
图8示出了根据本申请实施例的另一终端设备的示意性框图。
图9示出了根据本申请实施例的另一基站的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
还应理解,本申请实施例的技术方案还可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(sparse code multiple access,SCMA)系统,当然SCMA在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(orthogonal frequency division multiplexing,OFDM)、滤波器组多载波(filter bank multi-carrier,FBMC)、通用频分复用(generalized frequency division multiplexing,GFDM)、滤波正交频分复用(filtered-OFDM,F-OFDM)系统等。
还应理解,在本申请实施例中,终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,该终端设备可称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
还应理解,在本申请实施例中,网络设备可用于与终端设备通信,该网络设备可以是GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(node B,NB),还可以是LTE系统中的演进型基站(evolutional node B,eNB或eNode B),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的PLMN网络中的网络设备等。
本申请实施例可以适用于LTE系统以及后续的演进系统如5G等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于需要信道信息反馈和/或应用二级预编码技术的场景,例如应用Massive MIMO技术的无线网络、应用分布式天线技术的无线网络等。
应理解,多输入输出(multiple-input multiple-output,MIMO)技术是指在发送端设备和接收端设备分别使用多个发射天线和接收天线,使信号通过发送端设备与接收端设备的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍地提高系统信道容量。
MIMO可以分为单用户多输入多输出(single-user MIMO,SU-MIMO)和多用户多输入多输出(multi-user MIMO,MU-MIMO)。Massive MIMO基于多用户波束成形的原理,在发送端设备布置几百根天线,对几十个目标接收机调制各自的波束,通过空间信号隔离,在同一频率资源上同时传输几十条信号。因此,Massive MIMO技术能够充分利用大规模天线配置带来的空间自由度,提升频谱效率。
图1是本申请实施例所用的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可以对于每个组使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件,例如处理器、调制器、复用器、解调器、解复用器或天线等。
网络设备102可以与多个终端设备通信,例如,网络设备102可以与终端设备116和终端设备122通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工FDD系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工TDD系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组 设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取要通过信道发送至无线通信接收装置的一定数目的数据比特,例如,无线通信发送装置可生成、从其它通信装置接收、或在存储器中保存等要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块或多个传输块中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络PLMN网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
为便于理解,下面先对本文涉及的相关技术进行介绍。
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的新无线接入技术(New Radio Access Technology,NR)系统中,系统的下行资源从时间上看被划分成了多个正交频分复用多址(Orthogonal Frequency Division Multiple,OFDM)符号,从频率上看被划分成了若干个子载波。下行链路中的物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)通常占用一个子帧中前两个或三个OFDM符号。PDCCH用于承载下行链路控制信息(Downlink Control Information,DCI)。DCI中携带了终端设备特定的资源分配和终端设备特定的或小区共享的其他控制信息。系统的上行链路中的物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)用于承载上行发送数据,通常使用离散傅里叶变换扩展OFDM(DFT-Spread OFDM,DFT-S-OFDM)生成频域信号。一般地,一个时隙(slot)通常包括14个OFDM符号。系统中还定义了物理资源块(Physical Resource Block,PRB)的大小,一个PRB在频域上包含12个子载波,在某个OFDM符号内的某个子载波称为资源元素(Resource Element,RE)。
探测参考信号(Sounding Reference Signal,SRS)主要用于网络设备确定上行信道质量,从而进行上行频率选择性调度。终端设备发送SRS所占的时频资源位置以及相关的SRS发送方式需要根据网络设备通过RRC信令指示的SRS资源的配置信息或者进一步根据媒体接入控制(Medium Access Control-Control Element,MAC-CE)信令或者进一步根据DCI信令确定。每个SRS资源的配置信息中至少包含该SRS资源的索引号、SRS资源所占的时频位置信息、SRS资源对应的发送端口号等。
上行传输中包括基于码本的上行传输模式,对基于码本的上行传输而言,一种通常的做法是在终端设备处于RRC连接状态之后,网络设备通过RRC信令配置SRS资源信息,终端设备成功接收该RRC配置信息之后,根据该SRS的配置参数在相应的上行时频资源上发送SRS信号,网络设备在相应的SRS时频资源上接收并测量SRS获得上行信道信息。网络设备通过自身的实现算法确定调度该终端设备发送PUSCH所使用的时频资源以及传 输方案,网络设备通过用于调度上行的PDCCH中承载的DCI信令将这些信息指示给终端设备。所述传输方案至少包括终端设备发送PUSCH所使用的空间滤波信息、秩指示(Transmission Rank Indicator,TRI)、预编码指示(Transmission Precoding Matrix Indicator,TPMI)、调制和编码方案(Modulation and Coding Scheme,MCS)、天线端口指示信息等。终端设备在接收到调度PUSCH传输的DCI之后,会按照DCI中指示的时频资源以及发送方案进行PUSCH传输。所述TPMI的作用是指示终端设备的发送天线间进行相位加权,从而提高发送性能。需要注意的是,现有机制中TPMI指示预编码矩阵加权是作用在终端设备发送SRS所使用的发送天线。终端设备发送PUSCH使用的发送天线间的相位加权方法参考SRS,其中包括TPMI的指示结果。终端设备在发送PUSCH的同时需要发送与PUSCH相关联的解调参考信号(Demodulation RS,DMRS),网络设备完成PUSCH的解调需要根据DMRS进行信道估计。上述传输方案中包含的天线端口信息为发送DMRS使用的端口号。当多个终端设备进行MU-MIMO传输时,也就是说此时多个终端设备占用相同的时频资源进行数据传输,网络设备为不同的终端设备分配不同的DMRS端口以区分处于MU-MIMO传输中多个终端设备发送的数据信息。同时,需要说明的是,NR中支持DMRS和与其对应的PUSCH使用相同的端口号进行传输,这意味着,DMRS和与其对应的PUSCH采用相同的发送方式。
NR中支持具有更大的可用带宽的高频频段特别是毫米波频段。然而,高频频段将导致更大的路径损耗。为克服较大的传播损耗,NR广泛采用一种基于波束赋形技术的信号传输机制以通过较大的天线增益来补偿信号传播过程中的上述损耗。其中,波束赋形的信号可包括广播信道、数据信道、控制信道、同步信号以及小区特定的参考信号等。对于需要波束赋形的信号的场景,需要进行波束训练进行最优收发波束的确定。网络设备可以将波束训练的结果通过信令(包含RRC、MAC-CE和DCI)指示终端设备,以通知该终端设备收发各种参考信号和信道所使用的波束。本文将终端设备发送信息所使用的波束称为空间滤波信息。
空间滤波信息用于将目标资源与某一参考信号进行关联。当所关联的参考信号为SSB/PBCH时,终端设备发送该SRS资源使用与接收该SSB/PBCH使用的空间传输滤波(Spatial domain transmission filter)相同的空间传输滤波;当所关联的参考信号为CSI-RS时,终端设备发送该SRS资源使用与接收该CSI-RS使用的空间传输滤波(Spatial domain transmission filter)相同的空间传输滤波;当所关联的参考信号为SRS时,终端设备发送该SRS资源使用与发送该关联的SRS使用的空间传输滤波(Spatial domain transmission filter)相同的空间传输滤波。应理解,信道A参考信道B的空间滤波信息表示,发送信道A所采用的发射波束与发送信道B所采用的发射波束相同。
此外,NR中支持至少两种用于调度PUSCH的DCI格式,不同的DCI格式对应的DCI中包含的字段内容以及相应的DCI位宽不同。
1、DCI格式0_1
本文简称为DCI format 0_1,其中包含时频资源分配信息、MCS、SRI、TRI、TPMI信息、SRS请求信息(SRS request,用于动态触发SRS的发送)、天线端口指示信息等。具体地,DCI format 0_0可以包括如下字段:
(1)DCI格式指示信息
(2)载波指示
(3)上行(UL)/补充上行(SUL)指示
(4)带宽部分(bandwidth part)指示
(5)频域资源位置指示信息:用于指示为PUSCH分配的频域资源
(6)时域资源位置指示信息:用于指示为PUSCH分配的时域资源
(7)虚拟资源块(VRB)到物理资源块(PRB)映射
(8)频域跳频标识
(9)调制编码方案:用于指示数据块的调制阶数、目标码率等信息
(10)新数据指示
(11)冗余版本
(12)混合自动重传请求(HARQ)进程数
(13)第一下行分配指示
(14)第二下行分配指示
(15)发射功率控制指令
(16)SRS资源指示:当网络设备通过高层信令配置多个SRS资源时,该信令用于指示从多个SRS资源中选择一个或者多个SRS资源
(17)预编码信息和传输层数:用于指示PUSCH传输使用的传输层数和相应的预编码矩阵
(18)天线端口:用于指示与PUSCH关联的DMRS的端口号以及端口数
(19)SRS请求
(20)CSI请求
(21)码块组(Code Block Group,CBG)传输信息
(22)相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)和DMRS关联(23)beta偏移指示
(24)DMRS序列初始化
通常地,网络设备通过RRC信令为终端设备配置至少一个SRS资源,终端设备根据接收到的SRS资源的配置信息在SRS资源上发送SRS;网络设备在该SRS资源上接收并测量该SRS,并基于该网络设备自身的实现算法确定该终端设备的资源调度信息(包括时频资源分配、传输方式等),通过DCI format 0_1指示SRI、TRI、TPMI、MCS和DMRS端口信息。
2、DCI格式0_0
本文简称为DCI format 0_0,其中包含时频资源分配信息、MCS信息,不包含SRI、TRI、TPMI信息、天线端口指示信息等。具体地,DCI format 0_0可以包括如下字段:
(1)DCI格式指示信息
(2)频域资源位置指示信息
(3)时域资源位置指示信息
(4)频域跳频标识
(5)调制编码方案
(6)新数据指示
(7)冗余版本
(8)混合自动重传请求(HARQ)进程数
(9)发射功率控制指令
(10)上行/补充上行指示
在某些情况下,网络设备将使用DCI format 0_0发送PDCCH调度PUSCH的传输。上述某些情况至少包括:
(1)网络设备未通过高层信令配置传输模式,主要是在初始接入之后一直到RRC配置完成且生效之间的时间段;由于这段时间内终端设备无法接收到任何RRC信令指示的配置信息,所以协议需要预定义一种传输机制,即基于DCI format 0_0调度的PUSCH单端口传输,主要是由于该传输机制不依赖于RRC信令,通过DCI信令指示必要的PUSCH传输所需的参数即可完成PUSCH的传输;
(2)针对小区边缘的终端设备使用format 0_0为其调度PUSCH。由于处于小区边缘的终端设备主要需要解决覆盖问题,使用精简的DCI格式可以有效提升覆盖,此时使用DCI format 0_0调度数据是比较合理的做法;
(3)当网络设备为终端设备连续调度PUSCH传输时,为了尽可能避免调度时延(从网络设备通过DCI信令指示SRS资源到终端设备解调该DCI信令到该终端设备发送SRS资源到网络设备完成SRS信号的测量需要一段处理时间)。
调度PUSCH的不同的DCI格式对应的比特位宽可以不相同。网络设备通过高层信令RRC配置至少一个终端设备特定的搜索空间,每个搜索空间会对应时频资源配置信息以使得终端设备在该资源上进行DCI的检测。每个搜索空间同时包含了DCI格式的配置信息,一般只包含一种上行调度的DCI格式,如DCI format 0_0或DCI format 0_1。该终端设备可以通过盲检测不同的搜索空间,确定调度PUSCH使用的DCI格式以及对应的DCI信息。
在网络设备使用DCI format 0_0的情况下,终端设备可能基于自身实现算法或者通过预定义的方式,确定发送PUSCH的物理端口、预编码信息或空间滤波(本文统称为端口信息),这样,会导致网络设备无法直接通过DCI向终端设备指示发送PUSCH所使用的端口信息,数据传输的可靠性较差。
应理解,在本文中,端口至少包括天线端口(又称为物理端口)、预编码信息或空间滤波信息,本文所提到的端口均是逻辑端口。天线端口均指终端设备的天线端口(UE antenna port),该预编码信息包括RI和TPMI,用于指示预编码矩阵。
图2示出了本申请实施例的数据传输方法200的示意性流程图。该方法200可以应用于图1所示的通信系统100,但本申请实施例不限于此。
S210,网络设备在第N发送时刻发送经过第一指示信息加扰的下行信息,其中,所述第一指示信息用于指示用户终端发送第一信号所使用的第一端口与发送第二信号所使用的第二端口是否相同,所述第二信号是所述终端设备在N-K发送时刻发送的,N和K均为正整数,且N大于K;则对应地,终端设备接收所述下行信息,并根据该下行信息获取所述第一指示信息;
S220,所述终端设备根据所述第一指示信息,发送所述第一信号;则对应地,所述网络设备接收所述第一信号。具体的可以为,所述终端设备根据所述第一指示信息确定发送 所述第一信号的第一端口,在所述第一端口上向所述网络设备发送所述第一信号。
所述第一端口包括下列信息中的至少一种:发送所述第一信号所使用的第一天线端口、发送所述第一信号所使用的第一预编码矩阵以及发送所述第一信号所使用的第一空间滤波;
所述第二端口包括下列信息中的至少一种:发送所述第二信号所使用的第二天线端口、发送所述第二信号所使用的第二预编码矩阵以及发送所述第二信号所使用的第二空间滤波。
具体地,网络设备可以通过第一指示信息指示终端设备当前要发送的第一信号所使用的第一端口与第N-K发送时刻发送的第二信号所使用的第二端口是否相同,该终端设备根据该第一指示信息,确定是否要参考第二信号所使用的第二端口。应理解,本文中参考的含义为直接确定第一端口与第二端口相同,该终端设备具体可以参考其中的天线端口、预编码矩阵或空间滤波信息等。
在第一指示信息指示该第一端口与第二端口相同的情况下,该终端设备可以直接使用第二端口发送第一信号,在该第一指示信息指示第一端口与第二端口不相同的情况下,该终端设备可以随机选择端口发送该第一信号,也可以按照预定义的规则发送该第一信号,本申请实施例对此不作限定。
本申请实施例的数据传输方法,第一指示信息指示终端设备当前发送的第一信号所使用的端口与之前发送的第二信号所采用的端口是否相同,使得终端设备根据该第一指示信息确定发送PUSCH的端口信息,有利于提高数据传输的可靠性。
作为一个可选的实施例,所述第一信号为:承载在物理上行共享信道PUSCH上的信号,或,承载在物理上行控制信道PUCCH上的信号。
应理解,上述第一信号可以为承载在PUSCH上的信号,也可以为承载在PUCCH上的信号,本申请实施例对此不作限定。
还应理解,在本文中,发送时刻是一个相对的概念,代表终端设备发送信号的时刻,例如,第一信号在第2发送时刻发送,第二信号在第1发送时刻发送,该第2发送时刻可以是第5时间单元,该第1发送时刻可以是第3时间单元,取决于网络设备的调度,本申请实施例对此不作限定。
此外,终端设备还可以参考在第N-K发送时刻发送第二信号时发送的第二DMRS的发送方式,在第N发送时刻发送第一DMRS。
应理解,终端设备发送PUSCH或者PUCCH时需要同时发送相应的DMRS用于基站估计该PUSCH或者PUCCH的信道信息以便对PUSCH或者PUCCH成功解调,相应的DMRS是指DMRS的端口与PUSCH或者PUCCH的端口和所占的频域资源相同,则此时第一DMRS也可以按照与PUSCH或者PUCCH相同的机制确定其端口信息。
作为一个可选的实施例,所述第二信号为下列信号中的任意一种:承载在PUSCH上的信号、承载在PUCCH上的信号、承载在物理下行控制信道PDCCH上的信号以及随机接入前导序列。
应理解,上述第二信号可以为承载在PUSCH上的信号,可以为承载在PUCCH上的信号,也可以为承载在PDCCH上的信号,还可以为随机接入前导序列,本申请实施例对此不作限定。
此外,还可以定义终端设备发送PUCCH参考最近一次PUSCH的传输方式。由于发送PUCCH采用的端口信息是基于终端设备自身的实现算法确定,比如,固定采用某一端口发送PUCCH,其传输端口可能由于信道的时变特性而并不是最优选的。此时,由于发送PUSCH采用的端口是基于网络设备指示的,通过该端口发送数据的性能可能优于PUCCH的端口,则本次PUCCH的传输可以参考PUSCH传输。
作为一个可选的实施例,K=1,即所述第二信号为所述终端设备在发送所述第一信号之前最近一次发送的。
由于终端设备总是基于最近一次发送的信号进行所述第一信号的端口调整,这样可以提高端口调整效率进而提高系统的吞吐量。
作为一个可选的实施例,所述第一指示信息为第一掩码信息或第一扰码信息,所述第一掩码信息用于对下行控制信息(DCI)的循环冗余校验(CRC)码进行加扰,所述第一扰码信息用于对下行控制信息中的信息比特进行加扰。
具体地,网络设备发送下行信息之前首先对需要传输的控制信息比特进行编码操作,编码之后的控制信息比特可以通过校验码生成多项式生成该控制信息比特的CRC码,并发送附加了CRC校验比特的该控制信息比特,也就是该控制信息比特的CRC码,终端设备接收到该控制信息比特的CRC码之后,可以通过相同的生成多项式对该CRC码进行模2除操作,若余数为0,则意味着该终端设备正确解码该下行信息。
进一步地,可以预先定义不同的第一掩码与不同第一信号传输采用的端口假设信息的对应关系,或者基站通过高层信令,包含RRC信令配置不同的第一掩码与不同的第一信号传输采用的端口假设信息的对应关系,所述端口假设信息可以为参考第二信号的端口或者不参考第二信号的端口。在生成CRC码之后,网络设备可以基于不同的第一掩码与不同的第一信号传输采用的端口假设信息的对应关系,通过不同的第一掩码对CRC码加扰的方式,使得经过第一掩码加扰后的CRC码携带额外的指示信息。比如,网络设备和终端设备均已知有至少两个第一掩码,每个第一掩码均对应一个端口指示信息,该端口指示信息包括终端设备天线端口、预编码矩阵等,则基站基于该对应关系会从所述至少两个第一掩码中选择一个第一掩码对CRC码进行加扰,这样基站通过不同的第一掩码加扰传递不同的端口指示信息。终端设备基于预先定义的或者RRC配置的不同的第一掩码与不同的第一信号传输采用的端口假设信息的对应关系,从接收到的CRC码中获知基站采用的是所述至少两个第一掩码中的某一个第一掩码,从而根据第一指示信息确定发送第一PUSCH所使用的第一端口。
同理,第一指示信息也可以为第一扰码信息。
具体地,在网络设备发送下行信息比特之前且生成该控制信息比特的CRC码之前,需要对信息比特采用特定的第一扰码信息加扰。
进一步地,可以预先定义不同的第一扰码与不同第一信号传输采用的端口假设信息的对应关系,或者基站通过高层信令,包含RRC信令配置不同的第一扰码与不同的第一信号传输采用的端口假设信息的对应关系,所述端口假设信息可以为参考第二信号的端口或者不参考第二信号的端口。网络设备可以基于不同的第一扰码与不同的第一信号传输采用的端口假设信息的对应关系,通过不同的第一扰码对CRC码加扰的方式,使得经过第一扰码加扰后的控制信息比特携带额外的指示信息。比如,网络设备和终端设备均已知有至 少两个第一扰码,每个第一扰码均对应一个端口指示信息,则基站基于该对应关系会从所述至少两个第一扰码中选择一个第一扰码对该控制信息比特进行加扰,这样基站通过不同的第一扰码加扰传递不同的端口指示信息。终端设备基于预先定义的或者RRC配置的不同的第一扰码与不同的第一信号传输采用的端口假设信息的对应关系,从接收到的CRC码中获知基站采用的是所述至少两个第一扰码中的某一个第一扰码,从而根据第一指示信息确定发送第一PUSCH所使用的第一端口。
应理解,上述第一下行控制信息具体也可以为RRC信令和DCI,即网络设备通过RRC信令指示第一指示信息中不同的比特位传递特定的信息,之后通过DCI指示某一个比特位从而通知终端设备该比特位对应的特定的信息,终端设备可以基于RRC信令和DCI最终获得基站指示的特定的信息。
作为一个可选的实施例,所述第一掩码信息包括16个比特位,所述16个比特位中的一个或多个比特位用于指示所述终端设备是否使用所述第二端口发送所述第一信号。
可选地,该第一指示信息可以为上述第一掩码信息或第一扰码信息的比特位,该比特位全部取0则表示第一端口与第二端口相同,该比特位全部取1则表示该第一端口与第二端口不相同,或者该比特位取1则表示第一端口与第二端口相同,该比特位取0则表示该第一端口与第二端口不相同,但本申请实施例对此不作限定。
作为一个可选的实施例,所述第一掩码信息或所述第一扰码信息用于指示所述第一端口和所述第二端口相同,或
所述第一掩码信息或所述第一扰码信息用于指示所述第一端口和所述N-L发送时刻发送的第三信号所使用的所述第三端口相同,L为正整数,L小于N且大于K;
所述第三端口包括下列信息中的至少一种:
发送所述第三信号所使用的第三天线端口、发送所述第三信号所使用的第三预编码矩阵以及发送所述第三信号所使用的第三空间滤波。
具体地,上述第一掩码信息或第一扰码信息可以指示第一端口和第N-K发送时刻发送第二信号对应的第二端口相同,或第一端口和第N-L发送时刻发送的第三信号对应的第三端口相同。
网络设备和终端设备会预先协定L个不同的第一掩码信息或者L个不同的第一扰码信息,分别指示终端设备在第N时刻发送PUSCH采用的端口与第N-n 1时刻发送的PUSCH采用的端口相同,终端设备在第N时刻发送PUSCH采用的端口与第N-n 2时刻发送的PUSCH采用的端口相同,…,终端设备在第N时刻发送PUSCH采用的端口与第N-n L时刻发送的PUSCH采用的端口相同,其中,n 1,n 2,…,n L均为小于N的正整数;或
基站通过RRC信令配置L个不同的第一掩码信息或者L个不同的第一扰码信息分别表明终端设备在第N时刻发送PUSCH采用的端口与第N-n 1时刻发送的PUSCH采用的端口相同,终端设备在第N时刻发送PUSCH采用的端口与第N-n 2时刻发送的PUSCH采用的端口相同,…,终端设备在第N时刻发送PUSCH采用的端口与第N-n L时刻发送的PUSCH采用的端口相同,其中,n 1,n 2,…,n L均为小于N的正整数。在调度第N时刻发送的PUSCH时,基站从L个不同的第一掩码信息或者L个不同的第一扰码信息中选择一个对DCI进行加扰后指示给终端设备,终端设备接收该DCI并通过解码算法确定该DCI使用的掩码信息为L个不同的第一掩码信息或者L个不同的第一扰码信息中的一个,从而 基于基站预先协定的第一掩码信息与端口指示信息的对应关系,或者基于基站通过RRC信令配置的第一掩码信息与端口指示信息的对应关系确定基站指示的端口信息,即采用的端口与第N-n K时刻发送的PUSCH采用的端口相同,其中K为大于等于1小于等于L个整数。
作为一个可选的实施例,所述第一指示信息为DCI中的第一字段,所述第一字段用于指示所述第一端口;或
所述第一指示信息为所述DCI中的第二字段,所述第二字段用于指示发送所述第一信号所使用的调制编码策略MCS,所述第一端口是根据所述MCS确定的。
具体地,网络设备可以向终端设备发送DCI,通过该DCI中的第一字段或第二字段作为上述第一指示信息。该第一字段用于指示上述第一端口,该第二字段用于指示MCS,因此,终端设备在接收到该DCI之后,在第一字段为第一指示信息的情况下,该终端设备可以直接根据DCI中的第一字段确定发送第一信号所使用的第一端口,在第二字段为第一指示信息的情况下,该终端设备可以根据DCI中的第二字段,确定发送第一信号所使用的MCS,再根据MCS确定发送该第一信号所使用的第一端口。
应理解,采用第一字段直接指示第一端口还是采用第二字段指示第一端口,可以是协议约定的,也可以是高层信令配置的,本申请实施例对此不作限定。
作为一个可选的实施例,所述第一指示信息用于指示所述第一端口与所述第二端口相同;或
所述第一指示信息用于指示所述第一天线端口的索引值为X,其中,所述第二天线端口的索引值为X+1或X-1,X为大于1的正整数。
具体地,在第一指示信息指示第一端口和第二端口不相同的情况下,终端设备发送第一信号使用的天线端口(即物理端口)的切换准则可以为:根据该终端设备的天线端口的索引值顺序(或倒序)来切换。例如,如果终端设备发送第二信号采用物理端口1,则该终端设备发送第一信号采用物理端口2。
作为一个可选的实施例,所述第一指示信息用于指示所述第一端口与所述第二端口相同;或
所述第一指示信息用于指示所述第一信号对应的探测参考信号SRS资源的索引值为Y,其中,所述第二信号对应的SRS资源的索引值为Y+1或Y-1,Y为大于1的正整数。
具体地,在第一指示信息指示第一端口和第二端口不相同的情况下,终端设备发送第一信号使用的端口的切换准则可以为:根据该终端设备的SRS资源的索引值顺序(或倒序)来切换。网络设备为终端设备配置了至少一个SRS资源,该SRS资源上发送的SRS为经过预编码的SRS,每个SRS资源上发送的SRS对应一个特征向量,即预编码矩阵,则根据发送的SRS资源的索引确定切换顺序,如果终端设备发送第二信号所采用SRS资源1对应的预编码矩阵,则该终端设备发送第一信号可以采用SRS资源2对应的预编码矩阵。
作为一个可选的实施例,所述第一指示信息用于指示所述第一端口与所述第二端口相同;或
所述第一指示信息用于指示所述第一预编码矩阵的索引值为Z,其中,所述第二预编码矩阵的索引值为Z+1或Z-1,Z为大于1的正整数。
应理解,该预编码矩阵索引的集合可以是预定义的,也可以是网络设备通过高层信令配置的,本申请实施例对此不作限定。
作为一个可选的实施例,上述第一指示信息还可以用来通知终端设备是否采用预编码矩阵轮询的传输方式发送第一信号,同时,也可以用来通知终端设备发送PUSCH的预编码资源块组(Precoding Resource Block Group,PRG)的大小。
其中,预编码矩阵轮询的意思是根据预定义的粒度在时频资源上采用不同的预编码矩阵发送数据,比如,粒度为1资源块(resource block,RB)的预编码矩阵轮询传输就是在频域上PUSCH所占的每个RB都采用不同的预编码矩阵发送PUSCH,该粒度就是PRG大小,即PRG指示了发送PUSCH采用相同预编码矩阵的最小粒度,如PRG=2,则每两个RB上传输的PUSCH采用的预编码矩阵相同。应理解,PRG的大小可以是预定义的。
本申请还提供了另一种数据传输方法,包括:终端设备接收下行控制信息DCI,所述DCI用于指示第一指示信息和第二指示信息;其中,所述第一指示信息为第一掩码信息或第一扰码信息,所述第一掩码信息是所述终端设备通过下行控制信息DCI确定的,所述DCI携带通过所述第一掩码信息加扰的循环冗余校验码,所述第一扰码信息是所述终端设备通过下行控制信息DCI确定的,所述DCI携带通过所述第一扰码信息加扰的信息比特,所述第二指示信息用于指示SRS资源的索引值;
所述终端设备根据所述第一指示信息、所述第二指示信息以及第一映射关系,确定所述第一天线端口,所述第一映射关系用于表示所述第一指示信息、所述第二指示信息与所述第一天线端口之间的对应关系。
可选地,上述DCI的格式为DCI format 0_1。
具体地,网络设备可以通过第一指示信息和第二指示信息联合指示发送第一信号所采用的第一天线端口,在这种情况下,存在第一映射关系,该第一映射关系用于指示该第一天线端口与第一指示信息、第二指示信息之间的对应关系。
应理解,该第一映射关系可以是协议约定的,也可以是网络设备通过高层信令配置的,本申请实施例对此不作限定。
作为一个可选的实施例,上述第二指示信息可以为SRS资源指示字段(SRI),网络设备配置多于1个SRS资源(每个SRS资源配置信息中包括一个SRS资源ID号)时,终端设备基于SRS的配置信息在SRS资源上发送SRS,每个SRS都会根据其配置信息(使用的端口,所占时频资源等等)选择相应的发送方式,网络设备接收并测量多个SRS。当通过DCI format 0_1指示调度PUSCH发送,网络设备通过该DCI中的SRI指示终端设备从配置的多个SRS资源中选择一个,终端设备发送PUSCH采用的发送方式可以参考通过SRI指示的SRS资源上发送的SRS的发送方式。
下面结合具体实施例对本申请进行详细说明。
实施例一
步骤1、网络设备通过高层信令RRC配置终端设备的特定搜索空间中DCI格式为format 0_0。
步骤2、网络设备在该终端设备的特定搜索空间对应的时频资源上发送用于调度PUSCH传输的DCI(对应上述第一下行控制信息)。其中,该DCI的CRC掩码(对应上述第一掩码)的状态位信息(对应上述第一指示信息)可以指示PUSCH单端口传输所使 用的端口信息,该端口信息可以包括天线端口、预编码矩阵信息、空间滤波信息等。
具体地,CRC掩码的状态位0表示终端设备发送本次PUSCH使用的端口信息参考该终端设备发送的最近一次信号所采用的发送方式;CRC掩码的状态位1表示终端设备发送本次PUSCH使用的端口信息不参考最近一次信号采用的传输方式,即该终端设备发送本次PUSCH使用的端口信息与最近一次信号采用的传输方式不同。
该信号可以是PUSCH、PUCCH或PRACH。
图3示出了上述信号为PUSCH的场景示意图。当上述信号为PUSCH时,CRC掩码的状态位为0表示参考上一次的PUSCH的发送方式,CRC掩码的状态位为1表示不参考上一次PUSCH的发送方式,此时,终端设备可以自行确定当前PUSCH的发送方式,即端口信息,也可以按照协议约定的规则确定,本申请实施例对此不作限定。图3仅仅以端口的索引为例进行说明,当状态位为0时,PUSCH的端口索引为1,与上一次PUSCH的端口索引相同,当状态位为1时,PUSCH的端口索引为0,与上一次PUSCH的端口索引不同。
应理解,网络设备通过指示PUSCH发送是否切换端口,可以保证当信道条件变差的情况或者是考虑上行干扰控制的情况下,通知终端设备切换之前发送PUSCH使用的端口,从而可以提高PUSCH发送的性能,并且该指示信息并不会增加DCI的开销。
还应理解,PRACH或PUCCH传输通常采用比较鲁棒的方式,PUSCH参考PRACH或PUCCH的传输可以有效提高PUSCH传输的可靠性。与此同时,PRACH/PUCCH所占的频域资源比较局限,其对应的发送方式对于PUSCH调度在该频域资源相近的频域资源上较优,而对于PUSCH调度在该频域资源不相关的频域资源上不是最优;因此,PRACH/PUCCH的发送方式对于PUSCH传输可能不是优选方案,可以通过网络设备为终端部灵活配置,大大提高了PUSCH传输的灵活性。
在本申请实施例中,上述状态位信息可以为CRC掩码的最后一位,为0或1,如下面表一所示。
表一
端口信息 CRC掩码
参考最近一次 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>
不参考最近一次 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>
但应理解,还可以通过其他1比特或多比特的信息作为上述状态位信息,例如CRC掩码的16比特全部为0,或者全部为1,或者为<0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1>,本申请实施例对此不作限定。
在CRC掩码的状态位1的情况下,终端设备可以根据预定义规则进一步确定当前发送PUSCH所使用的端口信息,使得终端设备和网络设备对齐。这是由于网络设备确定PUSCH传输所使用的MCS以及时频资源分配是基于PUSCH传输使用某一特定的端口及预编码矩阵计算得到的,若不规定终端设备切换端口为某一特定的端口,则网络设备指示的PUSCH传输所使用的MCS以及时频资源分配所基于的端口与该终端设备实际发送PUSCH所使用的端口有可能不匹配,会造成PUSCH性能的损失。该预定义规则可以包括下列几种:
(1)对于终端设备具有4根接收天线但只具有1根发送天线的场景,或者是终端设备具有4根天线,且4根天线可以同时用于数据接收但不能同时用于数据发送的场景,可以预先约定当网络设备指示上述CRC掩码的状态位1时,终端设备发送本次PUSCH使用的物理端口的切换准则为:
根据该终端设备物理端口的索引值的顺序确定切换顺序,也就是说,如果该终端设备发送最近一次PUSCH采用物理端口的索引值为1,则该终端设备发送本次PUSCH采用物理端口的索引值为2;
(2)对于上下行信道不存在互易性的场景,上行信道和下行信道是不相关的,此时,终端设备不能通过下行信道测量获取上行信道,网络设备也不能通过上行信道进行测量获取下行信道。在这种场景下,可以预先约定当网络设备指示CRC掩码的状态位1时,终端设备发送本次PUSCH使用的物理端口的切换准则为:
根据现有码本索引按照某一确定的顺序切换传输方式,也就是说,如果终端设备发送最近一次PUSCH采用的码本索引为1,则该终端设备发送本次PUSCH采用的码本索引为2;
(3)对于上下行信道存在互易性的场景,上行信道和下行信道是完全相关(或对称)的,此时,终端设备可以通过下行信道测量获取上行信道,网络设备也可以通过上行信道测量获取下行信道。在这种场景下,可以预先约定当网络设备指示CRC掩码的状态位1时,终端设备发送本次PUSCH使用的物理端口的切换准则为:
根据网络设备和终端设备根据信道特征值分解获得的特征值从高至低确定切换顺序,具体可以为从所得特征值高对应的特征向量向所得特征值低对应的特征向量切换;或者
假设网络设备为终端设备配置了至少一个SRS资源,该SRS资源上发送的SRS为经过预编码的SRS,每个SRS资源上发送的SRS对应一个特征向量,即预编码矩阵,则根据发送的SRS资源的索引确定切换顺序,如果终端设备发送最近一次PUSCH采用SRS资源1对应的预编码矩阵,则该终端设备发送本次PUSCH采用SRS资源2对应的预编码矩阵。
(4)直接参考最近一次PUCCH采用的传输方式
图4示出了上述信号为PUSCH的另一场景示意图。当上述信号为PUSCH时,CRC掩码的状态位为0表示参考上一次的PUSCH的发送方式,CRC掩码的状态位为1表示不参考上一次PUSCH的发送方式,此时,终端设备可以按照协议约定的规则直接参考最近一次PUCCH采用的传输方式。应理解,图4仅仅以端口的索引为例进行说明,当状态位为0时,PUSCH的端口索引为1,与上一次PUSCH的端口索引相同,当状态位为1时,PUSCH的端口索引为0,与上一次PUSCH的端口索引不同,且与上一次PUCCH的端口索引相同。
实施例二
步骤1、网络设备通过高层信令RRC配置终端设备的特定搜索空间中DCI格式为format 0_0。
步骤2、网络设备在该终端设备的特定搜索空间对应的时频资源上发送用于调度PUSCH传输的DCI(对应上述第一下行控制信息)。其中,DCI format 0_0中的频域资源分配字段(即上述频域资源位置指示信息)指示分配的频域资源为0RB,DCI format 0_0 中的部分字段,比如TDRA/MCS/RV/NDI字段可以用于指示终端设备当前发送PUSCH的端口信息。
具体地,当频域资源分配字段指示的频域资源为0RB时,表明当前未触发PUSCH传输,则网络设备可以用于指示PUSCH传输的相关字段均可以用于指示端口信息。终端设备通过解读资源分配字段的值,确定该DCI格式中其他字段是否用于指示上述端口信息。
网络设备可以通过复用上述字段指示发送PUSCH的秩信息、预编码信息、PRG大小等;比如,基站通过DCI指示PUSCH资源调度时,将时域资源分配字段/频域资源分配字段编码为全0,并且MCS和NDI字段对应的比特位依据TPMI和TRI字段的指示方式发送,也就是说,将MCS和NDI字段作为现有TPMI和TRI字段使用,此时MCS和NDI字段的某一种比特位就指示了相应的某一个TPMI和TRI的信息。
当终端设备通过解码获知频域资源分配字段对应的比特位为全0时,终端设备将上述字段中MCS和NDI字段解读为指示TPMI和TRI的字段,此时终端设备解码获得的MCS和NDI字段对应的比特位获取TPMI和TRI信息。
在本申请实施例中,预定义DCI format 0_0调度的PUSCH发送遵从最近一次未调度频域资源的DCI format 0_0的指示。如图5所示,一个方块表示一个时间单元,第一个时间单元内网络设备指示的0_0+表示本次指示的DCI format 0_0中的频域资源分配为0RB,此时,该DCI中的其他字段用于指示PUSCH发送采用的端口0,则第三个时间单元中网络设备指示的0_0表示本次指示的DCI format 0_0中的频域资源分配为大于0RB,此时,该DCI触发的PUSCH发送采用端口0,以此类推。
在本申请实施例中,网络设备通过特殊的DCI format 0_0,即该DCI未调度PUSCH,指示后续发送PUSCH采用的端口信息,从而终端设备只需要盲检测一个格式的DCI,从而实现减小终端设备盲检测的复杂度。
实施例三
本申请实施例主要针对终端设备上报只支持上行单端口传输或者网络设备配置的SRS资源端口数为1的场景。例如,具体可以是对于终端设备具有4根接收天线但只具有1根发送天线的场景,或者是终端设备具有4根天线且4根天线可以同时用于数据接收但不能同时用于数据发送的场景(简称为1T4R的终端设备)。在这种场景下,网络设备无法仅通过DCI format 0_1中的字段向终端设备进行发送PUSCH的端口指示,需要联合CRC掩码中的状态位和SRI信息联合指示终端设备传输PUSCH所使用的端口信息。
步骤1、网络设备通过高层信令RRC配置终端设备的特定搜索空间中DCI格式为format 0_1。
步骤2、网络设备在该终端设备的特定搜索空间对应的时频资源上发送用于调度PUSCH传输的DCI(对应上述第一下行控制信息)。其中,DCI format 0_1中的SRI和CRC掩码可以联合指示终端设备发送PUSCH所使用的物理端口信息。
如表二所示,对于1T4R的终端设备,共有4个天线端口,表二中的第一个至第四个天线端口与用于做SRS天线切换的SRS资源索引相关联,协议中可以定义用于做SRS天线切换的SRS资源上发送的SRS采用不同的终端设备的天线端口。
表二
天线端口 CRC掩码和SRI
第一个天线端口 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>+’0’
第二个天线端口 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>+’1’
第三个天线端口 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>+’0’
第四个天线端口 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>+’1’
在本申请实施例中,通过协议约定的方式,终端设备可以直接根据CRC掩码中的状态位和SRI确定发送PUSCH所使用的天线端口,并且保证网络设备与终端设备理解一致,从而提高数据传输的可靠性。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图5,详细描述了根据本申请实施例的数据传输方法,下面将结合图6至图9,详细描述根据本申请实施例的网络设备和终端设备。
图6示出了本申请实施例提供的终端设备600,该终端设备600包括:
接收单元610,用于接收基站发送的下行信息,其中,所述下行信息为经过掩码加扰后的循环冗余校验(CRC)码;
处理单元620,用于根据所述下行信息得到所述掩码,所述掩码包含用于指示所述终端设备是否使用发送第二信号所使用的端口来发送第一信号的指示信息,其中,所述终端设备在发送所述第一信号前发送所述第二信号;和根据所述指示信息确定发送所述第一信号的端口;和
发送单元630,用于在确定出的端口上发送所述第一信号。
本申请实施例的终端设备,通过第一指示信息向终端设备指示当前发送的第一信号所使用的端口与之前发送的第二信号所采用的端口是否相同,使得终端设备根据该第一指示信息确定发送PUSCH的端口信息,有利于提高数据传输的可靠性。
可选地,所述发送第一信号的端口包括以下信息中的一种或者多种:天线端口、预编码矩阵和空间滤波。
可选地,所述第一信号为:承载在物理上行共享信道PUSCH上的信号,或,承载在物理上行控制信道PUCCH上的信号。
可选地,所述第二信号为承载在PUSCH上的信号、承载在PUCCH上的信号或者随机接入前导序列。
可选地,所述下行信息为下行控制信息(DCI)的经过所述掩码加扰后的CRC码。
可选地,所述掩码为16比特,所述指示信息为所述掩码的一个或多个比特。
可选地,所述掩码的最后一位取值为0时,指示发送所述第一信号的端口和发送第二信号的端口相同。
可选地,所述掩码的最后一位取值为1时,指示发送所述第一信号的端口和发送第二信号的端口不同。
可选地,所述DCI的格式为format 0_0或者format 0_1。
可选地,所述发送所述第一信号的端口的天线端口的索引值为X,发送所述第二信号 的端口的天线端口索引值为X+1或X-1,X为大于等于1的正整数。
可选地,所述发送所述第一信号的端口的预编码矩阵的索引值为Z,发送所述第二信号的端口的预编码矩阵的索引值为Z+1或Z-1,Z为大于等于1的正整数。
应理解,这里的终端设备600以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,终端设备600可以具体为上述实施例中的终端设备,终端设备600可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图7示出了本申请实施例提供的基站700,该基站700包括:
处理单元710,用于使用掩码对循环冗余校验(CRC)码进行加扰,得到加扰后的CRC码,其中,所述掩码包含用于指示终端设备是否使用发送第二信号所使用的端口来发送第一信号的指示信息,其中,所述第二信号和所述第一信号均为所述终端设备发送,并且所述第二信号在所述第一信号前发送;和
发送单元720,用于将所述加扰后的CRC码发送给所述终端设备。
本申请实施例的网络设备,通过第一指示信息向终端设备指示当前发送的第一信号所使用的端口与之前发送的第二信号所采用的端口是否相同,使得终端设备根据该第一指示信息确定发送PUSCH的端口信息,有利于提高数据传输的可靠性。
可选地,所述发送第一信号的端口包括以下信息中的一种或者多种:天线端口、预编码矩阵和空间滤波。
可选地,所述第一信号为承载在物理上行共享信道PUSCH上的信号,或承载在物理上行控制信道PUCCH上的信号。
可选地,所述第二信号为承载在PUSCH上的信号、承载在PUCCH上的信号或者随机接入前导序列。
可选地,所述加扰后的CRC码为下行控制信息(DCI)的经过所述掩码加扰后的CRC码。
可选地,所述掩码为16比特,所述指示信息为所述掩码的一个或多个比特。
可选地,所述掩码的最后一位取值为0时,指示发送所述第一信号的端口和发送第二信号的端口相同。
可选地,所述掩码的最后一位取值为1时,指示发送所述第一信号的端口和发送第二信号的端口不同。
可选地,所述DCI的格式为format 0_0或者format 0_1。
可选地,所述天线端口的索引值为X,发送所述第二信号的端口的天线端口索引值为X+1或X-1,X为大于等于1的正整数。
可选地,所述预编码矩阵的索引值为Z,其中,发送所述第二信号的端口的预编码矩阵的索引值为Z+1或Z-1,Z为大于等于1的正整数。
应理解,这里的基站700以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多 个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,基站700可以具体为上述实施例中的网络设备,基站700可以用于执行上述方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图8示出了本申请实施例提供的另一终端设备800。该终端设备800包括处理器810、收发器820和存储器830。其中,处理器810、收发器820和存储器830通过内部连接通路互相通信,该存储器830用于存储指令,该处理器810用于执行该存储器830存储的指令,以控制该收发器820发送信号和/或接收信号。
其中,该收发器820用于接收基站发送的下行信息,其中,所述下行信息为经过掩码加扰后的循环冗余校验(CRC)码;该处理器810用于:根据所述下行信息得到所述掩码,所述掩码包含用于指示所述终端设备是否使用发送第二信号所使用的端口来发送第一信号的指示信息,其中,所述终端设备在发送所述第一信号前发送所述第二信号;和根据所述指示信息确定发送所述第一信号的端口;该收发器820还用于在确定出的端口上发送所述第一信号。
应理解,终端设备800可以具体为上述实施例中的终端设备,并且可以用于执行上述方法实施例中与终端设备对应的各个步骤和/或流程。可选地,该存储器830可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器810可以用于执行存储器中存储的指令,并且当该处理器810执行存储器中存储的指令时,该处理器810用于执行上述与该终端设备对应的方法实施例的各个步骤和/或流程。
图9示出了本申请实施例提供的另一基站900。该基站900包括处理器910、收发器920和存储器930。其中,处理器910、收发器920和存储器930通过内部连接通路互相通信,该存储器930用于存储指令,该处理器910用于执行该存储器930存储的指令,以控制该收发器920发送信号和/或接收信号。
其中,该处理器910用于使用掩码对循环冗余校验(CRC)码进行加扰,得到加扰后的CRC码,其中,所述掩码包含用于指示终端设备是否使用发送第二信号所使用的端口来发送第一信号的指示信息,其中,所述第二信号和所述第一信号均为所述终端设备发送,并且所述第二信号在所述第一信号前发送;该收发器920用于将所述加扰后的CRC码发送给所述终端设备。
应理解,基站900可以具体为上述实施例中的网络设备,并且可以用于执行上述方法实施例中网络设备对应的各个步骤和/或流程。可选地,该存储器930可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器910可以用于执行存储器中存储的指令,并且当该处理器910执行存储器中存储的指令时,该处理器910用于执行上述与该网络设备对应的方法实施例的各个步骤和/或流程。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以 是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (36)

  1. 一种数据传输方法,其特征在于,包括:
    终端设备接收网络设备发送的下行信息,其中,所述下行信息为经过掩码加扰后的循环冗余校验(CRC)码;
    所述终端根据所述下行信息得到所述掩码,所述掩码包含用于指示所述终端设备是否使用发送第二信号所使用的端口来发送第一信号的指示信息,其中,所述终端设备在发送所述第一信号前发送所述第二信号;和
    所述终端设备根据所述指示信息确定发送所述第一信号的端口,并在确定出的端口上发送所述第一信号。
  2. 根据权利要求1所述的方法,其特征在于,所述发送第一信号的端口包括以下信息中的一种或者多种:天线端口、预编码矩阵和空间滤波。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信号为承载在物理上行共享信道PUSCH上的信号,或承载在物理上行控制信道PUCCH上的信号。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第二信号为承载在PUSCH上的信号、承载在PUCCH上的信号或者随机接入前导序列。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述下行信息为下行控制信息(DCI)的经过所述掩码加扰后的CRC码。
  6. 根据权利要求5所述的方法,其特征在于,所述掩码为16比特,所述指示信息为所述掩码的一个或多个比特。
  7. 根据权利要求6所述的方法,其特征在于,所述掩码的最后一位取值为0时,指示发送所述第一信号的端口和发送第二信号的端口相同。
  8. 根据权利要求6所述的方法,其特征在于,所述掩码的最后一位取值为1时,指示发送所述第一信号的端口和发送第二信号的端口不同。
  9. 根据权利要求5-8任一项所述的方法,其特征在于,所述DCI的格式为format 0_0或者format 0_1。
  10. 根据权利要求8所述的方法,其特征在于,所述天线端口的索引值为X,发送所述第二信号的端口的天线端口索引值为X+1或X-1,X为大于等于1的正整数。
  11. 根据权利要求8或10所述的方法,其特征在于,所述预编码矩阵的索引值为Z,其中,发送所述第二信号的端口的预编码矩阵的索引值为Z+1或Z-1,Z为大于等于1的正整数。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述网络设备是基站。
  13. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的下行信息,其中,所述下行信息为经过掩码加扰后的循环冗余校验(CRC)码;
    处理单元,用于:根据所述下行信息得到所述掩码,所述掩码包含用于指示所述终端设备是否使用发送第二信号所使用的端口来发送第一信号的指示信息,其中,所述终端设备在发送所述第一信号前发送所述第二信号;和根据所述指示信息确定发送所述第一信号 的端口;和
    发送单元,用于在确定出的端口上发送所述第一信号。
  14. 根据权利要求13所述的终端设备,其特征在于,所述发送第一信号的端口包括以下信息中的一种或者多种:天线端口、预编码矩阵和空间滤波。
  15. 根据权利要求13或14所述的终端设备,其特征在于,所述第一信号为承载在物理上行共享信道PUSCH上的信号,或承载在物理上行控制信道PUCCH上的信号。
  16. 根据权利要求13-15任一项所述的终端设备,其特征在于,所述第二信号为承载在PUSCH上的信号、承载在PUCCH上的信号或者随机接入前导序列。
  17. 根据权利要求13-16任一项所述的终端设备,其特征在于,所述下行信息为下行控制信息(DCI)的经过所述掩码加扰后的CRC码。
  18. 根据权利要求17所述的终端设备,其特征在于,所述掩码为16比特,所述指示信息为所述掩码的一个或多个比特。
  19. 根据权利要求18所述的终端设备,其特征在于,所述掩码的最后一位取值为0时,指示发送所述第一信号的端口和发送第二信号的端口相同。
  20. 根据权利要求18所述的终端设备,其特征在于,所述掩码的最后一位取值为1时,指示发送所述第一信号的端口和发送第二信号的端口不同。
  21. 根据权利要求17-20任一项所述的终端设备,其特征在于,所述DCI的格式为format 0_0或者format 0_1。
  22. 根据权利要求20所述的终端设备,其特征在于,所述发送所述第一信号的端口的天线端口的索引值为X,发送所述第二信号的端口的天线端口索引值为X+1或X-1,X为大于等于1的正整数。
  23. 根据权利要求20或22所述的终端设备,其特征在于,所述发送所述第一信号的端口的预编码矩阵的索引值为Z,发送所述第二信号的端口的预编码矩阵的索引值为Z+1或Z-1,Z为大于等于1的正整数。
  24. 根据权利要求13-23任一项所述的终端设备,其特征在于,所述网络设备是基站。
  25. 一种网络设备,包括:
    处理单元,用于使用掩码对循环冗余校验(CRC)码进行加扰,得到加扰后的CRC码,其中,所述掩码包含用于指示终端设备是否使用发送第二信号所使用的端口来发送第一信号的指示信息,其中,所述第二信号和所述第一信号均为所述终端设备发送,并且所述第二信号在所述第一信号前发送;和
    发送单元,用于将所述加扰后的CRC码发送给所述终端设备。
  26. 根据权利要求25所述的网络设备,其特征在于,所述发送第一信号的端口包括以下信息中的一种或者多种:天线端口、预编码矩阵和空间滤波。
  27. 根据权利要求25或26所述的网络设备,其特征在于,所述第一信号为承载在物理上行共享信道PUSCH上的信号,或承载在物理上行控制信道PUCCH上的信号。
  28. 根据权利要求25-27任一项所述的网络设备,其特征在于,所述第二信号为承载在PUSCH上的信号、承载在PUCCH上的信号或者随机接入前导序列。
  29. 根据权利要求25-28任一项所述的网络设备,其特征在于,所述加扰后的CRC码为下行控制信息(DCI)的经过所述掩码加扰后的CRC码。
  30. 根据权利要求29所述的网络设备,其特征在于,所述掩码为16比特,所述指示信息为所述掩码的一个或多个比特。
  31. 根据权利要求30所述的网络设备,其特征在于,所述掩码的最后一位取值为0时,指示发送所述第一信号的端口和发送第二信号的端口相同。
  32. 根据权利要求30所述的网络设备,其特征在于,所述掩码的最后一位取值为1时,指示发送所述第一信号的端口和发送第二信号的端口不同。
  33. 根据权利要求29-32任一项所述的网络设备,其特征在于,所述DCI的格式为format 0_0或者format 0_1。
  34. 根据权利要求32所述的网络设备,其特征在于,所述天线端口的索引值为X,发送所述第二信号的端口的天线端口索引值为X+1或X-1,X为大于等于1的正整数。
  35. 根据权利要求32或34所述的网络设备,其特征在于,所述预编码矩阵的索引值为Z,其中,发送所述第二信号的端口的预编码矩阵的索引值为Z+1或Z-1,Z为大于等于1的正整数。
  36. 一种计算机可读介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求1-12任一项所述的方法的指令。
PCT/CN2019/081301 2018-04-04 2019-04-03 数据传输方法、终端设备和网络设备 WO2019192530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810302369.6A CN110351851B (zh) 2018-04-04 2018-04-04 数据传输方法、终端设备和网络设备
CN201810302369.6 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019192530A1 true WO2019192530A1 (zh) 2019-10-10

Family

ID=68100031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081301 WO2019192530A1 (zh) 2018-04-04 2019-04-03 数据传输方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN110351851B (zh)
WO (1) WO2019192530A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098783A1 (en) * 2019-11-19 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method of wireless communication
WO2021121177A1 (zh) * 2019-12-19 2021-06-24 维沃移动通信有限公司 Dmrs端口指示的方法及设备
CN115066926A (zh) * 2020-02-21 2022-09-16 华为技术有限公司 信号传输方法及装置
CN115136699A (zh) * 2020-02-14 2022-09-30 华为技术有限公司 一种信息发送方法、信息接收方法和装置
CN115152158A (zh) * 2020-02-18 2022-10-04 华为技术有限公司 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114391231B (zh) * 2019-10-11 2024-05-03 华为技术有限公司 一种通信方法及通信装置
CN111092695B (zh) * 2019-11-05 2023-09-26 中兴通讯股份有限公司 重传次数确定方法、指示方法、装置、终端、通信节点及介质
WO2021087930A1 (zh) * 2019-11-07 2021-05-14 富士通株式会社 上行传输的发送方法、装置和通信系统
WO2021097818A1 (zh) * 2019-11-22 2021-05-27 华为技术有限公司 通信方法及装置
CN114846878B (zh) * 2020-02-13 2025-01-24 Oppo广东移动通信有限公司 一种功率控制方法及装置、终端
JP2023056057A (ja) * 2020-03-06 2023-04-19 シャープ株式会社 端末装置、基地局装置、および、通信方法
WO2021196232A1 (zh) * 2020-04-03 2021-10-07 Oppo广东移动通信有限公司 物理信道的资源映射方法、终端设备和网络设备
CN113726698B (zh) * 2020-05-22 2025-02-18 展讯通信(上海)有限公司 上行扰码加扰方法及用户设备
CN114080013B (zh) * 2020-08-14 2024-03-19 华为技术有限公司 信息传输方法及通信装置
WO2022056885A1 (zh) * 2020-09-19 2022-03-24 华为技术有限公司 一种通信方法和装置
KR20230112628A (ko) * 2020-11-20 2023-07-27 지티이 코포레이션 위상 추적 참조 신호-복조 참조 신호 연관의 지시를 위한 시스템들 및 방법들
CN115242320A (zh) * 2021-04-23 2022-10-25 上海华为技术有限公司 一种数据传输的方法及其设备
CN113644958A (zh) * 2021-07-15 2021-11-12 南京熊猫汉达科技有限公司 一种低轨卫星窄带通信系统及同频干扰规避方法
WO2024077448A1 (zh) * 2022-10-10 2024-04-18 华为技术有限公司 通信方法、装置、芯片系统、存储介质及计算机程序产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888624A (zh) * 2010-06-11 2010-11-17 中兴通讯股份有限公司 发射天线选择的配置方法及装置
CN102355293A (zh) * 2011-08-15 2012-02-15 中兴通讯股份有限公司 测量参考信号发射方法及装置
CN107852616A (zh) * 2015-06-29 2018-03-27 夏普株式会社 终端装置、基站装置、通信方法以及集成电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888624A (zh) * 2010-06-11 2010-11-17 中兴通讯股份有限公司 发射天线选择的配置方法及装置
CN102355293A (zh) * 2011-08-15 2012-02-15 中兴通讯股份有限公司 测量参考信号发射方法及装置
CN107852616A (zh) * 2015-06-29 2018-03-27 夏普株式会社 终端装置、基站装置、通信方法以及集成电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEXTWAVE WIRELESS: "UE Transmit Antenna Selection - Technical Aspects", 3GPP TSG RAN WG1 MEETING #55 R1-084432, 4 November 2008 (2008-11-04), XP050317690 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098783A1 (en) * 2019-11-19 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method of wireless communication
US12177866B2 (en) 2019-11-19 2024-12-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method of wireless communication
WO2021121177A1 (zh) * 2019-12-19 2021-06-24 维沃移动通信有限公司 Dmrs端口指示的方法及设备
CN115136699A (zh) * 2020-02-14 2022-09-30 华为技术有限公司 一种信息发送方法、信息接收方法和装置
CN115152158A (zh) * 2020-02-18 2022-10-04 华为技术有限公司 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统
CN115066926A (zh) * 2020-02-21 2022-09-16 华为技术有限公司 信号传输方法及装置

Also Published As

Publication number Publication date
CN110351851A (zh) 2019-10-18
CN110351851B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2019192530A1 (zh) 数据传输方法、终端设备和网络设备
CN116112140B (zh) 传输信号的方法、终端设备和网络设备
CN110035527B (zh) 资源指示方法、终端设备和网络设备
US11736170B2 (en) Data transmission method, terminal device, and network device
CN114337972B (zh) 用于传输数据的方法和终端设备
EP2606617B1 (en) Transmission of reference signals
CN111357361B (zh) 信息传输的方法和通信设备
CN110351846B (zh) 信息传输方法和信息传输装置
US10212724B2 (en) Enhanced link adaptatrion
US10164752B2 (en) Dynamic precoding of shared reference signals
CN110839291B (zh) 传输下行控制信息的方法和装置
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
JP7142027B2 (ja) 信号伝送方法、端末装置とネットワーク装置
WO2019137058A1 (zh) 资源指示方法、终端设备和网络设备
CN113193942A (zh) 利用群组参考信号进行控制和数据信道的传输和接收的系统和方法
US10778388B2 (en) Method and apparatus for resource management in wireless communication systems
RU2748317C1 (ru) Способ передачи сигнала, сетевое устройство и оконечное устройство
US11317429B2 (en) Method for transmitting and receiving scheduling information in communication system
TWI771502B (zh) 計算通道品質指示cqi的方法、終端設備和網路設備
CN107078783A (zh) 传输信息的方法、接入点和用户设备
CN114762423B (zh) 传输方法及装置
CN117016033A (zh) 具有重复的上行链路传输
CN111741482A (zh) 一种确定和获得下行干扰的方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780560

Country of ref document: EP

Kind code of ref document: A1